
266 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997

Hybrid Genetic Algorithms for Constrained Placement Problems
Volker Schnecke and Oliver Vornberger

Abstract—Genetic algorithms have proven to be a well-suited
technique for solving selected combinatorial optimization prob-
lems. When solving real-world problems, often the main task
is to find a proper representation for the candidate solutions.
Strings of elementary data types with standard genetic operators
may tend to create infeasible individuals during the search
because of the discrete and often constrained search space.
This article introduces a generally applicable representation for
two-dimensional combinatorial placement and packing problems.
Empirical results are presented for two constrained placement
problems, the facility layout problem and the generation of very
large scale integrated (VLSI) macro-cell layouts. For multiobjec-
tive optimization problems, common approaches often deal with
the different objectives in different phases and thus are unable
to efficiently solve the global problem. Due to a tree-structured
genotype representation and hybrid, problem-specific operators,
the proposed approach is able to deal with different constraints
and objectives in one optimization step.

Index Terms— Combinatorial optimization, facility layout
problem, multiparent recombination, tree-structured genotype
representation, VLSI physical design.

I. INTRODUCTION

CONSTRAINED placement problems deal with the com-
putation of an optimal arrangement of items on a planar

site. The objective function for these optimization problems is
based on the overall rectangular area of occupied space and on
additional terms that reflect problem-specific constraints. The
basic variants of these problems are the unconstrained two-
dimensional packing problem and the quadratic assignment
problem. In the case of the packing problem, a set of rectangu-
lar blocks has to be arranged such that no blocks overlap each
other. The area (or perimeter) of the rectangle circumscribing
all blocks has to be minimal, hence the optimal packing pattern
is that with minimal waste inside the enveloping rectangle.
In the quadratic assignment problem [1], a set of items has
to be matched to fixed arranged bins. A flow matrix defines
the connectivity between the items. The objective is to find
a mapping with minimal flow costs, these being the sum of
the products of flow and distance between each pair of items.
The quadratic assignment problem is an NP-hard optimization
problem [2].

The constrained placement problems that will be described
in the following can be seen as an extension of both the

Manuscript received December 16, 1996; revised October 24, 1997 and
March 13, 1998. This work was supported by the German Federal Ministry
for Education, Science, Research, and Technology (BMBF) under Grant 01
IB 405 E3.

V. Schnecke is with the Department of Biochemistry, Michigan State Uni-
versity, East Lansing, MI 48824-1319 USA (e-mail: volker@sol.bch.msu.edu).

O. Vornberger is with the Department of Mathematics and Computer
Science, University of Osnabrück, Germany (e-mail: oliver@informatik.uni-
osnabrueck.de).

Publisher Item Identifier S 1089-778X(97)09459-9.

packing problem and the quadratic assignment problem. Rect-
angular blocks are placed with some defined connectivity,
which highly influences the objective function. The rectangular
blocks do not have fixed shapes. For each block, the area is
given and either a set of admissible shapes or an interval for its
admissible aspect ratio (width/height ratio) is provided. Thus,
in addition to finding an arrangement of the blocks, feasible
shapes are also determined. Because of the complexity, exact
techniques can only be used to solve trivial instances of these
optimization problems (fewer than ten blocks).

Multiobjective optimization problems, like those described
in this article, are found in many engineering applications. To
deal with the different, often conflicting, objectives, Pareto-
optimal [3] or divide-and-conquer approaches [4] are typically
used. In the latter, the problem is divided into subproblems,
which are solved more or less independently. Multistage
approaches for constrained placement problems first compute
an approximately optimal arrangement of the blocks based
on their connectivity and then fix their shapes in a second
stage. In this article, hybrid genetic algorithms are introduced
to deal with both the arrangement and sizing of the blocks
in one optimization step. To deal with the shape constraints,
shape functions [5], a common concept from very large
scale integrated (VLSI) design, are used to consider multiple
shapes for the blocks during their placement. The connectivity
between the blocks is taken into account by iteratively pairing
blocks based on the computation of a weighted matching
[6]. A novel genotype representation based on binary trees is
introduced, and the genetic operators work directly on this tree
structure. Multiparent gene-pool recombination is proposed,
where subtrees from more than two parent individuals are
composed into a tree representing an offspring.

II. BACKGROUND

The two placement problems addressed in this article are the
facility layout problem and VLSI macro-cell layout generation.
In this section, these combinatorial optimization problems
are introduced, and related work, with a focus on evolution-
based approaches, is described. The facility layout problem, as
defined here, is a basic variant of placement problems, whereas
the macro-cell layout generation is a real-world optimization
problem. At the end of this article, empirical results for
benchmark problems for both applications are presented.

A. The Facility Layout Problem

The facility layout problem deals with a set of rectangular
facilities to be placed at favorable positions on a planar site.
A flow matrix defines the weights of
connectivity for each pair of facilities. The objective is to find

1089–778X/97$10.00 1997 IEEE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997 267

Fig. 1. The schematic representation of a solution to the facility layout
problem including five rectangular facilitiesf1–f5. The objective is to
minimize the flow costs based on the sum of products of flowmij and
distancedij between the centroids for each pair of facilities.

a nonoverlapping arrangement of the facilities with minimal
flow costs , with being the distance be-
tween the centroids of facilities and (Fig. 1). The variant
of the facility layout problem addressed in this article involves
nonidentical, flexible facilities. Here, no fixed dimensions
for the facilities are given; only constraints regarding their
admissible shapes are provided. These additional degrees of
freedom increase the complexity of the optimization problem,
since in addition to identifying a proper arrangement of the
facilities, their shapes have to be fixed. This can be seen
as two separate optimization tasks. Different variants of the
facility layout problem have been introduced [7], [8], for
instance with an irregular site for placing the facilities, with
preoccupied regions on the layout site, or with more than one
layout site. Applications of the facility layout problem include
planning architectural spaces, such as offices and warehouses,
and designing manufacturing cells and control panels.

