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ABSTRACT
Due to diversified customer demands and global com-

petition, scheduling has been increasingly notified as an
important problem-solving in manufacturing. Since the
scheduling is considered at stage close to the practical op-
eration in production planning, flexibility and agility in de-
cision making should be most important in real world ap-
plications. In addition, since the final goal of such schedul-
ing has many attributes, and their relative importance is
likely changed depending on the decision environment, it is
of great significance to derive a flexible scheduling through
plain multi-objective optimization method. To derive a ra-
tional scheduling in this paper, we have applied a novel
multi-objective optimization named MOON2R (MOON2

of Radial-based function)by incorporating with simulated
annealing. Finally, illustrative examples are provided to
outline and verify the effectiveness of the proposed method.

INTRODUCTION
Recently, agile and flexible manufacturing has been

highly required to deal with diversified customer demands
and global competition. Under such circumstances, multi-
objective scheduling has been increasingly notified as an
important problem-solving in manufacturing. However,
since the optimization of scheduling is seriously difficult to
solve in itself, its multi-objective optimization has never
been studied so much previously (Bogchi, 1999; Saym &
Karabau, 1999; Murata, Ishibuchi & Tanaka, 1996; Tamaki,
Nishino & Abe, 1999; Sakawa & Kubota, 2000). To work
with the problem, in this paper, we will apply a novel ap-
proach of multi-objective optimization named MOON2R,
which is derived from MOON2(Multi-Objective optimiza-
tion with value function modeled by Neural Network)
(Shimizu, 1999; Shimizu & Kawada, 1999). It can not only
overcome the stiffness and shortcomings of the conventional

∗Address all correspondence to this author.

methods, but also derive a best-compromise solution readily
in the decision environment mentioned already. After giving
a general procedure for solving the multi-objective schedul-
ing by MOON2R, illustrative examples will be provided to
outline the proposed method, and to verify its effectiveness.

SOFT COMPUTING APPROACH FOR MULTI-
OBJECTIVE SCHEDULING
Problem Formulation

Generally, we can describe a multi-objective scheduling
problem as a multi-objective optimization problem (MOP)
described below.

(p.1) min f(x) = {f1(x), f2(x), · · · , fN (x)}
subject to x ∈ X

where x denotes an n-dimensional decision variable vec-
tor, X a feasible region, and f an N -dimensional objective
function vector some elements of which conflict with each
other, and are incommensurable. It should be noted that
the above formulation for scheduling refers to integer and/or
mixed-integer programming problems (Bagchi,1999) whose
combinatorial nature makes the solution process very com-
plicated and time consuming (NP-hard/complete). Though
the recent studies known as meta-heuristic such like multi-
objective GA (Schaffer,1985; Fonseca & Fleming, 1993) and
multi-objective SA (Czyzak & Jaszkiewicz, 1998) can deal
with the problem somewhat, they can generate only the
Pareto optimal solution set. In contrast to it, an approach
proposed below (MOON2R) can derive a unique solution
that should be the best compromise of the decision maker
(DM). This presents a great advantage for the flexible and
agile engineering in real world.
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Figure 1. TRADITIONAL STRUCTURE OF RBFN.

General Framework for Practical Solution
Since MOON2R belongs to a prior articulation method

in multi-objective optimization, we need identify a value
function of the decision maker (DM) a priori. To improve
such modeling stage, we introduced newly a radial-based
function network (RBFN) instead of usual back propaga-
tion network (BPN) employed in MOON2. That enables us
to model the value function more readily depending on un-
steady decision environment popular with scheduling prob-
lems. Due to the linear characteristic of RBFN, the com-
putational load is considerably small compared with BPN.
The traditional structure of RBFN is shown in Figure 1.
There each component of input vector x feeds forward to
the basis functions h whose outputs are linearly combined
with the weight w to derive the output g(x) as follows:

g(x) =
m∑

j=1

wjhj(x) (1)

Using the training data set such like (xi, yi) (i=1,c,p),
sum squared error with a weight penalty term is minimized
with respect to the weights (yi denotes an observed output
for input xi) .

