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This document describes the usage, and presents some performance results of a proprietary GAUSS program 
called GENO. GENO is an acronym for General Evolutionary Numerical Optimiser: the word general is here used 
not in the sense of GENO being “able to solve all problems”,1 but rather in the sense that it is effective on a 
relatively wide range of problems as compared to most existing algorithms.2   

GENO is a real-coded genetic algorithm that can be used to solve uni- or multi-objective optimisation problems. 
The problems presented may be static or dynamic in character; they may be unconstrained or constrained by 
equality or inequality constraints, coupled with upper and lower bounds on the variables. The variables 
themselves may assume real or discrete values in any combination. In fact, except for the relatively benign 
requirement that, if present, all equation constraints should preferably be affine in the current control, the 
algorithm does not require the problem presented to have any other special structure.  

Although the generic design of the algorithm assumes a multi-objective dynamic optimisation problem, GENO 
may be “specialized” for other classes of problems such as the general static optimisation problem,3 the “mixed-
integer” problem, and the two-point boundary value problem, by mere choice of a few parameters. Thus, not 
only can GENO compute different types of solution to multi-objective problems, it may also be set to generate 
real or integer-valued solutions, or a mixture of the two as required, to uni-objective static and dynamic 
optimisation problems of varying types. These properties are easily pre-set at the problem set-up stage of the 
solution process. The design of GENO includes a quantization scheme that significantly enhances the rate of 
convergence, as well as the quality of the final solution. Furthermore, unlike other algorithms of the same type, 
GENO includes a stochastic mechanism for stopping the search when the solution is within a user-defined 
tolerance.4 
 
A representative sample of numerical examples that covers a wide range of problem-types and solutions is 
provided to demonstrate GENO’s capabilities. From the reported results, it is evident that GENO consistently out-
performs many evolutionary optimisation methods in all cases in which a comparison was possible; and, in terms 
of solution quality, its performance is at least as good as some deterministic algorithms in most cases. 
 

                                                           
1 The implications of the ‘No Free Lunch Theorems’ first enunciated by Wolpert and Macready (1997) render this improbable.  

2 The range of examples presented in this document attest to this assertion. Furthermore, Zhang (2001, p.34) presents a capability map of 20 
existing NLP solvers against which GENO may be compared. It should be noted that, unlike GENO, none of the solvers considered by Zhang  
address the multi-objective optimisation problem (see Table 3A of Appendix III). 

3 It could be argued that the generalisation claimed here is “the wrong way round” since it has long been well known that a discrete-time 
optimal control problem is essentially a static mathematical program. This follows immediately from the variable stacking technique which 
considers each sampling instant as simply a label for an independent variable. However, GENO design is different: it does not rely on explicit 
use of variable stacking per se; rather the stance taken is that the dynamic case is actually more fundamental because the static problem can 
always be viewed as a dynamic problem evolving over one time period. 

4 This stopping mechanism is yet to be implemented in the GAUSS version of GENO. 
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1. IntroductionIntroductionIntroductionIntroduction 

The purpose of this document is to describe the usage of a program called GENO, and to present the results of 
some numerical experiments whose aim was to assess the efficacy of the said program. GENO is an acronym for 
General Evolutionary Numerical Optimiser. It is a real-coded genetic algorithm that may be used on both static 
and dynamic optimisation problems, with or without equation and/or set constraints. It applies to single, as well 
as multi-agent problems and may be set to generate real or integer-valued solutions, or a mixture of the two as 
required. These attributes are easily pre-set at the problem set-up stage which in the GAUSS programming 
environment entails defining a few parameters and procedures in the ‘.gep’ source files. The selected examples 
cover a wide range of problem-types; these are classified and indexed in Tables 2A and 2B of Appendix II. 

GENO was conceived as a numerical search method for multi-objective or multi-agent5 dynamic optimisation 
problems defined on a finite discrete domain. Using terminology borrowed from Optimal Control Theory, the 
general p-objective mathematical program (also referred to simply as: MP or M-program), defined on the time-
sequence },..,2,1,0{ T=T  may be stated thus: 

MP1: ( ) T21

T1T
T

),,,(Opt p
JJJ L=+ ux

u

,J   
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i
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 Notation: kx , ku  are sequences (up to time k) of the state and control vectors respectively; 

  0x  is the fixed initial state vector (a known constant);  

  1T+x  is the final state vector which may or may not be fixed. 
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The operator ‘Opt’ here means ‘find the optimum’ of the respective function: in uni-objective optimisation, this 
entails ‘finding the maximum or minimum of a function’; in the multi-objective case this entails ‘finding the 
Nash equilibrium point’ or ‘finding a point on the Pareto-efficient frontier’. The arguments of the generally non-
linear functions )(),(),(),(J i

k
i
k

i
k

p ⋅⋅⋅⋅ GBA  are real-valued sequences that are in essence concatenations in time and 

state space.6 Program MP1 is quite general; it includes, as special cases: 

1. The uni-objective, non-linear, static optimisation problem (set: P = 1; T = 1); 

2. The multi-objective, non-linear, static optimisation problem (set: P ≠  1; T = 1); 

3. The uni-objective, discrete-time, non-linear, dynamic optimisation problem (set: P = 1; T ≠  1); 

4. The multi-objective, discrete-time, non-linear, dynamic optimisation problem (set: P ≠  1; T ≠  1); 

5. The two-point boundary value problem in which some component of the terminal state 1T+x  is fixed; 

6. The “mixed-integer” problem in which some of the variables are restricted to discrete values. 
 
This list is by no means complete: Appendix III lists other M-program categories that may be accommodated. 
                                                           
5 The terms ‘multi-objective’ and ‘multi-agent’—the latter derived from Game Theory—are essentially synonymous. They, and any other 
associated terminology, shall therefore be used interchangeably throughout this Manual. Refer to page 54, footnote 71 for an explanation. 

6 Note that kx  is in essence matrix with dimensions, (N x k+1): it is also a time-indexed sequence, i.e. a concatenation in time of the state 

vector; on the other hand, at any time k, the state vector 
k

x , is in essence a concatenation in state space. 
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2. ProgrammingProgrammingProgrammingProgramming 

2.1 Coding GENO Program Files 

The GAUSS program files for GENO have an ‘.e’ filename extension. They are fairly standard in design and the 
user need not alter these except perhaps to specify different file paths. The ‘.e’ files are located in the folder 
called ‘Examples’. A typical GAUSS program file for GENO is depicted below. 

 
Program 2.1: A Typical GENO Program 

 

 

 new;  

 #linesoff 

  use geno; 

  #include ../source/static_opt/sc_sp1.gep; 

  load input_data[] = ../data/sc_sp1.dat;  
  create sol_fp = ../output/sc_sp1.out with sc, horizon, 8; 

  output file = ../output/sc_sp1.txt reset; 

  outwidth 250; 

  call geno_main;  

  output off;  
  fp = close(sol_fp); 

 end; 

 

 

2.2 Coding GENO Data Files: Static Optimisation Problems 

GENO input data files have a ‘.dat’ filename extension and are located in folders labelled ‘Data’; they provide 
specific numbers required to solve a given problem. The creation of a GENO data file is perhaps best explained 
by example. Consider the problem:7 

Example 2.1: ( ) 141.40792293239.378356891.03578547.5=min 151

2

3 −++ xxxxJ x
x

 

Subject to:   92002205300006262000568580334407850 534152 ≤−++≤ xx.xx.xx..  

 1100021813.00029955.00071317.051249.8090 2

32152 ≤+++≤ xxxxx  

 250019085.00012547.00047026.0300961.920 433153 ≤−++≤ xxxxxx  

 ]102,78[1 ∈x ; ]45,33[2 ∈x ; ]45,27[3 ∈x ; ]45,27[4 ∈x ; ]45,27[5 ∈x  

 

This example has five variables. In order to use GENO, one first assumes that the variables are components of a 
five-dimensional state vector driven by a process that evolves over a single time period, starting from the origin 
x = 0, according to the discrete-time dynamic equation: 

 i
k1kk

i
k1kk

i
k

i
1k ),(),( uBAx ⋅+= −−+ uxux  

In this particular case (and in most cases of static optimisation) the functions A and B are both identity matrices. 
And because of this, the bounds for the state and control variables are the same. The control vector is selected at 
t = 1, but the actual value of interest is the state vector that obtains at t = 2.8 Suppose further that the variable X2 
is restricted to integer multiples of 0.34, then the data set supplied to GENO would in this case be as follows: 

                                                           
7 Source: Hock and Schittkowski (1981, p.102). 

8 However, the optimal solution will occasionally be stated without the time subscript in this Manual. 
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Table 2.1: Input Data for Example 1 
 

VARIABLE NAME X1 X2 X3 X4 X5 

UCB 102 45 45 45 45 

LCB 78 33 27 27 27 

USB 102 45 45 45 45 

LSB 78 33 27 27 27 

Initial State Vector 0 0 0 0 0 

Final State Vector 0 0 0 0 0 

Discrete Values 0 0.34 0 0 0 

X1 1 0 0 0 0 

X2 0 1 0 0 0 

X3 0 0 1 0 0 

X4 0 0 0 1 0 

Inter-connexion 
Matrix  

X5 0 0 0 0 1 

 
 
Legend: 
 
 UCB — Upper Control Bound 

 LCB — Lower Control Bound 

 USB — Upper State Bound 

 LSB — Lower State Bound 
 

2.3 Coding GENO Data Files: Dynamic Optimisation Problems 

If a given problem is in fact actually dynamic in character, the input data file would have the same structure as 
that shown above except for: 

a) possibly some non-zero off-diagonal entries in the Inter-connexion Matrix wherever one variable appears in 
the dynamic equation of another 

b) possibly some non-zero entries in the Final State Vector row for those components of the state vector that 
are required to remain fixed at some value at t = T+1, the optimisation horizon 

c) possibly some non-zero entries in the Initial State Vector row 

The table below is the actual data for a dynamic optimisation problem that is featured in this document.9  

 

                                                           
9 See Example 3.13 below. 
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Table 2.2: Input Data for a Dynamic Optimisation Problem  
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 X8 X9 

UCB  10  10  1  1 1e20  100 5 1 1e20 

LCB -10 -10 -1 -1 0 -100 0 -1 0 

USB  1e20 1e20 2  2 1e20  1e20 8 3  1e20 

LSB -1e20 0 -2 -2 0 -1e20 0 0 -1e20 

Initial State Vector 0 0 1 2 1 100 8 2 100 

Final State Vector 0 0 0 0 0 0 0 0 100 

Discrete Values 0 0 1 1 0 0 0 0 0 

X1 0 1 0 0 0 0 0 0 0 

X2 1 1 0 0 0 0 0 0 0 

X3 0 0 1 1 0 0 0 0 0 

X4 0 0 1 1 0 0 0 0 0 

X5 0 0 0 0 1 0 0 0 0 

X6 0 0 0 0 0 1 0 0 0 

X7 0 0 0 0 0 0 1 0 0 

X8 0 0 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X9 0 0 0 0 0 0 0 0 1 

 
 
Notes: 

1. The state vector has nine dimensions; unlike in the static case, it’s initial value is not necessarily zero 

2. This is a two-point boundary value problem since the variable X9 is required to be 100 at the final time  

3. The is a mixed-integer problem since the variables X3 and X4 are restricted to integer values 

4. The dynamic equation driving X1 does not contain the variable X1 itself; it is partially governed by X2 

5. The dynamic equation driving X2 it is partially governed by X1 and X2 

6. The dynamic equation driving X3 it is partially governed by X3 and X4 

7. The dynamic equation driving X4 it is partially governed by X4 and X3 

8. The rest of the state vector dynamics are independent  

9. The inter-connexion matrix encapsulates the mutual influences of  the dynamic constraints 
 

2.4 Coding the Main Source File 

The main source file in a given problem has a ‘.gep’ filename extension (for GAUSS Example Problem). 
The gep files are in folders labelled ‘dynamic_opt’ and ‘static_opt’ in the case of GENO; and these folders are 
themselves contained within a folder called ‘source’. The gep files are what the user edits and supplies to 
GENO. They are fairly standard in design for any given problem-type. A typical a gep file for GENO based on 
Example 2.1 above is shown below and explanatory notes of the various symbols are appended. 
 
Note that most of the symbols labelled as ‘default’ need not appear explicitly in the .gep file as depicted 
below. To avoid clutter and thus improve readability of the source code, most of these parameters are pre-set 
and “hidden away” in the accompanying static_gep_defaults.src or dynamic_gep_defaults.src file 
that is #include’d near the top of the .gep file. The user only needs to override the default values that 
specifically pertain to the problem at hand.     
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// A constrained uni-objective static optimization problem  
// Source: Hock and Schittkowski (1981, p.102).  
 
#definecs p_maxgens 500 // Problem-specific 
#definecs p_popsize 30 // Problem-specific 
#definecs p_agents 1 // Problem-specific 
#definecs p_order 5 // Problem-specific 
#definecs p_plan 1 // Problem-specific 
 
#include static_gep_defaults.src // Problem-specific 
 
let vars[p_agents, p_order] = 1   1   1   1   1; // Problem-specific 

 
adj_mode = "s"; // Problem-specific 
solution_type = "e"; // Problem-specific 
maximise = false; // Problem-specific 
pos_orth = false; // Problem-specific 
 
view_vars = false; // Optional  
constraints_check = false; // Optional  
vdu_output = false; // Optional  
timer = false; // Optional 
 
p_s_xover = 0.55; // Default 
p_a_xover = 0.55; // Default 
p_b_xover = 0.00; // Default 
p_h_xover = 0.55; // Default 
p_d_xover = 0.55; // Default  
p_shuffle = 0.00; // Default 
 
d_factor = 0.80; // Problem-specific 
quantum_0 = 0.1;  // Problem-specific 
rand_seed = 240657; // Problem-specific 
 
 
proc (1) = m_rate(i,d); retp(0.05); endp; // Default 
 
 
proc (1) = bm_rate(d); retp(0.005); endp; // Default 
 
 
proc (2) = f(i,d,v_array);  // Problem-specific 
local c,fv,u,x,z; 
 u = matinit(order,plan,0); 
 x = matinit(order,horizon,0); 
  {u,x} = assign_sequences(i,d,u,x);10  

 
 //evaluate constraints 
 c = constraints(0,x,horizon); 
 v_array = evaluate_constraints(c, v_array); 
 
 //evaluate objective 
 fv = objective(0,x,horizon);  
 retp (fv,v_array);  
endp; 
 
 
proc (1) = objective(z,x,k);  // Problem-specific 
local fv; 

 fv = 5.3578547*x[3,k]*x[3,k] + 0.8356891*x[1,k]*x[5,k] + 37.293239*x[1,k] - 40792.141; 

 if(maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
 

                                                           
10 The procedure proc assign_sequences(i,d,u,x) is internal to GENO. It assigns to the local matrices x and u respectively whole 
“time” sequences of those components of the state and control vectors that belong to the i-th chromosome of the genetic population, and are 
controlled by the d-th optimising agent (i.e. they are associated with the d-th component of a multi-objective problem). 
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proc (1) = constraints(z,x,k);  // Problem-specific 
local c; c = zeros(6,1); 

 c[1] =  (85.334407 + 0.0056858*x[2,k]*x[5,k] + 0.0006262*x[1,k]*x[4,k] - \  
    0.0022053*x[3,k]*x[5,k] - 92); 

 c[2] = -(85.334407 + 0.0056858*x[2,k]*x[5,k] + 0.0006262*x[1,k]*x[4,k] - \  
    0.0022053*x[3,k]*x[5,k]); 

 c[3] =  (80.512490 + 0.0071317*x[2,k]*x[5,k] + 0.0029955*x[1,k]*x[2,k] + \  
    0.0021813*x[3,k]*x[3,k] - 110); 

 c[4] = -(80.512490 + 0.0071317*x[2,k]*x[5,k] + 0.0029955*x[1,k]*x[2,k] + \  
    0.0021813*x[3,k]*x[3,k] - 90); 

 c[5] =  (9.3009610 + 0.0047026*x[3,k]*x[5,k] + 0.0012547*x[1,k]*x[3,k] + \  
    0.0019085*x[3,k]*x[4,k] - 25); 

 c[6] = -(9.3009610 + 0.0047026*x[3,k]*x[5,k] + 0.0012547*x[1,k]*x[3,k] + \  
    0.0019085*x[3,k]*x[4,k] - 20); 
 retp(c);  
endp;  

 

Points to Note: The gep Source File 
 

1. p_maxgens — A matrix variable: it defines the maximum number of evolutionary generations. This constant is 
obviously problem-dependant since some problems need more evolutionary operations than others to 
produce the same quality of solution  

2. p_mingens — A matrix variable: it defines the maximum number of “mini” evolutionary generations. Experience 
indicates that ‘2’ is an efficient value for this parameter on most problems. To minimise clutter, this is 
located in the static_gep_defaults.src source file (see below). 