There exist various, in most cases heuristic, solution ap-
proaches to the facility layout problem [8]. In multistage
techniques, the rectangular facilities are first approximated
by circles with a slightly larger area than the area of the
actual facilities. An optimal arrangement according to the flow
between the centroids of the circles is computed, and the exact
shapes of the facilities are determined in a second step after
fixing their positions. Examples of this approach are presented
by van Campet al. [9] and Tam and Li [10]. Other approaches
are based on tree representation of the facility arrangement.
Tam uses a genetic algorithm [11] or simulated annealing
[12]. In both approaches, all facilities are initially clustered
according to their connectivity. These clusters characterize
subtrees in a tree containing all facilities. The tree defines
a floorplan, i.e., a partitioning of the overall area into separate
rooms to which the facilities are assigned. Each inner node
of the tree is labeled with the arrangement of the patterns
represented by its subtrees (placing the pattern characterized
by the left subtree upon, below, left, or right, relative to
the other one). The structure of the tree and the mapping

Fig. 2. The schematic representation of a VLSI macro-cell layout, which
shows the position of eight cells, the routes for the signal nets, and the I/O
pads.

of facilities to its leaves is fixed during the first step, then
an optimal labeling of all inner nodes is computed by using
a genetic algorithm or simulated annealing. Kadoet al. [13]
compare different implementations of genetic algorithms based
on Tam’s representation, hybridized with clustering methods.
They extend Tam’s work by searching the space of all possible
trees in contrast to the search for optimal labels for the inner
nodes in fixed tree structures. Garces-Perezet al. [14] use a
tree representation without clustering when solving the facility
layout problem by genetic programming (GP). Due to the
necessary restriction to fixed-size trees with a predefined set
of leaf labels, however, their approach does not precisely fit
the GP paradigm.

B. VLSI Macro-Cell Layout Generation

The design of VLSI microchips is a process of many
consecutive steps including specification, functional design,
circuit design, physical design, and fabrication [15]. Macro-
cell layout generation is a task in the physical design cycle.
The circuit is partitioned and the components are grouped in
functional units, the macro-cells. These cells can be described
as rectangular blocks with terminals (pins) along their borders.
These terminals have to be connected by signal nets, along
which power or signals (e.g., clock ticks) are transmitted
between the various units of the chip. A net can connect two
or more terminals, and some nets must be routed to pads at
the outer border of the layout, since they are involved in the
I/O of the chip. The layout defines the positions of the cells
and the routes chosen for the signal nets (Fig. 2).

Basically, the placement of macro-cells is quite similar
to the facility layout problem, when taking the number of
terminals to be connected between two cells as a measure of
their connectivity. The objective function of this optimization
problem is based on the layout area, however, i.e., the area of
the circumscribing rectangle. This area is mainly influenced
by the routing space, the area between the cells occupied
by the signal net wirings. The computation of the routes

268 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997

Fig. 3. A pattern describing a floorplan for nine blocks and one corresponding slicing tree; the leaves represent the blocks and the inner nodes define the
cut direction (v for vertical, h for horizontal) used for recursively partitioning the layout area.

for the signal nets is usually separated from the placement
task. During placement, an estimated amount of routing space
is added between the cells. The estimation of this amount
is quite crucial, since adding too much space can lead to
suboptimal layouts. Adding too little space might rule out the
optimal (shortest) routes for all nets, or the completion of the
interconnections can become impossible. In the latter case, a
rearrangement of the cells is necessary. Therefore it is wise
to integrate the computation of the routes into the placement
task.

In the common, multistage approaches to layout generation,
there exist several methods to solve the placement problem,
which is the first step in this process [15], [16]. In force-
directed placement, cells that are connected by signal nets
exert an attractive force on each other, which is proportional
to the number of these nets and the distance between the cells.
Partition-based methods compute a placement by recursively
dividing the set of cells. At the same time, the available chip
area is partitioned, and each set of cells is assigned to one
of the components. A very popular technique to compute
the placement is simulated annealing, which yields high-
quality placements, but often requires an excessive amount
of computation time.

Because a macro-cell is constructed in a hierarchical man-
ner, its shape is not fixed, but a set of feasible implementations
is provided. Thus, like in the facility layout problem, the
flexible cells must be sized during or after placement. This
more general placement problem is called the floorplanning
problem in VLSI design [17], [18]. It is usually solved
in two steps. First, a relative placement is chosen. This is
characterized by a floorplan that describes a partitioning of the
layout area into a set of rooms to which the cells are mapped
(see left side in Fig. 3). Then, those shapes of the flexible cells
that yield an overall minimal layout are determined. Sizing
(floorplan area optimization) can be done by using rectangular
dualization, partitioning, or linear programming [17], [18].

Cohoonet al. [19], [20] offered the classical work on using
genetic algorithms for floorplanning. The arrangement of the
rooms on the layout surface was represented in the genotype by
a postfix notation of the corresponding slicing tree (see Fig. 3
for an example of a slicing tree). Chanet al. [21] introduce a
bit-matrix representation for placement. Here the layout area
is divided into squares, and the placement for a single cell is
described by a line in the bit-matrix. This encodes information

Fig. 4. A routing graph for a layout with ten blocks. The global route for a
signal net connecting three terminals is shown by the bold path, which was
constructed by using shortest paths in the graph to connect the terminals.

about the occupied squares and the orientation of the cell.
In the genetic algorithms of Esbensen [22] or Esbensen and
Mazumder [23] a placement is encoded as a binary tree. Each
node of the tree represents a cell, and due to a given node
order, the placement can be sequentially generated by decoding
the genotype.

After either placement or floorplanning, routing of the signal
nets is performed. The area of the layout surface that is not
occupied by cells is subdivided into routing regions, a region
being the empty area between two adjacent cells. During
global routing, the global routes for all nets are determined.
The global route of a net is a collection of those routing
regions it covers on its way between the terminals it must
connect. The routing regions are typically represented by a
graph, and the global routes are computed by finding shortest
paths between the terminals (Fig. 4). During computation of
the global routing, capacity constraints based on the width of
the routing regions have to be considered. Thus, the amount
of routing area reserved during placement is crucial for the
routability of the whole layout, and sophisticated placement
approaches try to incorporate as much as possible from the
routing into the placement process.

III. M ETHODS

All previous approaches treat the different objectives (place-
ment, sizing, and connectivity) of the optimization problems
in separate steps. A single objective is considered in each

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997 269

Fig. 5. The shape function for a macro-cell comprising four subcells. The
three possible subcell arrangements that yield minimal-area implementations
of the macro-cell are shown.

step, while approximations are used for the others to keep
the computation tractable. In contrast, our hybrid genetic algo-
rithms consider the different objectives in a single optimization
process. This is possible due to the use of problem-specific
heuristics such as slicing trees, shape functions, and iterated
matching, which are introduced in this section.

