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Abstract- This paper introduces a new, simple and 
efficient evolutionary algorithm to multi-objective 
optimization problem, which based on neighborhood 
and archived operation (NAGA). The innovations 
contain two main parts: neighborhood identify 
procedure to obtain Pareto optimal solutions from the 
population and neighborhood crowding procedure to 
maintain the diversity of Pareto optimal solutions 
previously found. The neighborhood identify 
procedure is composed of two steps, first to identify 
the locally non-dominated solutions from the 
population and then to obtain the global 
non-dominated solutions among the locally solutions. 
The neighborhood crowding is introduced to maintain 
a widely distributed set of Pareto solutions along the 
Pareto optimal front, which through implementing a 
comparison among the neighborhood bounds of new 
identified Pareto solutions and those of solutions in 
the archive. The winners, which are not in any ranges 
of the solutions in the archive, will be copied to the 
archive. A well-tuned fitness assignment method is 
structured to guide the population converging to the 
true Pareto optimal front. This method is pragmatic 
compromise between the computational simplicity 
and efficiency. Four nicely balanced test problems 
are provided to check the performance of the 
approach. 

1 Introduction 

Most real world engineering optimization problems 
normally have several (possible conflicting) objectives 
that must be satisfied at the same time. Typically, 
classical methods to MO problem are to scalarize 
multiple objectives into one objective by averaging the 
objectives with a weight vector or to combine multiple 
objectives to constraints with associated thresholds and 
penalty functions. But penalties and weights have proven 
to be problematic. The final solution is usually very 

sensitive to small changes in the penalty function 
coefficients and weighting factors. 

Since 1985, a considerable amount of Evolutionary 
Multi-Objective Optimization (EMOO) approaches have 
been developed that are capable of searching for multiple 
solutions concurrently in a single run [Schaffer, 1985; 
Fonseca, et al., 1994, Srinivas, et al., 1994; Veldhuizen, 
1996; Deb, et al., 2000; Zitzler, et al, 2000; Coello, 2001]. 
Fonseca, et al. (1994) concluded the methods reported in 
the literature into plain aggregating approaches, 
population-based non-Pareto approaches, Pareto-based 
approaches and Niche induction techniques, which the 
latter two are more popular. Coello (2001) discussed the 
most popular EMOO techniques currently in use, 
analyzed their advantages and disadvantages. Especially, 
he pointed out the two new EMOO approaches, Pareto 
Archived Evolution Strategy (PAES) [Knowles, et al., 
2000] and Strength Pareto Evolutionary Algorithm 
(SPEA) [Zitzler & Thiele, 1999] are very promising. The 
common feature of the two approaches is to use a history 
archive that records all the non-dominated solutions 
previously found. But is seems that they are still use 
time-consuming methods to keep the diversity of the 
population. Furthermore, there are no algorithms 
addressed on how to identify the Pareto optimal solution 
from the population in detailed, which is an important 
task that can’t be ignored. 

In the present study, an efficient and simple 
multi-objective optimization genetic algorithm is 
proposed, which based on neighborhood and archived 
operation (named as NAGA for short). The neighborhood 
operation concludes two parts, identifying the Pareto 
optimal solution from the population by neighborhood 
comparison and spreading its population out along the 
Pareto optimal trade-off surface (Pareto optimal front) by 
neighborhood crowding. The algorithm applies 
neighborhood operations, compared with other 
multi-objective optimization evolutionary algorithms, 
such as niche based approaches or Pareto based 
approaches, requires low time computational complexity 



and storage. Four typical test problems used in 
previously literatures are selected to illustrate the 
performance of NAGA.  

2 The Neighborhood and Archived Genetic 
Algorithm 

The main works of general multi-objective optimization 
genetic algorithms contain two parts, identify the Pareto 
optimal solution from the population and convergence to 
the Pareto optimal front, and then distributed the solution 
on the Pareto optimal frontier uniformly. Our approach 
also focuses on the two tasks. 

2.1 Identify Pareto optimal solution 
The definition of Pareto optimal solution is available 
elsewhere [Srinivas, et al., 1994; Fonseca, et al., 1994; 
Zitzler & Thiele, 1999; Coello, 2001], the Pareto optimal 
identify procedure is based on these definitions. 