3. p_popsize — A matrix variable: it defines the size of the evolutionary population. For the same reason as in Note 1 
above, this parameter is problem-dependant: numerical experiments on a variety of problems seem to 
suggest that the optimal population size lies in the 20 – 30 range for most problems 

4. p_agents — A matrix variable: it defines the number agents, or the number objectives in MP1  

5. p_order — A matrix variable: it defines the size of the state vector, i.e. the number of variables in the problem 

6. p_plan — A matrix variable: it defines the period over which the control vector is defined. It follows that the state 
vector is defined on horizon = p_plan + 1. On static optimisation problems, p_plan = 1.  

7. p_eqms — A constant equal to 1.11  

8. static_gep_defaults.src — A source file: it contains default declarations of global constants and procedures 
that are common to all static optimisation problems. The symbols are placed there 
for the sake of code clarity and may need to be re-defined within the gep file 
depending on the problem at hand.12 

9. vars — A binary matrix variable: it is an ‘incidence matrix’ that shows what variables are directly controlled by 
each agent; equivalently, what variables are in each sub-problem of the multi-agent M-program. 

10. adj_mode — A character variable: it specifies the adjustment mode of the GENO search procedure. The available 
options are:  

"s" — for singly-rational adjustment mode 

"g" — for group-rational adjustment mode  

This parameter should be set to "s" if the type of solution sought is the Nash equilibrium point, and to 
"g" for all other types of solutions. 

Note: The Nash equilibrium solution corresponds to the usual global maximum or minimum on uni-
objective (i.e. single-agent) optimisation problems; hence one sets adj_mode = "s" on these problems. 

                                                           
11 This parameter is a legacy of the original GENO design. It is located in the source file static_gep_defaults.src (or its dynamic 
equivalent: see next footnote) in order to minimise clutter in the gep file. 

12 Another similarly designed source file is dynamic_geno_constants.src 
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11. solution_type — A character variable: it defines the type of solution sought. The available options are:  

  e — for a Nash equilibrium solution 

  p — for a Pareto-efficient solution  

  i — for a Euclidian compromise solution 

  m — for a Nash-Pareto mixed solution   

12. sequential_solve — The parameter sequential_solve (not shown above) is a Boolean-valued variable normally 
associated with adj_mode and solution_type above. It is a legacy of GENO’s original 
design, and it is located in the source file static_gep_defaults.src with a default 
value false. It should be re-set to true when the type of solution sought requires the adjustment 
mode, adj_mode, to be "g" and the solution type, solution_type, to be "m".  

13. maximise — A Boolean variable: it specifies whether the object is to maximise (maximise =  true) or minimise 
(maximise =  false) a function 

14. pos_orth — A Boolean variable: it specifies whether the constraints restrict the solution to the positive orthant 
(pos_orth = true) or the negative orthant (pos_orth = false) 

15. view_vars — A Boolean variable: it determines whether the algorithm’s evolutionary progress is reported in variables 
values (view_vars = true) or objective function values (view_vars = false)  

16. constraints_check — A Boolean variable: it allows for a check on the values of the constraints at the solution 

17. vdu_output — A Boolean variable: it allows one to switch off output to the vdu; the default is vdu_output = true  

18. timer — A Boolean variable: it allows one to switch on the loop timer; the default is timer = false 

19. p_u_xover — A matrix variable: it sets the probability of applying the uniform crossover operator 

20. p_s_xover — A matrix variable: it sets the probability of applying the simple crossover operator 

21. p_a_xover — A matrix variable: it sets the probability of applying the arithmetic crossover operator 

22. p_b_xover — A matrix variable: it sets the probability of applying the boundary crossover operator 

23. p_h_xover — A matrix variable: it sets the probability of applying the heuristic crossover operator 

24. p_d_xover — A matrix variable: it sets the probability of applying the differential crossover operator  

25. p_shuffle — A matrix variable: it sets the probability of shuffling the population of chromosomes 

26. d_factor — A matrix variable: it defines a direction factor for the differential crossover operator (see Appendix I). 

27. quantum_0 — A matrix variable: it sets the initial size of quanta for GENO’s quantisation scheme In selecting this 
parameter, the object should be to ensure that the initial population is sufficiently varied along each 
dimension of the problem. A choice of the smaller between quantum_0 = 0.1 and 10% of the smallest 
variable range is normally efficient. But, if one seeks an integer solution, then one sets: quantum_0 = 1.  

28. rand_seed — A matrix variable: it defines a seed value for the random number generator 

29. m_rate — A procedure: it returns the probability of mutation 

30. bm_rate — A procedure: it returns the probability of boundary mutation 

31. f(i,d,v_array) — A procedure: it specifies the method of solution  

32. objective — A procedure: it specifies the objective function under study 

33. constraints — A procedure: it specifies the functional constraints 
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2.5 Program Output 

The results of a successful GENO execution are available in four ways: (1) as printed output to the VDU; (2) 
as printed output to a text file; (3) as printed output to a GAUSS/GENO data file; (4) as a global variable called 
sol_mtx (for solution matrix). The full set of outputs (i.e. when all options are turned on) is shown below; a 
set of explanatory notes follow the listing. 

 
Output List 2.1: GENO output 

 
 
A. GENO Parameters 
   =============== 
   optimisation period:                     1                 
   adjustment mechanism:                    s 
   solution type:                           e 
   
   population size:                         20                
   random seed:                             240657            
   initial quanta:                          0.100000          
 
   mutation rate:                           0.050000          
   boundary mutation rate:                  0.005000          
 
   probability of simple crossover:         0.550000          
   probability of arithmetic crossover:     0.550000          
   probability of boundary crossover:       0.000000          
   probability of heuristic crossover:      0.550000          
   probability of differential crossover:   0.550000          
   probability of shuffling population:     0.000000          
 
   differential operator factor:            0.800000          
   ------------------------------------------------- 
 
 
B. GENO Evolution 
   ============== 
 
   Generation 
   Number                Objective1           Objective2   
 
     0               2571734.743855            48.019520   
    20                   685.227954             0.000000   
    40                   682.883463             0.000000   
    50                   682.807954             0.000000   
    60                   680.814853             0.000000   
    70                   680.787579             0.000000   
    80                   680.702849             0.000000   
    90                   680.692505             0.000000   
   100                   680.654102             0.000000   
   110                   680.651367             0.000000   
   120                   680.645037             0.000000   
   130                   680.639011             0.000000   
   140                   680.638547             0.000000   
   150                   680.637505             0.000000   
   160                   680.631026             0.000000   
   170                   680.630309             0.000000   
   180                   680.630139             0.000000   
   190                   680.630115             0.000000   
   200                   680.630094             0.000000   
   210                   680.630065             0.000000   
   220                   680.630058             0.000000   
   230                   680.630057             0.000000   
   240                   680.630057             0.000000   
   250                   680.630057             0.000000   
   260                   680.630057             0.000000   
   270                   680.630057             0.000000   
   280                   680.630057             0.000000   
   290                   680.630057             0.000000   
   300                   680.630057             0.000000   
 
   -------------------------------- 
C. Loop Time:  95.708000 seconds 
   -------------------------------- 
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D. GENO Optimal Solution 
   ===================== 
 
   Best Vectors for Agent 1: 
 
   Control1:       2.330499  
   Control2:       1.951372  
   Control3:       4.365727  
   Control4:      -0.624487  
   Control5:       1.594227  
   State1:         0.000000       2.330499  
   State2:         0.000000       1.951372  
   State3:         0.000000       4.365727  
   State4:         0.000000      -0.624487  
   State5:         0.000000       1.594227  
 
   Best Function Value:     680.630057  
 
 
   Best Vectors for Agent 2: 
 
   Control6:       0.000000  
   Control7:       0.000000  
   State6:         0.000000       0.000000  
   State7:         0.000000       0.000000  
 
   Best Function Value:       0.000000  
 
 
E. Equations Vector at Solution 
   ============================ 
 
      -0.477541  
       1.038131  
 
 
F. Inequalities Vector at Solution 
   =============================== 
 
     252.561724  
     144.878178  
 
 
G. Contents of Solution Matrix 
   =========================== 
 
       2.330499        0.000000  
       1.951372        0.000000  
       4.365727        0.000000  
      -0.624487        0.000000  
       1.594227        0.000000  
       0.000000        2.330499  
       0.000000        1.951372  
       0.000000        4.365727  
       0.000000       -0.624487  
       0.000000        1.594227  
     680.630057      680.630057  
       0.000000        0.000000  
       0.000000        0.000000  
       0.000000        0.000000  
       0.000000        0.000000  
       0.000000        0.000000 
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Points to Note: GENO Output 
 

1. Viewing the Output — The VDU output is controlled by the parameter vdu_output whose default value is 
true; this output may be turned off by including the assignment vdu_output = 
false in the relevant gep file 

2. Timing Program Run — The evolution loop timer is controlled by the parameter timer whose default value is 
false; the timer may be turned on by including the assignment timer = true in the 
relevant gep file 

3. Checking Feasibility — GENO allows the user to check the feasibility of the computed solution via the parameter 
called constraint_check whose default value is false; the values of the various 
constraints at the solution may be viewed by including the assignment statement 
constraint_check = true in the relevant gep file 

4. Program Output File — GENO’s output is directed to a text file with same name as the program but with a ‘.txt’ 
filename extension. This file is located in the folder called ‘output’ that is under the geno 
directory. The text file output cannot be turned off.    

5. GAUSS / GENO Data File — Note that the main program  (see Program 2.1, p.2) includes the following lines of code: 

create sol_fp = ../output/prog_name.out with sc, horizon, 8; 

fp = close(sol_fp); 
 
These instructions create and open a GAUSS data file called prog_name.out to which 
GENO’s output written, and close the said data file at the end of the run. The file pointer 
is sol_fp and this file itself is located in the folder called ‘output’ under the geno 
directory. The GAUSS data file output cannot be turned off. 

6. The Solution Matrix — GENO’s output is also temporarily stored in a global variable called sol_mtx until the 
next execution of any GENO program. The contents of sol_mtx may be viewed by 
including the assignment sol_mtx_check = true in the relevant gep file; or by 
simply typing ‘sol_mtx’ at the GAUSS prompt after the end of the program run.      

7. Output Matrix Format — The global variable sol_mtx is a compact matrix whose first dimension (# rows) 
depends on the number of agents and the variables they each control; the second 
dimension (# columns) is always the optimisation horizon, which is given by the 
parameter horizon = p_plan + 1. The variable sol_mtx contains the figures 
listed under Section B of the output list in the same order; the data layout in the 
GAUSS/GENO Data File is the same. Table 2.3 below shows the layout of the data; it 
includes an extra header row and two header columns for explanatory purposes only.  

Table 2.3: Format of sol_mtx and the GAUSS / GENO Data File  
 

Control Application Time: t = 1 t = 2 

Control1:   2.330499    0.000000 
Control2:   1.951372    0.000000 
Control3:   4.365727    0.000000 
Control4:  -0.624487    0.000000 
Control5:   1.594227    0.000000 
State1:   0.000000   2.330499  
State2:   0.000000   1.951372  
State3:   0.000000   4.365727  
State4:   0.000000  -0.624487  
State5:   0.000000   1.594227  

Agent 1: 

Best Function Value: 680.630057  680.630057 

Control6:   0.000000    0.000000 
Control7:   0.000000    0.000000 
State6:   0.000000   0.000000  
State7:   0.000000   0.000000  

Agent 2: 

Best Function Value:   0.000000    0.000000 
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3. Worked ExamplesWorked ExamplesWorked ExamplesWorked Examples    

3.1 Preamble 

The purpose of this section is to present a sample of fully worked examples that further illustrate the preparation 
of gep and dat files, and that sufficiently expose the capabilities of GENO. As regards the latter, the emphasis is 
on the quality of the final solution found. But although assessing GENO’s efficiency was not explicitly part of the 
exercise, the algorithm’s performance in this respect is mentioned where necessary. Section 3.4 presents outlines 
of some problem pre-processing that may be necessary. This is followed by descriptions of the examples 
themselves using a set pattern: first an “Executive Summary” is presented comprising (a) a formal mathematical 
statement of the problem (b) a listing of GENO’s output and (c) some pertinent remarks. This is followed by a 
listing of the actual gep file and a table of the dat file for each particular example. Each presentation ends with a 
list of pertinent points explaining some aspects of the gep and dat files. 

3.2 Scope  

The examples presented are as follows: 

� Examples 3.1 and 3.2 are uni-objective, unconstrained, non-linear, static optimisation problems. They demonstrate 
the easy of programming GENO, and its effectiveness for this class of problem. 

� Examples 3.3 through 3.7 are uni-objective, constrained, non-linear, static optimisation problems. The first 
example is principally meant to illustrate how equality constraints can be dealt with; the second example shows 
how to program GENO for an mixed-integer solution;13 the third example illustrates how the parameter q_mod 
may be used to improve the algorithm’s performance by accounting for differences in variable ranges; and the 
fourth and fifth examples describe an alternative method of treating inequality constraints that is efficient if the 
constraints are actually active at the solution.  

� Examples 3.8 and 3.9 are uni-objective, constrained, non-linear, dynamic optimisation problems. The former is a 
two-point boundary value problem; the latter further illustrates GENO’s ability on mixed-integer optimisation 
problems.  

� Example 3.10 is a popular unconstrained, multi-objective, non-linear, static optimisation problem that has been 
included so as to afford a comparison of GENO’s Nash equilibrium solution to a benchmark, as well as to other 
solutions computed by different techniques.  

� Examples 3.11 through 3.14 serve to further illustrate GENO’s ability on multi-objective optimisation problems. The 
first two examples are artificial bi-objective static optimisation problems solved for the Euclidean compromise 
solution (or ECS); the third example is a practical application of GENO’s ECS method to the Markowitz’s 
portfolio selection problem; and the last example is a comprehensive multi-objective dynamic optimisation 
problem solved for the Nash equilibrium solution. 

� Examples 3.15 through 3.20 serve to illustrate how GENO may be used to solve nonlinear mixed-integer and 
generalized disjunctive programming problems.  

3.3 Default Parameter Values 

GENO’s parameters were first pre-set to the values shown below. These values proved to be efficient in most 
cases. Varying the Direction Factor usually results in a significant change in performance.  

