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Abstract

Both cost and quality are important features when man-
ufacturing today’s high performance electronics. Un-
fortunately, usually the two design goals (low) cost and
(high) quality are somewhat mutually exclusive. High
testing effort (and thus quality) comes with a consider-
able cost, and sparing the test has significant impact on
the delivered quality.

In this paper we present a new structured search
method to obtain the best combination of these two
goals. It features a graphical oriented cost/quality mod-
eling approach and uses a Pareto chart to visualize the
results. The search for the Pareto-optimal points is done
by means of a genetic algorithm.

With our method we optimize a manufacturing pro-
cess for a global positioning system (GPS) front end
clearly outperforming a standard fabrication set-up.
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Introduction

It is a well known fact that final shipment quality of an
electronic product plays an important role for customer
satisfaction. Equal importance has only the cost of this
product. For the customer, the target is clear: quality as
high and cost as low as possible.

But unfortunately, both figures are linked ad-
versely: Exhaustive and expensive testing will lead to
a very high quality level, but also to high final cost per
shipped unit. On the other hand, neglecting a full func-
tional test before shipping yields in unacceptable deliv-
ery quality. To achieve a compromise, usually ranges
for quality level and total unit cost are defined within
the product specification phase.

The question is now how to obtain a reasonable fig-
ure for this compromise. To reach e.g. the first tar-
get of high quality, the natural conclusion would be to
push every component’s yield and the fault coverage of
any test as close as possible to 100%. So in the begin-
ning, significant quality improvements come at moder-
ate cost penalty. But when approaching 100%, test and
component cost have almost an exponential behavior
increasing strongly the overall cost without benefiting
too much in terms of quality. Thus, we need a trade off
methodology. But to date, cost modeling tools avail-
able are not able to perform such a concurrent optimiza-
tion of quality and cost. In fact, none of them feature
any optimization strategies, which has been done so far
purely by trial and error.

In this paper we present a test vs. cost optimiza-
tion strategy giving information on the design space to
set acceptable and manufacturable goals for quality and
cost. To do so, we outline first the idea of quality en-
hanced cost modeling, then followed by the method-
ology for an automated search algorithm for trade-off
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Figure 1: Concept of Info,mation Packet Processing

points. The benefits of our approach are finally illus-
trated with a case study on manufacturing a GPS front
end.

Quality Enhanced Cost Modeling

The main cost factors contributing to the final cost of an
electronic product can be divided into three categories,
direct cost such as components, process material, man-
power cost, test and rework cost, the non-recurring
expenditure (NRE) or indirect cost consisting of ma-
chine depreciation and overhead, e.g. management and
design cost and the reject cost or SCRAP determined
by quality factors as yield and fault coverage. All these
costs have to be returned by a shipped unit leading to
Equation 1 (see also [1]).

Next to this final cost, the second important Fig-
ure of Merit is the quality of this unit, the percentage
of shipped units being error-free. Of course, this fig-
ure should be close to 100%. The final yield or quality
results from yield figures of components and processes
and the test effort (fauit coverage) throughout the pro-
duction process (see Eq.2).

Whereas the calculation of Equation (1) is straight-
forward, the computation of Equation (2) is more com-
plicated. The final quality is the fraction of non-
working units passing the test (the so-called test es-

capes) and the total number of units passing this test
(Equation 3). The test escapes themselves are deter-
mined by the test transparency T'T or fault coverage
FC of preceding test steps and the yield Y of the pre-
vious manufacturing steps (see [2]).

For a process with a single final test, the final qual-
ity turns into Equation (5), becoming even more com-
plicated for several test stages checking only partial as-
pects of a unit!.

Instead of using spreadsheet or list oriented calcu-
lations [3, 4], To hide this complexity of the underly-
ing formulae from the design engineer and to bring the
cost modeling to a more intuitive basis, we introduce
a cost modeling tool based on Monte Carlo probabil-
ity simulation and a graphic process representation, the
Modular Optimization Environment MOE [5].

Using a packet oriented calculation, every unit un-
der production has its own container comprising in-
formation on accumulated cost, errors, rework cycles
undergone, etc. A process step (“a machine”) operates
on this information and changes it. The general con-
cept is shown in Fig. 1, more detailed examples for the
MOE algorithms are given below:

!X-ray testing after micro BGA soldering e.g. only checks for interconnect faults and cannot identify a non-working component.
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Table I: Cost and Fault Coverage Data

process chip test cost final test cost
yicld 99.2% 99.7% 95% 97%
w/01ddQ | IddQ | normal | cxtended
LPD chip 55-65% 8 9
LVL2chip | 70-80% 8 9
Final Test 10 15
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Figure 2: Result cost only: example for readout electfom'

Examples of the MOE Computation Algorithms

RND() calculates a random number according to the binomial distribu-
tion. With a 90% yicld, from every 100 produccd units 90 arc fault-free,
and ten units contain an error. C denotes cost, E crror, Y yicld. NRE
non-recurring expenditure.

