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Differential Evolution for Solving Multi-objective Optimization Problems

Abstract

The use of evolutionary strategies (ESs) to solve problems with multiple objectives (known as

Vector Optimization Problems(VOPs)) has attracted much attention recently. Being population based

approaches, ESs offer a means to find a set of Pareto-optimal solutions in a single run.Differential

Evolution (DE) is an ES that was developed to handle optimization problems over continuous do-

mains. The objective of this paper is to introduce a novelPareto–frontier Differential Evolution(PDE)

algorithm to solve VOPs. The solutions provided by the proposed algorithm for two standard test prob-

lems, outperform theStrength Pareto Evolutionary Algorithm, one of the state-of-the-art evolutionary

algorithm for solving VOPs.

1 Introduction

Although single objective decision models are sufficient for some decision making processes, there are

many situations where decisions have multiple objectives. For example, we may need to maximize the

profit while minimizing overtime. One may notice here that both objectives are conflicting in the normal

case. Assuming that the normal working hours are utilized very efficiently, working overtime would in-

crease the output and if the market needs the additional output, the profit is expected to increase.

Multi-objective problems are known asVector optimization problems(VOPs). In these situations, the

aim is to simultaneously optimize a set of conflicting objectives. VOPs are a very important research topic,

not only because of the multi-objective nature of most real-world decision problems, but also because there

are still many open questions in this area. In fact, there is no universally accepted definition of “optimum”

in VOP as opposed to single-objective optimization problems, which makes it difficult to even compare

results of one method to another. Normally, the decision about what the “best” answer is, corresponds to

the so-called human decision maker [1].

Recently,evolutionary strategies(ESs) were found useful for solving VOPs [16]. ESs have some ad-

vantages over traditional OR techniques. For example, considerations for convexity, concavity, and/or

continuity of functions are not necessary in ESs, whereas, they form a real concern in traditional OR

techniques. Although ESs are successful, to some extent, in solving VOPs, the methods appearing in the

2



literature vary a lot in terms of their solutions and the way of comparing their best results with other ex-

isting algorithms. In other words, there is no well-accepted method for VOPs that will produce a good set

of solutions for all problems. This motivates the further development of good approaches to VOPs.

In this paper, we develop a novelDifferential Evolution(DE) algorithm for VOPs. The approach shows

promising results when compared with theStrength Pareto Evolutionary Algorithm(SPEA) [16], for two

benchmark problems. However there are several other known methods such as Fonseca and Fleming’s

genetic algorithm (FFGA)[5], Hajela’s and Lin’s genetic algorithm (HLGA) [7], Niched Pareto Genetic

Algorithm (NPGA) [8], Non-dominated Sorting Genetic Algorithms (NSGA) [13], Random Sampling Al-

gorithm (RAND) [16], Single Objective Evolutionary Algorithm (SOEA) [16], Vector Evaluated Genetic

Algorithm (VEGA) [12] and Pareto Archived Evolution Strategy (PAES) [10] and [11]. There are several

versions of PAES like PAES, PAES20, PAES98 and PAES98mut3p. We also compare the solutions of two

benchmark problems, produced by our DE algorithm with all these methods, using a statistical comparison

technique recently proposed by Knowles and Corne [10] and [11]. From the comparison, it is clear that

our algorithm outperforms most algorithms when applied to these two test problems.

The paper is organized as follows: background materials are scrutinized in Section 2 followed by the

proposed algorithm in Section 3. Experiments are then presented in Section 4 and conclusions are drawn

in Section 5.

2 Background Materials

2.1 Local and Global optimality in VOPs

Consider a VOP model as presented below:-

Optimize F (Ω) (1)

Ω = {~x ∈ Rn|G(~x) ≤ 0} (2)

Where~x is a vector of decision variables (x1, . . . , xN ) andF (~x) is a vector of objective functions

(f1(~x), . . . , fK(~x)). Heref1(~x), . . . , fK(~x), are functions onRn andΩ is a nonempty set inRn. The
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vectorG(~x) represents constraints. These constraints can be lower and upper bounds on the variables.

