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Hybrid Genetic Algorithms for Constrained Placement Problems

Volker Schnecke and Oliver Vornberger

Abstract—Genetic algorithms have proven to be a well-suited packing problem and the quadratic assignment problem. Rect-
technique for solving selected combinatorial optimization prob- angular blocks are placed with some defined connectivity,
lems. When solving real-world problems, often the main task \ynich highly influences the objective function. The rectangular
is to find a proper representation for the candidate solutions. . .
Strings of elementary data types with standard genetic operators b!OCkS do n_Ot have fixed Sh‘?‘p‘?s- For each bIOC!(, the area_ IS
may tend to create infeasible individuals during the search given and either a set of admissible shapes or an interval for its
because of the discrete and often constrained search spaceadmissible aspect ratio (width/height ratio) is provided. Thus,
This article introduces a generally applicable representation for jn addition to finding an arrangement of the blocks, feasible
two-dimensional combinatorial placement and packing problems. shapes are also determined. Because of the complexity, exact

Empirical results are presented for two constrained placement techni v b dt Ive trivial inst £ th
problems, the facility layout problem and the generation of very echniques can only be used 10 solve trivial Instances of these

large scale integrated (VLSI) macro-cell layouts. For multiobjec- Optimization problems (fewer than ten blocks).
tive optimization problems, common approaches often deal with ~ Multiobjective optimization problems, like those described
the different objectives in different phases and thus are unable in this article, are found in many engineering applications. To
to efficiently solve the global problem. Due to a tree-structured o) with the different, often conflicting, objectives, Pareto-
genotype representation and hybrid, problem-specific operators, . L .
the proposed approach is able to deal with different constraints optimal [3] or d|V|de-and-conquer. apprpachgs [4] are typically
and objectives in one optimization step. used. In the latter, the problem is divided into subproblems,
. , o . which are solved more or less independently. Multistage
Index Terms— Combinatorial optimization, facility layout . .
problem, multiparent recombination, tree-structured genotype approache§ for Constrglned placement problems first compute
representation, VLSI physical design. an approximately optimal arrangement of the blocks based
on their connectivity and then fix their shapes in a second
stage. In this article, hybrid genetic algorithms are introduced
to deal with both the arrangement and sizing of the blocks
ONSTRAINED placement problems deal with the comin one optimization step. To deal with the shape constraints,
Cputation of an optimal arrangement of items on a planahape functions [5], a common concept from very large
site. The objective function for these optimization problems &cale integrated (VLSI) design, are used to consider multiple
based on the overall rectangular area of occupied space andloapes for the blocks during their placement. The connectivity
additional terms that reflect problem-specific constraints. Thetween the blocks is taken into account by iteratively pairing
basic variants of these problems are the unconstrained tatecks based on the computation of a weighted matching
dimensional packing problem and the quadratic assignm¢@lL A novel genotype representation based on binary trees is
problem. In the case of the packing problem, a set of rectangntroduced, and the genetic operators work directly on this tree
lar blocks has to be arranged such that no blocks overlap eattucture. Multiparent gene-pool recombination is proposed,
other. The area (or perimeter) of the rectangle circumscribimghere subtrees from more than two parent individuals are
all blocks has to be minimal, hence the optimal packing pattecomposed into a tree representing an offspring.
is that with minimal waste inside the enveloping rectangle.
In the quadratic assignment problem [1], a set of items has
to be matched to fixed arranged bins. A flow matrix defines
the connectivity between the items. The objective is to find The two placement problems addressed in this article are the
a mapping with minimal flow costs, these being the sum @cility layout problem and VLSI macro-cell layout generation.
the products of flow and distance between each pair of itenhs. this section, these combinatorial optimization problems
The quadratic assignment problem is an NP-hard optimizatiare introduced, and related work, with a focus on evolution-
problem [2]. based approaches, is described. The facility layout problem, as
The constrained placement problems that will be describddfined here, is a basic variant of placement problems, whereas
in the following can be seen as an extension of both tliee macro-cell layout generation is a real-world optimization
problem. At the end of this article, empirical results for
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Fig. 1. The schematic representation of a solution to the facility layo
problem including five rectangular facilitieg;—f5. The objective is to
minimize the flow costs based on the sum of products of flow; and
distanced;; between the centroids for each pair of facilities.

ﬁg. 2. The schematic representation of a VLSI macro-cell layout, which
shows the position of eight cells, the routes for the signal nets, and the 1/0
pads.

a nonoverlapping arrangement of the facilities with minimaﬂf facilities to its leaves is fixed during the first step, then
n - . - an optimal labeling of all inner nodes is computed by usin
flow COStS); ;_y di; - mij, With di; being the distance be-_ gezetic algorithr?1 or simulated annealing Ifa&iaal [)1IS] ’
tween the centroids of facilitie§ and f; (Fig. 1). The variant i ol . f > lqori h based
of the facility layout problem addressed in this article involvegompar,e ifterent |mp_ementat[ons 0 g_enetlc agc_mt ms base
nonidentical, flexible facilities. Here, no fixed dimension n Tam's representation, hybrldlze_d with clustering metho_ds.
for the facilities are given; only constraints regarding thej hey _extend Tam's work by searching _the space of all pos_5|ble
rees in contrast to the search for optimal labels for the inner

admissible shapes are provided. These additional degree§

freedom increase the complexity of the optimization proble npdes in fixed tree s_tructures. Ga}rces Pareal. [.14] use a
: ) - : o ree representation without clustering when solving the facility
since in addition to identifying a proper arrangement of the : :
) i . ayout problem by genetic programming (GP). Due to the
facilities, their shapes have to be fixed. This can be see 2 . . . )
L . . necessary restriction to fixed-size trees with a predefined set
as two separate optimization tasks. Different variants of th . . .
. . of leaf labels, however, their approach does not precisely fit
facility layout problem have been introduced [7], [8], for .
. X . . . - the GP paradigm.
instance with an irregular site for placing the facilities, with
preoccupied regions on the layout site, or with more than one

