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Abstract - With the aim of developing a flexible optimization method for managing 
conflict resolution, this paper concerns itself with multi-objective mixed-integer programs.  
For this purpose, we have proposed an intelligence supported approach that combines 
genetic algorithm with mathematical programs (hybrid genetic algorithm) to derive the 
best-compromise solution.  Also we have developed a novel modeling method of value 
function using neural networks, and incorporated it into the approach which employs a 
simulated repair operation of DNA.  As a result, we can provide a practical and effective 
method in which the hybrid strategy maintains its advantages of relying on good matches 
between the solution methods and the problem properties such as a genetic algorithm for 
unconstrained combinatorial optimization and a mathematical program for constrained 
continuous ones.  Finally, by taking an example for site location problems of hazardous 
wastes, we have examined the effectiveness of the proposed approach numerically. 
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1  INTRODUCTION 

 

As a goal for production systems at the next generation, concepts such as sustainable 
development, ecological economics and cleaner production are being commonly accepted 
these days.  For the further progress of the society, it is very important to develop a 
reliable method that can reveal multiple attributes imbedded in such goal, and make a 
rational decision based on it.  With such a point of view, we have paid special concerns to 
developing a practical solution method for multi-objective mixed-integer programs 
(MOMIP).  This is because we can formulate a variety of problems that appears in 
production systems as MOMIP.  Then to derive the Pareto optimal solution (POS) set of 
MOMIP, we propose a hierarchical approach that combines genetic algorithm (GA) with 
mathematical programming (MP), and call it hybrid GA (HybGA).   

 

First, we present how HybGA can work to derive a best-compromise solution (BCS) on the 
POS set using a value function modeled by neural networks (NN).  Then, we propose 
HybGA/MOR that introduces a new operation named repair operation into GA to improve 
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the method.  There, we weigh on practice rather than mathematical rigidity of the 
optimality so that we can cope with large-scale real world problems.  Finally, taking a 
typical site location problem regarding hazardous waste disposal as an example, we will 
examine the effectiveness of the proposed method. 

 

2 HYBRID GA FOR SOLVING MOMIP 

 

2.1  Preliminary Consideration 

 

We will consider about the following problem hereinafter. 

 

where the phrase "Minimize N objectives simultaneously" means that the solution of (p.1) 
needs articulate satisfaction levels by a decision maker (DM) among multiple objectives.  
We denote its i-th element by fi(x,z) whick is incommensurable and conflicts with some 
other objectives.  As well as concern on multiple objectives, we should note the existence 
both of integer variables and real ones.  This means the problem will refer to MOMIP. 

 

Compared with many applications associated with MIP under single objective, only a few 
have been studied about MOMIP previously.  On the other hand, solution of 
combinatorial problems like MIP, GA is popularly known as an efficient and practical 
method through a variety of applications.  Additionally, the multi-start nature of the 
searching algorithm is suitable to cope with multi-objective problems where obtaining the 
POS set has an important meaning.  Accordingly, several methods (Schaffer, 1985, 
Goldberg, 1989, Venugopal and Narendran, 1992, Fonseca and Fleming, 1993, Louis and 
Rawlings, 1993, Tamaki et al., 1995, Murata et al.,1995) have been developed to derive the 
POS set using GA. (We call them generically MOGA.)  

 

However, we show it quite impractical to apply any of MOGA to MOMIP.  Hence, to 
derive rationally the POS set to which BCS must belong, we propose the following 
hierarchical formulation (Shimizu, 1999a). 
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In the above, the slave problem refers to the usual ��constrained problem (Cohen, 1978) 
possible to achieve the Pareto optimality even in the nonconvex case.  Here, fp(�) denotes 
a principal objective function, fi

* optimal value of the i-th objective, and �i its amount of 
degradation.  As an practical solution method, we propose a hierarchical scheme which 
applies GA to the master problem and MP to the slave problem (HybGA).  By taking 
such a scheme, we can deal with the constrained optimization with respect to real variables 
by an appropriate MP, and with the unconstrained one with respect to integer variables by 
GA.  Thus, we can keep the advantages in solution that may come from good matches of 
solution methods with the properties of problems.  By solving the above problem for a 
variety of �i repeatedly, we can obtain the POS set.  In fact, we verify its effectiveness 
compared with the conventional MOGA methods through numerical experiments.  

