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ABSTRACT
In this work we study the convergence of generic stochastic
search algorithms toward the entire set of approximate solu-
tions of continuous multi-objective optimization problems.
Since the dimension of the set of interest is typically equal to
the dimension of the parameter space, we focus on obtaining
a finite and tight approximation, measured by the Hausdorff
distance. Under mild assumptions about the process to gen-
erate new candidate solutions, the limit approximation set
will be determined entirely by the archiving strategy. We
propose and investigate a novel archiving strategy theoreti-
cally and empirically. For this, we analyze the convergence
behavior of the algorithm, yielding bounds on the obtained
approximation quality as well as on the cardinality of the re-
sulting approximation, and present some numerical results.


Categories and Subject Descriptors
F.2.1 [Analysis of Algorithms and Problem Complex-
ity]: Numerical Algorithms and Problems; G.1.6 [Numerical
Analysis]: Optimization


General Terms
Algorithms, Performance
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1. INTRODUCTION
Since the notion of ε-efficiency for multi-objective opti-


mization problems (MOPs) has been introduced more than
two decades ago ([6]), this concept has been studied and
used by many researchers, e.g. to allow (or tolerate) nearly
optimal solutions ([6], [15]), to approximate the set of op-
timal solutions ([8]), or in order to discretize this set ([5],
[11]). ε-efficient solutions or approximate solutions have also
been used to tackle a variety of real world problems includ-
ing portfolio selection problems ([16]), a location problem
([1]), or a minimal cost flow problem ([8]).
As an illustrative example where it could make sense from
the practical point of view to consider in addition to the
exact solutions also approximate ones we consider a plane
truss design problem, where the volume of the truss as well
as the displacement of the joint to a given position have to be
minimized (see also Section 6.2). Since the designs of this
problem—as basically in all other engineering problems—
have to obey certain physical contraints such as in this case
the weight and stability of the structural element, the ob-
jective values of all feasible solutions are located within a
relatively tight and a priori appreciable range. Hence, the
maximal tolerable loss of a design compared to an ‘optimal’
one with respect to the objective values can easily be deter-
mined quantitatively and qualitatively by the decision maker
(DM) before the optimization process. The resulting set of
exact and approximate (but physically relevant) solutions
obtained by the optimization algorithm1 leads in general to
a larger variety of possibilities to the DM than ‘just’ the


1Here we assume an idealized algorithm, since in practise
every solution is an approximate one.







set of exact solutions: this is due to the fact that solutions
which are ‘near’ in objective space can differ significantly in
design space (e.g., when the model contains symmetries, or
see Section 6.3 for another example).
The computation of such approximate solutions has been
addressed in several studies. In most of them, scalarization
methods have been empoyed (e.g., [15], [1], [3]). By their na-
ture, such algorithms can deliver only single solutions by one
single execution. The only work so far which deals with the
approximation of the entire set of approximate solutions (de-
note by Eε) is [10], where an archiving strategy for stochastic
search algorithms is proposed for this task. Such a sequence
of archives obtained by this algorithm provably converges—
under mild assumptions on the process to generate new can-
didate solutions—to Eε in the limit and in the probabilis-
tic sense. This result, though satisfactory for most discrete
MOPs, is at least from the practical viewpoint not sufficient
for continuous models (i.e., continous objectives defined on
a continuous domain): in this case, the set of approximate
solutions typically forms an n-dimensional object, where n
denotes the dimension of the parameter space (see Section
3). Thus, it may come to performance problems since it can
easily happen that a given threshold on the magnitude of the
archives is exceeded before a ‘sufficient’ approximation of the
set of interest in terms of diversity and/or convergence is ob-
tained. An analogue statement holds for the approximation
of the Pareto front, which is ‘only’ (k − 1)-dimensional for
MOPs with k objectives, and suitable discretizations have
been subject of research since several years (e.g., [5], [4],
[11]).
The scope of this paper is to extend the work in [10] and
to develop a framework for finite size representations of the
set Eε with stochastic search algorithms such as evolution-
ary multi-objective (EMO) algorithms. This will call for the
design of a novel archiving strategy to store the ‘required’
solutions found by the stochastic search process. We will
further analyze the convergence behavior of this method,
yielding bounds on the approximation quality as well as on
the cardinality of the resulting approximations. Finally, we
will demonstrate the practicability of the novel approach by
several examples.
The remainder of this paper is organized as follows: in Sec-
tion 2, we state the required background including the set
of interest PQ,ε which we analyze in Section 3. In Section 4,
we propose a novel archiving strategy for the approximation
of PQ,ε and state a convergence result, and give further on
an upper bound on the resulting archive sizes in Section 5.
In Section 6, we present some numerical results, and make
finally some conclusions in Section 7.


