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Abstract


In this paper, we propose a calculation method of local domi-
nance and enhance multiobjective evolutionary algorithms by
performing a distributed search based on local dominance.
We divide the population into several sub-populations by us-
ing declination angles of polar coordinate vectors in the ob-
jective space. We calculate local dominance for individuals
belonging to each sub-population based on the local search
direction, and apply genetic operators to individuals within
each sub-population. We verify the effectiveness of the pro-
posed method by comparing the search performance between
NSGA-II, SPEA2 and their enhanced versions.


1. Introduction


Recently, multiobjective evolutionary algorithms
(MOEAs) [1], [2] have been increasingly investigated
to solve multiobjective optimization problem (MOP). Two
important goals of a MOEA are to achieve convergence to
Pareto Optimal Solutions (POS) and keep a good distribution
in objective space of the solutions found. Among various
methods proposed so far [1], [2], approaches that use elitism
based on dominance are becoming the state of the art [3],
[4]. In general, these algorithms are quite effective obtaining
POS when the search space is relatively small. However,
when the search space becomes large and/or the number of
objectives increase, it becomes gradually difficult for them to
obtain POS with sufficient diversity in the objective space.


In order to solve this problem and obtain fully spread
POS satisfying diversity conditions, we propose a calcula-
tion method of local dominance and enhance MOEAs by per-
forming a concurrent distributed search based on local domi-
nance. In this method, we first transform all fitness vectors of
individuals to polar coordinate vectors in the objective func-
tion space. Then we divide the population into several sub-
populations by using declination angles. We calculate local
dominance for individuals belonging to each sub-population,
and apply selection, recombination, and mutation to individ-
uals within each sub-population.


In this paper, we compare the search performance between
the well-known NSGA-II [3] and SPEA2 [4] and their en-
hanced versions implemented with our method to verify the


effectiveness of the proposed method obtaining POS satisfy-
ing diversity conditions. Benchmark problems with two and
three objectives (m = 2, 3) are used.


2. Multi-Objective Optimization Problem


A MOP includingm kinds of objective functions is defined
as follows:


{
Maximize f (x) = (f1(x), f2(x), . . . , fm(x))
subject to x ∈ F (1)


where, x ∈ F is a feasible solution vector in the solution
space S (F ⊆ S), and fi (i = 1, 2, · · · , m) are the m ob-
jectives to be maximized. That is, we try to find a feasible
solution vector x ∈ F in the solution space maximizing each
objective function fi (i = 1, 2, . . . , m) in a vector fitness
function f . Important concepts used in determining a set of
solutions for MOP are dominance, Pareto optimality, Pareto
set and Pareto front. Next we define dominance between so-
lutions x, y ∈ F as follows: If


∀i ∈ {1, 2, . . . , m} : fi(x) ≥ fi(y) ∧
∃i ∈ {1, 2, . . . , m} : fi(x) > fi(y). (2)


are satisfied, x dominates y. In the following, x dominates
y is denoted by f(x) � f(y). A solution vector x is said to
be Pareto optimal with respect to F if it is not dominated by
other solution vectors in F . The presence of multiple objec-
tive functions, usually conflicting among them, gives rise to a
set of optimal solutions. The set of Pareto optimal solutions
(POS) is defined as


P = {x ∈ F | ¬∃y ∈ F : f(y) � f(x)} , (3)


and the Pareto front is defined as


PF = {f1(x), f2(x), . . . , fm(x) | x ∈ P} . (4)


MOEAs evolve a population to obtain P for a given MOP in
a single run.
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Fig.1 Solution expression with polar coordinate vector (m = 2)


3. Proposed Method


3.1. Population Division in Objective Function Space


In order to introduce necessary diversity and accomplish
efficient search for POS, we divide the entire population into
several sub-populations generation by generation. Each sub-
population consists of individuals having similar search direc-
tions, and genetic operators are applied to them within each
sub-population. We show the algorithm focusing population
division with a parameter d in the following.


step1: Create a minimum fitness vector (fmin
1 ,fmin


2 ,· · · ,
fmin


m ) consisting of the minimum fitness values in each
objective function fi (i = 1, 2, . . . , m) in the popula-
tion, and calculate temporal fitness vectors for all indi-
viduals as


f
′
(x) = (f


′
1(x), f


′
2(x), . . . , f


′
m(x)) (5)