 

However, since our final goal is to solve (p.1), DM must choose his/her BCS among the 
candidate solutions on the POS set through an appropriate tradeoff analysis.  Eventually, 
such tradeoff analysis will refer to a process to adjust the attained level of each objective 
according to the DM's preference.  In other words, we can obtain our BCS through 
finding out the most preferable amounts of degradation, that is, values of (�

�

p, fp(x,z)).  
Here �

�

p denotes every �i except for the p-th element. 

 

2.2  Modeling Method of Value Function 

 

To rank the candidate solutions according to the DM's preference, two issues known as 
prior articulation and progressive one are applicable.  The former takes a stage-wise 
process which separates the identifying stage of the value function from the optimizing 
stage, and the later fuses these, and proceeds decision interactively in the course of the 
searching stage.  In the present case, prior articulation is essential for the numerous 
evaluations required by GA to solve the master problem.   As a prior articulation for 
solving multi-objective optimization, utility theory (Keeney and Raiffa, 1976) has been 
extensively applied.  In many technical applications, however, it has been rarely practical 
since we need examine certain mathematical conditions such like utility independence 
and/or preferential independence beforehand.   

 

To avoid such tedious examinations, a new method using NN is proposed recently without 
going into the mathematical details (Malakooti and Zhou, 1994).  The authors try to 
model the value function of DM, V(f) by using a feedforward NN as follows.  First, 
suppose utopia values f U and nadir values f N of the objective functions.  Next, gather 
some training data from the question such that: if utopia f U takes the best score (say, V(f N) 
=1.0) and nadir f N the worst (V(f N)= -1.0), then what is the score for a certain f i locating 
between them (V(f i)=ai, -1�ai�1).  Finally, using every f i as input and ai as output 
(i=1,..., k), train NN.  As supposed easily, such assessment that requires DM to evaluate 
every trial point directly by the score is very difficult.  It is also hard to keep consistency 
between the responses since there are only two definite standards, that is, a utopia point 
and a nadir point for every evaluation.  So as the number of objectives increases just a 
little, it will become extremely hard to get a meaningful set of training data.  Hereinafter 
we will call this direct method.  
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Instead, we propose another NN modeling method which we call relative method as 
follows (Shimizu, 1999b).  In the relative method, training data will be gathered through 
pair comparisons like AHP (Analytic Hierarchy Process, Saaty, 1980).  By taking a pair 
of trial points, DM is asked to express his/her relative preference of one to another.  Just 
like AHP, such responses will be accomplished by using linguistic statements, and then 
transformed into the score given in Table 1.  We can make the load of DM paying for the 
responses much less than that of the direct method since the relative comparison is 
generally much easier than the direct one. 

 

Table 1   Conversion table  i�j f 1 f 2 f 3 ... f k 

Linguistic statements aij f 1 1 a12 a13 ... a1k 

equally 1 f 2  1 a23 ... a2k 

moderately  3 f 3  1 ... a3k 

strongly 5 ... aji=1/aij ... ... 

Demonstrably 7 f k  1 

Extremely 9 

Intermediate judgement  
between the two adjacents 

2,4,6,8 

 

 

Fig.1  Pair comparison matrix 

 

After doing such k(k-1)/2 pair comparisons covering k trial points, we can obtain a pair 
comparison matrix as shown in Fig. 1.  Its i-j element aij represents the degree of 
preference (score in Table 1) of f j compared with f i admitting that aii=1 and aji=1/aij.   
According to the theory of AHP, we are also easy to examine the consistency of such pair 
comparisons only by calculating the consistency index by (rmax - k) / (k - 1).  Here, rmax 
denotes the maximum eigen value of the pair comparison matrix.  It is empirically known 
that if the index value exceeds 0.1, there are involved undue responses in the matrix.  In 
such a case, we need to revise certain scores to recover from the inconsistency. 

 

After all, each element of the matrix provides totally k2 training data for NN that has a 
feedforward structure consisting of three layers (i.e. 2N inputs, one output and an 
appropriate number of hidden nodes).  Using some test problems, we ascertain this 
relative method can model a few typical value functions correctly by a reasonable number 
of pair comparisons. 