2. BACKGROUND
In the following we consider continuous multi-objective


optimization problems


min
x∈Q


{F (x)}, (MOP)


where Q ⊂ �n and F is defined as the vector of the ob-
jective functions F : Q → �


k, F (x) = (f1(x), . . . , fk(x)),
and where each fi : Q → � is continuously differentiable.
Later we will restrict the search to a compact set Q, the
reader may think of an n-dimensional box.


Def 2.1 (a) Let v, w ∈ Q. Then the vector v is less than


w (v <p w), if vi < wi for all i ∈ {1, . . . , k}. The
relation ≤p is defined analogously.


(b) y ∈ Q is dominated by a point x ∈ Q (x ≺ y) with
respect to (MOP) if F (x) ≤p F (y) and F (x) �= F (y).


(c) x ∈ Q is called a Pareto optimal point or Pareto point
if there is no y ∈ Q which dominates x.


The set of all Pareto optimal solutions is called the Pareto
set (denoted by PQ). This set typically —i.e., under mild
regularity assumptions—forms a (k−1)-dimensional object.
The image of the Pareto set is called the Pareto front.
We now define another notion of dominance, which is the
basis of the approximation concept used in this study.


Def 2.2 Let ε = (ε1, . . . , εk) ∈ �k
+ and x, y ∈ Q.


(a) x is said to ε-dominate y (x ≺ε y) with respect to
(MOP) if F (x) − ε ≤p F (y) and F (x) − ε �= F (y).


(b) x is said to −ε-dominate y (x ≺−ε y) with respect to
(MOP) if F (x) + ε ≤p F (y) and F (x) + ε �= F (y).


The notion of −ε-dominance is of course analogous to the
‘classical’ ε-dominance relation but with a value ε̃ ∈ �k


−.
However, we highlight it here since it will be used frequently
in this work. While the ε-dominance is a weaker concept of
dominance, −ε-dominance is a stronger one.
We now define the set which we want to approximate in the
sequel (see Fig. 1 for two examples).


Def 2.3 Denote by PQ,ε the set of points in Q ⊂ �n which
are not −ε-dominated by any other point in Q, i.e.


PQ,ε := {x ∈ Q| � ∃y ∈ Q : y ≺−ε x}. (1)


To see that PQ,ε typically forms an n-dimensional set let
x0 ∈ PQ (such a point, for instance, always exists if Q is
compact). That is, there exists no y ∈ Q such that y ≺ x0.
Since F is continuous and ε ∈ �k


+ there exists a neigborhood
U of x0 such that


� ∃y ∈ Q : y ≺−ε u ∀u ∈ U ∩ Q, (2)


and thus, U ∩ Q ⊂ PQ,ε, and we are done since U is n-
dimensional.
The following result and notions are used for the upcoming


proof of convergence.


Theorem 2.4 ([9]) Let (MOP) be given and q : �n → �
n


be defined by q(x) =
Pk


i=1 α̂i∇fi(x), where α̂ is a solution
of


min
α∈�k


8<
:


‚‚‚‚‚
kX


i=1


αi∇fi(x)


‚‚‚‚‚
2


2


; αi ≥ 0, i = 1, . . . , k,


kX
i=1


αi = 1


9=
; .


Then either q(x) = 0 or −q(x) is a descent direction for
all objective functions f1, . . . , fk in x. Hence, each x with
q(x) = 0 fulfills the first-order necessary condition for Pareto
optimality.


Def 2.5 Let u ∈ �n and A,B ⊂ �
n. The semi-distance


dist(·, ·) and the Hausdorff distance dH(·, ·) are defined as
follows:







Figure 1: Two different examples for sets PQ,ε.
Above for k = 1 and in parameter space with PQ,ε =
[a, b] ∪ [c, d]. Below an example for k = 2 in image
space.


(a) dist(u, A) := inf
v∈A


‖u − v‖


(b) dist(B, A) := sup
u∈B


dist(u, A)


(c) dH(A,B) := max {dist(A, B), dist(B, A)}


Def 2.6 A set S ⊂ �n is called not connected if there exist
open sets O1, O2 such that S ⊂ O1∪O2, S∩O1 �= ∅, S∩O2 �=
∅, and S ∩ O1 ∩ O2 = ∅. Otherwise, S is called connected.


