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Abstract 


 


In contemporary credit portfolio management, the portfolio risk-return analysis of financial 


instruments using certain downside credit risk measures requires the computation of a set of 


Pareto-efficient portfolio structures in a non-linear, non-convex setting. For real-world 


problems, additional constraints, e. g. supervisory capital limits, have to be respected. 


Particularly for formerly non-traded instruments, e. g. corporate loans, a discrete set of 


decision alternatives has to be considered for each financial instrument. The main result of 


this paper is a new, fast and flexible framework for solving the above issues using a hybrid 


heuristic method that combines multi-objective evolutionary and problem-specific local 


search methods in a unique way. We explicitly incorporate computational complexity in some 


of our considerations and consider proper genetic modelling of portfolio credit risk related 


problems. Also, we analyse empirical results from a study based on our implementation of the 


proposed hybrid method in a specific portfolio credit risk model context. These results show 


that this method is superior in convergence speed to a non-hybrid evolutionary approach and 


that our implementation finds risk-return efficient sets within reasonable time. 
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Introduction 
 


The intensive development of quantitative portfolio credit risk models since the late 1990s 


and the increasing trade in financial instruments for transferring credit risk like credit default 


swaps, asset backed transactions etc. are major reasons for a growing importance of credit 


portfolio risk-return analysis and optimisation. Beyond that, there will possibly be more 


demand for credit portfolio optimisation as soon as the supervisory capital requirements for 


banks will be changed due to proposals of the Basle Committee, e. g. by setting new capital 


weights on some credit risk exposure types, providing supervisory capital relief for risk 


mitigation and establishing additional regulatory capital requirements for operational risk (cf. 


Basel Committee for Banking Supervision (2001) and subsequent publications from the Bank 


of International Settlements). 


In this paper, we will focus on an algorithmic framework for the calculation of discrete risk-


return efficient sets for credit portfolios with respect to constraints, e. g. imposed by changes 


of supervisory capital regulations or internal reallocation of risk capital. This kind of  


portfolio management is of great importance especially for, but not limited to, many German 


and European banks since the typical largest exposures to credit risk for small and medium 


size universal banks are loans given to companies not having direct access to the capital 


market. 


In contrast to the methods for the computation of the efficient frontier for a given set of 


alternative stock market investments based on the portfolio’s variance and related measures, 


usually a non-linear, non-convex downside risk measure like the Credit-Value-at-Risk is 


preferred for portfolio credit risk-return analysis, therefore requiring a different method of 


computation. Moreover, this computational problem often cannot be modelled using real-


valued variables, since typically neither the decision alternatives allow an arbitrary amount of 


each credit risk exposure to be traded nor it is possible to obtain a short position providing a 


hedge for each arbitrarily chosen exposure from a given portfolio. In addition to that, e. g. the 


capital requirements for credit risk exposures imposed by the banking supervision authorities 


are an important constraint to be considered in the computation of efficient credit portfolio 


structures, and these capital requirements are going to be non-linear in the future according to 


recent proposals of the Basel Committee. 


For our considerations, the concept of Pareto-optimality is essential, i. e. efficient structures 


are Pareto-optimal concerning the two distinct (and in many cases contrary) objective 


functions specifying the aggregated risk and the aggregated return of each potential credit 


portfolio structure for a given set of alternatives. Therefore, we are interested in multiple, 


feasible non-dominated solutions to the constrained portfolio credit risk-return optimisation 


problem that are comparable to the efficient frontier in stock portfolio investment analysis, 


but in a discrete search space having many local optima and particularly using multiple target 


functions not required to be linear, quadratic or convex. In this context, a feasible non-


dominated solution is a portfolio structure that does not violate the constraints, and for which 


we cannot find any other feasible solution being better in all two target function values. 


 


We introduce a novel approach to such problems that combines recent constrained multi-


objective evolutionary computation methodology and problem specific knowledge to create a 


hybrid algorithm providing rapid discovery of a set of efficient credit portfolio structures with 


respect to constraints for a given instance of the above problem. We derive a general result 


concerning the appropriate modelling of portfolio credit risk problems for certain genetic 


variation operators that is not restricted to our problem. Using this concept, we create a proper 


genetic representation of our decision variables that reflects the problem structure. 


Furthermore, we derive a local search variation operator that modifies selected solutions in 


addition to the common genetic operators during the evolution process to improve the 
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convergence speed of the algorithm. Beyond that, this local search variation operator 


particularly uses portfolio credit risk model features to achieve a high computing speed. 


 


For an empirical evaluation of our concepts, we present the results of a study based on our 


implementation of the hybrid algorithm. In this study, we calculate sets of efficient portfolio 


structures for different test problems on a standard Personal Computer. Using a suitably small 


test portfolio, we show by a complete enumeration of the search space that the hybrid 


algorithm finds a well-distributed set of different efficient solutions within few minutes 


whereas the enumeration requires more than an hour of computing time. Beyond that, our 


large test cases show that the algorithm can still be run on a standard PC using significantly 


larger portfolio sizes, and since the hybrid algorithm is well-suited for massively parallel 


implementation there are good prospects even for very large real-world portfolios to be 


processed. Finally, by comparing the results of a pure evolutionary approach to the 


performance of our hybrid algorithm on the same test cases, we observe that the latter 


approach shows a higher convergence speed. 


The paper is organised as follows: In the first section, we describe our portfolio credit risk 


optimisation problem and analyse its structure from a computational perspective. After a short 


look to traditional methods for multi-objective optimisation, we give a short introduction to 


multi-objective evolutionary algorithms. Then we derive a proper genetic modelling for 


portfolio credit risk problems before giving an overview and discussing some elements of our 


hybrid evolutionary algorithm framework for the computation of constrained risk-return 


efficient credit portfolio structures. The next section introduces some specific credit portfolio 


model features which are exploited by our implementation of the proposed framework. We 


provide details of our implementation before describing the parameters and the results of an 


empirical study where we compare our hybrid implementation with a non-hybrid approach on 


several test problems. 
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1  Structure and complexity of the discrete portfolio credit risk 


optimisation problem 
 


1.1 Some basic definitions and results 


 


In this section, we will analyse the structure and the complexity of the constrained discrete 


credit portfolio optimisation problem which is to be solved by our hybrid method. The 


following definitions and results are necessary to understand the structure and the 


computational complexity of the problem. 


 


Definition 1. Given are m > 1 investment alternatives and a time horizon T.  


Each investment alternative (obligor) i ∈  {1,...,m} incorporates the risk of default and it is 


characterised by the following data which is considered to be constant within the time period 


(0, T):  


• net exposure ei (loss given default of investment i), 


• expected rate of return ri based on ei (net of cost),  


• expected cumulative default probability pi within the time horizon (0, T),  


• and a capital requirement percentage wi based on ei.  


There is a dependence structure between joint defaults of investment alternatives  


i,j ∈ {1,…,m} that can be modelled by an undirected graph G = (V, E) and a function h: E→ℜ , 


where V = {1,…,m} is the vertex set of investment alternatives, E = V x V is the complete 


edge set of potential default dependencies between investment alternatives (i, j) and h: E→ℜ  


is the function expressing the strength of the dependency between each pair of two investment 


alternatives (i, j).  The function h can be a correlation based function or more general, a 


copula based function, see e. g. Frey & McNeil (2001) for details about mathematical 


modelling of default dependencies.  


 


In the following text, we will abbreviate the respective set of scalar variables ei , ri , pi, wi of 


all obligors by vectors e:=(e1,...,em)
T
, r:=(r1,...,rm)


T
, p:=(p1,...,pm)


T
, w:=(w1,...,wm)


T
. 


 


The investor that has to decide about holding a subset of the investment alternatives in her 


portfolio can e. g. be a bank that wants to optimise its loan portfolio containing m different 


obligors. According to the next definition, there is a fixed risk capital budget for the 


investments that can e. g. be given by the bank’s maximum supervisory capital which is 


required to be provided by the bank due to the supervisory regulations (cf. e. g. Basel 


Committee for Banking Supervision (2001)). 


 


Definition 2. A capital budget of the investor is given by K > 0. 


 


We need the following definition to describe possible portfolio structures that can be 


constructed for the given investment alternatives. 


 


Definition 3. A portfolio structure is given by a vector x = (x1, x2, …, xm)
T
, where xi ∈  {0, ei}. 


 


Since every xi can only take the values 0 or ei, the investor has to decide whether to hold the 


whole net exposure ei in her portfolio. In many real world portfolio optimisation problems the 


decision is e. g. either keeping the obligor i in the credit portfolio or selling the entire net 


exposure of obligor i to a risk buyer. This is particularly true for formerly non-traded 


instruments like corporate loans in a bank’s credit portfolio. Even if there are more than two 
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decision alternatives for each potential investment i, the decision variables will still consist of 


a finite, discrete number of choices. 


Facing these decision alternatives, an investor has to consider two conflicting objective 


functions: the aggregated return and the aggregated risk from her portfolio. Usually, there is a 


trade-off between both objectives since any rational investor will ask for a premium 


(additional return) to take risk.
1
 


 


Definition 4. The aggregated expected return from a portfolio structure x is calculated by  


 ( )
1 1 1


( , , ) .
m m m


i i i i i i i


i i i


ret x p r r x p x r p x
= = =


= − = −� � �   (1.1) 


 


This is a common net risk adjusted return calculation since the aggregated expected losses are 


subtracted from the portfolio’s aggregated net return. 


 


Definition 5. The aggregated downside risk risk(x, p; h) from the portfolio structure x for the 


investor is calculated using an appropriate algorithm A such that risk(x, p; h) satisfies the 


following condition:  


 {1,..., }: 0 , : ( , ; ) 0ii m p x h risk x p h∀ ∈ ≡ � ∀ ≡   (1.2) 


 


The condition specified in Definition 5 expresses the natural property of the risk measure that 


there is no credit risk for the investor if the default probabilities of all investment alternatives 


are equal to zero. Of course, the algorithm A and the downside risk measure risk(...) are 


required to satisfy additional properties to be a downside risk measure. Artzner et al. (1999) 


provide definitions and a discussion of different risk measures and their properties. For our 


empirical study described later, we will use the Credit-Value-at-Risk downside risk measure 


that satisfies condition (1.2). It is a very common measure of credit risk in contemporary 


credit risk management. 


