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Abstract: This paper deals with the utilizing of the Bayesian optimization algorithm (BOA)
for multiobjective optimization of hypergraph partitioning. The main attention is focused on
the incorporation of the Pareto optimality concept. We have modified the standard
algorithm BOA for one criterion optimization according to well known niching techniques
to find the Pareto optimal set. This approach was compared with standard weighting
techniques and the single optimization approach with the constraint. The experiments are
focused mainly on the bi-objective optimization because of the visualization simplicity.
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1 Introduction
Many real-world problems have multiple often competing objectives. While in the case of
single-objective optimization the optimal solution is simply distinguishable, this is not true for
multiobjective optimization. Historically, multiple objectives have been combined to form a
scalar objective function through weighted sum of individual objectives or by turning
objectives into constraints. But setting of weights and specification of penalty functions is not
a simple task and these values can be found only experimentally. The better approach lies  in
finding  all possible trade-offs  among the multiple, competing objectives. These solutions are
optimal, nondominated, in that there are no other solutions superior in all objectives. These so
called Pareto optimal solutions lie on the Pareto optimal front. There are many papers that
present various approaches to find of Pareto optimal front almost based on the evolutionary
algorithms. Let us mention  here the well known niched Pareto genetic algorithm NPGA [1].
A wide review of basic approaches and the specification of original Pareto evolutionary
algorithms includes the dissertation [2], [3], [4] where the last one describes the original
strength Pareto optimization algorithm SPEA. From the last period let us mention an
interesting Pareto-Envelope based Selection Algorithm PESA [5] which might outperform the
very good algorithm SPEA.
All of these capable algorithms based on evolutionary algorithms (EA) have the common
disadvantage - the necessity of ad hoc setting of  parameters like crossover, mutation and
selection rate. That is why we have analyzed and used one of the Estimation of Distribution
Algorithms (EDAs). These algorithms also called probabilistic model-building genetic
algorithms have attached a growing interest during the last few years because crossover and
mutation operators used in standard GA are replaced by probability estimation and sampling
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techniques to avoid the necessity to specify the set of  GA parameters. We will focus on one
of them - the Bayesian optimization algorithm [6], [7]. Recently we have published our
experience with this algorithm in [8] where single criterion optimization of hypergraph
bisectioning was described. In this paper we have focused on the bi-objective optimization of
hypergraph bisectioning.


2   Problem specification
Hypergraph partitioning  is a well known problem of graph theory. We have investigated a
special case of k-way partitioning for k=2 called bisectioning. If necessary the k-way partition
can be found by recursive 2-way bisectioning. The hypergraph model can be used for many
application problems e.g. for  system segmentation, network partitioning and VLSI layout.
The particular bisectioning problem is defined as follows: Let us assume a  hypergraph
H=(V,E), with n =|V| nodes and m = |E| edges. The goal is to find such a bisection (V1,V2) of 
V that minimizes the number of hyperedges that have nodes in different set V1, V2 (1) and
the difference/balance of the partition sizes (2). The set of external hyperedges can be labelled
as Ecut (V1,V2) and the following cost functions are defined:


C1 (V1,V2 )=  Ecut (V1,V2) =  {e∈ E e∩V1 ≠ ∅ , e∩V2 ≠ ∅} (1)
C2(V1,V2 ]=  / /V1/-/V2// (2)


For  more formal specification of the problem, the following notation is used:


P = (X1, X2,..,XN)  with Xj ∈ P, is the  population of the solutions/string/individuals
X  is a string/individual of the population P the  length of which is n
X   = (x0, x1,..,xn-1)   is a string/individual with xi ∈{0,1}
C(X) is the  cost function of the string X


Each solution of the bisection is represented by a binary string X=(x0, x1, …, xn-1 ). The
variable xi represents the partition number, the index specifies the node in the hypergraph. For
the case of simple graph G(V,E,R) bisectioning we have derived the following two cost
functions on the binary string X=(x0 , x1 ,.., xn-1) to be minimized:
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where the coefficient rij∈R equals to one in case the net/edge of the graph G exists between
node i and j, else rij=0. The cost C1 represents the cut value of the bisection and the cost C2
expresses the  balance/difference of the partition sizes. There are three approaches how to
solve this 2-objective optimization problem that will be described in the next chapters.