Denote by A the closure of a set A ⊂ �n, by
◦
A its interior,


and by ∂A = A\
◦
A the boundary of A.


Def 2.7 (a) A point x ∈ Q is called a weak Pareto point
if there exists no point y ∈ Q such that F (y) <p F (x).


(b) A point x ∈ Q is called −ε weak Pareto point if there
exists no point y ∈ Q such that F (y) + ε <p F (x).


Algorithm 1 gives a framework of a generic stochastic
multi-objective optimization algorithm, which will be con-
sidered in this work. Here, Q ⊂ �n denotes the domain of
the MOP, Pj the candidate set (or population) of the gener-
ation process at iteration step j, and Aj the corresponding
archive.


Algorithm 1 Generic Stochastic Search Algorithm


1: P0 ⊂ Q drawn at random
2: A0 = ArchiveUpdate(P0, ∅)
3: for j = 0, 1, 2, . . . do
4: Pj+1 = Generate(Pj)
5: Aj+1 = ArchiveUpdate(Pj+1, Aj)
6: end for


3. THE ALGORITHM
Here we present and analyze a novel archiving strategy


which aims for a finite size representation of PQ,ε.
The algorithm which we propose here, ArchiveUpdatePQ,ε,
is given in Algorithm 2. Hereby is 1Δ := (Δ, . . . , Δ) ∈ �k


+,
where Δ ∈ �+, and d∞ the infinity norm distance. As dis-
cussed in Section 1, the scope is to prevent that all points
of PQ,ε are taken to the archive. The ‘exclusion strategy’ is
realized in line 3 of Algorithm 2: if there already exists a
point a2 in the current archive such that its distance to the
candidate solution p is less or equal to Δ∗ < Δ (measured
in image space), the candidate p will be discarded from the
archive. Thus, Δ can be viewed as the discretization param-
eter of the algorithm or the minimal spread (both in image
space) of the archive.
Next we show the convergence of the sequence of archives
when using this algorithm under certain assumptions.


Algorithm 2 A := ArchiveUpdatePQ,ε (P, A0, Δ)


Require: population P , archive A0, Δ ∈ �+, Δ∗ ∈ (0, Δ)
Ensure: updated archive A
1: A := A0


2: for all p ∈ P do
3: if � ∃a1 ∈ A : a2 ≺−ε p and � ∃a2 ∈ A :


d∞(F (a2), F (p)) ≤ Δ∗ then
4: A := A ∪ {p}
5: for all a ∈ A do
6: if p ≺−(ε+1Δ) a then
7: A := A\{a}
8: end if
9: end for


10: end if
11: end for


Theorem 3.1 Let an MOP F : �n → �
k be given, where


F is continuous, let Q ⊂ �n be a compact set and ε ∈ �k
+,


Δ, Δ∗ ∈ �+ with Δ∗ < Δ. For the generation process—i.e.,
Generate() in Algorithm 1—we assume


∀x ∈ Q and ∀δ > 0 : P (∃l ∈ � : Pl ∩ Bδ(x) ∩ Q �= ∅) = 1,
(3)


where Bδ(x0) := {x ∈ �n : ‖x− x0‖ < δ}, Pl as in Alg. 1,
P (A) the probability for event A, and for the MOP


(A1) Let there be no weak Pareto point in Q\PQ.


(A2) Let there be no −ε weak Pareto point in Q\PQ,ε,


(A3) Define B := {x ∈ Q|∃y ∈ PQ : F (y) + ε = F (x)}.
Let B ⊂


◦
Q and q(x) �= 0 for all x ∈ B, where q is as


defined in Theorem 2.4.


Then, an application of Algorithm 1, where
AchiveUpdatePQ,ε(P, A, Δ) is used to update the archive,
leads to a sequence of archives Al, l ∈ �, where the following
holds:


(a) For all l ∈ � it holds


‖F (a1)−F (a2)‖∞ ≥ Δ∗, ∀a1, a2 ∈ Al : a1 �= a2, ∀l ∈ �.


