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Abstract: This paper deals with the utilizing of the Bayesian optimization algorithm (BOA)  for the 
multiobjective optimization of combinatorial problems. Three probabilistic models used in the  Estimation 
Distribution Algorithms (EDA), such as UMDA,  BMDA and BOA which allow to search  effectively on the 
promising areas of the  combinatorial search space are discussed. The main attention is focused on the 
incorporation of Pareto optimality concept into classical structure of the BOA algorithm. We have modified the 
standard algorithm BOA for one criterion optimization utilizing the known niching techniques to find the Pareto 
optimal set. The experiments are focused on tree classes of the combinatorial problems: artificial problem with 
known Pareto set,  multiple 0/1 knapsack problem and the bisectioning of hypergraphs as well. 


Key Words: Multiobjective optimization, Pareto and non Pareto algorithms, evolutionary algorithms, 
probabilistic model, estimation distribution algorithms, Bayesian optimization algorithm,  niching techniques. 


1     Introduction 


Combinatorial optimization problems such as placement problem, number partitioning problem (NPP), 
decomposition problem, traveling salesman problem (TSP), job-shop scheduling, bin packing problem, facility 
layout problem, knapsack problem, etc. belong to the class of  NP hard problems [1]. The search space is often 
very large and it is not possible to use enumerative techniques because the complexity of the problems is 
expressed by O(n!) or O(rn), where n is the size of the problem and r<n is cardinality of used  alphabet. To avoid 
the problem with finite alphabet string it  is possible to replace the original string by kn bit string where k=log(r). 
In case r=2 the  problem is reduced to binary optmization problem with 2n  complexity. Let us note that we will 
focus on this type of encoding. Generally, the solution can be represented by a vector of parameters with 
unknown inter-parameter dependencies. However, many combinatorial optimization algorithms have no 
mechanism for capturing inter-parameter dependencies. But only this approach allows to concentrate the 
sampling more effectively on regions of the  search space which have appeared to be promising in the past. Most 
optimization algorithms do this only by searching around the location of the best previous solution or by using 
various type of genetic algorithms (GA).  The classical genetic algorithms (GA) have the common disadvantage 
- the necessity of the setting the parameters  like crossover, mutation and selection rate and the choice of suitable 
type of genetic operators. That is why we have analysed and used some of the Estimation of Distribution 
Algorithms (EDAs) called  probabilistic model-building genetic algorithms, too. The crossover and mutation 
operators used in standard GA are replaced in EDAs by probability estimation and sampling techniques. 
In case of probabilistic methods, statistics about the search space is explicitly maintained by creating models of 
the good solutions found. The efficiency of such techniques depends naturally on the complexity of model used 
and on the complexity of problems. 
 Next we will discuss population based evolutionary algorithms using probabilistic models with various 
complexity. Let us denote: 


 D   = (X1, X2,..,XN)    with Xj  ∈  D,  is the  population of the solutions/string/individuals  
 X   = (X0, X1,..,Xn-1)  is a string/individual of length n with Xi  as a variable 
 x   = (x0, x1,..,xn-1)    is a string/individual with xi as a possible instantiation of variable Xi, xi ∈ {0,1}  
 P  = (p(x0), p(x1),..,p(xn-1)), with p(xi) ∈ [0,1 ] is the vector of univariate marginal probabilities 
 p(x0 , x1,.. xn-1) = p(X0=x0 ,X1 =x1 ,..,Xn-1=xn-1) denotes the n dimensional distribution  
 
 







2     Probabilistic  models 


The performance of EDA algorithms that  work on the basis of probabilistic models can be specified on the 
following common framework: 


 Generate initial population of individuals of size M (randomly); 
While termination criteria is false do 
begin 
   Select parent population of N individuals according to a selection method; 
   Estimate the probability distribution of the selected parents; 
   Generate new offspring according to the estimated probabilistic model; 
   Replace some individuals in current population with generated offspring; 
end 
Next, we will describe three main types of probabilistic models used in EDA algorithms according to their 
complexity – model without inter-dependency, with pairwise dependencies and multivariate dependencies. 
  