 


Definition 6. For a given portfolio structure x the Credit-Value-at-Risk (CVaR) at the 


arbitrary, but fixed confidence level α ∈  (0,1) is obtained by calculating  


 ( , ; ) : ( , ; ) ( , )pf pfrisk x p h q x p h x p
α µ= −   (1.3) 


where q
α


pf (x,p;h) is the α-percentile of the cumulative distribution function of aggregated 


losses calculated from the portfolio for the given parameters x,p and the dependency structure 


specified by h. Moreover, µpf (x, p) is the expected loss calculated by 
1


( , )
m


pf i i


i


x p x pµ
=


= � . 


 


For our theoretical considerations in this section, we do not need a specification of the 


calculation procedure for the cumulative distribution function of aggregated losses or q
α


 pf . 


We will return to these details in the third section describing the portfolio credit risk model 


used by our implementation of the proposed hybrid algorithm.  


Definition 7. The required capital of a given portfolio structure x is 
1


( , )
m


i i


i


cap x w x w
=


= � . 


Definition 8. A portfolio structure x is feasible if and only if cap(x, w) ≤ K. 


 


                                                 
1
 Since there is currently no perfect and transparent capital market for trading illiquid financial instruments like 


loans we do not distinguish explicitly between systematic and idiosyncratic (obligor specific) risk here. In a 


capital market equilibrium, there is only a premium for taking systematic risk according to the CAPM (see e. g. 


Sharpe (1964)). 
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The following definition is essential for the concept of Pareto-optimality. 


 


Definition 9. Given are two distinct feasible portfolio structures x and y.  


x dominates y if and only if one of the following cases is true: 


(1) ret(x, p, r) > ret(y, p ,r) and risk(x, p; h) ≤ risk(y, p; h)  


(2) ret(x, p, r) ≥ ret(y, p, r) and risk(x, p; h) < risk(y, p; h). 


 


If x dominates y, we will denote this relationship by x >d y. 


 


This means that a feasible portfolio structure x is better than a feasible portfolio structure y if 


and only if x is better in at least one of the two criteria and not worse in the other criterion 


than y. It is obvious that a rational investor will prefer x over y if x >d y.  


 


Definition 10. Given is the set S of all possible portfolio structures for the specified data from 


Definition 1 and the subset S’ ⊆  S of all feasible structures in S. A solution x ∈  S’ is a feasible 


global non-dominated portfolio structure if and only if it satisfies the following condition: 


 ( )' : dy S y x∀ ∈ ¬ > .  (1.4) 


This means that there is no y ∈  S’: y >d x. 


 


To choose between the best investment alternatives using her preferences or utility function, a 


rational investor is interested in finding the set of non-dominated portfolio structures that has 


maximum cardinality. This set is the Pareto-optimal set which is comparable to the efficient 


frontier of Markowitz (1952), but in a discrete decision space. 


 


Problem 1. The problem of finding the set of feasible Pareto-efficient portfolio structures 


having maximum cardinality for the set of investment alternatives S can be formulated as: 


Calculate the set 


 { }*


'
: arg max


PE S
PE PE


⊆
=   (1.5) 


where 


 ( ){ }d: ' : ' :  >  PE x S y S y x= ∈ ∀ ∈ ¬ .  (1.6) 


 


Now we want to focus on the computational complexity of Problem 1. Therefore, we consider 


the usual computing model of Turing machines (see e. g. Papadimitriou (1994) for details), so 


we temporarily assume all variables to be rational numbers. For definitions and an overview 


of the P-NP theory see Garey & Johnson (1979). Other computational complexity results 


concerning credit risk related problems can be found in Seese & Schlottmann (2002b). 


 


Lemma 1. Assuming all scalar variables to be rational numbers, the corresponding decision 


problem for Problem 1 is NP-hard. 


 


Proof. See appendix.  


 


Corollary 1. Unless P = NP, there is no exact algorithm that calculates PE* within polynomial 


computing time (measured by the size of the input m). 


 


Therefore, we need an approximation algorithm for PE*. The next section will describe 


approaches for the approximation of PE* for portfolio data given according to Definition 1. 
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2  A framework for hybrid multi-objective evolutionary computation 


of Pareto-efficient credit portfolio structures 
 


2.1 Traditional methods for solving multi-objective optimisation problems 


 


A well-known traditional method of solving multi-objective optimisation problems like 


Problem 1 is weighted sum scalarisation. In the case of our optimisation problem this e. g. 


implies that the two objective functions for the credit portfolio’s aggregated return and 


aggregated risk would have to be transformed into a single objective function g by adding the 


two original objective functions using appropriate weights c1, c2 ∈  ℜ  (see e. g. Ehrgott (2000), 


pp. 55-76 for details): 


 1 2( , , ; ) ( , , ) ( , ; )g x p r h c ret x p r c risk x p h= +   (2.1) 


 


These and other traditional methods (see e. g. Ehrgott (2000), pp. 77ff. for an overview) of 


solving multi-objective problems and handling constraints work well on linear or convex 


problems in a continuous setting, i. e. problems consisting of linear or at least convex, 


continuous objective functions, and constraints also satisfying these properties. However, the 


portfolio optimisation problems based on downside risk measures usually inhibit non-linear, 


non-convex objective functions, e. g. if the concept of Value-at-Risk or Credit-Value-at-Risk 


is used – see e. g. Pflug (2000) for the mathematical properties of such downside risk 


measures. It is an obvious fact that the above mentioned methods relying on convexity in the 


objective function space produce sub-optimal results at least for some instances of such 


problems (cf. Ehrgott (2000), p. 77). Moreover, we have to deal with a discrete optimisation 


problem consisting of a fixed number of distinct choices. So we apply an alternative approach 


to our discrete optimisation problem. In the following subsection we will give a short 


introduction to evolutionary approaches to such problems. 


 


 


2.2 Evolutionary approaches to multi-objective optimisation 


 


Since the first reported implementation and test of a multi-objective evolutionary approach, 


the Vector Evaluated Genetic Algorithm (VEGA) by Schaffer (1984), this special branch of 


Evolutionary Algorithms (EAs) has attracted many researchers dealing with non-linear and 


non-convex multi-objective optimisation problems. After the introduction of VEGA, many 


different EAs have been proposed for multi-objective optimisation problems, e. g. the Multi-


Objective Genetic Algorithm (MOGA) by Fonseca & Fleming (1993), the Niched Pareto 


Genetic Algorithm (NPGA) by Horn et al. (1994), the Non-dominated Sorting Genetic 


Algorithm (NSGA) by Srinivas & Deb (1994) which was refined in Deb et al. (2000), the 


Distance-based Pareto Genetic Algorithm (DPGA) by Osyczka & Kundu (1995), the Strength 


Pareto Evolutionary Algorithm by Zitzler & Thiele (1998) which was updated in Zitzler et al. 


(2001), and the Pareto Archived Evolution Strategy (PAES) by Knowles & Corne (1999). 


Many of the existing MOEAs were primarily designed for problems having continuous 


variables, i. e. the decision variables can take values from a subset of ℜ . A comparison 


between different approaches is e. g. given in Zitzler et al. (2000) and Deb (2001). Theoretical 


considerations about the convergence of EAs can be found e. g. in Vose (1999), Van 


Veldhuizen (1999), Rudolph (1998, 2001), Rudolph & Agapie (2000) and Laumanns et al. 


(2001). 


In general, a Multi-Objective Evolutionary Algorithm (MOEA) is a randomised heuristic 


search algorithm reflecting the Darwinian ‘survival of the fittest principle’ that can be 


observed in many natural evolution processes, cf. e. g. Holland (1975). At each discrete time 
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step t, a MOEA works on a set of solutions P(t) called population or generation. A single 


solution x ∈  P(t) is an individual.  To apply a MOEA to a certain problem the decision 


variables have to be transformed into genes, i. e. the representation of possible solutions by 


contents of the decision variables has to be transformed into a string of characters from an 


alphabet Σ. The original representation of a solution is called phenotype, the genetic 


counterpart is called genotype.  


For evaluation of each genotype in a population the MOEA requires a quality measure (fitness 


function) for evaluation of every possible solution (not necessarily feasible if the problem is 


constrained) that is usually based on the quality of the corresponding phenotype. The 


individuals from the population P(t) are selected for survival into the next generation after 


application of variation operators (see below) according to their fitness values. The fitness 


function and the selection scheme of most MOEAs differ substantially from the fitness 


functions and selection procedures of single-objective EAs by incorporating special 


mechanisms for preserving diversity of solutions in the search space (since one is interested in 


finding a representative Pareto-efficient set containing different solutions) and for selection of 


solutions that cannot be directly compared using a total order in a multi-dimensional fitness 


space. 


The selected individuals from the current population P(t) are modified using genetic variation 


operators (see e. g. Fogel & Michalewicz (2000) for an overview). A standard variation 


operator for discrete decision variables is the one point crossover, i. e. the gene strings of two 


selected individuals are cut at a randomly chosen position and the resulting tail parts are 


exchanged with each other to produce two new offspring. This operation is performed with 


crossover probability pcross on individuals selected for reproduction. The main goal of 


crossover is to move the population through the space of possible solutions. 


In analogy to natural mutation, the second standard variation operator in most MOEAs 


changes the genes of selected individuals randomly with probability pmut (mutation rate) per 


gene to allow the invention of new, previously undiscovered solutions in the population. Its 


second task is the prevention of the MOEA stalling in local optima as there is always a 


positive probability to leave a local optimum if the mutation rate is greater than zero.  


After this short introduction of MOEAs we will now describe the structure and the details of 


our Hybrid Multi-Objective Evolutionary Algorithm (HMOEA) which incorporates the above 


general features of MOEAs. Moreover, since our focus is on the development of a flexible 


framework for discrete credit portfolio optimisation problems, which should not be restricted 


to a certain downside risk measure and which should support non-linear, non-convex 


constraints as well we propose a hybrid method that particularly uses ideas that can be found 


in different MOEA schemes as well as an additional problem-specific local search operator 


and a problem-specific preprocessing stage.  


