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Abstract

Multiobjective 0-1 programming problems involving
fuzzy numbers are formulated for reflecting the experts’
vague or fuzzy understanding of the nature of the pa-
rameters tn the problem-formulation process. Using
‘the level sets of fuzzy numbers, the corresponding non-
Jfuzzy programming problems together with an extended
Pareto optimality concept are introduced. For deriv-
ing a satisficing solution for the decision maker from
an ertended Pareto optimal solution set, an interactive
decision making method is presented along with an -
lustrative numerical example.

1. Introduction

Genetic Algorithms (GAs), initiated by Holland [1],
his colleagues and his students at the University of
Michigan, a new learning paradigm that models a natu-
ral evolution mechanism, have recently received a great
deal of attention regarding their potential as optimiza-
tion techniques for solving combinatorial optimization
problems or other difficult problems with nonlinear
multimodal function. As we look at recent applications
of GAs to optimization problems, especially to vari-
ous kind of single-objective combinatorial optimization
problems and/or to other difficult optimization prob-
lems with nonlinear multimodal functions, we can see
continuing advances [2, 3, 4].

Recently, as a natural extension of single-objective
0-1 programming problems, Sakawa et al. [5] have
formulated multiobjective 0-1 programming problems
by assuming that the DM may have a fuzzy goal for
each of the objective functions. After eliciting linear
membership functions through an interaction with the
DM, the fuzzy decision of Bellman and Zadeh [6] is
adopted for combining them. In order to derive a com-
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promise solution for the DM by solving the formulated
problem, a genetic algorithm with double strings [5]
which generates only feasible solutions without using
penalty functions for treating the constraints has been
proposed. Also, through the combination of the desir-
able features of both the interactive fuzzy satisficing
methods for continuous variables [7] and the genetic
algorithm with double strings [5], an interactive fuzzy
satisficing method to derive a satisficing solution for
the DM to multiobjective 0-1 programming problems
has been proposed [8].

Under these circumstances, in this paper, in con-
trast to the multiobjective 0-1 programming problems
discussed thus far, by considering the experts’ vague
or fuzzy understanding of the nature of the parameters
in the problem-formulation process, multiobjective (-
1 programming problems with fuzzy numbers are for-
mulated. Using the a-level sets of fuzzy numbers, an
a-Pareto optimality concept is introduced and an in-
teractive decision making method through genetic al-
gorithms with double strings [5, 4, 8] for deriving a
satisficing solution for the DM efficiently from an -
Pareto optimal solution set is presented.

2. Problem Formulation

In general, a multiobjective 0-1 programming prob-
lem with & conflicting objective functions, z;(x) = ¢z,

i=1,...,k, is formulated as:
minimize (ciz, 2z, ..., cpx)T
subject to Az <b (1)

13_7‘6{0,1}, j=1...n

where ¢ = (¢1,-.-,¢n), 1 = Ll,...k & =
(21, 2n)T, b= (b1,...,bm)T, and A = (ay;) is an
m X n matrix. For simplicity, it is assumed here that
each element of A and b is positive.

1639



FUZZ-1EEE'97

In practice, however, it would certainly be more ap-
propriate to consider that the possible values of the pa-
rameters in the description of the objective functions
and the constraints usually involve the ambiguity of
the experts’ understanding of the real system. For this
reason, in this paper, we consider a multiobjective 0-1
programming problem with fuzzy numbers {(MOO0-1P-
FN) formulated as:

minimize
subject to

((21.73,6;3.13; .. .A,(i';,-:):
Ax < b (2)

where A is an m x n matrix whose elements are fuzzy
numbers, & and b are respectively n and m dimensional
vectors whose elements are fuzzy numbers. These
fuzzy numbers, reflecting the experts’ ambiguous un-
derstanding of the nature of the parameters in the
problem-formulation process, are assumed to be char-
acterized as fuzzy numbers. Furthermore, for simplic-
ity, it is assumed here that all of the fuzzy numbers in
4 and b are positive.

