Genetic Algorithms for Multiobjective Scheduling of Combined Batch /
Continuous Process Plants

K. J. Shaw P.L. Lee

School of Engineering, School of Engineering,
Murdoch University, Murdoch University,

WA 6150, WA 6150,

Perth, Australia Perth, Australia
jane@ieee.org peter@eng.murdoch.edu.au

Tel: +44 (0) 114 2225250  Tel: +61 (8) 9360 7100

Abstract

Systems in the process industry commonly
incorporate both batch and continuous processes.
These processes must be scheduled to satisfy

product specifications, requirements from
downstream processes and physical plant
constraints. In doing so, the need to maximise

various production objectives within a highly
constrained environment can present an
extremely difficult problem. The following paper
demonstrates the difficulties of attempting to
schedule the combination of discrete tasks of
-varying cycle time with continuous elements.
Two implementations of a heuristic genetic
algorithm (GA) approach are demonstrated on a
processing problem that has  similar
characteristics to a sugar mill (Nott, 1998). The
implementations include problem-specific
" representations, single and multiobjective
approaches to handle the four problem costs, and
various uses of penalty functions to avoid
constraint violations. In addition, highly
tailored, problem specific operators allow the GA
to match its behaviour to the critical elements in
the problem definition; specifically, those
relating to a highly constrained shared storage
facility. The results and implications of using
such techniques for this type of problem are
presented and discussed.

1 Introduction

The general scheduling problem of allocating a number
of required tasks to particular equipment or processes
can be notoriously difficult to solve. The development
of genetic algorithms (GAs) as an optimisation
technique for discrete event scheduling problems has
been an increasingly active area of research, e.g. Davis,
(1985); Bagchi et al., (1991); Yamada and Nakano,
(1992); Dorndorf and Pesch, (1995); Shaw and
Fleming, (1996); Mattfeld (1999). In the process
industries, it is common to have systems that include
both discrete event (batch) and continuous processes
present. This work focuses on the development of a
GA to solve such a problem.

The work is presented as follows: in section 2, a
batch/continuous scheduling problem with variable
cycle times is presented. This problem has been a case

0-7803-6375-2/00/$10.00 ©2000 IEEE.

H. P. Nott

CSIRO Mathematical &
Information Sciences
Private Bag 10

South Clayton MDC,
Victoria, Australia

M. Thompson
Department of Engineering,
Sheffield Hallam University,
Sheffield, UK
m.thompson@shu.ac.uk

Tel: +(44) 114 2225250

helen.nott@cmis.csiro.au
Tel: +61 (3) 9545 8045

293

study for previous methods (Nott, 1998). Section 3
introduces the GA methods and describes
implementations used for this problem. Section 4

describes initial experiments based upon this GA
implementation, discusses the results and compares the
solutions with previous methods. Finally, section 5
provides discussion and suggestions for further work on
this problem.

2  Scheduling Problem

2.1 Application Description

Nott (1998) explored the problem of finding an optimal
scheduling policy in sugar milling. The system
includes a mixture of batch and continuous units, with
interacting  processes, and highly constrained
operations. As in many scheduling problems, there is a
high economic incentive to develop effective schedules.
A simplified outline of a sugar milling system is used.
The batch pan system is followed by a shared,
constrained storage facility before the remainder of the
downstream process, which is generally considered as
operating continuously.

A profit is associated with the quantity of sugar
produced, whilst processing each operation incurs a
cost. Idle periods add to the cost, and drastic changes to
the flowrate of the continuous units are discouraged.
The presence of both batch and continuous units makes
a difficult scheduling problem (Nott and Lee, 1998a).
One key decision variable is the cycle time of each
batch; although batch units have a fixed quantity to
process, this time taken to process, known as the cycle
time, may vary. This introduces a further element of
flexibility in possible schedules compared to a problem
in which the cycle times are fixed. Decisions must be
made as to whether a pan should remain idle in order to
benefit the overall schedule, as Goldratt, (1993),
illustrates.

When both batch and continuous units are present in
a process, scheduling is traditionally accomplished by
discretising time and considering the problem as a job
shop scheduling problem. This produces a mixed-
integer linear programming problem (MILP) (Kondili et
al., 1993). This work aims to apply a GA to the same
problem configuration.

2.2 Problem Used in this Work
A simplified model is considered, shown in Figure 1.
This consists of two batch units, which drop their output



into a single storage facility. This leads to a continuous
production process, assumed to be a stream. In this
system, seen in Figure 1, the cycle time of each batch
may vary, within specified bounds. It is possible for the
batch units to be idle. The amount in storage and the
flowrate through the continuous unit are constrained.
There is a profit for each unit produced in the system
while a cost is incurred for each batch begun. A
scheduling policy is required for a fixed period, or
solution horizon, discretised into uniform time units.

continuous
flow

storage

batch units facility

Figure 1 - Simple batch-continuous model. (Nott, 1998)

The scheduling problem is to decide the production
state of each component of the system at each time
interval, and as given by Nott & Lee (1998b).