C =
p∑

i=1

(yi − gi(xi))2 +
m∑

j=1

λjw
2
j , (2)

where λj ,(j = 1, · · · ,m) denotes regularization parameters.
To train the above RBFN, data regarding the rela-

tive preference of DM among the appropriate trial solu-
tions is gathered through AHP (Analytic Hierarchy Process;
Saaty,1980) like pair comparisons. That is, DM is asked to

Table 1. CONVERSION TABLE.

Linguistic statement aij
Equally 1
Moderately 3
Strongly 5
Demonstrably 7
Extremely 9
Intermediate judgements 2,4,6,8

reply which he/she likes, and how much it is between ev-
ery pair of the trial solutions. Such responses will be taken
place by using linguistic statements, and later transformed
into the score (Refer to Table 1). After doing such pair
comparisons over k trial solutions in turn, we can obtain
a pair comparison matrix whose i-j element aij represents
the degree of preference of f i compared with f j (Refer to
Table 2 appeared later in the example). After all, it pro-
vides totally k2 training data for RBFN. That is, objec-
tive values of every pair, say, f i and f j becomes 2N in-
puts, and i-j element aij one output. We are possible to
view thus trained RBFN as an implicit function, i.e. VRBF :
(f i(x), f j(x)) ∈ R2N → aij ∈ R1. Then noticing the fol-
lowing relation, we can rank the preference of any candi-
dates in objective function space easily by the output of
RBFN, a∗R calculated by fixing one of the input vector at
an appropriate reference, say fR.

VRBF (f i, fR) = aiR ≥ VRBF (f j , fR) = ajR

⇒ f i º f j (3)

Now, the foregoing MOP (p.1) is possible to describe as
follows.

(p.2) max VRBF (f(x), fR) subject to x ∈ X

Thus describing the multiple objectives into an overall one,
we can apply a variety of optimization methods known pre-
viously, i.e., nonlinear programs, direct search methods, and
even more meta-heuristic methods like GA, SA, TS, etc.
Among them, SA is considered favorable due to certain com-
binatorial natures of scheduling problems. Now its applica-
tion is straightforward since using VRBF , we can evaluate
any candidates under the multi-objectives once x is given.

In the above approach, since the modeling process of the
value function is separated from the searching process, DM
can carry out his/her tradeoff analyses at his/her own paces
without worrying about the hurried/idle responses like the
interactive MOP methods. In addition, since the required
responses are simple and relative, DM’s load in such inter-
action is very small. Moreover, modeling by RBFN can deal



adaptively with the change of the decision environment that
makes likely alter the preference of DM. Even in such a case,
its retraining is easily taken place against the increase and
decrease in the training data and basis from the foregoing
one. These are particular advantages aiming at the agile
and flexible decision making. After all, we can summarize
the proposed solution method as follows.

1. Generate several candidates in objective function space.
2. Ask the preference of DM through pair comparison be-

tween every pair of the candidates.
3. Train RBF based on the above result. This provide a

value function VRBF .
4. Finally, apply SA to solve the problem (p.2).

ILLUSTRATIVE EXAMPLE
To examine the effectiveness of the foregoing approach,

we solved multi-objective flow shop scheduling problems un-
der two objective functions i.e. minimization of sum due
time delay f1 and total changeover cost f2.

As a generic property of MOP (subjective decision
problem), it is impossible to derive a preferentially optimal
solution just by the mathematically provided conditions.
Hence to verify the effectiveness of the method in the nu-
merical experiments, we supposed the virtual DM whose
preference on the problem is given as a utility function de-
fined by

U(f(x)) =

{
N∑

i=1

wi(fi(x)/f̂i)p

}1/p

, (p = 1, 2, · · ·) (4)

where wi denote a weight factor, f̂i an appropriate nomi-
nal value, and p a parameter to specify the adopted norm
respectively.

