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Abstract. This paper presents a new multi-objective evolutionary algo-
rithm which consists of a hybrid between a particle swarm optimization
approach and some concepts from rough sets theory. The main idea of the
approach is to combine the high convergence rate of the particle swarm
optimization algorithm with a local search approach based on rough sets
that is able to spread the nondominated solutions found, so that a good
distribution along the Pareto front is achieved. Our proposed approach
is able to converge in several test functions of 10 to 30 decision variables
with only 4,000 fitness function evaluations. This is a very low number
of evaluations if compared with today’s standards in the specialized lit-
erature. Our proposed approach was validated using nine standard test
functions commonly adopted in the specialized literature. Our results
were compared with respect to a multi-objective evolutionary algorithm
that is representative of the state-of-the-art in the area: the NSGA-II.

1 Introduction

In this paper, we propose a new multi-objective evolutionary algorithm (MOEA)
which consists of a hybrid between a particle swarm optimization (PSO) ap-
proach and rough sets theory. The main aim of this work is to design a MOEA
that can produce a reasonably good approximation of the true Pareto front of
a problem with a relatively low number of fitness function evaluations (no more
than 5000 fitness function evaluations). PSO is a bio-inspired metaheuristic that
was proposed by James Kennedy and Russell Eberhart in the mid-1990s [1], and
which is inspired on the choreography of a bird flock. In PSO, each solution is
represented by a particle. Particles group in “swarms” (there can be either one
swarm or several in one population) and the evolution of the swarm to the op-
timal solutions is achieved by a velocity equation. This equation is composed of



three elements: a velocity inertia, a cognitive component and a social component.
Depending on the topology adopted (i.e., one swarm or multiple swarms), each
particle can be affected by either the best local and/or the best global particle
in its swarm. PSO has been found to be a very successful optimization approach
both in single-objective and in multi-objective problems [1,2]. However, so far,
the high convergence rate of PSO has not been properly exploited by researchers,
since most of the current multi-objective PSOs (MOPSOs) perform 20,000 fit-
ness function evaluations or more in test functions such as the ones adopted in
this paper. The main reason for this is that despite its high convergence rate,
PSO normally has difficulties to achieve a good distribution of solutions with a
low number of evaluations. That is why we adopted rough sets theory (which
can be useful at finding solutions within the neighborhood of a reference set) in
this paper in order to have a local optimizer whose computational cost is low.

2 Particle Swarm Optimization

In the PSO algorithm, the particles (including the pbest) are randomly initial-
ized at the beginning of the search process. Next, the fittest particle from the
swarm is identified and assigned to the gbest solution (i.e., the global best, or
best particle found so far). After that, the swarm flies through the search space
(in k dimensions, in the general case). The flight function adopted by PSO is
determined by equation (1), which updates the position and fitness of the parti-
cle (see equation (2)). The new fitness is compared with respect to the particle’s
pbest position. If it is better, then it replaces the pbest (i.e., the personal best,
or the best value that has been found for this particle so far). This procedure is
repeated for every particle in the swarm until the termination criteria is reached.

Uik =W - vk +c1-U0,1)(pbestip — xik) + c2- U(0,1)(gbestr, — zig); (1)

Tik = Tik + Vik (2)

where ¢; and ¢» are constants that indicate the attraction from the pbest or gbest
position, respectively; w refers to the velocity inertia of the previous movement;
z; = (z1, Ti2, ---, Tix) represents the ¢ — th particle. U(0,1) denotes a uniformly
random number generated in the range (0,1).

There are plenty of proposals to extend PSO for dealing with multiple objec-
tives (see for example [2,3]). A survey of MOPSOs is beyond the scope of this
paper, but interested readers may refer to [4].

3 Rough Sets Theory

Rough sets theory is a new mathematical approach to imperfect knowledge that
was originally proposed by Pawlak [5]. The main idea of this approach is ex-
plained next. Let’s assume that we are given a set of objects S called the universe
and an indiscernibility relation R C S x S, representing our lack of knowledge