2.1  Models without dependencies 


The probability vector P of univariate probabilities is used to model simple probability distribution. In 
Univariate Marginal Distribution Algorithm UMDA [2] it is assumed that variables are mutually independent, 
see Fig. 1a.  For each variable position i∈ {0..n-1} and each possible value of this variable xi∈ {0,1}, the 
univariate marginal frequency pi (xi ) is defined as the frequency of strings that have xi on i-th position in the 
parent population D: 1[Q[S LLLL ���� = , where ni(xi) is a number of appearances of the allele xi  on i-th 


position. Each new individual X = (x0 ,x1,...,xn-1 ) is generated by UMDA according  to the distribution: 
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so the value of i-th variable is set to value a with the probability equal to pi(a). UMDA is able to cover 
efficiently linear problems only.  
 
2.2  Models with Pairwise dependencies 


The univariate probability is used as in UMDA. In addition, the pair dependencies are allowed [3]. The bivariate 
marginal frequency pi,j(xi,xj) used in Bivariate Marginal Distribution Algorithm BMDA is defined as the 
frequency of individuals in parent population D, that have values xi and xj on positions i and j at the same time: 


1[[Q[[S MLMLMLML ������ �� = . Conditional probability of occurrence of the value xi on i-th position in the case 


of occurrence of xj on j-th position is determined 
 �������_� �� MMMLMLMLML [S[[S[[S =                      (2)   


We  extended  the  concept of UMDA and  BMDA for  the  alphabet encoding, so that  xi∈  {0,…,ri-1} and 
xj∈ {0,…,rj-1} [4]. For each pair of positions i, j the count of each combination of values can be summarized into 
contingency table. Variable dependencies are discovered by Pearson’s chi-square statistics, we used in [4] the 
following form of equation:   
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Variables are considered to be independent if the result does not meet certain threshold.  For example binary 


variables are independent for 95% if ���¸
�
ML �� < . The dependency information is used to build up the acyclic 


dependency graph-probabilistic graphical model, which can be seen as a set of trees. Each new individual          
X = (x0 ,x1,...,xn-1 ) is generated  according  to the distribution 


∏=
−


=


�Q


�L
LPL [;S [LS �_�� ���                 (4) 


where m(i) is any number between  zero and n-1 or nothing (in case of root nodes of the tree). The root nodes 
correspond to the positions where the values are generated using the univariate marginal distribution, the values 
of positions connected to already generated positions in the graph are subsequently generated using the 
conditional probability. An example of the tree dependency graph is shown  in Fig.1b. 


 
 
 







2.3  Models with Multivariate dependencies 


The complex model using Bayesian network to encode the structure of a problem was implemented in Bayesian 
Optimization Algorithm BOA [5], [6], [7], [8]. It is an analogy of BMDA dependency graph, but the higher 
order variable dependencies can be covered too. For each  variable Xi a set of parent variables 


iXΠ  is defined 


which it depends on, so the distribution of individuals is expressed by the conditional probabilities: 
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Generally, the existence of directed edge from Xj to Xi in the network implies the belonging of the variable Xj to 
the set 


L;
Π . To reduce the space of networks, number of incoming edges into each node is  limited to k. The  


key  step is thus the estimation of the probability p(X) via finding the Bayesian network with maximum score 
measure. As known the probability of Bayesian network B given data D is done by Bayes  theorem [9], [10]: 


         ������_��_� 'S%S%'S'%S =               (6) 


where  p(B/D )  is posterior probability of B given D 
           p(B)        is the prior probability of Bayesian network specified by an expert 
           p(D/B )   is the  probability of data D given B 
The Bayesian Dirichlet (BD) metric is used to calculate �_� %'S  as the measure of the network quality [12], [6]. 


To construct quickly a good network, the greedy algorithm is used in such a way that in each step the best edge 
is added according to BD metric. 
After network construction new instances are generated using the univariate and conditional probability. An 
example of the Bayesian network is in Fig.1c.  