Observing that this problem involves fuzzy numbers
both in the objective functions and the constraints, it
1s evident that the notion of Pareto optimality can-
not be applied. Thus, 1t seems essential to extend the
notion of usual Pareto optimality 1n some sense. For
that purpose, we first introduce the a-level set of all
of the vectors and matrices whose elements are fuzzy
numbers.

Definition 1 (a-level set)

The a-level set of fuzzy parameters A band ¢is de
fined as the ordinary set (i b, ¢), for which the degree
of their membership functions exceeds the level «.

Now suppose that the decision maker (DM) de-
cides that the degree of all of the membership func-
tions of the fuzzy numbers involved in the MOOQ-1P-
FN should be greater than or equal to some value
a. Then for such a degree «, the MOO-1P-FN can
be mterpreted as a nonfuzzy multiobjective 0-1 pro-
gramming (MOO0-1P-FN(A, b,¢)) problem which de-
pends on the coefficient vector (4,b,¢) € (A, b, ¢)q.
Observe that there exists an infinite number of such
MOO-1P-FN(A, b, ¢} depending on the coefficient vec-
tor (A,b,¢) € (4,b,¢)q, and the values of (A,b, c) are
arbitrary for any (4,b,¢) € (A, b, &)q In the sense that
the degree of all of the membership functions for the
fuzzy numbers in the MOO-1P-FN exceeds the level
«. However, if possible, it would be desirable for the
DM to choose (4,b,c) € (4,b,&), in the MOO-1P-
FN(A, b, ¢) to minimize the objective functions under
the constraints. From such a point of view, for a certain
degree «, it seems to be quite natural to have the MOO-
1P-FN as the following nonfuzzy a-multiobjective pro-

gramming (a-MOO0-1P) problem:

minimize (cﬂ,CQw,...,ckm)T
subject to Az < b 3)
z; €40,1} L., n ¢

In the followings, for simplicity, we denote the feasible
region satisfying the constraints of the problem (3) with
respect to @ by X (A, b). It should be emphasized here
that in the problem (3), the parameters (A,b,c) are
treated as decision variables rather than constants.

On the basis of the a-level sets of the fuzzy numbers,
we can introduce the concept of an a-Pareto optimal
solution to the problem (3) as a natural extension of
the usual Pareto optimality concept.
Definition 2 (a-Pareto optimal solution)

™ € X (A", b7) is said to be an o-Pareto optimal so-
lution to the problem (3) if and only if there does not
exist another @ € X(A,b), (A,b,¢) € (4,b,&), such
that ¢,z < &, ¢ = 1,...,k, with strict inequality
holding for at least one 4, where the corresponding val-
ues of parameters (4™, b™, ¢*) are called a-level optimal
parameters.

Observe that a-Pareto optimal solutions and a-level
optimal parameters can be obtained through a direct
application of the usual scalarizing methods for gener-
ating Pareto optimal solutions by regarding the deci-
sion variables in the problem (3) as (z, 4,b,¢). How-
ever, as can be immediately understood from the def-
mition, in general, a-Pareto optimal solutions consist
of an infinite number of points and some kinds of sub-
jective judgment should be added to the quantitative
analyses by the DM. Namely, the DM must select a
compromise or satisficing solution from an a-Pareto
optimal solution set based on a subjective value judg-
ment.

3. Augmented Minimax Problems

To generate a candidate for the satisficing solution
which 1s also «-Pareto optimal, in our interactive de-
cision making method, the DM is asked to specify the
degree a of the a-level set and the reference levels of
achievement. of the objective functions, called reference
levels. To be more explicit, for the DM’s degree «
and reference levels z;, ¢ = 1,..., %k, the corresponding
a-Pareto optimal solution, which is, in the minimax
sense, nearest to the requirement or better than that
if the reference levels are attainable, 1s obtained by
solving the following minimax problem in an objective
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function space:

minimize 1ax {ciz — %}

i=

subject to Az <b
r; € (0,1}, j=1,.
(A,b,c) € (4, b c)

yerey

(4)

It must be noted here that, for generating a-Pareto
optimal solutions by solving the minimax problem, if
the uniqueness of the optimal solution #* is not guaran-
teed, it is necessary to perform the a-Pareto optimality
test of *. To circumvent the necessity to perform the
a-Pareto optimality test in the minimax problems, it
1s reasonable to use the following augmented minimax
problem instead of the minimax problem (4):

k
minimize Jax, {(cza: —Zi)+ p;(cim - Ei)}
subject to Az < b =
z; E{O 1}, j=1,...,n
(A,b,c) € (4,b,8)a,

(5)
where p is a sufficiently small positive number.

