

Cooperative Strategies for Solving the Bicriteria Sparse Multiple Knapsack Problem

F. Sibel Salman
Graduate School of Industrial Administration

Garnegie Mellon University
Pittsburgh, PA 15213

fs2c@andrew.cmu.edu

Jayant Kalagnanam and Sesh Murthy
T.J. Watson Research Center

International Business Machines
Yorktown Hts, NY 10598

jayant/murthy@watson.ibm.com

Abstract-
For hard optimization problems, it is difficult to de-

sign heuristic algorithms which exhibit uniformly supe-
rior performance for all problem instances. As a re-
sult it becomes necessary to tailor the algorithms based
on the problem instance. In this paper, we introduce
the use of a cooperative problem solving team of heuris-
tics that evolves algorithms for a given problem instance.
The efficacy of this method is examined by solving six
difficult instances of a bicriteria sparse multiple knapsack
problem. Results indicate that such tailored algorithms
uniformly improve solutions as compared to using pre-
designed heuristic algorithms.

1 Introduction

The problem of assigning a given set of orders to the pro-
duction units in the inventory arises frequently in production
planning and scheduling. The objectives are both maximizing
the total amount of orders that are assigned, and minimizing
total waste due to the unused portion of the production units.
Manufacturability considerations such as the compatibility of
orders and production units in terms of quality, size, etc. im-
pose additional assignment constraints. As production oper-
ations involve more complex processes and a larger product
variety, the problem becomes more constrained. The bicrite-
ria sparse multiple knapsack problem that we consider in this
study is motivated by this application.

In this paper we focus on the use of a team of heuristic
algorithms which cooperate to generate non-dominated solu-
tions for this problem in a short computation time. Although
there exist several heuristic approaches for solving multiple
knapsack problems there does not exist a single dominant al-
gorithm. Moreover, the performance of the heuristics vary
by problem instance and as a result a specific heuristic will
often demonstrate poor aggregate performance over a set of
problem instances. However, if the heuristics were allowed
to cooperate with each other so that

the solution generated by one heuristic can be subse-
quently improved by another or

the most appropriate subset of heuristics can be used to
construct solutions for a given problem instance

then the aggregate performance of a collection of cooperating
heuristics over a set of problem instances may be greatly im-

proved. For this purpose we have developed a collection of
fast heuristics and incorporated them in an A-team architec-
ture, which provides a computational framework for imple-
menting cooperation strategies among heuristics. We present
results of an experimental analysis that compares the effec-
tiveness of these heuristics working individually, and cooper-
ating within an A-team framework. Additionally for calibra-
tion purposes we compare these results against feasible solu-
tions derived using integer programming formulations. Since
an important consideration in a real application is the compu-
tation time required to generate solutions we also compare the
performance of such a cooperative problem solving strategy
against traditional integer programming techniques.

The rest of the paper is organized as follows: Section 2 de-
scribes the cooperative problem solving strategy used to solve
the bicriteria sparse multiple knapsack problem. A black-
board architecture based implementation is outlined. A brief
overview of related AI and OR literature is provided. Section
3 introduces the multiple knapsack problem and a collection
of heuristics to solve this problem. Section 4 presents results
comparing the performance of the heuristics against the algo-
rithm designed for each problem instance. A detailed analysis
of the algorithms designed for each problem instance is pro-
vided.

2 Cooperative Problem Solving

Given an NP-hard optimization problem, it is difficult to de-
sign heuristic algorithms which exhibit uniformly superior
performance over all problem instances. An alternate ap-
proach to tackle difficult problems is to organize a collec-
tion of heuristic algorithms so that they can cooperate with
each other and uniformly exhibit superior performance which
might not have been possible if they were used separately.
Such an approach is especially attractive when the collection
of heuristic algorithms vary in their performance over prob-
lem instances in an unpredictable way. Another ingredient
required for cooperative problem solving is an architecture
that facilitates cooperation between the heuristic algorithms
and a control strategy that defines the rules of collaboration
among heuristics.

In the following paragraphs we discuss in more detail the
organization (i.e. the architecture and the control strategy)
that we have used to build a cooperative problem solving team
of heuristics for the multiple knapsack problem. We will also

discuss in some detail the collection of heuristics that have
been used to build the cooperative problem solving team.