1.  Does a batch start?

2. Does a batch finish?

3.  Is the unit left idle?

4. What is the flowrate through the continuous

unit?

From these four decisions, the amount in storage can
be deduced and the costs and profits of the scheduling
evaluated. Such a problem representation is suitable for
direct translation into the form of a GA.

2.3 Problem Specifications
The test problem follows specifications from Nott,
(1998). Production by the two batch units must be
scheduled over a period of 25 time units. The units 1
and 2 use batches of sizes 8 and 10 size units, lasting
between 3-5 time units, and 4-6 time units, and costing
60 and 50 cost units respectively. Idle periods would be
penalized by 100 cost units, whilst changes in flowrate
would be penalized by one cost unit per flow unit per
time unit. The selling price of each completed batch is
20 cost units. In addition, the storage facility may
contain between 2 and 15 size units, with a starting
volume of 10 size units and a variable outflow rate
between 2.5 and 5 size units per time unit.

Thus the system objective is represented by:
Maximize Objl = PR -CB - IP - CF

where
ET-1
PR =CC z fre
t=8T
n ET
CB = 2 zCi.ﬁ,t
i=l +=ST
n ET
P=3 3 zCI
i=1 t=ST
ET
CF= de 1)
t=ST+1

these representing the total production through the system
over the entire solution horizon, the costs associated with

294

beginning individual batches, the penalty for scheduling idle
periods and the penalty for changes in flowrate respectively.

For this example:

n = number of units i=1,2(n=2)

ST = start time of scheduling | ST=1

window

ET = end time of scheduling | ET =25

window

Ppli = process length 3<pL £5,4<ph <6,
pl; integer

c; = cost of starting batch in unit i ¢ = 60, c,=50

CI = cost of idle period CI=100

CC = profit of final batch CC=20

f, = cost of flowrate change per | fy=1

unit deviation
six = state of batch starting in unit
attime t

=1 if unit i is starting a
batch at time t

=0 if not

=1 if unit i is ending a

f., = state of batch finishing in unit

at time t batch at time t-1
=0 if not.

z;, = state of unit at time t =1 if uniti is idle at time t
=0 if not

fr, = flowrate of continuous unitat | 2.5<fr,<5Sforallt

time t

dfrx = (ﬁ': - frl-l)

0 <drf,s25
OB=8,0B;=10atallt

change in flowrate at time t
OB, = size of output batch from
unit i
O;, = output of unit i at time t
S, = storage leve] at time t;
S = Sui +Oi| - fr.
Table 1 — Parameters used in example problem

0, = £, OB,
2<§,£15and S, =10

2.4 Timing of Events
The timing of each event is critical to the satisfaction of
constraints and in effective algorithm design. Each
event is assumed to take effect one time unit after it is
completed, batch units take effect at the end of each
time unit. The timing of the batch processes and
continuous flow output must be such that the storage
vessel does not exceed constraints throughout the entire
continuous time horizon as opposed to simply the end
of each time interval. This specification has significant
repercussions on the scheduling of the processes, as
both pre- and post-release storage levels become
significant. These occur just before a batch output
affects the storage vessel, when the storage level is at its
lowest during the time interval, and just after the batch
takes effect, when the storage level is at its highest. This
is illustrated by Figure 2, which shows the storage level
during a time interval, + where both batch output and
continuous flows take effect.
Storage Level

+ PostBatch Level _\
| R SRR ELITLI T A
10 UL YRR 1 .
Continuous Batch output
flow
L S T PPN, S
PreBatch Level

t-1 t t+1

Figure 2: Effects of batch release on storage levels over time



This property is critical to successful solution of the
problem. A balance must be found between a steady
flowrate out of the storage unit - to meet the objective
of retaining a low change in flowrate, and avoidance of
constraint violation at every batch release, either by
allowing the storage level to run too low or too high.
The timing of the releases from the shared input of the
two batch units must be arranged to avoid such
constraint violation.

3  Method

Two GA methods are illustrated in this paper as
attempts to solve the problem, a single objective GA
(SOGA) and a multiobjective GA (MOGA). There are
several advantages offered in using GAs for schedule
optimisation problems. Because the method uses a
population of possible solutions rather than a single
point to search for potentially optimal schedules, a wide
range of possibilities can be explored by searching from
a range of various points simultaneously, thus finding
answers which may not have been readily accessible in
the past. GAs are particularly suited to the complexities
of large and difficult search spaces for scheduling
problems. GAs can also be of practical use for
problems that cannot be tackled in exponential time. An
additional advantage in a practical environment is that
GAs provide ‘good enough’ solutions during the run
such that the method can be stopped and an adequate
solution to -the problem found at any time in a run
(Bruns, 1997). The main disadvantage of this method is
that, as heuristic methods, GAs provide no guarantee of
finding the optimal solution, or a bound on closeness of
the final state to the optimal solution.

