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Abstract. In this paper we develop a framework for the approximation
of the entire set of ǫ-efficient solutions of a multi-objective optimization
problem with stochastic search algorithms. For this, we propose the set
of interest, investigate its topology and state a convergence result for a
generic stochastic search algorithm toward this set of interest. Finally, we
present some numerical results indicating the practicability of the novel
approach.


1 Introduction


Since the notion of ǫ-efficiency for multi-objective optimization problems (MOPs)
has been introduced more than two decades ago ([6]), this concept has been
studied and used by many researchers, e.g. to allow (or tolerate) nearly optimal
solutions ([6], [13]), to approximate the set of optimal solutions ([9]), or in or-
der to discretize this set ([5], [11]). ǫ-efficient solutions or approximate solutions
have also been used to tackle a variety of real world problems including port-
folio selection problems ([14]), a location problem ([1]), or a minimal cost flow
problem ([9]). The explicit computation of such approximate solutions has been
addressed in several studies (e.g., [13], [1], [2]), and in all of them scalarization
techniques have been used.
The scope of this paper is to develop a framework for the approximation of the
entire set of ǫ-efficient solutions (denote by Eǫ) with stochastic search algorithms
such as evolutionary multi-objective (EMO) algorithms. This calls for the de-
sign of a novel archiving strategy to store the ‘required’ solutions found by a
stochastic search process (though the investigation of the set of interest will be
the major part in this work). One interesting fact is that the solution set (the
Pareto set) is included in Eǫ for all (small) values of ǫ, and thus the resulting
archiving strategy for EMO algorithms can be regarded as an alternative to ex-
isting methods for the approximation of this set (e.g, [3], [7], [4], [8]).
The remainder of this paper is organized as follows: in Section 2, we give the re-
quired background for the understanding of the sequel. In Section 3, we propose
a set of interest, analyze its topology, and state a convergence result. We present
numerical results on two examples in Section 4 and conclude in Section 5.
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2 Background


In the following we consider continuous multi-objective optimization problems


min
x∈Rn


{F (x)}, (MOP)


where the function F is defined as the vector of the objective functions
F : Rn → Rk, F (x) = (f1(x), . . . , fk(x)), and where each fi : Rn → R is
continuously differentiable. Later we will restrict the search to a compact set
Q ⊂ Rn, the reader may think of an n-dimensional box.


Definition 1. (a) Let v, w ∈ Rk. Then the vector v is less than w (v <p w), if
vi < wi for all i ∈ {1, . . . , k}. The relation ≤p is defined analogously.


(b) y ∈ Rn is dominated by a point x ∈ Rn (x ≺ y) with respect to (MOP) if
F (x) ≤p F (y) and F (x) 6= F (y), else y is called nondominated by x.


(c) x ∈ Rn is called a Pareto point if there is no y ∈ Rn which dominates x.
(d) x ∈ Rn is weakly Pareto optimal if there does not exist another point y ∈ Rn


such that F (y) <p F (x).


We now define a weaker concept of dominance, called ǫ-dominance, which is
the basis of the approximation concept used in this study.


Definition 2. Let ǫ = (ǫ1, . . . , ǫk) ∈ Rk
+ and x, y ∈ Rn. x is said to ǫ-dominate


y (x ≺ǫ y) with respect to (MOP) if F (x) − ǫ ≤p F (y) and F (x) − ǫ 6= F (y).


Theorem 1 ([10]). Let (MOP) be given and q : Rn → Rn be defined by q(x) =
∑k


i=1
α̂i∇fi(x), where α̂ is a solution of


min
α∈Rk


{


‖
k


∑


i=1


αi∇fi(x)‖2
2; αi ≥ 0, i = 1, . . . , k,


k
∑


i=1


αi = 1


}


.


Then either q(x) = 0 or −q(x) is a descent direction for all objective functions
f1, . . . , fk in x. Hence, each x with q(x) = 0 fulfills the first-order necessary
condition for Pareto optimality.