(b) There exists with probability one an l0 ∈ � such that
for all l ≥ l0:







(b1) dist(F (PQ,ε), F (Al)) < Δ


(b2) dist(F (Al), F (PQ,ε)) ≤ dist(F (PQ,ε+2Δ), F (PQ,ε))


(b3) dH(F (PQ,ε), F (Al)) ≤ D, where
D = max(Δ, dist(F (PQ,ε+2Δ), F (PQ,ε))


Proof. Before we state the proof we have to make some
remarks: a point p is discarded from an existing archive A
in two cases (see line 3 of Algorithm 2):


(D1) ∃a1 ∈ A : a1 ≺−ε p, or


(D2) ∃a2 ∈ A : ‖F (a2) − F (p)‖∞ ≤ Δ∗.
(4)


Further, we define by


B∞
δ (x) := {y ∈ �k : ‖x − y‖∞ < δ}


a k-dimensional open box around x ∈ �k. Now we are in
the position to state the proof.


Claim (a): follows immediately by construction of the al-
gorithm and by an inductive argument.
Claim (b1): By (a) it follows that for an element a from a
given archive A it holds


F (ã) �∈ B∞
Δ∗(F (a)), ∀ã ∈ A\{a}, (5)


Since further Q is compact and F is continuous it follows
that F (Q) is bounded, and thus, there exits an upper bound
for the number of entries in the archive for a given MOP,
denoted by n0 = n0(Δ


∗, F (Q)) (see also next section).
Since PQ,ε is compact and
dist(F (PQ,ε), F (Al)) = dist(F ( ¯PQ,ε), F (Al)), and since Al, l ∈
�, is finite it follows that


dist(F (PQ,ε), F (Al)) = max
p∈PQ,ε


min
a∈Al


‖F (p) − F (a)‖∞


That is, the claim is right for an archive Al, l ∈ �, if for
every p ∈ PQ,ε there exists an element a ∈ Al such that
‖F (p) − F (a)‖∞ < Δ. Thus, F (PQ,ε) must be contained in
CAl,Δ, where


CA,Δ :=
[


a∈A


B∞
Δ (F (a)).


First we show that if there exists an l0 ∈ � with
dist(F (PQ,ε), F (Al)) < Δ, this property holds for all l ≥ l0.
Assume that such an l0 is given. Define


Ã := {a ∈ Al0 |∃p ∈ PQ,ε : ‖F (p) − F (a)‖∞ < Δ} (6)


Since it holds that


p ∈ PQ,ε and a ∈ Q : ‖F (p) − F (a)‖ ≤ Δ ⇒ a ∈ PQ,ε+1Δ


it follows that Ã ⊂ PQ,ε+1Δ, and thus, no element a ∈
Ã will be discarded further on due to the construction of
ArchiveUpdatePQ,ε. Since dist(F (PQ,ε), F (Al)) < Δ it fol-


lows that for all p ∈ PQ,ε there exists an element a ∈ Ã such
that ‖F (p) − F (a)‖∞ < Δ. By the above discussion this


holds for all l ≥ l0, and since no element a ∈ Ã is discarded
during the run of the algorithm, and the claim follows.
It remains to show the existence of such an integer l0, which
we will do by contradiction: first we show that by using
ArchiveUpdatePQ,ε and under the assumptions made above
only finitely many replacements can be done during the run
of the algorithm. Then we construct a contradiction by show-
ing that under the asssumptions made above infinitely many
replacements have to be done during the run of the algorithm
with the given setting.


Let a finite archive A0 be given. If a point p ∈ �n replaces
a point a ∈ A0 (see lines 4 and 7 of Algorithm 2) it follows
by construction of ArchiveUpdatePQ,ε that


F (p) <p F (a) − Δ (7)


Since the relation ‘≺’ is transitive, there exists for every
a ∈ A a ‘history’ of replaced points ai ∈ Ali where equation
(7) holds for ai and ai−1. Since F (Q) is bounded there exist
li, ui ∈ �, i = 1, . . . , k, such that F (Q) ⊂ [l1, u1] × . . . ×
[lk, uk]. After r replacements there exists at least one a ∈
Al(r) such that the length h of the history of a is at least
h ≥ �r/n0�, where n0 is the maximal number of entries in
the archive (see above). Denote by a0 ∈ A0 the root of the
history of a. For a, a0 it follows that


F (a) ≤ F (a0) − hΔ


For h̃ > hmax := Δ−1 maxi=1,...,k ui − li we obtain a con-
tradiction since in that case there exists i ∈ {1, . . . , n} with
fi(a) < li and thus F (a) �∈ F (Q). Hence it follows that there
can be done only finitely many such replacements during the
run of an algorithm.
Assume that such an integer l0 as claimed above does not
exist, that is, that F (PQ,ε) �⊂ CAl,Δ for all l ∈ �. Hence
there exists a sequence of points


pi ∈ PQ,ε : yi = F (pi) ∈ F (PQ,ε)\CAi,Δ ∀i ∈ �. (8)


