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ABSTRACT

Control systems design of complex non-linear system
often involves the use of expensive computational
models. To speed up the design process and to allow
more designs to be evaluated, an inexpensive approach
using variable complexity modelling (VCM) is
introduced. A non-linear thermodynamic model of a
gas turbine engine is used to evaluate a selection of
designs for a multivariable PI controller configuration.
Regression analysis is applied to fit polynomial models
to this data for various control responses. These simple
models are used to design the controller within the
framework of a multiobjective genetic algorithm
(MOGA). The final designs are checked using the
original non-linear model. Good results indicate the
viability of this approach for application to complex
designs involving expensive computational models.
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Introduction

High performance gas turbine engines require complex
controllers to maintain system stability and achieve
strict performance and design criteria. The engine
dynamics vary with time and changes in operating
demands and ambient conditions. Moreover, the engine
core endures very high temperatures and pressures. The
engine control system has to protect against breaching
the physical lirnits of the engine, maximum
temperature for example, as well as the actual stability
and performance requirements. Computer-aided control
system design together with optimisation based
methods are extensively used to design suitable
controllers to meet the desired performance
specification. Accurate thermodynamic models are
usually complex reflecting the inherent non-linearity of
the engine. These models are computationally
expensive. This cost is more critical for design purposes
where many model evaluations are required.

The engine under consideration in this study is the
Rolls-Royce Spey engine which is a two-spool re-heated
turbofan used to power military aircraft. The full
thermodynamic model of the Spey engine was
developed by J. Beard of DERA (P), French, (5). This
model can be used to assess the steady-state

performance of the engine. Various controllers can be
tested using the model. Designing for an optimum
control configuration involves many model simulations.
A non-lincar SIMULINK™ implementation of this
model is used in this study. Actual model runs
simulating a few seconds of operation requires a few
minutes of CPU time on a standard workstation. This
overhead cost can limit the number of design or
redesign cycles.

Variable Complexity Modelling

Variable complexity modelling (VCM) is part of
decomposition and approximation methods used
frequently in multidisciplinary optimisation (MDO).
MDO is usually associated with aero-structural design
problems that involve the design of systems which are
functions of more than one discipline, aerodynamics
and structures for example, Khatib and Fleming (10),
Balabanov et al (1), Giunta et al (6, 7, 8). Such
techniques are used to overcome some of the main
difficulties encountered in MDO; organisational
complexity and computational cost. Low-fidelity
analysis is often used to explore the design space to
identify promising regions. This process is formalised
by constructing response surfaces (RS). Response
surfaces are polynomial approximations, usually
quadratic, that model the objectives based on the given
designs. The hope is that these design will form a near
convex hull around the feasible design region. The RS
approach helps reduce the complexity of the
optimisation problem. The noise in the design space is
also smoothed out. Providing the design space is not
highly irregular, it is usually hoped that the RS models
can model the global optima adequately. Regression
analysis using least squares is usually used to fit the
polynomial curves to the data. If n terms are chosen for
the polynomial model, then the number of design
points required to construct the model should be at least
1.5*n. In MDO problems, this limits the order of the
polynomials to quadratic to avoid the problem referred
to as the curse of dimensionality. Additional work
might need to be done to construct the RS models
depending on the nature and size of the problem. For
regular and relatively small design spaces, the choice of
points can be made using a variety of  simple
techniques to construct near-convex hulls. For larger
problems with irregular spaces, other statistical
techniques from the design of experiments domain are
needed, an example would be the D-optimality
criterion. This is an important and fresh issue in this
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field.

Designs obtained using this approach usually give a
good indication of the near-optimal design. These
designs can be fine tuned using the full models to arrive
at the final solutions. The more accurate these RS
models are, the less tuning shall be required in due
course.

Multiobjective Genetic Algorithm (MOGA)

Most optimisation problems in control design are
multiobjective in nature. Optimising to satisfy multiple
objectives ‘makes redundant the notion of a single
global optimum. In such circumstances, the design
space is searched for solutions that exhibit no
preference over each other from a Pareto optimality
point of view. These solutions form a set of trade-offs
or non-dominated solutions. Evolutionary algorithms
have found many successful applications in search and
optimisation problems for control systems design and
other applications. A multiobjective genetic algorithm
(MOGA) combines the . characteristics of a powerful
evolutionary optimisation strategy in. the genetic
algorithm (GA) with the concept of Pateto optimality to
produce solutions illustrative of a problem’s trade-off
set. A MOGA evolves a population of solution
estimates thereby conferring an immediate benefit over
conventional multiobjective optimisation methods that
rely on single-point search.

The work described is this paper uses the GA Toolbox
for Matlab™, Chipperficld et al (3), together with an
implementation of a MOGA as proposed by Fonseca
and Fleming (4).