It is assumed that ix  and jx  are Pareto optimal 

solution vectors whilst kx  is a non-Pareto solution 

vector of a minimization problem. The relation between 

ix  and jx  is that the criterion of ix  is partial worse 

than those of jx  whilst partial better than those of jx .

Namely, ix  and jx  are ‘non-inferior’ or non-domin 

-ated with respect to each other. The relation among 

Pareto optimal solutions ix  or jx  and kx , however, 

is that there exists all criterions of at least one among ix
and jx  are better than those of kx , which also called 

that kx  is ‘dominated’ . This concept always gives a set 

of solutions rather than a single solution, which titled as 

the Pareto optimal set. 

According to the two level definitions of Pareto 

optimal solution, we design a two stages procedure based 

on neighborhood comparison to identify the Pareto 

optimal set from the population. The first step is the 

locally non-dominated identify procedure. It is based on 

the premise that the solution from the neighborhood of a 

Pareto solution is also a Pareto solution, while the 

solution from the neighborhood of a non-Pareto solution 

is also a non-Pareto one. Thus, compared with the 

original Pareto solution, the substitute solution from its 

neighborhood will better part objective function values 

and worsens others simultaneously. However, it is not the 

case for that of non-Pareto solution, i.e., its neighborhood 

solution will either improve all objective function values 

or degrade all objective function. Thereby, by comparing 

the monotonicities of all objective functions of a 

candidate solution and its neighborhood solution, a 

necessary condition to identify the Pareto optimal 

solution is obtained. That is, if all objective functions of a 

candidate solution are either monotone increasing or 

monotone decreasing in its neighborhood, the solution 

can be regard as an inferior solution and be discarded. 

Otherwise, if partial objective functions of a candidate 

solution are monotone increasing and others are 

monotone decreasing, it is identified as locally 

non-dominated solution and go to the second identify 

procedure. 

The second identify procedure handles the locally 

non-dominated solution generated from the first identify 

step. It compares all objective values of the locally 

non-dominated solutions with those of all Pareto optimal 

solutions in the history archive. A locally non-dominated 

solution will be discarded if all of its objective values are 

worse than those of a certain Pareto optimal solution in 

the history archive. Finally, the rest ones after the 

comparison step are new Pareto optimal solutions and 

then performed neighborhood crowding proposed in the 

next subsection. As a matter of fact, this step is to 

determine whether the locally non-dominated solution is 

non-dominated within the entire search space, which is 

called as Pareto optimal solution or not. When the 

archive is empty in the initial population, the whole 
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Figure 1. The diagrammatic presentation of the locally 

non-dominated solution identified procedure and Pareto 

optimal solution identify procedure. 



initial population is instead.  

A simple two-objective minimum problem of one 

variable is considered to illustrate the concept of the two 

step of Pareto optimal solution identified procedure The 

problem has two objectives 1f  and 2f , which is 

modified here for discriminate the locally non-dominated 

solution and the global non-dominated solution (Pareto 

optimal solution), which are shown in Figure 1. It is clear 

that the Pareto optimal solutions constitute all x  values 

varying from 0 to 2 [Srinivas, et al., 1994]. 1x , 2x , 3x

and 4x  are four candidate solutions that should be 

identified. The dotted lines at the two sides of these 

solutions denote their neighborhoods. Considering 1x ,

which is between -2 and -1, the relations of the objectives 

of its left side neighborhood are )()( 1111 xfxf L >  and 

)()( 1212 xfxf L > , whilst those of its right side are 

)()( 1111 xfxf U <  and )()( 1212 xfxf U > . It is 

illustrated that Ux1  is better than 1x , i.e., 1x  is 

dominated by Ux1 . However, it is different case for 

solution 2x , in that )()( 2121 xfxf L >  and 

)()( 2222 xfxf L <  for the left side and 

)()( 2121 xfxf U <  and )()( 2222 xfxf U >  for the 

right side. Both 2x , Lx2  and Ux2  are non-dominated 

to each others, as a result of, 2x  is a non-dominated or 

locally non-dominated solution. When checking solution 

3x , the same conclusion is drawn to that of solution 1x .

Observing solution 4x , it also satisfy the relation 

)()( 4141 xfxf L <  and )()( 4242 xfxf L >  for the left 

side and the reverse relational operators for the right side. 

Thus, 4x  is also a locally non-dominated solution. 