= (f1(x) − fmin
1 , f2(x) − fmin


2 , . . . , fm(x) − fmin
m ). (6)


step2: Transform all temporal fitness vectors f
′
(x) to polar


coordinate vectors p(x), which components are a norm
r andm−1 declination angles θj (j = 1, 2, . . . , m−1),
as shown in Fig.1, i.e.


f
′
(x) = (f


′
1(x), f


′
2(x), . . . , f


′
m(x)) →


p(x) = (r(x), θ1(x), θ2(x), · · · , θm−1(x)). (7)


step3: Divide the entire population P (t) at t-th generation
into dm−1 sub-populations Pk(t) (k = 1, 2, · · · , dm−1)
with the following procedure.


step3-1: Set l = 1 and P1 = P (t).


step3-2: Sort all individuals in Pk (k = 1, 2, · · · , dl−1)
with l-th angle information θl .


step3-3: Divide each Pk (k = 1, 2, · · · , dl−1) into d sub-
populations with the results of step3-2.
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Fig.2 Determination of principle search direction for each sub-population
(m = 2, d = 3)


step3-4: Increment l. If l ≤ m− 1, repeat step3-2 ∼ step3-
3 for sub-populations already obtained. Otherwise
go to step4.


step4: Calculate local dominance for all individuals in each
sub-population Pk(t) (k = 1, 2, · · · , dm−1) with the
procedure described in 3.2, and then apply selection and
genetic operations within each sub-population by using
the conventional MOEAs [3], [4].


3.2. Calculation of Local Dominance in Sub-population


Local dominance among individuals in each sub-
population Pk (k = 1, 2, · · · , dm−1) is calculated after ro-
tating each principle search direction with the following pro-
cedure.


step4-1: Find minimum and maximum declination angles,
θmax
kj and θmin


kj (j = 1, 2, · · · , m− 1), in Pk(t), and de-
termine the principle search direction as shown in Fig.2
by


θ̂kj =
θmax
kj − θmin


kj


2
+ θmin


kj (j = 1, 2, · · · , m− 1).


(8)


step4-2: Calculate m− 1 rotating angles


ψkj = θ̂kj − π


4
(j = 1, 2, · · · , m− 1). (9)


step4-3: Change all polar coordinate vectors of individuals
in Pk(t) as shown in Fig.3 by


p
′
(x) = (rk(x), θ


′
k1(x), θ


′
k2(x), · · · , θ′


km−1(x))
= (rk(x), θk1(x) − ψk1, θk2(x) − ψk2,


· · · , θkm−1(x) − ψkm−1). (10)
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Fig.3 Rotation of sub-population Pk(t) and its affection to dominance
among solutions


step4-4: Transform all polar coordinates vectors changed in
Pk(t) to modified temporal fitness vectors as


p
′
(x) = (r(x), θ


′
k1(x), θ


′
k2(x), · · · , θ′


km−1(x)) →
f


′′
(x) = (f


′′
k1(x), f


′′
k2(x), . . . , f


′′
km(x)). (11)


We calculate local dominance in step4 in 3.1 for all modified
temporal fitness vectors in Pk(t) obtained by Eqs.(10) ∼ (11).


As shown in Fig.3(a), if we calculate dominance among
solutions with a conventional scheme, say NSGA-II [3], indi-
viduals a, d and e would be dismissed with high probability
in parent selection process since they are dominated by b and
c. On the other hand, if we take into account local search
direction and properly rotate declination angle as shown in
Fig.3(b), the individual a becomes a non-dominated solution,
which is expected to make the entire population spread.


3.3. Gap Suppression by Varying Sub-population Size
If we evolve the entire population with a fixed number of


individuals in each sub-population, the search tends to pro-
duce gaps among sub-populations in the objective space. In
order to suppress this phenomenon, we incorporate a particu-
lar population dividing scheme, which slightly fluctuates re-
gions covered with sub-populations in the objective space.
Suppose that a population P is divided into d sub-populations
Pk (k = 1, 2, · · · , d). In this process, we describe the total
population size in P as


|P | =
d∑


k=1


|Pk + Ck| (12)


where | · | means number of individuals in the population.
|Pk| (k = 1, 2, · · · , d) includes an equivalent number of in-
dividuals but additional reserve individuals Ck are randomly
given to sub-populations. We prepare a reserve individual
vector C = (C1, C2, · · · , Ck) in advance, and all elements
are randomly permuted at every generation. This slight fluc-
tuation of the solution coverage with sub-populations works
to suppress (disappear) gaps in the objective space effectively.


