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Abstract: We propose in this article a new optimization of Genetic Snakes (GS): 
Multiobjectives Genetics Snakes (MGS) faster and simpler to implement. They enable us to 
make converge two snakes in parallel while minimizing energies of different nature. We 
apply them to the modeling of mouth contours within the framework of the Audio-Visual 
Speech Recognition (AVSR). The proposed AVSR system implements a classifier based on 
the STM (Sparse Template Matching) which simplicity makes it possible to consider a real 
time implementation. We evaluate the classifier performances on European database 
M2VTS, and compare the performances of the GS and MGS. 
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1. INTRODUCTION 
 
Genetic algorithms optimization qualities have been used for several years in image 
processing [1]. In particular their aptitude to avoid local minima [2] makes them very 
attractive. The Genetics Snakes [3][4][5] give thus the possibility to overcome the problem 
of snakes initilization. The snakes identify a contour through the minimization of a weighted 
sum of several different energies (internals related to the described shape, externals related 
to the image). The weighting coefficients are difficult to find especially when contours to be 
identified vary from one image to another. 
The multiobjective optimization gives a solution to this problem by considering in parallel 
various energies. In particular the multiobjective optimization techniques based one genetic 
algorithms [6][7] propose various approaches since about fifteen years. We presente in this 
article a multiobjective implementation of the snakes optimization by genetic algorithms. 
In the field of Audio-Visual Speech Recognition (AVSR), several techniques were already 
proposed from neural networks [8] till HMM [9]. 
The algorithms which we develop are dedicated to embedded systems having very few 
resources. For this reason, we introduce here the use of the Sparse Template matching 
(STM) [10][11] in the field of the AVSR. This extremely simple classifier allows us to 
consider a real time implementation on light systems like PDA. 
 
 
 







2. MULTIOBJECTIVES GENETIC SNAKES 
 
First of all we will present the preprocessing which generate the contours points used by the 
snakes to model the mouth. Then we will detail the chromosomes coding used in the 
algorithm and at last we will describe various energies taken into account. Their parallel 
optimizations within the multiobjective framework will be finally introduced.  
 
2.1. Image preprocessing 
 
We locate [11] the face and the line Lmouth (see Fig 1a). In the V values (from YUV color 
coordinate system), the lips has a strong level of intensity while the teeth and the dark 
interior of the mouth are confused and rather dark (Fig.1b).  


Fig. 1. Mouth Preprocessing. 
 
On the first images, we evaluate the RVB signature of the pixels belonging to the lips (those 
which have a height V value around Lmouth). We also memorize the signature of those 
which belong to the skin (black areas in Fig. 1a.). We then classify the pixels by evaluating 
the Euclidean distance between the value RVB of the pixel and each of the two signatures. 
(Fig 1c). The gravity center CG of the interior of the mouth is then evaluated starting from 
the white pixels of image c), Fig. 1. The edges are finally extracted from this image. 
 
2.2. Chromosome coding 
 
Our aim is to find a first snake on the external lips contour and a second one on the interior 
contour. Each one of these snakes is defined on eight nodes. To accelerate optimization, we 
make evolve the snakes only on contours points. Thus the node C (Fig 2a) will be defined 
only on North, North-East and North-West (Fig. 1) contours points in the area RC (Fig. 2d). 
This area is defined starting from the gravity centre CG of the mouth previously given. 


Fig. 2. Chromosome coding. 
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All the other nodes of the first snake are defined in the same manner  by taking into account 
the area in which they must evolve and the contours orientation which characterize them. 
With regard to interior contour, insofar as the mouth is sometimes closed, it is difficult to 
define in a robust way the areas in which the nodes of the second snake must evolve. This is 
why we take into account the whole set of contours of the image c), Fig. 1 knowing that the 
nodes of the second snake can belong to any area of the image inside the first snake.   
The position of each node of both snakes is coded on a chromosome gene as the Fig. 2 
indicates it. Thus, the tenth gene codes the value x+yL if L is the width of the image and 
(x,y) the coordinates of the node J belonging to the second snake. 


 
 
2.3. Energie evaluation 
 
Four different energies must be minimized to model the lips contours. 
The first energy EBend makes it possible to control the rigidity of the curve. This constraint is 
evaluated on the whole nodes set of both snakes except for those corresponding to mouth 
corners (A, E, I, and M, see Fig.2ab) 
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where i is the number of the node on the curve knowing that a snake contains N nodes. The 
first node is on the left corner of the mouth (A or I in the Fig. 2ab), the node 1+N/2 is on the 
right corner of the mouth (E or M). Vji is the i-th node of the snake j. 
The second energy EDarkS2 takes into account the quantity of pixels NbLipsPixS2 
characterizing the lips (white pixels of the Fig.1c) and belonging to the area R1 of  Fig.2c. 
                                                       22 SDarkS NbLipsPixE =                        (2) 
The third energy EDarkS1S2 takes into account the quantity NbDarkPixS1S2 of pixels 
characterizing the mouth interior or the skin (black pixels of Fig.1c) and belonging to the 
lips region described by the snakes (area R2 of Fig. 2c). 
                                                     2121 SSSDarkS NbDarkPixE =             (3) 
The last energy ELipsS1S2 takes into account the quantity NbLipsPixS1S2 of pixels 
characterizing the lips (white pixels of Fig. 1c) and belonging to the lips region described by 
the snakes (area R2 of  Fig. 2c). 
                                                     2121 SSSLipsS NbLipsPixE −=             (4) 
 
2.4. Multiobjectives 
 
According to the propositions of [12], after having evaluated energies of each chromosome, 
we rank the population on the basis of Pareto nondomination. A linear ranking with selective 
pressure 2 and a proportional fitness are then applied. A sharing function is used 
(σshare=0.15) to maintain diversity. Because it is necessary to keep the good solutions all 
along the iterations [7], we create a second population in the following way.  
We use a population P1 (N1 chromosomes) and a population P2 of which the chromosomes 
number is augmented of one at each iteration. The algorithm is reiterated Niter time on a 
population P3 of which the chromosomes number varies from N1 (at the first iteration) to 
N1+N2 (starting from the iteration N2 and until the iteration Niter).   
At the beginning of each iteration, P3 is made up of P1 and the N2 better chromosomes of 
P2.  







