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Abstract- The particle swarm optimization algorithm
has been shown to be a competitive heuristic to solve
multi-objective optimization problems. Also, fitness
sharing concepts have shown to be significant when used
by multi-objective optimization methods. In this pa-
per we introduce an algorithm that makes use of these
two main concepts, particle swarm optimization and fit-
ness sharing to tackle multi-objective optimization prob-
lems.

1 Introduction

The Particle Swarm Optimization (PSO) is a non-linear
function optimization technique of recent development [13].
This technique has good performance, low computational
cost and is easy to implement. Due to those characteristics,
plus the similarities that this technique share with evolution-
ary algorithms, evolutionary computation scientists have
been attracted to study this heuristic more closely.

Originally PSO was conceived to solve single-objective
problems. Although previous work has been done to en-
hance the PSO to deal with multi-objective optimization
problems (MOPs) [2] and it has been paired with fitness
sharing for multimodal function optimization [17], to the
best of our knowledge, PSO techniques have not made use
of fitness sharing to guide (or improve) the search of the
particles for the global optima (Pareto front), for solving
MPOs.

One of the characteristics that made PSO (or evolu-
tionary algorithms) so attractive to solve MOPs is due to
its population-based solutions mechanism. Thanks to this
mechanism, these kind of heuristics are capable of provid-
ing several solutions in one execution, in contrast to tradi-
tional techniques where one execution is capable to produce
just one single solution.

First we will briefly talk about particle swarm optimiza-
tion, fitness sharing and multi-objective optimization con-
cepts. Then we will introduce an algorithm to tackle multi-
objective problems based on particle swarm optimization
and fitness sharing. After that, we will show the results
of experiments performed against specialized test functions
found in the literature and we compare it against three state-
of-the-art heuristics in multi-objective optimization. Then
we will discuss our results. At the end, conclusions and fu-
ture work are given.

2 Background

In this section we will introduce some of the main concepts
that we have used to produce our work.

2.1 Particle Swarm Optimization

This technique developed by Kennedy and Eberhart [14], is
basically inspired by bird flocking. The main idea is based
in the way birds travel when trying to find sources of food,
or similarly the way a fish school will behave. The way
this behavior is modeled, is that the “particles” inside the
“swarm” (or population) are treated as solutions to a given
problem; the solution space for that problem is where the
particles will be moving or traveling through, searching for
the best solutions to the problem. The particles will travel
following two points in the space; a) a leader in the swarm,
which is chosen according to the global best solution found
so far1, and b) its memory. Every particle has a memory,
which is the best solution visited by that specific particle.
Particle swarm optimization shares many similarities with
genetic algorithms and/or evolutionary heuristics, and this is
one of the main reasons which makes this technique attrac-
tive to use to solve problems like the ones we are interested
in.

2.2 Fitness Sharing

The main idea of fitness sharing (Goldberg and Richard-
son [11], [8]) is to distribute a population of individuals
along a set of resources. When an individuali is sharing
resources with other individuals, its fitnessfi is degraded in
proportion to the number and closeness to individuals that
surround it. Fitness sharing for and individuali is defined
as:

fShari =
fi∑n

j=0 sharingj
i

(1)

wheren is the number of individuals in the population,

sharingj
i =

{
1− (dj

i/σshare)2 if dj
i < σshare

0 Otherwise
(2)

σshare is the distance we want the individuals to remain dis-
tant from each other, anddj

i is a measure of distance be-
tween individuali andj.

1In PSO there are two main models in the way particles interact, the
model used here is known as thegbestmodel, the other model is called
lbestand is based in local connections (finding local best solutions, rather
than a global one).



2.3 Multi-Objective Problems

When trying to solve single-objective problems, we only
need to focus on the search for a single point in our search
space (usually, it is what techniques solving single-objective
problems do). On the other hand, when trying to solve
MOPs we are looking not just for one single solution; in-
stead, we are trying to find a set of solutions.

From this set of trade-off solutions the one that will be
chosen, will depend on the needs of the decision maker (the
person who takes the decisions).

MOPs are not trivial problems to solve and in order to
solve them we need to have in mind some factors; as we
just saw, we need to find a set of solutions for the problem
and we need them as diverse as possible.

When tackling MOPs with traditional mathematical pro-
gramming techniques, they tend to generate a single ele-
ment of the set of solutions in one run. Moreover, tradi-
tional methods are susceptible to the shape or continuity of
the set of solutions. EC paradigms are very suitable to solve
MOPs because of their population-based nature, which can
generate a set of solutions in just one run.