layout site. Applications of the facility layout problem includeB. VLSI Macro-Cell Layout Generation
planning architectural spaces, such as offices and warehousegne design of VLSI microchips is a process of many
and designing manufacturing cells and control panels.  consecutive steps including specification, functional design,
There exist various, in most cases heuristic, solution agrcuit design, physical design, and fabrication [15]. Macro-
proaches to the facility layout problem [8]. In multistageell layout generation is a task in the physical design cycle.
techniques, the rectangular facilities are first approximatgthe circuit is partitioned and the components are grouped in
by circles with a slightly larger area than the area of th@inctional units, the macro-cells. These cells can be described
actual facilities. An optimal arrangement according to the flows rectangular blocks with terminals (pins) along their borders.
between the centroids of the circles is computed, and the ex@ifkse terminals have to be connected by signal nets, along
shapes of the facilities are determined in a second step afigfich power or signals (e.g., clock ticks) are transmitted
fixing their positions. Examples of this approach are presentggitween the various units of the chip. A net can connect two
by van Camget al.[9] and Tam and Li [10]. Other approachesor more terminals, and some nets must be routed to pads at
are based on tree representation of the facility arrangemeft outer border of the layout, since they are involved in the
Tam uses a genetic algorithm [11] or simulated annealiMD of the chip. The layout defines the positions of the cells
[12]. In both approaches, all facilities are initially clustereénd the routes chosen for the signal nets (Fig. 2).
according to their connectivity. These clusters characterizeBasically, the placement of macro-cells is quite similar
subtrees in a tree containing all facilities. The tree defings the facility layout problem, when taking the number of
a floorplan, i.e., a partitioning of the overall area into separat@minals to be connected between two cells as a measure of
rooms to which the facilities are assigned. Each inner notieeir connectivity. The objective function of this optimization
of the tree is labeled with the arrangement of the patterpsoblem is based on the layout area, however, i.e., the area of
represented by its subtrees (placing the pattern characterigeal circumscribing rectangle. This area is mainly influenced
by the left subtree upon, below, left, or right, relative tdy the routing space, the area between the cells occupied
the other one). The structure of the tree and the mappibyg the signal net wirings. The computation of the routes
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Fig. 3. A pattern describing a floorplan for nine blocks and one corresponding slicing tree; the leaves represent the blocks and the inner nodes define th
cut direction ¢ for vertical, » for horizontal) used for recursively partitioning the layout area.

for the signal nets is usually separated from the placeme
task. During placement, an estimated amount of routing spac
is added between the cells. The estimation of this amoun
is quite crucial, since adding too much space can lead t ::———O
suboptimal layouts. Adding too little space might rule out the

optimal (shortest) routes for all nets, or the completion of the

interconnections can become impossible. In the latter case,
rearrangement of the cells is necessary. Therefore it is wis D)

to integrate the computation of the routes into the placeme
task. |

In the common, multistage approaches to layout generation
there exist several methods to solve the placement problem,
which is the first step in this process [15], [16]. In force- A A S

. . ./ ./ S
directed placement, cells that are connected by signal nets _ .
exert an attractive force on each other, which is proportionfdf- 4. A routing graph for a layout with ten blocks. The global route for a
. Sﬁ;nal net connecting three terminals is shown by the bold path, which was
to the number of these nets and the distance between the ceffSstructed by using shortest paths in the graph to connect the terminals.

Partition-based methods compute a placement by recursively

dividing the set of cells. At the same time, the available chigyout the occupied squares and the orientation of the cell.
area is partitioned, and each set of cells is assigned to QR&he genetic algorithms of Esbensen [22] or Esbensen and
of the components. A very popular technique to compuf@azumder [23] a placement is encoded as a binary tree. Each
the placement is simulated annealing, which yields highode of the tree represents a cell, and due to a given node
quality placements, but often requires an excessive amowhder, the placement can be sequentially generated by decoding
of computation time. the genotype.

Because a macro-cell is constructed in a hierarchical man-after either placement or floorplanning, routing of the signal
ner, its shape is not fixed, but a set of feasible implementatiomsts is performed. The area of the layout surface that is not
is provided. Thus, like in the facility layout problem, theoccupied by cells is subdivided into routing regions, a region
flexible cells must be sized during or after placement. Thiseing the empty area between two adjacent cells. During
more general placement problem is called the floorplanniggpbal routing, the global routes for all nets are determined.
problem in VLSI design [17], [18]. It is usually solvedThe global route of a net is a collection of those routing
in two steps. First, a relative placement is chosen. This riggions it covers on its way between the terminals it must
characterized by a floorplan that describes a partitioning of thennect. The routing regions are typically represented by a
layout area into a set of rooms to which the cells are mappegthph, and the global routes are computed by finding shortest
(see left side in Fig. 3). Then, those shapes of the flexible ceigths between the terminals (Fig. 4). During computation of
that yield an overall minimal layout are determined. Sizinthe global routing, capacity constraints based on the width of
(floorplan area optimization) can be done by using rectanguf¢ routing regions have to be considered. Thus, the amount
dualization, partitioning, or linear programming [17], [18]. ©f routing area reserved during placement is crucial for the

Cohoonet al. [19], [20] offered the classical work on usingroutability of the whole layout, and sophisticated placement
genetic algorithms for floorplanning. The arrangement of tiPProaches try to incorporate as much as possible from the
rooms on the layout surface was represented in the genotypd ®ting into the placement process.