A. Representing Placement Patterns by Binary Slicing Trees

Two-dimensional packing or placement patterns can be
characterized by slicing trees. A slicing tree defines a hier-
archy of cuts needed for recursively partitioning a rectangular
block into patterns consisting of smaller blocks. The simplest
kind of slicing trees are binary slicing trees, which represent
guillotineable or slicing patterns. According to Stockmeyer
[24], a pattern is slicing, if it is either a basic block, i.e.,
an indivisible item, or if there is a line segment (a slice) that
divides the enclosing rectangle into two pieces such that each
of the pieces is slicing. Fig. 3 presents a slicing pattern and
a corresponding slicing tree. The inner nodes of the tree are
labeled with the cut directions (vertical, horizontal), and the
leaves characterize the basic blocks. There is also a bottom-
up interpretation of slicing trees. In this case, the label of an
inner node defines the relative arrangement (side by side or
one upon the other) of the patterns represented by its subtrees.

B. Storing Different Implementations in Shape Functions

Shape functions have been introduced by Otten [5] for VLSI
layout generation dealing with flexible cells. The flexibility
originates from the fact that a cell hierarchically comprises
a set of subcells, which can be arranged in different ways.
Fig. 5 presents a shape function for a cell containing four
subcells. Three different arrangements of these cells yield three
minimal-area implementations for the macro-cell. These can be
represented in a shape function, which defines the admissible
shapes, i.e., the relation between area and aspect ratio. Note
that a discrete shape function is completely defined by its
minimal area implementations.

In the facility layout problem there are no discrete minimal
implementations given. Only the area of a facility and a
range for the aspect ratio are specified. This information
defines a continuous shape function, which can be transformed
into a discrete shape function, as shown in Fig. 6. Although

Fig. 6. A transformation of a continuous shape function into a discrete shape
function with eight minimal implementations.

Fig. 7. The generalized shape function for two fixed blocks placed upon
each other; each combination is labeled with the orientations of the blocks,
for instance, (h; v) means the lower block is in horizontal and the upper
block is in vertical orientation.

some information is lost by this transformation, it keeps the
computations during the optimization process tractable.

When combining two flexible blocks, their shape functions
can be added to compute the shape function of the also flexible
meta-block (pattern consisting of more than one block). If the
orientations of the blocks are free, they can be rotated by 90
before being placed on the layout surface. Both possibilities
can be considered in the shape function of the resulting
meta-block by labeling the minimal implementations with the
particular orientations. Fig. 7 shows the composition of such
a generalized shape function for a meta-block consisting of
two fixed-shape blocks with free orientations. The relative
arrangement of the blocks is fixed, since they are placed upon
each other in all cases. Note that there is one implementation
which is dominated by another one: combination with
the lower block in horizontal orientation and the upper
block in vertical orientation is covered by combination

, since both have the same width, but the latter is less
high. In practice, most implementations are dominated, and it
is possible to store all nondominated implementations without
observing an exponential growth in the number of combined
implementations at each level in the tree. Empirical results for
this will be presented in a later section of this article.

C. Iterative Clustering Based on Connectivity

While slicing trees and shape functions deal with the pack-
ing aspect of the optimization problems, another heuristic
is necessary to take into account those constraints based on
connectivity. When constructing a solution for these problems,
care must be taken that highly connected blocks are placed

270 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997

near each other on the layout site. During the composition of
a slicing layout, blocks (or meta-blocks) are iteratively paired.
This corresponds to composing an inner node of the slicing
tree by joining two leaves (or subtrees).

At the beginning of the construction, globally good pairings
are identified in the set of all blocks. These build the lowest
level of the slicing tree. A good technique for successively
pairing items according to a quality function is the iterated
matching heuristic, which was introduced by Fritsch and Vorn-
berger [6]. It is based on the graph-algorithmic computation
of a maximum weight matching on a complete graph. The
vertices of this graph represent the items to be paired, and
each edge is weighted with the value of the quality function
for the corresponding pairing. A matching in this graph is a
set of node-disjunct edges, and the weight of a matching is
the sum of the weights of all edges in this set.

In the case of the facility layout problem, an edge is
weighted according to the flow between the facilities repre-
sented by the adjacent vertices. For the VLSI layout generation
problem, the quality function is based on the number of
terminals that have to be connected by signal nets between
both cells. A maximum weight matching corresponds to a set
of optimal pairings such that a globally maximal number of
terminals can be connected inside the resulting meta-blocks.
Since paired blocks are adjacent on the final layout, the
maximum weight matching ensures short wiring lengths in the
case of macro-cell layout generation and low partial flow-cost
terms for the facility layout problem.

In the second iteration, the next level of the slicing tree is
constructed by computing a maximum weight matching on a
graph whose vertices represent meta-blocks, each consisting
of two blocks. The quality function is based on the sum of
the flow between both sets of facilities contained inside the
corresponding meta-blocks for the facility layout problem and
on the number of terminals that have to be connected between
the cells in both sets for the macro-cell layout generation.
The process is iterated until the slicing tree is completed by
joining the last two meta-blocks at the root (see Fig. 8). If the
matching at one level is not perfect, that is, not all vertices are
adjacent to edges of the matching set, the corresponding blocks
or meta-blocks are kept and added to the set of meta-blocks
to be matched in the next iteration.

IV. GENETIC ALGORITHMS WITH

TREE-STRUCTURED GENOTYPE REPRESENTATION

This section describes the main features of our hybrid ge-
netic algorithms for the two constrained placement problems.
The implementations of these algorithms employ a slicing-
tree representation and include shape functions and iterated
matching to address multiple design objectives simultaneously.
At the end of this section, the hybrid genetic algorithms for
the two applications are outlined.

A. The Genotype

The phenotypic representation for the placement problems
is basically the pattern that describes the geometric layout,
i.e., shapes and positions of the blocks. In the case of VLSI

layout generation, if the computation of the global routes for
the signal nets is integrated into placement, characterization of
the routes is also part of the phenotype. Binary slicing trees are
well suited to represent packing or placement patterns and have
already been used in genetic algorithms for two-dimensional
problems [11], [13], [14], [19], [20], [25]. The genotype
encoding in these approaches is a post- or prefix string
defining the structure of the tree and its node labels. During
recombination, partial arrangements of blocks are transmitted
from parents to offspring. The corresponding operation is the
inheritance of subtrees from the parents. Encoding the tree in
a string complicates this operation, since the string needs to be
decoded into the slicing tree to execute the recombination, then
recoded into an offspring chromosome afterwards. There is no
reason for using a string encoding except for the analogy to
the natural evolution process, where the genetic information is
encoded in a DNA string. When directly using the slicing tree
as the genotype representation, further decoding or encoding
the tree when applying genetic operators is avoided.