Process Step:

cpackct + = CProccss
Epack:t + = RN'D(yProceas)
NRE + = NREpMchine
Assembly Step:

Ny * Cpucketl + ot CAssembly
Nyx Epaclcetl + ...+ RND(YAsscmbly

Chew packet =

Ehew packet =

NRE += NREyqachine :
Test Step:
Cpacket + = Crest
NRE + = NREpqachine

i#{Epgcket = 0)or((Epacket > 0)and(RND(TT) > 0))
then packet OK, RewCounterpacket = 0
else packet FALSE

The advantage is the higher level of details avail-
able on direct cost, yield loss, and NRE, giving the op-
portunity for cost and quality optimization. One we

CS

Table II: Test Scenarios

LPD | LVL2 | Final Test
normal

normal
normal
cxtended
extended
cxtended

1ddQ |
1ddQ
normal
1ddQ [ normal
1ddQ

i mi O O] wi >

2200 Y -
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- Figure 3: Result graph cost vs. quality: now a trade-off is

possible

have this data, the next task is how to put the various
cost/quality results into a right perspective. This is ex-
plained and illustrated with a little exampie in the next
section.

An Application Example

Among the components/subsystems that can tolerate
only a very low number of defect parts shipped are ex-
perimental electronics for physics or space subsystems.
Typically the defect level is in the range of parts per
million (ppm) as these blocks are vital for system func-
tionality or difficult and costly to replace.

For a readout electronic subsystem e.g., the ques-
tion was whether the existing test concept would ful-
fill the customer quality specifications and how other
concepts (IddQ, enhanced final test) would perform [6].
These additional test efforts come with a considerable
cost overhead (and in case of IddQ also with a design
time delay), numbers can be found in Table I. An
overview of the scenarios under investigation is given
in Table II.

In Fig. 2 the cost calculation for the different test-
ing scenarios are shown. According to this graph there
would be no benefit in changing the test strategy be-
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cause the total cost is only increasing. Since we want
to monitor both quality and cost concurrently, we there-
fore need another result representation as this single fig-
ure of merit. Consequently, we use a two-dimensional
graph plotting cost and test escape level simultaneously.

Fig. 3 presents the results for a given cost-test cov-
erage relation, where scenarios A to E turn out to be so-
called Pareto points. Solution A is the status-quo point
with the actual IC wafer level test coverage and final
test coverage. Solutions B to E represent the respective
tradeoff for a dedicated defect level. Solution F can
be dropped because E gives a better solution in terms
of cost. Proceeding from B to E, a defect level reduc-
tion can be achieved while increasing the total module
cost. The simplest approach (extending the final test
time and therefore test coverage) already gives a re-
markable defect reduction. Introducing IddQ for the
lower-yield LPD chip even performs better at minimal
additional cost. The use of IddQ for the LVL2 chip
improves the defect level only minimal, so this action
could be left away to spare engineering resources to re-
design the chip.

Combining the strategies B and D to E gives again
an improvement, reaching the minimum defect level
border for the case. Now, setting a maximum accep-
tance value for cost and/or for test escapes, the final
test setup can be chosen.

Pareto Optimality

What makes now solutions superior to others? Simi-
lar to Fig. 3 another two-dimensional plot is shown in
Fig. 4. For ranking purposes of data points we refer
to the domination principle: “For a minimization prob-
lem (minimum cost, minimum defect level) a point (in-
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Figure 5: Example for Pareto Optimality

dicated by the circle) dominates all the data lying in
the hatched area right above it (these points represent
higher cost AND higher defect level). It gets domi-
rated by all the points left below it, in the shaded area
(these points have lower cost AND lower defect level)”.
Points that do no get dominated by other ones are called
“Pareto points”. These points, indicated by the hatched
triangles, are the ones located closest to the graph’s
axes [10].

When all these points are superposed, we obtain a
hatched area (see Fig. 5) wherein all the points are dom-
inated and on its edges a Pareto front giving the reach-
able borders of the optimization problem.