In this formulation, however, constraints are non-
linear because the parameters A, b, and ¢ are treated
as decision variables. Fortunately, however, from the
properties of the a-level set for the vectors and/or ma-
trices of fuzzy numbers, it should be noted here that
the feasible regions for A, b, ¢; can be denoted re-
spectively by the closed intervals [AL, A%], [bL b,
[ek,, cll], where y or y® represents the left or right
extreme point of the a-level set §. Therefore, we can
obtain an optimal solution of the problem (5) by solv-
ing the following 0-1 programming problem:

R (RN v

ALz < bR
zj€{0,1}, j=1,...,n

minimize
subject to
(6)

4. GAs with Double Strings

4.1. Coding and decoding

In this paper, as one possible approach to gener-
ate only feasible solutions, a double string as is shown
in Figure 1 is adopted for representing an individual,
where s;(j) € {L,0}, i(j) € {1,....,n}, and i(j) # i(7)
for j # 5. In a double string, regarding i(j) and s;5)
as the index of an element in a solution vector and
the value of the element respectively, a string S can
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)

i(1) i(2) -

Si(1) Si(2) * -

i(n)

Si(n)

index of variable
0-1 value

Figure 1. Double string

be transformed into a solution = (Z1,...,%,) as
zi(j) = Si(j), J = 1,....n. Unfortunately, however,
since this mapping may generate infeasible solutions,
we propose the following decoding algorithm for elimi-
nating infeasible solutions. In the algorithm, n, j, #(5),
z;(;) and aij) denote respectively length of a string, a
posmon in a string, an index of a variable, 0-1 value
of a variable with index i(j) decoded from a string and
an ¢(j)th column vector of the coefficient matrix A.
Step 1: Setj=1, ¥ =0.

Step 2: If sy;) = 1, set j = j + 1 and go to step 3.
Otherwise, i.e., if 55(;) = 0, set j = j +1 and go to step
4.

Step 3: If X +aq <bsetzgy) =1 X =X+ay
and go to step 4. Otherwise, set z;;; = 0 and go to
step 4.

Step 4 If j > n, stop and regard © = {z1,...,%n
as phenotype of the individual represented by the dou-
ble string. Otherwise, return to step 2.

)T

4.2. Fitness and scaling

It seems quite natural to define the fitness func-
tion of each individual S by f( ) Crmax —
max;= ,mk{(c @ — %)+ p i Z )}
S and @ respectively denote an 1nd1v1dual represented

by a double string and phenotype of S. Further-
more, using the individual minimum z™® = ¢z*°

where

min{c;z | Az < b,z € {0,1}"} together with
2P = max(gzll,. .. LT atthe a:k"),
i=1,...,k, Cmax is set as Cpax = max;=1, !me -

zm.

In a reproduction operator based on the ratio of fit-
ness of each individual to the total fitness such as an
expected value model, it is frequently pointed out that
the probability of selection depends on the relative ra-
tio of fitness of each individual. Thus, several scaling
mechanisms have been introduced [2, 3]. In this paper,
a linear scaling is adopted. In the linear scaling, fitness
fi of an individual is transformed into f; according to
fl = a- fi + b, where the coefficients a and & are deter-
mined so that the mean fitness of the population fpean
becomes a fixed point and the maximal fitness of the
population frnax becomes twice as large as the mean
fitness.
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4.3. Reproduction