 
     


2 


0 


1


4 3 


2 2 


0 0 


4 


11


4 3 3 3 


 
                            a)                                          b)                                      c)   
 
a)  p(X)  = p(X3) p(X0 ) p(X2 ) p(X4) p(X1 ),  b)  p(X)  = p(X3) p(X0 /X3) p(X2 /X3) p(X4) p(X1 /X4) 
c)  p(X)  = p(X3) p(X0 /X3) p(X4 /X3 ,X0 ) p(X1 /X0) p(X2 /X1 ,X0 ) 


      
Fig.1 Graphical models and joint probability distribution for a) UMDA, b) BMDA, b) BOA 
 


3 Presentation of  Bayesian statistics  used in the BOA 


The Bayesian network models the n – dimensional probability by product of conditional probabilities. The 
conditional probability can be stated for the current  population  using Bayesian statistics. Let us consider the 
fragment of the Bayesian network where the node/variable X7 depends on the variables X2, X5.  From the current 
population shown in Tab. I the number of particular combinations of X2, X5 for each value of X7   can be found. 
For example there exists one occurrence of the combination X2X5 = 11 for   X7 =1 and the equal one for X7 =0. 
Consequently we get the conditional probability for X7 =1: 


p(X7 | X2=1, X5=1) = 0.50 
Similarly the probability for other combinations of entry variables X2, X5 is stated: 


p(X7 | X2=1, X5=0) = 1.00 
p(X7 | X2=0, X5=0) = 0.25 


 p(X7 | X2=0, X5=1) = 0.00  … no occurrence of (X2, X5, X7) = (0,1,1) 
  


 


   X2 
X7 


X5 


 
Fig. 2  Example of  a fragment of  the Bayesian network. 
 







These particular conditional probabilities are  used for generation  new values for  binary variable X7 having X2 
and X5  in the frame of offspring generation using sampling procedure.
   
                      X2                X5                  X7 


S1 .  .  . 1 .  .  . 0 .  .  . 1 .  .  . 
S2 .  .  . 0 .  .  . 0 .  .  . 0 .  .  . 
S3 .  .  . 1 .  .  . 0 .  .  . 1 .  .  . 
S4 .  .  . 1 .  .  . 1 .  .  . 1 .  .  . 
S5 .  .  . 0 .  .  . 0 .  .  . 0 .  .  . 
S6 .  .  . 0 .  .  . 1 .  .  . 0 .  .  . 
S7 .  .  . 0 .  .  . 0 .  .  . 1 .  .  . 
S8 .  .  . 1 .  .  . 1 .  .  . 0 .  .  . 
S9 .  .  . 0 .  .  . 0 .  .  . 0 .  .  . 
S10 .  .  . 0 .  .  . 1 .  .  . 0 .  .  . 


  
( X2X5 )             X7           
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0 3 
00 


1 1 
}      4 


0 2 
01 


1 0  (none) 
}      2 


0 0  (none) 
10 


1 2 
}      2 


0 1 
11 


1 1 
}      2 


 
TAB I: Presentation of the Bayesian statistics on the population with ten strings for a fragment of the elementary 


Bayesian network shown in Fig. 2. 
 
Knowing this particular conditional probability for X7  the n-dimensional probability can be expressed as  


p(X) = p(X0 |……)* p(X1 |……)…*p(X7 | X2, X5) . ……     (7) 


The quality of the Bayesian network is expressed by BD metrics: 
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where the meaning of the items 
L;


π , ���
L;L


[P π , ��
L;


� π flows from the Tab I. The  prime version of this 
terms express  prior knowledge about network topology. 
 