The use of trees for genotype coding is already well known
from GP [26]. In GP the size of the individuals in a population
is greatly varied, however, and usually no restrictions exist
regarding the structure of the trees. Trees representing layouts
differ from those used in GP in one main point: all trees must
have a fixed size, because they have exactly the same set
of leaves (objects to place). Therefore, the application of the
genetic operators is more complicated than in GP. Problem-
specific operators must be used to ensure that only correct
offspring are generated.

In the following examples, as for the remainder of this
article, blocks or subpatterns in a tree defining a layout
or packing pattern are always stacked vertically upon each
other. The pattern characterized by the right successor of an
inner tree node is always positioned on top of the pattern
characterized by its left successor when combining both parts
into a pattern or meta-block. Placing these parts next to each
other is considered in the next level of the tree by taking into
account the rotated variant of this meta-block.

B. Mutation

In our approach, three different mutation operators tailored
to handle tree-structured genotypes are used. There are two
straightforward mutation operators that change the structure
of a tree. Fig. 9 shows an example for the operator which
exchanges two parts of a tree. Partis a single leaf, while

is a subtree containing three nodes. At the phenotypic
level, this corresponds to exchanging the block represented
by leaf with the placement or pattern for the set of blocks
characterized by subtree.

The second mutation operator (Fig. 10) extracts a part of
the tree (leaf) and inserts it at a different position ().
This corresponds to cutting a block or a partial placement out
of the complete packing pattern and moving it to a different
position. Note that this transformation cannot be performed
by the operators which simply exchange leaves or subtrees, so
this is an essential mutation operator for a genetic algorithm
using tree-structured genotype representation.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997 271

Fig. 8. The construction of a slicing tree using the iterated matching heuristic, e.g., in the second iteration, when the second inner tree level is constructed,
the meta-blocks adjacent to the bold edges are combined because the weight of the corresponding matching (80 + 90) is larger than those of the other
two possible matchings (60 + 85 and 80 + 85) in that graph.

A third mutation operator does not directly change the
structure of the tree. It converts the pattern described by
the slicing tree by changing the orientation of one of the
blocks or meta-blocks inside a subpattern characterized by an
inner node of the tree. This operator is only necessary if no
generalized shape functions are used to encode all possible

orientations for the blocks and meta-blocks contained in a
particular pattern.

C. Gene-Pool Recombination

The recombination operator in genetic algorithms is usually
a sexual operator, which constructs one or two offspring out

272 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997

Fig. 9. Mutation by exchanging subtrees. Here a single leafA is exchanged
with a three-node subtreeB.

Fig. 10. Mutation by changing the structure of the tree. A single leafA is
cut and inserted at a different positionx in the tree.

of the genetic information encoded in two parent individuals.
One obvious way for the creation of one offspring out of two
tree-structured individuals is to combine disjoint subtrees of
both parents into a tree for the offspring. Such a straightfor-
ward recombination operator can be implemented by selecting
subtrees from both parents to form a pool of building blocks
out of which a new individual is composed. Leaves that
are not contained in these subtrees are additionally inserted
into this pool. During offspring creation, these subtrees are
combined to a complete tree. Here, iterated matching can be
used again to identify good pairs of subtrees with regard to
their connectivity.

Two-parent or sexual recombination is inspired by the
natural evolution process and is the main form of recombi-
nation used in artificial evolution. Multiparent recombination
operators have been introduced too. Bersini and Seront [27]
used three parents, similar to Mühlenbein’s majority vote [28],
and Eibenet al. [29] use up to ten parents. In the field of
evolution strategies, multiparent recombination has also been
introduced as “global recombination” [30], [31]. The extended
recombination scheme used in our hybrid genetic algorithms
is called gene-pool recombination, in reference to the concept
established by M̈uhlenbein and Voigt [32].

In gene-pool recombination, all genetic information from a
given set of parents is inserted into the pool, out of which the
offspring are created. In our approach, the genetic information
encoded in an individual defines the relative positions of the
blocks and is represented in the structure the corresponding
binary tree. Due to the hierarchical organization of the tree,
parts of this information are encoded in each of its subtrees.
Thus, every subtree of each parent individual is inserted into
the pool. (In the actual implementation the pool does not
contain copies of all subtrees, but only pointers to the particular
inner nodes of the parent trees.) Note that a small subtree
occurs more than once in this pool, since it is contained in

a set of larger subtrees. Because offspring creation is done
by randomly choosing disjoint subtrees out of the pool, this
small subtree has a higher chance of being selected. If a small
subtree is already included in more than one of the parent
individuals, there will be even more copies of it in the pool.
This ideally corresponds to the building block hypothesis [33].
These building blocks are short, low-order, and highly fit
schemata that are sampled, recombined, and resampled during
the search. Like those building blocks, smaller trees have
a higher chance of being contained in one or more of the
offspring that are created out of the genetic material in the
pool.

D. Selection and Replacement

For choosing individuals as parents for recombination, the
fitter individuals have a higher chance of being selected.
For mutation, any individual in the population has an equal
probability of being chosen; the operator used to generate
the offspring is selected randomly from the set of possi-
ble mutation operators. An offspring is created either by
recombination or mutation. A steady-state genetic algorithm
is used; thus, an individual may survive for longer than one
generation. At the end of each generation, individuals are
replaced if the quality of offspring is higher, or if they are
quite different from all the members of the current population.
The benefit of specialized replacement schemes to maintain
diversity in the population has already been investigated by De
Jong [34], Goldberg and Richardson [35], and Whitley [36].
More recently, Freisleben and Merz used such a technique for
solving the traveling salesman problem [37] and the quadratic
assignment problem [38]. In their approaches, the number of
noncommon edges in tours or the number of items assigned
to different bins, respectively, is taken as a difference measure
for two individuals.

The difference between two individuals representing place-
ment patterns is computed at the genotypic level and measured
by the number of subtrees that do not contain the same set of
leaves. Although this measure does not take into consideration
the structure of trees nor the orientations of blocks, it is
efficient to compute and serves as a rough measure of diversity.

An offspring is always inserted into the population if its
fitness is better than the fitness of the best individual. In
this case, the individual with worst fitness is replaced. If
an offspring is not better than the best individual, then the
individual in the current population that is most similar to
this offspring is identified. If their difference is below a given
threshold, indicating that they encode similar solutions, then
the better of the two is kept in the population. If the offspring
is disparate from all individuals, it is considered to encode
a significant amount of new genetic information and enters
the population by replacing the least fit individual, without
consideration of its fitness.