about elements of S (in our case, R is simply an equivalence relation based on
a grid over the feasible set; this is, just a division of the feasible set in (hyper)-
rectangles). Let X be a subset of S. We want to characterize the set X with
respect to R. The way rough sets theory expresses vagueness is employing a
boundary region of the set X. If the boundary region of a set is empty it means
that the set is crisp; otherwise, the set is rough (inexact). A nonempty boundary
region of a set means that our knowledge about the set is not enough to define
the set precisely. Then, each element in S is classified as certainly inside X if it
belongs to the lower approximation or partially (probably) inside X if it belongs
to the upper approximation. The boundary is the difference of these two sets,
and the bigger the boundary the worse the knowledge we have of set X. On the
other hand, the more precise is the grid implicity used to define the indiscernibil-
ity relation R, the smaller the boundary regions are. But, the more precise is the
grid, the bigger the number of elements in S, and then, the more complex the
problem becomes. Our aim is to use rough sets to explore the neighborhood of a
set of reference solutions (the nondominated solutions found by our PSO-based
MOEA), so that we can spread such solutions along the Pareto front. For this
sake, it is required to design a grid and decide which elements of S (that we
will call atoms and will be just rectangular portions of decision variable space)
are inside the Pareto optimal set and which are not. Once we have the efficient
atoms, we will intensify the search over these atoms. Note however, that the
precision of the grid has an impact on both the computational cost (the more
precise the grid, the higher its cost) and on effectiveness (the less precise the
grid, the less knowledge we can obtain from it). Evidently, in our approach, we
will try to generate a grid that is not so computationally expensive but that
offers a reasonably good knowledge about the Pareto optimal set. Once this grid
is built, it becomes relatively straightforward to generate more points on the ef-
ficient atoms, as these atoms are built in decision variable space. Note however,
that the use of rough sets requires not only a set of nondominated solutions, but
also another one of dominated solutions that are close to being nondominated.
This second set is required in order to intensify the search. Thus, our MOEA
will be modified in order to keep this second set, which is not normally required
in evolutionary multiobjective optimization.

4 Pareto-adaptive e-dominance

Our approach also adopts a variant of e-dominance [6] that we call pae-dominance.
The details of pae-dominance are omitted due to space constraints (see [7] for fur-

ther information), but its main difference with respect to the original proposal is

that in this case the hyper-grid generated adapts the sizes of the boxes to certain

geometrical characteristics of the Pareto front (e.g., almost horizontal or vertical

portions of the Pareto front) as to increase the number of solutions retained in

the grid. Thus, this scheme maintains the good properties of e-dominance but

improves on its main weaknesses.



5 Our Proposed Approach

Our proposed approach, called PSOMORSA (Particle Swarm Optimization for
Multiobjective Optimization with Rough Sets), is divided in two phases, and
each of them consumes a fixed number of fitness function evaluations. During
Phase I, our PSO-based MOEA is applied for 2000 fitness function evaluations.
During Phase II, a local search procedure based on rough sets theory is applied
for another 2000 fitness function evaluations, in order to improve the solutions
(i.e., spread them along the Pareto front) produced at the previous phase. Each
of these two phases is described next in more detail.

5.1 Phase I : Particle Swarm Optimization

Our proposed PSO-based approach adopts a very small population size (P =5
particles). The leader is determined using a very simple criterion: the first N
particles (IV is the number of objectives of the problem) are guided by the best
particle in each objective, considered separately. The remainder P — N particles
are adopted to build an approximation of the ideal vector. Then, we identify the
individual which is closest to this ideal vector and such individual becomes the
leader for the remainder P — N particles. The purpose of these selection criteria
is twofold: first, we aim to approximate the optimum for each separate objective,
by exploiting the high convergence rate of PSO in single-objective optimization.
The second purpose of our selection rules is to encourage convergence towards
the “knee” of the Pareto front (considering the bi-objective case). We found
that the use of rough sets can generate the entire Pareto front even if only
one nondominated solution is available in the Pareto front, and in disconnected
Pareto fronts it is required only one nondominated solution per each discontinuos
segment of the Pareto front.

Algorithm 1 shows the pseudocode of Phase I from our proposed approach.
First, we randomly generate 5 individuals. In the getLeaders() function, we iden-
tify the best particles in each objective and the closest particle to the ideal vec-
tor. Those particles (the leaders) are stored in the set L. Then the getLeader(z)
function returns the position of the leader from the set L. Then, we perform
the flight in order to obtain a new particle. If this solution is beyond the allow-
able bounds for a decision variable, then we adopt the BLX — a recombination
operator [8], and a new vector solution Z = (21, 22, ..., 24) is generated, where
2;i € [emin—Ia, Crmaz+10]; ¢z = maz(a,b), cmin = min(a,b), I = ¢maz — Cmin,
a = 0.5, a = L, (the leader of the particle) and b = pbest (i.e., the personal best
of the particle). Note that the use of a recombination operator is not a common
practice in PSO, and some people may consider our approach as a PSO-variant
because of that. PSO does not use a specific mutation operator (the variation
of the factors of the flight equation may compensate for that). However, it has
become common practice in MOPSOs to adopt some sort of mutation (or turbu-
lence) operator that improves the exploration capabilities of PSO [2, 3]. The use
of a mutation operator is normally simpler (and easier) than varying the factors



Algorithm 1: Algorithm for the Phase I of our approach.