Formalization Regarding MOPs there are some defini-
tions that formalize the problem. The general definition for
a Multi-objective Optimization Problem is defined in Coello
Coello et al. [4, pg. 6] as:
Definition 1. Find a vector~x∗ = [x∗1, x

∗
2, . . . , x

∗
n]T satisfy-

ing m inequality constraints:

gi(~x) ≥ 0 i = 1, 2, . . . ,m (3)

p equality constraints:

hi(~x) = 0 i = 1, 2, . . . , p (4)

and optimizing2 the vector function:

~f(~x) = [f1(~x), f2(~x), . . . , fk(~x)]T (5)

where~x = [x1, x2, . . . , xn]T is the vector of decision vari-
ables.

In order to optimize a vector function, there is another
important concept tied to MOPs called “domination”. In
Deb [6, pg. 28] the concept of domination is defined as:
Definition 2. A solution~u is said to dominate another so-
lution ~v, if conditions 1 and 2 are true:

1. The solution~u is no worse than~v in all objectives, or
fi(~u) 7 fi(~v) for all i = 1, 2, ..., k.

2. The solution~u is strictly better than~v in at least
one objective, orfī(~u) C fī(~v) for at least one
ī ∈ 1, 2, ..., k.

The notationC used, is to express that a solutioni is
better than a solutionj (i C j), regardless of the type of
problem (minimization or maximization). The notationB
is used in the same way,i B j means that solutionj is
better than solutioni.

Deb [6, pg. 31] defines anon-dominated setas follows:

2The concept ofoptimizationis defined in terms ofdomination, ex-
plained later on.
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Figure 1: Diagram of the Algorithm

Definition 3. Among a set of solutionsP , the non-
dominated set of solutionsP ′ are those that are not dom-
inated by any member of the setP .

If within the definition we replace the set of solutionsP
by the feasible search spaceF (P = F ), then the set of
solutions inP ′ will be what is calledPareto-optimal setor
Pareto front.

3 Proposed Approach

Goldberg [10], in his book, suggested the use of niche and
speciation methods into the MOEA area. Back then, he
thought they may be especially useful to avoid competition
between distant members of the population, and in this way
promoting and maintaining diversity. Following Goldberg’s
suggestions, multiple independent groups implemented his
ideas [12]. The four main techniques are MOGA, NPGA,
NSGA, and the Pareto-optimal ranking GA with sharing.
This has lead us to the proposal of the work that we will
describe in this section.

Our idea is to use the PSO technique to guide the search
with help of fitness sharing to spread the particles along
the Pareto front. Because of that we will be using fitness
sharing in the objective space. Fitness sharing will help to
our algorithm to maintain diversity between solutions, parti-
cles within high populated areas in the objective space will
be less likely to be follow. In each iteration of the algo-
rithm, the best particles found (those not dominated) will be
inserted into an external repository (or external memory).
This repository will help to guide the search for the next
generations and will maintain a set of not dominated solu-
tions until the end of the run, which is what we are looking
for, the set of solutions forming the Pareto front.

The flow of the algorithm is shown in Figure 1. A briefly
explanation follows for each of the steps given in the dia-
gram:

1. In the first step all variables used by the algorithm are
initialized. Particles (pop[i]) are initialized inside the
search space and their memories (pbest[i]) are filled
with the current positions. The external repository
(gbest[i]) is filled with all the non-dominated parti-
cles. Fitness sharing (fShar[i]) is calculated for each
of the particles in the repository.



According to the fitness sharing principle, which
in words states that particles (or solutions) which
have more particles in their vicinity will be less fit
than those that have fewer particles surrounding their
vicinity. The fitness assigned is given by:

fShar[i] = x/nCounti (6)

wherex = 10; the value forx was arbitrarily chosen,
a high value forfShar (close to, or10) will mean
that the particle is not surrounded by other particles,
or at least that there are particles not so close to this
one.

nCounti =
n∑

j=0

sharingj
i (7)

wheren is the number of particles in the repository.

sharingj
i =

{
1− (dj

i/σshare)2 if d < σshare

0 Otherwise
(8)

σshare is the distance we want the particles to remain
distant from each other; andd is a measure of distance
between particles.

dj
i =

√
(parti − partj)2 (9)