E. The Hybrid Genetic Algorithm for the
Facility Layout Problem

Fig. 11 describes the operations which are executed during
the computation of a single individual in the hybrid genetic

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997 273

Fig. 11. The operations needed for construction of a single individual in the
hybrid genetic algorithm for the facility layout problem. After mutation or
recombination, step 1 is only executed for all levels in the tree higher than
the level where a change occurred.

algorithm for the facility layout problem. The slicing tree
of an individual is constructed from the bottom up. All
facilities are paired by using iterated matching based on
the flow between two facilities or the sum of the flows
between facilities comprised in a meta-block, as described in
Section III-C. Generalized shape functions are used to store all
possible implementations for a meta-block based on different
orientations of the combined blocks. Thus, a single individual
encodes several layouts with different shapes, represented by
different implementations stored in the root of the tree. The
orientations and shapes of meta-blocks and facilities for each
implementation are determined by top-down traversal, and the
flow costs for the particular layout are computed. The minimal
flow costs of all stored implementations are taken as the fitness
of the individual.

Since all possible orientations for the blocks are considered
by the generalized shape functions, only the two mutation
operators that exchange nodes or change the tree structure
are used. After application of a genetic operator, the shape
functions are recomputed only for those inner nodes located at
higher tree levels than those nodes where a mutation occurred.

F. The Hybrid Genetic Algorithm for
Macro-Cell Layout Generation

In the hybrid genetic algorithm for the layout generation
problem, standard shape functions are used. When two blocks
are joined to form a meta-block, their orientations are fixed.
This is necessary since the channel between the blocks has
been augmented with an estimated amount of routing space,
which depends on the positions of the terminals on both blocks
and, thus, their orientations. Before fixing the orientations, all
16 possible combinations of the blocks relative to each other
are checked to identify an arrangement with a maximal number
of terminals to be connected on the adjacent sides of both
blocks or partial layouts. All nondominated implementations
for the flexible meta-blocks are stored in their shape functions.
After completion of the tree, the layout with minimal area is
identified, the flexible cells are sized, and the tree is trans-
formed into a geometrical layout. For this geometrical layout,
the shortest paths between the terminals to be connected by

Fig. 12. The operations needed for a construction of a single individual in
the hybrid genetic algorithm for macro-cell layout generation.

signal nets are determined. At this point, the number of nets
in each channel is known, the channel widths are adapted, and
the final positions of the cells on the layout are fixed. Details
on the computation of the routing in our work can be found
in [39]. Fig. 12 provides an outline of the computation steps
during the construction of an individual.

The main advantage of this approach, in comparison to other
common approaches, is that the computation of the global
routes for the signal nets is fully integrated into the placement
process. The positions of the cells are not fixed until all routes
have been determined. Furthermore, all shapes for the flexible
cells are stored, and the globally optimal shapes are identified.

V. RESULTS

In this section the hybrid genetic algorithms are applied to
different benchmark problems, and the results are compared
to results published for other techniques.

A. VLSI Macro-Cell Layout Generation

The hybrid genetic algorithm for the layout generation
problem was tested on real-life circuits chosen from a bench-
mark suite that was released for design workshops in the
early 1990’s and is often referenced in the literature as
the MCNC benchmarks. They were originally maintained by
North Carolina’s Microelectronics, Computing, and Network-
ing Center, but are now located at the CAD Benchmarking
Laboratory (CBL) at North Carolina State University. These
benchmarks are standard problems in macro-cell layout, and
the characteristics of the circuits are shown in Table I.

Unless otherwise stated, all results of our hybrid genetic
algorithm presented in this section were obtained using a
parallel implementation based on the stepping stone model.
Several subpopulations each consisting of ten individuals are
processed in parallel with periodic migration of individuals
between them. In addition to this, different strategies are
pursued by the subpopulations, which are dynamically adapted
during the search [40]. These strategies differ in the frequency
used for the particular mutation operators, in the ratio of

274 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997

TABLE I
THE BENCHMARK CIRCUITS FOR THE

MACRO-CELL LAYOUT GENERATION PROBLEM

(a)

(b)

Fig. 13. Progress with respect to the use of the iterated matching heuristic
during recombination for VLSI macro-cell layout generation. The average
fitness based on ten runs is shown for each case; all parameters were the
same, and only the recombination operator was changed.

mutation to recombination for offspring creation, and in the
use of the iterated matching during recombination.

When pairing blocks randomly for VLSI-layout generation,
cells are spread arbitrarily with regard to their connectivity
on the layouts generated during the search. Iterated match-
ing can be used to enforce highly connected cells to be
placed close together. Although computing the matching in
a complete graph as we implemented it has cubic runtime,
the overhead can be neglected for graphs with less than
100 nodes, and the number of meta-blocks to match during
recombination is usually much smaller than the number of
cells. Fig. 13 presents the performance of runs with and
without use of iterated matching during recombination. All
curves are averages based on ten runs with 16 subpopulations
using the same parameters. To avoid side effects (for example
compensation of inefficient recombination by increasing the
mutation rate), no strategy adaptation has been used. While
the use of iterated matching for combining subtrees during

TABLE II
THE LAYOUT AREAS [mm2] FOR THE VLSI BENCHMARK

CIRCUITS (AVERAGE OF 30 RUNS FOR OUR RESULTS)

recombination is useful when generating a layout forami49,
it leads to premature convergence when dealing withami33.
A possible explanation for this effect is the deterministic
character of the matching heuristic. Especially in combination
with gene-pool recombination, when inserting the subtrees of
the top 50% of all individuals into the pool, iterated matching
tends to pair the randomly chosen subtrees in a similar manner.
To overcome this problem and still take advantage of the
beneficial effect for larger problems, in the full version of
the hybrid genetic algorithm used to obtain the final results,
the use of iterated matching during recombination is adapted
based on the progress of the evolution [40].