1 begin
2 Initialize Population (P) with randomly generated solutions;
3 getLeaders();
4 repeat
5 for i =1 to P do
6 g = getLeader(i);
7 for d =1 to k do
8 /* Ly q is the leader of particle i */;
9 Vi, a = w - via+c1-U(0,1)(pi,a — #i,a) +c2 - U(0,1)(Lg,a — zi,a);
10 Tid = Ti d+ Vi d;
11 end
12 if z; ¢ search space then
13 z; = BLX — a(zi);
14 end
15 if U(0,1) < pm then
16 z; =Mutate(z;);
17 end
18 if z; is nondominated then
19 for d=1 to k do
20 Pi,d = Ti,dj;
21 end
22 end
23 end
24 getLeaders();
25 Add nondominated solutions into secondary population
26 until Mazlter ;
27 end

of the flight equation and therefore its extended use. We adopted Parameter-
Based Mutation [9] in our approach with p,, = 1/n. Our proposed approach
also uses an external archive (also called secondary population). In order to in-
clude a solution into this external archive, it is compared with respect to each
member already contained in the archive using the pae-dominance grid [7]. And
a third population (called DS) stores the dominated points needed for Phase II.
Every removed point from the secondary population (also called ES) is included
into the third population. If this third population reaches a size of 100 points,
a pae-dominance grid will be created in order to ensure a good distribution of
dominated points.

5.2 Phase IT : Local Search using Rough Sets

The Rough Sets Phase departs from the two sets obtained from Phase I (ES,
which contains the nondominated solutions, and DS, which contains the domi-
nated solutions). The main loop of the second phase is the following;:

1. From the set ES, we choose NumE ff points previously unselected. If we
do not have enough unselected points, we choose the rest randomly from the
set ES.

2. We choose from the set DS, NumDom points previously unselected (com-
plete randomly as before).

3. Do a Rough Sets iteration, to approximate the boundary between the Pareto
front and the rest of the feasible set. This information is used to intensify



the search in the area where the nondominated points reside, while refusing
the finding of more points in the dominated area.

The dominated and nondominated points are both stored in the set Items
and the rough sets iteration is the following;:

1. Range Initialization: For each decision variable i, we compute and sort
(from the smallest to the highest) the different values contained in Items.
Then, we have the set Range;, for each i. By combining all these sets we
produce a (non-uniform) grid in decision variable space.

2. Compute Atoms: We compute NumE f f rectangular atoms centered in
the NumE f f efficient points selected. To build a rectangular atom associ-
ated to a nondominated point ¢ € Items we compute the following upper
and lower bounds for each decision variable i:

— Lower Bound i: Middle point between z{ and the previous value in the set
Range;.
— Upper Bound i: Middle point between z{ and the following value in the set
Range;.
In both cases, if there are no previous or subsequent values in Range;, we
consider the absolute lower or upper bound of variable i. This setting allows
the method to explore closer to the feasible set boundaries.

3. Generate Offspring: Inside each atom we randomly generate Of fspring
new points. Each of these points is sent to the set ES (we use the pae-
dominance grid for that sake) to check if it must be included as a new
nondominated point. If any point in ES is dominated by this new point, it
is sent to the set DS.

6 Analysis of Results

In order to validate our proposed approach, we compare results with respect to
the NSGA-II [9], which is a MOEA representative of the state-of-the-art in the
area. The first phase of our approach uses three parameters: population size (P),
leaders number (), mutation probability (Py,), plus the traditional PSO param-
eters (w, ¢1, ¢2). On the other hand, the second phase uses three more parameters:
number of points randomly generated inside each atom (Of fspring), number
of atoms per generations (NumEf f) and the number of dominated points con-
sidered to generate the atoms (NumDom). Finally, the minimum number of
nondominated points needed to generate the pae-dominance grid is set to 100
for all problems. Our approach was validated using 9 test problems: 5 problems
from the ZDT set [10] and 4 from the DTLZ set [11]. The detailed description of
these test functions was omitted due to space restrictions (see [10, 11] for further
information). However, all of these test functions are unconstrained, minimiza-
tion and have between 10 and 30 decision variables. In all cases, the parameters
of our approach were set as follows: P =5, N = k+ 1 (k = number of objective
functions), P, = 1/n (n = number of decision variables), w = 0.3, ¢; = 0.1,
co =14, Of fspring = 1, NumEff = 2 and NumDom = 10. The NSGA-II