Since PQ,ε ⊂ Q and Q is compact there exists an accu-
mulation point p∗ ∈ PQ,ε, that is, there exists a subsequence
{ij}j∈� with


pij → p∗ ∈ PQ,ε for j → ∞. (9)


In [10] it was shown that under the assumptions (A1)–(A3)
it follows that


◦
PQ,ε = PQ,ε, (10)


i.e., that PQ,ε is not ‘flat’ anywhere. Hence, the set


Ũ1 := B∞
(Δ−Δ̃)/2(y


∗) ∩
◦


PQ,ε, (11)


where y∗ := F (p∗), is not empty. By (3) it follows that
there exists with probability one an l1 ∈ � and an element
x̃1 ∈ Pl0+l1 generated by Generate() with ỹ1 = F (x̃1) ∈ Ũ1.
There are two cases for the archive Al0+l1 : (a) x1 can be
discarded from the archive, or (b) x1 is added to it. Assume
first that x1 is discarded. Since x1 ∈ PQ,ε there exists no x̄ ∈
Q such that x̄ −ε-dominates x1. Hence, (D1) can not occur
(see (4)), and thus, there must exist an a2 ∈ Al0+l1 such
that ‖F (a2)−F (x1)‖∞ ≤ Δ∗ (see (D2)). Thus, whether x1


is added to the archive or not there exists an ã1 ∈ Al0+l1


such that ‖F (ã1 − y∗‖∞ ≤ Δ (since in case x1 is added to
the archive ã1 = x1 can be chosen), and we obtain


‖F (ã1) − ỹ‖∞ ≤ ‖F (ã1) − F (x1)‖∞ + ‖F (x1) − ỹ‖∞
< Δ ∀ỹ ∈ U1


(12)


By (8) and (9) there exist integers j1, l̃1 ∈ � with


yij1
∈ Ũ1\Cl0+l1+l̃1,Δ. (13)


Since by (12) it holds that ‖yij1
− F (a1)‖∞ < Δ it follows


that a1 �∈ Al0+l1+l̃1
, which is only possible via a replacement


in Algorithm 2 (lines 4 and 7).
In an analogous way a sequence {ai}i∈� of elements can







be constructed which have to be replaced by other elements.
Since this leads to a sequence of infinitely many replace-
ments. This is a contradiction to the assumption, and the
proof is complete.
Claim (b2): Let Ã and l0 as above, and let l ≥ l0. Further,
let x ∈ Q\PQ,ε+2Δ, that is, there exists a p ∈ PQ,ε such that


p ≺−(ε+2Δ) x. Since l ≥ l0 there exists an a ∈ Ã ⊂ Al


such that ‖F (p) − F (a)‖∞ < Δ. Combining both facts we
see that a ≺−(ε+1Δ) x. Thus, no element x ∈ Q\PQ,ε+2Δ is
contained in Al, l ≥ l0, or will ever be added to the archive
further on. The claim follows since the archive can only con-
tain elements in PQ,ε+2Δ (see also Examples 3.3 and 3.4).
Claim (b3): follows immediately by (b1) and (b2).


Remarks 3.2 (a) For Δ = Δ∗ = 0 the archiver coincides
with the one proposed in [10], which reads as


UpdatePQ,ε(P, A) := {x ∈ P∪A : y �≺−ε x ∀y ∈ P∪A}.
(14)


(b) The convergence result holds for a scalar Δ0 ∈ �+


which is used for the discretization of the ε-efficient
front. However, analogue results can be obtained by
using a vector Δ ∈ �k


+. In this case, the exclusion
strategy in line 3 of Algorithm 2 has to be replaced by


� ∃a2 ∈ A : F (p) ∈ B(F (a2), Δ), (15)


where


B(y,Δ) := {x ∈ �k : |xi − yi| ≤ Δi, i = 1, .., k}.
Further, elements a have to be discarded from the archive
if they are −(ε + Δ) dominated by p (lines 6-8).


(c) The parameter Δ∗ ∈ �+ with Δ∗ < Δ is used for the-
oretical purposes. In practise, Δ∗ = Δ can be chosen.