Up to now, various reproduction methods have been

proposed and considered [2, 3]. Using several multi-
objective 0-1 programming test problems, the authors
have already investigated the performance of each of
the six reproduction operators, i.e., ranking selection,
elitist ranking selection, expected value selection, eli-
tist expected value selection, roulette wheel selection
and elitist roulette wheel selection, and as a result con-
firmed that elitist expected value selection is relatively
efficient [53]. For this reason, as a reproduction opera-
tor, elitist expected value selection is adopted here. Eli-
tist expected value selection is a combination of elitism
and expected value selection as mentioned below.
Elitism  If the fitness of a string in the past popula-
tions is larger than that of every string in the current
population, preserve this string into the current gener-
ation.
Expected value selection For a population consist-
ing of N strings, the expected value of the number
of the 4th string S; in the next population N; =
(f(S:)/ > f(S;)) x N is calculated. Then, the inte-
gral part of N; denotes the deterministic number of
the string S; preserved in the next population.- While,
the decimal part of N; is regarded as probability for
one of the string S; to survive, i.e., N — Y N; strings
are determined on the basis of this probability.

4.4. Crossover and mutation

If a single-point or multi-point crossover operator is
applied to individuals represented by double strings,
an index i(j) in an offspring may take the same num-
ber that an index #(j') (j # j') takes. Recall that
the same violation occurs in solving traveling salesman
problems or scheduling problems through genetic al-
gorithms. One possible approach to circumvent such
violation, a crossover method called partially matched
crossover (PMX) is useful. The PMX was first pro-
posed by Goldberg and Lingle [9] for tackling a blind
traveling salesman problem. Although it enables us
to generate desirable offsprings without changing the
double string structure, it is necessary to revise some
points of the procedures. Our revised procedures of the
PMX can be illustrated as follows:

Step 1: For two individuals S; and Ss represented
by double strings, choose two crossover points.

Step 2: According to the PMX, reorder upper strings
of S; and Ss together with the corresponding lower
strings which yields S} and S5%.

Step 3: Exchange lower substrings between two
crossover points of 7 and S5 for obtaining the result-
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ing offsprings S{ and S3 after the revised PMX for
double strings.

Tt is well recognized that a mutation operator plays
a role of a local random search in genetic algorithms.
In this paper, for the lower string of a double string,
mutation of bit-reverse type is adopted.

4.5. Termination conditions

Incorporating GAs with double strings [5] into inter-
active fuzzy satisficing methods for multiobjective pro-
grams with continuous variables [7], an approximate
solution of desirable precision must be obtained in a
proper time. For this reason, two parameters I, and
Inax, which respectively denote the number of gener-
ations to be searched at least and at most, are intro-
duced. Then the following termination conditions are
imposed.

Step 1: Set the iteration (generation) index ¢ = 0
and the parameter of the termination condition € > 0.
Step 2: Carry out a series of procedures for search
through GAs (reproduction, crossover and mutation).
Step 3: Calculate the mean fitness fuean and the
maximal fitness fi,.x of the population.

Step 4: If t > In, and (fmax - fmean)/fmax < g
stop.

Step 5 If t > [y, stop. Otherwise, set £ = ¢t + 1
and return to step 2.

5. Interactive Decision Making Method

We are now ready to propose an interactive algo-
rithm for deriving a satisficing solution for the DM
to the MOO-1P-FN by incorporating GAs with dou-
ble strings [5] into interactive fuzzy satisficing methods
for continuous variables [7]. The steps marked with an
asterisk involve interaction with the DM.

Step 1*: Ask the DM to select the initial values of o,
and the initial reference levels zZ; = 1,1 = 1,..., k.
Step 2: For the degree o and the reference levels
Z;=1,1=1,...,k, specified by the DM, solve the cor-
responding augmented minimax problem through GAs
with double strings.

Step 3": The DM is supplied with the corresponding
a-Pareto optimal solution. If the DM is satisfied with
the current objective function values of the a-Pareto
optimal solution, stop. Otherwise, the DM must up-
date the reference levels and/or the degree o by con-
sidering the current values of the objective functions
and degree o, and return to Step 2.

It must be observed here that, in this interactive
algorithm, the following GAs with double strings are
utilized mainly 1n Step 2. However, observe that, in



Step 1%, for calculating z™®, i = 1,...,k, GAs with
double strings are applied.

Step 1. Generate N individuals of length n repre-
sented by double strings at random.