3.1 Multiobjective genetic algorithms

The problem definition contains a number of different
costs to be optimized. It may be the case that these
objectives, when regarded individually, conflict with
each other or are incompatible in some way. The use of
Pareto-optimality ~ within GAs for performing
multiobjective optimisation has been demonstrated in
various implementations, e.g., Goldberg, (1989),
Fonseca and Fleming, (1993, 1998), Horn, Nafpliotis,
and Goldberg (1994), Srinivas and Deb, (1994). Its
critical relevance in the solution of this problem is its
ability to handle several incompatible and conflicting
objectives within a single optimisation run. In addition,
it is applied here to see if the alternative approaches
required by the use of multiobjective optimisation offer
further insights into the problem.

3.2 Development of GAs for Batch Scheduling
Problems

GAs have commonly been applied to discrete-event
scheduling problems, such as job shop scheduling
problems. In many of these problems, the size of the
batch, together with its cycle time, is predetermined,
and the GA can commonly represent the schedule as a
simple permutation of the available orders, with
scheduling details supplemented during a 'translation
stage'. For the batch scheduling problem presented, the
length and timing of a batch must be decided,

295

increasing the complexity of the problem, in the degree
of decisions to be made and size of available solutions,
as the problem requires sizing as well as sequencing
decisions to be made. Some previous work within the
field of GAs for scheduling deals with similar
problems. Lee et al., (1993), explore the joint problem
of lot-sizing and sequencing for a manufacturing
problem. Lohl et al., (1998) present a GA designed to
sequence batch operations for a polystyrene plant,
which also includes continuous elements similar to
those found in this problem. The inclusion of a
decision on batch cycle time means that a GA must be
developed which can accurately represent this
information. The components of the GA are described
in more detail in subsequent sections. More recently,
Shaw et al.,, (1999) have explored the application of
various MOGA implementations to benchmark batch
processing problems based on the ISA S88 standards
(ISA 1995).

3.3 Genetic Algorithm Representation

The GA chromosome used in this implementation
consists of three distinct parts, representing the
schedules for batch unit 1, batch unit 2 and the
continuous flow unit. In the first two parts, giving
schedules for the batch units, an integer notation is used
for each element. The string length is defined by the
maximum number of schedules that may be started
within the time horizon considered for this application.
Each batch is allocated a start and end time such that
the duration of the batch lies within the prescribed
limits. In order to maintain constant chromosome
length, batches that are not to be used are allocated start
and end times of zero. As a result of this approach
batch unit 1 may be represented by two nine-element
strings, representing the start and end times of the nine
batches that may be scheduled over the entire time
horizon.  This illustrated in the example schedule
shown below (Figure 3):

Batch 1 2 3 4 5 6 7 8 9
Start 0 0 0 4 7 11 14 18 23
End 0 0 0 6 10 13 17 22 25
Figure 3- Example representation

A similar notation is used to represent the schedule of
Batch Unit 2. However due to the greater processing
time required by Batch Unit 2, only 7 batches may be
scheduled throughout the time horizon used. The
continuous flow rate out of the storage vessel for each
time interval is represented as a continuous variable,
giving the third and final section of the individual
string.

3.3.1 Objective and Constraint Definition

The genetic algorithm objective function must reflect
the requirements of the system described previously.
Additional care must be taken when attributing cost
functions and relative weightings to each aspect of the
objective as this can greatly influence performance.
The representation avoids using a fixed penalty for each
time interval by penalizing infeasibility by an amount
relative to the amount of constraint violation. This
offers the algorithm motivation over the long term to
eradicate constraint violations. However, no short term



motivation is provided. As a result, an evaluation of the
degree of violation is measured, and this can result in
optimisation of the other objectives whilst constraint
violation is effectively ignored. In order to overcome
this problem a proportional term is introduced, to
provide the algorithm with some means of assessing
performance. An alternative to such a term is to treat
the penalty as an objective in its own right to be
minimised and this is discussed further in section 3.4.

At each time interval, pre-batch and post-batch storage
levels are calculated and a penalty is incurred should

constraint violation occur, such that:
=26

total penalty, Piw= Y, P(t)
=1
where
if B(t)>15 p(t)=20000%[B(t)-15]
ifB(t)<2 p(t)=25000%{2-B(t)]
otherwise p(t)=0

where B(t) is the value of storage level at time (t).