SPEY Engine Multivariable PI Control Design

The SPEY gas turbine engine is a two-spool turbofan
originally developed for military jets. There are three
control inputs: fuel flow, inlet guide vane and nozzle
area. Sensors provide various measurements which can
be used to control engine performance. These include
spool speeds, pressure, temperature, etc. These values
can be used to evaluate other engine parameters such as
thrust, flow rates and -surge margins. The most
important objective of the engine control system is to
control thrust whilst regulating compressor surge
margin. But compressor surge margin and thrust
cannot be measured directly. Other measurable engine
parameters are used to control these two most
important variables -after pre-set transformations. For
example, thrust can be controlled through comparing
pressure ratios and interpolating to find the relevant
fuel flow readings. .

Input-output Pairing For Closed-loop Control
The engine model has three inputs: fuel flow (WFE),

exhaust nozzle area (A8) and inlet guide vane (IGV).
Sensors provided from outputs of the engine model are
high and low pressure spool speed (NH, NL), engine
and fan pressure ratios (EPR, FPR) and Mach no.
(DPUP). These variables can be used to provide various
pairings of input-output for closed-loop control, since
one input can control only one output independently,
Skogestad & Postlethwaite (12).

Table 1 shows the possible combinations of inputs and
outputs to control engine thrust, surge margin of the
low pressure compressor and high pressure compressor
spool speed respectively. These outputs were chosen
because thrust and surge margin can be defined in
terms of these measurable variables.

Applying MOGA to the non-linear Spey model, to
search for the best output to be controlled by one of the
inputs, the outputs in italics in Table 1 were found to be
the best for control purposes, Silva & Fleming (11).

Table 1- Possible input-output pairings
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WFE EPR,NL, NH
A8 DPUP, FPR
IGV NH

The complete design of a PI controller involves finding
controller parameters covering various operating points
defined by the high pressure spool speed to cover the
thrust range of the engine. The gains of these
controllers are then scheduled against the high pressure
spool speed at which they were designed.

For the purposes of this work, we will consider one of
these set points corresponding to 95% HP spool speed
(NH%) at zero altitude and Mach no. The step response
to a change in thrust demand of 62% to 87% is used to
evaluate controller performance.

The system is required to meet the following design
constraints: :

XGN > 48.64 kN

TBT <1390 °K (% 10 °C)

LPSM 2 10%

A8=0.28m?

XCNrise time < 1.0 s

XGN setﬂing time<14s

L ]
L]
®
®
o S

where XGN is the engine gross thrust, TBT is turbine

blade temperature and LPSM is the low pressure
COMPIESSOr surge margin. '

The following constraints (engine mechanical limits)
are used to maintain the stability of the simulation:



NL <102%
0:25 < A8 < 0.34 (dry thrust limits)

The following multiple objectives were also addressed
by MOGA:

¢ minimise steady-state error for NH, NL and A8

e minimise overshoot/undershoot for NH and NL.

Constructing Response Surface Approximations

For this particular problem, there are 4 controller gains
required and they form the independent design
variables. The low dimensionality of this problem
precludes most of the difficulties associated with the RS
approach. There is room for choosing higher order
polynomials to achieve better approximations. Further,
the choice of design points is also easier. This choice
was done in two stages:

Generating a coarse grid in 4 dimensions covering
a certain range for the controller gains. The
controller performance is evaluated for these
points. A subset of this mesh is identified as the
feasible design region.

A fine grid is evaluated in the feasible region.
These points are used to construct the RS models.

This kind of information is not often readily available
using the traditional design approach. This mesh
refinement helps make the search process more
efficient. Further data filtering is possible by leaving
out designs that do not meet the stated constraints. For
some problems, filtering the data this way can make the
design space less evenly distributed inside the mesh. As
long as the model accuracy is maintained, this does not
pose any serious problems. Certainly, in this case, no
such problems are encountered.

In this implementation, around 1400 points were
initially chosen from the coarse mesh covering a wide
range of controller gains. These points are filtered to
choose 245 points for RS model construction. Around
200 extra points are further chosen to assess the RS
model performance.

To achieve low modelling errors, a polynomial of order
4 is used as follows:

y=c, + E cx, + E C,X%,X; +
1<i<p 1<i<j<p
@
E X%, xx, + C,;X, XX, X,

1i<j<k<p 1<i<j<k<I<p

where y is the response or output to be estimated, ¢ are
the polynomial coefficients, x are the independent
variables and p is the number of variables (p=4 here).

For a number of n, = 245 points selected to-construct
the model, the remaining n, = 200 points are used to
evaluate the modelling error. The difference between
the values predicted by the response surface and the
actual values for the n, points is the residual error. If
the predicted value is yh and the actual value is y
modelling error is:

i =|yhi-yi| @
Fori=1, .., n,
The average modelling error is:
3 1 n, (3)
§=—%3,
i=1
ne

As the validation points are different to those .used in
constructing the RS, this equation gives an unbiased
estimate of the modelling error.