a postfix notation of the corresponding slicing tree (see Fig. 3

for an example of a slicing tree). Chatal. [21] introduce a 1. METHODS

bit-matrix representation for placement. Here the layout areaAll previous approaches treat the different objectives (place-
is divided into squares, and the placement for a single cellrigent, sizing, and connectivity) of the optimization problems
described by a line in the bit-matrix. This encodes informatidn separate steps. A single objective is considered in each
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N Fig. 6. A transformation of a continuous shape function into a discrete shape
function with eight minimal implementations.
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Fig. 5. The shape function for a macro-cell comprising four subcells. The S

three possible subcell arrangements that yield minimal-area implementations
of the macro-cell are shown.

step, while approximations are used for the others to keep
the computation tractable. In contrast, our hybrid genetic algo-
rithms consider the different objectives in a single optimization
process. This is possible due to the use of problem-specific
heuristics such as slicing trees, shape functions, and iterated . (h.h)
matching, which are introduced in this section. T T T T

width
A. Representing Placement Patterns by Binary SllCIﬂg Treelg—ig. 7. The generalized shape function for two fixed blocks placed upon

Two-dimensional packing or p|acement patterns can [ggch other; each combination is labeled with the orientations of the blocks,
characterized by slicing trees. A slicing tree defines a hi({ﬁf instance, k, v) means the lower block is in horizontal and the upper

ock is in vertical orientation.

archy of cuts needed for recursively partitioning a rectangular

block into patterns consisting of smaller blocks. The simplest

kind of slicing trees are binary slicing trees, which represef®me information is lost by this transformation, it keeps the

guillotineable or slicing patterns. According to Stockmeyefomputations during the optimization process tractable.

[24], a pattern is S|icing’ if it is either a basic block, i.e., When Combining two flexible blOCkS, their Shape functions

an indivisible item, or if there is a line segment (a slice) th&2an be added to compute the shape function of the also flexible

divides the enclosing rectangle into two pieces such that edBgta-block (pattern consisting of more than one block). If the

of the pieces is slicing. Fig. 3 presents a slicing pattern afgientations of the blocks are free, they can be rotated By 90

a corresponding slicing tree. The inner nodes of the tree &@fore being placed on the layout surface. Both possibilities

labeled with the cut directions (vertical, horizontal), and théa@n be considered in the shape function of the resulting

leaves characterize the basic blocks. There is also a bottdita-block by labeling the minimal implementations with the

up interpretation of slicing trees. In this case, the label of drticular orientations. Fig. 7 shows the composition of such

inner node defines the relative arrangement (side by side@g@eneralized shape function for a meta-block consisting of

one upon the other) of the patterns represented by its subtré®®, fixed-shape blocks with free orientations. The relative
arrangement of the blocks is fixed, since they are placed upon

B. Storing Different Implementations in Shape Functions €ach other in all cases. Note that there is one implementation

Shape functions have been introduced by Otten [5] for VL%LhICh 's dominated by another one: combinati@n v) with

layout generation dealing with flexible cells. The erxibiIitybIe lower block in horizontalk) orientation and the upper

inates f the fact that Il hi hicall . “block in vertical (v) orientation is covered by combination
originates from the fact that a cell ierarchically comprise , h), since both have the same width, but the latter is less
a set of subcells, which can be arranged in different wa

. . o gh. In practice, most implementations are dominated, and it
Fig. 5 presents a shape function for a cell containing foHé’rg P P

. . ossible to store all nondominated implementations without
sgbpells. Thrge different arrangements of these cells yield thr Serving an exponential growth in the number of combined
m|n|mal-area_|mplementat|on§ for the_ macro_—cell. These can hlementations at each level in the tree. Empirical results for
represen_ted na shape function, which defines the ad“_“'ss' 15 will be presented in a later section of this article.
shapes, i.e., the relation between area and aspect ratio. Note
that a discrete shape function is completely defined by its ) ) o
minimal area implementations. C. lterative Clustering Based on Connectivity