 Population Size: 10 - 30 

 Probability of Mutation: 0.05 

 Probability of Simple Crossover: 0.55 

 Probability of Arithmetic Crossover: 0.55 

 Probability of Boundary Crossover: 0.00 

 Probability of Heuristic Crossover: 0.55 

 Probability of Differential Crossover: 0.55 

 Probability of Shuffle: 0.00 – 0.55 

 Direction Factor [for Differential Crossover]: 0.15 - 0.80  

                                                           
13 This example is a “mixed integer” problem in that the variables X1 and X2 are required to be integer multiples of 0.0625 
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3.4 Problem Preparation  
 
GENO requires the problem to be presented in one of several formats as described below. 

3.4.1 The Basic Approach 

Consider the following mathematical program that is defined on the set K1:
  

MP: )(min x
x

f  

 Subject to: 0)( ≥xc  

 0)( =xs  

 n

1 R⊆∈ Kx  

In the absence of the equality constraint s(x) = 0, MP would be coded directly by simply writing out the 
procedures constraints and objective that implement the functions c and f respectively. But, if 
the constraint s is present then, in addition to constraints and objective, one to code s into 
appropriate GAUSS procedures. If s is dynamic, it should be manipulated so as to identify the coefficient 
expressions A and B of MP1 and these may then be coded in a straight forward manner. On the other 
hand, if the constraint s is static but not of the form stipulated by G of MP1, then one should eliminate it, 
and the easiest way to do this is to introduce an equivalent pair of inequalities as follows: 

MPa: )(min x
x

f  

 Subject to:   0)( ≥xc  

   0)( ≥xs  

 0)( ≥xs-  

   n

1 R⊆∈ Kx  

M-program MPa is now of the required form14 and it may be coded for solution as a uni-objective 
optimisation problem, or as a bi-objective problem that separates the constraints satisfaction part of the 
solution procedure at the expense of speed. Of the examples listed in the index of GENO programs 
provided in Appendix II, the names of those coded using the first approach are post-fixed with the letter 
‘a’; those using the bi-objective method are post-fixed with the letters ‘aa’. 

3.4.2 The NCP Approach 

The method outlined above is easy to implement, but much depends on the structure of the feasible 
region circumscribed by the constraints. For problems whose solutions lie on several boundaries of the 
feasible region, tuning the GENO for a good solution may be difficult. However, numerical experience 
appears to suggest that the quality of the solution can generally be improved upon (albeit at the expense 
of speed) by converting an actively-constrained mathematical program into a bi-objective optimisation 
problem as explained below.  

Definitions 

Given an n-dimensional set n
R⊆K  and a mapping n: R→KF , the Variational Inequality Problem, 

denoted by VI(K, F), is defined as follows: 

� Find the n-vector x* in K such that:15 K∈∀≥− yxyxF ,0*)(*),(   

In the special case when K is restricted to the non-negative orthant, i.e. when n
R +⊆K , then VI(K, F) is 

equivalent to the Nonlinear Complementarity Problem denoted by NCP(F): 

� Find the n-vector x* in K such that:  0**),(,0*,0*)( =≥≥ xxFxxF   

                                                           
14 Needless to say, the original problem can be one of maximisation, and the inequalities may also be of the ‘less than’ type. 

15 The notation 〈a, b〉 denotes the inner product aTb of the vectors ‘a’ and ‘b’.   
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Associated with NCP(F) are three index sets of interest: 

1. }0x:{ i >≡α i  

2. }0)(F:{ i >≡β xi   

3. )}(F0x:{ ii x==≡γ i   

The solution is said to be non-degenerate if the index set is empty, i.e. ∅=γ . 

There is a certain type of bivariate function normally associated with NCP(F) which is usually referred 
to by the term ‘NCP-function’. An NCP- function is a real-valued mapping defined as follows: 

� RR →φ 2:  and φ is such that: 0ab,0b,0a0)b,a( =≥≥⇔=φ . 

NCP-functions are the subject of much current research but our interest here is more utilitarian than 
theoretical. To that end, the following properties are pertinent. 

Given any NCP-function φ, define the n-vector Φ as follows: 

� RR →Φ n:  such that: )}(F,x({vec)( ii xx φ=Φ .16 

Clearly n
R∈*x  is a solution to NCP(F) if and only if it solves the system of equations 0x =Φ )( . 

Alternatively, one may consider a suitably defined function Ψ which provides a measure of the degree 
of coincidence between the solution set of NCP(F) and that of the M-program )(min x

x
Ψ . 

For obvious reasons, the function Ψ is normally called a merit function; and for any given NCP-
function, there is a natural merit function given by 

� RR →Ψ n:   and )()()( T xxx ΦΦ=Ψ . 

GENO’s NCP method employs a natural merit function (denoted by h) based on an NCP-function 
attributed to Fischer and Burmeister (see Sun and Qi: 2000). 

Auxiliary M-program Formulation 

There are several numerical techniques for solving VI(K, F) or its variant NCP(F), each with its own 
merits and drawbacks. An up-to-date (but brief) discussion of algorithms that could be applied may be 
found in Aghassi, et al. (2005). Of the available methods, the ones that are of interest here are those that 
re-formulate the original problem — expressed as VI(K, F) or NCP(F) — into an appropriately defined 
mathematical program. The main motivation for adopting these techniques is the demonstrable 
efficiency of GENO on multi-objective optimisation problems (see Examples 3.10 – 3.14); and the 
challenge is to formulate an auxiliary optimisation problem that is somehow associated with the 
constraints of the original problem and, in some manner, aids the search for the optimal solution, x*. 
Such an auxiliary M-program may be derived as follows.  

� Assume the problem at hand is of the form MP1a, i.e. constrained by (say m) inequalities only. Introduce a 
positive m-vector of slack variables ω to turn c(x) ≥ 0 into c(x) - ω = 0.  

� But we know that at any feasible point (x, ω) in the (x, ω)-space, the constraint c(x) - ω = 0 is, by 
definition, satisfied; and so is [c(x) - ω]T[c(x) - ω] = 0, and therefore one can chose to adopt the latter 
restriction without affecting the original problem. 

� Thus instead of directly solving MP1a, one can alternatively consider the extended M-program: 

MPω: )(min x
x,

f
ω

 

 Subject to: 0])([])([ T =ω−ω− xx cc ; 

  n

1 R⊆∈ Kx ;  

  m

2 +⊆∈ω RK . 

                                                           
16 The notation vec{zi} denotes a vector whose i-th element is zi. 
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� The solution process of any M-program may be considered as implicitly comprising two stages: (a) a 
delineation of the feasible set; (b) a search for those particular points in the feasible set that optimise the 
objective function. In practice these stages are codified as necessary and sufficient conditions that must be 
satisfied by any candidate solution. 

� The constraints on ω in the M-program MPω point towards employing an NCP to solve the constraint 
satisfaction part of the solution process. To see this, let the caret ‘^’ denote a variable that is “temporarily 
fixed” and define the following m-vector: 

  })ˆ({vec)( 2

ii ω−=ω cF ;  },,2,1{ mi L= . 

And since [c(x) - ω]T[c(x) - ω] = 0 at the solution (x*, ω*), it follows that (ω*)T F(ω*) = 0. Therefore, 
relative to the quasi-constant ĉ (which can be assumed to evolve towards its optimal value ĉ = c(x*) via a 
separate search process), the search for ω* in MPω may be stated thus: 

NCPω: Find ω* such that:  ω* ≥ 0; F(ω*) ≥ 0; (ω*)T F(ω*) = 0. 

� As mentioned above, one way of solving NCPω is to turn it into a minimisation problem in ω based to some 
merit function h(ω). By this device, solving MPω is decomposed into two inter-linked processes: (a) a search 
for x* using the original criterion (and constraint) and (b) a search for ω* using the merit function. For the 
latter, the method Faccenei and Soares (1997) is well suited and easy to implement. The Facchenei-Soares the 
merit function h(ω) is defined as 

 ( )∑
=

ωωφ=ω
n

1i

2

ii )(F,)(h   

where the function φ is the Fischer-Burmeister NCP-function is defined by 

 )ba(ba)b ,a( 22 +−+=φ . 

Note: The Fischer-Burmeister NCP-function is non-positive on the positive orthant 2
R + , only attaining its 

maximum value of 0, when either a = 0 or b = 0, or when ab = 0, i.e. at the solution of the generic NCP 

NCP: Find ‘a’ and ‘b’ such that: vec{a} ≥ 0; vec{b} ≥ 0; vec{a}Tvec{b} = 0. 

� In view of the properties of the Fischer-Burmeister NCP-function noted above, it follows immediately that the 
Facchenei-Soares merit function h(ω) has a minimum value of 0, and that any algorithm that optimises this 
towards its minimum value also solves NCPω and thus contributes towards the solution of the extended M-
program MPω.   

Implementation 

The process decomposition explained above means that the extended M-program MPω may be re-
formulated as a bi-objective optimisation problem which may be solved for the Nash equilibrium 

solution (x*, ω*), thus: 

MPb: )(min x
x

f  )(min ω
ω

h  

  Subject to: 0)( ≥xc  Subject to: 0]ˆ[]ˆ[ T =ω−ω− cc  

 n

1 R⊆∈ Kx  m

2 +⊆∈ω RK  

Note 1: The inequality constraint in the first program is retained to ensure feasibility of the final solution; 
the equality constraint in the second program is there to ensure that ω actually approaches the optimal 
solution ω* = c(x*) and avoids the degenerate case ω = 0. 

Note 2: The introduction of an extra M-program in ω certainly slows down GENO, but this is mitigated by 
the fact that the auxiliary program only one constraint. Furthermore, we know that this constraint is active 
at the solution, and we can therefore take advantage of that fact in our design of algorithms. Numerical 
experience indicates that the bi-objective scheme is beneficial in the majority of cases; the auxiliary 
program has the effect of “nudging” the genetic population towards the optimal solution via ĉ = c(x). 

Among the examples programs listed in Appendix II, the names of those coded using this approach are 
post-fixed with the letter ‘b’. 
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3.4.3 The Elimination Approach I: Equality Constraints 

By far, the most efficient way of treating the m-vector of equality constraints s(x) = 0 is to “solve it” for 
particular components of x, and then substitute these out of the M-program altogether. Assume this is 
possible for the whole constraint vector s; “solving for” m different components of the state vector leads 
to m equations, say )(xp q= . Using the notation x-m to signify the vector x but with m components 

removed, the modified M-program may be stated thus: 

MPc: Given m

3 R⊆∈Kp  and )(xp q=  

  ),(min m- px
x

f  

 Subject to:  0),( m ≥− pxc ; mn

3m

−
− ⊆∈ RKx  

The success of this approach much depends on the ingenuity of the user in carrying out the problem pre-
processing mentioned above. Of examples programs listed in Appendix II, the names of those coded 
using this approach are post-fixed with the letter ‘c’. 

3.4.4 The Elimination Approach II: Inequality Constraints 

In principle, the equation elimination technique described in § 3.4.3 may equally be applied to equality 
constraints that follow the introduction of ω—an m-vector of the slack variables. But unless the range of 
ω is limited, and its evolution controlled by some optimality condition, numerical experience shows that 
tuning the algorithm may be difficult. To circumvent this, GENO employs an auxiliary M-program using 
the following argument. 

� Once ω is introduced, then f effectively becomes an implicit function of a positive variable. And assuming a 
minimisation problem (but without loss of generality), it easy to show that the following conditions hold at 
the optimal solution: 

 0≥ω ; 0f ≥ω∂∂ ; 0)()( T =ω∂∂ω f . 

� The corresponding conditions in the case of a maximisation problem are: 

 0≥ω ; 0f ≤ω∂∂ ; 0)()( T =ω∂∂ω f . 

� The above conditions constitute an NCP which suggests that the bi-objective approach outlined in § 3.4.2 may 
be used. However, in order to account for both maximisation and minimisation (as well as control the genetic 
search process), one adopts the following equivalent NCP instead: 

 0i ≥ω ; 0)( 2

i ≥ω∂∂f ; 0)( 2

ii =ω∂∂ω f ; },,2,1{ mi L= . 

� Thus, an alternative formulation of the problem is the following pair of M-programs: 

MPd: ),(min - ωωx
x

f  )(min ω
ω

h  

 Subject to: 0),( ≥ωω−xc  Subject to: m

2 +⊆∈ω RK  

  ω−
ω− ⊆∈ n

3 RKx   

in which the merit function h(ω) is defined as 

 ( )∑
=

ω∂∂ωφ=ω
n

1i

22

ii )f(,)(h   

and the function φ is the Fischer-Burmeister NCP-function )ba(ba)b ,a( 22 +−+=φ . 

� This approach is can be rather cumbersome to implement because the gradient vector ω∂∂f  may not be 

that easy to derive due to inter-dependencies of the resulting equality constraints. Furthermore, this method 
seems to be most effective when the inequalities selected for elimination are actually active at the final 
solution. Unfortunately, one cannot determine a priori which constraints are active. 

Among the examples listed in the index of GENO programs provided in Appendix II, the names of those 
coded using this approach are post-fixed with the letter ‘d’. 
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3.5 Some Practical Examples  
 
Example 3.1: Static Unconstrained Optimisation: The Colville #4 Function17  
 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )1x1x8.191x1x1.10x1xx90x1xx100=)(fmin 42

2

4

2

2

22

3

22

34

2

1

22

12 −−+−+−+−+−+−+−x
x

 

 Subject to: ii ∀−∈ ],10,10[x  

 
I. GENO Output 
 
 Generation Function Value 

 0 9794.900000 
 10 0.000000 
 20 0.000000 
 40 0.000000 
 60 0.000000 
 80 0.000000 
 90 0.000000 
 100 0.000000 
____________________________________________________________________ 

Optimal State Vector: 18 x  = (1.000000, 1.000000, 1.000000, 1.000000)T  

Objective Function Value: f (x) =  0.000000 
 
 
II. General Remarks 

The original source for this example is Colville (1968): it is a variation on a well known test problem called 
Rosenbrock’s Banana Function.19 The Colville #4 function has a banana-shaped valley in 4 dimensions as well 
as a dense Hessian matrix as opposed to the sparse Hessian of the 4-dimensional Rosenbrock function.20 It is one 
of the functions which Michalewicz uses to demonstrate the effect of his implementation of the Heuristic 
crossover operator. The global minimum is 0.000, and it is located at (1, 1, 1, 1). 

Although Michalewicz’s GENECOP algorithm produces a very good approximate solution, namely: 

 x  = (1.000581, 1.001166, 0.999441, 0.998879)T 

with the corresponding function value 0.0000012, it requires at least 10,000 generations to reach this level of 
accuracy. By contrast, GENO converges to the true global solution, and in far fewer generations. 

 

Source Generations Best Variable Value Best Function Value CPU Time 

GENECOP Over  10000 See above 0.0000012 - 

GENO 10 See above 0.000000 - 

 

                                                           
17 Source: Michalewicz (1994, p.157). 

18 The variables xk , kx  and kx  should not be confused: x1 denotes the kth component of the state vector; kx  denotes the entire state vector 

evaluated at time t = k; and finally, kx  is a matrix whose columns are the states vector at times  t = 0, 1, 2, . . ., k. On static problems, the 

variable of interest is normally the final state vector  Tx .   

19 Rosenbrock, H. H. (1960). An Automatic Method for Finding the Greatest and Least Value of a Function. Computer Journal, 3, pp175-
184.   