In case q(x) 6= 0 it obviously follows that q(x) is an ascent direction for all
objectives. Next, we need the following distances between different sets.


Definition 3. Let u ∈ Rn and A, B ⊂ Rn. The semi-distance dist(·, ·) and the
Hausdorff distance dH(·, ·) are defined as follows:


(a) dist(u, A) := inf
v∈A


‖u − v‖


(b) dist(B, A) := sup
u∈B


dist(u, A)


(c) dH(A, B) := max {dist(A, B), dist(B, A)}


Denote by A the closure of a set A ∈ Rn, by
◦


A its interior, and by ∂A = A\
◦


A
the boundary of A.


Algorithm 1 gives a framework of a generic stochastic multi-objective opti-
mization algorithm, which will be considered in this work. Here, Q ⊂ Rn denotes
the domain of the MOP, Pj the candidate set (or population) of the generation
process at iteration step j, and Aj the corresponding archive.
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Algorithm 1 Generic Stochastic Search Algorithm


1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do


4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for


3 The Archiving Strategy


In this section we define the set of interest, investigate the topology of this ob-
ject, and finally state a convergence result.


Definition 4. Let ǫ ∈ Rk
+ and x, y ∈ Rn. x is said to −ǫ-dominate y (x ≺−ǫ y)


with respect to (MOP) if F (x) + ǫ ≤p F (y) and F (x) + ǫ 6= F (y).


This definition is of course analogous to the ‘classical’ ǫ-dominance relation but
with a value ǫ̃ ∈ Rk


−
. However, we highlight it here since it will be used frequently


in this work. While the ǫ-dominance is a weaker concept of dominance, −ǫ-
dominance is a stronger one.


Definition 5. A point x ∈ Q is called −ǫ weak Pareto point if there exists no
point y ∈ Q such that F (y) + ǫ <p F (x).


Now we are able to define the set of interest. Ideally, we would like to obtain
the ‘classical’ set


P c
Q,ǫ := {x ∈ Q|∃p ∈ PQ : x ≺ǫ p}3, (1)


where PQ denotes the Pareto set (i.e., the set of Pareto optimal solutions) of F
∣


∣


Q
.


That is, every point x ∈ P c
Q,ǫ is ‘close’ to at least one efficient solution, measured


in objective space. However, since this set is not easy to catch – note that the
efficient solutions are used in the definition –, we will consider an enlarged set
of interest (see Lemma 2):


Definition 6. Denote by PQ,ǫ the set of points in Q ⊂ Rn which are not −ǫ-
dominated by any other point in Q, i.e.


PQ,ǫ := {x ∈ Q| 6 ∃y ∈ Q : y ≺−ǫ x}4 (2)


Example 1. (a) Figure 1 shows two examples for sets PQ,ǫ, one for the single-
objective case (left), and one for k = 2 (right). In the first case we have
PQ,ǫ = [a, b] ∪ [c, d].


3 P c
Q,ǫ is closely related to set E1 considered in [13].


4 PQ,ǫ is closely related to set E5 considered in [13].
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(b) Consider the MOP F : R → R2, F (x) = ((x − 1)2, (x + 1)2). For ǫ =
(1, 1) and Q sufficiently large, say Q = [−3, 3], we obtain PQ = [−1, 1] and


PQ,ǫ = (−2, 2). Note that the boundary of PQ,ǫ, i.e. ∂PQ,ǫ = PQ,ǫ\
◦


PQ,ǫ =
[−2, 2]\(2, 2) = {−2, 2}, is given by −ǫ weak Pareto points which are not
included in PQ,ǫ (see also Lemma 1): for x1 = −2 and x2 = 2 it is F (x1) =
(9, 1) and F (x2) = (1, 9). Since there exists no x ∈ Q with fi(x) < 0, i = 1, 2,
there is also no point x ∈ Q where all objectives are less than at x1 or x2.
Further, since F (−1) = (4, 0) and F (1) = (0, 4) there exist points which
−ǫ-dominate these points, and they are thus not included in PQ,ǫ.