2.1 The Asynchronous Teams Architecture

An asynchronous team or A-Team [TdSM93] is an architec-
ture that facilitates multiple heuristics to work together on a
common problem. Cooperation between heuristics is allowed
through a shared population of candidate solutions. Figure 1
provides a schematic of this architecture. The architecture is
similar to a blackboard system in that the solutions are posted
onto a blackboard which is shared by all the heuristic algo-
rithms. Each heuristic has access to the entire population of
solutions and can choose an appropriate (partial) solution to
work on.

The heuristics that are used in this architecture are usually
classified into three categories based as follows:

Constructors are heuristics which are used to create ini-
tial solutions.

Improvers are heuristics which take existing partial so-
lutions from the population and modify them to pro-
duce a new solution. The criteria used to decide
whether a solution is added to the population depends
on the choice of the control strategy. In purely hill
climbing approaches (such as genetic algorithms) only
solutions which are non-dominated would be added to
the population. In variants such as simulated annealing
we might allow the entry of dominated solutions into
the population with the expectation that they might al-
low for better solutions to be created later on.

Destroyers are heuristics that remove redundant solu-
tions from the population with the intent of manag-
ing the size of the population. The determination of
whether a solution is redundant is difficult and usually
a destroyer is designed to retain a redundant solution
with a non-zero probability. Note that destroyers are
typically used with control strategies that allow for the
inclusion of dominated solutions into the population.

 Non-Dominated Solution

X

X

X

X

X

X

x

X

x

X

X

x

x
X

X x
x
X

X

x x
x

x x

Destroyers

Constructors

Improvers

x Poor, Dominated Solution
 Dominated Solution

Figure 1: Schematic of an A-Team architecture

The typical approach for generating solutions using this
architecture involves creating an initial population of solu-
tions using all the constructor heuristics and subsequently
evolving the population of solutions by repeated application
of the improver and destroyer heuristics. At any time the set
of non-dominated solutions constitute a Pareto-frontier and
provide a set of non-dominated solutions to the problem. The
control strategy in this solution approach prescribes the rules
of collaboration between the heuristics. The control strategy
specifies two rules:

The first rule specifies how an improver heuristic picks
a solution from the population to improve, and

the second rule specifies the criteria for incorporating a
new solution created by an improver heuristic into the
population.

In our implementation we used a stochastic hill climbing
approach for the control strategy. A stochastic hill climbing
algorithm searches a space S with the aim of finding a state
with optimal properties. The algorithm does this by making
successive improvements to the current state . In the
context of this paper, the state corresponds to a population
of solutions to the bicriteria multiple knapsack problem. The
algorithm attempts to improve the current state by making
a transition to one of the neighbors of in S. Within our
A-Team implementation, this transition is made by randomly
picking an improver heuristic and then randomly picking a
solution from the population for the improver to work on. If
the new solution generated by the improver is non-dominated
then it is added to the population which corresponds to the
new state . Since the hill climbing approach does not allow
non-improving moves, we do not explicitly need to worry
about managing the size of the population. As a result our
implementation of A-team for the bicriteria sparse multiple
knapsack problem did not require destroyers.

2.2 Related Work

There are two strands of AI research relevant to this paper.
The first strand is the work on optimal composition of real-
time systems to perform complex planning tasks [ZR95].
Complex systems are constructed by composing larger sys-
tems from smaller reusable anytime modules which might
solve subproblems of the actual task at hand. Related work
argues for the use of asymptotic bounded optimal agents as
a useful bases for constructing intelligent systems using pro-
duction system architectures [RS93, Rus95]. The use of an
economics approach to design computational portfolios for
solving hard problem has also been suggested [HLH97]. This
paper applies these conceptual ideas to solving hard optimiza-
tion problems in the real context of the multiple knapsack
problem. The main variation is the use of stochastic hill-
climbing for coordinating the interaction among heuristics.

Genetic programming (GP) is another strand in AI which
formulates the search for a solution to an optimization prob-

lem as automatic programming [Koz92, Koz94]. A popula-
tion of programs is herded using a set of evolutionary oper-
ators such as reproduction, mutations, and crossovers. The
approach in this paper although inspired by GP differs in two
aspects: (i) The programs in our context is defined as a se-
quences of heuristics rather than as a S-expression, and (ii)
the search is guided by a stochastic hill climbing aproach
rather than using evolutionary operators [JW94].