In the facility layout problem there are no discrete minimal While slicing trees and shape functions deal with the pack-
implementations given. Only the area of a facility and &g aspect of the optimization problems, another heuristic
range for the aspect ratio are specified. This informatias necessary to take into account those constraints based on
defines a continuous shape function, which can be transfornehnectivity. When constructing a solution for these problems,
into a discrete shape function, as shown in Fig. 6. Althougfare must be taken that highly connected blocks are placed
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near each other on the layout site. During the composition lafyout generation, if the computation of the global routes for
a slicing layout, blocks (or meta-blocks) are iteratively pairethe signal nets is integrated into placement, characterization of
This corresponds to composing an inner node of the slicitige routes is also part of the phenotype. Binary slicing trees are
tree by joining two leaves (or subtrees). well suited to represent packing or placement patterns and have
At the beginning of the construction, globally good pairingalready been used in genetic algorithms for two-dimensional
are identified in the set of all blocks. These build the lowestroblems [11], [13], [14], [19], [20], [25]. The genotype
level of the slicing tree. A good technique for successivelncoding in these approaches is a post- or prefix string
pairing items according to a quality function is the iteratedefining the structure of the tree and its node labels. During
matching heuristic, which was introduced by Fritsch and Vormecombination, partial arrangements of blocks are transmitted
berger [6]. It is based on the graph-algorithmic computatidrom parents to offspring. The corresponding operation is the
of a maximum weight matching on a complete graph. ThHeheritance of subtrees from the parents. Encoding the tree in
vertices of this graph represent the items to be paired, aadtring complicates this operation, since the string needs to be
each edge is weighted with the value of the quality functiotlecoded into the slicing tree to execute the recombination, then
for the corresponding pairing. A matching in this graph is ecoded into an offspring chromosome afterwards. There is no
set of node-disjunct edges, and the weight of a matchingr&ason for using a string encoding except for the analogy to
the sum of the weights of all edges in this set. the natural evolution process, where the genetic information is
In the case of the facility layout problem, an edge isncoded in a DNA string. When directly using the slicing tree
weighted according to the flow between the facilities repras the genotype representation, further decoding or encoding
sented by the adjacent vertices. For the VLSI layout generatithve tree when applying genetic operators is avoided.
problem, the quality function is based on the number of The use of trees for genotype coding is already well known
terminals that have to be connected by signal nets betwdesm GP [26]. In GP the size of the individuals in a population
both cells. A maximum weight matching corresponds to a sist greatly varied, however, and usually no restrictions exist
of optimal pairings such that a globally maximal number afegarding the structure of the trees. Trees representing layouts
terminals can be connected inside the resulting meta-blockfffer from those used in GP in one main point: all trees must
Since paired blocks are adjacent on the final layout, tiave a fixed size, because they have exactly the same set
maximum weight matching ensures short wiring lengths in tfef leaves (objects to place). Therefore, the application of the
case of macro-cell layout generation and low partial flow-cogenetic operators is more complicated than in GP. Problem-
terms for the facility layout problem. specific operators must be used to ensure that only correct
In the second iteration, the next level of the slicing tree wffspring are generated.
constructed by computing a maximum weight matching on aln the following examples, as for the remainder of this
graph whose vertices represent meta-blocks, each consistinicle, blocks or subpatterns in a tree defining a layout
of two blocks. The quality function is based on the sum air packing pattern are always stacked vertically upon each
the flow between both sets of facilities contained inside tlwther. The pattern characterized by the right successor of an
corresponding meta-blocks for the facility layout problem anidner tree node is always positioned on top of the pattern
on the number of terminals that have to be connected betwedraracterized by its left successor when combining both parts
the cells in both sets for the macro-cell layout generatioimto a pattern or meta-block. Placing these parts next to each
The process is iterated until the slicing tree is completed loyher is considered in the next level of the tree by taking into
joining the last two meta-blocks at the root (see Fig. 8). If theccount the rotated variant of this meta-block.
matching at one level is not perfect, that is, not all vertices are
adjacent to edges of the matching set, the corresponding blocks
or meta-blocks are kept and added to the set of meta-blogksMutation

to be matched in the next iteration. In our approach, three different mutation operators tailored
to handle tree-structured genotypes are used. There are two
IV. GENETIC ALGORITHMS WITH straightforward mutation operators that change the structure
TREE-STRUCTURED GENOTYPE REPRESENTATION of a tree. Fig. 9 shows an example for the operator which

. . . . . exchanges two parts of a tree. Palrtis a single leaf, while
This section describes the main features of our hybrid gé; is agsubtree pcontaining three nodes. A?[ the phenotypic

netic algorithms for the two constrained placement problen]s. ; .
. . . . level, this corresponds to exchanging the block represented
The implementations of these algorithms employ a slicin

. : . . % leaf A with the placement or pattern for the set of blocks
tree representation and include shape functions and iteratgd .
aracterized by subtreB.

matching to address multiple design objectives simultaneous?y_l_he second mutation operator (Fig. 10) extracts a part of

At the end of this section, the hybrid genetic algorithms fothe tree (leafA) and inserts it at a different positionz)

the two applications are outlined. This corresponds to cutting a block or a partial placement out
of the complete packing pattern and moving it to a different
position. Note that this transformation cannot be performed

The phenotypic representation for the placement probleimg the operators which simply exchange leaves or subtrees, so
is basically the pattern that describes the geometric layothiis is an essential mutation operator for a genetic algorithm
i.e., shapes and positions of the blocks. In the case of VL&$ing tree-structured genotype representation.

A. The Genotype
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Matching graph in 1st iteration: U D

2nd iteration:

3rd iteration:

Slicing tree:

Level constructed in 3rd iteration: EEIEIE

/ AN
2nd iteration: HE] Eﬁ
N/
1st iteration: H B E’

Fig. 8. The construction of a slicing tree using the iterated matching heuristic, e.g., in the second iteration, when the second inner tree daweltési con
the meta-blocks adjacent to the bold edges are combined because the weight of the corresponding @atehii) (s larger than those of the other
two possible matchings6( + 85 and 80 + 85) in that graph.

A third mutation operator does not directly change therientations for the blocks and meta-blocks contained in a
structure of the tree. It converts the pattern described pwrticular pattern.
the slicing tree by changing the orientation of one of the o
blocks or meta-blocks inside a subpattern characterized by%nGene-Pool Recombination
inner node of the tree. This operator is only necessary if noThe recombination operator in genetic algorithms is usually
generalized shape functions are used to encode all possiblsexual operator, which constructs one or two offspring out
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] a set of larger subtrees. Because offspring creation is done
exchange leaf A /Eﬂ\ by randomly choosing disjoint subtrees out of the pool, this

with sublree B it N small subtree has a higher chance of being selected. If a small

@ B subtree is already included in more than one of the parent
/ g / é,A individuals, there will be even more copies of it in the pool.
o E E \ - ED This ideally corresponds to the building block hypothesis [33].
/ / | These building blocks are short, low-order, and highly fit
L] ool schemata that are sampled, recombined, and resampled during
the search. Like those building blocks, smaller trees have
a higher chance of being contained in one or more of the

offspring that are created out of the genetic material in the
pool.

1]
%\ insert subtrec A /Eﬁ\ D. Selection and Replacement

Fig. 9. Mutation by exchanging subtrees. Here a single Ae&f exchanged
with a three-node subtreB.