For the simple readout electronics case above with
a countable number of choices, the Pareto search could
be done semi-automatically, but one can easily imagine
that for a higher number of alternatives a more struc-
tured search mechanism is required. This mechanism
is described in the following section.

Automated Search for Pareto Points

InFig. 6 the MOE manufacturing model for 2 GPS front
end is depicted. It includes an RF die (upper left) and
a correlator die (medium left). The RF (yieldl) die un-
dergoes a pre-screening with fault coverage fcl, the
correlator (yield2) is rerouted for flip chip attach and
afterwards optically inspected (fc2). In case of an er-
ror, this chip can be repaired once with the success rate
yield3. Both dies are attached onto the thinfilm sub-
strate (upper right corner with yield4), and then.the en-
tire system undergoes a functional test before shipping
(fed).

For every of the total 7 parameter, we arbitrar-
ily define a range of 8 applicable values, leading to
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Figure 6: Graphical manufacturing model for a GPS RF front end

87 = 2097152 possible combinations. Additionally,
when changing a yield or fault coverage parameter, de-
pendent parameters (component cost or test cost) have
to be changed as well. An overview of all parameters
can be found in Table I1I. The number of possible alter-
natives forbids to make a brute force calculation of all
combinations.

-Due to the nature of the problem (discrete param-
eter space, ‘no closed formula), no analytic solution is
possible. Now, the usual procedure would be to use
some standard heuristic methods, as e.g. simulated an-
nealing, or hill climbing. But those procedures are suit-
able only for single objective optimization. Thus, we
would have to use some weighting factors to combine
multiple objectives to use these methods (see e.g. [7]).
The problem with this approach is that

¢ bad performance with regard to some objectives
can be compensated, which is often not desired;

e we have to define weighting factors in advance
without knowing the search space;

e we only obtain a single solution without getting
any additional information on the search space.

Therefore, a parallel search is considered to be the
better way to avoid these obstacles [8]. A suitable
method is the use of genetic/evolutionary algorithms
(GA/EA)? The general scheme of this methodology is
listed in pseudo-code below:

0 Dbegin
1 initialize starting population
2 assess fitness of this population
3 repeat
4 select parents
according to their fitness
5 replicate (using crossover
and/or mutation)
6 assess offspring
7 generate new population

8 until max number of generations
or stop criterion

9 print out results

10 end »

Search for the Optimum

For the example above the 8 possible float numbers for
each parameter have been coded as a 3-digit gene. All
genes are lined up to a single bitstring (“individual”)
that, together with all other individuals, is fed into the
evolutionary algorithm for optimization purposes. The
resulting bitstrings ("the offspring”) are decoded again
to real values and fed into the MOE simulation engine.
The cost/quality outcome is in turn fed into the EA al-
gorithm to assess the fitness of the offspring. This loop
continues for a given number of generations. The se-
lection algorithm has been implemented adopting the
Strength Pareto approach [10].

“For reasons of simplifications, we will not distinguish between those two concepts. For some considerations see [9].
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Table III: Values for the parameters used in Fig. 6

low medium high
main variables
yicld! [ 05 0.557143  0.614286  0.671429 [0.728572\ 0.785715  0.842858 [ 0.900001
yicld2 0.5 0.568572 0.637143  0.705715 | 0.774286 | 0.842858  0.91143 | 0.980001
yicld3 0.687023 | 0.730644 0.774264  0.817885 | 0.861505 | 0.905126  0.948747 | 0.992367
yicld4 0.687023 | 0.730644 0.774264  0.817885 | 0.861505 | 0.905126  0.948747 | 0.992367
fel 0.5 0.557143 0.614286 0.671429 | 0.728572 | 0.785715  0.842858 | 0.900001
fe2 0.5 0.568572  0.637143  0.705715 | 0.774286 | 0.842858  0.91143 0.980001
fc4 0.687023 | 0.730644 0.774264 0.817885 | 0.861505 | 0.905126 0.948747 | 0.992367
dependent variablis
yield] _cost 50 55.7143 61.4286 67.1429 72.8572 78.5715 84.2858 90.0001
yield2_cost 25 28.4286 31.8572 35.2857 38.7143 42.1429 45.5715 49.0001
yield3._cost 137.405 146.129 154.853 163.577 172.301 181.025 189.749 198.473
yieldd_cost | 343.511 | 365.322 387.132 408.942 430.753 452.563 474373 496.184
fcl.cost 50 55.7143 61.4286 67.1429 72.8572 78.5715 84.2858 90.0001
fc2_cost 100 113.714 127.429 141.143 154.857 168.572 182.286 196
fcd_cost 687.023 730.644 774.264 817.885 \ 861.505 905.126 948.747 992.367
07 T T T T T T
2 2
- average .
06 high n S
] initial Population -
osf - - g
5 oar E
02 é N 4
0.1+ -
Q.
o S 1 l 1 1 1 L 1
8500 9000 9500 11000 11500 12000