 


 


2.3 Genetic modelling of portfolio credit risk related problems 


 


The first question when applying an EA to a problem is to choose a proper genetic 


representation of the decision variables. For portfolio credit risk optimisation problems like 


Problem 1, we assume that the decision variables xi will be connected to obtain gene strings 


representing potential solutions. The resulting genotypes consist of real-valued genes which 


are connected to strings and take either value 0 or ei depending on the absence or presence of 


investment alternative i in the current solution. So we obtain strings of length m that represent 


some of the 2m  combinations of possible (but neither necessarily feasible nor necessarily 


optimal) portfolio structures. 
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Since the one point crossover is the first standard variation operator in many EAs (and we 


also use it in our approach), we should keep some important issues of portfolio credit risk 


modelling in mind to choose a well adapted genetic representation for the phenotypes.  


The one point crossover cuts two gene strings at a random position and crosses the tails of the 


strings to produce two offspring with crossover probability pcross. The probability of two genes 


i, j (these variables represent the index of the genes associated to investment alternative i and 


j, respectively) from one individual being cut by the crossover increases proportional to the 


distance i j−  between the two genes in the gene string as the cut position is determined by a 


draw from a uniform distribution over m-1 cut possibilities: 


1
(crossover cuts gene  and )= -


-1
p i j i j


m
  (2.2) 


For better results of the crossover operator we must ensure that there is a high probability of 


good partial solutions being recombined with other solutions and not being destroyed by the 


crossover’s cut operation. More formally, we search for a permutation π(i) of the portfolio 


data represented by our genes ensuring a high probability of success for crossover. Therefore, 


we have to remember that the degree of dependence between two different investment 


alternatives i, j plays the central role in aggregated portfolio credit risk calculations according 


to Definition 5.  


In our Problem 1, the dependence structure has no influence on the other objective function 


given in Definition 4, the aggregated return, so it is sufficient to concentrate solely on the risk 


objective function when considering the possible influence between different gene positions. 


According to Definition 1, the dependence structure between investment alternatives is 


determined by the function h(i, j). Without any specific assumptions on the structure of the 


dependencies, we cannot provide a general algorithm for finding an optimal permutation. 


However, we can determine the maximum strength of the dependency of an investment 


alternative from all others and build a permutation based on this measure. This greedy 


algorithm ensures that the genes of the more dependent investment alternatives are located  


closely to each other, and it has a very low computational complexity compared to 


combinatorial problems arising from the question of finding the best of m! possible 


permutations.  


 


Definition 11. The maximum strength of the dependency of investment alternative i from all 


other investment alternatives j ≠ i is given by { }( ) : max ( , )
j i


s i h i j
≠


= . 


We can build our requested permutation π(i) by calculating and sorting these strength values. 


 


Lemma 2. For the given graph G = (V, E) and the function h from Definition 1, we can 


calculate a permutation π(i) of the portfolio data based on the strength from Definition 11 in 


O(m
2 


H) computations where H is the number of necessary steps to compute h(i, j). 


 


Proof. We construct a greedy algorithm Perm that takes each vertex i ∈  V once and computes 


the (m-1) values of h(i, j) for each j ∈  V, j ≠ i to find the maximum s(i) for the given i. Since 


G has m vertices, the computational complexity of this operation is O(m
2
 H). 


Afterwards, algorithm Perm sorts the m number pairs (s(i),i) in ascending order using the s(i) 


values as primary sorting criterion. This operation requires O(m log m) computational steps. 


The sorted array of number pairs (s(i), i) represents the permutation. If k is the index of  


(s(i), i) after sorting, the permutation of i is π(i) := k. The overall complexity of the algorithm 


Perm is O(m
2
 H). �  


 







10 


If our algorithm is provided with all values of h(i, j) at its start, e. g. this is the case if pairwise 


correlations between investment alternatives are specified, then the calculation of the 


permutation requires only m
2
 computational steps.  


Of course, the above considerations are also applicable to portfolio credit risk problems 


having continuous decision variables, and they can be adapted to other choices of crossover 


operators. After discussing the genetic modelling of portfolio credit risk problems, we will 


now give an overview of our hybrid approach for solving Problem 1 that also incorporates the 


algorithm from the proof of Lemma 2 as a preprocessing stage. 


 


 


2.4 Overview of our Hybrid Multi-Objective Algorithm (HMOEA) 


 


Since many of the general MOEA concepts in the literature were designed and tested for 


optimisation problems having continuous decision variables and do not respect structural 


properties of our Problem 1, we have designed a problem-specific algorithm that provides a 


framework for finding constrained Pareto-efficient credit portfolio structures using non-linear, 


non-convex downside risk measures and discrete decision variables. Figure 1 shows an 


overview of our Hybrid Multi-Objective Evolutionary Algorithm (HMOEA). 


 


HMOEA 


Input: , , , , ,e p r h w K  


1: Define gene position of each investment alternative i according to permutation π(i) based 


on dependency structure 


2: t := 0 


3: Generate initial population P(t) 


4: Initialise elite population Q(t) := ∅  


5: Evaluate P(t) 


6: Repeat 


7:  Select individuals from P(t) 


8:  Recombine selected individuals (variation operator 1) 


9:  Mutate recombined individuals (variation operator 2) 


10:  Apply local search to mutated individuals (variation operator 3) 


11:  Create offspring population P’(t) (individuals modified by variation operators) 


12:  Evaluate joint population J(t):= P(t) ∪  P’(t) 


13:  Update elite population Q(t) from J(t) 


14:  Generate P(t+1) from J(t) 


15:  t := t + 1 


16: Until { }( ) (max 0, )diff maxQ t Q t t t t= − ∨ >  


Output: Q(t) 


Figure 1. HMOEA scheme 


 


The first operation in our HMOEA scheme is the permutation of the given investment 


alternatives according to our considerations from section 2.3 to obtain an adequate genetic 


representation of our decision variables. After that, the initial population P(0) will be 


generated by random initialisation of every individual be obtain a diverse population in the 


search space of potential solutions. 


We propose the use of an elite population Q(t) in our algorithm that contains the feasible, non-


dominated solutions found so far at each population step t. It is described in more detail in a 


dedicated section below. At the start of the algorithm, it is empty. 
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The evaluation of P(t) in line 5 and J(t) in line 12 is based on the non-domination concept 


proposed in Goldberg (1989), p. 201 and explicitly formulated for constrained problems e. g. 


in Deb (2001). In our context, it leads to the following type of domination check (cf. Deb 


(2001), p. 288) which extends Definition 9 by the cases (3) and (4) below. 


 


Definition 12. Given are two distinct portfolio structures x and y. x constraint-dominates y if 


and only if one of the following cases is true: 


(1) cap(x,w) ≤ K and cap(y,w) ≤ K and ret(x,p,r) > ret(y,p,r) and risk(x,p;h) ≤ risk(y,p;h)  


(2) cap(x,w) ≤ K and cap(y,w) ≤ K and ret(x,p,r) ≥ ret(y,p,r) and risk(x,p;h) < risk(y,p;h) 


(3) cap(x,w) ≤ K and cap(y,w) > K 


(4) cap(x,w) > K and cap(y,w) > K and cap(x,w) < cap(y,w). 


 


If x constraint-dominates y, we will denote this relationship by x >c y. 


 


The first two cases in Definition 12 refer to the cases from Definition 9 where only feasible 


solutions were considered. Case (3) expresses a preference for feasible over infeasible 


solutions and case (4) prefers the solution that has lower constraint violation. 


The non-dominated sorting procedure in our HMOEA uses the dominance criterion from 


Definition 12 to classify the solutions in a given population, e. g. P(t), into different levels of 


constraint-domination. The best solutions which are not constraint-dominated by any other 


solution in the population, obtain fitness value 1 (best rank). After that, only the remaining 


solutions are checked for constraint-domination, and the non-constraint-dominated solutions 


among these obtain fitness value 2 (second best rank). This process is repeated until each 


solution has obtained an associated fitness rank. 


In line 7 from figure 1, the selection operator is performed using a binary tournament based 


on Definition 12. Two individuals x and y are randomly drawn from the current population 


P(t), using uniform probability of psel:=
1


( )P t
 for each individual. These individuals are 


checked for constraint-domination according to Definition 12 and if, without loss of 


generality, x >c y then x wins the tournament and is considered for reproduction. If none of the 


two solutions dominates the other, they cannot be compared using the constraint-domination 


criterion, and the winning solution is finally determined using a draw from an uniform 


distribution over both possibilities. 


The first two variation operators are the standard one point crossover and the standard 


mutation operator as described in section 2.2. Our third variation operator in line 10 of figure 


1 represents a problem-specific local search procedure that is applied with probability plocal to 


each selected solution x after crossover and mutation. This local search procedure can exploit 


the structure of a given solution x to perform an additional local optimisation of x towards the 


global, feasible Pareto-efficient set, e. g. by using a so-called hill climbing algorithm that 


changes x according to local information about our objective functions in the region around x. 


We consider this to be a significant improvement compared a standard, non-hybrid MOEA 


since the randomised search process of the MOEA can be guided a bit more towards the 


global, feasible Pareto-efficient set and therefore, such a local search operator can improve the 


convergence speed of the overall algorithm towards the desired solutions. This is particularly 


important for real-world applications, where speed matters when large portfolios are to be 


considered. In addition to these arguments, some portfolio credit risk models provide 


additional local structure information for a current solution x beyond the objective function 


values that can be exploited very efficiently from the perspective of computational 


complexity. An example underlining this fact will be provided in the third section of this 


article. 
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By applying the variation operators to the selected individuals we obtain an offspring 


population P’(t). The members of the joint population J(t) containing all parent solutions from 


P(t) and all offspring solutions from P’(t) are evaluated using the non-dominated sorting 


procedure described above.  


In the next step, the elite population Q(t) is updated according to our algorithm described in 


section 2.5 below. 