3.1   Complexity and prior information in original BOA 


The computational complexity of the network construction and scoring metric calculation is done by term   
O(k.n3) + O(k.2k.n2.N) [11]. The complexity of the new population generation is negligible. We have proposed 
two approaches to decrease the time complexity. In [12] we solved the problem of graph bisectioning. Our goal 
was to incorporate a problem knowledge into the whole process of Bayesian network construction. Firstly we 


applied the prior probability p(B) of the Bayesian network expressed by the term δκξ F%S =�_� . The essence 


of this approach lies in the penalization of edges of Bayesian network having no match in the graph to be 
decomposed. The variable δ  is the number of edges in the final Bayesian network having no match in the 
hypergraph to be bisected, c and k are normalization constants. Secondly we used the concept of cluster 
injection into the initial population detected on the hypergraph structure that seems to be the really promising 
tool for enhancement of the population genotype. Both of these phenomena used lead to the meaningful 
reduction of  population size and better convergence.  


4   Multiobjective  optimization 


Practical problems are often characterized by several  often competing objectives. While in the case of single-
objective optimization the optimal solution is simply distinguishable, this is not true for multiobjective 
optimization. The standard approach to solve this difficulty lies  in finding  all possible trade-offs  among the 
multiple, competing objectives. These solutions are optimal, nondominated, in that there are no other solutions 
superior in all objectives. These so called Pareto optimal solutions lie on the Pareto optimal front. A general 
multiobjective optimization/maximization problem (MOP) can be described as a vector function f  that maps a 
tuple of n parameters to a tuple of m objectives [13]: 


max            y = f(x)=(f1(x), f2(x),…, fm(x))                                                     (9) 
subject to   h(x) = (h1(x), h2(x),....., hk(x)) <=0 
subject to   x  = (x1 , x2,,…..,xn) ∈  X 


    y  = (y1 , y2,,….,ym) ∈  Y, 
where x is called decision vector, X is the parameter space, y is the objective vector, Y is the objective space and 
the constraint vector  h(x) <=0 determines the set of feasible solutions/set Xf. 







  


The set of solutions of MOP includes all decision vectors for which the corresponding objective vectors cannot 
be improved in any dimension without degradation in another - these vectors are called Pareto optimal set. The 
idea of Pareto optimality is based on the Pareto dominance. 
 For any two decision vectors u, v it holds 


u v      (u dominates v)              iff  f(u)>f(v), 
              u = v  (u weakly dominates v)  iff   f(u)>=f(v), 


u ~ v     (u is indifferent to v)      iff  u, v are not comparable 


A decision vector u dominates decision vector v ( u v)  iff   fi(u ) ≥  fi(v)  for i=1,2,.., m with fi(u )> fi(v)  for at 
least one i.  The vector u is called Pareto optimal if there is no vector v which dominates vector u in parameter 
space X.  In objective space the set of nondominated solutions lies on a surface known as Pareto optimal front. 
The goal of the optimization is to find a representative sampling of solutions along the Pareto optimal front. An 
example of the concept of Pareto dominance and  Pareto-optimal front are presented in a graphical form in Fig.3. 
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Fig. 3  Example of Pareto front and  Pareto dominance. 


 
It can be stated that solution V dominates solution S and T, solution V is dominated by U, solution U is 
nondominated and  Pareto optimal, solution S is dominated by V and T. 
 