10000 10500
Total Module Cost

Figure 7: Comparison of an EA run with high-medium-low parameter combinations; the Pareto front clearly outper-

forms the average parameter combination

Fig. 7 shows the result for a run with the EA frame-
work (50 Generations/50 Individuals). In addition, we
calculated three typical parameter combinations:

low: minimum values from Table III,
medium: a medium value from every parameter range,
high: maximurm values from Table III.

As one can clearly see from Fig. 7, the outline
square (medium values in Table III) is surpassed by

the filled square (high values) and the filled circle (low
values) parameters either in terms of cost or in terms
of quality. The Pareto front (stars) gives the connec-
tion between the high/low values, clearly outperform-
ing the average solution and even the low-value solu-
tion. Thus, starting in the upper left comer of the Pareto
front one can see that with small cost investments sig-
nificant gains in quality can be made. When the test
escapes have come down to approx. 0.03%, a turning
point (indicated by the circle) is reached and further im-
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Table IV: Decoded Parameters for the Pareto Front

yicldl  yield2 yicld3  yieldd fel fc2 fcd cost defect level [%]
0.9 0.98 0.77 0.77 0.9 05 0.69 | 8697.04 0.2491
0.9 0.98 0.69 0.91 0.5 05 077 | 8721.87 0.1510
0.9 0.98 0.77 091 0.5 0.5 0.69 | 8724.66 0.1499
0.9 0.98 0.69 0.91 Ouvi 05 069 | 8740.03 0.1441
0.9 0.98 0.69 0.91 0.9 05 077 | 87598 0.1090
0.9 0.98 0.91 0.91 0.9 0.5 0.69 | 8762.84 0.1058
0.9 0.98 0.77 0.99 0.5 0.5 0.77 | 8765.81 0.0700
0.9 0.98 0.91 099 061 05 077 | 8780.42 0.0660
0.9 0.98 0.77 099 079 05 0.69 | 8801.19 0.0450
0.9 0.98 0.99 0.99 0% 0.5 0.77 | 8804.06 0.0260
0.9 0.98 0.69 0.99 C.9 0.5 0.69 | 8806.17 0.0242
0.9 0.98 0.69 0.99 09 064 0.99 | 8850.05 0.0230
0.9 0.98 0.69 0.99 09 084 0.77 | 8894.06 0.0168
0.9 0.98 0.77 0.99 09 098 0.77 | 8895.04 0.0150
0.9 0.98 0.69 0.99 0.9 098 0.77 | 8895.38 0.0124

provement in quality only comes at a considerable cost. given parameter space. Subsequent analysis can than

This turning point would be the best state to chose for
fabrication set-up.

When looking at the decoded parameter results for
the Pareto front (Table IV), one can see that from one
Pareto point to another, about only 30% of the parame-
ters change their values. This gives raise to the hope
that the Pareto points are fairly stable, but this mat-
ter requires additional investigations. Moreover, for
the yieldl- and yield2- parameters, always maximum
yield are used due to its low cost penalty. Thus, for the
given set up it is crucial to maintain high yield for all
Pareto points.

Conclusions

In this paper we presented a quality vs. cost trade-
off for electronic systems. In contrast to existing ap-
proaches, which would have provided only a cost per-
spective of the results, our method offers a second
important view on the result space. Only from the
cost point of view, none of the manufacturing changes
(1ddQ, extended test) in the readout application exam-
ple would have made sense, as no significant yield loss
reduction could have been achieved. But when the
module cost is not the only driving force, we see that
there is a benefit in terms of quality when changing the
testing setup.

Using the automated search, the designer can also
make a risk assessment testing the case when manufac-
turing key specs are not met (e.g. die supplier does not
meet yield, test engineer cannot deliver fault coverage
promised). Visualizing the population helps extrapolat-
ing the ranges within cost and quality can float for a

focus on the region of interest.

Finally, the resulting Pareto front gives the oppor-
tunity to chose the optimal process setup to meet given
cost and quality specifications.

Future work will include enhanced stability of the
Pareto points.
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