However, when it is compared with 2x , both the two 

objective values are greater than those of 2x , which 

indicate that 4x  is dominated by 2x  and is not a 

Pareto solution. Consequently, after identified through 

the two steps, only 2x  from the four candidate solutions 

is a Pareto solution. In fact, only one side neighborhood 

objectives comparison is adequate to judge the objective 

functions in its neighborhood are monotonic or not. In the 

program code, the left side neighborhood objectives 

comparison alone is performed, which save the time to 

evaluation another side objectives vastly. 

To simplified treatment, the neighborhood is the 

perturbation of a certain value of the solution vector. For 

example, the solution from ix ’ s neighborhood is the first 

value of vector ix  multiplies 1.0001. 

2.2 Neighborhood crowding to keep diversity of the 
population 

Maintain the diversity among the Pareto optimal 

solutions is another bottleneck in multi-objective 

optimization. It is usually the most time consuming part 

in the whole procedure. Zitzler, et al. (1999) discussed 

several popular and promising techniques and concluded 

them into niching techniques and non-niching techniques. 

Among the niching class, fitness sharing method, which 

first proposed by Goldberg, is the most popular. But it is 

complex and problem dependent for it need to calculate 

and compare the distance between each solution and 

others in the population and an important parameter, 

which so-called niche radius shareσ  should be estimated 

in advance. The two shortages make fitness sharing 

method be hard to practical application, which is 

confirmed by many researchers [Deb et al., 2001; Coello, 

2001] and our experience. In the previously proposed 

algorithms, NSGA and SPEA use niching method and its 

derivative, which the time complexity is )( 3NO  [Deb 

et al., 2001; Knowles, et al. 2000]. Among the 

non-niching techniques, restricted mating and crowding 

are the most two common methods used in 

multi-objective optimization. Unfortunately, similarity to 

the fitness sharing techniques, restricted mating method 

should be appropriately given a key parameter mateσ ,

which denotes the threshold distance to allow individuals 

to mate. Furthermore, the calculation of distance among 

the population is also highly time consuming. 

In this paper, a simple and efficient technique, 

neighborhood crowding is used to maintain the diversity 

of the population. Additionally, a history archive is 

introduced to store the Pareto optimal solution previously 

found. The crowding approach is implement by 

compared the new Pareto solution identified in the 

current population with those solutions in the archive. 

Each Pareto optimal solution in the archive is represented 

by a small interval ],[ εε +− xx  that including the 

upper bound and lower bound of the solution. The two 

bounds are regard as the small interval of two sides of the 

solution, which can also be taken as its neighborhood. 

The definition of ε :



)(* LU xxd −=ε         (1) 

where d  is a adjustable coefficient of NAGA, and Ux
and Lx  are the upper bound and lower bound of the 

decision vector, respectively.  

The neighborhood crowding method is performed 

as: If a new solution jx  is in the range of the interval or 

the neighborhood of a certain solution ix  of the archive, 

i.e., ],[ iiiij xxx εε +−∈  for one-dimension problem, 

it will be discarded; Else if it is not in any ranges of the 

neighborhoods of all solutions of the archive, it will be 

copied to the archive and set its upper bound and lower 

bound as a fresh Pareto optimal solution. 

  The diagrammatic presentation of the neighborhood 

crowding with archived operation is shown in Figure 2. 

1−ix , ix  and 1+ix  are three successive solutions in the 

archive, and the size of the solution's neighborhood is set 

to ε , i.e., the neighborhood of solution ix  is 

],[ iiii xx εε +−  as remarked by dotted line in Figure 

2a. 1−jx , jx  and 1+jx  are three candidate Pareto 

solutions identified by the neighborhood identify 

procedure. For the one-dimension case, as shown in 

Figure 2a, both 1−jx  and 1+jx  are not in any ranges of 

the solutions in the archive, whilst jx  is in the range of 

ix 's neighborhood, i.e., εε +≤≤− iji xxx . It is 

assurable that jx  is a stale Pareto solution that should 

be discarded and 1−jx  and 1+jx  are selected as the 

fresh Pareto solution to copy to the archive. In Figure 2b, 

the neighborhood crowding approach for two-dimension 

decision vector is illustrated. The dotted line square 

denotes the neighborhood of a solution in the archive. In 

Figure 2b, jx  is in the neighborhood of solution ix ,

whilst 1−jx  and 1+jx  are stand-alone. Similar to the 

one-dimension case, the former is fail to be a fresh Pareto 

solution of the archive while the latter two are winners. 