Fig. 1. Two different examples for sets PQ,ǫ. Left for k = 1 and in parameter space,
and right an example for k = 2 in image space.


Lemma 1. (a) Let Q ⊂ Rn be compact. Under the following assumptions
(A1) Let there be no weak Pareto point in Q\PQ, where PQ denotes the set of


Pareto points of F |Q.
(A2) Let there be no −ǫ weak Pareto point in Q\PQ,ǫ,


(A3) Define B := {x ∈ Q|∃y ∈ PQ : F (y) + ǫ = F (x)}. Let B ⊂
◦


Q and
q(x) 6= 0 for all x ∈ B, where q is as defined in Theorem 1,


it holds:


PQ,ǫ = {x ∈ Q| 6 ∃y ∈ Q : F (y) + ǫ <p F (x)}
◦


PQ,ǫ = {x ∈ Q| 6 ∃y ∈ Q : F (y) + ǫ ≤p F (x)}


∂PQ,ǫ = {x ∈ Q|∃y1 ∈ PQ : F (y1) + ǫ ≤p F (x) ∧ 6 ∃y2 ∈ Q : F (y2) + ǫ <p F (x)}


(3)


(b) Let in addition to the assumptions made above be q(x) 6= 0 ∀x ∈ ∂PQ,ǫ. Then


◦


PQ,ǫ = PQ,ǫ (4)


Proof. Define W := {x ∈ Q| 6 ∃y ∈ Q : F (y) + ǫ <p F (x)}. We show the equality
PQ,ǫ = W by mutual inclusion. W ⊂ PQ,ǫ follows directly by assumption (A2).
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To see the other inclusion assume that there exists an x ∈ PQ,ǫ\W . Since x 6∈ W
there exists an y ∈ Q such that F (y)+ ǫ <p F (x). Further, since F is continuous
there exists further a neighborhood U of x such that F (y)+ǫ <p F (u), ∀u ∈ U .
Thus, y is −ǫ-dominating all u ∈ U (i.e., U ∩ PQ,ǫ = ∅), a contradiction to the
assumption that x ∈ PQ,ǫ. Thus, we have PQ,ǫ = W as claimed.
Next we show that the interior of PQ,ǫ is given by


I := {x ∈ Q| 6 ∃y ∈ Q : F (y) + ǫ ≤p F (x)}, (5)


which we do again by mutual inclusion. To see that
◦


PQ,ǫ ⊂ I assume that there


exists an x ∈
◦


PQ,ǫ\I. Since x 6∈ I we have


∃y1 ∈ Q : F (y1) + ǫ ≤p F (x). (6)


Since x ∈
◦


PQ,ǫ there exists no y ∈ Q which −ǫ-dominates x, and hence, equality
holds in equation (6). Further, by assumption (A1) it follows that y1 must be in
PQ. Thus, we can reformulate (6) by


∃y1 ∈ PQ : F (y1) + ǫ = F (x) (7)


Since x ∈
◦


PQ,ǫ there exists a neighborhood Ũ of x such that Ũ ⊂
◦


PQ,ǫ. Further,


since q(x) 6= 0 by assumption (A1), there exists a point x̃ ∈ Ũ such that F (x̃) >p


F (x). Combining this and (7) we obtain


F (y1) + ǫ = F (x) <p F (x̃), (8)


and thus y1 ≺−ǫ x̃ ∈ Ũ ⊂
◦


PQ,ǫ, which is a contradiction. It remains to show


that I ⊂
◦


PQ,ǫ: assume there exists an x ∈ I\
◦


PQ,ǫ. Since x 6∈
◦


PQ,ǫ there
exists a sequence xi ∈ Q\PQ,ǫ, i ∈ N, such that limi→∞ xi = x. That is,
there exists a sequence yi ∈ Q such that yi ≺−ǫ xi for all i ∈ N. Since
all the yi are inside Q, which is a bounded set, there exists a subsequence
yij


, j ∈ N, and an y ∈ Q such that limj→∞ yij
= y (Bolzano-Weierstrass).