@
Weightings are given to the two constraint violation
events in order to prevent the algorithm from simply
“see-sawing” the set of chosen flow rates in an attempt
to ensure that the storage level remains within the
bounds such that no improvement in objective is
obtained. This is a common effect observed in
experimentation (Shaw et al., 1998). The objective to
maximize flow rate will counter the constraint that the
storage vessel must exceed a level of two units,
therefore giving this constraint a higher priority,
resulting in the algorithm not settling into a steady state.
In addition, each individual is penalized that gives rise
to constraint violation. This gives a penalty (3) for each
individual. As a consequence, the overall penalty
imposed upon an individual for constraint violation may
be expressed as follows:

CV=P oa+1000
)]
The fixed penalty encourages the algorithm to
eradicate constraint violation as opposed to simply
reducing it to ‘acceptable’ levels. This constraint is
introduced to the objectives described in (1) to give an
overall objective as follows:
Objl = PR- (CB+IP+CF+CV)

()
The fifth objective is created by an infeasibility
measure, discussed below (3.4).
3.3.2  Genetic Algorithm Operators
Roulette Wheel Selection (Goldberg, 1989) was used to
select individuals for reproduction. Each section of the
solution was considered as a possible point of
crossover. The continuous flowrate section of the
population used a multipoint crossover (Chipperfield et
al., 1994), a standard crossover operator on the parts of
two individuals representing flowrates. Mutation of the
continuous flow rate used a real value mutation
(Miihlenbein and Schlierkamp-Voosen, 1993). In
addition, the batch elements used several operators to
introduce solution change, whilst ensuring valid batch
creation, such that batches of permissible duration are
created.

296

To prevent the creation of invalid batch sequences,
i.e. batches exceeding the feasible duration permissible,
a number of mutation methods were created to allow
new batch schedules to be created. These provide the
GA with the necessary mechanism to explore the
population space fully. These methods were the only
operators used upon the batch schedules, providing
means by which both minor and significant genetic
changes may be incorporated into the individuals.

Batch Insertion

The schedule may contain a number of dummy batches.
During the mutation process, if the selected batch is a
dummy batch. i.e. start and end times of zero, a start
time is selected at random from 1-25 and the end time is
such that the minimum batch size is obtained. The
schedule is then re-sequenced and each batch is
evaluated to ensure that no batches overlap and that
each batch is of a valid duration. This process is
described in Figure 4.

if B> 1A (Start_Time(B) < End_Time(B- 1) v

(MinBatchSize < End_Time(B) - Start_Time(B) + 1 < MaxBatch Size))

{

if Start_Time(B) < EndTime(B - 1)
Start_Time(B) = End_Time(B-1) +1

endif

if End_Time(B) - Start_Time(B) + 1 > MaxBatch Size
End_Time(B) = Start_Time(B) + MaxBatchSize - |
endif

if End_Time(B) - Start_Time(B) + 1 < MinBatch Size
End_Time(B) = Start_Time(B) + MinBatchSize - 1

endif

)

Figure 4: Batch Validation Procedure

This procedure ensures that only valid batch
sequences are created during the mutation process.
This may be illustrated by the following example:

PreMutation
Batch 1 2 3 4 5 6 7 8 9
No
Start 0 0 0 4 7 11 14 18 23
End 0 0 0 6 10 13 17 22 25

Post Mutation

Batch 1 2 3 4 5 6 7 8 9

No

Start 9.]o o {4 |7 11 14 18 | 23

End =11 0 0 6 10 13 17 22 25
Validation

Batch 1 2 3 4 ‘5 6 7 8. 9
No

Start 0 0 4 7 11 -] 14 17 20 23

End 0 0 6 10 |13 16 19 22 25

Figure 5 - Batch mutation process

As can be seen from the above example, this form of
mutation can have a significant affect upon the
individual. It has greatest significance during the early
stages of the run, as this will provide significant
changes to the genome and provide a powerful means
by which the algorithm may explore the population
space. However, as the . mutation causes significant




changes it is likely to introduce damaging effects during
the latter where small changes to the individuals are
required. In order to introduce alterations to the batch
sequencing within the genome, additional mutation
methods must be introduced, these being Start_Time
mutation and End Time mutation. These methods
slightly modify the start and end time of an existing
batch respectively, and are discussed in the following
sections.

Start_Time Mutation

Start_Time mutation first mutates the batch start time. If
it gives a batch of valid duration, it is then instantly
adopted. If, however, an invalid batch duration is
created then the End_Time is altered such that a valid
batch is assumed (in a similar way to that exhibited in
the previous example. In each case batch validation is
carried out as in Figure 4.

End_Time Mutation

This acts in exactly the same fashion as the start time
mutation operator, however, in this case the End_Time
adopts the dominant role, forcing the start time to
ensure valid batch creation. The use of these mutations
may allow ’shuffling’ of batches away from a time point
where constraint violations are present.