3   The BOA algorithm
The BOA algorithm is a population based evolutionary algorithm but the reproduction process
of individuals is replaced by probability estimation and sampling techniques. It uses statistical
information contained in the current population to detect multivariate parameter
dependencies. The learned Bayesian network BN encodes a joint probability distribution
based on the conditional probabilities; the BN quality is estimated by Bayesian-Dirichlet
metrics. The estimated probability model is then used to generate new promising solutions
according to this distribution using the sampling process. The BOA algorithm can be
described as follows [7]:







Generate initial population of size N (randomly);
While termination criteria is false do
begin


Select parent population of M individuals according to fitness function f(X) (M<N);
Estimate the distribution of the selected parents and construct the Bayesian network BN;
Generate new offspring according to the estimated model and BN network;
Replace some individuals in current population by generated offspring;


end


4 Multiobjective  BOA algorithm
A general multiobjective optimization/maximization problem MOP can be described as a
vector function f that maps a tuple of n parameters to a tuple of m objectives [4]:


max y = f(x)=(f1(x), f2(x),…, fm(x)) (5)
subject to x = (x0 , x1,…..,xn-1) ∈ X


y = (y1, y2,…,ym) ∈ Y,
where x is called decision vector, X is the parameter space, y is the objective vector, and Y is
the objective space.
The set of solution of MOP includes all decision vectors for which the corresponding
objective vectors cannot be improved in any dimension without degradation in another - these
vectors are called Pareto optimal set. The idea of Pareto optimality is based on the Pareto
dominance. A decision vector a dominates decision vector b iff fi(a )≥ fi(b)  for i=1,2,.., m
with fi(a )> fi(b) for at least one i. The vector a is called Pareto optimal if there is no vector b
which dominates vector a in parameter space X.
In objective space the set of nondominated solutions lie on a surface known as Pareto optimal


front. The goal of the optimization is to find a representative sampling of solutions along the
Pareto optimal front. From the theory of Pareto optimal set it is evident that the optimization
algorithms should be able to find  as many Pareto optimal  solutions as possible. The
techniques how to do it lies in keeping the diversity using some of the niching techniques.
Standard BOA is able to find mostly one optimal solution at the end of the optimization
process, when the whole population is saturated by phenotype-identical individuals.
We have implemented one variant of Pareto BOA algorithms (Pareto BOA), one variant of
non-Pareto weighted sum BOA (WSO) and non-Pareto single BOA (SOP).


4.1   Single BOA with the normalization (SOP)


In this approach only one objective function f1(X)=1/(C1(X)+1) is used and the second
objective function f2(X)=1/(C2(X)+1 is replaced by normalization operator which modifies
each individual to keep its balance in the considered bound. This operation can naturally
change a partly the objective function f1 of each individual. This effect may cause an extra
genetic drift of the population.


4.2   Weighted-sum BOA (WSO)


In this approach the original vector-valued objective function is replaced by a scalar-valued
objective function. The objective function of the individual X is computed as a weighted sum
of all objective functions:


f(X) = w1 f1(X)+ w2 f2(X), (6)
where w1, w2 are weight coefficients. It is well known the sensitivity of the optimization
process to these values. We have tested two sets of these coefficients. In WSO1 variant we







have chosen w1=0.5, w2=0.5, in WSO2 couple of w1=0.005, w2=0.995 was used. These
algorithms do not preserve Pareto-optimal solutions but provide mostly solutions from
extremes of the Pareto front.


4.3   Pareto optimal BOA


The multiobjective optimization represents the difficult multimodal optimization problem
which is mostly solved with niching methods that allow to preserve the diversity in the
population of individuals/solutions. Our Pareto BOA algorithm is a modification of single
BOA where we applied a promising niching techniques published in [4].
Although we solved bi-objective optimization, our algorithm is able to solve m-objective
optimization problems. Our Pareto BOA algorithm can be described by the following steps:
Step 1: Initialization: Generate an initial population P0 of size N randomly.


Step 2: Fitness assignment: Evaluate the initial population.
Step 3: Selection: Select the parent population as  the best part of current population by 50%


truncation selection.
Step 4: Model construction: Estimate the distribution of the selected parents using Bayesian


network construction.
Step 5: Offspring  generation: Generate  new  offspring  (according to the distribution 


associated to the Bayesian network).
Step 6: Nondominated  set  detection and fitness assignment: Current  population  and


offspring are joined, nondominated solutions are found, evaluated and stored at the top
of the new population. Then dominated offspring and parents are evaluated separately.