At the end of each iteration (after having applied crossover and mutation operators on P3):   
- P1 is made up of the N1 better chromosomes of P3,   
- P2 is increased with the addition of a chromosome:  the best of P3. 


In this manner a chromosome representing a good solution during the convergence will not 
be lost, as that is often the case when is applied a multiobjective strategy not using a second 
population.  
To define the best chromosome of a population, we proceed in the following way. We rank 
each chromosome according to the others by taking into account each energy separately: a 
chromosome will thus be characterized by a vector R of n ranks (r1 to rn). The value rj is then 
the rank of a chromosome compared to the others by considering energy number j. The best 
chromosome will be that which will have the weakest rank for each energy. We calculate an 
Euclidian norm of this rank vector R for each chromosome. Since a weak rank characterizes 
an optimized energy, the chromosome having the smallest norm will be regarded as the best.  
In our applications, we use a classical crossover (probability: 0.9), a uniform mutation 
(probability: 0.03) and N1=N2=10 chromosomes. At the end of the Niter=10 iterations, the 
snake coded by the winner chromosome describes the contours of the lips.   


 
 
3. AVSR SYSTEM 
 
The system describes in Fig. 3 consist of an audio and video preprocessing module and of a 
classifier based on Sparse Templates. 


 
Fig. 3. Audio-Visual Speech Recognition System. 


 
Audio Prepreocessing. On a 40ms sliding window, we calculate as in [13] the first 12 
coefficients of the cepstrum, the logarithm of the signal energy in the window and the 
temporal derivate of those thirteen parameters.  
Video Prepreocessing. We extract the height and the width mouth starting from the snakes 
and evaluate the percentage of dark and light pixels in the mouth [11]. Finally we calculate 
the temporal derivative of these parameters. 
We normalize each audio and video parameters over the entiere sequence. 
STM Classifier. We use the same classifior as [10]:  starting from the audio and video 
parameters we generate a Sparse Template (ST). A matching between the ST identifying the 
signature of each word to be recognized and the current ST enables us to identify the  word. 
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4. RESULTS 
 
Within the framework of separated word recognition, we tested our system on the first 
person of the European Data Base M2VTS (Multi Modal Checking for Teleservices and 
Security applications [14]). This base is dedicated to audio-visual recognition and 
identification. The person pronounces four times (at one week interval) the digits from 0 to 
9. We chose this base because it characterizes well the conditions of use in which the real 
time implementation of our system will have to function. The images were acquired at 25Hz 
with a weak resolution (288x360 pixels in 4:2:2). 
Multiobjectives Genetic Snakes. Applied to this type of image, Multiobjective Genetic 
Snakes (MGS) give the same results as Genetics Snakes (GS) as one can see it on Fig. 4. 


Fig. 4. MGS, GS and real mouth height along the first sequence. 
 
All the interest of the MGS comes from their simplicity of implementation, and the speed of 
convergence in this application. Ten iterations are enough (against 300 within the framework 
of the GS), a less great number of chromosomes are necessary (from 10 to 20 at the end of 
the convergence against 30 in the case of the GS) and a shorter running time: 14s against 52s 
(Matlab implementation on a P3-900Mhz, video preprocess included). In one pass learning, 
four evaluations are carried out according to the number of the sequence used for the training 
(tests being performed on the three other sequences). In this framework, the lipreading is 
carried out correctly in 77% of the words (GS or MGS). 
STM Classifier.  
As Fig. 5 indicates it, the fusion of the audio and video signals makes it possible to improve 
the audio recognition rates when we add white noise on audio signal. 


 
Fig. 5. Percentage of correct classification versus signal to noise ratio. 


 
 


First sequence of 10 digits: 
« 0     « 1     « 2   « 3    « 4     « 5   « 6     « 7    « 8    « 9  «


H
ei


gh
t


Frame number


MGS height
GS height
Real height


First sequence of 10 digits: 
« 0     « 1     « 2   « 3    « 4     « 5   « 6     « 7    « 8    « 9  «


H
ei


gh
t


Frame number


MGS height
GS height
Real height


- 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0
1 0


2 0


3 0


4 0


5 0


6 0


7 0


8 0


9 0


1 0 0


audio


video 82%


62%


10%


Audio-video


77%


- 2 0 - 1 0 0 1 0 2 0 3 0 4 0 5 0
1 0


2 0


3 0


4 0


5 0


6 0


7 0


8 0


9 0


1 0 0


audio


video 82%


62%


10%


Audio-video


77%







5. CONCLUSION 
 
We proposed in this article a new optimization of the Genetic Snakes : the Multiobjectives 
Genetics Snakes illustrated in an AVSR system. We showed that the MGS were at the same 
time simpler to implement and more rapid than GS. Moreover they allow us to make 
converge in parallel two snakes on different energies and permit the description of the lips 
contours. However, it remains us to apply them not on only one person but on the whole 
M2VTS database in order to really illustrate their robustness. 
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