3.4 Multiobjective Genetic Algorithm

Multiobjective optimization abilities in the form of
Pareto-based ranking are applied to the single objective
GA implementation, following the method of Fonseca
and Fleming (1993). Effectively the objective function
is extended from the single function given in (1) to
become a five objective evaluation function. The
solutions are ranked by comparison of vectors of their
objective values in a Pareto sense; thus one solution
may excel in one objective but not another, and a
second solution may offer the opposite situation. These
may be ranked as equally good solutions (ron-
dominated), since neither is entirely better in all its
costs than the other, i.e., neither dominates the other.
All non-dominated solutions in the final population of
the MOGA run are considered as possible contender
solutions to the problem, providing multiple
possibilities as to the solution until the user expresses a
preference as to the relative importance of each cost’s
contribution to the overall goal that meets their needs
best. This concept makes use of the trade-offs between
incompatible  solutions to  preserve  genuine
multiobjective optimisation within the search, and
contrasts with single objective optimization, in which
the preferences are pre-defined, for example, by an
expression such as that given in (1). It should be noted
that the MOGA allows infeasible solutions to remain in
the population, since the feasibility degree or penalty
violation is now an objective rather than a constraint.

4 Experimental results

The GA methods were run ten times each to provide
some generality of results, on a Sun Ultra SPARC 5.
All GAs were encoded in MATLAB, using the GA
Toolbox (Chipperfield et al., 1994). A population of
100 individuals was run for 1000 generations, using a
0.2 rate of batch validation and 0.05 mutation rate. The

297

results were compared in terms of best values found,
both for the overall objection function and for each cost
individually.

4.1 Summary of resulting solutions and costs

Table 2 demonstrates the best solution found in all the
runs, for the value of objective function, Obj-1, and the
individual costs in (1). The best solution by the SOGA
is that with maximum Obj-1 = 1413.3. The worst
solution by comparison, has Obj-1 = 978.8. For
comparison, MOGA values are 1320.7255 and
853.2496 for the best and worst values respectively.

. Costs Obi-1 cB PR IP CF

SOGA

Best 1413.3 780 2220 4] 6.6513
solution

Worst 978.8 730 2020 300 11.211
solution 2
MOGA

Best 1320.726 1020 1999.240 300 17.091
solution

Worst 853.250 920 1994.982 200 21.732
solution

Table 2 - Values found for Obj-1 and individual costs in final
population, feasible solutions only

Examining individual components of these solutions
provides some insight into the search involved. The
SOGA is more successful with its best solution in that it
approaches the optimum value of the single objective
function (1) (see section 4.2), although its worst
solution does not show much improvement on previous
implementation (Shaw et al, 1998). Surprisingly it still
retains relatively high values for the idle period (300) in
the final population; however, its attempts to limit the
change in flowrate appear more successful. The overall
best value found by the MOGA is not as good as the
SOGA for this problem, but this might be expected
given the differences in the nature of the multiobjective
optimisation technique. Yet given the possible range of
values found in Table 2, it still finds a competitively
good solution. Rather than solely concentrating on the
immediate a priori relationship defined in the one
objective, it searches across the space of many possible
combinations of the various costs. This is discussed
further in 4.4; and is illustrated additionally in the much
wider range of values found for all costs between the
best and worst values attained. It is still capable of
producing a good result and shows an increased
robustness over the single objective GA.

It should be noted that infeasible solutions are
retained in the population, that is, solutions which did
not meet the storage constraints. Such inclusion is
particularly due to the nature of the MOGA search,

- treating the infeasibility as an objective to be minimised

rather than a penalty which eliminates infeasibility.
This property is less apparent in the SOGA, as it is
specifically designed to focus on the one region
satisfying the particular single objective function in this
way. By contrast, the MOGA finds a wide range of
values to contribute to the overall single objective
value. This is not necessarily detrimental to the final
results of the search.

4.3.1  Schedules found




Figure 6 and Figure 7 illustrate examples of schedules
found by each method. Figure 6 shows the best solution
found by the single objective GA, which makes great
use of batch sizes of 3. In comparison, the MOGA
solution (Figure 7) preserves larger batches; as
explained in 2.4 the compromise must be found
between allowing a profitable number of batch releases
to contribute to the production profits, and the
preservation of the feasible storage levels. The
inclusion of fewer, longer batches may indicate a
weaker performance, as can be seen by the overall best
objectives found.