In VOPs, the aim is to find the solution~x∗ ∈ Ω which optimizesF (~x). Each objective function,fi(~x),

is either maximization or minimization. In this paper, we assume that all objectives are to be minimized

for clarity purposes. We may note that any maximization objective can be transformed to a minimization

one by multiplying it by -1.

To define the concept of non-dominated solutions in VOPs, we need to define two operators,� and-
and then assume two vectors,~x and~y. ~x � ~y iff ∃ xi ∈ ~x andyi ∈ ~y such thatxi 6= yi. And,~x - ~y iff

∀ xi ∈ ~x andyi ∈ ~y, xi ≤ yi, and~x � ~y. � and- can be seen as the “not equal to” and “less than

or equal to” operators respectively, over two vectors. We can now define the concepts of local and global

optimality in VOPs.

Definition 1: Neighborhood or open ballThe open ball (ie. a neighborhood centered on~x∗ and defined

by the Euclidean distance)

Bδ(~x
∗) = {~x ∈ Rn| ||~x− ~x∗|| < δ} (3)

Definition 2: Local efficient (non-inferior/ Pareto-optimal) solution A vector~x∗ ∈ Ω is said to be a

local efficient solution of VOP iff@ ~x ∈ (Bδ(~x
∗)∩Ω) such thatF (~x) - F (~x∗) for some positiveδ.

Definition 3: Global efficient (non-inferior/ Pareto-optimal) solution A vector~x∗ ∈ Ω is said to be a

global efficient solution of VOP iff@ ~x ∈ Ω such thatF (~x) - F (~x∗).

Definition 4: Local non-dominated solution A vector ~y∗ ∈ F (~x) is said to be local non-dominated

solution of VOP iff its projection onto the decision space,~x∗, is a local efficient solution of VOP.

Definition 5: Global non-dominated solutionA vector~y∗ ∈ F (~x) is said to be global non-dominated

solution of VOP iff its projection onto the decision space,~x∗, is a global efficient solution of VOP.

In this paper, the term “non-dominated solution” is used as a shortcut for the term “global non-

dominated solution”. The following subsection provides background materials in evolutionary multi–

objective.
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2.2 VOPs and ESs

ESs for VOPs [1] can be categorized as plain aggregating, population-based non-Pareto and Pareto-based

approaches. The plain aggregating approaches takes a linear combination of the objectives to form a single

objective function (such as in the weighted sum method, goal programming, and goal attainment). This

approach suffers from major drawbacks including: it produces a solution at a time, it assumes convexity

of the pareto-frontier, and finding the right set of weights is not obvious. The simultaneous optimization

can fit nicely with population based approaches, such as ESs, because they generate multiple solutions in

a single run.

The Vector Evaluated Genetic Algorithm (VEGA) [12] is a population-based non-Pareto approach.

In this approach, the total population is divided into a number of sub–populations equal to the number

of objective functions to be optimized. Each sub–population is used to optimize each objective function

independently. The sub–populations are then shuffled together followed by conventional crossover and

mutation operators. Schaffer [12] realized that the solutions generated by his system were non-dominated

with respect to the current sub–population, but they may not be the true non-dominated set.

In the Pareto-based approaches, the dominated and non-dominated solutions in the current population

are separated. Goldberg [6] suggested a non-dominated ranking procedure to decide the fitness of the

individuals. Later, Srinivas and Dev [13] introducedNon-dominated Sorting Genetic Algorithms(NSGA)

based on the idea of Goldberg’s procedure. The population’s individuals are layered according to their

ranks. Afterwards, the non-dominated individuals are removed layer by layer from the population. Re-

cently, Deb and Goel ([4]) presented a revised version of NSGA, known as NSGAII, where the extent of

elitism is controlled by fixing a user-defined parameter.

