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Abstract 
 
Genetic Algorithms have been successfully applied to numerous water resources problems, 
including problems with multiple objectives or uncertainty (noise). GAs tackle multi-objective 
optimization by following three basic principles – advancing the non-dominated frontier; 
maintaining diversity in the population (through various techniques like sharing, niching, and 
crowding); and using an elitist. However finding Pareto-optimal solutions becomes complicated 
when we add uncertainty to the problem. It was found that the solutions obtained using existing 
multi-objective solvers, although Pareto optimal were not the most robust or reliable solutions. In 
single-objective problems noise has typically been dealt with using Monte-Carlo-type sampling 
and some form of aggregate statistics (e.g., the average of the sample fitness). With multiple 
objectives the noise can interfere in determining non-domination of individuals, diversity 
preservation, and elitism (the three basic steps in multi-objective optimization). This paper 
proposes and tests several approaches to tackling some of these problems. These approaches 
strike a balance between finding the most optimal and the most reliable solution to the problem, 
thus giving decision makers and designers a practical and robust optimization tool.  
 
Introduction 
 
Evolutionary and genetic optimization has, over the past few years, ‘evolved’ from being a rare 
curiosity to a firmly entrenched practice in the circles of engineering and management 
optimization. These techniques have been applied to many water resources applications, 
including groundwater remediation design, optimal reservoir system operation, calibrating 
rainfall-runoff models, remediation policy selection, and solving multiple objective groundwater 
pollution contaminant problems (e.g., Ritzel et al, 1994; Wang and Zheng, 1997; Wardlaw and 
Sharif, 1999; Reed et al., 2001). One of the reasons that genetic algorithms have been chosen is 
that they have been shown to easily handle non-convex, discrete, discontinuous, noisy, and 
multi-objective problems (Goldberg, 1989) that arise frequently in these applications. In 
addition, evolutionary algorithms are arguably domain independent, which make them excellent 
candidates for the simulation/optimization methodology commonly used in this field. 
 
Two areas of evolutionary optimization where progress has been in terms of theory and 
application are multi-objective optimization and noisy or uncertainty based optimization. 
Evolutionary multi-objective optimization (EMO) methods, which seek to find the most Pareto 
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optimal set of solutions to a problem, have garnered increased attention. Pioneering work in this 
area was undertaken by Fonseca and Fleming (1993), Coello (1999), and Deb (2000) among 
others. Cieniawski (1993) and Ritzel et al (1994) were among the earlier applications of EMO 
methods in water resource management. More recently Reed et al (2001) developed guidelines 
for competent Multi-Objective Genetic Algorithm (MOGA) and applied them to a groundwater 
monitoring problem.  
 
In addition to having multiple objectives, most real world problems have inherent noise. This 
noise can be due to model approximations, knowledge uncertainty, or inconsistent or sparse data. 
Noisy GAs seek to find the most reliable and robust optimum in the face of such noisy objective 
functions. Miller (1997) was among the first to analyze and suggest design methodologies for 
single-objective noisy genetic algorithms. Among the various studies undertaken since, 
Gopalakrishnan et al (2001) demonstrated the applicability of these ideas in water resources 
management on a simple groundwater remediation problem with uncertain aquifer properties. 
This study seeks to combine the theoretical and practical work in these two fields to develop 
multi-objective optimizers capable of handling noise and uncertainty. Some initial work in this 
area was undertaken by Hughes (2001) who used the concept of stochastic dominance, assuming 
that the noise was from a Gaussian distribution. Although this work provides a good theoretical 
launching pad for our current study, their simplifying assumption for the noise distribution is 
either not true or not verifiable in cases such as ours, leading to the present approach for a more 
general noisy-MOGA. 
 
Multi-Objective Genetic Algorithms 
 
Most problems in nature have several (possibly conflicting) objectives to be satisfied. 
Traditionally such problems were handled by converting the multiple objectives to one, by using 
weighting functions, or using one objective to optimize and the others as constraints. Such an 
approach has many problems, including the loss of significant tradeoff information and the 
inability to search the true objective space for a global optimum. The other approach is to 
consider a set of the locally best alternatives, or the solutions that represent the optimal tradeoffs 
for the solution. These comprise the non-dominated frontier for the problem and the objective 
now becomes to find the set of solutions that are globally non-dominated. In other words, the 
objective is to find solutions to the problem such that there are no feasible solutions that would 
better one criterion without simultaneously worsening at least one other criterion. This set of 
non-dominant solutions is often referred to as the Pareto Optimum set, after the famous 
mathematician Vilfredo Pareto, who generalized the concept of this kind of optimality. 
 