Time Unit1 Unit 2 Continuous
flow rate
1 e 2.6503
2 2.7109
3 2.6389
4 5.0000
5 4.4039
6 4.7372
7 4.8613
8 4.9988
9 /| 5.0000
10 4.9989
11 5.0000
12 5.0000
13 5.0000
14 4.0886
15 4.0364
16 4.8750
17 5.0000
18 5.0000
19 5.0000
20 5.0000
21 5.0000
22 5.0000
23 L 5.0000
24 5.0000
25 3.9641
26
Figure 6 - Example schedule found by SOGA
Time Unit 1 Unit 2 Flowrate
1 2.5001
2 2.5013
3 2.5126
4 4.8763
5 3.6097
6 4.9988
7 3.7363
8 3.7374
9 5.0000
10 -idle- 2.5012
11 3.8661
12 4.9887
13 3.7524
14 4.6246
15 4.7486
16 5.0000
17 3.6350
1 -idle- 5.0000
19 4.0014
20 3.8598
21 4.8738
4.9864
4.9988

Figure 7 - Example schedule found by MOGA

Figure 8 and Figure 9 show the variations in flowrates
found by each method. Again, similar effects can be
seen in the plotting of these variations.

Figure 8 - Flowrate found by SOGA solution

Flowrate
=N

o3 s a7 s
Time

Figure 9 - Flowrate found by MOGA solution

The most successful solutions maintain a reasonably
steady line to stay within the constraints of the feasible’
storage region successfully, balancing the pre-release
and post-release fluctuations discussed in 2.4. The less
successful solutions fluctuate from one rate to another
in an attempt to keep the storage level within feasible
bounds, and suffer as a result.

4.2 Comparison with exact solution

This problem has been previously explored with a
variety of possible solution methods by Nott, (1998),
using mixed integer linear programming (MILP)
formulations. The GA implementation considered in
this paper does not find the optimum objective function
value of 1415.0833, as found by the MILP. This.
performance was obtained using CPLEX 4.0 running on
an IBM RS6000 machine. The resulting individual
costs are provided in Figure 10 and the schedule itself
in figure 11.

298

Costs Obj-1 CB PR P CF CcCC
Values for 1415.08333 | 780 | 2200 | O | 4917 0
costs
Figure 10 - Optimum Obj-1 found by MILP
Time Unit 1 Unit 2 Flowrates
1 e # 2.6670
2 2.6670
3 2.6670
4 5.0000
5 4.8750
6 4.8750
7 4.8750
8 4.8750
4.8750
10 4.8750
11 4.8750
12 5.0000
13 & 4.3333
14 4.3333
15 4.3333
16 5.0000
17 5.0000
18 5.0000
19 5.0000
20 5.0000
|21 5.0000
22 5.0000
23 5.0000
24 5.0000
25 4.0000

Figure 11 - ‘Schedule found by MILP




Flowrate
O = NWaH»@he

1 23 456 7 8 9 1011121314151617 18 182021 22232425
Time

Figure 12 - Changes in Flowrate found by MILP

It is interesting to note that this solution consists of a
higher number of batches with shorter cycle times (3
units), and does not schedule any batches with the
longest cycle time (6 units). A key difference between
this solution and that found by the GA is the value for
the difference in flowrates; comparison of the
individual flowrates in the schedule shows that the
MILP is able to find a somewhat smoother set of
values. However, this is encouraging for future GA
development; adjustments may allow the real-valued
strings representing this aspect to match the optimum
set of flowrates once the optimum batching decisions
are made. The MOGA may be used as an interactive
tool, allowing the user to give priority to improving the
flowrate cost at this stage in the process.

The final difference between the methods is in their
runtimes; the heuristic MOGA technique searches for a
mean of 115 minutes, whereas the MILP method
completes its search in just under 10 (9.76) minutes,
running in CPLEX on an IBM RS6000 machine.
Whilst the methods have very different natures, clearly
the MILP has the speed advantage in this comparison.

4.3Further Results of MOGA

As mentioned previously, the MOGA treatment allows
a number of insights into the relationship of the
objectives and their various effects on the final
solutions. It also allows a range of solutions to be
offered to the problem. By way of example, Figure 13,
plots all non-dominated solutions found in one run. The
X-axis enumerates the objectives, whilst the y-axis gives
the values of the costs found; each line represents the
vector of costs found for one non-dominated solution.
The feasible solutions to the problem are those in which
the fifth objective (feasibility) is zero; yet even within
this category, it can be seen that there are several
equally good solutions in the Pareto sense that may
satisfy the problem goals. Removal of the strict linear
relationship (1),(2) may allow these to be offered as
alternative solutions to that given, where appropriate.