4. Experimental Results and Discussion


4.1. Preparation


In this paper we use multiobjective 0/1 knapsack problems
(KPn-m) [5] as benchmark problems to verify the search per-
formance of the proposed method, where n and m denote
item and knapsack (objective) numbers, respectively. Only in
case of two objectives (m = 2) we know the true POS for the
problems downloaded from [6].


As genetic parameters, we adopt two-point crossover with
a crossover probability pc = 1.0 for recombination, and apply
bit-flipping mutation with a mutation probability pm = 1/n.
In the following experiments, we show the average perfor-
mance with 30 runs, each of which spent 2,000 generations.
Population sizes are set to |P | = {200, 600} for m = {2, 3}
objectives, respectively.


As metrics for performance evaluation, we use several met-
rics to evaluate POS obtained by the MOEAs compared in
this work. Hyper-volume (HV ) [7], GD proposed by Veld-
huizen [8], inverse GD defined in this paper, and Spread
(SP ) proposed by Deb et al. [1] are used. IGD is the aver-
age distance for all members in the true POS to their nearest
solutions in the obtained POS.


4.2. Results and Discussion


In our experiments, we compare the search performance
achieved by four MOEAs, conventional NSGA-II, SPEA2,
and their enhanced versions incorporating the proposed
method considering local dominance.


First of all, we show the normalized HV with 95% con-
fidence intervals obtained by our method as we vary the pa-
rameter d regarding population division in Fig.4, where two
dashed lines are the results by conventional NSGA-II and
SPEA2. The main conclusions from Fig.4 are as follows: (i)
As a general tendency, the superiority of the proposed method
becomes remarkably large as we increase the solution space
by increasing objective (knapsack) numbers m and/or item
numbers n in the problem. (ii) There is an optimum param-
eter d∗ to maximize HV depending on benchmark problem
and algorithm to be used. (iii) Larger improvement by our
method can be observed in case of SPEA2 rather than NSGA-
II, while conventional NSGA-II always outperforms SPEA2
in this particular problem.


Next, we show the obtained POS in Fig.5. As the solu-
tion space increases, both enhanced NSGA-II and SPEA2 im-
plementing our method achieve robust performance obtaining
fully dispersed POS close to the true POS.


In Fig.6, we show the transition ofGD and IGD over gen-
eration as indicators on convergence of POS. Conventional
NSGA-II and SPEA2 achieve smaller GD than the enhanced
ones, but the enhanced NSGA-II and SPEA2 achieve clearly
smaller IGD than conventional ones.
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Fig.4 Performance comparison on hyper-volume (HV) for KP250-2,3 Fig.5 Obtained POS for KP250-2
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Fig.6 Transition of GD and IGD over generations for KP250-2
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Fig.7 Transition of SP over generations for KP250-2


Furthermore, we show the transition of SP over genera-
tions as an indicator on diversity of POS in Fig.7. From this
figure we can see that conventional NSGA-II and SPEA2 re-
markably lose diversity in early stage of evolution, while en-
hanced methods continuously induce diversity into the entire
population from the beginning of evolution. Precisely, en-
hanced SPEA2 always achieved smaller SP than enhanced
NSGA-II, which could support the result that the former al-
gorithm shows larger improvement on HV in Fig.4.


These results could be an evidence to show not only the dif-
ficulty for a single population to cover widely spread POS in
the objective space but also the effectiveness of the proposed
method based on local dominance.


5. Conclusions


In this paper, we have proposed a calculation method of
local dominance and enhanced MOEAs by performing a dis-
tributed search based on local dominance. We have verified
that the enhanced NSGA-II and SPEA2, implemented with
our method, showed better search performance to obtain fully
spread POS than their conventional versions. The difference
in performance increased with the number of objective and/or
size of the search space.


As future works, we should improve this method to achieve
higher convergence of POS while keeping diversity as it is.
Also, we should verify the performance of this method for the
problems including more than three objectives and for other
kinds of problems.
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