/ at position x
Ty @ = 0 H For choosing individuals as parents for recombination, the
* \ A/ \ "/ \ / \ fitter individuals have a higher chance of being selected.
O 0 @H o0 0[] For mutation, any individual in the population has an equal
| \ | \ AL \ | \ probability of being chosen; the operator used to generate
08 01 (@ Obo the offspring is selected randomly from the set of possi-

ble mutation operators. An offspring is created either by
recombination or mutation. A steady-state genetic algorithm
is used; thus, an individual may survive for longer than one
eneration. At the end of each generation, individuals are
eplaced if the quality of offspring is higher, or if they are

Fig. 10. Mutation by changing the structure of the tree. A single léas
cut and inserted at a different positianin the tree.

of the genetic information encoded in two parent individual
One obvious way f.o.r the cr.eatlon of one of'fs'pr.mg out of tw ite different from all the members of the current population.
tree-structured individuals is to combine disjoint subtrees E

both ts into a tree for the offsori Such a straiahtf e benefit of specialized replacement schemes to maintain
oth parents Into a tree for the otispring. such a stralg Q(fﬁversity in the population has already been investigated by De

ward recombination operator can be implemented by select@&w [34], Goldberg and Richardson [35], and Whitley [36].

subtrees fr.om both pafe”.‘s. to for-m a pool of building bIOClﬁore recently, Freisleben and Merz used such a technique for
out of which a new individual is composed. Leaves th%esci

. : " ; b ving the traveling salesman problem [37] and the quadratic
are not contained in these subtrees are additionally inser ignment problem [38]. In their approaches, the number of
into this pool. During offspring creat_ion, these suptrees afoncommon edges in tours or the number of, items assigned
combmed_ to a _complete tree. Here, iterated mat_chmg can tBedifferent bins, respectively, is taken as a difference measure
used again to identify good pairs of subtrees with regard f8r two individuals

their connectivity. L The difference between two individuals representing place-
Two-parent or sexual recombination is inspired by thﬁ]

tural luti dis th in f f ent patterns is computed at the genotypic level and measured
hatural evoiution process and Is the main form o re;combby the number of subtrees that do not contain the same set of
nation used in artificial evolution. Multiparent recombination

. - ves. Although this measure does not take into consideration
operators have been introduced too. Bersini and Seront [ %1 structure of trees nor the orientations of blocks, it is

uszdéht:ee |c:ar<|antzsé similar toi]tblle;nbeln S mtajozltyt\r/]ot? [ZI(?]' fefficient to compute and serves as a rough measure of diversity.
and Eibenet al. [29] use up to ten parents. In the field o An offspring is always inserted into the population if its

evolution strategies, multiparent recombination has also b Ress is better than the fithess of the best individual. In
introduced as “global recombination” [30], [31]. The extende is case, the individual with worst fitness is replaced. If

_recombination scheme use_d in_ our hybrid genetic algorithnaﬁ offspring is not better than the best individual, then the
IS callgd gene—pgol reco.mb|nat|on., in reference to the Conmﬁ‘?(tjividual in the current population that is most similar to
established by Mhlenbt_em gnd Voigt [32.]' . . this offspring is identified. If their difference is below a given

. In gene-pool recor_nb_lnanon, "’.‘" genetic information f_rom threshold, indicating that they encode similar solutions, then
glven'set of parents is inserted into the pool, OUt. Of which tnﬁe better of the two is kept in the population. If the offspring
offspring are created. In our approach, the genetic |nformat|%1 disparate from all individuals, it is considered to encode
encoded in an individual defines the relative positions of tr};\esignificant amount of new ge’netic information and enters

b!OCkS and is representeq n th? structurq th? correspond Rd population by replacing the least fit individual, without
binary tree. Due to the hierarchical organization of the tregonsideration of its fithess

parts of this information are encoded in each of its subtrees.

Thus, every subtree of each parent individual is inserted into ) i .

the pool. (In the actual implementation the pool does nbt e Hybrid Genetic Algorithm for the

contain copies of all subtrees, but only pointers to the particulaCility Layout Problem

inner nodes of the parent trees.) Note that a small subtred-ig. 11 describes the operations which are executed during
occurs more than once in this pool, since it is contained the computation of a single individual in the hybrid genetic
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1. Bottom-up construction of the tree: 1. Bottom-up construction of the tree:
- Pair blocks based on maximum weight matching — Pair cells based on number of common nets
- Consider all possible shapes and orientations in - Fix orientations for cells

generalized shape functions - Compute shape functions for flexible meta-blocks

2. For all implementations in root node: - Add estimated routing space

- Compute in top-down traversal the orientations and

s 2. Choose layout with minimal area of
shapes for all facilities

circumscribing rectangle
- Transform tree into a geometrical layout, determine 3. Top-down traversal for sizing flexible cells
positions of the centroids of the facilities, and com-

. . 4.C t ting:
pute flow costs for this implementation ompute routing

.. ~ Transform tree into routing graph
3. Take minimal flow costs as fitness value g erap

- Compute global routes

Fig. 11. The operations needed for construction of a single individual in the - Determine and add routing area
hybrid genetic algorithm for the facility layout problem. After mutation or
recombination, step 1 is only executed for all levels in the tree higher than 5. Bottom-up traversal to update total layout area

the level where a change occurred.

Fig. 12. The operations needed for a construction of a single individual in
. . L the hybrid genetic algorithm for macro-cell layout generation.
algorithm for the facility layout problem. The slicing tree

of an individual is constructed from the bottom up. All

facilities are paired by using iterated matching based &Lgnal nets are Qetermined. At this poinF, the number of nets
the flow between two faciliies or the sum of the flowd" €ach channelis known, the channel widths are adapted, and

the final positions of the cells on the layout are fixed. Details

Section 11I-C. Generalized shape functions are used to storedli tN€ computation of the routing in our work can be found
possible implementations for a meta-block based on differdft[39]- Fig. 12 provides an outline of the computation steps
orientations of the combined blocks. Thus, a single individudHring the construction of an individual.

encodes several layouts with different shapes, represented b€ Main advantage of this approach, in comparison to other

different implementations stored in the root of the tree. THPMMON approaches, is that the computation of the global
orientations and shapes of meta-blocks and facilities for ed@/tes for the signal nets is fully integrated into the placement
implementation are determined by top-down traversal, and tR&CESS: The positions of the cells are not fixed until all routes
flow costs for the particular layout are computed. The minim3pve been determined. Furthermore., all shapes for the fle.xllble
flow costs of all stored implementations are taken as the fitnéé%ls are stored, and the globally optimal shapes are identified.

of the individual.