5     Optimization methods 


5.1   Pareto methods 
There are many papers that present various approaches to find  Pareto optimal front almost based on the classical 
evolutionary algorithms. All of them must solve the problem of  adequate solutions evaluation and population 
diversity. It was developed Pareto-based fitness assignment using the concept of  dominance in order to 
determine the reproduction probability of each solution. It is evident that unlike the case of single optimization, 
fitness is related to the whole population. 
The multiobjective optimization is typical multimodal search for  finding multiple different solutions in a single 
run. To reach this goal  various niching  techniques are used. The well known is fitness sharing – the more 
individuals  are located in the neighborhood (defined by niche radius) of a solution the more is the fitness 
decreased. Less frequently nonniching  techniques are used such as restricted mating (only similar parents are 
mated) and crowding (offspring replace similar parents). We will shortly mention the main representatives of the 
Pareto optimization algorithms: The Niched Pareto Genetic Algorithm (NPGA) combines tournament selection 
and the concept of Pareto dominance [14]. A wide review of basic approaches and the specification of original 
Pareto evolutionary algorithms include the dissertations [15], [13] where the last one describes the original 
Strength Pareto Evolutionary Algorithm (SPEA). An interesting approach using nondominated sorting in genetic 
algorithm (NSGA) is published in [16]. An interesting extension  of the SPEA algorithm resulting in PESA 
algorithm is described in [17].  
Pareto optimal methods have more preferences than disadvantages. To the advantages belongs the fact that 
Pareto approaches take all objectives into consideration simultaneously - every point/solution of Pareto front is 
good solution – and maintains the diversity of solutions. Naturally we can list two main disadvantages – this 
approach is computationally expensive and not very intuitive if the number of objectives is large. All these 
algorithms mentioned above progress towards the Pareto optimal set with a good distribution of solutions but 
none of them guarantees the convergence to true Pareto optimal set. The promising approach of archive-based 
Pareto optimization algorithms  is published in [18] where the concept of  ε-approximate Pareto set and ε-Pareto 







  


set  is introduced. A class of algorithms is suggested with guaranteeing convergence to a diverse set of ε-Pareto 
optimal solutions.   


5.2   Non-Pareto methods 


There are many methods for the  multi-criteria optimization, mostly based on the scalarization of the objective 
function or other non-Pareto approaches. This way the MOP problem can be easily transformed into more 
simpler SOP problem.  


Weighted - sum approach 
The well known aggregation method is based on the weighted sum approach. This method transforms the 
objective function vector into a higher scalar function using weighted sum of particular objectives. Let us note 
that in the single objective optimization, the feasible set is completely ordered according the single objective 
function. For two solutions u, v ε Xf   either f(u)>=f(v) or  f(v)>=f(u). In case of multiobjective  optimization, 
the feasible set is only partially ordered. In case of maximization we get: 


maximize   y = f(x) = w1 f1(x)+ w2 f2(x) +.....+ wm fm(x)       (10) 


This equation can be modified  to the following form which can be understand as a sector equation of line with 
the slope -w1/w2   and intercept  y/w2 [13] (see Fig. 4.) : 


    f2 (x)=(-w1/w2) f1(x) + y/w2         (11) 
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Fig. 4  Example of an exploration of the search space by a) weighted sum approach, b) constrained methods 
 
The set of parallel lines represents the successive search in the objective space. This approach is able to find 
Pareto optimal solutions but the search process is very sensitive to weight coefficients and this technique is not 
able to reach solutions in local non-convex region, see point C. 
 
Constraint method 


This technique is quite simple: only one function is optimized, the others are transformed  into constraints. Then 
the penalty function can be used to fulfil the constraints. For the case of bi-objective optimization we get 


y = f1(x)           (12) 
h(x)= f2(x)>= c, 


where c is chosen repeatedly (see fig 4.b) but remark that the c’ is not available choice of bound. Another 
principle is used in priority (lexicographic) method - the  objective with highest priority is minimized first, then 
the next with lower priority etc. The problem appears how to state the importance of objectives. 
 
Fuzzy- control approach  


Fuzzy controllers are often used in control system and generally in soft computing. In [19] an interesting 
approach for scalarization  of a bi-objective problem. Each generation the centre of current population is detected 
and according this knowledge fuzzy controller decides  what transformation of the cost components into one-
dimensional fitness function is taken.  







  


Let us note that the attraction of the SOP methods described above is supported by many useful and well-studied 
heuristic methods like dynamic programming, branch and bound method, random search algorithm, stochastic 
local search algorithms and simulated annealing. In common they required several runs to obtain an 
approximation of the Pareto-optimal set. 


6     Pareto optimal BOA 


In our Pareto BOA algorithm we replaced the original fitness assignment and replacement step of standard BOA 
by the Pareto niching  technique utilizing a new strength  criterion for the evaluation process [13]. The following 
specification describes the whole reproduction process of our algorithm. Let us note that although we solved bi-
objective optimization, our algorithm is able to solve  m-objective optimization problems. The flowchart of our 


Pareto BOA algorithm is in Fig. 5. 