20 Van Iwaarden, R. J. (1996). An Improved Unconstrained Global Optimization Algorithm. Unpublished PhD Thesis, University of 
Colorado, Denver, U.S.A.  
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III. The gep File: Example 3.1 
 

// An unconstrained uni-objective static optimization problem 
// Source: Michalewicz (1994, p.157)  
   
#definecs p_maxgens  200 
#definecs p_popsize  40 
#definecs p_agents  1 
#definecs p_order   4 
#definecs p_plan   1 
  
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1 1 1 1; 
 
adj_mode   = "s";  
solution_type = "e";  
maximise   = false;  
 
p_s_xover = 0.00;   
p_a_xover = 0.55;   
p_b_xover = 0.00;   
p_h_xover = 0.55;   
p_d_xover = 0.55;   
p_shuffle = 0.00; 
 
d_factor  = 0.80;   
quantum_0 = 1.0; 
rand_seed = 240658;  
 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0); endp; 

  
 
proc (2) = f(i,d,v_array); 
local c,fv,u,x; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);21 
 
 //evaluate objective 
 fv = objective(x,horizon); 
 retp (fv,v_array);  
endp; 
 
 
proc (1) = objective(x,k); 
local fv; 
 fv = 100*(x[2,k] - x[1,k]^2)^2 + (1 - x[1,k])^2 + 90*(x[4,k] - x[3,k]^2)^2 \ 

 + (1 - x[3,k])^2 + 10.1*((x[2,k] - 1)^2 + (x[4,k] - 1)^2) \ 
 + 19.8*(x[2,k] - 1)*(x[4,k] - 1); 

 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
 

 

                                                           
21 Infra page 5, footnote 10. 
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VI. The dat File: Example 3.1  

Table 3.1: Input Data for the Colville #4 Function 
 

VARIABLE NAME X1 X2 X3 X4 

UCB  10  10  10  10 

LCB -10 -10 -10 -10 

USB  10  10  10  10 

LSB -10 -10 -10 -10 

Initial State Vector 0 0 0 0 

Final State Vector 0 0 0 0 

Discrete Values 0 0 0 0 

X1 1 0 0 0 

X2 0 1 0 0 

X3 0 0 1 0 

Inter-connexion 
Matrix  

X4 0 0 0 1 

 

V. Points to Note: Example 3.1 
 

1. p_popsize — This problem required a larger size of population than the default value of 30  

2. adj_mode — This parameter should always be set to "s" for unconstrained optimisation problems 

3. solution_type — This parameter should always be set to "e"  for unconstrained optimisation problems 

4. boundary_mutation — As with the parameter p_popsize, the most effective boundary mutation rate was the non-
default value ‘0’  

5. f(i,d,v_array) — For unconstrained optimisation problems the form of this procedure is standard as repeated 
below: it needn’t be changed. 

 
 proc (2) = f(i,d,v_array); 

 local c,fv,u,x; 
  u = matinit(order, plan, 0); 
  x = matinit(order, horizon, 0); 
   {u,x} = assign_sequences(i,d,u,x);22  
 
  //evaluate objective 
  fv = objective(x,horizon); 
  retp (fv,v_array);  
 endp; 
 

6. tuning — Recourse to a ‘larger-than-normal’ population size and the switching off the boundary mutation operator were 
required to effectively tune the algorithm in this case.   

                                                           
22 Infra page 5, footnote 10. 
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Example 3.2 Static Unconstrained Optimisation: The 2-Dimensional Rastrigin Function23 
 

 )x18cos()x18cos(xx=)(fmin 21

2

2

2

1 −−+x
x

 

 Subject to: ]1,1[21 x,x −∈  

 
I. GENO Output 
 
 Generation Function Value 

 0 -1.544693 
 10 -2.000000 
 20 -2.000000 
 30 -2.000000 
 40 -2.000000 
 50 -2.000000 
____________________________________________________________________ 

Optimal State Vector: 24 x  = (0.00000, 0.00000)T  

Objective Function Value: f (x) =  -2.00000 
 
 
II. General Remarks 25 

This is a very popular test function in the Russian literature on global optimisation.26 The global minimum is -2, 
and its location is (0, 0). There are about 50 local minima arranged in a lattice configuration. 

The table below compares results obtained using various methods, and as can be seen, GENO converges to the 
global solution relatively quickly. It is reasonable to suggest that it would out-perform other algorithms of the 
same type in well-designed efficiency tests. 
 
 

Source Generations Best Variable Value Best Function Value CPU Time 

Koon and Sebald 2010 (0.00034, -0.00055) -2.000 689 

Torn and Žilinskas 295* (0.08378,  -0.00761) -1.988 - 

Cetin, et al.  77∗ (0.00000,  0.00000) -2.000 - 

GENO 10 (0.00000,  0.00000) -2.000 - 

 

 

                                                           
23 Source: Torn and Žilinskas (1989). 

24 The variables xk , kx  and kx  should not be confused: x1 denotes the kth component of the state vector; kx  denotes the entire state vector 

evaluated at time t = k; and finally, kx  is a matrix whose columns are the states vector at times  t = 0, 1, 2, . . ., k. On static problems, the 

variable of interest is normally the final state vector  Tx .    

25 The algorithm of Cetin, et al is a deterministic method; that of Koon and Sebald is an evolutionary technique; whilst that of Torn-Žilinskas 
is a hybrid method. 

26 Torn and Žilinskas (1989, p.190). 

∗ Number of function evaluations. 
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III. The gep File: Example 3.2 
 

// An unconstrained uni-objective static optimization problem  
// Source: Torn and Žilinskas (1989)  
   
#definecs p_maxgens  50 
#definecs p_popsize  30 
#definecs p_agents  1 
#definecs p_order   2 
#definecs p_plan   1 
  
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1 1; 
 
adj_mode   = "s";  
solution_type = "e";  
maximise   = false;  
 
p_s_xover = 0.00;   
p_a_xover = 0.55;   
p_b_xover = 0.00;   
p_h_xover = 0.55;   
p_d_xover = 0.55;   
p_shuffle = 0.00; 
 
d_factor  = 0.80;   
quantum_0 = 0.1; 
rand_seed = 2406525;  
 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 

  
proc (2) = f(i,d,v_array); 
local c,fv,u,x; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);27 
 
 //evaluate objective 
 fv = objective(x,horizon); 
 retp (fv,v_array);  
endp; 
 
 
proc (1) = objective(x,k); 
local fv; 
 fv = x[1,k]^2 + x[2,k]^2 - cos(18*x[1,k]) - cos(18*x[2,k]); 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
 

 

                                                           
27 Infra page 5, footnote 10. 
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VI. The dat File: Example 3.2  

Table 3.2: Input Data for the 2-Dimensional Rastrigin Function 
 

VARIABLE NAME X1 X2 

UCB  1  1 

LCB -1 -1 

USB  1  1 

LSB -1 -1 

Initial State Vector 0 0 

Final State Vector 0 0 

Discrete Values 0 0 

X1 1 0 Inter-connexion 
Matrix  

X2 0 1 

 

 

V. Points to Note: Example 3.2 
 

1. adj_mode — This parameter should always be set to "s" for unconstrained optimisation problems 

2. solution_type — This parameter should always be set to "e" for unconstrained optimisation problems 

3. f(i,d,v_array) — For unconstrained optimisation problems the form of this procedure is standard as repeated 
below: it needn’t be changed. 

 
 proc (2) = f(i,d,v_array); 
 local c,fv,u,x; 
  u = matinit(order, plan, 0); 
  x = matinit(order, horizon, 0); 
   {u,x} = assign_sequences(i,d,u,x);28 
 
  //evaluate objective 
  fv = objective(x,horizon); 
  retp (fv,v_array);  
 endp; 
 

4. tuning — Apart from a judicious choice of the parameter quantum_0, no special tuning was required for this problem. 

                                                           
28 Infra page 5, footnote 10. 
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Example 3.3: Static Constrained Optimisation: The Economic Dispatch Problem29 
 
 ( ) 3

22

3

11 x3000002.0x2x000001.0x3=min +++x
x

J  

 Subject to:  055.0xx 34 ≥+−  

  055.0xx 43 ≥+−  

  0x8.894)25.0xsin(1000)25.0xsin(1000 143 =−+−−+−−  

  0x8.894)25.0xxsin(1000)25.0xsin(1000 2433 =−+−−+−  

  08.1294)25.0xxsin(1000)25.0xsin(1000 344 =+−−+−  

  2,1],1200,0[x i =∈ i  

  4,3],55.0,55.0[x i =−∈ i  

 
I. GENO Output 
 
 Generation Function Value 
 
  0 4246.144086 
 50 4221.986797 
 100 4221.956534 
 150 4221.956534 
 200 4221.956534 
 220 4221.956534 
 240 4221.956534 
 260 4221.956529 
 270 4221.956525 
 280 4221.956525 
 290 4221.956525 
 300 4221.956525 
_____________________________________________________________________________ 

Optimal State Vector: 30 x  = (589.265856, 1124.772836, 0.184406, -0.365594) T  

Objective Function Value: J (x) =  4221.956525 
 
 
II. General Remarks 

This problem appears in Joines and Houck (1994), as well as Michalewicz and Fogel (2000), and according to 
the latter, the best known solution remains that reported by Hock and Schittkowski (1981), namely 5126.4981. 
And as regards the experiments of Joines and Houck, Michalewicz and Fogel write: 

“The best result reported was evaluated at 5126.6653. Interestingly, no solution was fully feasible due to the 
equality constraints, but the sum of the violated constraints was quite small (10-4).” (Paraphrased from p.252) 

As can be seen from the results above, GENO finds a significantly better solution in comparison. In fact not only 
is the solution better, it is totally feasible as well. Interestingly, the latest research by others31 has not unearthed a 
better solution than that found by GENO. This applies to at least two other GAUSS examples.32 

                                                           
29 Source: Hock and Schittkowski (1981, p.95). 

30 The variables xk , kx  and kx  should not be confused: x1 denotes the kth component of the state vector; kx  denotes the entire state vector 

evaluated at time t = k; and finally, kx  is a matrix whose columns are the states vector at times  t = 0, 1, 2, . . ., k. On static problems, the 

variable of interest is normally the final state vector  Tx .    

31 See Hedar and Fukushima (2005). 

32 See Examples sc_sp8a.e or sc_sp8b.e; also sc_sp9b.e which appears in this document as Example 3.2 below. 
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III. The gep File: Example 3.3 
 

// A constrained uni-objective static optimization problem 
// Source: Hock and Schittkowski (1981, p.95).  
 
#definecs p_maxgens  300 
#definecs p_popsize  20 
#definecs p_agents   1 
#definecs p_order    1 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1; 
 
adj_mode   = "s";  
solution_type = "e";  
maximise   = false;  
pos_orth   = true;  
 
p_s_xover  = 0.00;   
p_a_xover  = 0.55;   
p_b_xover  = 0.00;   
p_h_xover  = 0.55;   
p_d_xover  = 0.55;   
p_shuffle  = 0.00; 
 
d_factor   = 0.250;   
quantum_0  = 0.01; 
rand_seed    = 2406525; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
 
proc (2) = f(i,d,v_array); 
local c,fv,u,v,w,x,z; 
 v = zeros(2,1); 
 u = matinit(order,plan,0); 
 x = matinit(order,horizon,0); 
  {u,x} = assign_sequences(i,d,u,x);33 
 
 //evaluate constraints 
 z = equations(x,0,horizon); 
 c = constraints(z,x,horizon); 
 v_array  = evaluate_constraints(c,v_array); 
 v_array[2] = v_array[2] + distance_to_set(-1,1,z[4]);34 
 
 //evaluate objective 
 fv = objective(z,x,horizon);  
 retp (fv,v_array);  
endp; 

 
 

proc (1) = objective(z,x,k); 
local fv; 
 fv = 3*z[1] + 0.000001*(z[1]^3) + 2*z[2] + (0.000002/(3*(z[2]^3))); 
 if (maximise); fv = fv; else; fv = - fv; endif; 
 retp(fv); 
endp; 
 
 
proc (1) = constraints(z,x,k); 
local c; c = zeros(2,1); 
 c[1] = x[1,k] - z[3] + 0.55; 
 c[2] = z[3] - x[1,k] + 0.55; 
 retp (c); 
endp; 

                                                           
33 Infra page 5, footnote 10. 

34 The procedure proc distance_to_set(a,b,c) is internal to GENO. It returns the shortest distance from c to the interval [a, b]. 
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proc (1) = equations(x,y,k); 
local z; z = zeros(4,1); 
 z[4] = -1.2948 - sin(x[1,k] - 0.25); 
 z[3] = x[1,k] - 0.25 - asin(z[4]); 
 z[2] = 1000*sin( z[3] - 0.25) + 1000*sin(z[3] - x[1,k] - 0.25) + 894.8; 
 z[1] = 1000*sin(-z[3] - 0.25) + 1000*sin(-x[1,k] - 0.25) + 894.8; 
 retp (z); 
endp; 

 

VI. The dat File: Example 3.3  

Table 3.3: Input Data for the Economic Dispatch Problem 
 

VARIABLE NAME X1 

UCB 1e20 

LCB -1e20 

USB  -0.299 

LSB -0.55 

Initial State Vector 0 

Final State Vector 0 

Discrete Values 0 

Inter-connexion 
Matrix  

X1 1 

 

V. Points to Note: Example 3.3 
 

1. Method — The gep and dat files presented above implement version MPc of the original mathematical program. The 
equations constraints were eliminated as follows. First we note that, if either x3 or x4 were given, would have 
three equations in three unknowns which we can then “solve” sequentially in terms of the given variable. To 
that end, assume x4 is known, and make the following definitions: 

  )25.0sin( 344 −−≡ xxz ; 33 xz ≡ ; 22 xz ≡ ; 11 xz ≡  

 Then, using the last of the equation constraints, we can write, 

  2948.1)25.0sin( 44 −−−= xz  

 And using the definitions of z3 and z4, we can write: 

  )zarcsin(25.0xz 443 −−=  

 And from the first two equation constraints, we have that: 

  8.894)25.0sin(1000)25.0sin(1000 4332 +−−+−= xzzz  

  8.894)25.0sin(1000)25.0sin(1000 431 +−−+−−= xzz  

 The above set of equation is what is implemented by proc equations. Note that the mutual dependency of 
the z-equations dictates that they are evaluated in the order presented above.  

2. Solution Control — By the substitutions described above, the size of the state vector is reduced to one, namely 
the variable x4 (which is implemented as x[1, k] in the program). This variable is controlled 
by the assumed dynamic process itself. But the compound variable z4 is another variable 
whose evolution needs to be controlled. This is achieved by noting that the range of z4 (being 
the trigonometric sine function) is [-1, 1]; hence the statement in proc f(i,d,v_array) 
which evaluates the distance of z[4] from [-1, 1], viz.: 

 v_array[2] = v_array[2] + distance_to_set(-1,1,z[4]); 

3. Algorithm Tuning — As in most examples presented here, GENO was effectively tuned using only four parameters: 
d_factor, quantum_0 and the return values of  m_rate, and bm_rate.  
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Example 3.4: Static Constrained Optimisation: A Pressure Vessel Design Problem35 
 
 ( ) 2

13

2

14

2

32431 84.191661.37781.16224.0=min xxxxxxxxxJ +++x
x

 

 Subject to:    02404 ≤−x  

  00193.0 31 ≤+− xx  

  000954.0 32 ≤+− xx  

  00002961
3

4 3

34

2

3 ≤+π−π− ,,xxx  

  2,1},N,N0625.0x:x{]99,0625.0[x iii =∈=∩∈ iZ ;  4,3],200,0.10[ =∈ ix
i

 

 
I. GENO Output 36 
 
 Generation Objective 1 Objective 2 
 
 0 1500647.737740 0.000000 
 100 6059.828502 0.000000 
 200 6059.715394 0.000000 
 320 6059.714347 0.000000 
 340 6059.714347 0.000000 
 360 6059.714336 0.000000 
 380 6059.714336 0.000000 
 400 6059.714336 0.000000 
 440 6059.714336 0.000000 
 480 6059.714336 0.000000 
 500 6059.714336 0.000000 
____________________________________________________________________ 

Optimal State Vector: x  = (0.812500, 0.437500, 42.098446, 176.636596) T 

Objective Function Value: J (x) =  6059.714336 
 
 
II. General Remarks  

This problem has previously been tackled by Deb (1997) using GeneAS (Genetic Adaptive Search); by Kannan 
and Kramer (1994) using an augmented Lagrangian multiplier method; and by Sandgren (1988) using a branch 
and bound technique; and by Coello Coello (2000) using a genetic algorithm. Coello Coello (2000, p.18) 
presents a comparison of these methods together with his technique: the table below is an extract from there to 
which has been appended the result by GENO. 