Since all possible orientations for the blocks are considered
by the generalized shape functions, only the two mutationin this section the hybrid genetic algorithms are applied to
operators that exchange nodes or change the tree structlifierent benchmark problems, and the results are compared
are used. After application of a genetic operator, the shageresults published for other technigues.
functions are recomputed only for those inner nodes located at
higher tree levels than those nodes where a mutation occurrad VLS| Macro-Cell Layout Generation

between facilities comprised in a meta-block, as described

V. RESULTS

) i ) The hybrid genetic algorithm for the layout generation
F. The Hybrid Genetic Algorithm for problem was tested on real-life circuits chosen from a bench-
Macro-Cell Layout Generation mark suite that was released for design workshops in the
In the hybrid genetic algorithm for the layout generatioearly 1990’s and is often referenced in the literature as
problem, standard shape functions are used. When two blothe MCNC benchmarks. They were originally maintained by
are joined to form a meta-block, their orientations are fixetlorth Carolina’s Microelectronics, Computing, and Network-
This is necessary since the channel between the blocks s Center, but are now located at the CAD Benchmarking
been augmented with an estimated amount of routing spacaboratory (CBL) at North Carolina State University. These
which depends on the positions of the terminals on both blockenchmarks are standard problems in macro-cell layout, and
and, thus, their orientations. Before fixing the orientations, dle characteristics of the circuits are shown in Table I.
16 possible combinations of the blocks relative to each otherUnless otherwise stated, all results of our hybrid genetic
are checked to identify an arrangement with a maximal numhkagorithm presented in this section were obtained using a
of terminals to be connected on the adjacent sides of bgtarallel implementation based on the stepping stone model.
blocks or partial layouts. All nondominated implementationSeveral subpopulations each consisting of ten individuals are
for the flexible meta-blocks are stored in their shape functiorocessed in parallel with periodic migration of individuals
After completion of the tree, the layout with minimal area ibetween them. In addition to this, different strategies are
identified, the flexible cells are sized, and the tree is trangursued by the subpopulations, which are dynamically adapted
formed into a geometrical layout. For this geometrical layoutluring the search [40]. These strategies differ in the frequency
the shortest paths between the terminals to be connectedubgd for the particular mutation operators, in the ratio of
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TABLE | TABLE I
THE BENCHMARK CIRCUITS FOR THE THE LAvouT AREAS [MM?] FOR THE VLS| BENCHMARK
MACRO-CELL LAYOUT GENERATION PROBLEM CircuITs (AVERAGE OF 30 RUNS FOR OUR RESULTS)
zeroxf | zeroxr | ami33d | amid9 zerozf | zerox | ami33 | ami49
#cells 10 10 | 33 | 49 MBP [41] — |2579] 242 | —
#nets 203 | 203 | 123 | 408 TimberWolf [42] | — — | 257 | —
#terminals 698 | 698 | 452 | 958 BB [43] — 2617 | 2.24 | 51.49
#terminals/net | 3.43 | 343 | 3.67 | 2.35 SAGA [23] — 27155 — —
#1/0 terminals | 2 2 42 22 FRODO [44] | 29.41 |31.13| 3.37 | 60.02
#shapes/cell | 62 1 1 1 CAR [44] 26.08 | 2871 | 2.64 | 56.40
cell area [mm?]| 194 | 194 | 1.16 | 35.1 Hybria| Best | 2734 [27.77] 277 [5349
GA | Ave | 27722925 292 | 5674
o 0.19 | 047 | 0.07 | 1.04
66.07 {1 ami49
64.01 | random pairing ------- recombination is useful when generating a layout dori49
Layout 62.01 A iterated matching it Ieads_to premature_ convergence When dealing whh33_ _
Area A possible explanation for this effect is the deterministic
[mm?] 60.0- character of the matching heuristic. Especially in combination
with gene-pool recombination, when inserting the subtrees of
58.0- the top 50% of all individuals into the pool, iterated matching
tends to pair the randomly chosen subtrees in a similar manner.
" 144000 288000 432000 To overcome this problem and still take advantage of the
Evaluations beneficial effect for larger problems, in the full version of
(@ the hybrid genetic algorithm used to obtain the final results,
33 X ami33 the use of iterated matching during recombination is adapted
\ based on the progress of the evolution [40].
321 random pairing ------- Table Il presents the sizes of layouts generated by the hybrid
iterated matching genetic algorithm for the benchmark circuits based on 30 runs
Layout ;| for each problem. All runs were done on a network of 16
[:‘n :ZZ‘] Motorola MPC 601 processors with a subpopulation of ten
3.0 individuals on each processor. The computation times for the
largest problems were 34 min fami33and 85 min forami49
2.9 by running the genetic algorithm for 1800 and 2700 gen-

erations, i.e., 288000 and 432000 evaluations, respectively.
Evaluations For comparison some previously published results for this
benchmark set are listed. The best results are reported by