Thus, unlike single objective optimization, multi-objective optimization (MO) has to work to 
find a set of good solutions. Since genetic algorithms too manipulate populations of candidate 
solutions, they are a natural approach for this kind of optimization. However loss of diversity 
(convergence to one solution due to stochastic noise) is one problem with traditional genetic 
algorithms that make their direct use for MO difficult. That is why research in this area has 
focused on finding better (more non-dominant) solutions to the problem while still maintaining 
diversity and preserving the existing front.  
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Multi-objective optimizers typically use different schemes to give a measure of ‘non-dominance’ 
to the solutions found. This is done by taking a local measure of non-dominance for each 
solution. Each individual is compared by all others in the population, and those that are strictly 
non-dominated are marked as the locally Pareto (or rank 1) solutions. Some methods, like those 
proposed by Fonesca and Fleming (1993), rank each individual as one more than the total 
number of individuals it dominates. Others, like the non-dominated sorted genetic algorithm 
(NSGA) (Srinivas and Deb, 1994), do layer-wise Pareto ranking. Here rank 1 solutions are those 
that are not dominated by any other solutions. These are then removed from the list of considered 
solutions, and rank 2 solutions are defined as those that are strictly non-dominant with respect to 
the remaining solutions. This process of ranking and removal is followed till all solutions are 
ranked. In general the objective of the optimizer now becomes to minimize the rank. To maintain 
good spread over the Pareto front and prevent loss of diversity various methods can be used. 
These include fitness sharing, mating restrictions, and crowding schemes among others. In 
addition to preservation of diversity, most multi-objective optimizers have some kind of an elitist 
scheme, so that the existing Pareto optimal solutions are not lost. As a starting point for our 
analysis and implementation we used the elitist non-dominant sorting algorithms based on 
crowding distance (NSGA-II) (Deb et al, 2000) which is an efficient algorithm that gives good 
results over a large range of problem types. This algorithm uses the layered ranking approach 
and the crowding factor for optimization and diversity preservation. Elitism was implemented by 
giving first preference in selection to all rank 1 individuals, ensuring that they succeed to the 
next generation. 
 
Noisy Genetic Algorithms 
 
A GA that operates in a noisy environment is referred to as a “Noisy GA”. Much of the theory 
and practice in this area can be understood if we realize that even in non-noisy environments 
genetic algorithms are stochastic algorithms, which operate under a certain amount of natural 
‘noise’. This is due to the fact that GAs work at the level of building blocks, or sub-solutions to 
the problem (Goldberg, 1989). Combinatorially, GAs are more efficient than random searches, 
due to the effects of the operations of selection, crossover and mutation, GAs search the decision 
space to find the optimum building blocks that can then be combined to give the final solution. 
Since there is no way of explicitly identifying such building blocks, their search and evolution is 
intrinsically noisy and is handled through adequate population sizing.  
 
In the case of noisy fitness functions, the additional noise adds up to the intrinsic noise and can 
be dealt with using larger population sizes or adequate sampling to reduce the external noise. In 
most of these cases sampling is used to find the average value for a given objective, which 
through the central limit theorem would increasingly tend to the actual mean-average of the 
distribution for the noise. Since there is an obvious tradeoff between computation time and the 
increased accuracy through sampling, an optimum sampling size can be computed (Miller, 
1997). This methodology was tried and tested for a simple one dimensional groundwater 
remediation problem by Gopalakrishnan et al (2001), and gave promising results. Most 
significantly, highly reliable solutions were found with low amounts of sampling (as few as 5 
samples per solution). This was critical in cases such as ours since it was impossible to afford 
large sample sizes given the expense of fitness evaluations. Another study was undertaken by 
Chan Hilton and Culver (2000) to find robust solutions to groundwater remediation problems 
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with uncertain aquifer properties, by using the past performance of a particular solution to assess 
its robustness over uncertainty. It is noteworthy to add that most of the studies undertaken on the 
theoretical aspects of noisy GAs have considered only noise in objective space. Typically for 
experimentation a Gaussian signal was added to the objectives. Since for most real world 
problems noise is seen mostly in the decision variables or the parameters of the objective 
function, this study also looks at the effect of different kinds of noise on the performance of the 
multi-objective GA. 
 