The single objective versions of the bicriteria problem are
slightly modified forms of two well-known problems in the
OR literature.

If we consider the objective of maximizing total assigned
weight alone, then the problem is a variation of the mul-
tiple knapsack problem, which we call the sparse multiple
knapsack problem (SMK). For the objective of minimizing
total waste alone, the problem reduces to a variation of the
variable-size bin packing problem, which we refer to as the
sparse bin packing problem (SBP).

In the classical multiple knapsack problem, any item can
go into any knapsack, hence the bipartite graph representing
the problem is complete, whereas we generalize the problem
by allowing any bipartite graph. On the other hand the multi-
ple knapsack problem has a more general objective function:
there exists a positive profit for assigning item to any of
the knapsacks and the objective function is to maximize the
total profit of assigned items. In the application which mo-
tivated us, the profit of an assigned item can be assumed to
be proportional to the weight of the item, hence we maximize
total assigned weight.

The multiple knapsack problem is known to be -hard
in the strong sense [Kar72], [MT90]. The reduction from the
3-partition problem is still valid when the objective function
coefficients equal to the weights of items, so any instance of
SMK with a complete bipartite graph representation is also

-hard in the strong sense. Thus, for the objective of max-
imizing total assigned weight, our problem is strongly -
hard and there exists no fully polynomial time approximation
scheme for SMK unless .

For the multiple knapsack problem, several exact and
heuristic solution methods have been developed and tested
in the literature (see Martello and Toth [MT90] for a sur-
vey). Exact solution methods consist of branch and bound,
and cutting planes. The branch and bound methods use
bounds based on either the Lagrangean relaxation (Hung and
Fisk [HF78]) or the surrogate relaxation (Martello and Toth
[MT80, MT81a]) of the problem. The cutting plane methods
use minimal cover, (1,d)-configuration and multiple cover in-
equalities (Ferreira, Martin and Weismantel [FMW96]). Un-
fortunately, these exact solution methods cannot solve large
instances arising in real applications in reasonable computa-
tion time. Heuristic methods include fast greedy algorithms

relaxing the assignment constraints decomposes the problem into sin-
gle knapsack problems.

getting a linear combination of the capacity constraints results in a single
knapsack problem.

followed by local exchange heuristics (Martello and Toth
[MT81b]), as well as non-polynomial time approaches such
as solving single knapsack problems successively (Martello
and Toth [MT81a]), or obtaining a feasible solution from the
surrogate relaxation (Hung and Fisk [HF78]).

Considering the objective of minimizing waste alone pro-
duces an ill-posed problem since the problem has a trivial
solution of not assigning any items. Hence, we can consider
a version in which we impose the condition that all items in

or a specified subset of must be assigned and the goal
is to use knapsacks with minimum total capacity. Then, the
problem is a generalization of the variable-size bin packing
problem, where we allow assignment restrictions in addition.

The bin packing problem is known to be -hard (i.e.
[GJ79]), thus the more general problem SBP is NP-hard as
well. The bin-packing problem has been extensively studied
in the literature and it is one of the first problems for which
efficient approximation algorithms have been developed. The
recent survey by Cook, Garey and Johnson [CGJ97] covers
worst and average case analyses for online and offline al-
gorithms. A previous survey by the same authors [CGJ84]
considers also some variations on the problem. Exact algo-
rithms have been developed by Martello and Toth [MT89].
The variable-size bin packing problem has been studied by
Friesen and Langston [FL86] who provide modifications of
well-known bin packing heuristics such as the next fit, first fit
and best fit heuristics.

3 Bicriteria Sparse Multiple Knapsack Problem

We are given a set of items and a set of
knapsacks . Each item has a posi-
tive real weight and each knapsack has a positive
real capacity associated with it. In addition, for each item

a set of knapsacks that can hold item is
specified. Although ’s suffice to represent the assignment
restrictions, for convenience we also specify for each knap-
sack , the set of items that can be assigned to
the knapsack.