2. Having a fitness sharing assigned for each particle
in the repository, particles from the repository which
will guide to the others into the next cycle will be cho-
sen as leaders to be followed. They will be chosen
according to a stochastic universal sampling method
(Roulette Wheel). Particles with higher levels of fit-
ness will be selected over the less fit ones. This
will allow them to explore places less explored in the
search space. The velocity for the particles is calcu-
lated as:

vel[i] = w × vel[i] +
r1 × (pbest[i]− pop[i]) +
r2 × (gbest[h]− pop[i]) (10)

wherew is an inertia weight (we used a value of0.4
for all of our experiments),vel[i] is the previous ve-
locity value,r1 andr2 are random values between0
and1, pbest[i] is the best position found by the par-
ticle, gbest[h] is the particle to be follow, andpop[i]
is the current position of the particle in the variable
space.

3. New positions of the particles are calculated accord-
ing to the velocities obtained in the previous step:

pop[i] = pop[i] + vel[i] (11)

4. The new positions of the swarm are evaluated.

5. The repository is updated with the current solutions
found by the particles. The criteria used to update
the repository is dominance and fitness sharing. The

particles that dominate the ones inside the repository
will be inserted and all solutions dominated will be
deleted, in this way we maintain the repository as the
Pareto front found so far. In the case where the repos-
itory is full of non-dominated particles and a parti-
cle which is non-dominated by any in the repository
wants to get into it, we compare their fitness sharing.
We calculate the fitness sharing for the particle that
wants to get into the repository and if is better than
the worst fitness sharing for a particle in the repos-
itory, then the particle with worst fitness sharing is
replaced by this new one. Fitness sharing for all par-
ticles is updated when inserting or deleting a particle
from the repository. This is to maintain fitness shar-
ing in an up to date state in case is used again when
calculating velocities or when inserting particles into
the repository.

6. Finally the memory of each particle is updated with
the criteria of dominance if the current location of the
particle dominates the one stored in its memory the
current one replaces the one in memory.

4 Test and Comparison

For the purpose of this paper we will show the perfor-
mance of our approach with four test functions and we
will compare them against three well known techniques in
multi-objective literature. The techniques are: MOPSO [3],
NSGA-II [7] and PAES [15]3.

To measure performance of our approach against these
three heuristics we chose three metrics. As is well known,
assessing performance in multi objective problems is a
multi-objective problem per se. Mainly, we need to accom-
plish these objectives:

• Proximity to the real Pareto front, we need to get as
close as possible to the optimal solutions

• Diversity among solutions, we need to have a wide
range of variety

• Maximize the extension of the solutions found, this
will allow more diversity

The metrics to measure the performance are:
• Generational Distance [19] finds the average dis-

tance of the non-dominated set of solutions found
from the Pareto optimal set:

GD =

√∑n
i=1 d2

i

n
(12)

wheredi is the Euclidean distance between solution
i from the set ofn non-dominated solutions found
and the closest element from the Pareto optimal set
(in objective space). Because this metric the average
distance from the Pareto optimal set, a smaller value
indicates more proximity.

3Source code for these heuristics was written by their respective authors
and obtained from [1]. Source code of our approach can be obtained by e-
mailing the first author of this paper.



• Spacing[18] measures how well distributed (spaced)
the solutions in the non-dominated set found are:

S =

√√√√ 1
n

n∑
i=1

(di − d)2 (13)

wheredi is the minimum value of the sum of the abso-
lute difference for every objective function value be-
tween thei-th solution and all then non-dominated
solutions found,di = minn

j=1∧j 6=i(
∑M

m=1 |f i
m −

f j
m|), d is the mean value for alldi, d =

∑n
i=1 di/n.

Because this metric measures the standard devia-
tions of the distances between the solutions found, a
smaller value will indicate that the solutions are uni-
formly spaced.

• Maximum Spread [20] gives a value which repre-
sents the maximum extension between the farthest so-
lutions in the non-dominated set found, in a problem
with two objectives, the value will be the Euclidean
distance between the two farther solutions.

D =

√√√√ M∑
m=1

(
maxn

i=1f
i
m −minn

i=1f
i
m

)2
(14)

As previously,n is number of solutions in the non-
dominated set, andM is the number of objectives in a
given problem. In this metric a bigger value indicates
better performance.

For this paper we have performed two sets of experiments.
In the first set of experiments we have set the heuristics to
find only 10 non-dominated solutions per run, and in the
second set 100 non-dominated solutions. The purpose is
to show how well our technique makes use of fitness shar-
ing. Our believe is that, using a small size in the repository,
our technique will still spread its solutions thanks to fitness
sharing.