Fonseca and Fleming [5] proposed a slightly different scheme which is known asFonseca and Flem-

ing’s evolutionary algorithm(FFES). In this approach, an individual’s rank is determined by the number

of individuals dominating it. Without using any non-dominated ranking methods, Horn et al. [8] proposed

theNiched Pareto Genetic Algorithm(NPGA) that directly uses a set of randomly picked individuals to

form a comparison reference set. The fitness of the two randomly selected individuals is decided according

to whether they are dominated by any of the individuals from the comparison reference set. If only one of

the two individuals is non–dominated by the individuals in the reference set, it is declared as the winner

and is added to the mating pool. If both individuals are either dominated or non-dominated by the set, the
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number of individuals in the mating pool that are within some pre–defined distance from each of the two

individuals is calculated. The individual with the smallest number is added to the mating pool.

The common features of the Pareto-based approaches mentioned above are that (i) the Pareto-optimal

solutions in each generation are assigned either the same fitness or a rank, and (ii) some sharing and niche

techniques are applied in the selection procedure. Recently, Zitzler and Thiele [16] proposed a Pareto-

based method, theStrength Pareto Evolutionary Algorithm(SPEA). The main features of this approach

are: it

1. sorts non-dominated solutions externally and continuously updates the population,

2. evaluates an individual’s fitness depending on the number of external non-dominated points that

dominate it,

3. preserves population diversity using the Pareto dominance relationship, and

4. incorporates a clustering procedure in order to reduce the non-dominated set without destroying its

characteristics.

SPEA has been recognized as a reference algorithm by many research in the last few years ([15], [2]

and [9]). Recently, Zitzler et al. ([17] presented a revised version of SPEA which is known as SPEA2.

The main differences of SPEA2 compared to SPEA are:

1. an improved fitness assignment scheme is used, which takes for each individual into account how

many individuals it dominates and it is dominated by.

2. a nearest neighbor density estimation technique is incorporated which allows a more precise guid-

ance of the search process.

3. a new archive truncation methods guarantees the preservation of boundary solutions.

As reported by Zitzler et al. ([17]), SPEA2 provides good performance in terms of convergence and

diversity, and outperforms SPEA.

Most recently, Knowles and Corne [10, 11] proposed a simple Evolution Strategies, (1+1)-ES, known

as thePareto Archived Evolution Strategy(PAES) that keeps a record of limited non-dominated individ-

uals. The non-dominated individuals are accepted for recording based on the degree of crowdedness in

their grid (defined regions on the Pareto–frontier) location to ensure diversity of individuals in the final

solution. The algorithm is strictly confined to local search i.e. it uses a small change (mutation) operator
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only, and moves from a current solution to a nearby neighbor. As they reported, the algorithm works well,

specially for problems of low computational complexity.

Knowles and Corne [11] also propose an extension to this basic approach, which results in some vari-

ants of a(µ + λ) -ES. The performance of the algorithm is judged, by solving several test problems, and

analyzing the superiority on different regions of the attainment surfaces. For two objective problems, the

attainment surfaceis defined as the lines joining the points on the Pareto–frontier generated by an algo-

rithm. Therefore, for two algorithmsA andB, there are two attainment surfaces. A number of sampling

lines can be drawn from the origin intersecting with the attainment surfaces across the full range of the

Pareto–frontier. For a given sampling line, the intersection of an algorithm closer to the origin (for both

minimization) is the winner. Given a collection ofk attainment surfaces, some from algorithmA and

some from algorithmB, a single sampling line yields k points of intersection, one for each surface. These

intersections form a univariate distribution, and we can therefore perform a statistical test to determine

whether or not the intersections for one of the algorithms occurs closer to the origin with some statistical

significance. Such a test is performed for each of several lines covering the Pareto tradeoff area. Insofar as

the lines provide a uniform sampling of the Pareto surface, the result of this analysis yields two numbers -

a percentage of the surface in which algorithmA significantly outperforms algorithmB (α = 0.1), and the

percentage of the surface in which algorithmB significantly outperforms algorithmA. Before presenting

our proposed algorithm, we need to present the Differential Evolution heuristic.