The goal is to find an assignment of items to the knap-
sacks. That is, for each knapsack , we need to choose
a subset of items in to be assigned to knapsack , such
that:

(1) All ’s are disjoint. (Each item is assigned to at most
one knapsack.)

(2) Each is a subset of , for . (Assign-
ment restrictions are satisfied.)

(3) , for . (Total weight of items

assigned to a knapsack does not exceed the capacity of
the knapsack.)

(4) is maximized. (Total weight of items as-

signed is maximized.)

(5) is minimized, where denotes

the set of indices of non empty . (Total waste due to
the unused portion of each utilized knapsack is mini-
mized.)

We refer to this problem as the bicriteria sparse multiple
knapsack problem (BSMK) [SKM97].

Note that the assignment restrictions can also be repre-
sented by a bipartite graph, where the two disjoint node sets
of the graph correspond to the sets and . Let
be the corresponding bipartite graph with . Then,
there exist an edge between nodes and if and
only if . With this representation the sparsity of the
problem refers to the edge sparsity of the bipartite graph .
The bicriteria problem is more relevant for sparser problems
because for more constrained problems, a solution with max-
imum assigned weight does not necessarily have small waste.

3.1 Constructor Heuristics

The construction heuristics are mainly greedy heuristics with
various item and knapsack selection rules, in addition to a
couple of heuristics that round the LP relaxation solution of
SMK. Most of these constructors aim at maximizing total as-
signed weight.

Simple Greedy Heuristics
These heuristics first sort the items in non-increasing or-

der of weight and the knapsacks in non-decreasing order of
capacity. There are two versions. In the first one, the next
knapsack in the order, say , is picked, and then the next
item, in the order, say , is picked. If item is allowed to
go into knapsack , i.e. if , and does not exceed
the residual capacity of knapsack , then item is assigned to
knapsack . So, for each knapsack picked, as many items as
possible are packed into it. In the second version, each item
in the order is picked and assigned to the next feasible knap-
sack, if possible. Both of the heuristics have running time

. We call these heuristics greedy-
knapsack and greedy-item.

Greedy Heuristics with Various Knapsack Selection
Rules

In these heuristics the decision to pick the next knapsack
depends on the assignments made upto that point. The heuris-
tics sort the items in non-increasing order of weight, pick
the next item and then pick a knapsack accord-
ing to one of three rules. There are three versions based on
picking a knapsack with 1) minimum residual capacity, 2)
maximum residual capacity, or 3) minimum surplus demand,
which are called greedy-minrc, greedy-maxrc, and greedy-
minsd, respectively. Surplus demand of a knapsack is the
total weight of unassigned items in minus the residual ca-
pacity of the knapsack.

Successive Assignment Heuristic
This is another greedy heuristic, where at each iteration a

maximum weight bipartite matching (assignment) problem is
solved on a bipartite graph in which edge exists with
weight only if does not exceed the residual capacity of
knapsack . Initially the bipartite graph is used. The as-
signments given by the maximum weight bipartite matching
solution are performed. Then, the bipartite graph is updated
by deleting all assigned nodes, all edges for which
exceeds the residual capacity of knapsack , and nodes with
degree zero. The heuristic is repeated until the graph has no
remaining edge. This heuristic is called successive-assign.

Randomized Heuristics
The greedy heuristics can be modified randomly in order

to break the pattern of greedy choices. Suppose item is
picked in any of the greedy heuristics. The item will be con-
sidered for assignment with a probability . After running
through all items, the heuristic is repeated with = 1, in
order to assign the remaining items. There are two versions
based on the choice of . In the first one is proportional
to the weight of item . That is, average weight
of an item) , where C is a constant factor, so that items
with larger weight are more likley to be picked. We call
this heuristic random-weight. In the second version, called
random-degree, average degree in ,
where is the degree of node in .

Heuristics Based on the LP Relaxation of SMK
These heuristics solve the LP relaxation of the problem for

the single objective of maximizing total assigned weight and
then construct a feasible solution by rounding the fractional
LP solution.

The IP formulation of SMK is as follows.

st

where the 0-1 variable denotes whether item is as-
signed to knapsack . The LP relaxation corresponds to re-
laxing integrality of these variables.