Table II presents the sizes of layouts generated by the hybrid
genetic algorithm for the benchmark circuits based on 30 runs
for each problem. All runs were done on a network of 16
Motorola MPC 601 processors with a subpopulation of ten
individuals on each processor. The computation times for the
largest problems were 34 min forami33and 85 min forami49
by running the genetic algorithm for 1800 and 2700 gen-
erations, i.e., 288 000 and 432 000 evaluations, respectively.
For comparison some previously published results for this
benchmark set are listed. The best results are reported by
Onoderaet al. [41]. They use a branch and bound method
to place the cells. This approach only scales up to placing six
cells, and for larger instances the layout must be composed
hierarchically. In particular, for circuitami49, two levels of
hierarchy are needed. TimberWolf by Swartz and Sechen [42]
and MBP by Uptonet al. [43] are based on simulated an-
nealing. SAGA by Esbensen and Mazumder [23] is a mixture
of a genetic algorithm and simulated annealing. It starts as
a genetic algorithm and gradually switches to a simulated
annealing process by reducing population size and increasing
the mutation rate. Their approach is limited to smaller circuits
containing fixed cells. FRODO is a floorplanning tool, based
on the work of Lengauer and M¨uller [44]. The reported results
are from the thesis of Pape [45], who uses the placements
generated by FRODO as an input to his tool CAR, which
refines and topologically compacts the layout.

Although the same set of benchmark circuits was treated
in the previously mentioned approaches, the comparison is
complicated. The results of TimberWolf have been achieved
by combining several tools. BB only determines a placement
and estimates the routing space; the presented results have
been obtained by using other (commercial) tools for routing
and compaction after placement. SAGA and FRODO do

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997 275

Fig. 14. A layout for circuitami49, area= 55:65 mm2.

only floorplanning, and CAR starts its work with a given
placement that has been generated by FRODO. There is always
a strict distinction between placement and routing in all these
approaches. An integration of the routing into the placement
process in VLSI design is desirable, since the accuracy of
the routing space estimate determines the accuracy for the
assessment of a particular placement. Overestimates can lead
to suboptimal layouts, in the case of underestimates the cells
have to be rearranged to obtain a routable placement. The
hybrid genetic algorithm proposed in this article fully inte-
grates the computation of the global routing into the placement.
The presented results are obtained exclusively by the use
of this algorithm. From the results of the other approaches,
only those of SAGA and FRODO are directly comparable to
our approach, since in these cases, no detailed routing has
been done. The routability of our layouts has been checked
by a tool developed at the University of Osnabr¨uck, which
also produced the detailed routing for the layout presented in
Fig. 14. Incorporating a better technique for detailed routing
or compacting the final layout after routing, like the other
approaches have done, will certainly produce better results.
Alternatively, a sophisticated heuristic could be included to
determine the demand of routing space inside the channels
more accurately. At the moment, an upper bound of routing
space is inserted by adding one track for each net in a channel.
Nevertheless, even with this simple heuristic our best results
are nearly competitive with those presented by the other
approaches using specialized tools for each stage of the layout
generation process.

B. The Facility Layout Problem

The implementation of the hybrid genetic algorithm for
the facility layout problem has been tested on a set of eight
instances proposed by Tam and Li [10]. These instances are
named TL91- in the following with representing the

TABLE III
THE NUMBER OF IMPLEMENTATIONS STORED IN THE ROOT NODE OF A SINGLE

INDIVIDUAL AND THE AVERAGE COMPUTATION TIME (SUN ULTRA1/140)TO

GENERATE AN INDIVIDUAL OF THE INITIAL POPULATION (INIT) AND

DURING THE SEARCH (OPT), AVERAGE OF 1000 VALUES IN EACH CASE

number of facilities to place. The areas of the facilities are
quite different, for instance in TL91-30 the sizes of the 30
facilities vary between three and 36 (average 11.9,).
A measure for the complexity of the problem with regard
to the connectivity is the flow dominance, defined as the
coefficient of variation for the entries in the flow matrix [46].
For the problems in the benchmark set, the flow dominance
is between 100 and 130, which means that they do not cover
a broad range of problems regarding this measure. This is a
well-known benchmark set, however, and results for different
approaches have been published, which provides a good basis
for comparison.

The continuous shape functions for the facilities were trans-
formed to discrete shape functions with ten implementations
for each facility. Combining two of these facilities and con-
sidering all possible orientations for both, there are 410 10
combinations to consider for the resulting meta-block. Contin-
uing this computation when constructing the tree representing
a complete layout, one might expect an exponential growth for
the number of implementations stored in each level of the tree.
As shown in Section III-B, some implementations are covered
by others when constructing a shape function. Table III shows
that the vast majority of combinations are redundant, since,
even when combining 30 flexible facilities, there exist on
average only 251.8 implementations, which are stored in the
root node of the tree representing an individual. In the table
timing data is also given, which shows the scalability of this
approach. The difference between the time to generate an
initial individual and the time needed to generate an offspring
during the optimization is caused by the overhead to set up
the gene pool for recombination.

In Table IV, the results for the facility layout problem are
shown, averaged over 30 runs. For this benchmark set, a
special objective function is used for the
flow costs of a placement to increase the influence of the
distances between facilities. Four subpopulations were used,
and the size of each was ten, resulting in a total population size
of 40. During recombination, the subtrees of the top 50% of all
individuals in each subpopulation were inserted into the gene
pool. The number of generations depended on the problem
size: the genetic algorithm was run for 1000 generations
for problems with less than ten facilities, 2000 generations
for midrange problems, and 3000 generations for 20 and 30
facilities. This resulted in a computation time of 40 and 100

276 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997

TABLE IV
THE OBTAINED FLOW COSTS FOR THEFACILITY LAYOUT PROBLEM (AVERAGE OF 30 RUNS), COMPARED TO PREVIOUSLY PUBLISHED RESULTS

min for the two largest problems on a network of four Sparc
Ultra/140 workstations for 120 000 evaluations in either case.

Table IV also includes the best results reported by Tam and
Li [10], Kado et al. [13], and Garces-Perezet al. [14] for
comparison. Although Tam and Li originally proposed these
instances, they do not present final results for problems TL91-
20 and TL91-30, due to difficulties with the scalability of
their approach. Kadoet al. [13] implemented a set of genetic
algorithms based on a slicing-tree representation. They were
able to obtain better results for the two smallest problems
and were the first group to present results for the problems
with 20 and 30 facilities. Garces-Perezet al. [14] use GP and
report better results for the last two problems, whereas the
performance for the smaller problems varies. Our approach
outperforms the other approaches for the two largest problems,
and the flow costs of the best layout for the instance with 30
facilities produced by our hybrid genetic algorithm are 10 and
20% smaller than the results presented by Garces-Perezet
al. [14] and Kadoet al. [13], respectively. Their approaches
size the facilities after fixing a relative placement and use a
continuous representation. While this provides better solutions
for smaller problem instances, where our approach ended up
with less optimal solutions, considering different shapes in
discrete shape functions payed off for the larger problems.
From a practical point of view, if better performance for
smaller instances is demanded, a refined discretization of the
shape functions (i.e., make use of more than ten shapes per
block) or even a refinement of the best layout after evaluating
a tree should provide better results. Our goal during the imple-
mentation of the hybrid genetic algorithm was to achieve better
results for the larger problem instances within a practicable
timeframe, however, since this is a more demanding task.