(d) Note that the convergence result also holds for discrete
models. In that case, assumption (3) can be modified
using Markov chains such that it can easier be verified
(see e.g., [7]).


The next two examples show that with using
ArchiveUpdatePQ,ε one cannot prevent to maintain points
x ∈ PQ,ε+2Δ\PQ,ε in the limit archive, and that the dis-
tance between F (PQ,ε+1Δ) (respectively F (PQ,ε+2Δ)) and
F (PQ,ε)—i.e., the maximal approximation error of the im-
age of the limit archive and the ε-efficient front F (PQ,ε),
see part (b3) of the theorem above—can get large in some
(pathological) examples.


Example 3.3 Consider the following MOP:


F : �→ �, F (x) = x (16)


Let Q = [0, 5], ε = 1, Δ = 0.1, and let Δ∗ = Δ. Thus, we
have PQ,ε = [0, 1]. Assume that A = {a1} with a1 = 1.2.
If next a2 = 0.1 is considered, it will be inserted into the
archive since d∞(F (a1), F (a2)) > Δ and since a2 ∈ PQ,ε


is not −ε-dominated by a1 nor by any other point x ∈ Q,
and will thus remain in the archive further on. Since a2 is
not −(ε+Δ)-dominating a1 we have for the updated archive
A = {a1, a2}. Hence, no element a ∈ [0, Δ] will be taken to
the archive since for these points it holds d∞(F (a), F (a2)) ≤
Δ∗, and thus, a2 ∈ PQ,ε+2Δ\PQ,ε will not be discarded from
the archive during the run of the algorithm.
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Figure 2: Example of MOP (17) for α = 0.1.


Example 3.4 Let the MOP be given by F : �→ �
2, where


f1(x) = |x+1|, f2(x) =


j |x − 1| for x ≤ 1
α|x − 1| for x > 1


, (17)


where α ∈ (0, 1) (see also Figure 2). For simplicity we as-
sume that ε = (ε̄, ε̄) ∈ �2


+. It is PQ = [−1, 1] with


F (−1) = (0, 2), F (1) = (2, 0) (18)


Further, it is


F (−1 − ε̄) = (ε̄, 2 + ε̄), F (1 +
ε̄


α
) = (2 +


ε̄


α
, ε̄) (19)


Using this and some monoticity arguments on f1 and f2 we
see that


PQ,ε =
“
−1 − ε̄, 1 +


ε̄


α


i
(20)


Since F (1 + ε̄+Δ
α


) = (2 + ε̄+Δ
α


, ε̄ + Δ) it follows that


dist(F (PQ,ε+1Δ), F (PQ,ε)) =
Δ


α
, (21)


which can get large for small values of α.


4. BOUNDS ON THE ARCHIVE SIZES
Here we give an upper bound U on the size of the limit


archive obtained by the novel strategy, and discuss that the
order of U is already optimal.


Theorem 4.1 Let ε ∈ �k
+, Δ∗, Δ ∈ �+ with Δ∗ < Δ be


given. Further let mi = minx∈Q fi(x) and Mi = maxx∈Q fi(x),
1 ≤ i ≤ k, and l0 as in Theorem 3.1. Then, when us-
ing ArchiveUpdatePQ,ε, the archive size maintained in Al-
gorithm 1 for all l ≥ l0 is bounded as


|Al| ≤
„


1


Δ∗


«k kX
i=1


(εi +2Δ+Δ∗)
kY


j=1
j �=i


(Mj −mj +Δ∗). (22)


Proof. Let l ≥ l0 and the archive Al be given. Since
Al ⊂ PQ,ε+2Δ (see Theorem 3.1) we are interested in an
upper bound on the volume of F (PQ,ε+2Δ). For this, we
consider first the (k − 1)-dimensional volume of the Pareto
front F (PQ). Due to the nature of nondominance we can
assume that F (PQ) is located in the graph of a map


Φf : K → �
k


Φf (u1, . . . , uk−1) = (u1, . . . , uk−1, f(u1, . . . , uk−1)),
(23)







where K := [m1, M1] × . . . × [mk−1, Mk−1] and f : K →
[mk, Mk]. Analogue to [11] one can bound the (k − 1)-
dimensional volume of Φf with parameter range K as fol-
lows:


V olk−1(Φf ) =


Z
K


p
||∇f ||2 + 1du ≤


kX
i=1


kY
j=1
j �=i


(Mj − mj),


(24)
where ∇f denotes the gradient of f . Considering this and
the nature of −ε-dominance we can bound the k-dimensional
volume of F (PQ,ε+2Δ) by:


V olk(F (PQ,ε+2Δ)) ≤
kX


i=1


(εi + 2Δ)
kY


j=1
j �=i


(Mj − mj), (25)


Since ‖F (a1) − F (a2)‖ ≥ Δ∗ for all a1, a2 ∈ Al it follows
that the boxes


B∞
1
2Δ∗(F (a)), a ∈ Al, (26)


are mutually nonoverlapping. Further, if F (a) ∈ F (PQ,ε+2Δ),


then B∞
1
2Δ∗(F (a)) is included in a Δ∗/2-neighborhood F̃ of


F (PQ,ε+2Δ) with


V olk(F̃ ) ≤
kX


i=1


(εi + 2Δ + Δ∗)
kY


j=1
j �=i


(Mj − mj + Δ∗). (27)


The maximal number of entries in Al can now be estimated
by


|Al| ≤ V olk(F̃ )


V olk(B∞
1
2Δ∗(F (a)))


, (28)


and the claim follows since the volume of B∞
1
2Δ∗(F (a)) is


obviously given by (Δ∗)k.


In particular interesting is certainly the growth of the
magnitudes of the (limit) archives for vanishing discretiza-
tion parameter Δ. Since for every meaningful computation
the value Δ will be smaller than every entry of ε, we can
assume εi = ciΔ with ci > 1. Using (22) and for simplicity
Δ = Δ∗ we see that


|Al| ≤
„


1


Δ


«k−1 kX
i=1


(ci + 3)
kY


j=1
j �=i


(Mj − mj + Δ∗). (29)


Thus, the growth of the magnitudes is of order O
“`


1
Δ


´k−1
”


for Δ → 0. Regarding the fact that PQ, which is contained
in PQ,ε for all values of ε ∈ �k


+, typically forms a (k − 1)-
dimensional object, we see that the order of the magnitude
of the archive with respect to Δ is already optimal: the cost
for the approximation of F (PQ,ε) in terms of the number of
elements which have to be stored in the archive is—at least
from the theoretical viewpoint—as expensive as the ‘classi-
cal’ problem of approximating the Pareto front. This is due
to the fact that the discretization (line 3 of Algorithm 2) is
realized in image space. An analogue result for a discretiza-
tion in parameter space, however, can not hold since PQ,ε is
n-dimensional.


Table 1: Comparison of the magnitudes of the fi-
nal archive (|Afinal|, rounded) and the correspond-
ing update times (T , in seconds) for MOP (30) and
for different values of Δ. We have taken the average
result of 100 test runs.


Δ |Afinal| T


0 3836 32.98
0.01 827 6.22
0.05 68 1.80


5. NUMERICAL RESULTS
Here we demonstrate the practicability of the novel archiver


on three examples. For this, we run and compare
ArchiveUpdatePQ,ε for different values of Δ including Δ0 =
0, which is the archiver proposed in [10] which accepts all
test points which are not −ε dominated by any other test
point (see Remark 4.3 (a)). To obtain a fair comparison we
have decided to take a random search operator for the gener-
ation process (the same sequence of points for all settings).


5.1 Example 1
First we consider the MOP suggested by Tanaka [13]:


F : �2 → �
2, F (x1, x2) = (x1, x2) (30)


where


C1(x) = x2
1 + x2


2 − 1 − 0.1 cos(16 arctan(x1/x2)) ≥ 0


C2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5


Figure 3 shows a numerical result for N = 200, 000 ran-
domly chosen points within Q = [0, π]2 and for three differ-
ent values of the discretization parameter: Δ0 = 0, Δ1 =
0.01 and Δ2 = 0.05. As anticipated, the granularity of the
resulting archive increases with the value of Δ. Thus, the
approximation quality decreases, but, in turn, the running
time of the algorithm decreases (see Table 1).