The relaxation can be solved efficiently by a maximum
flow algorithm. The continuous problem reduces to a maxi-
mum flow problem on a directed graph constructed from the
bigraph as follows. Each edge of is directed from
the item node to the knapsack node and is assigned ca-
pacity . A source node is connected to each item node

via an arc with capacity . In addition a sink node
is connected to each knapsack node via an arc with

capacity . Then, the maximum flow from to equals the
LP relaxation value and the amount of flow on arc di-
vided by gives the value of . Thus, if flow on
equals , i.e. = 1, then item is assigned to knapsack .

If , the variable is said to be fractional (in the
corresponding solution).

There are two versions of the heuristic. In the first one,
the fractional variables are rounded down and the remaining
items are assigned by a simple greedy heuristic. In the second
version, the fractional variables are sorted in non-increasing
order of their values, and for each fractional variable in the
order, the assignment is done if it is feasible. Then, the re-
maining items are assigned greedily as in the first version.
These two heuristics are called lp-greedy and lp-round.

3.2 Improver Heuristics

The improver heuristics are either local exchange heuristics
which aim to improve both of the objectives, or heuristics
which rearrange assigned items among knapsacks and unas-
sign some items for the purpose of minimizing total waste.
We provide a brief description of each heuristic.

Local Exchange Heuristics
These local exchange heuristics aim at improving both of

the objectives, and are repeated until no more improvement
occurs.

1. Exchange Items Assigned to Different Knapsacks

Consider all pairs of items assigned to different knap-
sacks. Swap the two items, if the swap is feasible and
allows an unassigned item to be assigned to one of the
two knapsacks. If the exchange of items is performed,
pick the knapsack whose residual capacity has just in-
creased and repetitivly assign the item with maximum
weight to it, if the assignment is feasible. This heuristic
is called exchange.

2. Replace Assigned Items with Unassigned Items

Replace an assigned item or a pair of assigned items,
with a single unassigned item or a pair of unassigned
items of larger weight. These heuristics are called
replace-single and replace-pair based on whether a sin-
gle item or a pair of items are replaced.

3. Rearrange

Rearrange assigned items in different knapsacks to ag-
gregate residual capacity into one knapsack and then
use the aggregated capacity to assign new items. Swap
two items assigned to two different knapsacks, if the
exchange is feasible and the maximum residual capac-
ity (over all knapsacks) increases. After all pairs of
items have been considered, repeat assigning a new
item with maximum weight to the knapsack with max-
imum residual capacity, if feasible. This heuristic is
called rearrange.

Heuristics to Eliminate Waste

1. Empty Under-utilized Slabs:

This is a randomized heuristic. Two parameters are
picked randomly: minimum allowable utilization and

maximum allowable percentage decrease in assigned
weight. Cancel assignments in all slabs with utilization
less than minimum allowable utilization, if the decrease
in weight is less than the maximum allowable percent-
age. This heuristic is called empty.

2. Empty Slabs Randomly and Reassign Orders

For all knapsacks that are utilized, empty the knapsack
with probability (1 - utilization of the knapsack). Then,
reassign items by the greedy-minrc heuristic. This
heuristic is called empty-and-reassign.

3. Pack Again

These are variable-sized bin packing heuristics. Cancel
assignments in all knapsacks. Reassign originally as-
signed items by first fit decreasing or best fit decreasing
heuristics (i.e. the greedy-item or greedy-minrc heuris-
tics). These heuristics are called pack-again-ffd, and
pack-again-bfd, respectively.

Heuristics to Increase Assigned Weight
Any of the constructor heuristics can be used as an im-

prover to assign the remaining items, if feasible. In our im-
plementations we used the simple greedy-item heuristic for
this purpose and we refer to it as assign-remaining.

3.3 Data

We used a real data set from an inventory application problem
in the Process Industry [KDTL98]. For the instances avail-
able to us, the number of items vary between 111 and 439,
while the number of knapsacks is between 18-43. The spar-
sity of the problems are in the range 10% - 28%. Size and
sparsity of these instances are summarized in Table 1. The
difficulty in solving these instances is shown in [SKM97].
An integer programming approach is unable to solve these
problems optimally in over 4 hours.