It follows from the flowchart that the 
algorithm is archive-oriented. In external 
archive the nondominated solutions during all 
optimization history are archived and enter 
regularly into selection and replacement phase. 
The most important part of our Pareto 
algorithm [20], [21] is the procedure for 
detection of nondominated (current Pareto 
front) and dominated solutions and 
sophisticated fitness calculation. The 
procedure for current nondominated and 
dominated set detection is described in 
following steps: 


1. For each individual X in the population D 
compute the vector of the objective functions        
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2. Detect  subset of nondominated solutions  
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3. For each nondominated solution Xj  from D 
compute its strength value as 


{ }
�'


;;';;
;V


LMLL


M +


∧∈
=


_
��


 


    
(15) 


4. The fitness  for nondominated solutions is  
equal to the reverse of the strength value 


���� MM ;V�;I =′         (16) 


5. For each dominated solution Xi  from D 
determine the fitness as 
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where LMM ;;';  ∧∈ .  


Fig. 5  The flowchart of the Pareto BOA algorithm 


7     Problem specification  


7.1  Bi-objective Onemax/Xor binary problem 


We start to test our algorithm with an artificial problem with easily determined Pareto optimal front. We call this 
problem Onemax/Xor problem (unitation versus pairs in [16]). It is defined on the binary string. Onemax 
function f2 is simply  stated by number of ones in the  n bit string X, e.g. f2(X)=f2(0110)=4. Xor function denoted 
as f1 is specified by number of pairs of adjacent complementary bits, either 10 or 01, thus 
f1(X)=f1(0110)=1+0+1=2. The goal is to maximize both functions. 
 
7.2  Multiple 0/1 knapsack problem 


Generally, the  0/1 knapsack problem consists of set of items, weight and profit associated with each item, and 
an upper bound of the capacity of the knapsack. The task is to find  a subset of items which maximizes the sum 
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of the profits in the subset, yet all selected items fit into the knapsack so as the total weight does not exceed the 
given capacity. This single objective problem can be extended to multiobjective multiple problem by allowing 
more than one knapsack. Formally, the multiobjective 0/1 knapsack problem is defined in the following way: 
Given a set of n items and a set of m  knapsacks, with following parameters: 


           MLS �  profit of item j according to knapsack  i 


           MLZ �  weight  of item j according to knapsack  i 


 ci    capacity of  knapsack  i 


find a vector x = (x1, x2 ,....., xn) ∈  {0,1}n, such that xj =1 iff item j is selected and 


 f(x)=(f1(x), f2(x),…, fm(x))  is maximum, where      (18) 
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and  for which the  constraint is fulfilled  
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The complexity of the problem solved  depends on the values of knapsack capacity. According to [13] we 
used the knapsack capacities  stated by the  equation: 


ci = 0.5 ∑
=


Q


�M
MLZ �           (21) 


The encoding of solution into chromosome is realized by binary string of the length n. To satisfy the constraints 
(21) it is necessary to use repair mechanism on the generated offspring to be feasible one.  


 
7.3   Hypergraph bisectioning 


The  bisectioning problem can be defined as follows: Let us assume a  hypergraph H=(V,E), with n =|V| nodes 
and e = |E| edges. We look for such a bisection  (V1,V2) of  V  that minimizes the number of hyperedges that 
have nodes in different set V1, V2 and the balance b of the partition sizes. The set of external hyperedges can be 
labelled as Ecut (V1,V2). The cost function  is the number  of external hyperedges, shortly called cut size. 
Each solution of the bisection is encoded as a binary string X=(x0, x2, …, xn-1 ). The variable xi represents the 
partition number, the index specifies the node in the hypepergraph. For the case of simple graph G(V,E,R) 
bisectioning we have derived on the binary string X=(x0 , x1 ,.., xn-1) the following two functions to be minimized 
[18]: 
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where the coefficient rij=1 in case the net/edge of the graph G exists between node i and j, else rij=0. The 
function f1 represents the cut value of the bisection and the function  f2  expresses the  balance/difference of the 
partition sizes. We have tested  two approaches for solving this 2-objective optimization problems: Weighted 
sum approach and  Pareto optimal method. The first approach transforms the original vector-valued objective 
function into a scalar-valued objective function. The objective function of the solution X is computed as a 
weighted sum of all objective functions: 