 

Based on the value function thus modeled, we can rank any candidate solution as follows.  
First, suppose the NN model is a function from 2N dimensional space to a scalar one, i.e. 
VNN: {f i(x,z), f j(x,z)}�R2N�aij�R1.  Then, fixing a half of the inputs at an appropriate 
reference point, say f R, we can calculate the score viR for any candidate f i(x,z) (i=1,...,k) by 
Eq.(1), and rank the preference of f i(x,z) easily depending on the magnitude of viR.  
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 VNN( f i(x,z); f R) =viR , (i=1,...,k)    (1) 

 

In summary, particular advantages of the relative method over the direct one are less load 
paid for the responses, and the existence of a proof method to check the consistency of the 
responses.  Moreover, in contrast to the approach of utility theory, it needs not to examine 
the mathematical assumptions a priori, and can cope flexibly with the changes of decision 
making environment just by recalculating the weights of NN.  Since the tradeoff analysis 
will be taken place just among a few major objectives in usual systems, we can use the 
proposed approach conveniently and widely. 

 

2.3  Hybrid Scheme of GA with Repair Operation 

 

To apply HybGA along with the framework depicted in Fig.2, we reformulate (p.2) as 
follows. 

 

 

Fig.2  Outline of the proposed approach 

 

Below, we will describe about the GA employed for the master problem of (p.3).  This is 
basically a simple GA (Goldberg, 1989) except for the repair operation mentioned in the 
later.  
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(1) Representation of chromosome 

As shown in Fig. 3, we adopt a binary representation where the first half of the 
chromosome corresponds to the integer variables, and the latter to the quantized amounts 
of degradation regarding ��constraints except for the principal objective.  Oppositely, 
they are decoded respectively as follows. 

 

where each sij denotes 0-1 variable representing the binary type of allele, and iε∆ � a unit 

degradation (a grain of quantization). 

 

  2J   2J-1 …  20  …..  2J  …  20 || 2J'  …  20  …..  2J'  2J'-1  …  20 

  s1,J|s1,J-1| … |s1,0| ….. |sM,J| … |sM,0||s1,J’| … |s1,0| ….. |sN,J’|sN,J’-1| … |sN,0 

 |�    z1     �| ….. |�   zM    �||�  �1   �| ….. |�� � � � � �N     �| 

 

Fig.3  Structure of the employed chromosome 

 

The binary coding for �i like Eq. (3) is rather reasonable because human beings usually 
have a certain resolution identifying the difference of their preference between the two 
solutions.  On the other hand, the binary coding for real variables causes a tradeoff 
problem between the efficiency and the accuracy.  The longer the chromosome becomes, 
the less efficient the GA becomes.  In another words, an accurate solution needs small 
grain which makes the chromosome long.  The proposed approach will not be worried 
about this problem at all since we optimize the real variables based on MP. 

(2) Reproduction :  roulette wheel strategy couple with the elitist policy 

(3) Crossover :  one-point crossover per part as shown in Fig. 4.  

       (substantially two-points crossover) 

 

 p1 : A1 |A2�B1|B2   c1 : A1 | a2�B1| b2  

        ��

� p2 :  a1 | a2�b1 | b2   c2 :  a1 |A2�b1 |B2  

       integer���const.      integer���const. 

 

Fig.4  Employed crossover rule 
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(4) Mutation : binary bit entry flip ( i.e.  0/1 or 1/0 ) 

(5) Evaluation of fitness : transformed value of the output of NN model by a three-order 
algebraic equation like Eq.(4) 

 

 Fitness= {VNN(�
�

p, fp; f
R) - U)/U}3    (4) 

 

where U denotes a certain nominal value. (Actually, we choose the minimum of VNN at 
each generation as U.)  

(6) Repair operation :  In the slave problem of (p.3), for a given set of �, there often 
occurs some ��constraints become inactive.  If this is true for a certain, say i-th objective, 
the master problem is to be unduly evaluated since the inequality, VNN(･,�i, ; f

R)�� VNN(･, 
fi(x

*, z); fR) is satisfied.  Here, x* denotes the optimal of the slave problem obtained for the 
pegged �-p, and z.  Repair operation can work to avoid such undue evaluation.  When 
discrepancy of the inactive ��constraint exceeds one grain of the quantization (i.e. fi

*+�i - 
fi(x

*, z) > iε∆ ), the corresponding part of the chromosome should be rewritten so that �i< 

fi(x
*, z) - fi

* + iε∆  will hold.  Since this makes the constraint active within a unit grain, 

the Pareto optimality can be satisfied more likely at each generation compared with the 
approach without this repair operation.  