Data n m sparsity % Tot. Cap. Tot. Weight
d1 439 24 27.7 641.85 4689.91
d2 111 35 12.8 1009.32 1770.81
d3 393 18 26.7 388.84 4276.53
d4 209 43 10.6 889.21 3528.04
d5 191 35 14.2 730.81 2885.49
d6 155 18 18.6 446.32 1509.22

Table 1: Information on real-life data. Sparsity denotes the
edge density of the bipartite graph representation in percent-
age of the number of edges of a complete bipartite graph. The
last two columns denote the total capacity of knapsacks and
the total weight of items.

4 Results

A comparison of the solutions with maximum assigned
weight generated by A-team implementation and individual

runs is provided in Table 2. The waste of these solutions are
also given in the table. The quality of the solutions gener-
ated by the A-team implementation is significantly better than
the ones generated by individual runs, especially in the waste
objective. We see that a meta-level search to sequence the
heuristics have been useful to decrease the waste of the solu-
tions that have the maximum assigned weight.

Solutions with maximum value of (assigned weight -
waste), that are generated by the A-team implementation and
individual runs are given in Table 3. We see a significant im-
provement in (assigned weight - waste) of the solutions gen-
erated by the A-team and individual heuristics, especially for
the instances d2 and d4.

4.1 Analysis of Designed Algorithms

By examining the non-dominated solutions on the Pareto
frontier (shown for data d4 in Figure 2) we can identify
the heuristics and the sequence in which they were applied
to yield a particular solution. Naturally the question arises
whether it is really necessary to randomize the sequence in
which these heuristics act on each others solutions. If it is
possible to identify one or more sequences (or concatenation
of heuristics) which yield the Pareto-frontier for all the prob-
lem instances then we might abandon a stochastic control
strategy for constructing these solutions. In this section we
show that the concatenation of heuristics used to generate the
Pareto-frontier varies significantly by problem instance. This
illustrates the need to tailor the solution strategy by problem
instance which is automated by the stochastic control strategy
adopted in this paper.

For each non-dominated solution generated by the A-team
implementation, we traced the heuristcs whose output solu-
tions were used to obtain the non-dominated solution. We can
conclude that some heuristics were more effective and were
repeated more. Nevertheless, we observed no regular patterns
in the sequence of agents called across different problem in-
stances. This motivates the use of an A-team approach for the
concatenation of heuristics as opposed to identifying some ef-
fective patterns and using these patterns instead.

For the A-team implementation, the total number of occur-
rences of each heuristic which participates in the generation
of non-dominated solutions (for each problem instance) is
given in Table 4. We see that lp-round has been the most fre-
quently used constructor. Local exchange heuristics replace-
single and replace-pair, and waste reduction heuristics empty
and empty-and-reassign were the most effective improvers in
generating non-dominated solutions. We also give the heuris-
tics that output the non-dominated solutions of the individual
runs in Table 5 for comparison purposes. The statistics pre-
sented in these tables clearly indicate that the patterns used
for constructing the Pareto-frontier varied significantly across
problem instances. Figures 2 illustrates the construction of
the non-dominated solutions for data d4 generated by the A-
team implementation.

Data AW Ratio Waste Waste % Cpu Time
I 636.60 0.9952 5.25 0.82 4399.06

d1 II 617.69 0.9656 24.16 3.76 37.81
III 601.18 0.9398 40.67 6.24 29622.41
I 470.98 0.9975 108.24 18.69 70.01

d2 II 470.32 0.9961 230.50 32.89 1.48
III 472.14 1.0000 110.04 18.90 8236.05
I 383.20 0.9954 5.64 1.45 9834.42

d3 II 382.33 0.9931 6.52 1.68 72.32
III 366.10 0.9509 22.74 5.85 46009.14
I 686.99 0.9990 110.97 13.91 318.17

d4 II 673.39 0.9793 155.54 18.76 3.44
III 686.99 0.9990 140.68 17.00 39923.20
I 592.33 0.9899 96.92 14.06 183.70

d5 II 590.23 0.9864 99.02 14.37 3.06
III 591.33 0.9882 97.92 14.21 39360.16
I 406.12 0.9574 30.95 7.08 76.46

d6 II 402.92 0.9498 34.15 7.81 1.63
III 402.97 0.9500 34.10 7.80 46570.32

Table 2: A comparison of the solution with maximum as-
signed weight obtained by I) the A-team implementation, II)
individual runs of all heuristics, and III) branch-and-cut. AW
is assigned weight. Ratio is the ratio of AW to the best avail-
able bound for the assigned weight objective. Waste % is the
ratio of the unused capacity to the total capacity of utilized
knapsacks in percentage. Cpu time is given in seconds.