Since F (yij
) + ǫ ≤p F (xij


), ∀j ∈ N, it follows for the limit points that
also F (y) + ǫ ≤p F (x), which is a contradiction to x ∈ I. Thus, we have


◦


PQ,ǫ = Iasdesired.


For the boundary we obtain


∂PQ,ǫ = PQ,ǫ\
◦


PQ,ǫ


= {x ∈ Q|∃y1 ∈ Q : F (y1) + ǫ ≤p F (x) and 6 ∃y2 ∈ Q : F (y2) + ǫ <p F (x)}


(9)


Since by (A1) the point y1 in (9) must be in PQ, we obtain


∂PQ,ǫ = {x ∈ Q|∃y1 ∈ PQ : F (y1)+ǫ ≤p F (x) and 6 ∃y2 ∈ Q : F (y2)+ǫ <p F (x)}
(10)
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It remains to show the second claim. It is PQ,ǫ =
◦


PQ,ǫ ∪ ∂PQ,ǫ. Assume that
◦


PQ,ǫ 6= PQ,ǫ, i.e., that there exists an x ∈ ∂PQ,ǫ and a neighborhood U of x


such that U ∩
◦


PQ,ǫ = ∅. Since x ∈ ∂PQ,ǫ there exists a point y ∈ PQ such
that F (y) + ǫ ≤p F (x). By assumption it is q(x) 6= 0, and thus there exists an


x̄ ∈ U such that F (x̄) <p F (x). Since x̄ 6∈
◦


PQ,ǫ there exists an ȳ ∈ Q such that
F (ȳ) + ǫ ≤p F (x̄) <p F (x), which contradicts the assumption that x ∈ ∂PQ,ǫ.
Thus, we have that the closure of the interior of PQ,ǫ is equal to its closure as
claimed.


Remark 1. (a) Note that in general PQ,ǫ is neither an open nor a closed set, and
that PQ,ǫ gets ‘completed’ by −ǫ weak Pareto points (see also Example 1).


(b) Since for x and y1 in equation (10) it must hold that there exists an index
j ∈ {1, . . . , k} such that fj(y1)+ ǫj = fj(x). Thus, the boundary of PQ,ǫ can
be characterized by the set of −ǫ weak Pareto points which are bounded in
objective space from PQ by ǫ.


The next example shows that the closure of the interior of PQ,ǫ does in general
not have to be equal to its closure, which causes trouble to approximate ∂PQ,ǫ


using stochastic search algorithms. However, the following Lemma shows that


this is – despite for theoretical investigations – not problematic since
◦


PQ,ǫ, which
can be approximated in any case, already contains all the interesting parts.


Example 2. Figure 2 shows an example which is a modification of the MOP in


Example 1 (a). We have PQ,ǫ = {x∗}∪ [c, d] and hence
◦


PQ,ǫ = [c, d] 6= PQ,ǫ. Note
that here we have f ′(x∗) = 0, and thus that (A3) is violated. The problem with
the approximation of the entire set PQ,ǫ in this case is the following: assume that
argminf is already a member of the archive, then every candidate solution near
x∗ will be rejected by all further archives. Thus, the entire set PQ,ǫ can only be
approximated if x∗ is a member of a population Pi, i ∈ N, and the probability


for this event is zero. Such problems do not occur for points in
◦


PQ,ǫ (see proof
of Theorem 2).