2.3 Fitness assignment 
The fitness assignment procedure of our method is 

performed through assigning large value to the identified 

fresh Pareto optimal solution and low value to other 

discarded solution. The normalized Euclidean distance is 

introduced in the fitness assignment. For the fresh Pareto 

optimal solution identified in the current population, its 

fitness value is calculated as follows: 

)()()( idistifitxfitvalue i +=            (2) 

where the normalized Euclidean distance )(idist  is 

calculated as follows: 
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where n  is the number of population, and ux , lx  are 

the upper and lower bound values of the decision vector 

x , respectively. 

The term )(ifit  is set be to same value among the 

fresh Pareto solution and another same small value 

among others. It is suitable to set the range of the two 

values is no less than the maximum value among 

)(idist . In our applications, for the Euclidean distance 

)(idist  is less than 0.5 in the most cases, )(ifit  is 

fixed to 1 for the fresh Pareto solution and 0.5 for the 

others. The fitness assignment will guide the 

evolutionary population converging to the Pareto optimal 

front. 

2.4 The whole flow of NAGA 
The whole flow of NAGA is outlined as follows, 
1. Initialization. Set the number of maximum 

generation, maxK  and the parameters of the 

general Genetic algorithms: Population size, 

Probability of Crossover and Probability of 

Mutation. Set the volume of the history archive VA  

and the neighborhood size d . Generating initial 
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Figure 2 The neighborhood crowding with archived 

operation of NAGA. 



population with random distribution. 

2. Identify the Pareto optimal solutions from the 

population by Neighborhood identify method. 

Calculate and compare the objective functions of the 

initial population and their neighborhoods’.  

3. Perform neighborhood crowding and add the Pareto 

optimal solution to the history archive. Assign fitness 

for the initial population. 

4. If generation is greater than or equal to maxK

and the number of solution in the archive is greater 

than or equal to VA , stop. 

5. Apply selection, crossover and mutation operation to 

generate new offspring. Preserve the best solution in 

the current population. 

6. Identify the Pareto optimal solution from the 

offspring and assign the fitness of GA for the 

offspring. 

7. Perform neighborhood crowding to judge whether 

the identified Pareto optimal solution is a fresh one 

or not. Add the fresh Pareto optimal solution to the 

archive. 

8. Return to step 4 

In step 5, the best solution in the current offspring is 
the solution that its fitness value be the top. This 

approach is implement by Matlab 5.3 code. The other 

parts of the algorithm use general elitist genetic 
algorithm procedure. The selection operator, crossover 

operator and mutation operator are followed with those 

used or proposed by Mu [Mu, et al., 2002], which apply 
weighted roulette wheel procedure, arithmetical 

crossover and neighborhood mutation, respectively. 

2.5 The analysis of computational complexity and the 
sensitive of specific parameters 
In this subsection, we analyse the computational 
complexity: time complexity and storage complexity 
from the view of the procedure. 

In order to identify a population of size N
according to the neighborhood identify, each solution 
must be compared the monotonicity of its each objective 
functions with its neighborhood’s in the first step. This 

requires )(mNO  comparisons for all solutions in the 
population, where m  is the number of objective 
functions. The second identify procedure requires 

)(amNO  computational complexity for objectives 
comparisons, where a is the number of the locally 
non-dominated solution generated by the first stage 
identify procedure and usually significantly less than N .
In the worst case, it requires )( 2mNO  time complexity 
to identify the Pareto optimal solutions. But in the 
average case, as proved repeat by the practical 
simulations, a  is only one quarter or one third of the 
size of the population. The total storage of the identify 
procedure requires mN  number of objectives and N
number of fitness, which the storage complexity is 

)(mNO .
After the second procedure, the final number of 

Pareto optimal solutions identified in every generation is 
usually one third or half of a . So in the neighborhood 
crowding procedure, it requires to handle one tenth of 
N  individuals compared with VA  solutions if the 
archive is full, where VA  is usually proportional to N .
The time complexity of the second procedure is 

)( 2mNO  in the worst case. At the same time, this 
procedure requires store mVA number of objectives in 
the worst case. In summary, the overall time complexity 
of the algorithm is )( 2mNO and the storage is 

)()( mVAOmNO + , or )(mNO .