Data AW-Waste Ratio Waste % Cpu Time
I 631.35 0.99 0.82 4399

d1 II 593.53 0.93 3.76 38
III 565.62 0.88 5.94 44543
I 396.72 0.98 10.68 70

d2 II 326.48 0.81 3.33 2
III 398.86 0.99 13.32 15681
I 377.56 0.99 1.45 9834

d3 II 375.81 0.99 1.68 72
III 354.36 0.93 4.43 28723
I 595.55 0.98 8.67 318

d4 II 566.41 0.93 11.29 4
III 605.34 0.99 8.58 24942
I 497.14 0.97 12.54 183

d5 II 491.21 0.96 14.37 3
III 465.90 0.91 14.93 23117
I 375.17 0.91 7.08 76

d6 II 368.70 0.89 7.81 2
III 365.83 0.88 8.15 18203

Table 3: A comparison of the solution with maximum (as-
signed weight - waste) obtained by I) the A-team implemen-
tation, II) individual runs of all heuristics, and III) branch-
and-cut. The ratio is obtained using the best available upper
bound for maximizing assigned weight minus waste. Cpu
time is given in seconds.

0 20 40 60 80 100 120 140 160
2800

2850

2900

2950

3000

3050

3100

waste

un
as

si
gn

ed
 w

ei
gh

t

Data 4: Individual vs. Ateam

Figure 2: Non-dominated solutions generated by the A-team
implementation (+) and individual runs (o) for data set 4. The
objective of maximizing assigned weight is converted to min-
imizing unassigned weight for presentation purposes.

RS

RS

RS
EM EM

EMEM

EMR

SA

RS

LPR

RP RP

RS

EM

EM

RS

RS

EM

EMR

EMR

EMR

EMEM

RP

RS

RS

EM

EM

EM

RP

EMR EX

EMEM

RS

EM

EX

EM EM

EM EM

RS

EM

RS

RP

EX

RP

AR

EM

EM

RS

PF

LPR

EM

EM EM

EM

RS

Data 4:

Figure 3: Trace of non-dominated solutions generated by the
A-team implementation for data set 4.

Constructors
Data LPR GAR GIR GSD GK SA RD

d1 1 1
d2 1 1
d3 1
d4 1 1
d5 1 1 1
d6 1 1 1

Total 5 2 2 1 1 1 1

Improvers
Data RS RP EM EMR EX AR PF PB

d1 4 2 1
d2 13 8 14 3 2 1 1
d3 2 3 2 1
d4 15 5 26 5 3 1 1
d5 12 7 27 7 2 2 1
d6 3 5 6 1 1 1

Total 49 30 75 16 8 6 3 1

Table 4: The frequency of the heuristics that yielded non-
dominated solutions of the A-team implementation. Note that
the heuristics that were never used do not exist in the table.

Bibliography

[CGJ84] E.G. Coffman, M.R. Garey, and D.S. Johnson.
Approximation algorithms for bin-packing: An
updated survey. In G. Ausiello, M. Lucer-
tini, and P. Serafini, editors, Algorithm Design
for Computer System Design, pages 49 – 106.
Springer-Verlag, Wien, 1984.

[CGJ97] E.G. Coffman, M.R. Garey, and D.S. Johnson.
Approximation algorithms for bin-packing: A
survey. In D.S. Hochbaum, editor, Approxima-
tion Algorithms for -hard Problems, pages
46 – 93. PWS Publishing Company, Boston,
1997.

[FL86] D.K. Friesen and M.A. Langston. Variable sized
bin packing. SIAM J. Computing, 15:222 – 230,
1986.

[FMW96] C.E. Ferreira, A. Martin, and R. Weismantel.
Solving multiple knapsack problems by cutting
planes. SIAM J. Optimization, 6(3):858 – 877,
1996.