Moreover, we need characterize the virtual DMs more
minutely to simulate their preference i.e., subjective judg-
ment in their pair comparisons. That is, the degree of pref-
erence mentioned already is assumed to be given as

{
aij = 1 + [ 8(U(f i

)−U(f j
))

U(futop
)−U(fnad

)
+ 0.5] if U(f i) ≥ U(f j)

aij = 1/aji Otherwise
(5)

where futop and fnad denote the utopia and nadir respec-
tively.

Then among the trial solutions generated as shown in
Figure 2, by equation (5), the pair comparison matrix of
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Figure 2. LOCATION OF TRIAL SOLUTIONS.
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Figure 3. COMPARISON OF CONTOUR OF VALUE FUNCTION.

Table 2. PAIR COMPARISON MATRIX (p=1)

F u F n F 1 F 2 F 3 F 4 F 5 F 6 F 7

F u 1 9 3 7 5 3 7 4 6
F n 1/9 1 1/7 1/3 1/5 1/7 1/3 1/6 1/4
F 1 1/3 7 1 4 3 1 4 2 3
F 2 1/7 3 1/4 1 1/3 1/4 1 1/3 1
F 3 1/5 5 1/3 3 1 1/3 3 1/2 2
F 4 1/3 7 1 4 3 1 5 2 4
F 5 1/7 3 1/4 1 1/3 1/5 1 1/4 1/2
F 6 1/4 6 1/2 3 2 1/2 4 1 3
F 7 1/6 4 1/3 2 1/2 1/4 2 1/3 1

the virtual DM will be given as Table 2 (Actually only the
upper triangular part should be provided noticing the rela-
tion aij = 1/aji). Using the normalized values of those, we
trained the RBFN to obtain the value function defined as
equation (3).

We compared the contour lines of preference (indiffer-
ence curves) between the supposed and VRBF (f , fR) in Fig-
ure 3 when p=1. Except for the marginal regions, we con-
firmed that RBFN could model the supposed utility func-
tion fairly correctly.

Under thus identified value function and more, we
solved three flow shop scheduling problems i.e.,



Table 3. COMPARISON OF NUMERICAL RESULTS(p=1).

Overall objective func.
Kindofproblem∗ Reference VRBF

(1,1, 7) 168 168
(2,1,10) 1135 1135
(2,2,10) 119 119

*Numbers of (process:S, machine:M, job:J)

J2

J8

J1 J3S1M1

S1M2

J6 J7

J4 J5 J9 J10

J1 J4 J6 J9

J8 J2 J3 J5 J7 J10

S2M1

S2M2

5 10 15 20 25 30 35 400

Figure 4. GANTT CHART OF (2,2,10) PROBLEM(p=1).

1. one process, one machine and 7 jobs
2. two processes, one machine and 10 jobs
3. two processes, two machines and 10 jobs.

Each objective function was specified by generating
randomly the scheduling data within certain extents i.e.,
[1,10] for f1 and [4,40,4] for f2 respectively. As an opti-
mization method, we applied the simulated annealing (SA)
viewed as a randomized neighborhood search algorithm. It
uses an analogy with the physical process of annealing, in
which a pure lattice structure of a solid is made by heat-
ing up the solid in a heat bath until it melts, then cooling
it down slowly until it solidifies into a low-energy stage.
Presently, we adopted the insertion neighborhood method
and, gave the tuning parameters as follow: initial tempera-
ture= 0.05; reduction rate of temperature=0.95; number of
iteration=400.

In Table 3, we summarized some numerical results in
comparison with the reference solution that is derived from
the optimization under equation (4) directly, and viewed
as a reference in the present consideration. Same results
in every case ascertain that the proposed method can solve
the problem correctly through accurate identification of the
DM’s preference by VRBF .

CONCLUSION
To deal with the multi-objective scheduling, in this pa-

per, we have proposed a practical approach characterized
mainly by the modeling process of the value function by
RBF and the application of SA. As a result, we can ex-
pect to deal with the unsteady decision environment pop-

ular with the practical scheduling problems. Illustrative
examples are provided to outline the proposed method, and
verify its effectiveness.
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