2

b

. . * » 3 A L
Figure 13 - All the non-dominated solutions found by one run

For example, there can be seen to be a clear trade-off in
the solutions between the idle period objective (cost 3),
and the change in flowrate objective (cost 4); no
solution is found which has a low value for both these

costs simultaneously. The relationship in (1) imposes a
pressure that a zero-idle period policy should be
pursued at the cost of having some variation in
flowrates - and indeed proof is given that an optimal
value for this relationship cannot be found with a static
flowrate in Nott, (1998). By fixing the idle rate penalty
at 100, and thereby deciding the relative importance of
the idle penalty relative to the othe objectives, the
relationship is pre-defined in this way before the search
starts. However, if there is scope for flexibility in the
choice of this penalty, then many alternative solutions
are offered in the multiobjective sense which allow a
lower, or even static (cost 4 = 0) solution.

A similar conflict is clear in the relationship between
flowrate changes and feasibility, as has already been
indicated in these solutions. Figure 13 shows those
solutions that satisfy the feasibility constraint (cost 5 =
0) exactly, as well as the other solutions which are
infeasible but may offer better values for all other costs.
In practical terms, these solutions are only of use if the
storage facility were to change its capacity! Yet in a
wider context, if the user continually finds excellent
solutions within this group, it may indicate a long-term
suggestion as to where the improvements in the plant
may be made for future reference. The MOGA can
provide useful insight into such problem characteristics
and suggest future approaches to the solution
implementation, given the user’s willingness to trade off
other objective costs. Whilst the use of multiobjective
optimisation within the schedule optimization means
taking a different approach to the definition of the
problem, it allows a more realistic approach for some
real-life scheduling situation (Shaw & Fleming, 1997).

5 Conclusion

In this work, various genetic algorithm methods
intended to find solutions to a mixed batch/continuous
scheduling problem have been designed and
implemented and their results compared to the optimal
solution found by MILP. Specific implementations
have considered a problem that requires decisions upon
the batch durations, order of batches, the state of two
discrete-process units and a continuous varying-flow
unit, in a highly constrained configuration. Initial
results have been presented and discussed in terms of
this problem and the main requirements of the schedule
optimisation process. The use of a Pareto based method
indicates further insights into the problem.

Many issues are apparent for further investigation. It
is apparent that the representations used are critical to
the successful solution of this problem. However, it is
interesting to note that this simple representation based
on the start and finish times of each batch offers a
concise but effective method for exploring this problem.

The trade-offs between the various costs, as seen in
the varying effects of flowrate, production and idle
periods, together with the feasibility of solutions, are
also worth investigation. The use of linear
combinations as objective functions is known to be
highly sensitive to issues of weight choice; exploration
of the particular contributions of the individual costs



within the objective function may be beneficial to
directing the search in future implementations, as
approached in section 4.3.

Many issues surround the role of constraint
satisfaction within this problem. Richardson and
Palmer, (1989), comment that a certain amount of
infeasible solutions within the population should be
encouraged, as infeasible schedules may actually
contain genetic material or groups of genetic material
which may, when crossed with other individuals,
contribute to a very good, feasible schedule. It is
necessary to decide how much feasibility should be
preserved throughout the search. Effective constraint
penalty functions may be designed, as shown by this
GA, in order to preserve useful effects of the infeasible
individuals without entirely eliminating their solutions.
The MOGA avoids this issue entirely by treating
infeasibility as an additional objective to be minimised.
As discussed above, the results help illustrate the
advantages of each algorithm.

The paper has presented GA methods of approaches
to finding the optimum schedule for a challenging
problem, consisting of both discrete and continuous
elements. Evaluation of these methods shows that they
may yet match the performance of methods that have
previously found the optimum, such as the MILP
implementation (4.2). In addition, this investigation has
provided insight into the complexities of the problem
and some of the issues that must be addressed in order
to provide effective optimisation. The work has shown
the significance of the problem description, constraint
definition and objective costing in developing a
successful solution to a deceptively difficult problem.
Finally, it has shown the critical need to explore the
conflicts that arise during the optimisation process
between the objectives and constraints in the design of
an appropriate optimization tool.

ACKNOWLEDGEMENTS

The first author gratefully acknowledges the funding of
Murdoch University for this research; also the EC group at
ACSE Department, University of Sheffield, for help with the
GA Toolbox, and members of the School of Engineering,
Murdoch University for their continued support and helpful
input during this work.

References

Bagchi, S., Uckan, S., Miyabe, Y., Kawamura, K., 1991.
Exploring Problem-Specific Recombination Operators for
Job-Shop Scheduling, Proc. 4* ICGA. Morgan Kaufmann.
Chipperfield, A. J. Fleming, P. J., Pohlheim, H., 1994. A
genetic algorithm toolbox for MATLAB, Proc. Int. Conf. on
Sys. Eng., Coventry, UK, pp. 200 - 207.

Davis, L., 1985. Job Shop Scheduling with Genetic
Algorithms, Proc. ICGA, Lawrence Erblaum

Domdorf and Pesch, 1995. Evolution Based Learning in a
Job Shop Scheduling Environment, Comp. Op. Research, 22,
1,25 - 40.