(b)
, , _ , ‘Onoderaet al. [41]. They use a branch and bound method
Fig. 13. Progress with respect to the use of the iterated matching heurigtic | th Is. Thi h | | ¢ laci .
during recombination for VLSI macro-cell layout generation. The averaj@ place the cells. IS approach only scales up 1o placing six

fitness based on ten runs is shown for each case; all parameters wereC#S, and for larger instances the layout must be composed
same, and only the recombination operator was changed. hierarchically. In particular, for circuiami4g two levels of
hierarchy are needed. TimberWolf by Swartz and Sechen [42]
mutation to recombination for offspring creation, and in thend MBP by Uptonet al. [43] are based on simulated an-
use of the iterated matching during recombination. nealing. SAGA by Esbensen and Mazumder [23] is a mixture
When pairing blocks randomly for VLSI-layout generationpf a genetic algorithm and simulated annealing. It starts as
cells are spread arbitrarily with regard to their connectivitg genetic algorithm and gradually switches to a simulated
on the layouts generated during the search. Iterated matahnealing process by reducing population size and increasing
ing can be used to enforce highly connected cells to Ittee mutation rate. Their approach is limited to smaller circuits
placed close together. Although computing the matching @ontaining fixed cells. FRODO is a floorplanning tool, based
a complete graph as we implemented it has cubic runtime the work of Lengauer and Mlér [44]. The reported results
the overhead can be neglected for graphs with less thame from the thesis of Pape [45], who uses the placements
100 nodes, and the number of meta-blocks to match duriggnerated by FRODO as an input to his tool CAR, which
recombination is usually much smaller than the number offines and topologically compacts the layout.
cells. Fig. 13 presents the performance of runs with andAlthough the same set of benchmark circuits was treated
without use of iterated matching during recombination. Aih the previously mentioned approaches, the comparison is
curves are averages based on ten runs with 16 subpopulaticomplicated. The results of TimberWolf have been achieved
using the same parameters. To avoid side effects (for exampjecombining several tools. BB only determines a placement
compensation of inefficient recombination by increasing thend estimates the routing space; the presented results have
mutation rate), no strategy adaptation has been used. Whiken obtained by using other (commercial) tools for routing
the use of iterated matching for combining subtrees durimgnd compaction after placement. SAGA and FRODO do

96,000 " 192,000 " 288,000
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TABLE 1l
THE NUMBER OF IMPLEMENTATIONS STORED IN THE ROOT NODE OF A SINGLE
INDIVIDUAL AND THE AVERAGE COMPUTATION TIME (SUN ULTRA1/140)TO
GENERATE AN INDIVIDUAL OF THE INITIAL POPULATION (INIT) AND
DURING THE SEARCH (OPT), AVERAGE OF 1000 VALUES IN EACH CAsE

i #shapes t‘m‘le Lms]
H init | opt
INNER o - TL91-5 | 420 | 51| 46

TLY1-6 47.0 64 70
TL91-7 58.9 9.8| 104
TL91-8 777 11.4| 120
TL91-12} 163.3 29.8| 339
TL91-15| 1429 42.8| 43.1
TL91-20| 183.7 703 | 85.2
TL91-30| 251.8 |169.3210.8

number of facilities to place. The areas of the facilities are
quite different, for instance in TL91-30 the sizes of the 30
facilities vary between three and 36 (average 1%.9; 8.4).

A measure for the complexity of the problem with regard
to the connectivity is the flow dominance, defined as the
coefficient of variation for the entries in the flow matrix [46].
For the problems in the benchmark set, the flow dominance
is between 100 and 130, which means that they do not cover
) . . . a broad range of problems regarding this measure. This is a
only floorplanning, and CAR starts its work with a giveny e ynown benchmark set, however, and results for different
placement that has been generated by FRODO. There is alwgys; s ches have been published, which provides a good basis
a strict dlstmctloq betwegn placement gnd _routmg in all theris comparison.

approaches. AN mteglratpn of the routmlg into the placement-l-he continuous shape functions for the facilities were trans-
process in VLSI design is desirable, since the accuracy Bfrmed to discrete shape functions with ten implementations

the routing space estimate determines the accuracy for 3¢ oach facility. Combining two of these facilities and con-

assessment of a particular placement. Overestimates can l&agring all possible orientations for both, there ar&04.0

to suboptimal layouts, in the case of underestimates the cellshinations to consider for the resulting meta-block. Contin-

have to be rearranged to obtain a routable placement. Ttﬂﬁg this computation when constructing the tree representing

hybrid genetic algorithm proposed in this article fully inte; complete layout, one might expect an exponential growth for

Fig. 14. A layout for circuitami4g area= 55.65 mmZ.

h si in th dotailed ) at the vast majority of combinations are redundant, since,
our approach, since in these cases, no detailed routing Q%n when combining 30 flexible facilities, there exist on

been done. The routability of our layouts has been checkgdyaqe only 251.8 implementations, which are stored in the

by a tool developed at the University of Osnatk, which ., node of the tree representing an individual. In the table

also produced the detailed routing for the layout presentedijgi\; gata is also given, which shows the scalability of this

Fig. 14. Incprporating a better technique for d(_atailed rou“%proach. The difference between the time to generate an
or compacting the final Iayout aft.er routing, like the Othe|'hitial individual and the time needed to generate an offspring
approaches have done, will certainly produce better resu'&%ring the optimization is caused by the overhead to set up
Alternatively, a sophisticated heuristic could be included e gene pool for recombination

determine the demand of routing space inside the channelg,"tapie v the results for the facility layout problem are
more accurately. At the moment, an upper bound of routing, ., - averaged over 30 runs. For this benchmark set, a
space is inserted by adding one track for each net in a chan ‘f)lecial objective function.5- 3. _. d2 - m; is used for the
Nevertheless, even with this simple heuristic our best res iSw costs of a placement to ]ir>1<z:rezélse %e influence of the
are neaI:Iy competitive ‘l’,‘”th tholsef preserr:ted by fthﬁ ?thﬁfstances between facilities. Four subpopulations were used,
approaches using specialized tools for each stage of the laygi; e sjze of each was ten, resulting in a total population size

generation process. of 40. During recombination, the subtrees of the top 50% of all
. individuals in each subpopulation were inserted into the gene
B. The Facility Layout Problem pool. The number of generations depended on the problem