 

To explain this, Fig.5 is helpful.  In the two-objective problem, suppose that we obtain  
two different solutions denoted by �� and �' respectively under the ��constraint such 
like f2(x,z)�� f2

*+ �2.  There, �' is active for the ��constraint, while �� inactive.  In 
terms of the foregoing description of the chromosome, �� is to be evaluated substantially 
at point �'.  Hence, nevertheless �� is truly preferable to �', it is likely to be selected 
as the individual with low fitness.  Such irrationality will be avoided if �� is evaluated at 
�".  This is equivalent to remove the surplus and adjust the ��constraint when the 
inactive amount exceeds the unit grain 2ε∆ .  We can view such dealing as an analogy of 
natural life that will repair the damaged string of DNA by copying from the other normal 
one. 
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Fig.5  Illustration of the repair operation 

 

By doing that, since every solution locating between the dotted line a and b is viewed same 
as �", and also every solution between b and c as �#, we can restrict the search space 
(numbers of combination) in the master problem.  Again, the following simple example 
will help explain this effect more clearly.  If the schema of a certain active constraint is 
supposed to be [ 0 | 1 | 0 ], then each element of the set { [ 0 | 1 | 1 ], [ 1 | 0 | 0 ], [ 1 | 0 | 1 ], 
[ 1 | 1 | 0 ], [ 1 | 1 | 1 ]} is viewed damaged, and rewritten (repaired) as  [ 0 | 1 | 0 ].  Thus 
the repair operation can bring about the capability to improve the convergence of the 
search besides the likeliness of the Pareto optimality.  

  

3  FORMULATION OF A TYPICAL OF SITE LOCATION PROBLEM 

Associated with what is known as the environmental problems, location problem of 
hazardous waste disposal site is becoming very important these days.  Since the resolution 
of conflicting objectives between economy and risk is common to this kind of NIMBY 
(Not In My Back Yard) problem, consideration as the multi-objective optimization is quite 
amenable as a practical concern.  With such a point of view, we take a site location 
problem whose basic but general scheme is shown in Fig. 6.  The problem thereat can be 
described such that : for rational disposal of the hazardous waste generated at L sources, 
choose the suitable sites among the M candidates.  This problem can be formulated as 
follows. 
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In the above, f1 and f2 denote the objective functions evaluating cost and risk respectively.  
They are functions of the amount of waste shipped from source j to site i, xij(�0), and 0-1 
variable zi (�{0,1}) which takes 1 if the i-th site is chosen and 0 if otherwise.  Moreover, 
Dj denotes demand at the j-th source, Bi capacity at the i-th site.  Then Eq. (6) describes 
that the waste is shippable at each source, and Eq. (7) disposable at each site.  Moreover, 
K is an upper bound of the permitted construction.  This constraint was handled by a 
penalty term in the objective function at the master problem where P denotes a penalty 
coefficient, and MAX( � ) requires taking the greatest among the elements in the 
parenthesis. 

 

On the other hand, Cij denotes shipping cost from j to i per unit amount of waste, and Fi 
fixed-charge cost of site i.  Rij denotes the risk portion accompanied with transportation 
per unit amount from j to i.  It should be a function of distance, population density along 
the traveling route, and other specific factors in real application.  Likewise, Qi represents 
the fixed-portion of risk at the i-th site per unit capacity, and is considered to be a function 
of population density around the site, and some other specific factors in real applications.  
Since the system equations and two objectives are all linear functions of the decision 
variables, it is easy to solve the slave problem using linear programming even if the 
problem size becomes very large. 

Fig. 6   Basic scheme of site location problems 

 

4  NUMERICAL EXPERIMENTS 
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To examine the effectiveness of the proposed method, we carried out numerical 
experiments with the problem size like M=8, L=6 and K=3 by supposing the author as DM.  
We gave appropriate normalized values to the system parameters just for convenience' 
sake of the numerical experiments in the present study. 

 

First referring to the pay-off matrix obtained through solving the mixed-integer linear 
programming problem under each objective function repeatedly, we gave five points as 
trials for the pair comparisons, and obtained the pair comparison matrix like Fig. 7.  Then 
checking the consistency of the pair comparisons from the consistency index (7.014E-2 
<0.1), we obtained the NN model of value function using each element of the matrix as the 
training data.  In the case of 10 nodes in the hidden layer, we obtained the NN model with 
accuracy like shown in Fig. 8 where the outputs are close to the true values (training data) 
almost everywhere (average square root error in the modeling was 1.83E-2.).   