[GJ79] M.R. Garey and D.S. Johnson. Computers and
Intractibility:A Guide to the Theory of -
Completeness. W.H. Freeman and Co., San
Francisco, 1979.

[HF78] M.S. Hung and J.C. Fisk. An algorithm for 0-1
multiple knapsack problems. Naval Res. Logist.
Quarterly, 24:571–579, 1978.

Constructors
Data LPG GAR GIR GSD GK GI RD RW

d1 1
d2 1 1 1 1
d3
d4 1 1
d5
d6 1

Total 1 1 1 1 1 1 1 1

Improvers
Data RS EM EMR

d1 1
d2 1 1
d3 1
d4 1 1 1
d5 1
d6 1

Total 5 2 1

Table 5: The heuristics that output non-dominated solutions
of the individual runs. Note that for data d2, the solutions
output by GI, GK and GIR heuristics are the same, and there
exists a total of 4 non-dominated solutions.

[HLH97] B.A. Huberman, R.M. Lukose, and T. Hogg.
An economics approach to hard computational
problems. Science, 275:51–54, 1997.

[IK97] I.F. Imam and Y. Kodratoff. Intelligent adaptive
agents. AI Magazine, 18(3):75–80, Fall 1997.

[JW94] A. Juels and M. Wattenberg. Stochastic hill-
climbing as a baseline method for evaluating ge-
netic algorithms. Technical Report CSD94-834,
Dept. of Computer Science, University of Cali-
fornia at Berkeley, 1994.

[Kar72] R.M. Karp. Reducibility among combinatorial
problems. In R.E. Miller and J.W. Thatcher,
editors, Complexity of Computer Computations,
pages 85 – 103. Plenum Press, New York, 1972.

[KDTL98] J. Kalagnanam, M. Dawande, M. Trumbo, and
H. S. Lee. The surplus inventory matching prob-
lem in the process industry. Technical Report
RC21071, IBM T.J. Watson Research Center,
1998.

[Koz92] J. R. Koza. Genetic Programming: On the Pro-
gramming of Computers by Means of Natural
Selection. MIT Press, 1992.

[Koz94] J. R. Koza. Genetic Programming II: Automatic
Discovery of Reusable Programs. MIT Press,
1994.

[MARW97] S. Murthy, R. Akkiraju, J. Rachlin, and F. Wu.
Agent-based cooperative scheduling. pages
112–117. Constraints and Agents, AAAI-97
Workshop, 1997.

[MT80] S. Martello and P. Toth. Solution of the zero-
one multiple knapsack problem. Euro. J. Oper.
Res., 4:322–329, 1980.

[MT81a] S. Martello and P. Toth. A bound and bound
algorithm for the zero-one multiple knapsack
problem. Discrete Applied Math., 3:275–288,
1981.

[MT81b] S. Martello and P. Toth. Heuristic algorithms
for the multiple knapsack problem. Computing,
27:93–112, 1981.

[MT89] S. Martello and P. Toth. Knapsack Problems.
John Wiley and Sons,Ltd., New York, 1989.

[MT90] S. Martello and P. Toth. Lower bounds and re-
duction procedures for the bin packing problem.
Discrete Applied Math., 28:59–70, 1990.

[RS93] S. J. Russel and D. Subramanian. Provably
bounded-optimal agents. J. of Artificial Intel-
ligence Research, 1:1–36, 1993.

[Rus95] S.J. Russel. Rationality and intelligence. pages
950–957. IJCAI-95, 1995.

[SKM97] F.S. Salman, J. Kalagnanam, and S. Murthy.
Heuristics for solving the bicriteria sparse mul-
tiple knapsack problem. Technical Report RC
21059, IBM T.J. Watson Research Center, 1997.

[TdS93] S.N. Talukdar and P. de Souza. Asynchronous
organizations for multi-algorithm problems.
pages 286–293. Proceeding of 8th SIGAPP
Symposium on Applied Computings, Feb.
1993.

[TdSM93] S.N. Talukdar, P. de Souza, and S. Murthy. Or-
ganizations for computer-based agents. Engi-
neering Intelligent Systems, 1(2):–, 1993.

[ZR95] S. Zilberstein and S.J. Russel. Optimal com-
position of real-time systems. Artificial Intelli-
gence, 79(2), 1995.