Step 2: Evaluate each individual on the basis of phe-
notype (n dimensional vector) decoded from genotype
(string) through fitness and scaling.

Step 3: Apply a reproduction operator (elitist ex-
pected value selection).

Step 4: Apply a crossover operator (revised PMX)
to individuals according to the probability of crossover
Pe-

Step 5: Apply a mutation operator to individuals ac-
cording to the probability of mutation py.

Step 6: Repeat these procedures from step 1 to step
5 until termination conditions described above are sat-
isfied. Then, regard an individual with the maximal
fitness as an optimal individual.

It is significant to note here that, through some ex-
periments for solving a relatively simple numerical ex-
ample, such as two-objective one-dimensional knapsack
problems with 20 ~ 50 variables, where all strings in
the initial population are randomly generated at each
Interaction, it is often observed that the calculated so-
lutions for the updated reference levels are dominated
by those calculated before updating. In order to over-
come such an undesirable phenomenon implying that
the calculated solutions for updated reference levels are
not always Pareto optimal, the method of generating
an 1nitial population is modified to include the elitism
selection [4, 5]. To be more specific, one of the strings
in the initial population is equal to the (approximate)
optimal solution obtained by the preceding interaction
and the remainder consist of N — 1 strings generated
at random:.

6. Numerical Example

To demonstrate the feasibility and efficiency of the
proposed interactive decision making method, consider
a three-objective 0-1 programming problem with 30
variables and 2 constraints involving fuzzy numbers.
For simplicity, it is assumed here that all of the mem-
bership functions for the fuzzy numbers involved in this
example are triangular ones.

The coefficients involved in this numerical example
are randomly generated in the following way.

(1) Coefficients a;; are randomly chosen as 0.0 <
a;; < 1000.0. Coeflicients c¢;; are randomly chosen
as —1000.0 < ¢;; < 0.0. Half of coefficients cy; are
randomly chosen as —1000.0 < ¢3; < 0.0 and the re-
maining half of coefficients ¢o; are randomly chosen as
0.0 < ;5 < 1000. Coefficients c3; are randomly chosen
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as 0.0 < ¢35 < 1000.0.

(2) Using randomly chosen parameter P
[0.25,0.75), b; is determined as b; = P x Z;.z:l a;j
(3) 90% of the coefficients a;;, b; and ¢;; determined
in (1) are assumed to be triangular fuzzy numbers.
Multiplying b;9 and ¢;50 < 0 by randomly chosen values
in [1.0,1.1], right extreme points bf and left extreme
points c{‘jo < 0 of their membership functions are de-
termined. Similarly, multiplying a;;0 and c¢;;0 > 0 by
randomly chosen values in [0.9,1.0], left extreme points
afjo and c{}o > 0 of their membership functions are de-

termined.

in

For a numerical example generated in this way, at
each interaction with the DM, the corresponding aug-
mented minimax problem is solved through 30 runs
of GAs with double strings for obtaining an a-Pareto
optimal solution. The parameters of GAs are set as,
a population size = 50, the probability of crossover
pe = 0.9, the probability of mutation p, = 0.02,
€ = 0.08, Imax = 500 and Iy, = 300. The coefficient p
of the augmented minimax problem is set as 0.0001. As
in shown in Table 1, in this example, the numbers of a-
Pareto optimal solutions obtained at each interaction
with the DM through 30 runs of GAs are respectively
17, 14, 22, 28 and 30, from which 1t is observed that
relatively preferable results are obtained.

In the whole interaction processes as shown in Ta-
ble 1, at the first interaction with the DM, for the ini-
tial degree o = 1.0 specified by the DM, by consid-
ering the calculated individual minimum of each ob-
jective function, the DM set the initial reference levels
as 7; = —10836.6, 7 = —10177 and z3 = 0. For the
degree o and the reference levels specified by the DM,
the augmented minimax problem is solved and the DM
is supplied with the corresponding objective function
values of the a-Pareto optimal solution as is shown in
Interaction 1 of Table 1. On the basis of such infor-
mation, since the DM is not satisfied with the current
objective function values, the DM updates the refer-
ence levels to z; —8836, zo = —10177 and z3 = 0
for improving the satisfaction levels for zo and z3 at
the expense of z;. For the updated reference objective
values, the corresponding augmented minimax problem
yields the objective function values of the a-Pareto op-
timal solution as is shown in Interaction 2 of Table 1.
The same procedure continues in this manner until the
DM is satisfied with the current values of the objective
functions. In this example, after two times updating
both the reference objective values (z1, Z3, z3) and the
degree o, at the fifth interaction, the satisficing solu-
tion of the DM is derived and the whole interactive
processes are summarized in Table 1.
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Table 1. Simulation results