Step 7: Replacement: The new population is completed by offspring  and the best part of
current population, so the  worst individuals from current population are canceled to
keep the size of the population constant.


Step 8: Termination: If maximum number of generations Ng is reached or stopping criterion
is satisfied then the last Pareto front is presented, else go to Step 3.


The most important part of our Pareto algorithm is the procedure for detection of
nondominated solution (current Pareto front) and sophisticated fitness calculation. The
procedure for current nondominated and dominated set detection is described in following
steps:


1. For each individual X in the population P compute vector of the objective functions
))(,),(),(()( 21 XfXfXfXf mK= (7)


2. Detect  subset of nondominated solutions
{ }{ })()(:1:,| jlklkjj XfXfmlPXPXXP >∈∀∈∃∈= K (8)


Note: If two or more individuals have the same fitness vector )(Xf , then only one
of them is accepted.


3. For each nondominated solution Xj compute its strength value as
{ }{ }
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The fitness  for nondominated solutions is equal to the reverse of the strength value
)(1)( jj XsXf =′ .







4. For each dominated solution Xi determine the fitness as
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where { } )()(:1, iljlj XfXfmlPX >∈∀∈ K . In the original approach [4] all individuals
dominated by the same nondominated individuals have equal fitness. We proposed an
extension by adding a term )1()(. +PXrc i into the denominator (10), where )( iXr is the
number of individuals from P (not only from nondominated solutions) which dominate Xi
and coefficient c is set to very small number, for example 0.0001. This term is used to
distinguish the importance of individuals in the same “niche” (being dominated by the
same nondominated solutions).
This type of fitness evaluation has the following advantages:
• For all nondominated individuals 1)( ≥′ iXf , for dominated individuals holds


1)( <′ iXf . If we use the replace-worst strategy, implicit Pareto elitism is included.


• Individuals from Pareto front dominated smaller set of individuals receive higher
fitness, so the evolution is guided towards the less-explored search space.


• Individuals having more neighbours in their „niche“ are more penalised due to the
higher )( jXs value of associated nondominated solution.


• Individuals dominated by smaller number of nondominated individuals are more
preferred.


5   Experimental results


5.1   Test graphs


The three types of graph structures are used [8]:


1. Hypergraphs representing real circuits labelled by ICn. The global optima is not 
known. The structure of circuits can be characterized as a random logic. The
hypergraph IC67 consists of 67 nodes and 134 edges/nets, the IC116 consists of 116
nodes and  329 edges/nets.


2. Random geometric graph Un.d. on n vertices is placed in the unit square and its nodes
coordinates are chosen uniformly. An edge exists between two vertices if their
Euclidean distance is l or less, where the expected vertex degree is specified by          
d = nπ l2 . We have chosen n=120, d=5, see Fig.1a.


3. Caterpillar graphs CATk_n, with k articulations, (n-k)/k legs for each articulation and n
nodes, see Fig. 1b with k=3 and n=21.


Fig.1a Geometric random graph            Fig.1b Caterpillar graph







5.2   Results of experiments


Let us notice that the objective space is visualized using the original cost function C1, C2
instead of the objective functions f1, f2 (let us notice the cost functions C1, C2 are minimized).
Fig.2 shows the dynamics of the IC67 bisection optimization. For the case of weighted sum
algorithm the result fetched in 17-th generation of one run is shown. Population size is set to
N=2500, the first population is generated randomly to keep the balance  uniformly distributed
in the range from 0 to 20% of n, where n is number of hypergraph nodes. The size of each
point in the graph is proportional to the number of phenotypic equal solutions found in the
current population. The current Pareto front are enlarged and pointed up.
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Fig.2a WSO1 algorithm      Fig 2b WSO2 algorithm