Before finishing the population step t and setting t → t+1 the members of the new parent 


population P(t+1) have to be selected from J(t) since |J(t)| > |P(t+1)| by definition of  


J(t) := P(t) ∪  P’(t). Since elitist EAs, which preserve the best solutions from both parents and 


offspring, usually show better convergence properties, we also use this mechanism in our 


algorithm. Besides elitism, we also need a diversity preserving concept to achieve a good 


distribution of the solutions in the whole objective space. We incorporate the concept of 


crowding-sort proposed in Deb (2001), p. 236. This diversity-preserving mechanism is 


favourable over other proposals, e. g. niche counting based on Euclidean ε-regions in the 


decision variable space or the objective function space since the crowding-sort does not 


require an additional parameter e which is difficult to estimate particularly for our discrete, 


non-linear and non-convex Problem 1, and in our case the crowding sort has a smaller 


computational complexity of O(|J(t)| log |J(t)|) compared to the quadratic complexity which is 


required by other mechanisms (cf. Deb (2001), p. 237). 


The algorithm is terminated if Q(t) has not been improved for a certain number tdiff  of 


population steps or if a maximum number of tmax population steps has been performed. 


 


 


2.5 Some considerations concerning the elite population 


 


The elite population Q(t) is updated each time after performing the genetic variation operators 


and evaluation of the joint population J(t). It is external since the solutions stored in Q(t) do 


not influence the solutions in the other populations which are modified by the EA. In other 


proposed MOEA schemes, the members of the elite population are also considered for 


reproduction into P(t+1). Since our Problem 1 has many local optima we have to ensure that 


the selection pressure of our combined elitism and diversity-preserving mechanism which is 


applied when selecting individuals from J(t) for survival into P(t+1) is not too strong. In that 


case, the algorithm could get stuck in local optima and might not find a diverse global Pareto-


efficient set. Therefore, we avoid such an influence from the members of Q(t) by not 


considering them for reproduction into P’(t). 


In our algorithm, the maintenance of such an elite population has many advantages, e. g. with 


respect to the structure of Problem 1 and some real-world optimisation requirements: 


• Rudolph & Agapie (2000) have shown that the existence of such an elite population 


ensures convergence of an EA to the global Pareto-efficient set (in their work the elite 


population it is called ‘archive population’). 


• The number of individuals in the population P(t) that has to be chosen a priori before 


running the algorithm, is limiting the number of best solutions to be kept by the 


algorithm during time. If we maintain an elite population, the choice of the size of P(t) 


is not crucial concerning the number of solutions to be kept during the evolution 


process. 


• The algorithm can be terminated at any time by the user without losing the best 


feasible solutions found so far. This enables real-time optimisation tasks. Remember 


that we consider constrained optimisation problems so current members of the 


population P(t) might not be feasible at an arbitrary interruption time.  
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• Since we have to deal with a discrete non-linear, non-convex problem, which can have 


many local optima that are not uniformly distributed in the two-dimensional objective 


function space, it is difficult to satisfy both the requirement of finding a well-


distributed set of diverse solutions, and the requirement of approximating the largest 


possible set of feasible, global Pareto-efficient portfolio structures if we use only one 


population. We will present an example distribution of the maximum Pareto-efficient 


set in our empirical study described later to visualize these facts. 


• An external elite population provides a good basis for deciding about termination of 


the algorithm since we can terminate the algorithm if no change of the elite population 


has occurred for a certain number of population steps.  


• In case of the absence of an elite population, the population size of P(t) has to be large 


enough to ensure that the best solutions found so far survive into the next population. 


The computational cost of updating the elite population are lower compared to 


maintaining larger population size for the populations P(t) or P’(t) (and therefore, also 


for J(t)), see below. 


 


We will now regard the computational cost of maintaining the elite population.  


 


Lemma 3. If 1 : ( )k Q t=  is the size of the elite population and *


2 : ( )k J t=  is the size of the 


subset of feasible, non-dominated individuals from the joint population J
*
(t) ⊆  J(t) at time 


step t, the elite population can be updated in O(k1 k2) operations.  


 


Proof. Consider the update procedure shown in figure 2.  


 


Update procedure for Q(t) 
Input: Q(t), J


*
(t) 


1: For each x∈ J
*
(t) 


2: Dominated := False 


3: For each y∈ Q(t) 


4: If x >c y Then 


5: Q(t) := Q(t) \ {y} 


6: End If 


7: If y >c x Then 


8: Dominated := True


9:  End If 
10: 


11: 
End For 
If Dominated = False Then 


12: Q(t) := Q(t) ∪  {x} 


13: End If 


14: End For 


Output: Q(t) 


Figure 2. Update procedure for Q(t) 


 


Each x ∈  J
*
(t) is processed once (k2 loop iterations) and the second loop is run for each  


y ∈  Q(t) (k1 loop iterations). Therefore, we require O(k1 k2) computational steps to update 


Q(t). �  


 


At this point, we want to point out that non-dominated sorting of 3 : ( )k J t=  elements of the 


joint population J(t) requires 2


3( )O k  operations in the worst case (cf. the computational 
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complexity for non-dominated sorting derived in Deb (2001), p. 206). In the absence of an 


elite population, k3 has to be chosen large enough to keep the non-dominated, feasible 


individuals in all population steps: k3 ≥ k1.  


Of course, we also need the non-dominated sorting procedure if we have an elite population, 


but we can choose k3 << k1  without losing the best solutions and the desired convergence to 


the global feasible Pareto-efficient set so the overall computational complexity of each 


population step t → t+1 in our algorithm is lower.  


We will now provide some references to related research in the area of portfolio optimisation 


problems, particularly using downside risk measures. 


 


 


2.6. Previous approaches to similar problems 


 


In the existing literature, the main focus of portfolio selection and optimisation has been in the 


area of stock portfolio investments where Markowitz (1952) created the standard framework 


for calculating efficient frontiers of investment alternatives. Based on his mean-variance 


approach, many different calculation procedures have been suggested, see e. g. Elton & 


Gruber (1995) for an overview. 


For downside risk measures like the Value-at-Risk which is similar to the Credit-Value-at-


Risk from Definition 6, different approaches have been proposed even in a single objective 


function setting where the expected return from a portfolio is to be maximised with respect to 


a fixed level of downside risk. This is due to the mathematical properties of such percentile-


based downside risk measures, cf. our remarks and references in section 2.1. For example, 


Gilli & Kellezi (2000) used the Threshold Accepting heuristic to approximate the efficient set 


of a stock portfolio in a Value-at-Risk based setting. A comparison of different heuristic 


approaches to constrained stock portfolio optimisation problems was e. g. performed by 


Chang et al. (2000). 


Concerning credit portfolios, Andersson & Uryasev (1999) proposed the use of simplex 


algorithms under a tail conditional expectation risk measure (Conditional Value-at-Risk) in a 


simulation model framework. Lehrbass (1999) proposed the use of Kuhn-Tucker optimality 


constraints for a credit portfolio optimisation problem having real-valued variables.  


In the next section we will describe more details of our implementation of the hybrid 


evolutionary framework and present results of an empirical study where the performance of 


the implementation is investigated. 


The first work proposing the use of Evolutionary Algorithms for solving credit portfolio 


optimisation problems related to Problem 1 was Schlottmann & Seese (2001a). In that work, a 


hybrid EA was introduced to solve a constrained optimisation problem that was build upon a 


single objective function combining the aggregated return and the aggregated risk of a credit 


portfolio. 
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3  An implementation and empirical test of the HMOEA framework 


using CreditRisk+ 
 


3.1 Portfolio credit risk models and overview of CreditRisk+ 


 


When implementing an algorithm for risk-return optimisation of credit portfolios, the first 


question is how to model the dependencies between joint changes of the credit quality of 


different investment alternatives, so we have to choose a model that provides us a function h 


according to Definition 1 and beyond that, a calculation or approximation procedure for the 


cumulative distribution of aggregated losses from given portfolio data.  


In the literature, there are different alternatives for modelling the dependencies between 


obligors and for calculating portfolio credit risk measures. Among these alternatives, 


CreditMetrics (see Gupton et al. (1997)), CreditRisk+ (see CreditSuisse Financial Products 


(1997)) Wilson’s model (see Wilson (1997a, 1997b) and the KMV option based approach 


(see Kealhofer (1998)) are intensively discussed in many academic and application-oriented 


publications. Since we will set our focus on the default risk of loan portfolios in our empirical 


study described later, we will concentrate on CreditRisk+. However, our hybrid framework is 


compatible with any other portfolio credit risk model providing a loss (in case of a default 


mode model) or a profit-loss distribution (in case of a mark-to-market model). 


In the following paragraphs, we will give a brief description of the CreditRisk+ General 


Sector Analysis model for a one year horizon here that concentrates on the main issues 


concerning our algorithm (see CreditSuisse Financial Products (1997), pp. 32-57 for a more 


detailed derivation of the model). It is an actuarial approach that uses an intensity based 


modelling of defaults, i. e. the default of each obligor in the portfolio is considered to be a 


stopping time of a hazard rate process expressed by a Poisson-like process. In case of a 


default event, the amount of credit exposure (net exposure) lent to the defaulting obligor will 


be entirely lost. 


Given is the data from Definition 1 of m different obligors in the portfolio. Particularly, each 


obligor has a net exposure ei, an associated annual mean default rate pi (typically, pi is small: 


0 < pi < 0.1) and an annual default rate volatility 0iσ ≥ . Furthermore, there is a total of n 


independent sectors as common risk factors, where the first sector (k = 1) is obligor specific, i. 


e. in this sector there is no implicit default correlation between obligors ( 1,..,k n=  below 


unless otherwise noted). The obligors are allocated to the sectors according to sector weights 


[ ]
1


0,1 , : 1
n


ik ik


k


i
=


Θ ∈ ∀ Θ =� . 


The probability generating function (abbreviated PGF) for the losses from the entire portfolio 


is defined by  


( ) ( )
0


: aggregated losses i


i


G z prob i L z
∞


=
= = ⋅ ⋅�  (3.1) 


where L is a constant defining net exposure bands of constant width and prob(...) represents 


the probability of losing i times the value of L from the whole portfolio. 


Since the sectors are independent this can be decomposed to 


( ) ( )
1


n


k


k


G z G z
=


=∏  (3.2) 


where ( )kG z  is the PGF for the losses from the portfolio in sector k. 