   

 ref (1) ref (2) ref (3) utopia Nadir 

ref (1) 1 3 1/3 1/5 5 

ref (2)  1 1/5 1/6 3 

ref (3)  1 1/3 5 

utopia aji=1/aij 1 9 

nadir  1 

 

Fig. 7   Pair comparison matrix of the example 

 

Fig.8   Performance of the NN modeling 
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After all these steps, we derived the BCS at 14 generations by evaluating the value 
function totally 201 times under the following conditions of GA.  We set the crossover 
rate as 0.1, mutation rate as 0.01, and population size as 50 for the chromosome 11 bits 
long.  We also supposed that GA has converged when the number of individuals with the 
best fitness at each generation exceeds that of 90% of the total population.  It took within 
a second by using a standard type of work station (SONY NEWS 4000E).   

 

From Fig. 9 where POS set are imposed on the contour of value function of the NN model, 
we can ascertain that the present BCS locating at point A is quite reasonable.  That is, it 
locates on the POS set and also has the highest value of the value function at the same time.  
This will verify the effectiveness of the proposed method numerically. 

Fig. 9  Feature of result in objective space 

 

Furthermore, to examine the effectiveness of the repair operation mentioned in �2.3, we 
compared the performance to solve (p.4) among the following three approaches.  

(1) no concern ; apply the usual HybGA.  

(2) penalty approach ; to compensate the degradation due to the inactive �-constraints, add 
a penalty term in the master problem such like,  
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(3) HybGA with the repair operation 

 

We summarized the result in Table 2 where the partition number is given as �J’
j=0 2j.  

Since it increases together with J', for the experiment, we can change the size or search 
space in the master problem through the partition number or J'.  The larger such values 
become, the more rapidly possible combinations that make the solution difficult will 
increase.  As shown in the table, performance of the proposed approach is superior to the 
others.  Also, it could cope with the expansion of the size while the others always could 
not attain at the best compromise solution and/or required more evaluations till 
convergence.  This is why the repair operation can reduce the expansion of search space 
effectively as well as decrease the number of death of the possibly superior individuals 
through the proper evaluation of the fitness as explained already.  Even more, observing 
such a tendency that computation load is declining with the expansion, we can expect to 
apply this approach to large-scale real world problems.  

 

Table 2  Comparison of evaluation among three methods 

Partition No.  
(J’) 

7 
(2) 

15 
(3) 

31 
(4) 

63 
(5) 

511 
(8) 

4095 
(11) 

131071 
(16) 

(1) No concern 496 566 688 889 763 1181 1128 

(2) Penalty 534 635 704 908 1050 1226 1146 

(3) Repair 481 539 738 692 679 839 885 

          1234    unattainable to the best-compromise solution 

         Population=150, Crossover rate = 0.1,  Mutation rate=0.01 

 

5  CONCLUSION 

 

Flexible and intelligent supporting methods for decision making will be highly desired in 
the coming century when technical problem-solving will become more and more 
complicated and inter-related.  In such a situation, we can formulate a variety of problems 
as multi-objective mixed-integer programs (MOMIP).  Taking a site location problem of 
hazardous waste as an eligible case study, in this paper, we concern ourselves with the 
solution of MOMIP while weighing on the practice rather than the mathematical rigidity.  
Then, to solve the problem practically, we have presented a hierarchical approach 
composed of GA and mathematical programming in the aid of neural network (NN) for 
modeling the value function and the repair operation in genetic search.  As a result, we 
can provide an effective method which can derive the best compromise solution practically 
while the conventional methods known as multi-objective genetic algorithms remain at the 
level computing the Pareto optimal solution set.  Furthermore, by virtue of the 
identification process of the value function, the proposed method is superior to the goal 
programming (GP) which has a stiff structure to perform the tradeoff analysis. 
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Though the present study revealed the effectiveness concerning only with a small problem, 
the proposed approach is promising for real world applications due to the high ability of 
each solution method (i.e. genetic algorithm and mathematical program), and the practical 
modeling method of value function using NN.  Real-world applications to make such 
assertion certain is left for further studies. 
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