In the evolutionary multiobjective literature, there are a large number of methods and techniques. For

comprehensive survey, the reader is advised to refer to [3].

2.3 Differential Evolution

DE is a branch of evolutionary algorithms developed by Storn and Price [14] for optimization problems

over continuous domains. In DE, each variable’s value in the chromosome is represented by a real number.

The approach works by creating a random initial population of potential solutions. If there are boundary

constraints, it is guaranteed, by some repair rules (Equation 6), that the value of each variable is within its

boundaries. An individual is then selected at random for replacement and three different individuals are

selected as parents. One of these three individuals is selected as the main parent. With some probability,

each variable in the main parent is changed while at least one variable should be changed. The change is
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undertaken by adding to the variable’s value a ratio of the difference between the two values of this vari-

able in the other two parents. In essence, the main parent’s vector is perturbed with the other two parents’

vector. This process represents the crossover operator in DE (Equation 5). If the resultant vector is better

than the one chosen for replacement, it replaces it; otherwise the chosen vector for replacement is retained

in the population. Therefore, DE differs fromGenetic Algorithms(GAs) in a number of points:

1. DE uses real number representation while the conventional GA uses binary, although it sometimes

uses integer or real number representation as well.

2. In GA, two parents are selected for crossover and the child is a recombination of the parents (Equa-

tion 5). In DE, three parents are selected for crossover and the child is a perturbation of one of

them.

3. The new child in DE replaces a randomly selected vector from the population only if it is better than

it. In conventional GA, children replace the parents with some probability regardless of their fitness.

In DE, a solution,l, in generationi is a multi-dimensional vector~xl
G=i = (xl

1, . . . , x
l
N)T . A popu-

lation, PG=k, at generationG = k is a vector ofM solution vectors (M > 4 since we need at least 3

parents for recombination and an additional one as a reference parent). The initial population,PG=0 =

{~x1
G=0, . . . , ~x

M
G=0}, is initialised as

xl
i,G=0 = lower(xi) + randi[0, 1]× (upper(xi)− lower(xi)), l = 1, . . . , M, i = 1, 2, . . . , N (4)

whereM is the population size,N is the solution’s dimension, and each variablei in a solution vectorl in

the initial generationG = 0, xl
i,G=0, is initialised within its boundaries(lower(xi), upper(xi)). Selection

is carried out to select four different solutions indicesr1, r2, r3, andj ∈ [1,M ]. It is worth noting that

DE is using an elitist approach, where parents are the elites in previous generations. The values of each

variable in the child are changed with some crossover probability,CR, to

∀i ≤ N, x′i,G=k =





xr3
i,G=k−1 + F × (xr1

i,G=k−1 − xr2
i,G=k−1) if (random[0, 1) < CR ∧ i = irand)

xj
i,G=k−1 otherwise

(5)

whereF ∈ (0, 1) is an algorithm parameter representing the amount of perturbation added to the main

parent. The new solution replaces the old one if the new solution is better than the old one. During

crossover, at least one of the variables should be changed to guarantee that the child is different from the

parents if all crossover does not take place. This is represented in the algorithm by randomly selecting a

8



variable,irand ∈ (1, N). This variable is forced to be crossed-over. After crossover, if one or more of the

variables in the new solution are outside their boundaries, the following repair rule is applied

x′i,G=k =





xj
i,G=k+lower(xi)

2
if xj

i,G=k+1 < lower(xi)

lower(xi) +
xj

i,G=k−upper(xi)

2
if xj

i,G=k+1 > upper(xi)

xj
i,G=k+1 otherwise

(6)

The DE algorithm is presented in Figure 1.