To obtain the approximated cumulative loss distribution function for the portfolio a 


recurrence relation, the recursion by Panjer (1981), can be applied to evaluate the coefficients 
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of the PGF (for a more detailed background see Panjer & Willmot (1992)). After that, risk 


figures, e. g. the 99
th


 percentile, can be calculated.  


An interesting feature of the model concerning the portfolio optimisation task are the marginal 


risk contributions of obligor i to the standard deviation of portfolio credit risk: 
2


1


:
 


n
pf i i k


i i i i i ik


ki pf k


e p
RC e e e p


e


σ σ σ
σ µ=


� �∂ � �
� �= = + Θ� �� �∂ � �� �


�  (3.3) 


where pfσ  is the portfolio standard deviation derived from the PGF of the portfolio losses, 


,k kµ σ  are sector specific parameters calculated directly from the input parameters 


, , ,i i i ike p σ Θ  using formula (3.4) below (note that 1 0σ =  by definition of sector 1). 


1


1 1


: : , : 0, 1: :
m m


k ik i k ik i


i i


k p kµ σ σ σ
= =


∀ = Θ = ∀ > = Θ� �  (3.4) 


Alternatively, by setting :k k kσ ω µ=  for k > 1 using parameters (variation coefficients) 


, 2,...,k k nω =  only kµ  has to be calculated according to (3.4) and in this case, no obligor-


specific default rate volatilities iσ  are required to calculate the sector specific parameters. 


To calculate an approximation for the risk contribution e. g. to the 99
th


 percentile, a scaling 


factor is defined in the following manner: 
0.99


:
pf pf


pf


pf


q µ
ξ


σ
−


=  (3.5) 


where 0.99, ,pf pf pfqµ σ  are the expectation, standard deviation and 99
th


 percentile of the portfolio 


loss distribution, respectively. 


The figures calculated by applying formula (3.3) can be used as a basis for the approximate 


risk contribution to the 99
th


 percentile by scaling the risk contribution obtained from (3.3) 


according to pfξ  and adding it to the obligor specific expected loss: 


0.99 :i i i pf iRC e p RC
σξ= +  (3.6) 


We use these figures to ensure a computationally efficient calculation within our local search 


variation operator in the HMOEA implementation described in the next subsection. The 


calculation of (3.6) for all investment alternatives i ∈  {1,...,m} requires only O(m n) 


additional operations after the calculation of the coefficients of the PGF from formula (3.2) 


which is mandatory to evaluate the risk() target function for each individual. Note that the 


number of sectors n is constant in a given problem instance and usually small (n < 10), so the 


computation of (3.6) requires only linear computing time measured by the number of 


investment alternatives m. 


 


 


3.2 Further implementation details referring to the HMOEA scheme 


 


In the CreditRisk+ model, the volatilities of the obligors’ default probabilities in conjunction 


with the common risk factors of all obligors replace a direct modelling of the default 


correlation ρ(i, j) for two investment alternatives i, j. Therefore, for the calculations according 


to this portfolio credit risk model, no explicit default correlations are required. However, in 


CreditSuisse Financial Products (1997), p. 56ff. the following implicit default correlation 


formula is provided: 


 


2


1


( , )
n


k
i j ik jk


k k


i j p p
σρ
µ=


� �
≈ Θ Θ � �


� �
�  (3.7) 
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By setting h(i, j) := ρ(i, j) according to (3.7), we obtain the complete dependence structure 


required for our Definition 1 and the subsequent results from our theoretical considerations in 


the first section of this article. Moreover, this explicit definition of the dependence structure 


can be exploited for the calculation of the permutation π(i) according to Lemma 2 that 


provides us an adequate genetic modelling of the decision variables for the given portfolio 


data. Since one calculation of ρ(i, j) for given, fixed values of i and j requires O(n) 


computational steps and n is bounded, the computational cost of calculating π(i) is O(m
2
 n) 


according to Lemma 2. 


To create a local search operator required by an implementation of the HMOEA scheme, we 


use the following local search target function that uses the quotient between aggregated net 


return and aggregated risk to evaluate a given portfolio structure x: 


 ( ) ( , , )
, , ; :


( , ; )


ret x p r
f x p r h


risk x p h
=  (3.8) 


Considering Definitions 4 and 6 as well as the CreditRisk+ calculation method for the 99
th


 


percentile ( )0.99 , , ,pfq x p σ Θ  of the cumulative distribution of aggregated losses from the 


portfolio structure x under the given data p, σ, Θ, r the function f can be written as: 


 


( )
1


0.99


1


( )


( , , , , ) :


, , ,


m


i i i


i


m


pf i i


i


x r p


f x p r


q x p x p


σ
σ


=


=


−
Θ =


Θ −


�


�
 (3.9) 


If we maximise this function f we will implicitly maximise ret(x, p, r) and minimise  


risk(x, p; h), and this will drive the portfolio structure x towards the set of global Pareto-


efficient portfolio structures (cf. the domination criteria specified in Definition 9). In addition 


to that, we have to consider our constraints to ensure the local search variation operator keeps 


the portfolio structure x feasible or moves an infeasible portfolio structure x back into the 


feasible region. An overview of our local search operator scheme based on these 


considerations is shown in figure 3. 


The partial derivative dj for obligor j required in line 12 of figure 3 can be calculated using the 


following formula (a proof is provided in the appendix): 


 


( )( ) ( ) ( )
( )


1


2
:


m


j i i pf pf i i i pf j


i


j


j pf pf


x r p r p x RC


d
x


σξ σ ξ


ξ σ
=


� �− − −� �
� �=
�


 (3.10) 


 


If the current solution x from P(t) to be optimised with probability plocal is infeasible because 


the capital restriction is violated (cf. line 2 in figure 3), the algorithm will remove the 


investment alternative having the minimum gradient component value from the portfolio 


(lines 14 and 15). This condition drives the hybrid search algorithm towards feasible 


solutions. In case of a feasible solution that is to be optimised, the direction of search for a 


better solution is determined by a draw of a uniformly distributed (0,1)-random variable (cf. 


lines 5 and 6). This stochastic behaviour helps preventing the local search variation operator 


from stalling into the same local optima. The local search algorithm terminates if the current 


solution cannot be modified further, if it is already included in the populations P(t) or Q(t) or 


if no improvement considering the violation of constraints or the target function can be made. 


Remembering the fact that the risk contributions, and therefore, the partial derivatives dj can 


be calculated in linear time for an individual which has already a valid fitness evaluation this 


yields a very fast variation operator. 
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Local search operator 


Input: , , , , , , , ( )e p r w K P tσ Θ  


1: For each ( )x P t∈  apply the following instruction block with probability plocal 


2: If cap(x, w) > K Then 


3: D := -1 


4: End If 


5: If cap(x, w) ≤ K Then 


6: Choose between D := 1 or D := -1 with uniform probability 0.5 


7:  End If 


8: Initialisation �: :i ii x x∀ =  


9: Do 


10: Copy �: :i ii x x∀ =  


11: 
Calculate ( )0.99


1 1


: ( ) and : , , ,
m m


old i i i old pf i i


i i


ret x r p risk q x p x pσ
= =


= − = Θ −� �  


12: 
For each jx  calculate the partial derivatives ( ): , , , ,j


j


d f x p r
x


σ∂= Θ
∂


 


13: If D = -1 Then 


14: Choose the minimal gradient component { }: arg min 0j j
j


i d x= >�  of 


exposures currently remaining in the portfolio 


15: Remove this exposure from portfolio: � : 0
i


x =�  


16: Else 


17: Choose the maximal gradient component { }: arg max 0j j
j


i d x= =�  of 


exposures currently removed from the portfolio 


18: �Add this exposure to portfolio: :
i i


x e=� �  


19: End If 


20: 
Calculate ( )0.99


1 1


ˆ ˆ ˆ: ( ) and : , , ,
m m


new i i i new pf i i


i i


ret x r p risk q x p x pσ
= =


= − = Θ −� �  


21: ( ) ( )
( ) ( )( )( )


ˆ ˆ ˆ ˆ : 0 : 0 ( ) ( )


ˆ ˆ1 ( , ) 1 ( , )


i j


new old new old


i x j x x P t x Q t


D cap x w K D cap x w K ret ret risk risk


∃ > ∧ ∃ = ∧ ∉ ∧ ∉ ∧


= − ∧ > ∨ = ∧ ≤ ∧ > ∨ <


While


22: Replace x in P(t) by its optimised version 


23: End For 


Output: P(t) 


Figure 3. Local search operator scheme 


 


The next subsection contains the parameters and test cases for an empirical test of the 


implemented hybrid framework for credit portfolio risk-return analysis and optimisation. 


 


 


3.3 Specification of test cases, parameters and performance criteria 


 


Besides our Hybrid Multi-Objective Evolutionary Algorithm (HMOEA), we have also 


implemented a simple enumeration algorithm that investigates all possible portfolio structures 


to determine the feasible global Pareto-efficient set PE* having maximum cardinality for 


small instances of our Problem 1, i. e. the latter algorithm serves as a proof for the globally 
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optimal portfolio structures that should be discovered by the other search algorithms. For all 


instances considered in this article, we compared the results of the HMOEA to the respective 


results of a non-hybrid MOEA that incorporates all features of the HMOEA except for the 


local search operator which is disabled in the non-hybrid algorithm. Particularly, the MOEA 


also benefits from all problem specific algorithmic features that we have proposed for the 


HMOEA in the previous sections, e. g. the presence of the elite population and the 


preprocessing algorithm. All tests of the above implementations were carried out on a 


standard desktop PC (800 MHz single CPU). For all evolutionary algorithms, we performed 


20 independent runs of the same algorithm on the respective test problem using different 


pseudorandom number generator seeds. 


Although more tests cases were examined during development of the system (e. g. for 


estimating the parameters like |P(t)|, pcross etc.) we focus on the following sample loan 


portfolios in this paper. The structure of these portfolios is analogous to real world data.
2
 


Our first test data set is named portfolio m20n2. It consists of m = 20 investment alternatives 


which are allocated to n = 2 sectors. The capital budget restriction is assumed to be 50% of 


the maximum capital requirement that will be required if all investment alternatives are held 


in the portfolio. The detailed structure of portfolio m20n2 is provided in the appendix.  