 

 Coello Coello Deb (1997) Kannan, et al. Sandgren GENO 

Best Function Value 6069.3267 6410.3811 7198.0428 8129.1036 6059.714336 

 

As can be seen, the solution by GENO is by far the best amongst those considered; in fact, as of this writing, it is 
the best currently known solution. Note also that in the final solution vector, x1 and x2 are integer multiples of 
0.0625 as required. Although Hedar and Fukushima (2005, p.19) claim to have found a better solution valued 
5868.764836, it should be noted that their solution ignores the discreteness restriction on x1 and x2, and so their 
algorithm cannot, strictly speaking, be compared to GENO. 

                                                           
35 Source: Coello Coello (2000). 

36 Legend: Objective 1 is the actual function being minimised; Objective 2 is a merit function for an auxiliary NCP. 
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III. The gep File: Example 3.4 
 

// A constrained uni-objective static optimization problem 
// Source: Coello Coello (2000).  
 
#definecs p_maxgens 500 
#definecs p_popsize 20 
#definecs p_agents 2 
#definecs p_order  4 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = {1   1   1   1, 
           1   1   1   1};  
 
let discrete_var[p_order]  = 1   1   0   0; //An indicator array for discrete variables 

 
adj_mode   = "s"; 
solution_type = "e";  
maximise   = false; 
  
p_s_xover  = 0.00;  
p_a_xover  = 0.55;   
p_b_xover  = 0.00;   
p_h_xover  = 0.55;   
p_d_xover  = 0.55;   
p_shuffle  = 0.00; 
 
d_factor   = 0.80;   
quantum_0  = 0.1; 
rand_seed  = 240657; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
proc (2) = dynamic_state_bounds(i,j,k,low,upp); 
local fv,fv1,fv2,u,x; 
 k = horizon; 
 fv1 = low; fv2 = upp; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
 {u,x} = assign_sequences(i,1,u,x);37 
 if(j == 3);  fv2 = min((x[1,k] / 0.0193),(x[2,k] / 0.00954)); 
 elseif(j == 4); fv2 = 240; 
 endif; 
 {low,upp} = common_set(low,upp,fv1,fv2);38 
 retp(low, upp); 
endp;  
 

 
// 
// Note: An alternative specification of the above procedure is as follows 
// 
// proc (2) = dynamic_state_bounds(i,j,k,low,upp); 
// local fv,fv1,fv2; 
//  k = horizon; 
//  fv1 = low; fv2 = upp; 
//  if(j == 3);  fv2 = min((state_fn(i,1,k)39 / 0.0193),(state_fn(i,2,k) / 0.00954)); 
//  elseif(j == 4); fv2 = 240; 
//  endif; 
//  {low,upp} = common_set(low,upp,fv1,fv2); 
//  retp(low, upp); 
//  endp; 
// 

                                                           
37 Infra page 5, footnote 10. 

38 The procedure proc common_set(a,b,c,d) is internal to GENO. It returns the intersection of the two intervals [a, b] and [c, d]. 

39 The procedure proc state_fn(i,j,k) is internal to GENO. It returns the value of the j-th component of the state vector, which resides 
in the i-th chromosome, at the k-th time instant. A similarly defined control variable value is returned by proc control_fn(i,j,k).    
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proc (2) = f(i,d,v_array);  
local c, fv, u, x; 
 u = matinit(order,plan,0); 
 x = matinit(order,horizon,0); 
 {u,x} = assign_sequences(i,d,u,x);40 
 
 //evaluate constraints 
 c = constraints(0, x, horizon); 
 v_array = evaluate_constraints(c, v_array);  
 
 //evaluate objectives 
 if(d == 1); fv = objective(0, x, horizon); retp (fv, v_array); 
 elseif(d == 2); retp(merit_fcn("b", c, c, v_array));41  
 endif; 
endp;  
 
 
proc (1) = objective(z,x,k); 
local fv; 
 fv = 0.6224*x[1,k]*x[3,k]*x[4,k] + 1.7781*x[2,k]*(x[3,k]^2) + 3.1661*x[4,k]*(x[1,k]^2) \ 

  + 19.84*x[3,k]*(x[1,k]^2); 
 if (maximise); fv = fv; else; fv = - fv; endif; 
 retp(fv); 
endp; 
 
 
proc (1) = constraints(z,x,k); 
local c; c = zeros(4,1); 
 c[1] = x[4,k] - 240; 
 c[2] = x[3,k]*0.0193 - x[1,k]; 
 c[3] = 0.00954*x[3,k] - x[2,k]; 
 c[4] = 1296000 - pi*(x[3,k]^2)*x[4,k] - 4*pi*(x[3,k]^3)/3.0; 
 retp(c);  
endp; 

 
 

VI. The dat File: Example 3.4  

Table 3.4: Input Data for the Pressure Vessel Design Problem 
 

VARIABLE NAME X1 X2 X3 X4 

UCB 99 99 200 200 

LCB 0.0625 0.0625 10 10 

USB 99 99 200 200 

LSB 0.0625 0.0625 10 10 

Initial State Vector 0 0 0 0 

Final State Vector 0 0 0 0 

Discrete Values 0.0625 0.0625 0 0 

X1 1 0 0 0 

X2 0 1 0 0 

X3 0 0 1 0 

Inter-connexion 
Matrix  

X4 0 0 0 1 

                                                           
40 Infra page 5, footnote 10. 

41 The procedure proc merit_fcn is internal to GENO. It returns the relative merit of each chromosome as evaluated by an auxiliary M-
program that aids the search for the optimal solution, x*. It should be called exactly in the manner shown if the auxiliary M-program is of 
type “b”. Refer to page 12, § 3.4.2 for more information. 
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V. Points to Note: Example 3.4 
 

1. Method — The gep and dat files presented above implement of version MPb of the original mathematical program. As 
explained in § 3.4.2 above, MPb is a bi-objective optimisation problem: in addition to the original optimisation 
problem, a second mathematical program is defined such that its solution coincides with the value of the 
constraint functions at x* — the optimal vector as evaluated by the original objective. Assuming a problem 
with m inequality constraints, the solution of the second program may be obtained by minimising a merit 
function associated with an auxiliary NCP defined as follows: given any x, find the set of all m-vectors ω such 
that: 

 0≥ω ; 0])x(c[ 2

ii ≥ω− ; 0])x(c[ 2

iii =ω−ω ; },,2,1{ mi L=  

 This logic explains the following code fragment in proc f(i,d,v_array):  
  

    if(d == 1); fv = objective(0, x, horizon); retp (fv,v_array); 
    elseif(d == 2); retp(merit_fcn("b", c, c, v_array));  

 The proc merit_fcn itself, this is explained in the next note. 

2. Merit Function — GENO’s NCP approach is based on the  merit function (Facchenei and Soares: 1997): 

  ( )∑
=

φ=Ψ
n

1i

2

ii )x(F,x)x(  

 where φ is the Fischer-Burmeister NCP-function defined as 

  )ba(ba)b ,a( 22 +−+=φ . 

 The procedure proc merit_fcn is internal to GENO and is a direct implementation of Ψ as 

defined above, but with ix  replaced by iω , and )x(Fi  replaced by 2

ii ])x̂(c[ ω− . 

Clearly, there are two solutions: ω = 0 and ω = c(x). The first is not useful for our purposes since 
it does not in any way contribute to the search for x*. Therefore, in the search for a solution to the 
auxiliary NCP throughout GENO’s evolution, there should be a mechanism that encourages the 
latter solution.  

3. Discrete Variable — Problems with discrete variables are easily dealt with by GENO. In this example, x1 and x2 are 
restricted to integer multiples of 0.065. Accordingly, the indicator matrix discrete_var 
is re-defined in the gep file; and the required entries are made in the dat file as shown above.     

4. Solution Control — The procedure proc dynamic_state_bounds contributes towards the evolution of the 
variables x3 and x4 by evaluating the conjunction of the static state variable bounds (USB and 
LSB) and the dynamic state bounds dictated by the first three constraints, viz. 

 240x 4 ≤  

 







≤

0193.0

x
,

00954.0

x
minx 12

3 ⇐ ]0x00954.0x[]0x0193.0x[ 3231 ≤+−∧≤+−  

 As in most examples, the GENO was effectively tuned using only the parameters: d_factor, 
quantum_0 and the return values of m_rate, and bm_rate.    
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Example 3.5: Static Constrained Optimisation: An Alkylation Process 42 
 
 ( ) 745321 063.036.310035.004.5=min xxxxxxJ −+++x

x
 

 Subject to:   09.0222.082.35 910 ≥−− xx  

  099.03133 107 ≥−+− xx  

    0)9.0222.082.35()9.09.0/1( 9109 ≥−−−− xxx  

    0)99.03133()99.099.0/1( 10710 ≥−+−−− xxx  

    099.000667.013167.012.1 4

2

81811 ≥−−+ xxxxxx  

    0x99.0x325.0x038.0x098.1425.57 76

2

88 ≥−+−+  

    0)99.000667.013167.012.1()99.099.0/1( 4

2

818114 ≥−−+−− xxxxxxx  

    0)99.0325.0038.0098.1425.57()99.099.0/1( 76

2

887 ≥−+−+−− xxxxx  

    022.1 514 =−− xxx  

  0)1000/(98000 39436 =++− xxxxx  

  0/)( 1528 =++− xxxx  

 ]2000,00001.0[1 ∈x ; ]16000,00001.0[2 ∈x ; ]120,00001.0[3 ∈x ; ]5000,00001.0[4 ∈x  

 ]2000,00001.0[5 ∈x ; ]93,85[6 ∈x ; ]95,90[7 ∈x ; ]12,3[8 ∈x ; ]4,2.1[9 ∈x ; ]162,145[10 ∈x  

 
I. GENO Output 
 
 Generation Objective 1 Objective 2 
 
 0 -1006.767778 0.000000 
 20 -2080.765400 0.000000 
 80 -2192.491058 0.000000 
 160 -4269.990026 0.000000 
 240 -1763.232099 0.000000 
 300 -1763.233924 0.000000 
 340 -1763.233924 0.000000 
 380 -1763.235308 0.000000 
 400 -1763.235308 0.000000 
 480 -1763.745393 0.000000 
 500 -1763.745454 0.000000 
 ____________________________________________________________________ 

Solution Vector:  

x  = (1695.747560, 15766.851262, 54.144966, 3027.278310, 1997.531978, 90.084472, 94.984529, 10.475842, 1.571577, 153.485638)T 

Objective Function Value: J (x) = -1763.745454 
 

 
II. General Remarks  

The original source for this example appears to be Bracken and McCormick (1968), and the best known solution 
thus far is that reported by Hock and Schittkowski, namely: –1768.80696. This problem has a rather complex 
feasible region and the search is made more difficult by the fact that six of the constraints are active at the 
solution. But, as can be seen from the results presented above, GENO’s solution is very close to the best known 
so far.   

                                                           
42 Source: Hock and Schittkowski (1981, p.123). 



 
 
 

   
Copyright  1997-2006: Ike’s Research Ltd 

30 

 
III. The gep File: Example 3.5 
 

// A constrained uni-objective static optimization problem 
// Source: Hock and Schittkowski (1981, p.123)  
   
#definecs p_maxgens  500 
#definecs p_popsize  20 
#definecs p_agents  2 
#definecs p_order   7 
#definecs p_plan   1 
  
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1  1  1  1  1  1  1;  
 
let q_mod[p_order]    = 1  1  1  1  0.1  0.1  1;  
 
adj_mode    = "g";  
solution_type  = "m";  
sequential_solve = true;  
maximise    = false;  
pos_orth    = true;  
 
p_s_xover = 0.55;   
p_a_xover = 0.55;   
p_b_xover = 0.00;   
p_h_xover = 0.55;   
p_d_xover = 0.55;   
p_shuffle = 0.005; 
 
d_factor  = 0.80;   
quantum_0 = 10; 
rand_seed = 240657;  
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 

 
proc (2) = f(i,d,v_array); 
local c,fv,u,x; 
 u = matinit(order,plan,0); 
 x = matinit(order,horizon,0); 
  {u,x} = assign_sequences(i,d,u,x);43  
 
 //evaluate constraints  
 z = equations(x,0,horizon); 
 
 //evaluate objectives 
 if(d == 1); fv = objective(z,x,horizon); 
 elseif(d == 2); 
  c = constraints(z, x, horizon); 
  v_array = evaluate_constraints(c, v_array);  
  fv = -v_array[2]; 
 endif;  
 retp (fv,v_array); 
endp;  
 
proc (1) = objective(z,x,k); 
local fv; 
 fv = 5.04*z[1] + 0.035*z[2] + 10*z[3] + 3.36*x[2,k] - 0.063*x[1,k]*x[4,k]; 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp;  
 
proc (1) = equations(x,y,k); 
local z; z = zeros(3,1); 
 z[1] = 1.22*x[1,k] - x[2,k]; 
 z[2] = z[1]*x[5,k] - x[2,k]; 
 z[3] = x[1,k]*x[3,k]*x[6,k] / (98000 - 1000*x[3,k]); 
 retp (z); 
endp; 

                                                           
43 Infra page 5, footnote 10. 



 
 
 

   
Copyright  1997-2006: Ike’s Research Ltd 

31 

 
proc (1) = constraints(z,x,k); 
local c; c = zeros(8,1); 
 c[1] = 3*x[4,k] - 133 - 0.99*x[7,k]; 
 c[2] = 35.82 - 0.222*x[7,k] - 0.9*x[6,k]; 
 c[3] = ((1.0/0.99) - 0.99)*x[7,k] - c[1]; 
 c[4] = ((1.0/0.9) - 0.9)*x[6,k] - c[2]; 
 c[5] = 1.12*z[1] + 0.13167*z[1]*x[5,k] - 0.00667*z[1]*(x[5,k]^2) - 0.99*x[1,k]; 
 c[6] = 57.425 + 1.098*x[5,k] - 0.038*(x[5,k]^2) + 0.325*x[3,k] - 0.99*x[4,k]; 
 c[7] = ((1.0/0.99) - 0.99)*x[1,k] - c[5]; 
 c[8] = ((1.0/0.99) - 0.99)*x[4,k] - c[6]; 
 retp (c); 
endp; 

 

VI. The dat File: Example 3.5  

Table 3.5: Input Data for the Alkylation Problem   
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 

UCB  1e20  1e20  1e20  1e20  1e20  1e20  1e20 

LCB -1e20 -1e20 -1e20 -1e20 -1e20 -1e20 -1e20 

USB 5000 2000 93 95 12 4 162 

LSB 0.00001 0.00001 85 90 3 1.2 145 

Initial State Vector 0 0 0 0 0 0 0 

Final State Vector 0 0 0 0 0 0 0 

Discrete Values 0 0 0 0 0 0 0 

X1 1 0 0 0 0 0 0 

X2 0 1 0 0 0 0 0 

X3 0 0 1 0 0 0 0 

X4 0 0 0 1 0 0 0 

X5 0 0 0 0 1 0 0 

X6 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X7 0 0 0 0 0 0 1 

 

V. Points to Note: Example 3.5 
 

1. Method — The gep and dat files presented above implement of version MPa of the original mathematical program as a bi-
objective problem, i.e. gep type ‘aa’. 