VI. CONCLUSIONS

Hybrid approaches to two significant combinatorial place-
ment problems have been presented. These are genetic algo-
rithms with nonstandard genotypic representation and specific
genetic operators. During the construction of individuals,
several problem-specific heuristics address the different objec-
tives and constraints. While the application of the slicing-tree
representation and the concept of generalized shape functions
deal with the packing aspects, connectivity is considered
by using the iterated matching heuristic. As a result, the
hybrid genetic algorithms are able to take all constraints into
consideration during optimization.

For the generation of VLSI macro-cell layouts, an approach
has been introduced that fully integrates the computation of
the global routes and the sizing of the flexible cells into the

placement task. It is more scalable than most other approaches
and can be further improved by incorporating a better heuristic
to estimate the area needed to complete the detailed routing
of signal nets.

In the case of the facility layout problem, the hybrid ap-
proach shows much better scalability than several approaches
using the same benchmark set. The instances in this set
represent a generic problem type of this domain, which in-
cludes various design applications. The proposed approach
can certainly be extended to consider shape constraints for the
site the facilities have to be placed on and to solve problems
containing preoccupied areas. It can also be extended to deal
with office or production-hall layout problems where passages
are needed between the placed facilities, similar to the routing
area in VLSI layouts.

The main feature of the approach introduced here, in com-
parison with other approaches, is the manner in which block
flexibility is treated: During the iterative composition of a
placement, several implementations (shapes and orientations)
for blocks and meta-blocks are stored. This process can
be described as a kind of “implicit hillclimbing.” Common
hillclimbers in genetic algorithms for combinatorial optimiza-
tion problems randomly explore solutions neighboring the
candidate solution encoded in the current individual and accept
those with better fitness. In hybrid approaches, local search
techniques explore the solution space close to the sample
points by applying specialized heuristics. When including
problem-specific knowledge during creation of individuals,
like in our approach, it is possible to identify unfavorable
or redundant partial solutions and consider only the most
promising ones. Therefore, each individual in our hybrid
genetic algorithms encodes a set of high-quality solutions, the
best of which is a local optimum.

ACKNOWLEDGMENT

The authors thank the Paderborn Center for Parallel Com-
puting (PC) for the opportunity to use their parallel machines.
They also thank M. Raymer and especially L. Kuhn for
their critical review of the manuscript and the editor and the
anonymous reviewers for valuable comments.

REFERENCES

[1] P. M. Pardalos, F. Rendl, and H. Wolkowics, “The quadratic assignment
problem: A survey and recent developments,” inDIMACS Series Discr.
Math. Theor. Comp. Science,1994, vol. 16, pp. 1–42.

[2] M. R. Garey and D. S. Johnson,Computers and Intractability. San
Francisco, CA: Freeman, 1979.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 1, NO. 4, NOVEMBER 1997 277

[3] C. M. Fonseca and P. J. Fleming, “An overview of evolutionary
algorithms in multiobjective optimization,”Evol. Comput.,vol. 3, pp.
1–16, 1995.

[4] K. R. Ryu, J. Hwang, H. R. Choi, and K. K. Cho, “A genetic algorithm
hybrid for hierarchical reactive scheduling,” inProc. 7th Int. Conf.
Genetic Algorithms (ICGA),Th. Bäck, Ed. San Francisco, CA: Morgan
Kaufmann, 1997, pp. 497–504.

[5] R. Otten, “Efficient floorplan optimization,” inProc. Int. Conf. Comp.
Design. Silver Spring, MD: IEEE Comput. Soc. Press, 1983, pp.
499–502.

[6] A. Fritsch and O. Vornberger, “Cutting stock by iterated matching,” in
Operations Research Proc., Selected Papers of the Int. Conf. on OR94,
U. Derigs, A. Bachem, and A. Drexl, Eds. Berlin, Germany: Springer,
1995, pp. 92–97.

[7] A. Kuziak and S. Heragu, “The facility layout problem,”Europ. J. Oper.
Res.,vol. 29, pp. 229–251, 1987.

[8] R. D. Meller and K.-Y. Gau, “The facility layout problem: Recent trends
and perspectives,”J. Manuf. Syst.,vol. 15, no. 5, pp. 351–366, 1996.

[9] D. J. van Camp, M. W. Carter, and A. Vannelli, “A nonlinear optimiza-
tion approach for solving facility layout problems,”Europ. J. Oper.
Res.,vol. 57, pp. 174–189, 1991.

[10] K. Y. Tam and S. G. Li, “A hierarchical approach to the facility layout
problem,” Int. J. Prod. Res.,vol. 29, no. 1, pp. 165–184, 1991.

[11] K. Y. Tam, “Genetic algorithms, function optimization, and facility
layout design,”Europ. J. Oper. Res.,vol. 63, pp. 322–346, 1992.

[12] , “A simulated annealing algorithm for allocating space to man-
ufacturing cells,”Int. J. Prod. Res.vol. 30, no. 1, pp. 63–87, 1992.

[13] K. Kado, P. Ross, and D. Corne, “A study of genetic algorithm hybrids
for facility layout problems,” inProc. 6th Int. Conf. Genetic Algorithms
(ICGA), L. J. Eshelman, Ed. San Mateo, CA: Morgan Kaufmann,
1995, pp. 498–505.

[14] J. Garces-Perez, D. A. Schoenefeld, and R. L. Wainwright, “Solving
facility layout problems using genetic programming,” inProc. 1st
Annual Conf. on Genetic Programming (GP-96),J. Koza, D. Goldberg,
D. Fogel, and R. Riolo, Eds. Cambridge, MA: MIT Press, 1996, pp.
182–190.

[15] N. Sherwani,Algorithms for VLSI Physical Design Automation.Nor-
well, MA: Kluwer, 1993.

[16] K. Shahookar and P. Mazumder, “VLSI cell placement techniques,”
ACM Comput. Surv.,vol. 23, no. 2, pp. 143–220, June 1991.

[17] Th. Lengauer,Combinatorial Algorithms for Integrated Circuit Layout.
New York: Wiley, 1990.

[18] S. M. Sait and H. Youssef,VLSI Physical Design Automation: Theory
and Practice. New York: McGraw-Hill, 1995.