The medium size portfolio m45n2 contains m = 45 investment alternatives allocated to n = 2 


sectors. The capital restriction is K := 80000 which is about 71% of the sum of all investment 


alternatives’ capital requirements. 


The largest problem instance named portfolio m100n3 contains m = 100 investment 


alternatives allocated to n = 3 sectors. A capital restriction is set to about 56% of the sum of 


all investment alternatives’ capital requirements. 


In all test cases, we chose a quite common parameter setting of pcross := 0.95 and 
1


:mutp
m


= , 


which is reported to work well in many other EA studies, and this was also supported by test 


results during our development of the HMOEA and the non-hybrid MOEA. 


The choice of plocal  can be made by the respective user of the HMOEA depending on his or 


her preferences: If one is interested in finding better solutions in earlier populations, the 


probability shall be set higher, and in this case more computational effort is spent by the 


algorithm on the local improvement of the solutions. However, the local search optimisation 


pressure should not be too high since one is usually also interested in finding a diverse set of 


solutions. Therefore, a choice of 0 < plocal ≤ 0.1 appears to be adequate, and this is supported 


by our tests.  


For the portfolio m20n2 data set, we chose |P(t)| := 30 individuals per population, and plocal := 


0.005. The evolutionary process was stopped after tmax := 1000 population steps. For the non-


hybrid MOEA all these parameters were set equally except for plocal := 0 which means that 


there is no third variation operator in the non-hybrid MOEA.  


In the portfolio m45n2 test, we set |P(t)| := 40 individuals per population and the probability 


for the third variation operator in the HMOEA was set higher to plocal := 0.05 due to the larger 


search space. The other parameters were set analogously to the portfolio m20n2 test case. In 


addition to the investigation of the detailed results for plocal = 0.05, we will compare the 


average results of our chosen performance metrics for different settings of plocal to show the 


influence of the third variation operator on the results in the HMOEA. 


In the portfolio m100n3 test, we set |P(t)| := 50 individuals per population and the probability 


for the third variation operator in the HMOEA was set to plocal := 0.1 to reveal the significant 


differences between the hybrid and the non-hybrid approach. Again, the other parameters 


were set according to the portfolio m20n2 test case. 


                                                 
2
 All test portfolios can be retrieved via http://www.aifb.uni-karlsruhe.de/CoM/HMOEA/tests.html. 
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Particularly, to achieve a better comparison between the evolutionary algorithms we used the 


same initial population for both the HMOEA and the non-hybrid MOEA given a specific 


pseudorandom generator seed. This means we used the same 20 (randomly determined) initial 


populations for both algorithms on a test data set to obtain a fair basis for the comparison of 


the results. 


For all test cases, we have calculated performance measures of the algorithms based on the set 


coverage metric from Zitzler (1999). In our context, the set coverage metric is defined as 


follows: 


 


Definition 13. Given are two sets of portfolio structures PE1, PE2 which are approximations 


for PE* defined in Problem 1. The pair of set coverage metric values C1,2 := (C1, C2) is 


calculated by 


 
{ }1 2


1 2 1


1


| :  >  
: ( , )


cx PE y PE y x
C C PE PE


PE


∈ ∃ ∈
= =   (3.11) 


 
{ }2 1


2 1 2


2


| :  >  
: ( , )


cy PE x PE x y
C C PE PE


PE


∈ ∃ ∈
= =  (3.12) 


 


This metric provides us a criterion for comparing two different sets of solutions produced by 


different algorithms. We have chosen this metric since it allows the comparison of 


approximation sets having different cardinalities, and particularly in our larger test cases, we 


do not need PE* for the evaluation of the results. An algorithm 2 calculating PE2 is 


considered to be better in convergence to PE* than an algorithm 1 that computes PE1 if  


C1 > C2, i. e. if the fraction of solutions in PE2 which are dominated by solutions from PE1 is 


smaller than the fraction of solutions in PE1 that are dominated by solutions from PE2. To be 


more transparent, we investigate both the nominator and the denominator of (3.11) and (3.12) 


separately. Therefore, two important goals of multi-objective approximation algorithms are 


evaluated: Finding an approximation set whose elements are very close to corresponding 


members of PE* and which also has a high cardinality. So we can compare both the quantity 


and the quality of two alternative approximations for PE*.  


In addition to the evaluation of these goals, we compare the maximum spread (cf. Zitzler 


(1999)) for each calculated approximation set for PE* according to the next definition.  


 


Definition 14. Given is an approximation set of portfolio structures PE1 for PE* defined in 


Problem 1. The maximum spread value δ(PE1) is obtained by evaluation of 


 


( ) ( )( ) ( ) ( )( )
1 11 1


2 2


1( ) : max ( , , ) min ( , , ) max ( , ; ) min ( , ; )
x PE x PEx PE x PE


PE ret x p r ret x p r risk x p h risk x p hδ
∈ ∈∈ ∈


= − + −


 (3.13) 


 


The maximum spread allows a comparison between different approximation sets based on the 


largest Euclidean distance between two solutions in the two-dimensional objective function 


space. We have chosen this additional metric because the set coverage metric does not cover 


the largest spread between the found solutions which is also a goal in multi-objective 


optimisation. A larger spread is preferable, i. e. an approximation set PE1 is better than 


another set PE2 concerning this criterion if δ(PE1) > δ(PE2). 


Of course, we calculate the set coverage metric and the maximum spread from the members 


of the elite population Q(t) for a fixed value t after running the respective algorithms. We will 


present the results in the next subsection. 
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3.4 Empirical results 


 


In all test cases, the approximation set calculated by the non-hybrid MOEA is denoted by PE1, 


the approximation set from running the HMOEA is denoted by PE2. 


First of all, for the portfolio m20n2 test data set, we compare the result PE2 of one HMOEA 


run to PE* which was obtained by a complete enumeration of the search space that required 


approximately 72 minutes. In contrast to this, each run of the HMOEA (as well as a run of the 


non-hybrid MOEA) required about 3 minutes for the computation of an approximation set 


PE2. Figure 4 shows both results. 


 


Figure 4. Comparison of PE* and PE2 for portfolio m20n2 


 


It is easy to check by visual inspection that PE2 is a good approximation set for PE* since all 


points of PE* (indicated by circles) are approximated by mostly identical or at least very close 


points of PE2 which are marked by a respective ‘x’ in figure 4.  


The table 1 on the following page shows the detailed results of the HMOEA and the non-


hybrid MOEA for this small portfolio. The results indicate that both algorithms find quite 


similar solutions as we expect it when considering the very small local search variation 


operator probability plocal = 0.005 for the HMOEA in this case. However, the quality of the 


solutions found by the HMOEA concerning the set coverage metric is on average a bit better 


than the quality of the solutions by the non-hybrid algorithm which is indicated by the smaller 


number of dominated solutions in PE2 (column 3) compared to PE1 (column 2). Furthermore, 


the number of runs where less solutions from PE2 are dominated by solutions from PE1 (10 


runs) is higher than vice versa (6 runs). In addition to this slightly better performance, the 


HMOEA found more solutions on average and in more runs (8 runs) than the other algorithm 


(7 runs), therefore the average value of the set coverage metric is about two times better for 


the HMOEA. Concerning the maximum spread values, both algorithms yielded quite the same 
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results, but the non-hybrid approach is slightly better in this criterion due to the higher 


number of runs (6 versus 4) where it had higher spreads than the HMOEA.  


 


no. of 


run 


nom. 


of C1 


nom. 


of 


C2 


denom. 


of C1 


denom. 


of C2 


C1 C2 δδδδ(PE1) δδδδ(PE2) 


1 0 2 81 80 0.0000 0.0250 51337.58 51337.58


2 2 1 75 79 0.0267 0.0127 51337.58 51337.58


3 1 1 77 81 0.0130 0.0123 51337.58 51337.58


4 1 3 79 78 0.0127 0.0385 51191.22 51337.58


5 0 1 76 76 0.0000 0.0132 51337.58 51337.58


6 3 3 77 79 0.0390 0.0380 51191.22 51337.58


7 6 1 81 77 0.0741 0.0130 51337.58 51191.22


8 3 0 80 81 0.0375 0.0000 51337.58 51337.58


9 5 1 80 76 0.0625 0.0132 51337.58 51191.22


10 1 3 76 78 0.0132 0.0385 51191.22 51337.58


11 1 2 81 77 0.0123 0.0260 51337.58 51337.58


12 6 0 75 79 0.0800 0.0000 51337.58 51191.22


13 1 0 77 77 0.0130 0.0000 51191.22 51191.22


14 1 1 80 80 0.0125 0.0125 51337.58 51337.58


15 2 0 72 80 0.0278 0.0000 51285.10 51337.58


16 4 1 80 76 0.0500 0.0132 51337.58 51191.22


17 4 0 79 76 0.0506 0.0000 51337.58 51191.22


18 0 1 77 77 0.0000 0.0130 51337.58 51337.58


19 2 2 79 83 0.0253 0.0241 51337.58 51337.58


20 1 0 77 78 0.0130 0.0000 51191.22 51191.22


average 2.20 1.15 77.95 78.40 0.0282 0.0146 51298.37 51286.35


 


Table 1. Comparison of PE1 and PE2 for portfolio m20n2 (better values are in bold face) 


 


Summarising the results in the small constrained test case, both algorithms found a good 


approximation set for PE* within a few minutes. The HMOEA shows a higher convergence 


speed but this is at the cost of a slightly reduced maximum spread of the approximation set 


compared to the non-hybrid algorithm in our test runs. This is mainly due to the fact that the 


intended higher convergence pressure towards feasible, global non-dominated solutions 


caused by the local search operator leads to early discovery of isolated Pareto-optimal 


solutions which might strongly dominate the population in the relatively small search space. 