In Fig. 2a weighted sum algorithm WSO1 with w1=0.5, w2=0.5 is used, population is
distributed with slight variability of balance.  In Fig. 2b weighted sum algorithm WSO2 with
w1=0.995, w2=0.005 is used, high balance of individuals is evident, the algorithm prefers more
trivial solutions with minimum cut size and large balance. We used such values of w1 and w2,
because even for w1=0.99 and w2=0.01 the algorithm still provides solution shown in Fig. 2a.
In Fig. 3 the performance of Pareto, SOP and WSO algorithms for 3 types of graphs is shown.
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Fig.3a Bisection of IC116, N=4000 Fig.3b Bisection of IC67, N=2500
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Fig.3c Bisection of U120.5, N=4000 Fig.3d Bisection of CAT7_105, N=3500


The five independent runs of each algorithm were performed and five Pareto fronts from final
populations are shown. For better visualization of the fronts from each run the points are
connected by lines. Balance of the individuals in the initial population was uniformly
distributed between zero and 0.2*n, population size N was set proportional to n, the limit of
the balance for normalization in SOP was set to maximum value 20% of n. Maximum number
of generations is set to Ng = 200.
From Fig. 3a it is evident that Pareto algorithm usually produces the largest Pareto set with
good quality solutions, whereas SOP and WSO2 produce only solutions with low cut size but
high balance and WSO1 produces solutions with low balance and higher cut value. From    
Fig. 3b the difficulty with WSO2 is evident - WSO2 produces trivial solutions with high
balance. The SOP algorithm provides solution with small cut but high balance only. For
example, solution with the cut-size=35 and balance=23 was obtained even if solution with
lower balance for the same cut-size exists.  The geometric graph U120.5 seems to have many
local optima. It is a hard benchmark as it is seen  in Fig. 3c. Both WSO1 and WSO2 provide
solutions far from optima in 4 runs from five runs. Only in one run the Pareto optimal solution
was found.  The SOP algorithm and Pareto BOA provide optimal fronts in most runs. The
CAT7_105 graph is an artificial graph known as a hard benchmark, the results are shown in
Fig. 3d. The WSO2 produces mostly a trivial solution with high balance, the WSO1 only one
solution with minimal balance and maximal cut. The Pareto BOA provides the whole Pareto
front,  SOP produces only individuals from the upper part of this front.


6 Parallel Pareto BOA
The establishment of current Pareto front in each generation for bi-criterial optimization takes
O(N* log N) comparisons.  The asymptotic time complexity of the proposed Pareto algorithm
does not exceed the complexity of conventional BOA. The execution time of one generation
for Pareto algorithm is  nearly the same as for SOP or WSO, but the difference is in the
number of generations used.  In SOP and WSO algorithm there is an implicit detector of
population saturation  used to stop the evolution. In Pareto BOA the population is implicitly
“split” into several niches and each of them converges to different solution which results in
slower convergence. Because it is not simple to specify the stopping criterion,  we often must
specify maximum number of generations. The Pareto BOA wasted in our experiments       
five-times more generations than SOP and WSO. To decrease the wasting time, we  suggest a







parallel construction of Bayesian network as described in [9] for single criterion optimization.
The next approach for the future work is the decomposition of the Pareto front into segments
which can be constructed in separate but cooperating subpopulations.


7   Conclusions
We have implemented multiobjective Pareto BOA algorithm for the hypergraph bisectioning.
The Pareto BOA performance was compared to single BOA with relaxed balance and
weighted sum algorithms WSO. The WSO is very sensitive to type of problem see fig. 3a, 3b.
The SOP algorithm provides mostly an upper part of Pareto front towards higher balance
values. In the case of real hypergraphs IC67, IC116, the Pareto set is uniformly distributed
along the Pareto front only in case of Pareto BOA. The main problem which remains to be
solved is the large computation complexity and large population size. The parallelization of
the Pareto BOA is necessary. The next possible improvement lies in more sophisticated
niching technique, modification of replacement phase of the algorithm and  introduction of
problem knowledge into optimization process. The future work will be mainly directed
towards the parallelization of BOA algorithm on the platform of SUN workstations, which
will include the parallelization of Bayesian network construction and  the decomposition of
the Pareto front detection. Separate but cooperating subpopulations using the migration
operator will be used.


This research has been carried out under the financial support of the Czech Ministry of
Education – FRVŠ No. 0171/2001 “The parallelization of Bayesian Optimization Algorithm”
and the Research intention No. CEZ: J22/98: 262200012 – ”Research in information and
control systems”.
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