used the following parameters: crossover rate = 0.9, mutation rate = 1/n, 7, =
15, 1, = 20, population size = 100 and maximum number of generations = 40.
The population size of the NSGA-II is the same as the size of the grid of our ap-
proach. In order to allow a fair comparison of results, both approaches adopted
real-numbers encoding and performed 4,000 fitness function evaluations per run.
Three performance measures were adopted in order to allow a quantitative as-
sessment of our results: (1) Inverted Generational Distance (IGD), which is a
variation of a metric proposed by Van Veldhuizen [12] in which the true Pareto
is used as a reference; Spread (S), proposed by Deb et al. [13], which measures
both progress towards the Pareto-optimal front and the extent of spread; and
(3) Two Set Coverage (SC), proposed by Zitzler et al. [10], which performs a
relative coverage comparison of two sets. For each test problem, 30 independent
runs were performed and the results reported in Table 1 correspond to the mean
and standard deviation of the performance metrics (IGD, S and SC). We show
in boldface the best mean values per test function. It can be observed that in
the ZDT’s test problems our approach produced the best results with respect
to both IGD and SC in all cases. Remarkably, our approach also outperformed
the NSGA-II with respect to the spread metric in all but one case (ZDT3). In
the DTLZ’s test problems, the NSGA-II outperformed our approach in one case
with respect to IGD, in all cases with respect to Spread and in 3 (out of 4)
cases with respect to SC. Figures 1 and 2 show the graphical results produced
by the PSOMORSA and NSGA-II for all the test problems adopted. The solu-
tions displayed correspond to the median result with respect to the IGD metric.
The true Pareto front (obtained by enumeration) is shown with a continuous
line and the approximation produced by each algorithm is shown with circles.
In Figures 1 and 2, we can clearly see that in problems ZDT1, ZDT2, ZDT3,
ZDT4 and ZDT6, the NSGA-II is very far from the true Pareto front, whereas
our PSOMORSA is very close to the true Pareto front after only 4,000 fitness
function evaluations (except for ZDT4). Graphically, the results are not entirely
clear for the DTLZ test problems. However, if we pay attention to the scale, it
will be evident that, in most cases, our approach has several points closer to
the true Pareto front than the NSGA-II. Nevertheless, due to the better spread
of the NSGA-II, there are a few points that dominate several of the solutions
produced by our approach and therefore the superiority of the NSGA-IT with
respect to the SC and S metrics. The poor performance of our approach in the
DTLZ’s test problems is caused in the PSO selection process because we select
one particle that helps to optimize the third objective function and the ideal
vector is optimized with two other particles, causing that the convergence rate
gets lower than expected in problems with three or more objectives.

7 Conclusions and Future Work

We have introduced a new hybrid between a MOEA based on PSO and a lo-
cal search mechanism based on rough sets theory. This hybrid aims to combine
the high convergence rate of PSO with the good neighborhood exploration per-
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IGD S SC

Function| PSOMORSA NSGA-IT PSOMORSA NSGA-IT PSOMORSA NSGA-II
Mean o Mean o Mean o Mean o Mean o Mean o
ZDT1 |0.0009 0.0005(0.0097 0.0019{0.4827 0.1306| 0.5603 0.0483(0.0222 0.0312|0.9332 0.0355
ZDT2 [0.0036 0.0057(0.0223 0.0064({0.6176 0.2199]0.7130 0.1114(0.0038 0.0127|0.8784 0.1645
ZDT3 |0.0043 0.0014|0.0155 0.0020{0.7761 0.0656|0.7441 0.0456|0.0608 0.0656|0.9062 0.0555
ZDT4 |0.1265 0.0371|0.4297 0.1304{0.9590 0.0424]|0.9718 0.0412(0.0342 0.0557|0.3065 0.1560
ZDT6 [0.0009 0.0003|0.0420 0.0041{0.7336 0.1271|0.8706 0.0817(0.0012 0.0066|0.9333 0.2034
DTLZ1 {0.5157 0.1217]0.7318 0.2062|0.9983 0.0015{0.9972 0.0011|0.3208 0.1945(0.3142 0.1839
DTLZ2 {0.0004 0.0001|0.0004 0.0000|0.5676 0.0747({0.3188 0.0440{0.1418 0.1485(0.1913 0.1131
DTLZ3 [1.1681 0.3063] 1.4228 0.2690( 0.9990 0.0012{0.9986 0.0012] 0.5220 0.2600[0.1545 0.1019
DTLZ4 [0.0221 0.0038[0.0096 0.0025]0.7682 0.1055[0.6676 0.1250] 0.8537 0.1626[0.0084 0.0272

Table 1. Comparison of results between our approach (called PSOMORSA) and the NSGA-II for
the nine test problems adopted.

formed by the rough sets algorithm. Our proposed approach produced results
that are competitive with respect to the NSGA-II in problems whose dimen-
sionality goes from 10 up to 30 decision variables, while performing only 4,000
fitness function evaluations. Although our results are still preliminary, they are
very encouraging, since they seem to indicate that our proposed approach could
be a viable alternative for solving real-world problems in which the cost of a
single fitness function evaluation is very high (e.g., in aeronautics). As part of
our future work, we intend to improve the performance of the PSO approach
adopted. Particularly, the selection of the appropriate leader is an issue that
deserves further study.
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