The implementation of the hybrid genetic algorithm fosize: the genetic algorithm was run for 1000 generations
the facility layout problem has been tested on a set of eigior problems with less than ten facilities, 2000 generations
instances proposed by Tam and Li [10]. These instances &e midrange problems, and 3000 generations for 20 and 30
named TL91X in the following with X representing the facilities. This resulted in a computation time of 40 and 100
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TABLE IV
THE OBTAINED FLow COSTS FOR THEFACILITY LAYouT PROBLEM (AVERAGE OF 30 RUNS), COMPARED TO PREVIOUSLY PUBLISHED RESULTS

TL91-5 | TL91-6 | TL91-7 | TL91-8 | TL91-12 | TL91-15 | TL91-20 | TL.91-30
Tam and Li {10] 247 514 559 839 3162 5862 — —
Kado et al. [13] 228 362 559 839 3162 5862 16535 42814

Garces-Perez et al. [14]| 226 384 568 878 3220 7510 14033 39018

Best 214 327 629 833 3164 6813 13190 35358

Hybrid GA Avg 214 336 644 886 3203 7004 14333 36984

o 0.0 8.6 17.5 9.4 17.0 205.5 367.5 850.8

min for the two largest problems on a network of four Spanglacement task. It is more scalable than most other approaches
Ultra/140 workstations for 120 000 evaluations in either casand can be further improved by incorporating a better heuristic
Table 1V also includes the best results reported by Tam atwl estimate the area needed to complete the detailed routing
Li [10], Kado et al. [13], and Garces-Pereet al. [14] for of signal nets.
comparison. Although Tam and Li originally proposed these In the case of the facility layout problem, the hybrid ap-
instances, they do not present final results for problems TLQdroach shows much better scalability than several approaches
20 and TL91-30, due to difficulties with the scalability ofusing the same benchmark set. The instances in this set
their approach. Kadet al. [13] implemented a set of geneticrepresent a generic problem type of this domain, which in-
algorithms based on a slicing-tree representation. They wetades various design applications. The proposed approach
able to obtain better results for the two smallest problenecan certainly be extended to consider shape constraints for the
and were the first group to present results for the problersige the facilities have to be placed on and to solve problems
with 20 and 30 facilities. Garces-Peretal. [14] use GP and containing preoccupied areas. It can also be extended to deal
report better results for the last two problems, whereas thith office or production-hall layout problems where passages
performance for the smaller problems varies. Our approaahe needed between the placed facilities, similar to the routing
outperforms the other approaches for the two largest probleragga in VLSI layouts.
and the flow costs of the best layout for the instance with 30 The main feature of the approach introduced here, in com-
facilities produced by our hybrid genetic algorithm are 10 anghrison with other approaches, is the manner in which block
20% smaller than the results presented by Garces-Retreflexibility is treated: During the iterative composition of a
al. [14] and Kadoet al. [13], respectively. Their approachesplacement, several implementations (shapes and orientations)
size the facilities after fixing a relative placement and usefar blocks and meta-blocks are stored. This process can
continuous representation. While this provides better solutiobs described as a kind of “implicit hillclimbing.” Common
for smaller problem instances, where our approach ended hificlimbers in genetic algorithms for combinatorial optimiza-
with less optimal solutions, considering different shapes tion problems randomly explore solutions neighboring the
discrete shape functions payed off for the larger problenmandidate solution encoded in the current individual and accept
From a practical point of view, if better performance fothose with better fithess. In hybrid approaches, local search
smaller instances is demanded, a refined discretization of teehniques explore the solution space close to the sample
shape functions (i.e., make use of more than ten shapes peints by applying specialized heuristics. When including
block) or even a refinement of the best layout after evaluatipgoblem-specific knowledge during creation of individuals,
a tree should provide better results. Our goal during the implée in our approach, it is possible to identify unfavorable
mentation of the hybrid genetic algorithm was to achieve better redundant partial solutions and consider only the most
results for the larger problem instances within a practicabpgomising ones. Therefore, each individual in our hybrid
timeframe, however, since this is a more demanding task. genetic algorithms encodes a set of high-quality solutions, the
best of which is a local optimum.

VI. CONCLUSIONS

Hybrid approaches to two significant combinatorial place-
ment problems have been presented. These are genetic algo-
rithms with nonstandard genotypic representation and specifict "€ authors thank the Paderborn Center for Parallel Com-
genetic operators. During the construction of individual®uting (PC) for the opportunity to use their parallel machines.
several problem-specific heuristics address the different objdéiey also thank M. Raymer and especially L. Kuhn for
tives and constraints. While the application of the slicing-trdBeir critical review of the manuscript and the editor and the
representation and the concept of generalized shape functiBR@nymous reviewers for valuable comments.
deal with the packing aspects, connectivity is considered
by using the iterated matching heuristic. As a result, the
hybrid genetic algorithms are able to take all constraints into
consideration during optimization. [1] P. M. Pardalos, F. Rendl, and H. Wolkowics, “The quadratic assignment

For the generation of VLSI macro-cell layouts, an approach problem: A survey and recent developments,DIMACS Series Discr.
has been introduced that fully integrates the computation gf; Math. Theor. Comp. Scienc994. vol. 16, pp. 1-42.

. . : M. R. Garey and D. S. Johnso&omputers and Intractability. San
the global routes and the sizing of the flexible cells into the Francisco, CA: Freeman, 1979.
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