5.2 Example 2
Next, we consider a real-life engineering problem, namely


the design of a four-bar plane truss [12]:


F : �4 → �
2


f1(x) = L(2x1 +
√


2x2 +
√


2x3 + x4)


f2(x) =
FL


E


„
2


x1
+


2
√


2


x2
− 2


√
2


x3
+


1


x4


« (31)


f1 models the volume of the truss, and f2 the displacement
of the joint. The model constants are the length L of each
bar (L = 200 cm), the elasticity constants E and σ of the
materials involved (E = 2 × 105 kN/cm3, σ = 10 kN/cm2),
and the force F which causes the stress of the truss (F = 10
kN). The parameters xi represent the cross sectional areas
of the four bars of the truss. The physical restrictions are
given by


Q = [F/σ, 3F/σ] × [
√


2F/σ, 3F/σ]2 × [F/σ, 3F/σ] (32)


For the allowed tolerances we follow the suggestion made in
[3] and set ε1 = 50 cm3 and ε2 = 0.0005 cm. Figure 4 shows
a result for N = 500, 000 randomly chosen points within
Q and for Δ = (10, 0.0001), i.e., Δi = εi/5 (see Remark
4.3 (b)). The final archive consists of 78 elements, and the
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(b) Delta1 = 0.01, |Afinal| = 834
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(c) Delta2 = 0.05, |Afinal| = 73


Figure 3: Results for MOP (30) for different values
of Δ leading to different granularities of the approx-
imation.


1400 1600 1800 2000 2200 2400 2600 2800 3000
0


0.005


0.01


0.015


0.02


0.025


0.03


0.035


f
1


f 2


Figure 4: Numerical result for MOP (31). Here, we
have chosen ε = (50, 0.0005) and Δ = (10, 0.0001).


computational time was 5.5 seconds. In contrast, a run of
the same algorithm with the same setting but with Δ = 0
took 4 minutes and 21 seconds leading to an archive with
8377 elements.


5.3 Example 3
Finally, we consider a bi-objective {0,1}-knapsack prob-


lem which should demonstrate that the additional consid-
eration of approximate solutions can be beneficial for the
decision maker.


f1, f2 : {0, 1}n → �, f1(x) =


nX
j=1


c1
jxj , f2(x) =


nX
j=1


c2
jxj


(33)
s.t.


nX
j=1


wjxj ≤ W, xj ∈ {0, 1}, j = 1, . . . , n,


where ci
j represents the value of item j on criterion i, i = 1, 2;


xj = 1, j = 1, . . . , n, if item j is included in the knapsack,
else xj = 0. wj is the weight of item j, and W the overall
knapsack capacity. Both objectives have to be maximized.
Figure 5 shows one numerical result obtained by an evolu-
tionary strategy2 for an instance with n = 30 items and with
randomly chosen values ci


j ∈ [8, 12], weights wj = 1, and ca-
pacity W = 15. For ε = (2, 2) and Δ = 0.1 a total of 182
elements forms the final archive, and only six of them are
nondominated. When taking, for instance, x0 as reference
(assuming, e.g., that this point has been selected by the DM
out of the nondominated points) and assuming a tolerance
of 1 which represents a possible loss of 0.6% compared to
x0 for each objective value, the resulting region of interest
includes seven approximate solutions (see Figure 5). These
solutions, though similar in objective space, differ signifi-
cantly in parameter space: two solutions differ compared to
x0 in 8 items, one in 10, and 4 solutions differ even in 12
items. Thus, in this case it is obvious that by tolerating
approximate solutions—where the loss of them can be de-
termined a priori—a larger variety of possibilities is offered
to the DM.


2A modification of the algorithm presented in [14] which
uses the novel archiver.







154 156 158 160 162 164 166 168
154


156


158


160


162


164


166


168


f
1


f 2


y
0


Figure 5: Numerical result for MOP (31) with ε =
(2, 2) and Δ = 0.1. The rectangle indicates a possible
region of interest around y0 = F (x0) (see text).


6. CONCLUSION AND FUTURE WORK
We have proposed and investigated a novel archiving strat-


egy for stochastic search algorithms which allows—under
mild assumptions on the generation process—for a finite size
approximation of the set PQ,ε which contains all ε-efficient
solutions of an MOP within a compact domain Q. We have
proven convergence of the algorithm toward a finite size rep-
resentation of the set of interest in the probabilistic sense,
yielding bounds on the approximation quality and the car-
dinality of the archives. Finally, we have presented some
numerical results indicating the usefulness of the approach.
The consideration of approximate solutions certainly leads
to a larger variety of possible options to the DM, but, in
turn, also to a higher demand on the related decision mak-
ing process. Thus, the support for this problem could be one
focus of future research. Further, it could be interesting to
integrate the archiving strategy directly into the stochastic
search process (as e.g. done in [2] for an EMO algorithm)
in order to obtain a fast and reliable search procedure.
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