Table 2 below gives values for residuals and modelling
errors for the RS models for 10 outputs. Figure 1 shows
the performance of the RS model in predicting the TBT
response for the test data at the n. design points.

Table 2- Error performance values for the RS models

output | mean g Design
residual point

Thrust 0.03 0.41 | 48.6 kN

TBT 0.67 13.26 | 1713 K

Rise time 0.006 0.06 10s
Sett. time 0.04 0.5 l4s
LPSM 0.14 2.2 10 %

NH ss error 0.002 0.04 95 %
NL ss error 0.005 0.11 90 %
A8 error 0.001 0.01 | 0.27 m
NH ov ’shoot 0.004 0.13 95 %
NL ov’shoot 0.001 0.49 90 %
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Figure 1. Turbine blade temperature output



MOGA Control Design using RS Models

Using -100 individuals, a MOGA is evolved over 100
generations to search for the best controllers satisfying

the various objectives mentioned above. The controller

gains are represented as Gray-coded bit strings or
chromosomes. - Standard two-point  crossover and
mutation are used. The actual evaluation 'time is
literally a few minutes of a standard workstation. The
same scenario using the full model will require in
excess of day to execute on the same machine.

The user interface of the MOGA (Figure 2) shows the
progress of the search process. It allows the designer or
decision maker to alter goals and preferences in a
progressive manner as the search moves forward. Each
solid line in the graph represents a solution. The goal
values are denoted by X. Lines crossing above the X
indicates that the respective goal is not met.

SPEY engine non—linear SIMULINK control design

Figure 2. MOGA user interface

Results

The MOGA finds a set of nondominated designs for the
PI controllers. To reduce the size of this set, some of
the objectives are tightened further. We Choose
controllers with fastest responses in terms of thrust rise
and settling times. We also look for controllers with
minimum overshoot and good tracking performance in
terms of steady state (ss) errors. These modified
preferences reduce the number of controllers to a subset
of similar gain ranges. The final designs for the PI
controllers are checked using the full thermodynamic
model. The actual and predicted values for the ten
objectives are almost identical (Table 3).
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Table 3- RS Modelling errors

output g ‘ output _6-
Thrust | 0.008 NH ss error | 0.001
TBT | 5.21 NL ss error | 0.0
rise time | 0.004 A8 ss error | 0.0
selt time | 0.016 NH ov’shoot | 0.0,
LPSM | 0.001 NL ov’shoot | 0.007

The step response curves for some of the outputs
(normalised) further illustrate that these controllers are
good designs that meet all the original design
specifications.

Figures 3 and 4 show a fast and steady response for the
engine. The thrust response in particular is of great
importance for a military aircraft, both in terms of
speed of response and attaining adequate thrust values.

High-pressure spool speed
T

T T T
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NH%

05 1 15
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Figure 3. High-pressure spool speed
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Figure 4. Gross thrust

In figure 5, we observe how the turbine blade
temperature is maintained within the allowable
physical range avoiding deformation of the blades.



Tutbine blade temperature
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Figure 5. Turbine blade temperature

In order to maintain a robust and stable engine
operation, the surge margin has to be a minimum of
10%. Figure 6 shows that in this case, a low pressure
surge margin of nearly 14% is achieved and
maintained.

Low-pressure surge margin
T T T T

LPSM

5 . L L
0 0.5 1 25 3 35

1.5
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Figure 6. Low-pressure surge margin

The MOGA design process was repeated for the same
objectives and parameters but using the full engine
model. The run-time cost is many orders of magnitude
higher. No better designs are achieved with this
approach than before. In fact, the latter design process
was helped slightly by using the knowledge gained in
constructing the RS models about the range for the
controller parameters. Such information is not usually
present and the MOGA might have to search longer to
arrive at similar results. The range of gains found using
both approaches is quite similar.

Conclusions

VCM techniques like the RS models allow the designer
the freedom to explore the design space more freely in
search for the best design region(s). Once near optimal
designs are established this way, fine tuning can be
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carried out if necessary using the full models.

The initial cost of establishing the RS models is more
than offset by the savings in the design process.
Further, these models are re-usable at no extras cost.
The construction of the models sheds more light on the
design problem and helps design optimisation in the
process.

If necessary, more complex data fitting techniques such
as genetic programming (GP) or neural networks (NN)
can be used. This, however, can lessen the effect of one
of the attractions of this approach, that of simplicity.
Least square polynomials are more than adequate for
this problem. Problems of higher dimensionality and
less smoothness might require a more eloquent. point
selection method such as D-optimality.

Further work is under way to investigate the use of this
technique to do a complete controller design for the
complete flight envelope of operating conditions. This
work is not limited to PI control. The emphasis is on
performance optimisation control. This efficient
modelling approach is one tool towards achieving good
control implementations that meet that target.
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