To allow a fair comparison between all the heuristics,
they performed the same number of evaluations to the ob-
jective function in each test function. To compare and ob-
tain statistics for each test function, we performed 30 runs
for each technique used. The parameters used by MOPSO,
NSGA-II and PAES for all the test functions were; MOPSO
used: a mutation rate of0.5, 30 divisions for its adaptive
grid, and a real number representation, for the first set of
experiments a population of10 particles and a repository
size of10 particles, for the second set of experiments a pop-
ulation of100 particles and repository size of100 particles.
NSGA-II used: a crossover rate of0.8, a mutation probabil-
ity of 1/x, wherex is the number of variables for the given
problem, and a real number representation with tournament
selection, for the first set of experiments a population of10
individuals and for the second set of experiments a popula-
tion of 100 individuals. PAES used: a depth value of5, a
mutation probability of1/L, whereL refers to the length
of the chromosomic binary string, that encodes the decision
variables, for the first set of experiments an archive size of
10 individuals and for the second an archive size of100.

MOPSO-fs used a population of10 particles and a reposi-
tory size of10 particles for the first set of experiments, and
for the second a population of100 particles and a repository
size of100 particles was used, aσshare value was empir-
ically set for each test function. The value ofσshare and
the number of evaluations for each of the test functions will
be specified in each test function section. In the following
all the test functions will be minimization problems, unless
stated otherwise.

4.1 Test function 1

The first test function, proposed by Fonseca [9], is the fol-
lowing:

f1(~x) = 1− exp

(
−

n∑
i=1

(
xi −

1√
n

)2
)

(15)

f2(~x) = 1− exp

(
−

n∑
i=1

(
xi +

1√
n

)2
)

(16)

where:−4 ≤ xi ≤ 4, i = 1, 2, 3
For this problem all the heuristics were set to evaluate the
objective function30, 000 times (in both set of experiments,
when trying to find 10 and 100 non-dominated solutions).
Our technique was set with aσshare value of0.1 and0.01
for the first and second set of experiments, respectively. In
table 1 we can observe the statistical results obtained when
comparing the four different approaches. In figure 2 we can
observe a graphical comparison of the results for the four
different techniques.

10 Non-Dominated Solutions
MOPSO-fs MOPSO NSGA-II PAES

Avg. 0.00445 0.00129 0.01230 0.01496
GD

S.D. 0.00202 4.78568 E-4 0.00438 0.00787
Avg. 0.03462 0.00915 0.09940 0.08875

S
S.D. 0.01295 0.00626 0.02882 0.11219
Avg. 1.26037 0.15049 1.38831 0.72016

D
S.D. 0.05572 0.08106 9.66090 E-6 0.11155

100 Non-Dominated Solutions
MOPSO-fs MOPSO NSGA-II PAES

Avg. 7.76357 E-4 7.55519 E-4 7.95112 E-4 0.00438
GD

S.D. 2.50235 E-5 2.36099 E-5 3.16017 E-5 0.00168
Avg. 0.00370 0.00885 0.00776 0.00886

S
S.D. 4.99291 E-4 7.47956 E-4 5.85683 E-4 0.01536
Avg. 1.37259 1.36445 1.38826 0.73446

D
S.D. 0.00792 0.01072 1.48355 E-4 0.10006

Table 1: This table corresponds to statistical results obtained
from test function 1.

4.2 Test function 2

Our second test function, is a maximization problem pro-
posed by Poloni [19]:

Maximizef1(x1, x2) = −
[
1 + (A1 −B1)2 +

(A2 −B2)2
]

(17)

Maximizef2(x1, x2) = −
[
(x1 + 3)2 +

(x2 + 1)2
]

(18)
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Figure 2: This graphical results were obtained from test
function 1.

where:−3.1416 ≤ x1, x2 ≤ 3.1416,

A1 = 0.5 sin 1− 2 cos 1 + sin 2− 1.5 cos 2 (19)

A2 = 1.5 sin 1− cos 1 + 2 sin 2− 0.5 cos 2 (20)

B1 = 0.5 sinx1 − 2 cos x1 + sinx2 − 1.5 cos x2 (21)

B2 = 1.5 sinx1 − cos x1 + 2.0 sinx2 − 0.5 cos x2 (22)

For the second test function our technique used aσshare

value of2.0 and0.2 for the first and second set of exper-
iments, respectively. All the heuristics performed10, 000
evaluations to the objective function. Table 2 has the sta-
tistical values that we obtained from measuring the results,
and figure 3 has the graphical representations of the set of
non-dominated solutions found by each of the heuristics.