The specific parameters of the proposed algorithm are the 

size of the neighborhood, d  in neighborhood crowding 

procedure and the volume of the history archive, VA .

But they are less sensitive than shareσ  in NSGA, NPGA, 

the number of subdivision levels, l in PAES intuitively. 
The comparisons of the computational complexity 

and the sensitive of the specific parameters of the 
Neighborhood and Archived GA (NAGA) and the other 
popular algorithms are summarized in Table 1, which all 
assume in the worst case. 

3 The test problems 

In this section, we apply NAGA on four nicely balanced
test problems, which are well known used by many other 
popular methods in [Zitzler, et al., 2000; Deb, et al., 

Table 1. Computational complexity and sensitive of the specific parameters of 6 algorithms 

 NAGA NSGA* NSGA-II PAES NPGA SPEA 

Time complexity )( 2mNO  )( 3mNO  )( 2mNO  )( 2mNO  )( 2mNO  )( 3mNO

Storage )(mNO  )(mNO  )( 2mNO  )( 2mNO  )( 2mNO  )(mNO

* Partial results are borrowed from [Knowles, et al., 2000] and [Deb, et al., 2000] 



2002]. For all test problems and with the NAGA, we use 
a population of size 100, a crossover probability of 0.9 
and a mutation probability of 0.05. The maximum 
generation is 1000, the maximum number of solution in 
the history archive, or the volume of the archive VA  is 
500 and the size of the neighborhood of the solution is 

001.01±  multiplies the decision vector. Each of the test 
problems defined below is structured in both minimize 
the objective functions, 1f , 2f  and 3f .

3.1 A non-convex problem: ZDT2 
Figure 3 shows the distribution of the Pareto optimal 
solutions along the front. The results show that NAGA 
performed better in maintaining a widely distributed set 
of solutions on this problem than that of by SPEA in 
Figure 2 of ref [Zitzler, et al., 2000]. The true Pareto 
optimal front is formed with 1)( =xg .

3.2 A convex problem with multiple noncontiguous 
parts: ZDT3 
Figure 4 shows the distribution of the Pareto optimal 
solutions along the front. The Pareto optimal front 
consists of five noncontiguous convex parts, which is 
caused by the introduction of the sine function. The true 
Pareto optimal front is formed with 1)( =xg . The 
obtained distribution of Pareto optimal solutions in 
Figure 4 performs well as the results by SPEA and better 
than NSGA, NPGA and other famous algorithms in 
Figure 3 of ref [Zitzler, et al., 2000]. 

3.3 A multi-modality problem with a mass of local 
Pareto optimal fronts: ZDT4 
Figure 5 shows the distribution of the Pareto optimal 
solutions along the front. The global Pareto optimal front 
is formed with 1)( =xg . Compared with the best results 

by SPEA in Figure 4 of ref [Zitzler, et al., 2000], the 
Pareto solutions obtained by NAGA behave better both 
in converging to the true Pareto front and maintaining a 
widely distributed set of solutions. 

3.4 A scalable problem with three objective functions: 
DTLZ2 
This test problem has a spherical Pareto optimal front as 
in Figure 6 (marked with line). The Pareto optimal 
solutions obtained by NAGA are covered the front with a 
density (marked with hollow square). This problem is 
used to investigate the algorithms’ ability to scale up its 
performance in large number of objectives [Deb, et al., 
2002]. The best result by NSGA-II in Figure 6 of ref 
[Deb, et al., 2002] is not better than the distribution of 
the marked with square in Figure 6, which denotes the 
Pareto optimal solutions of this problem by NAGA. 

4 Conclusion 

In this paper, we proposed a fast and efficient 
multi-objective optimization genetic algorithm based on 
neighborhood operations and archived operation 
(NAGA). It has been proved both on the views of the 
experiment effects and computational complexity 
analysis that our approach could find the Pareto optimal 
solutions and obtain well distribution on the Pareto 
optimal front fast. Four challenging examples are used to 
test our approach, which the final simulation results 
proved that NAGA is not bad or better than other 
methods in finding better distribution on the Pareto 
optimal front. It is foreseeable that NAGA should be 
promising and find increasing attention and applications 
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in future. 
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