           


 f(X) = w1 f1(X)+ w2 f2(X),                                    (24) 


where w1, w2  are weight coefficients. It is well known the sensitivity of the optimization process to these values. 
We have tested two sets of these coefficients. In WSO1 variant we have chosen w1=0.5, w2=0.5, in WSO2 
couple of w1=0.005, w2=0.995 was used. This values were found experimentally.  


8     Experimental results 


8.1  Test benchmarks 


We used three types of benchmarks: 


1. The 64 bit Onemax/Xor function with known Pareto set including 32 indifferent solution. 


2. Two knapsack benchmarks specified by 100 (Kn100) and 250 items (Kn250) published on the web site 
[http://www.tik.ee.ethz.ch/~zitzler/testdata.html#fileformat]. We have compared our results with results 







  


obtained by two evolutionary algorithms SPEA [13] and  NSGA[16]. These two algorithms represent  well 
working evolutionary multiobjective algorithms. 


3. Two hypergraph IC67, IC116 representing real circuits. The global optima is not  known. The structure of 
circuits can be characterized as a random logic. The hypergraph IC67 consists of 67 nodes and 134 
edges/nets, the IC116 consists of 116 nodes and  329 edges/nets. 


8.2 Experiments and results 
All experiments were run on Sun Enterprise 450 machine (4 CPUs, 4 GB RAM), in the future we consider the 
utilizing the cluster of Sun Ultra 5 workstations. 


The Onemax/Xor binary problem 


In Fig. 6 the population distribution in 1st generation and 10 th generation is shown. 
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Fig. 6.  Population distribution  for Onemax/Xor  benchmark plotted in the a) 1st generation, b) 10 th generation.  


 
In Fig. 7a we plot the final Pareto front (N=2000) after 100 generations. Our algorithm succeeded completely in 
finding of known Pareto set, in NPGA algorithm [14] Pareto set was not found entirely. In Fig. 7b the relation 
between population size and  the covering the known Pareto set  are shown. It is evident that for 64 bit-string 
problem the population size N=2000 is sufficient. The computation time is about 3 minutes. Let us note that for 
smaller population size up to N=300  we get solutions from Pareto front but not completely all. 
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Fig. 7 a) Pareto optimal front for Onemax/Xor problem, b) Covering of known Pareto set versus population size. 
 
Knapsack problem 


In Fig. 8a there is the comparison of the final Pareto front produced by our Pareto BOA algorithm and by the 
SPEA [13] and NSGA [16] algorithms for the case of Kn100 benchmark and in Fig. 8b for the case of Kn250 
benchmark. We performed 5 independent runs and constructed the final Pareto front from the 5 particular Pareto 
fronts. We used the following setting for our algorithm: for the Kn100 we set the population size N to 2000, for 
the case of the Kn250 the population size N equals to 3000 and alternatively to 1000. The number of generations 







  


used is 150. The computation time is presented in Tab II. In the context of algorithm comparison an important 
question arises: What measure should be used to express the quality of the results so that the various 
evolutionary algorithms can be compared in a meaningful way. We preferred the topology/shape of the Pareto 
fronts in our comparison.  
 From a it is evident that for Kn100 the Pareto solutions produced by our Pareto BOA in the middle part of 
Pareto front are slightly better than the Pareto solutions produced by SPEA and NSGA. What is more important 
– our Pareto BOA produces more solutions in the Pareto front margins. 
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Fig. 8  Comparison of final Pareto fronts for a) Kn100, N=2000,  b) Kn250, N=3000 and N=1000. 