However, this is not a general disadvantage of the hybrid algorithm, since we have to remind 


at this point that there is a trade-off between the two goals of finding globally optimal 


solutions very fast and discovering a diverse set of solutions, and this conflict is to be faced 


by any algorithm that solves instances of Problem 1. We have put more weight on the first 


criterion in conjunction with the discovery of feasible solutions during development of the 


hybrid algorithm, and the maximum spread of the HMOEA is very close to the globally 


optimal maximum spread of PE*, so the slightly lower maximum spread of PE2 is not critical.  


 


Beyond that, we will show now that in the other test cases, which have larger search spaces 


that grow exponentially in the number of investment alternatives m, the hybrid approach can 


exploit its advantages more significantly and usually yields both a better set coverage metric 


value and a higher maximum spread. To underline this claim, table 2 shows the results in the 


portfolio m45n2 test case. A run of the non-hybrid MOEA required about 7 min. 30 sec. to 
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compute the approximation set PE1 in this setting, and the HMOEA required approximately 8 


minutes to calculate PE2. 


 


no. of 


run 


nom. 


of C1 


nom. 


of C2 


denom. 


of C1 


denom. 


of C2 


C1 C2 δδδδ(PE1) δδδδ(PE2) 


1 118 67 428 446 0.2757 0.1502 65566.46 70334.59


2 157 73 450 449 0.3489 0.1626 73449.55 73330.93


3 80 88 450 445 0.1778 0.1978 66534.15 70936.96


4 160 67 450 450 0.3556 0.1489 67954.26 73449.55


5 115 62 417 448 0.2758 0.1384 65866.56 73330.93


6 129 48 441 450 0.2925 0.1067 68265.32 70334.59


7 120 72 450 450 0.2667 0.1600 66537.58 70936.96


8 151 76 450 450 0.3356 0.1689 68940.85 70936.96


9 137 61 450 447 0.3044 0.1365 67126.12 73330.93


10 136 57 449 450 0.3029 0.1267 65764.79 72536.10


11 130 72 450 442 0.2889 0.1629 66349.65 70936.96


12 119 79 437 450 0.2723 0.1756 66236.72 70334.59


13 130 84 450 430 0.2889 0.1953 68427.92 70334.59


14 170 58 450 447 0.3778 0.1298 68010.23 73475.61


15 121 65 450 446 0.2689 0.1457 69228.15 72732.18


16 139 71 436 449 0.3188 0.1581 69674.10 70936.96


17 140 96 448 450 0.3125 0.2133 69223.61 70334.59


18 171 62 450 450 0.3800 0.1378 68316.28 73112.27


19 163 62 442 441 0.3688 0.1406 72742.12 73465.07


20 110 85 442 450 0.2489 0.1889 66938.45 70334.59


average 134.8 70.25 444.5 447 0.3031 0.1572 68057.64 71772.80


 


Table 2. Comparison of PE1 and PE2 for portfolio m45n2 (better values are in bold face) 


 


The hybrid approach is better in all averages of the performance metrics for our medium size 


test case. Except for one of the 20 independent runs, the HMOEA always found remarkably 


better solutions than the other algorithm (cf. the second and the third column). Moreover, the 


hybrid algorithm found quite the same number of solutions in all runs like the non-hybrid 


MOEA, therefore the set coverage metric value is significantly better for the HMOEA due to 


the better quality of the found solutions. In contrast to the results presented above for the 


smaller portfolio, the maximum spread values of PE2 are also much better than the respective 


values of PE1 except for one run so the hybrid approach is favourable concerning both 


performance criteria defined in subsection 3.3. 


The influence of the local search variation operator on the results in our medium size test case 


is indicated in figures 5 and 6 where we have plotted the average performance metric values 


depending on different settings of plocal. We have plotted ordinary least squares (OLS) 


regression lines in each figure to estimate the linear trend of the performance metric values 


depending on the choice of of plocal. 
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Figure 5. Average set coverage metric values depending on plocal for portfolio m45n2 


 


 


Figure 6. Average maximum spread values depending on plocal for portfolio m45n2 
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Since both algorithms rely on probabilistic variation operators, we cannot expect perfect 


monotony of the performance metrics depending on the variation of plocal. However, the linear 


regression lines in both figures clearly indicate the influence of the local search variation 


operator. For the set coverage metric, a higher value of plocal typically leads to a higher quality 


of the solutions discovered by the HMOEA compared to the solutions discovered by the non-


hybrid MOEA. Remembering the fact that smaller set coverage metric values are preferable, 


this is indicated by both the negative slope of the regression line for the set coverage metric 


values of the HMOEA and the positive slope of the other regression line for the non-hybrid 


algorithm in figure 6. Of course, different settings of plocal do not influence the maximum 


spread of the non-hybrid MOEA whereas the hybrid algorithm benefits from higher plocal 


values since the slope of the regression line is positive.  


Beyond this analysis of the influence of plocal on the results, we can see in the portfolio m45n2 


test case that the hybrid approach is preferable if the convergence speed, the quality of the 


found solutions and the maximum spread in the objective function space matters. In addition 


to our above discussion of the detailed results for plocal = 0.05, this is underlined by the fact 


that for each tested value of plocal all average values of the performance metrics shown in 


figure 6 were better in the hybrid case. 


For the largest portfolio of our test data sets the results of the HMOEA and the non-hybrid 


MOEA after tmax = 1000 population steps are displayed in table 3. A single run of the 


HMOEA required about 16 minutes for the calculation of PE2 due to the high value of  


plocal = 0.1 which was chosen to reveal the differences between both algorithms, whereas the 


non-hybrid algorithm terminated within 11 minutes. 


 


no. of 


run 


nom. 


of C1 


nom. 


of 


C2 


denom. 


of C1 


denom. 


of C2 


C1 C2 δδδδ(PE1) δδδδ(PE2) 


1 287 82 477 550 0.6017 0.1491 62852.17 72033.78


2 267 100 497 536 0.5372 0.1866 69200.63 71744.75


3 273 104 471 563 0.5796 0.1847 62622.74 70284.81


4 235 111 432 543 0.5440 0.2044 65324.67 72033.78


5 249 108 487 554 0.5113 0.1949 61872.88 70284.81


6 268 87 468 526 0.5726 0.1654 61469.33 70284.81


7 192 101 430 576 0.4465 0.1753 55946.92 73594.82


8 235 118 447 570 0.5257 0.2070 61485.23 70284.81


9 260 94 466 572 0.5579 0.1643 64166.60 72033.78


10 245 88 458 532 0.5349 0.1654 57477.45 70284.81


11 236 115 468 549 0.5043 0.2095 67783.41 73594.82


12 275 97 447 549 0.6152 0.1767 63082.70 73594.82


13 215 123 478 542 0.4498 0.2269 60424.41 70284.81


14 339 56 456 579 0.7434 0.0967 66232.23 65885.00


15 294 109 462 547 0.6364 0.1993 65921.33 66057.19


16 275 92 464 576 0.5927 0.1597 62888.72 70284.81


17 308 94 496 566 0.6210 0.1661 61514.92 73594.82


18 273 77 470 551 0.5809 0.1397 66370.62 72033.78


19 285 85 434 579 0.6567 0.1468 63651.26 70284.81


20 269 113 512 516 0.5254 0.2190 69896.12 72033.78


average 264 97.7 466 553.8 0.5669 0.1769 63509.22 71025.68


 


Table 3. Comparison of PE1 and PE2 for portfolio m100n3 (better values are in bold face) 
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In the portfolio m100n3 test case, the HMOEA clearly outperforms the non-hybrid approach 


in every average of the performance criteria. Beyond that, even in each single run the hybrid 


approach found more solutions than the non-hybrid algorithm (compare the fifth to the fourth 


column), and the quality of the found solutions is also better concerning the number of 


dominated solutions (see third versus second column). Therefore, C1 > C2 in each test run. 


Obviously, this leads to a significant difference between the average set coverage metric 


values where the HMOEA is more than three times better than the non-hybrid approach. 


Concerning the maximum spread, the HMOEA is better in the average over all test cases, and 


there is only one case where the hybrid approach is slightly worse than the non-hybrid 


approach whereas in all other cases, the hybrid approach produces an approximation set PE2 


that has a larger maximum spread value than the other approximation set PE1.  


As a consequence, the results of all tests, and particularly the medium and large test cases, 


support our claim that the hybridisation of the MOEA improves the convergence properties of 


the algorithm. Especially when dealing with very large search spaces, the exploitation of local 


information around a solution is valuable in the evolutionary process since it drives the 


evolutionary process faster towards the most promising solutions. On the other hand, the other 


variation operators are also very important when using such local information since a strong 


local search process can stall into a small number of local optima which are only a few points 


compared to a large feasible, Pareto-optimal set. So a hybrid approach is preferable. 


In addition to the results presented above, we also tested the performance of the HMOEA and 


the non-hybrid MOEA without a capital budget restriction for the respective portfolios. This 


means, we considered the unconstrained cases, too. We do not discuss them in detail here 


since the comparison of the HMOEA and the non-hybrid algorithm revealed similar results 


for all portfolio sizes: The average set coverage metric values of the hybrid approach were 


always better and even the average maximum spread values of the HMOEA were always 


equal or higher than these performance metric values of the non-hybrid approach. In all 


unconstrained cases, the HMOEA benefits strongly from its local search variation operator 


that enforces a higher quality of the discovered solutions and beyond that, leads to the 


discovery of the extreme solutions at the margins of the objective function spaces, which are 


not restricted in the unconstrained cases. Thus, the hybrid approach is also favourable in this 


problem setting. 







27 


Conclusion and Outlook 
 


In this article we have formally defined a constrained multi-objective portfolio selection 


problem based on investment alternatives which incorporate credit risk. This problem consists 


of two conflicting objective functions, the aggregated net return from a portfolio and the 


aggregated downside risk, and an additional capital budget restriction. We have analysed the 


structure of the problem from a computational perspective and proved the NP-hardness of its 


associated decision problem.  