Lemma 2. P c
Q,ǫ ⊂


◦


PQ,ǫ


Proof. Assume there exists an x ∈ P c
Q,ǫ\


◦


PQ,ǫ. Since x ∈ P c
Q,ǫ there exists a


Pareto optimal point p ∈ PQ with p ≺ǫ p. Further, since x 6∈
◦


PQ,ǫ there exists
an y ∈ Q such that F (y) + ǫ ≤p F (x). Combining both we obtain


F (y) ≤p F (x) − ǫ ≤ F (p), and


∃j ∈ {1, . . . , k} : fj(y) ≤ fj(x) − ǫ < fj(p) (⇒ F (y) 6= F (p)),
(11)


which means that y ≺ p, a contradiction to p ∈ PQ, and we are done.
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Fig. 2. Example of a set PQ,ǫ where the closure of its interior is not equal to its closure.


Having analyzed the topology of PQ,ǫ we are now in the position to state
the following result. The archiving strategy is simply the one which keeps all
obtained points which are not −ǫ-dominated by any other test point.


Theorem 2. Let an MOP F : Rn → Rk be given, where F is continuous, let
Q ⊂ Rn be a compact set and ǫ ∈ Rk


+. Further let


∀x ∈ Q and ∀δ > 0 : P (∃l ∈ N : Pl ∩ Bδ(x) ∩ Q 6= ∅) = 1 (12)


Then, under the assumptions made in Lemma 1, an application of Algorithm 1,
where


ArchiveUpdatePQ,ǫ(P, A) := {x ∈ P ∪ A : y 6≺−ǫ x ∀y ∈ P ∪ A}, (13)


is used to update the archive, leads to a sequence of archives Al, l ∈ N, with


lim
l→∞


dH(PQ,ǫ, Al) = 0, with probability one. (14)


Proof. Since dist(A, B) = dist(A, B) for all sets A, B ⊂ Rn and since
◦


PQ,ǫ =
PQ,ǫ (see Lemma 1), it is sufficient to show that the Hausdorff distance between


Al and
◦


PQ,ǫ vanishes in the limit with probability one.


First we show that dist(Al,
◦


PQ,ǫ) → 0 with probability one for l → ∞. It is


dist(Al,
◦


PQ,ǫ) = max
a∈Al


inf
p∈


◦


PQ,ǫ


‖a − p‖.


We have to show that every x ∈ Q\PQ,ǫ will be discarded (if added before) from
the archive after finitely many steps, and that this point will never been added
further on.
Let x ∈ Q\PQ,ǫ. Since x is by assumption (A2) not a −ǫ-weak Pareto point,
there exists a point p ∈ PQ,ǫ such that F (p) + ǫ <p F (x). Further, since F is
continuous there exists a neighborhood U of x such that


F (p) + ǫ <p F (u), ∀u ∈ U. (15)
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By (12) it follows that there exists with probability one a number l0 ∈ N
such that there exists a point xl0 ∈ Pl0 ∩ U ∩ Q. Thus, by construction of
ArchiveUpdatePQ,ǫ, the point x will be discarded from the archive if it is a
member of Al0 , and never be added to the archive further on.


Now we consider the limit behavior of dist(
◦


PP,ǫ, Al). It is


dist(
◦


PQ,ǫ, Al) = sup


p∈
◦


PQ,ǫ


min
a∈Al


‖p − a‖.


Let p̄ ∈
◦


PQ,ǫ. For i ∈ N there exists by (12) a number li and a point pi ∈
Pli ∩ B1/i(p̄) ∩ Q, where Bδ(p) denotes the open ball with center p and radius


δ ∈ R+. Since limi→∞ pi = p̄ and since p̄ ∈
◦


PQ,ǫ there exists an i0 ∈ N such that


pi ∈
◦


PQ,ǫ for all i ≥ i0. By construction of ArchiveUpdatePQ,ǫ, all the points
pi, i ≥ i0, will be added to the archive (and never discarded further on). Thus,
we have dist(p̄, Al) → 0 for l → ∞ as desired, which completes the proof.