Fonseca, C. M., and Fleming, P. J., 1993. Genetic
Algorithms for Multiobjective Optimization: Formulation,
Discussion and Generalization, Proc. 5" ICGA.

Goldberg, D. A., 1989. Genetic Algorithms in Search,
Optimisation and Machine Learning. Addison-Wesley

300

Goldratt, E. M., (1948). The Goal: a process of ongoing
improvement, 2nd ed. - Aldershot : Gower, 1993.

Holland, J., 1975. Adaptation in Natural and Artificial
Systems, University of Michigan Press

Hormn, J., Nafpliotis, N, and Goldberg, D. E., 1994. A Niched
Pareto GA for Multiobjective Optimisation. Proc. First IEEE
Conf. on Evolutionary Computation.

ISA, 1995. ANSI/ISA-S88.01.1995 Standard Batch Control;
Part 1: Models and Terminology. ISBN 1-55617-562-0, ISA.
Kondili, E., Pantelides, C. C., Sargent, R. W., H., 1993. A
general algorithm for short-term scheduling of batch
operations - 1. MILP formulation, Comp. Chem. Eng., 17
(2): 211 - 227.

Lee, 1., Sikora, R., and Shaw, M. J., 1993. Joint Lot Sizing
and Sequencing with Genetic Algorithms for Scheduling -
Evolving the Chromosome Structure, Proc. 5th ICGA.

Lohl, T., Schulz, C. and Engel, S., 1998. Sequencing of
Batch Operations for a Highly Coupled Production Process:
Genetic Algorithms versus Mathematical Programming,
Comp. Chem. Eng., 22, S.pp. 579 - 585, 1998.

Mattfeld, D. C., 1999. Scalable Search Spaces for Scheduling
Problems, Proc. GECCO '99, pp.1616 ~ 1629.

Miihlenbein, H., and Schlierkamp-Voosen, D., 1993.
Predictive Models for the Breeder Genetic Algorithm: 1.
Continuos Parameter Optimization, Evolutionary
Computation, 1:1, pp. 25 - 49, 1993.

Nott H.P., 1998. Modelling Alternatives in Scheduling Mixed-
Batch/Continuous Process Plants with Variable Cycle Time,
Ph.D. Thesis, School of Engineering, Murdoch University,
WA. July 1998.

Nott, H.P. and Lee, P.L, (1998a). Scheduling mixed
batch/continuous process plants with variable cycle time by
splitting the optimisation problem. Fourth International
Conference on Optimisation: Techniques and Applications
July 1-3 Perth Australia 1998

Nott, H. P., and Lee, P. L., (1998b). An optimal control
approach for scheduling mixed batch | continuous process
plants with variable cycle time, Proceedings of the
Foundations of Computer Aided Process Operations -
FOCAPO, (Snowbird, Utah).

Nott, H.P. and Lee, P.L, (1999). Sets formulation to schedule
mixed batch/continuous process plants with variable cycle
time. Computers and Chemical Engineering, 23(7):875-888.
Richardson, J. T., and Palmer, M. R., 1989. Some Guidelines
for Genetic Algorithms with Penalty Functions, Proc. ICGA3.
Shaw, K. J., and Fleming, P. J., 1996. An Initial Study of
Practical Multiobjective Production Scheduling, Using
Genetic Algorithms. Proc. Int. Conf. Control '96.

Shaw, K. J., and Fleming, P. J., 1997. Use of Rules and
Preferences for Schedule Builders in Genetic Algorithms
Production  Scheduling. Evolutionary =~ Computation:
Proceedings of the AISB '97 Workshop on Evolutionary
Computation, Springer-Verlag.

Shaw, K. J, Nott, H. P., and Lee, P. L., 1998. A Study of
the Development of a Genetic Algorithm for Scheduling
Combined Batch /| Continuous Process Plants, Technical
Report, School of Engineering, Murdoch University, 1998.
Shaw, K. J., Nortcliffe, A. L., Thompson, M., Love, J., and
Fleming, P. J., (1999). Interactive Batch Process Schedule
Optimisation and Decision-Making using Multiobjective
Genetic Algorithms, 1999 IEEE Conference on Systems, Man
and Cybernetics, Tokyo, October 1999.

Srinivas, N. and Deb, K., 1994. Multiobjective Optimisation
Using Nondominated Sorting in Genetic Algorithms.
Evolutionary Computation, Vol. 2, No. 3, 221 - 249.

Yamada, T., and Nakano, R., 1992. A Genetic Algorithm
applicable to Large Scale Job Shop Problems, Paraliel
Problem Solving from Nature, 2, 1992, pp. 281 - 291