cr Cox Cc3T numbers
Interaction 1 | obtained solution | —7392.4 —6744.3 3554.3 17
Z; = —10836.6 -7459.2 —6783.6 3567.0 4
o = ~10177.7 ~7304.1 —7231.7 3653.6 5
zZ3 =0 -7179.5 —6765.0 3511.7 1
a=1.0 -7176.1 —6528.3 3371.1 2
-~7120.9 —-68204 3676.7 1
exact solution —~7392.4 —6744.3 3554.3
Interaction 2 obtained solution | —6099.9 —7055.8 3145.3 14
zZ = —8836 -6166.7 —7095.1 3158.0 3
Zo = —10177 -6995.4 —-6974.5 3234.3 11
Zy = —-6928.6 —6935.2 3221.6 2
a=10
exact solution -6099.9 —7055.8 31433
Interaction 3 | obtained solution | —6336.8 —6423.7 2606.4 22
zZ1 = —8836 —-6270.0 —63834.4 2593.7 3
Zo = —9177 —6704.1 —6625.5 2860.7 3
zZ3 =0 —6252.6 —~6364.6 2866.1 1
a=1.0 —-5098.7 —6115.9 2838.2 1
exact solution —6336.8 ~6423.7 2606.4
Interaction 4 obtained solution | —6372.9 —6466.0 2587.3 28
Zy = 3836 -6306.1 —6426.4 2574.7 1
Zo = ~-9177 —-6047.2 —~6340.5 2718.7 1
zZ3 =0
a=09
exact solution —6372.9 —6466.0 2587.3
Interaction 3 obtained solution | —6409.0 —-6508.3 2568.1 30
z; = —3836
Zo = —9177
Z3 =0
a=0.38
exact solution —6409.0 —6508.3 2568.1

References

[

(2]

[3]

J.H. Holland, Aduptation in Natural and Artificial Sys-
tems. University of Michigan Press (1975), MIT Press,
Cambridge (1992).

D.E. Goldberg, Genetic Algorithms in Search, Op-

timization, and Machine Learning. Addison Wesley,
Massachusetts (1989).

Z. Michalewicz, Genetic Algorithms + Data Structures
= Evolution Programs. Springer-Verlag, Berlin (1992),
Second, extended edition (1994), Third, revised and

‘extended edition (1996).

M. Sakawa and M. Tanaka, Genetic Algorithms.
Asakura Syoten, Tokyo (1995) (in Japanese).

M. Sakawa, K. Kato, H. Sunada and T. Shibano,
Fuzzy programming for multiobjective 0-1 program-
ming problems through revised genetic algorithms, Eu-
ropean Journal of Operational Research (in press).

(6]

(9]

1644

R.E. Bellman and L.A. Zadeh, Decision making in a
fuzzy environment, Management Science, 17, 141-164
(1970)
M. Sakawa, Fuzzy Sets and Interactive Multiobjective
Optimization. Plenum Press, New York (1993).

M. Sakawa, K. Kato and T. Shibano, An interactive
fuzzy satisficing method for multicbjective multidi-
mensional 0-1 knapsack problems through genetic al-
gorithms, in 1996 IEEE International Conference on
Evolutionary Computation, 243-246 (1996).

D.E. Goldberg and R. Lingle, Alleles, loci, and the
traveling salesman problem, in Proceedings of the 1st
International Conference on Genetic Algorithms and
Their Applications, Lawrence Erlbaum Associates,
Publishers, New Jersey, 154-159 {1985). Third Edition,
Kluwer Academic Publishers, Boston (1996).