Remark 2. In order to obtain a ‘complete’ convergence result we have postulated


some (mild) assumptions in order to guarantee that
◦


PQ,ǫ = PQ,ǫ, which is in fact
an important topological property needed for the proof. However, if we drop the
assumptions we can still expect that the interior of PQ,ǫ – the ‘interesting’ part
(see Lemma 2) – will be approximated in the limit. To be more precise, regardless
of assumptions (A1)–(A3) it holds in the above theorem that


lim
l→∞


dist(
◦


PQ,ǫ, Al) = 0, with probability one.


4 Numerical Results


Here we demonstrate the practicability of the novel archiver on two examples. For
this, we compare ArchiveUpdatePQ,ǫ against the ‘classical’ archiving strategy
which stores all nondominated solutions obtained during the search procedure
(ArchiveUpdateND). To obtain a fair comparison of the two archivers we have
decided to take a random search operator for the generation process (the same
sequence of points for all settings).


4.1 Example 1


First we consider the MOP suggested by Tanaka ([12]):


F : R2 → R2, F (x1, x2) = (x1, x2) (16)


where


C1(x) = x2
1 + x2


2 − 1 − 0.1 cos(16 arctan(x1/x2)) ≥ 0


C2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5
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Figure 3 shows two comparisons for N = 10, 000 and N = 100, 000 points within
Q = [0, π]2 as domain5, indicating that the method is capable of finding all
approximate solutions.


0 0.2 0.4 0.6 0.8 1 1.2 1.4
0


0.2


0.4


0.6


0.8


1


1.2


1.4


x
1
 = f


1


x 2 =
 f 2


(a) N = 10, 000
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 f 2


(b) N = 100, 000


Fig. 3. Numerical result for MOP (16) using ǫ = (0.1, 0.1).


4.2 Example 2


Finally, we consider the following MOP proposed in [8]:


F : R2 → R2


F (x1, x2) =


(


(x1 − t1(c + 2a) + a)2 + (x2 − t2b)
2


(x1 − t1(c + 2a) − a)2 + (x2 − t2b)
2


)


,
(17)


where


t1 = sgn(x1)min


(⌈


|x1| − a − c/2


2a + c


⌉


, 1


)


, t2 = sgn(x2)min


(⌈


|x2| − b/2


b


⌉


, 1


)


.


The Pareto set consists of nine connected components of length a with identical
images. We have chosen the values a = 0.5, b = c = 5, ǫ = (0.1, 0.1), the domain
Q = [−20, 20]2, and N = 10, 000 randomly chosen points within Q. Figures 4 and
5 display two typical results in parameter space and image space respectively.
Seemingly, the approximation quality of the Pareto set obtained by the limit set
of ArchiveUpdatePQ,ǫ is better than by the one obtained by ArchiveUpdateND,
measured in the Hausdorff sense. This example should indicate that it can be
advantageous to store more than just non-dominated points in the archive, even
when ‘only’ aiming for the efficient set.


5 To fit into our framework, we consider in fact the (compact) domain Q′ := [0, π]2 ∩
{x ∈ Rn : C1(x) ≥ 0 and C2(x) ≤ 0.5}.
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(b) ArchiveUpdatePQ,ǫ


Fig. 4. Numerical result for MOP (16) in parameter space.


5 Conclusion and Future Work


We have proposed and investigated a novel archiving strategy for stochastic
search algorithms which allows – under mild assumptions on the generation
process – to approximate the set PQ,ǫ which contains all ǫ-efficient solutions
within a compact domain Q. We have proven the convergence of the algorithm
toward this set in the probabilistic sense, and have given two examples indicating
the usefulness of the approach.
Since the set of approximate solutions forms an n-dimensional object, a suitable
finite size representation of PQ,ǫ and the related archiving strategy are of major
interest for further investigations.
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Fig. 5. Comparison of the result of both archivers in objective space.
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