2. q_mod — This example illustrates how the quantum modular array is intended to be used. The initial size of quanta are 
set as 10 for all variables by the assignment: quantum_0 = 10 (as opposed to the normal 0.1 because of 
the large variable ranges); however, for x5 and x6 the size of quanta is further “modulated” by the array entries 
q_mod [5] = 0.1 and q_mod [6] = 0.1 because these two variables has a relatively narrower in range. 
However, this devise is currently not very effective; the associated GENO mechanisms are still under 
development for optimum performance.  

3. sequential_solve — This example illustrates a bi-objective implementation of MPa (denoted as type ‘aa’) in which  
the solution process is explicitly decomposed into its two constituent part, i.e. constraint 
satisfaction and function optimisation. The two processes act in concert by virtue of the 
selected adjustment mode (i.e. adj_mode = "g") to reach a point that is Pareto-efficient 
(see page 54 footnote 71 for further explanation). 

4. adj_mode and solution_type — Note the options selected for these two parameters when the implementation of  
M-program MPa is of type ‘aa’. These parameter settings must be accompanied 
by the assignment: sequential_solve = true.  
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Example 3.6: Static Constrained Optimisation: Decentralised Economic Planning 44 
 
 ( ) 7676

4

7

2

6

6

5

4

3

2

4

2

2

2

1 8104710)11(3)12(5)10(=min xxxxxxxxxxxJ −−−++++−+−+−x
x

 

 Subject to: 05432127 5

2

43

4

2

2

1 ≥−−−−− xxxxx  

 01037282 54

2

321 ≥−−−−− xxxxx  

 08623196 7

2

6

2

21 ≥+−−− xxxx  

 0115234 76

2

321

2

2

2

1 ≥+−−+−− xxxxxxx  

 7,...,1],10,10[ =−∈ ix
i

 

 
I. GENO Output 
 
 Generation Objective 1 Objective 2 
 
 0 7864498.421740 2.224884 
 20 106428.689759 0.000000 
 40 1301.777022 0.000000 
 60 682.475649 0.000000 
 80 680.994100 0.000000 
 100 680.872077 0.000000 
 120 680.630739 0.000000 
 140 680.630285 0.000000 
 160 680.630070 0.000000 
 180 680.630061 0.000000 
 200 680.630060 0.000000 
 220 680.630059 0.000000 
 240 680.630059 0.000000 
 260 680.630059 0.000000 
 280 680.630058 0.000000 
 300 680.630057 0.000000 
 340 680.630057 0.000000 
 380 680.630057 0.000000 
 420 680.630057 0.000000 
 460 680.630057 0.000000 
 500 680.630057 0.000000 
____________________________________________________________________ 

Solution Vector: x = (2.330500, 1.951372, -0.477541, 4.365727, -0.624487, 1.038131, 1.594227) T 

Objective Function Value:  J (x) = 680. 630057 
 
 
II. General Remarks  

The original reference for this problem appears to be K. P. Wong’s PhD Dissertation, and one of the earliest 
references to it is Asaadi (1973). It is featured in Michalewicz’s 1995 comparative study of evolutionary 
algorithms, and appears again in Michalewicz and Fogel (2000). Thus far, the best known solution has been that 
reported by Hock and Schittkowski (1981), namely: 

 x  = (2.330500, 1.951372, -0.477541, 4.365727, -0.624487, 1.038131, 1.594227)T   with  J (x) = 680.630057 

Most of the methods tested by Michalewicz (1995) generate reasonable solutions. The method of Michalewicz 
and Attia (1994) exhibits the best overall performance; their best solution is 680.642. In comparison, GENO finds 
a solution that is as good as Hock and Schittkowski’s. 

                                                           
44 Source: Hock and Schittkowski (1981, p.111). 
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III. The gep File: Example 3.6 
 

// A constrained uni-objective static optimization problem 
// Source: Hock and Schittkowski (1981, p.111)  
   
#definecs p_maxgens  500 
#definecs p_popsize  20 
#definecs p_agents  1 
#definecs p_order   7 
#definecs p_plan   1 
  
#include static_gep_defaults.src  

 
let vars[p_agents, p_order] = {1   1   1   1   1   0   0, 
           0   0   0   0   0   1   1}; 
adj_mode   = "s";  
solution_type = "e";   
maximise   = false;  
pos_orth   = true;   
  
p_s_xover  = 0.55;   
p_a_xover  = 0.55;   
p_b_xover  = 0.00;   
p_h_xover  = 0.55;   
p_d_xover  = 0.55;   
p_shuffle  = 0.00; 
 
d_factor   = 0.80;   
quantum_0  = 0.1; 
rand_seed  = 240657; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 

 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
proc (2) = f(i,d,v_array);  
local c, fv, g, u, x, z; 
 u = matinit(order,plan,0); 
 x = matinit(order,horizon,0); 
 {u, x} = assign_sequences(i,d,u,x);45 
 
 //evaluate constraints 
 z = equations(x, 0, horizon); 
 g = gradients(z, x, horizon); 
 c = constraints(z, x, horizon); 
 v_array = evaluate_constraints(c, v_array);  
 
 //evaluate objectives 
 if(d == 1); fv = objective(z, x, horizon); retp (fv, v_array); 
 elseif(d == 2); retp(merit_fcn("d", g, x, v_array));46  
 endif; 
endp; 
 

  
proc (1) = objective(z,x,k); 
local fv; 
 fv = (x[1,k] - 10)^2 + 5*((x[2,k] - 12)^2) + z[1]^4 + 3*((x[3,k] - 11)^2) \ 
   + 10*(x[4,k]^6) + 7*(z[2]^2) + x[5,k]^4 - 4*x[5,k]*z[2] - 10*z[2] - 8*x[5,k]; 
 if (maximise); fv = fv; else; fv = - fv; endif; 
 retp(fv); 
endp; 
 
proc (1) = constraints(z,x,k); 
local c; c = zeros(2,1); 
 c[1] = 282 - 7*x[1,k] - 3*x[2,k] - 10*z[1]^2 - x[3,k] + x[4,k]; 
 c[2] = 196 - 23*x[1,k] - x[2,k]^2 - 6*z[2]^2 + 8*x[5,k]; 
 retp (c); 
endp; 

                                                           
45 Infra page 5, footnote 10. 

46 The procedure proc merit_fcn is internal to GENO. It returns the relative merit of each chromosome as evaluated by an auxiliary M-
program that aids the search for the optimal solution, x*. It should be called exactly in the manner shown if the auxiliary M-program is of 
type “d”. Refer to page 15, § 3.4.4 for more information. 
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proc (1) = equations(x,y,k); 
local z; z = zeros(2,1); 
 z[1] = 127 - 2*x[1,k]^2 - 3*(x[2,k]^4) - 4*(x[3,k]^2) - 5*x[4,k] - y[6,k]; 
 z[2] = (-4*(x[1,k]^2) - x[2,k]^2 + 3*x[1,k]*x[2,k] - 2*(z[1]^2) \ 
    + 11*x[5,k] - y[7,k])/5.0; 
 retp (z); 
endp; 
 
 
proc (1) = gradients(z,x,k); 
local g; g = zeros(2,1); 
 g[1] = (4*z[1]/5)*(14*z[2] - 4*x[5,k] - 10) - 4*(z[1]^3); 
 g[2] = (10 + 4*x[5,k] - 14*z[2])/5; 
 retp(g); 
endp; 
 

 

VI. The dat File: Example 3.6  

Table 3.6: Input Data for the Decentralised Economic Planning Problem   
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 

UCB  10  10  10  10  10  1e20  1e20 

LCB -10 -10 -10 -10 -10 0 0 

USB  10  10  10  10  10  10  10 

LSB -10 -10 -10 -10 -10 0 0 

Initial State Vector 0 0 0 0 0 0 0 

Final State Vector 0 0 0 0 0 0 0 

Discrete Values 0 0 0 0 0 0 0 

X1 1 0 0 0 0 0 0 

X2 0 1 0 0 0 0 0 

X3 0 0 1 0 0 0 0 

X4 0 0 0 1 0 0 0 

X5 0 0 0 0 1 0 0 

X6 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X7 0 0 0 0 0 0 1 
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V. Points to Note: Example 3.6 
 

1. Method — The gep and dat files presented above implement version MPd of the original mathematical program. This was 
derived as follows. First, lay out the incidence matrix that indicates the presence or non-presence of each 
variable in each constraint, i.e. 

 

CONSTRAINT NO X1 X2 X3 X4 X5 X6 X7 

1 � � � � �   

2 � � � � �   

3 � �    � � 

4 � � �   � � 

 

Select a particular variable to eliminate from a particular constraint based on (a) whether the said variable 
appears in the objective function, and (b) whether it is easy to manipulate the selected constraint so as to make 
the said variable the subject of any subsequent equation. These heuristics are merely so as to make the 
problem re-formulation easy. For this particular example, constraint #1 was used to eliminate x3 and 
constraint #4 was used to eliminate x6 as follows. 

In constraint #1, introduce a positive slack variable ω1 to obtain,  

 0x5x4xx3x2127 15

2

43

4

2

2

1 =ω−−−−−−  (3.6a) 

Introduce a “new” variable 31 xz ≡  and solve the equation above for z1, i.e. 

 15

2

4

4

2

2

131 x5x4x3x2127xz ω−−−−−=≡  (3.6b) 

Similarly, one can eliminate x6 using constraint #4 to obtain 

 ( ) 5x11x2xx3xx4xz 27

2

321

2

2

2

162 ω−+−+−−=≡  (3.6c) 

Note that no further elimination can be done without introducing cyclical interdependencies in the system of 
constraints, and the current version of GENO cannot handle cyclicality. In order to see this, rename the 
variables as follows: 

 

OLD NAME X1 X2 X3 X4 X5 X6 X7 - - 

Intermediate  - - Z1 - - Z2 - ω1 ω2 

NEW NAME X1 X2 Z1 X3 X4 Z2 X5 ω1 ω2 

 

The modified program is thus: 

 Given: 14

2

3

4

2

2

11 x5x4x3x2127z ω−−−−−=  

  ( ) 5x11z2xx3xx4z 27

2

121

2

2

2

12 ω−+−+−−=  

  +∈ω R  

 

 
( )

5252

4

5

2

6

6

4

4

1

2

3

2

2

2

1

x8z10xz4xz7x10

z)11x(3)12x(5)10x(=Jmin

−−−+++

+−+−+−x
x  

 Subject to: 0xxz10x3x7282 43

2

121 ≥−−−−−  

  0x8z6xx23196 5

2

2

2

21 ≥+−−−  

  5,...,1i],10,10[x i =−∈  
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To formulate the equivalent bi-objective program outlined in section 1.4.4 above, we need the gradient vector 

ω∂∂f . And in this particular case the components of the gradient vector are easy to derive. Using the 

chain rule of differential calculus,  

 2,1m,
z

z

ff

m

n
2

1n nm

=
ω∂

∂
⋅

∂
∂

=
ω∂
∂ ∑

=

 

we have that: 

 [ ] 3

1521

1

1 z410x4z14)5/z4(
f

g −−−=
ω∂
∂

≡  

 5/)z14x410(
f

g 25

2

2 −+=
ω∂
∂

≡  

The g-equations are implemented by proc gradients; the z-equations are implemented by proc 
equations. Note that the mutual dependency of the z-equations dictates that they are evaluated in the 
order presented above.  

2. vars — The vars matrix indicates the variables in each sub-program. In the NCP implementation, ω1 and ω2 are co-
opted into the state vector as its final two components: the structure of the vars matrix implements the fact 
that these two components pertain to the second program of the bi-objective scheme, viz.: 

 )(min ω
ω

h  

 Subject to: +∈ω R ; 

3. v_array — The z-vector is required to be feasible, hence the statements: 

 v_array[2] = v_array[2] + distance_to_set(-10,10,z[1]);47 
 v_array[2] = v_array[2] + distance_to_set(-10,10,z[2]); 

                                                           
47 Infra page 23, footnote 34. 
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Example 3.7: Static Constrained Optimisation: Heat Exchanger Optimisation 48 
 
 ( ) 321=min xxxJ ++x

x
 

 Subject to: 0)(0025.01 64 ≥+− xx  

 0)(0025.01 475 ≥−+− xxx  

 0)(01.01 58 ≥−− xx  

 0333.8333310033252.833 1461 ≥+−− xxxx  

 012501250 442572 ≥+−− xxxxxx  

 025001250000 55383 ≥+−− xxxxx  

 ]10000,100[1 ∈x ; 3,2],10000,1000[ =∈ ix
i

; 8...,,4],1000,10[ =∈ ix
i

 

 
I. GENO Output 
 
 Generation Objective 1 Objective 2 
 
 0 7516.821758 0.738992  
 10 7055.554338 0.000000  
 20  7049.332889 0.000000  
 30 7049.249409 0.000000  
 40 7049.248050 0.000000  
 50 7049.248022 0.000000  
 60 7049.248022 0.000000  
 70 7049.248021 0.000000  
 80  7049.248021 0.000000  
 90 7049.248021 0.000000  
 100 7049.248021 0.000000  
 ____________________________________________________________________ 

Solution Vector: x = (579.306680, 1359.970648, 5109.970692, 182.017699, 295.601172, 217.982301, 286.416527, 395.601172) T 

Objective Function Value: J (x) = 7049.248021 
 

 
II. General Remarks  

This is a real-life engineering design problem whose object is to optimise the performance of a heat exchanger. 
The problem was first tackled using the geometric programming approach of Avriel and Williams (1971) and it 
has been subjected to various other techniques ever since. It is featured in Michalewicz’s 1995 comparative 
study of evolutionary algorithms and again in Michalewicz and Fogel (2000). According to Michalewicz and 
Fogel (2000), the best known solution is still that reported by Hock and Schittkowski (1981), namely: 

 x = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985, 217.9799, 286.4162, 395.5979)T   with  J (x) = 7049.330923 

None of the methods tested by Michalewicz (1995) comes close to the solution above. The best evolutionary 
solution appears to be that computed by Michalewicz’s GENECOP III system, namely 7286.650.  

In contrast and without any problem pre-processing effort, GENO’s NCP method computes a better solution at 
7063.918114.49 The solution reported above (which is even better than that computed by Hock and Schittkowski, 
albeit marginally) was found after a moderate pre-processing effort that eliminated all the inequality constraints 
by the method described in section 1.4.4 (see § Points to Note: Example 3.7 below). 