First Steps towards a Noisy Multi-Objective GA 
 
Our first instinct in trying to identify an effective noisy multi-objective GA was the most obvious 
one. With adequate sampling for each individual and a large enough population size, the noise 
could be handled in the same way as a single objective case. We thus used the NSGA-II (Deb et 
al, 2000) and introduced sampling at each fitness evaluation averaging fitness for all individuals 
and taken this average value as the fitness for the individuals. 

NSGA-II with sampling and Noise in Decision Space
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      Figure 1: Original NSGA-II with decision variable noise. 

NSGA-II with sampling and Noise in Parameter Space
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  Figure 2: Original NSGA-II with parameter noise. 
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NSGA-II with Sampling and Noise in Objective Space
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   Figure 3: Original NSGA-II with objective space. 
 
The algorithm was tested on a test bed of multi-objective problems taken from Deb (1998) to 
allow extensive testing on different types of problems before a water resources application was 
undertaken. For this report we have shown results on a continuous, multi-modal problem which 
has more than one local Pareto optima. We considered noise in objective, decision, and 
parameter space. Previous work on population sizing (Mahfoud, 1995) was used to come up with 
conservative population sizes (200) and the GA was run for 60 generations (to ensure 
convergence, this was almost 4 times the string length used, while normally convergence is 
expected in two times the string length generations). An artificial noise signal with a standard 
deviation of 10% of the range was added to the objective, decision, and parameter values.  
Results with sample size 5 for these three cases are shown in figures 1, 2, and 3. The results 
show the final population evaluated without noise to indicate how close these were to the 
original solution. For this objective function, the true Pareto front (obtained analytically) was 
known a priori and is also shown in all Figures. As can be seen, many non-optimal solutions 
were found in these cases. Moreover, the overall coverage of the front is also not very good. 
 
Problems with the Simple Approach 
 
On closer analysis of the results and the algorithm, it was clear that noise leads to problems in 
the major components of the NSGA-II. The first difficulty is in the ranking scheme itself. The 
ranking scheme compares the absolute fitness values of a particular individual with all the other 
individuals to decide on a rank. Since the fitness values are themselves uncertain this leads to 
large fluctuations in the rank of a given individual. Often even for very small variations in the 
fitness value, the rank can have large variations. In effect the ranking mechanism can potentially 
amplify the noise leading to poor performance. This fact was noticed before by Hughes (2001) 
who demonstrated that different ranking schemes (like the NSGA or the MOGA) have different 
mean standard deviations of rank values for the same applied noise.  
 
The other potential problem is with the elitist selection mechanism, where all individuals of rank 
1, are always selected for the next generation. This sort of string elitism helps non-noisy MOs to 
maintain the existing good solutions. With noise, however, this approach leads to the retention of 
outliers, or individuals that at some time got very high fitness due to a favorable random event. 
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In the existing algorithm there is no way of reevaluating these individuals, so they continue to 
survive and are part of the final front. Apart from the elitism, another mechanism that is 
adversely affected by noise is the diversity preservation. The selection procedure of NSGA-II 
can be viewed as a two step process. The algorithm uses a crowding factor to calculate the 
distance of each individual from its neighbor on the same Pareto front. This crowding distance is 
indicative of the relative uniqueness of that particular individual. Small crowding distance means 
crowding on the Pareto front, while large distances mean the individuals are spread apart. The 
selection scheme that NSGA-II uses is the modified ‘µ+λ’ scheme. This selection mechanism, 
which is very popular in evolutionary strategies, combines the parent population (µ) with the 
children population (λ) and then selects the best µ of the combined population. NSGA-II uses 
two criteria for choosing the best µ from the combined population. It first ranks the combined 
population and then selects the best ranks one by one until the addition of the next ranked 
solutions would lead to more than µ individuals in the selected population. This last rank is then 
sorted on the basis of the crowding distance factor of the individuals and the individuals with the 
maximum distance are chosen to fill in the remainder of the population. The first criterion of 
rank causes the population to converge to the optimum front. After this the second criterion of 
distance preferentially selects the more unique individuals and causes the solutions to spread 
over the Pareto front.  
 
With the addition of noise, the problem with this mechanism is two fold. In this case we use the 
average fitness for distance calculation. First, since the fitness values are all uncertain, the 
crowding distance of an individual from its neighbor is an unreliable measure of how unique the 
solution is in the true search space. In fact, multiple copies of the same individual can and often 
do have different average fitness values. Moreover, with the inclusion of noise, the population 
almost never converges to one stable Pareto front. Hence, the second selection criterion of 
distance never becomes very effective and solutions are not spread over the front. 
 