For the approximation of a large set of feasible, global non-dominated solutions from the 


feasible, global Pareto-efficient set of solutions to our portfolio problem, we have proposed a 


hybrid multi-objective evolutionary algorithm framework that combines concepts from 


different multi-objective evolutionary algorithm schemes with a problem specific local search 


operator. The framework is not restricted to linear or convex objective functions and also 


flexible concerning the constraints. A proper genetic modelling of portfolio credit risk 


problems has been derived in general, and a fast greedy algorithm as a preprocessing stage to 


support evolutionary algorithms for portfolio credit risk problems has been developed. Further 


aspects of the algorithm have been considered, particularly with respect to computational 


complexity. 


We have described the CreditRisk+ portfolio credit risk model and derived a local search 


operator that exploits specific model features. This basis has been used for an implementation 


of our hybrid algorithm framework, and we have presented empirical results of a test using 


different portfolios. The results have indicated that our genetic modelling proposed for 


portfolio credit risk problems is successful since even a non-hybrid MOEA that used our 


preprocessing algorithm yielded good results for different problem instances. Moreover, the 


empirical results of different test portfolios showed that the quality of the MOEA could be 


improved significantly concerning the convergence speed towards the feasible, global Pareto-


efficient set by applying the additional local search variation operator that has been developed 


in this article. Particularly for the medium and larger cases that we have considered, the 


hybridisation of the MOEA and the local search algorithm has yielded a better quality of the 


solutions found at a defined population step as well as a higher spread of the solutions in the 


objective function space both on average and in the majority of the single, independent 


algorithm runs. The additional computational cost of the local search variation operator are 


low compared to the advantages, and the user can decide about the amount of additional 


computational cost to be invested in favour of a higher convergence speed by setting a single 


parameter, the probability plocal for the application of the local search variation operator to 


each individual. To support this decision, we have carried out a sample analysis of the 


influence of this parameter on the performance of the algorithm for one of our test data sets. 


 


Although our implementations of the non-hybrid MOEA and the HMOEA have been running 


on a single standard desktop PC, the algorithms have found approximations of many feasible, 


Pareto-optimal solutions in different problem instances within a few minutes. Remembering 


the fact that EAs are well suited for parallel implementation (see e. g. Schmeck et al. (2001)) 


there are good perspectives for improving the speed of future implementations of our 


framework by using more than one CPU at least for some parts of the algorithms in each 


population step. 


Further research from the viewpoint of risk modelling can e. g. extend the framework 


presented here by exploiting the latest developments in the CreditRisk+ context published in 


Buergisser et al. (2001) to include severity variations concerning the net exposures or use an 


alternative way of calculating the loss percentiles as proposed by Gordy (2001). Of course, 


the system can be extended to other credit risk exposure types, e. g. by embedding it into a 


mark-to-market model context. Due to the flexibility of our framework, many further 
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constraints of practical interest can be easily integrated into our framework, e. g. the 


simultaneous use of different capital budgets or Credit-Value-at-Risk based limits per rating 


category and/or industry in the optimisation process. Even more sophisticated restrictions can 


be handled, e. g. a minimum overall quality of the parts of a portfolio to be sold in an Assed 


Backed Security transaction which is itself calculated using a non-linear pricing model. 


 


Finally, the system presented in this paper can be integrated into a larger decision support 


system for risk-return optimisation in a financial institution that supports human portfolio 


risk-return managers and traders using software agent technology as proposed in Schlottmann 


& Seese (2001b). 
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Appendix 
 


Proof of Lemma 1. 


 


The decision problem that corresponds to Problem 1 has the following form: 


 


Problem 2. Are there numbers xi ∈  {0, ei}, x = (xi)i=1,...,m for given nonnegative rational 


numbers ei, ri, pi, wi, K, R, Z and a rational function h such that the following three 


inequalities are satisfied: 


 ( , , )ret x p r R≥    (4.1) 


 ( , ; )risk x p h Z≤  (4.2) 


 ( , )cap x w K≤     (4.3) 


 


Now consider an instance of the following decision problem which is known to be NP-


complete: 


 


Problem [0/1 KNAPSACK]. Given are a finite set U, a rational size s(u) > 0, a rational value 


v(u) > 0 for each element u∈ U and positive rational numbers V,W. Is there an assignment of 


an integer value c(u) ∈  {0,1} to each u∈ U such that the following two conditions are 


satisfied: 


 ( ) ( )
u U


c u v u V
∈


≥�   (4.4) 


 ( ) ( )
u U


c u s u W
∈


≤�   (4.5) 


 


We can construct an equivalent instance of Problem 2 for a given [0/1 KNAPSACK] problem 


instance by using a polynomial time calculable 1-1 function f: U → N that assigns a 


subsequent natural number to each element u∈ U starting from f(u) := 1 for the first element in 


U and by setting m := |U|, R := V, K := W and ∀ i∈ {1,...,m}: ei :=1, ri := v(f
-1


 (i)), wi := s(f
-1


 (i)). 


 


Furthermore, we can set ∀ i∈ {1,...,m}: pi ≡ 0 for the given instance of [0/1 KNAPSACK] in 


our instance of Problem 2 so that the inequality (4.2) is not binding for any given positive 


rational number Z since risk(x, p; h) = 0 according to Definition 5 in this case. Thus, we have 


to consider only inequalities (4.1) and (4.3) in our construction of the equivalent Problem 2 


instance. 


For pi ≡ 0 the inequality (4.1) simplifies to 


 
0


1 1


( , , ) ( )
im mp


i i i i i


i i


ret x p r x r p x r R
≡


= =
= − = ≥� � . (4.6) 


So a solution to our constructed instance of Problem 2 has to satisfy the following conditions: 


 
1


m


i i


i


x r R
=


≥�   (4.7) 


 
1


m


i i


i


x w K
=


≤�  (4.8) 


By construction of the variables ei, ri, wi, R and K a solution x = (xi)i=1,...,m is a solution to this 


instance of Problem 2 if and only if ∀ i ∈  {1,..., m}:c(f
-1


(i)) := xi is a solution to the given 


instance of [0/1 KNAPSACK]. 


So we have found a polynomial time reduction from [0/1 KNAPSACK] to our Problem 2. 


Since [0/1 KNAPSACK] is known to be NP-complete, our Problem 2 is NP-hard. �  
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Proof of formula (3.10). 


 


Given is a portfolio specified by the vectors , , , ,x p rσ Θ . 


The function f is defined as follows: 


( )
( )


( )
1


0.99


1


, , , , :


, , ,


m


i i i


i


m


pf i i


i


x r p


f x p r


q x p x p


σ
σ


=


=


−
Θ =


Θ −


�


�
 (4.9) 


 


If we calculate a constant multiplier for the given portfolio data 


 


( ) ( )
( )


0.99 , , , ,
:


, , ,


pf pf


pf


pf


q x p x p


x p


σ µ
ξ


σ σ
Θ −


=
Θ


 (4.10) 


 


which can be abbreviated by 
0.99


:
pf pf


pf


pf


q µ
ξ


σ
−


=  (4.11) 


 


in analogy to CreditSuisse Financial Products (1997), p. 63, the 99
th


 percentile function can be 


reformulated by 
0.99


pf pf pf pfq µ ξ σ= +  (4.12) 


 


By substituting the 99
th


 percentile function in formula (4.9) according to (4.12) we obtain: 


 


( )
1


1


m


i i i


i


m


pf pf pf i i


i


x r p


x pµ ξ σ


=


=


−


+ −


�


�
 (4.13) 


Taking into account that 


1


:
m


pf i i


i


x pµ
=


= �  (4.14) 


 


formula (4.13) can be simplified to 


( )
1


m


i i i


i


pf pf


x r p


ξ σ
=


−�
 (4.15) 


 


The partial derivative of f is calculated by deriving (4.15) using quotient rule: 


 


( ): , , , ,j


j


d f x p r
x


σ∂= Θ
∂


 


( )( ) ( ) ( )


( )
1


2


m


j j pf pf i i i pf pf


i j


pf pf


r p x r p
x


ξ σ ξ σ


ξ σ
=


� �∂� �− − − � �� � � �∂� � � �=
�


 (4.16) 
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For 0jx ≠  formula (4.16) is equivalent to 


( )( ) ( ) ( )


( )
1


2


m


j j j pf pf j i i i pf pf


i j


j pf pf


x r p x x r p
x


x


ξ σ ξ σ


ξ σ
=


� �∂� �− − − � �� � � �∂� � � �
�


 


( )( ) ( ) ( )


( )
1


2


m


j j j pf pf i i i j pf pf


i j


j pf pf


x r p x r p x
x


x


ξ σ ξ σ


ξ σ
=
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Recalling the assumption that pfξ  is considered a constant calculated from the portfolio mean 


and standard deviation, the previous formula can be transformed into  
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Finally, remembering that 
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the substitution of the partial derivative yields 
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Specification of portfolio m20n2. 


 


i  
ie  1iΘ 2iΘ ip  ir  iw  


1 12700 89% 11% 2.0% 4.72% 12.60%


2 15000 73% 27% 2.0% 3.33% 10.00%


3 3500 71% 29% 4.0% 2.86% 8.57%


4 19800 54% 46% 3.0% 5.05% 12.63%


5 30100 29% 71% 2.0% 8.31% 12.96%


6 30600 75% 25% 6.0% 7.52% 12.09%


7 43000 37% 63% 3.0% 4.19% 9.30%


8 22800 68% 32% 6.0% 7.02% 14.04%


9 23500 53% 47% 5.0% 5.11% 8.51%


10 9200 39% 61% 4.0% 14.13% 15.22%


11 40800 32% 68% 4.0% 6.13% 9.07%


12 26200 58% 42% 7.0% 4.20% 10.69%


13 42100 24% 76% 4.0% 5.46% 8.79%


14 27200 39% 61% 5.0% 7.72% 11.40%


15 1900 44% 56% 6.0% 5.26% 10.53%


16 34700 27% 73% 5.0% 4.03% 8.65%


17 40900 22% 78% 5.0% 8.80% 9.29%


18 28000 14% 86% 5.0% 6.43% 8.93%


19 32200 8% 92% 5.0% 2.80% 8.70%


20 4800 7% 93% 5.0% 4.17% 8.33%


 


Note that the variables pi, ri and wi are calculated on a basis of ei. The variation coefficient for 


the second sector was set to 2 : 0.75ω =  in analogy to real-world variation coefficients of 


default rates. 
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