let G denote a generation,P a population of sizeM , and~xj
G=k thejth individual of

dimensionN in populationP in generationk, andCR denotes the crossover probability
input N, M ≥ 4, F ∈ (0, 1), CR ∈ [0, 1], and initial bounds:lower(xi), upper(xi), i = 1, . . . N

initialize PG=0 = {~x1
G=0, . . . , ~x

N
G=0} as

for each individual j ∈ PG=0

xj
i,G=0 = lower(xi) + randi[0, 1]× (upper(xi)− lower(xi)), i = 1, . . . , N

end for each
evaluatePG=0

k = 1
while the stopping criterion (eg fixed number of generations) is not satisfieddo

forall j ≤ M

randomly selectr1, r2, r3 ∈ (1, . . . , M), j 6= r1 6= r2 6= r3

randomly selectirand ∈ (1, . . . , N)
forall i ≤ N, x′i,G=k ={

xr3
i,G=k−1 + F × (xr1

i,G=k−1 − xr2
i,G=k−1) if (random[0, 1) < CR ∧ i = irand)

xj
i,G=k−1 otherwise

end forall

~xj
G=k =

{
~x′G=k if f(~x′G=k) ≤ f(~xj

G=k−1)
~xj

G=k−1 otherwise

}

end forall
k = k + 1
evaluatePG=i

end while
return the best encountered solutionx.

Figure 1: The Differential Evolution Algorithm

3 PDE: A Pareto–frontier Differential Evolution algorithm for VOPs

A generic version of the adopted algorithm is presented in Figure 2. The PDE algorithm is similar to the

one presented in Figure 1 with the following modifications:-

9



let G denote a generation,P a population of sizeM , and~xj
G=k thejth individual of

dimensionN in populationP in generationk, andCR denotes the crossover probability
input N, M ≥ 4, α, CR ∈ [0, 1], and initial bounds:lower(xi), upper(xi), i = 1, . . . N

initialize PG=0 = {~x1
G=0, . . . , ~x

N
G=0} as

for each individual j ∈ PG=0

xj
i,G=0 = Gaussian(0.5, 0.15), i = 1, . . . , N

Repair~xj
G=k if any variable is outside its boundaries

end for each
evaluatePG=0

k = 1
while the stopping criterion (eg fixed number of generations) is not satisfieddo

remove all dominated solutions fromPG=k−1

if the number of non-dominated solutions inPG=k−1 > α,
then apply the neighborhood rule

end if
for j = 0 to number of non-dominated solutions inPG=k−1

~xj
G=k ← ~xj

G=k−1

end for
while j ≤ M

randomly selectr1, r2, r3 ∈ (1, . . . , α), from the non-dominated solutions ofPG=k−1, wherer1 6= r2 6= r3

randomly selectirand ∈ (1, . . . , N)
forall i ≤ N,x′i,G=k ={

xr3
i,G=k−1 + Gaussian(0, 1)× (xr1

i,G=k−1 − xr2
i,G=k−1) if (random(0, 1) < CR) (i = irand)

xj
i,G=k−1 otherwise

end forall
Repair~xj

G=k if any variable is outside its boundaries
if ~x′ dominates~xr3

G=k−1 then
~xj

G=k ← ~x′G=k

j = j + 1
end if

end while
k = k + 1

end while
return the set of non-dominated solutions.

Figure 2: The Pareto–frontier Differential Evolution Algorithm (PDE)

1. The initial population is initialized according to a Gaussian distributionN(0.5, 0.15). The variables

are generated within their boundaries [0,1]; otherwise the repair rule is used.

2. The step-length parameterF is generated from a Gaussian distributionN(0, 1).

3. Reproduction is undertaken only among non-dominated solutions in each generation.
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4. Assuming that the variables are bounded between[a, b]. If a is positive and the variable is a negative

value, the sign of the variable is reversed. If the variable is less thana, a value of 1 is added until it

is greater than of equal toa. If the variable is greater thanb, a value of 1 is subtracted until it is less

thanb. The assumption here is thatb− a is greater than 1.