4.3 Test function 3

Kursawe’s [16] is our third test function:

f1(~x) =
n−1∑
i=1

(
−10e(−0.2)∗

√
x2

i +x2
i+1

)
(23)

10 Non-Dominated Solutions
MOPSO-fs MOPSO NSGA-II PAES

Avg. 0.03097 0.04759 0.18863 0.08499
GD

S.D. 0.06381 0.08258 0.19352 0.17326
Avg. 0.61763 0.40905 1.68223 3.05431

S
S.D. 0.15088 0.54906 0.47373 3.05777
Avg. 27.91334 8.48245 30.75301 20.17722

D
S.D. 4.37469 9.28997 1.36576 8.22772

100 Non-Dominated Solutions
MOPSO-fs MOPSO NSGA-II PAES

Avg. 0.00899 0.01195 0.00346 0.02144
GD

S.D. 0.01372 0.01517 0.00750 0.03703
Avg. 0.10479 0.14831 0.09264 0.20094

S
S.D. 0.09395 0.09037 0.00754 0.22917
Avg. 30.10451 30.26833 29.63863 23.74446

D
S.D. 1.12996 1.24542 0.47579 8.40573

Table 2: This table corresponds to statistical results obtained
from test function 2.

f2(~x) =
n∑

i=1

(
|xi|0.8 + 5 sin (xi)

3
)

(24)

where:−5 ≤ xi ≤ 5, i = 1, 2, 3
For this test function aσshare value of1.0 and0.1 was used
for the first and second set of experiment, respectively, and
the number of evaluations for the test function was30, 000
times. Table 3 contains the statics of the comparison for this
test function between the 4 heuristics. Figure 4 has a graph-
ical representation of the set of non-dominated solutions for
all of the techniques.

10 Non-Dominated Solutions
MOPSO-fs MOPSO NSGA-II PAES

Avg. 0.03271 0.00489 0.06392 0.04310
GD

S.D. 0.02578 0.00151 0.04363 0.06881
Avg. 0.31937 0.03071 0.30970 1.12292

S
S.D. 0.09857 0.04100 0.24977 0.51570
Avg. 12.07941 0.51892 2.96087 9.61927

D
S.D. 0.74749 0.64138 1.26063 2.53561

100 Non-Dominated Solutions
MOPSO-fs MOPSO NSGA-II PAES

Avg. 0.00482 0.00426 0.00425 0.00583
GD

S.D. 8.02159 E-4 6.65039 E-4 0.00215 0.00760
Avg. 0.07846 0.09540 0.06722 0.20549

S
S.D. 0.015005 0.01919 0.02968 0.09822
Avg. 12.93078 12.90576 11.08729 11.98795

D
S.D. 0.02938 0.03919 0.46939 1.20020

Table 3: This table corresponds to statistical results obtained
from test function 3.

4.4 Test function 4

Our fourth test function, proposed by Deb [5], is

f1(x1, x2) = x (25)

f2(x1, x2) = (1 + 10y) ∗
[
1−

(
x

1 + 10y

)α

−

x

1 + 10y
sin (2πqx)

]
(26)
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Figure 3: This plots correspond to the results obtained from
function 2.

where:0 ≤ x1, x2 ≤ 1, andq = 4, α = 2
For the fourth test function we used aσshare value of0.2
and0.01 for the first and second set of experiments, respec-
tively, and each of the heuristics performed5, 000 evalua-
tions to the objective function. Table 4 and figure 5 corre-
spond to statistics and graphical representations to this prob-
lem, respectively.

5 Discussion of Results

Regarding our first set of experiments, which involves find-
ing 10 non-dominated solutions, in the graphical representa-
tions (figures 2, 3, 4 and 5) of the results obtained by all the
heuristics for all the test functions, we can observe that our
MOPSO-fs obtains better results than the other techniques.
We attribute this to the way fitness sharing distributes the
particles along the Pareto front.

From a statistical point of view, for the first test function,
as we can observe in table 1, MOPSO has the better values
for the GD and S metric, but this is due to the fact that
MOPSO is concentrating all its solutions in a very small
portion of the Pareto front (see figure 2), not necessarily
due to a better set of dispersed solutions. NSGA-II is the
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Figure 4: This plots correspond to the results obtained from
test function 3.

only heuristic that graphically (figure 2) shows compara-
ble results to our MOPSO-fs, but statistically our technique
shows better results to approach the Pareto front and also to
disperse the solutions (smallerGD andS values in table 1).