In Fig. 8b we see that for Kn250 the difference between Pareto fronts is more expressive – our Pareto BOA for 
N=3000 outperforms the SPEA and NSGA. In case of limited size N=1000 the Pareto BOA is slightly worse 
than SPEA, but the Pareto front is longer. 
 


Problem size n Population size N, Number of generations Computational time 
Kn100 N=1000, 150 gen. 2 min 40 s 
Kn100 N=2000, 150 gen. 5 min 
Kn250 N=1000, 150 gen. 25 min 
Kn250 N=3000, 150 gen. 45 min 


TAB. II  Computational time for knapsack problems 
 
Hypergraph bisectioning 


The five independent runs of each algorithm were performed and final Pareto front from final populations is 
shown. For better visualization of the fronts from each run the points are connected by lines.  
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Fig. 9a  Bisection of  IC67, N=2500.                                    Fig. 9b  Bisection of  IC116, N=4000. 


 







  


From Fig. 9 it is evident that Pareto algorithm usually produces better Pareto set with good quality solutions, 
whereas WSO2 produce only solutions with low cut size but high balance and WSO1 produces solutions with 
low balance and higher cut value – only the margins of the Pareto front are covered. 


9     Parallel Pareto BOA 


In [11], [22] we proposed the Distributed Bayesian Optimization Algorithm. It uses a cluster of workstations as a 
computing platform to speedup the evolution process. Let’s note that in the distributed environment the whole 
population D is split into several parts, each part Dk is being generated and evaluated by different processor. This 
approach can be extended to the Pareto BOA. We propose the following modification of the procedure for Pareto 
detection and fitness assignment:  
First, each processor will compute the vector of objective functions for all individuals from its part Dk of 
population D.  Then, each processor detects its local set of nondominated solutions Dk as 


{ }MLNLNMMN ;;';';;'  �_ ∈∃∧∈=                         (25) 


and the master processor creates the global nondominated set D from the union of local nondominated sets Dk 
as  
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The strength values for nondominated solutions from D can be obtained as the sum of local strength values 
computed in parallel by all processors: 
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After that all nondominated solutions and their strength values are known, so each processor is able to compute 
the Pareto fitness for all individuals from its part of population according to equations (16) and (17). 


10     Conclusions 


We have implemented multi-objective Pareto BOA algorithm as a modification of the original single-objective 
BOA algorithm [6], [7], [8] using the concept of a strength criterion applied in the SPEA algorithm [13] for the 
Pareto oriented fitness. Let us note that the SPEA is a modern multiobjective optimization algorithm which 
outperforms a wide range of classical methods on  many  problems.  
We have tested the performance of our algorithm on three types of benchmarks. In case of artificial Onemax/Xor 
benchmark we got known Pareto optimal set completely. In case of multiple 0/1 knapsack problems Kn100 and 
Kn250 we got better result than in [13], [16]. The Pareto solutions produced by our algorithm are uniformly 
distributed along the Pareto front which is more global than the Pareto fronts obtained by  NSGA and SPEA 
algorithms. 
We also implemented the weighted sum method for the case of hypergraph bisectioning. It is evident that Pareto  
BOA algorithm produces Pareto set with greater cardinality and better solution distribution than both variants of 
the weighted sum methods. Both  algorithms WSO1 and WSO2 were very sensitive to weight coefficients - in 
accordance with the theory. 
But many problems remain to be solved, namely the relatively larger computational complexity. The next 
possible improvement lies also in more sophisticated niching technique, modification of replacement phase of 
the algorithm.  
To reduce the computational complexity we proposed the idea of the parallelization of Pareto BOA including the 
decomposition and detection of the Pareto front. This approach is an extension of Distributed Bayesian 
Optimization Algorithm [22], [11] based on the parallelization of Bayesian network construction. From this 
point of view the future work will be oriented on the implementation of Parallel Pareto BOA algorithm for 
multiobjective optimization problems. 
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