Modifications to Ranking Scheme of Original NSGA-II 
 
As can be seen the problem of adapting a multi-objective optimizer to a noisy environment is not 
straightforward. Alterations in the original algorithm may apparently deal with some of the 
problems discussed above, but they may also hamper the evolutionary process that was the very 
strength of the original algorithm. A number of approaches for modifying the ranking scheme to 
address this problem are possible. We first tested a simple modification to the ranking scheme. 
Future work will test more sophisticated approaches such as that of Hughes (2001), who used a 
stochastic dominance approach, in which the ‘probability of dominance’ replaces absolute 
dominance in the ranking scheme. As discussed before the approach assumes a Gaussian 
distribution for the noise signal and then uses an analytical approach to find the probability of 
dominance. We intend to combine this with frequent sampling to make it more generally 
applicable and feasible on various noisy problems. Multi-objective optimization can be viewed 
as a single-dimensional (though multi-modal) optimization problem with respect to the rank 
values. Noise in single dimensions is typically handled through sampling and averaging. A 
comparable approach would be to rank each individual for each fitness sample and then use the 
average rank as the fitness criterion. When identical individuals within a population were 
identified the rank was averaged across all members of the population and their samples. All the 
identical individuals were then given the same common average rank. Under this approach, 

 6



fractional average ranks are possible, which means the discrete fronts that are necessary for the 
selection scheme of the NSGA-II are lost. To address this problem, the layer-wise selection 
scheme was replaced by selection through tournament selection within the combined population. 
Two individuals were chosen at random and the one with higher average rank was chosen. If the 
two had the same ranks then the one with larger crowding distance (still calculated over average 
fitness) was chosen. This approach was seen to give good results for the case with noise in the 
decision space (Figure 4). However the performance in the other two cases was not any better 
than the earlier cases. Moreover, even for the case with noise in decision space, there were many 
duplicate solutions, and the Pareto front found eventually was sparse. This could be attributed to 
the problem in the crowding mechanism, which was seen to be unreliable with noise. 

Rank Averaged NSGA-II with noise in Decision Space
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Figure 4: NSGA-II with rank based sampling finds optimal (though 
sparsely spread) solutions for noise in decision space. 

 
Modification to Selection Scheme 
 
As discussed earlier, the elitism in the selection scheme causes solutions favored by random 
events to survive into the final Pareto frontier. On the other hand, elitism can also help stabilize 
the Pareto front, avoiding the need for the algorithm to have to search again for good solutions. 
Our first step for solving this problem was to replace the elitist rank based selection scheme, by a 
simple tournament selection scheme. In this case, once all the individuals have been ranked, two 
individuals are chosen randomly and the one with lower rank is selected. If two individuals have 
the same ranks then the one with higher crowding distance is selected. This mechanism can be 
easily extended for larger tournament sizes, which leads to stronger selection pressure. This 
approach can be applied to both the average fitness scheme and the average ranking scheme. 
However initial experiments on the average ranking scheme showed the same problems as before 
thus all subsequent experiments were performed using averaging on the fitness values only.   
 
With tournament size 2, and averaging over the fitness values, the results were as shown in 
figures 5, 6, and 7. Comparing these results to the corresponding results in Figures 1 through 3, it 
is clear that removing elitism does lead to fewer dominated solutions in the final population. 
However, the problem of insufficient coverage of the front is still seen, especially in the case 
with noise in decision space. Since such a dramatic effect is observed by changing the ranking 
scheme we will study the effect of other selection schemes on the performance of the GA.  
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Non-Elitist NSGA with Noise in Decision Space
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 Figure 5: Improved Performance of Non-Elitist NSGA-II with decision 
variable noise.  

Non-Elitist NSGA with Noise in Parameter Space
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Non Elitist NSGA with Noise in Objective Space
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Figure 6: Improved Performance of Non-Elitist NSGA-II with parameter 
noise. 

Figure 7: Improved Performance of Non-Elitist NSGA-II with objective 
space noise. 

 
 
 

 

 8



Modifications to the Diversity Preservation Scheme 

f the various diversity preservation schemes in the GA literature, the attractive feature about 

onclusion and Future Work 

his paper identifies the difficulties in designing a robust and efficient noisy multi-objective 

uture work will involve implementing some of the alternatives that have been mentioned in this 
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