5. Offspring are placed into the population if they dominate the main parent.

A maximum number of non-dominated solutions in each generation was set to 50. If this maximum is

exceeded, the following nearest neighbor distance function is adopted:

D(x) =
(min∀i∈N ||x− xi||+ min∀j∈N,j 6=i||x− xj||)

2
, (7)

wherex 6= xi 6= xj. That is, the nearest neighbor distance is the average Euclidean distance between the

closest two points. The non-dominated solution with the smallest neighbor distance is removed from the

population until the total number of non-dominated solutions is retained to 50.

4 Experiments

4.1 Test Problems

The algorithm is tested on the following two benchmark problems used in Zitzler and Thiele [16]:

Test Problem 1: Convex

f1(x) = x1 (8)

f2(x) = g × (1−
√

(
f1

g
)) (9)

g = 1 + 9× (
∑n

i=2 xi)

(n− 1)
(10)

xi ∈ [0, 1], i = 1, . . . , 30 (11)

Test Problem 2: Discontinuous Pareto–frontier

f1(x) = x1 (12)
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f2(x) = g ∗ (1−
√

f1

g
− (

f1

g
) sin(10πf1)) (13)

g = 1 + 9× (
∑n

i=2 xi)

(n− 1)
(14)

xi ∈ [0, 1], i = 1, . . . , 30 (15)

Both test problems contain two objective functions and thirty variables. The first is a conventional VOP

with convex and continuous Pareto frontier; although the number of Pareto optimal solutions is extremely

large. The second problem cannot be handled with the traditional approaches (eg weighted sum method)

because of the number of Pareto solutions and the discontinuity of the Pareto frontier. The computational

results of these test problems are provided in the next section.

4.2 Experimental Setup

The initial population size is set to 100 and the maximum number of generations to 200. Twenty different

crossover rates changing from 0 to 1.00 with an increment of 0.05 are tested without mutation. The initial

population is initialized according to a Gaussian distributionN(0.5, 0.15). Therefore, with high probabil-

ity, the Gaussian distribution will generate values between0.5± 3× 0.15 which fits within the variable’s

boundaries. If a variable’s value is not within its range, a repair rule is used to repair the boundary con-

straints. The repair rule is simply to truncate the constant part of the value; therefore if, for example, the

value is 3.3, the repaired value will be 0.3 assuming that the variable is between 0 and 1. The step-length

parameterF is generated for each variable from a Gaussian distributionN(0, 1). The algorithm is written

in standardC++ and ran on a Sun Sparc 4. We used the same experimental setup of the other algorithms.

Therefore, the total relative time (as estimated with the number of objective evaluations) is almost the

same.

4.3 Experimental Results and Discussions

In this section, the solutions of two test problems, provided by our PDE algorithm, are compared with the

solutions of twelve other MEAs (FFGA, HLGA, NPGA, NSGA, RAND, SOEA, SPEA, VEGA, PAES,

PAES20, PAES98 and PAES98mut3p) using a statistical comparison technique. The results of other algo-

rithms, except PAESs, were obtained from the web site “http::\\www.tik.ee.ethz.ch\ ∼zitzler\testdata.html”.

The results for all PAESs were obtained from “http::\\www.rdg.ac.uk\ ∼ssr97jdk\multi\PAES.html”.
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In Figure 3, we plotted all the non-dominated solutions for the first twenty runs of both test problems

with the best SPEA results obtained from the web site. The crossover rates of the solutions plotted were

0.15 and 0.05 for the first and second test problems respectively for our algorithm. SPEA results are the

best published ones. As can be seen in Figure 3, our results are clearly better than SPEA in terms of the

objective function’s values. The Pareto–frontier is always lower than SPEA and the distribution of the

points on the Pareto–frontier is more uniformly distributed than SPEA.
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Figure 3: The performance of the PDE algorithm compared with SPEA on the test problem.