For the second test function, a very similar situation as
that presented with the first test function can be observed.
MOPSO presents better values for theS metric (see table 2),
but this is due to a concentration of all its solutions found in
a very small portion of the Pareto front (figure 3). NSGA-II
again is the only heuristic with graphical comparable results
to our technique, but again ours presents better values for
GD andS (table 2).

For the third test function, again MOPSO presents better
values for theGD and S metric (see table 3). This due
to a concentration of all its solutions found in a very small
portion of the Pareto front, as can be seen by the very small
D value that it presents (see table 3 and figure 4). As for the
performance against NSGA-II and PAES for this problem
our MOPSO-fs performs much better than them.

For the fourth test function, NSGA-II and PAES are
the ones that show similar graphical performance than our
MOPSO-fs (figure 5), but as can be seen in the statistical
results our technique outperforms the way it spaces its solu-
tions found (seeS values in table 4).



10 Non-Dominated Solutions
MOPSO-fs MOPSO NSGA-II PAES

Avg. 0.00603 0.00888 0.00315 0.10488
GD

S.D. 0.02426 0.01409 0.00557 0.29243
Avg. 0.06018 0.06091 0.11928 0.23787

S
S.D. 0.03104 0.18165 0.04093 0.38772
Avg. 1.58116 0.38268 1.58140 2.35599

D
S.D. 0.44776 0.42131 0.40759 2.19558

100 Non-Dominated Solutions
MOPSO-fs MOPSO NSGA-II PAES

Avg. 0.00197 3.07034 E-4 3.29989 E-4 0.01149
GD

S.D. 0.00434 2.61333 E-5 2.49222 E-5 0.02366
Avg. 0.01696 0.00881 0.00732 0.03591

S
S.D. 0.03240 0.00211 5.90846 E-4 0.04753
Avg. 1.83941 1.68699 1.69026 2.48424

D
S.D. 0.38098 0.00573 9.20826 E-5 1.57197

Table 4: This table corresponds to statistical results obtained
from test function 4.
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Figure 5: This plots correspond to the results obtained from
test function 4.

Regarding the second set of experiments, finding 100
non-dominated solutions, statistics show that all methods
are very competitive for all the test functions. For the graph-
ical comparisons MOPSO-fs seems to perform slightly bet-
ter in terms of distribution and extension over the Pareto
front, again due to its fitness sharing mechanism. In figure

2 we can see that all the techniques (except PAES) reach the
Pareto Front but the one that has better distribution of solu-
tions is our technique (with a lowerS value in table 1). The
third test function presents three disjointed Pareto fronts, for
the two most inferior fronts our technique presented a very
good distribution of its solutions, while having a bit more
difficulty on the top most front, but as can be seen the rest of
the heuristics present difficulties in at least one of the fronts,
and in general don’t present evenly distributed solutions. In
figures 3 and 5, we can notice that the MOPSO-fs solutions
are more evenly distributed than the solutions given for the
rest of the techniques.

6 Conclusions and Future Work

As we have seen from the experiments, we can conclude
that we have built a competitive heuristic using a particle
swarm optimizer and fitness sharing to help it to deal with
multi-objective problems. Our experiments have shown us
that MOPSO-fs is specifically superior when finding a small
number of non-dominated solutions. Because of the way
the mechanism of selection of particles that enter into the
repository (where we store the non-dominated solutions) is
implemented, first by filling it with non-dominated solu-
tions, and second by discarding solutions with lower fitness
sharing, we have ensured convergence (getting in as much
non-dominated particles as possible) and diversity (remov-
ing particles in populated areas).

Still we believe some work can be done in order to find
improvements for this algorithm:

• We are currently working in ways to help this algo-
rithm to automatically find an appropriate value of
σshare, which until now has been empirically tuned.
More research has to be done in this area in order to
improve our results.

• As mentioned, PSO has two main models of connec-
tion between particleslbest and gbest, which is the
way in which particles share knowledge. We have
just experimented with thegbestconnection model.
Experimenting with a different connection model to
notice any valuable improvements in the technique is
another area in which we want to work.

In the work presented here we have used test functions of
low dimensionality and relatively low complexity, we need
to experiment with test functions of higher dimensionality
and more complexity.
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