[19] J. P. Cohoon and W. D. Paris, “Genetic placement,” inProc. of IEEE
Int. Conf. CAD. Washington, DC: IEEE Comput. Soc. Press, 1986,
pp. 422–425.

[20] J. P. Cohoon, S. U. Hegde, W. N. Martin, and D. S. Richards,
“Distributed genetic algorithms for the floorplan design problem,”IEEE
Trans. Computer-Aided Design,vol. 10, pp. 483–492, Apr. 1991.

[21] H. Chan, P. Mazumder, and K. Shahookar, “Macro-cell and module
placement by genetic adaptive search with bitmap-represented chromo-
some,” Integration, VLSI J.,vol. 12, no. 1, pp. 49–77, 1991.

[22] H. Esbensen, “A genetic algorithm for macro cell placement,” inProc.
Europ. Design Automation Conf.Los Alamitos, CA: IEEE Comput.
Soc. Press, 1992, pp. 52–57.

[23] H. Esbensen and P. Mazumder, “SAGA: A unification of the genetic
algorithm with simulated annealing and its application to macro-cell
placement,” inProc. 7th Int. Conf. VLSI Design,1994, pp. 211–214.

[24] L. Stockmeyer, “Optimal orientations of cells in slicing floorplan
designs,”Inform. Contr.,vol. 57, pp. 91–101, 1983.

[25] B. Kröger, “Guillotineable binpacking: A genetic approach,”Europ. J.
Oper. Res.,vol. 84, no. 3, pp. 645–661, 1995.

[26] J. R. Koza,Genetic Programming: On the Programming of Computers
by Means of Natural Selection.Cambridge, MA: MIT Press, 1992.

[27] H. Bersini and G. Seront, “In search of a good evolution-optimization
crossover,” inProc. 2nd Conf. Parallel Problem Solving from Nature
(PPSN II), R. Männer and B. Manderick, Eds. Amsterdam: North-
Holland, 1992, pp. 479–488.

[28] H. Mühlenbein, “Parallel genetic algorithms, population genetics and
combinatorial optimization,” inProc. 3rd Int. Conf. on Genetic Algo-
rithms (ICGA),J. D. Schaffer, Ed. San Mateo, CA: Morgan Kaufmann,
1989, pp. 416–421.

[29] A. E. Eiben, P.-E. Raúe, and Z. Ruttkay, “Genetic algorithms with multi-
parent recombination,” inProc. 3rd Conf. Parallel Problem Solving from
Nature (PPSN III),Y. Davidor, H.-P. Schwefel, and R. M̈anner, Eds.
Berlin, Germany: Springer, 1994, pp. 78–87.

[30] Th. Bäck and H.-P. Schwefel, “An overview of evolutionary algorithms
for parameter optimization,”Evol. Comput.,vol. 1, pp. 1–23, 1993.

[31] H.-P. Schwefel,Evolution and Optimum Seeking.New York: Wiley,
1995.

[32] H. Mühlenbein and H.-M. Voigt, “Gene pool recombination in genetic
algorithms,” in Proc. Metaheuristics Int. Conf.,I. H. Osman and J. P.
Kelly, Eds. Norwell, MA: Kluwer, 1995.

[33] D. E. Goldberg,Genetic Algorithms in Search Optimization and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[34] K. A. De Jong, “An analysis of the behavior of a class of genetic
adaptive systems,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 1975.

[35] D. E. Goldberg and J. Richardson, “Genetic algorithms with sharing for
multimodal function optimization,” inProc. 2nd Int. Conf. on Genetic
Algorithms (ICGA),J. J. Grefenstette, Ed. Hillsdale, NJ: Lawrence
Erlbaum, 1987, pp. 41–49.

[36] D. Whitley, “The genitor algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best,” inProc. 3rd Int. Conf.
Genetic Algorithms (ICGA),J. D. Schaffer, Ed. San Mateo, CA:
Morgan Kaufmann, 1989, pp. 116–121.

[37] P. Merz and B. Freisleben, “Genetic local search for the TSP: New
results,” in Proc. 1997 IEEE Int. Conf. Evolutionary Computation.
Piscataway, NJ: IEEE, 1997, pp. 159–164.

[38] ,“A genetic local search approach to the quadratic assignment
problem,” in Proc. 7th Int. Conf. on Genetic Algorithms (ICGA),Th.
Bäck, Ed. San Francisco, CA: Morgan Kaufmann, 1997, pp. 465–472.

[39] V. Schnecke, “Hybrid genetic algorithms for solving constrained pack-
ing and placement problems,” Ph.D. dissertation, Dept. Math./Comput.
Sci., Univ. Osnabr̈uck, Germany, 1996.

[40] V. Schnecke and O. Vornberger, “An adaptive parallel genetic algorithm
for VLSI-layout optimization,” inProc. 4th Conf. Parallel Problem Solv-
ing from Nature (PPSN IV),H.-M. Voigt, W. Ebeling, I. Rechenberg, and
H.-P. Schwefel, Eds. Berlin, Germany: Springer, 1996, pp. 859–868.

[41] H. Onodera, Y. Taniguchi, and K. Tamaru, “Branch-and-bound place-
ment for building block layout,” inProc. 28th ACM/IEEE Design
Automation Conference.Los Alamitos, CA: IEEE Comput. Soc. Press,
1991, pp. 433–439.

[42] W. Swartz and C. Sechen, “New algorithms for the placement and
routing of macro cells,” inProc. IEEE Int. Conf. on Computer Aided
Design. Los Alamitos, CA: IEEE Comput. Soc. Press, 1990, pp.
336–339.

[43] M. Upton, K. Samii, and S. Sugiyama, “Integrated placement for mixed
macro cell and standard cell designs,” inProc. 27th ACM/IEEE Design
Automation Conference.Los Alamitos, CA: IEEE Comput. Soc. Press,
1990, pp. 32–35.

[44] Th. Lengauer and R. M̈uller, “Robust and accurate hierarchical floor-
planning with integrated global wiring,”IEEE Trans. Computer-Aided
Design,vol. 12, pp. 802–809, June 1993.

[45] M. Pape, “Chip assembly mit topologischer kompaktierung,” Ph.D.
dissertation, Dept. Math. Comput. Sci., Univ. Paderborn, Germany,
1995.

[46] T. E. Vollmann and E. S. Buffa, “The facilities layout problem in
perspective,”Manage. Sci.,vol. 12, no. 10, pp. 450–468, 1966.