                                                           
48 Source: Hock and Schittkowski (1981, p.115) 

49 Test run Example sc_sp1b.e  
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III. The gep File: Example 3.7 
 

// A constrained uni-objective static optimization problem 
// Source: Hock and Schittkowski (1981, p.115)  
 

#definecs p_maxgens 100 
#definecs p_popsize 20 
#definecs p_agents 2 
#definecs p_order  8 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = {1   1   0   0   0   0   0   0, 
           0   0   1   1   1   1   1   1}; 
 
adj_mode   = "s";  
solution_type = "e"; 
maximise   = false;  
pos_orth   = true; 
 
p_s_xover  = 0.00;   
p_a_xover  = 0.55;   
p_b_xover  = 0.00;   
p_h_xover  = 0.55;   
p_d_xover  = 0.55;   
p_shuffle  = 0.55; 
 
d_factor   = 0.80;   
quantum_0  = 1.0; 
rand_seed  = 240657; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
 
proc (2) = f(i, d, v_array); 
local c,fv,g,u,x,z;  
 u = matinit(order,plan,0); 
 x = matinit(order,horizon,0); 
  {u, x} = assign_sequences( i,d,u,x);50 
 
 //evaluate constraints  
 z = equations(x,0,horizon); 
 g = gradients(z,x,horizon); 
 c = constraints(0,x,horizon); 
 v_array  = evaluate_constraints(c,v_array); 
 v_array[2] = v_array[2] + distance_to_set( 100,10000,z[1]);51 
 v_array[2] = v_array[2] + distance_to_set(1000,10000,z[2]); 
 v_array[2] = v_array[2] + distance_to_set(1000,10000,z[3]); 
 v_array[2] = v_array[2] + distance_to_set(10,1000,z[4]); 
 v_array[2] = v_array[2] + distance_to_set(10,1000,z[5]); 
 v_array[2] = v_array[2] + distance_to_set(10,1000,z[6]);  
 
 //evaluate objectives 
 if(d == 1); fv = objective(z, x, horizon); retp (fv, v_array); 
 elseif(d == 2); retp(merit_fcn("d", g, x, v_array));52  
 endif; 
endp; 
 
 
proc (1) = objective(z,horizon); 
local fv; 
 fv = (z[1] + z[2] + z[3]); 
 if (maximise); fv = fv; else; fv = - fv; endif; 
 retp(fv); 
endp; 

                                                           
50 Infra page 5, footnote 10. 

51 Infra page 23, footnote 34. 

52 Infra page 33, foot note 46. 
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proc (1) = equations(x,y,k); 
local z; z = zeros(6,1); 
 z[6] = 100 + x[2,k] - x[8,k]; 
 z[5] = 400 + x[1,k] - x[2,k] - x[7,k]; 
 z[4] = 400 - x[1,k] - x[6,k]; 
 z[3] = (x[5,k] - 2500*x[2,k] + 1250000) / (z[6] - x[2,k]); 
 z[2] = (x[4,k] + 1250*x[2,k] - 1250*x[1,k]) / (z[5] - x[1,k]); 
 z[1] = (x[3,k] + 833.33252*x[1,k] - 83333.333) / (z[4] - 100); 
 retp(z); 
endp; 
 
 
proc (1) = gradients(z,x,k); 
local g; g = zeros(6,1); 
 g[1] = 1/(z[4] - 100); 
 g[2] = 1/(z[5] - x[1,k]); 
 g[3] = 1/(z[6] - x[2,k]); 
 g[4] = (x[3,k] + 833.33252*x[1,k] - 83333.333) / (z[4] - 100)^2; 
 g[5] = (x[4,k] + 1250*x[2,k] - 1250*x[1,k]) / (z[5] - x[1,k])^2; 
 g[6] = (x[5,k] - 2500*x[2,k] + 1250000) / (z[6] - x[2,k])^2; 
 retp(g); 
endp; 

 
 

VI. The dat File: Example 3.7  

Table 3.7: Input Data for the Heat Exchanger Optimisation Problem   
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 X8 

UCB 1000 1000 10 10 10 10 10 10 

LCB 10 10 0 0 0 0 0 0 

USB 1000 1000 10 10 10 10 10 10 

LSB 10 10 0 0 0 0 0 0 

Initial State Vector 0 0 0 0 0 0 0 0 

Final State Vector 0 0 0 0 0 0 0 0 

Discrete Values 0 0 0 0 0 0 0 0 

X1 1 0 0 0 0 0 0 0 

X2 0 1 0 0 0 0 0 0 

X3 0 0 1 0 0 0 0 0 

X4 0 0 0 1 0 0 0 0 

X5 0 0 0 0 1 0 0 0 

X6 0 0 0 0 0 1 0 0 

X7 0 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X8 0 0 0 0 0 0 0 1 
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V. Points to Note: Example 3.7 
 

1. Method — The gep and dat files presented above implement version MPd of the original mathematical program, and this 
was derived as follows. The incidence matrix below “points to” inequality 4, 5 and 6 as prime targets for 
elimination using variables x1, x2 and x3 (because these variables do not appear in more than one constraint 
and thus one avoids “circular dependencies”) 

 

CONSTRAINT NO X1 X2 X3 X4 X5 X6 X7 X8 

1    �  �   

2    � �  �  

3     �   � 

4 �   �  �   

5  �  � �  �  

6   �  �   � 

 

Into constraint #4, #5 and #6 respectively, introduce slack variables ω1, ω2 and ω3 and define the following 
equations. 

 ]100x[]333.83333x33252.833[xz 64111 −−+ω=≡  (3.7a) 

 ]xx[]x1250x1250[xz 4745222 −−+ω=≡  (3.7b) 

 ]xx[]x25001250000[xz 585333 −−+ω=≡  (3.7c) 

Rename the variables as follows: 

 

OLD NAME X1 X2 X3 X4 X5 X6 X7 X8 - - - 

Intermediate  Z1 Z2 Z3 - - - - - ω1 ω2 ω3 

NEW NAME Z1 Z2 Z3 X1 X2 X3 X4 X5 ω1 ω2 ω3 

 

Then an intermediate version of the original mathematical program following the above operations is: 

 Given: ]100x[]333.83333x33252.833[z 3111 −−+ω=  

  ]xx[]x1250x1250[z 141222 −−+ω=  

  ]xx[]x25001250000[z 25233 −−+ω=  

  +∈ω R  

 

 ( ) 321 zzz=Jmin ++x
x

 

 Subject to: 0xx400 31 ≥−−  

  0xxx400 421 ≥−−+  

  0xx100 52 ≥−+  

  5...,,1i],1000,10[x i =∈  

 

The program above is still amenable to further inequality elimination as the new incidence matrix below 
indicates 
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CONSTRAINT NO X1 X2 X3 X4 X5 

1 �  �   

2 � �  �  

3  �   � 

 

Into constraint #1, #2 and #3 respectively, introduce slack variables ω4, ω5 and ω6 and let: 

 4134 x400xz ω−−=≡  (3.7d) 

 52145 xx400xz ω−−+=≡  (3.7e) 

 6256 x100xz ω−+=≡  (3.7f) 

Rename the variables once more as follows: 

 

OLD NAME X1 X2 X3 X4 X5 - - - - - - 

Intermediate  - - Z4 Z5 Z6 ω1 ω2 ω3 ω4 ω5 ω6 

NEW NAME X1 X2 Z4 Z5 Z6 ω1 ω2 ω3 ω4 ω5 ω6 

 

The final version of the program following the above operations is: 

 ( ) 321 zzz=Jmin ++x
x

 

 subject to: 626 x100z ω−+=  

  5215 xx400z ω−−+=  

  414 x400z ω−−=  

  ]xz[]x25001250000[z 26233 −−+ω=  

  ]xz[]x1250x1250[z 151222 −−+ω=  

  ]100z[]333.83333x33252.833[z 4111 −−+ω=  

  +∈ω R  2,1i],1000,10[x i =∈  

 

To formulate the equivalent bi-objective M-program as outlined in § 3.4.4 above, we need the gradient vector 

ω∂∂f . Using the chain rule of differential calculus, it is easy to show that: 

 )100z(1fg 411 −=ω∂∂≡  

 )xz(1fg 1522 −=ω∂∂≡  

 )xz(1fg 2633 −=ω∂∂≡  

 2

41344 )100z/()333.83333x33252.833x(fg −−+=ω∂∂≡  

 2

1512455 )xz/()x1250x1250x(fg −−+=ω∂∂≡  

 2

2612566 )xz/()x1250000x2500x(fg −−+=ω∂∂≡  

The g-equations are implemented by proc gradients; the z-equations are implemented by proc 
equations. Note that the mutual dependency of the z-equations dictates that they are evaluated in the 
order presented above. And the implementation assumes that the ωi are co-opted into the state vector as 
its final six components, hence the problem order declaration: #definecs p_order  8.  
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Example 3.8: Dynamic Optimisation: The Harvest Problem 53 
 

 ( ) ∑
1-T

0 =k 
ku=,Jmax ux

u
 

 Subject to: kk1k uxax −⋅=+  

  T0 xx =  

  R∈kx ;  +∈Rku  

 Data: T = 5; 100xx 40 == ; 1.1a = . 

 
 
I. GENO Output  
 

Generation Objective Value 

 0 12.555874   
 20 12.721036   
 40 12.721037   
 60 12.721038   
 80 12.721038   
 90 12.721038   
 100 12.721038   
____________________________________________________________________ 

Optimal Control Vector: 4u  = (7.513148, 9.090909, 11.000000, 13.31000) 

Optimal State Vector: 5x  = (100.000000, 102.486852, 103.644628, 103.009091, 100.000000) 

Objective Function Value: J (x, u) = 12.721038 
 

 
II. General Remarks  

The exact solution to this problem is given by the formula (Michalewicz: 1994, p.108): 

 
)1a(a

)1a(x
=J*

1n

2n

0

−⋅

−⋅
−

. 

Based on the parameter values given above, J* = 12.721038. But whereas GENO takes only 60 generations to 
achieve six-decimal point accuracy using a population of only 10, the algorithm of Michalewicz (whose 
performance is listed below) requires at least 10,000 and using a population of size 70. 54 
 

Generation Objective Value 

 100 12.712700 
 1000 12.720600 
 10,000 12.721000 
 20,000 12.721000 
 30,000 12.721000 
 40,000 12.721038 
 

Source Generations Best Vector Value Best Function Value CPU Time 

Michalewicz Over 40000 - 12.721038 - 

GENO 60 See above 12.721038 - 

                                                           
53 Source: Michalewicz (1994) 

54 Extracted from Table 6.3 of Michalewicz (1994, p.112). 
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III. The gep File: Example 3.8 
 

// A constrained uni-objective dynamic optimization problem 
// Source: Michalewicz (1994, p.108).  
 
#definecs p_maxgens  200 
#definecs p_popsize  10 
#definecs p_agents   1 
#definecs p_order    1 
#definecs p_plan  4 
 
#include dynamic_gep_defaults.src 
 
let vars[p_agents, p_order] = 1; 
 
let ff_states[p_order] = 1;   
let cc_states[p_order] = 1;  

 
adj_mode   = "s";  
solution_type = "e";  
maximise   = true;  
 
p_s_xover  = 0.55;   
p_a_xover  = 0.55;   
p_b_xover  = 0.00;   
p_h_xover  = 0.55;   
p_d_xover  = 0.55;   
p_shuffle  = 0.55; 
 
d_factor   = 0.80;   
quantum_0  = 0.1; 
rand_seed  = 240657; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
proc (2) = f(i,d,v_array); 
local u,x,fv,k; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);55  
  
 //evaluate objective 
 fv = 0; 
 for k (1, plan, 1); 
  fv = fv + u[k]^0.5; 
 endfor; 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp (fv,v_array); 
endp; 
 
proc (1) = a(i,j,k); retp(1.1*state_fn(i,1,k)56); endp; 
 
proc (1) = b(i,j,k); retp(-1.0); endp; 
 
proc (1) = aa(z,w,j,k); retp(1.1*z[k]); endp; 
 
proc (1) = bb(z,w,j,k); retp(-1.0); endp; 
 
proc (1) = ee(z,w,j,k); retp((z[k+1] + w[k])/1.1); endp; 
 
 

 

                                                           
55 Infra page 5, footnote 10. 

56 Infra page 26, footnote 39. 
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VI. The dat File: Example 3.8  

Table 3.8: Input Data for the Harvest Problem 
 

VARIABLE NAME X1 

UCB 1e20 

LCB 0 

USB 1e20 

LSB -1e20 

Initial State Vector 100 

Final State Vector 100 

Discrete Values 0 

Inter-connexion 
Matrix  

X1 1 

 
 

V. Points to Note: Example 3.8 
 

1. ff_states — This example illustrates the coding of a dynamic problem in which the state vector is fixed at both ends of the 
optimisation period. The matrix ff_states is a binary indicator matrix that shows which components of 
the state vector are fixed at the final time; in this particular example, the state happens to be one-dimensional.  

2. state vector entries — In the dat file, one records the actual values of the state vector at initial and final time.  

3. dynamics — proc a(i,j,k) and proc b(i,j,k) are direct implementations of the coefficient expressions of the 
dynamic constraints in MP1, i.e.: 

  ),( 1kk

i

k −uxA  and ),( 1kk

i

k −uxB . 

  proc aa(z,w,j,k) and  proc bb(z,w,j,k) are replica implementations of the same coefficient 
expressions, except that the state and control variables arguments, z[k]and w[k] respectfully, are static 
boundary values only. 

 proc ee(z,w,j,k) on the other hand is significantly different: it is the state equation expressed in 

“reverse”, i.e. it gives kx  in terms of 1k+x  and ku . This is procedure is crucial to GENO’s ability to solve 

two-point boundary value problems. This perhaps indicates one major limitation of the current version of 

GENO in that “factoring out”  kx  from the A and B expressions of MP1 may not always be easy. This process 

is necessary for writing the equation required by proc ee(z,w,j,k). 

4. Accessing variables — The j-th component of the state vector in the  i-th chromosome at time k may be accessed 
by the procedure proc state_fn(i,j,k); the corresponding control variable is proc 
control_fn(i,j,k). The same variables may be accessed by x[j,k] and u[j,k] 
respectively, after making the assignment {u,x} = assign_sequences(i,d,u,x).      

5. Algorithm Tuning — As in most examples, the GENO was effectively tuned using only the parameters: d_factor, 
quantum_0 and the return values of m_rate, and bm_rate. 
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Example 3.9: Dynamic Optimisation: A Non-linear Resource Allocation Problem 57 
 

 ( ) ∏ −+
T

1 = 
1)u1(=,Jmax

k

k
kux

u
 

 Subject to: kk1k uxx −=+  

  8u
T

1k
k =∑

=

 

  R∈kx ;  8x 0 = ; ]5,0[u k ∈  

 Data: T = 5;   
 
I. GENO Output  
 

Generation Integer-valued Solution Real-valued Solution 

 0 1287.000000 1590.148000 
 20 3780.000000 4085.716747 
 40 3960.000000 4398.498099 
 60 4158.000000 4407.119360 
 80 4158.000000 4415.391047 
 100 4158.000000 4415.659845 
 120 4158.000000 4415.692284 
 140 4158.000000 4415.692855 
 160 4158.000000 4415.710917 
 180 4158.000000 4415.711192 
 200 4158.000000 4415.711867 
___________________________________________________________________________________________ 

Optimal Control Vector [Integer variables]: 4u  = (1.000000, 1.000000, 2.000000, 2.000000, 2.000000) 

Optimal State Vector [Integer variables]: 5x  = (8.000000, 7.000000, 6.000000, 4.000000, 2.000000, 0.000000) 

Objective Value [Integer variables]: J (x, u) = 4158.000000 

Optimal Control Vector [Real variables]: 4u  = (1.056100, 1.556540, 1.723350, 1.806410, 1.857600) 

Optimal State Vector [Real variables]: 5x  = (8.000000, 6.943900, 5.387360, 3.664010, 1.857600, 0.000000) 

Objective Value [Real variables]: J (x, u) = 4415.711867 
 

 
II. General Remarks 

Larson and Casti (1978, p.182) compute the integer-valued solution using a “hand simulation” of Bellman’s 
dynamic programming method58 as: 

Best Objective Function Value: J (x, u) = 4158 

Optimal Control Sequence: 4u  = (1, 1, 2, 2, 2). 

As can be seen above, GENO easily found this solution. The real-valued solution is also presented, and both may 
easily be validated by noting that the optimal control sequence satisfies the equality constraint in either case.  
 

Source Generations Best Variable Value Best Function Value CPU Time 

Larson and Casti NA See above 4158.000 - 

GENO 200 See above 4415.712 - 

 

                                                           
57 Source: Larson and Casti (1978, p.181)   

58 Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton NJ 
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III. The gep File: Example 3.9 
 

// A constrained uni-objective dynamic optimization problem 
// Source: Larson and Casti (1978, p.181).  
 