To perform the statistical analysis using the Knowles and Corne method [11], we used the solutions

of the twenty runs for each crossover rate. The results of the comparison are presented in the form of a

pair [a,b], wherea gives the percentage of the space (i.e. the percentage of lines) on which algorithmA

is found statistically superior toB, andb gives the similar percentage for algorithmB. For problem1, the

best result [84.3,15.1] is achieved with crossover rate 0.15. This means, our algorithm outperforms SPEA

on about 84.3 percent of the Pareto surface whereas SPEA is statistically superior than our algorithm for

15.1 percent. For problem2, the best result is obtained with crossover 0.05.

The percentage outperformed by our algorithm and the twelve other algorithms are plotted against the

crossover rate in Figure 4 and 5 for both test problems. For the other twelve algorithms, the results are the

best published results; therefore, the crossover rate on the x-axis does not reflect the crossover rate used

in them. Only within the crossover range 0.05 - 0.55 for problem1 and 0.0 - 0.15 for problem2, PDE is

significantly better than SPEA. The crossover rate versus the number of non-dominated solution points

are shown in Figure 6. In both problems, the number of solution points are maximum within the crossover

range 0.10 to 0.30. Interestingly, the distribution of non-dominated solutions against the crossover rate

follows a normal distribution shape.
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Figure 4: The percentage outperformed by PDE and the other algorithms for test problem 1. The x–axis

represents the crossover rate for our algorithm and the y–axis represents the percentage outperformed by

each algorithm.
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Figure 5: The percentage outperformed by PDE and the other algorithms for test problem 2. The x–axis

represents the crossover rate for our algorithm and the y–axis represents the percentage outperformed by

each algorithm.
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Figure 6: The distribution of the number of non-dominated solutions found by our algorithm for the

two test problems using different crossover rates. The x-axis represents the crossover rate and the y-axis

represents the number of non-dominated solutions found.

For both test problems, PDE is significantly better than FFGA, HLGA, NPGA, Rand and VEGA ir-

respective of the crossover rate. PDE is much better than NSGA for any crossover rate less than 0.85 for

problem 1 and 0.8 for problem 2. PDE is superior than SOEA within the crossover rate 0.05 to 0.65 and

SPEA within 0.05 to 0.5 for test problem 1. These figures for test problem 2 are 0 to 0.45 and 0.05 to 0.1

respectively. PDE is clearly better than PAES, PAES98 and PAES98mut3p for both test problems within

certain range of crossover rate. Although PDE shows superiority over PAES20 for test problem 1, it shows

very little success for test problem 2. For test problem 1, a range of crossover rate for PDE can success-

fully challenge all other MEAs. For example, the solution of PDE at a crossover rate of 0.35 outperforms

all other algorithms. From these results, it can be stated that no algorithm (out of 12) produces optimal

solutions. However, PDE solutions could be close to the pareto frontier though there is no guarantee. For

problem 2, there is no single crossover rate for which PDE is superior than all the other MEAs. However

such a rate can be found when we exclude one or two MEAs. That means, no one is close to optimal

although PDE outperforms most algorithms.

From the experimental results, it is clear that the solution’s quality varies with the crossover rate.

However, the results suggest that there is a trend in both problems which may suggest that the relationship

between the crossover rate and the solution’s quality is almost unimodal. This is very interesting since it

makes the search problem of finding a good crossover rate easy.
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5 Conclusions and Future Research

In this paper, a novel differential evolution approach is presented for vector optimization problems. The

approach generates a step by mutation, where the step is randomly generated from a Gaussian distribution.

We tested the approach on two benchmark problems and it was found that our approach outperformed the

SPEA approach. A trend was found which suggests that large number of non-dominated solutions were

found with low-crossover rates. From our point of view, these are good news. Crossover in DE is some-

what a directed mutation operator as it mutates one parent by the difference of the other two. Hence, a

good performance with low crossover rates entails that large steps was not useful in these problems.

For future work, we intend to test the algorithm on more problems. Also, the parameters chosen in this

paper were generated experimentally. It would be interesting to see the effect of these parameters on the

problem. Also, we anticipate applying the algorithm on real life decision making problems. This, how-

ever, will require the development of good user interfaces so that managers can interact with the package

easily.
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