#definecs p_maxgens 200 
#definecs p_popsize 10 
#definecs p_agents 1 
#definecs p_order  1 
#definecs p_plan  5 
 
#include dynamic_gep_defaults.src 
 
let vars[p_agents, p_order] = 1; 
  
let discrete_var[p_order]  = 1; 
 
let ff_states[p_order] = 0;  
let cc_states[p_order] = 1;  
 
adj_mode   = "s"; 
solution_type = "e"; 
 
p_s_xover  = 0.55;   
p_a_xover  = 0.55;   
p_b_xover  = 0.00;   
p_h_xover  = 0.55;   
p_d_xover  = 0.55;   
p_shuffle  = 0.55; 
 
d_factor   = 0.80;   
quantum_0  = 0.1; 
rand_seed  = 240657; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
 
proc (2) = f(i,d,v_array); 
local u,x,fv,k; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);59 
  
 //evaluate objective 

fv = 1.0; 
 for k (1, plan, 1); 
  fv = fv*(1 + k*u[k]); 
 endfor; 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp (fv,v_array); 
endp; 
 
proc (1) = a(i,j,k); retp(state_fn(i,1,k));60 endp; 
 
proc (1) = b(i,j,k); retp(-1.0); endp; 
 
proc (1) = aa(z,w,j,k); retp(z[k]); endp; 
 
proc (1) = bb(z,w,j,k); retp(-1.0); endp; 

                                                           
59 Infra page 5, footnote 10. 

60 Infra page 26, footnote 39. 
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proc (2) = dynamic_control_bounds(i,j,k,low,upp); 
local n, fv, budget, stop_at; 
 budget = 8; 
 if(k == 1); fv = budget; 
 else; 
  fv = 0; 
  stop_at = k - 1; 
  for n (1, stop_at, 1); 
   fv = fv + control_fn(i,j,n);61 
  endfor; 
  if(fv > budget); fv = 0.0; 
  else; fv = budget - fv; 
  endif; 
 endif; 
 upp = min(fv, upp); 
 low = max( 0, low); 
 retp (low,upp); 
endp; 
 

 
 
VI. The dat File: Example 3.9  

Table 3.9a: Input Data for integer-valued solution Table 3.9b: Input Data for real-valued solution 
 

VARIABLE NAME X1  
VARIABLE NAME X1 

UCB 5  UCB 5 

LCB 0  LCB 0 

USB 8  USB 8 

LSB 0  LSB 0 

Initial State Vector 8  Initial State Vector 8 

Final State Vector 0  Final State Vector 0 

Discrete Values 1  Discrete Values 0 

Inter-connexion 
Matrix  

X1 1  
Inter-connexion 
Matrix  

X1 1 

 
 

V. Points to Note: Example 3.9 
 

1. solution control — The procedure proc dynamic_control_bounds evaluates the conjunction of the static control 
variable bounds (UCB and LCB) and the dynamic control bounds dictated by the given constraint, 

  8u
T

1k
k =∑

=

. 

2. discrete values — This example further illustrates GENO’s capability on discrete-valued programs. On these type of 
programs, the type of entries made in the dat file and the indicator matrix discrete_var should not 
be confused: the former is always a 0-1 indicator matrix with a ‘1’ entry for each discrete variable, and 
a ‘0’ entry otherwise; the later should contain the actual discrete values for each discrete variable, and 
an entry of ‘0’ for all non-discrete variables. Note that in this particular case, the discrete value is just 
happens to be 1. 

3. real-valued solution — The real-valued solution has been included for comparison purposes, and perhaps as a challenge 
to other algorithms since, as far as I know, it is the best known solution. 

 

                                                           
61 Infra page 26, footnote 39. 
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Example 3.10: Multi-objective Static Optimisation: Oligopolist Market Equilibrium Problem 62 
 
 ( ) T521 ),,,(Opt JJJ L=q

q

J  

 Subject to: 

 ( ) )()(=
iii

i qfpqJ −qq ;  
i

i

))(1(

)(
)(

ii

)1(

i
iiii α

α+

α+
+=

K

q
qcqf ;  

β

5000
)( 








=

Q
qp ;  ∑

=

=
n

1i
iqQ ; }5...,,2,1{=i  

 Problem-specific Data: 
 

Firm 
i

c  
i

K  
i

α  β  

1 10 5 1/1.2 1/1.1 

2 8 5 1/1.1 1/1.1 

3 6 5 1.00 1/1.1 

4 4 5 1/0.9 1/1.1 

5 2 5 1/0.8 1/1.1 

 
I. GENO Output 
 

Generation *

1q  *

2q  *

3q  *

4q  *

5q  

 0 36.100000 63.500000 40.500000 40.600000 21.700000 
 20 36.930000 41.810000 43.710000 42.660000 39.180000 
 60 36.932500 41.818160 43.706590 42.659240 39.178900 
 80 36.932511 41.818141 43.706578 42.659240 39.178952 
 90 36.932511 41.818141 43.706579 42.659240 39.178953 
 100 36.932511 41.818141 43.706579 42.659240 39.178953 
_______________________________________________________________________________________________________ 

Equilibrium Solution: *q  = (36.932511, 41.818141, 43.706578, 42.659240, 39.178952)T 

 
 
II. General Remarks 

This example was originally formulated by Murphy, et al. (1982) and has since been numerically solved by 
Harker (1984), Jörnsten (1991), as well as Kolstad and Mathiesen (1991). To provide a benchmark against which 
GENO may be compared to these other algorithms, a solution that is accurate to 18 decimal places was found (by 
solving the system of non-linear equations arising from the Karush-Kuhn-Tucker conditions) using the FindRoot 
facility of Mathematica. The results below clearly show that GENO computes the most accurate solution. 
 

qi Benchmark Murphy, et al. Harker Jörnsten Kolstad, et al.  GENO 

1 36.932510815735757481 36.9120 36.93180 36.9300 36.9350 36.932511 

2 41.818141660437635128 41.8200 41.81755 41.8200 41.8182 41.818141 

3 43.706578522274216542 43.7050 43.7060 43.7100 43.7066 43.706578 

4 42.659239743305114839 42.6650 42.6588 42.6600 42.6593 42.659240 

5 39.178952516625022418 39.1820 39.1786 39.1800 39.1790 39.178952 

                                                           
62 Source: Murphy, Sherali and Soyster (1982). 
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III. The gep File: Example 3.10 
 

// A Nash solution of a multi-objective unconstrained static optimization problem 
// Source: Murphy, Sherali and Soyster (1982)  

 
#definecs p_maxgens 150 
#definecs p_popsize 10 
#definecs p_agents  5 
#definecs p_order  5 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents,p_order] = { 
     1   0   0   0   0, //variables controlled by agent 1 
     0   1   0   0   0, //variables controlled by agent 2 
     0   0   1   0   0, //variables controlled by agent 3 
     0   0   0   1   0, //variables controlled by agent 4 
     0   0   0   0   1  //variables controlled by agent 5 
     }; 

 
adj_mode    = "s";  
solution_type  = "e";  
pos_orth    = true;  
view_vars   = true; 
  
p_s_xover   = 0.00;   
p_a_xover   = 0.55;   
p_b_xover   = 0.00;   
p_h_xover   = 0.55;   
p_d_xover   = 0.55;   
p_shuffle   = 0.55; 
 
d_factor    = 0.80;   
quantum_0   = 0.1; 
rand_seed   = 240658; 
  
proc (1) =  m_rate(i,d); retp(0.05); endp; 
 
proc (1) =  bm_rate(d); retp(0.005); endp; 
 
 
//problem-specific data 
let c_array[p_agents] = 10  8   6   4   2; 
let k_array[p_agents] = 5   5   5   5   5; 
let a_array[p_agents] = 0.83333333 0.90909091 1.00000000 1.11111111 1.25000000; 
let b_array[p_agents] = 0.90909091 0.90909091 0.90909091 0.90909091 0.90909091; 
 
 
proc (2) = f(i,d,v_array); 
local u,x,fv,fv1,fv2,k; 
 k = horizon; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);63 
 
 //evaluate objectives 
 fv1 = c_array[d]*x[d,k] + \ 
     (x[d,k]^(1 + a_array[d]))*(k_array[d]^(-a_array[d]))/(1 + a_array[d]); 
 fv2 = x[d,k]*coupler(d,i); 
 fv  = fv2 - fv1; 
 if (maximise); fv =  fv; else; fv = -fv; endif; 
 retp (fv, v_array); 
endp; 
 

                                                           
63 Infra page 5, footnote 10. 
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proc (1) = coupler(d,i); 
local u,x,fv,que,j,k; 
 que = 0; 
 k = horizon; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);64 
 for j (1, order, 1); 
  que = que + x[j,k]; 
 endfor; 
 fv = (5000^b_array[d])*(que^(-b_array[d])); 
 retp (fv); 
endp; 

 

 
VI. The dat File: Example 3.10 

Table 3.10: Input Data for the Market Equilibrium Problem 
 

VARIABLE NAME X1 X2 X3 X4 

UCB  100 100 100  100 

LCB 1 1 1 1 

USB  100 100 100  100 

LSB 1 1 1 1 

Initial State Vector 100 83 13 3 

Final State Vector 0 0 0 0 

Discrete Values 0 0 0 0 

X1 1 0 0 0 

X2 0 1 0 0 

X3 0 0 1 0 

Inter-connexion 
Matrix  

X4 0 0 0 1 

 
 

V. Points to Note: Example 3.10 
 

1. view_vars — For this example, the output is best viewed as variables values, hence set: view_vars = true. 

2. coupler — This is merely an auxiliary procedure for evaluating the objective function. 

 
 

                                                           
64 Infra page 5, footnote 10. 
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Example 3.11 Multi-objective Static Optimisation: The Euclidean Compromise Solution I 65  
 

 ( ) { })(),(Opt 21 xxxf
x

ff=  

 Subject to: ]6,6[−∈x  

 Where: 2

1 )( xf =x  

  ( )22 2)( −= xf x  

 
I. GENO Output 
 
 Generation Objective [1] Objective [2] 
 
 0 0.360000 1.960000 
 10 1.000000 1.000000 
 20 1.000000 1.000000 
 40 1.000000 1.000000 
 80 1.000000 1.000000 
 100 1.000000 1.000000 
____________________________________________________________________ 

Solution Vector: x = 1.000000 

Objective Function Value: f (x) = (1.000000, 1.000000) T  
 

 
II. General Remarks 

Preamble 

For a multiple objective optimisation problem, the solution ideally ought to be a win-win situation in which each 
individual objective function attains its best possible value within the constraints of the problem. But, as the 
name implies, the ideal solution is usually unattainable; all one can hope for is to numerically approach such a 
point as closely as possible. The Euclidean compromise is a solution concept for the multi-objective optimisation 
problem that is based on the notion of ‘being close to ideal’.66 The Euclidean compromise solution (ECS) is that 
point on the Pareto frontier that is closest to the ideal solution, as measured by the Euclidean distance metric. 
This example serves to illustrate the effectiveness of GENO at computing the ECS of a multiple objective 
optimisation problem. The example is simple enough to afford an analytical determination of the ECS, against 
which the performance of GENO may be measured.  

The Euclidean Compromise Solution: An Analytical Approach 

The location of the ideal solution in the space of outcomes may be determined as follows. The ECS is a point 
that lies on the Pareto frontier, which is itself the set of points that minimise the auxiliary objective: 

 ]1,0[),()1()()( 21 ∈αα−+α= xxx ffJ . (3.11a) 

At a minimum of (3.11a), the following first order optimality condition holds: 

 α−=⇔=−α−+α=
∂

∂
220)2)(1(22

)(
xxx

x

J x
 (3.11b) 

Using elementary interval arithmetic (Kearfott, 1996), one can easily show the following logical implications. 

                                                           
65 Source: Marco, Désidéri and Lanteri (1999). This is one of the test problems that Schaffer (1984) used to evaluate his multi-objective 
genetic algorithm called VEGA. His simple unconstrained two-objective functions comprised the test suite for validating most of the 
evolutionary multi-objective optimisation techniques developed in the ensuing years (Coello Coello, 2001, p.4). 

66 There are of course other notions of what constitutes a solution to the multi-objective optimisation problem, especially when viewed from 
the game theory perspective. In this regard, the Nash equilibrium concept is pervasive, and the ability of GENO at computing the Nash 
solution has been demonstrated elsewhere (see Example 3.8). The point of this example is to show that GENO is equally capable of 
computing solutions that one could associate with another major game-type, i.e. ‘the bargaining game’ (see concluding comments below).  
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Given that: ]1,0[∈α  then ]2,0[∈x  (3.11c) 

hence: ]4,0[1∈f  and ]4,0[2∈f  (3.11d) 

In this example, the operator ‘Opt’ denotes minimisation, hence the ideal solution (in the space of outcomes) is 
clearly the point (0, 0). Given a candidate solution, x*, its Euclidean distance in the space of outcomes from the 
ideal solution is: 

 ( ) 442

2

2

1 )2()()()( −+=+= xxffR xxx . (3.11e) 

This distance is minimal when the following equation holds: 

 0)2(0)( 33 =−+⇔=∂∂ xxxR x . (3.11f) 

The only point on the Pareto frontier — whose domain is ]2,0[∈x  — that satisfies condition (3.11f) is 1=x , 

and at this ‘Euclidean compromise solution’, we have that: 

 1)1(1 =f  and 1)1(2 =f  (3.11g) 

As can be seen from the results above, GENO easily finds this solution. 

Concluding Remarks 

The Euclidean Compromise Solution is a member of a class of solutions first suggested by Yu (1973). It is 
closely related to other single-point solutions of the so-called bargaining problem in the theory of games in that 
(a) they are all specific points on the Pareto-efficient frontier of multi-objective optimisation problems, (b) they 
are defined relative to some auxiliary points—the ideal solution in the case of ECS, and the disagreement point 
(or both) in the bargaining context. 

The most common solution concepts in the bargaining context are the Nash Bargaining Solution, Kalai-
Smorodinsky Solution and the Maschle-Perles Solution.67 Though one can numerically compute the former 
directly by using standard non-linear programming algorithms, the same cannot be said of the others.68 In any 
case, the use of non-linear programming methods relies on a weighted-sum representation of the Pareto frontier. 
This can be problematic because, as is well known, the weighted-sum approach is incapable of generating points 
from all parts of the Pareto set in all cases (Das and Dennis, 1997). 

In contrast, GENO does not require “scalarization” of the objective vector. The algorithm is therefore capable of 
converging to any point on the Pareto frontier that is sufficiently characterised with respect to the ideal outcome. 
As can be seen from the results presented above, it converges to the Euclidean compromise solution within ten 
generations! Furthermore, provided the components of the solution vector are properly scaled in outcome space, 
the ECS as generated by GENO will always exhibit a “middling characteristic”,69 which is intuitively what is 
desired of a compromise solution. 

 

                                                           
67 See the survey paper by Rosenmüller and Trockel (2001). 

68 Admittedly, bargaining solutions may be determined indirectly by formulating a fictitious non co-operative game whose Nash equilibrium 
coincides with the said solution.  This research agenda is commonly called ‘The Nash Program’ and is closely related to another area of 
research called ‘Mechanism Theory’; for details, see e.g. Trockel (1999). 

69 The term ‘middling’ was brought to the multi-objective programming lexicon by Schaffer (1984) who noted that his VEGA algorithm 
tended to produce solutions that excelled on one criterion, but performed poorly on others. He argues that what is desirable of a compromise 
solution is that it should have acceptable performance simultaneously on all criteria, i.e. a “middling performance”. 
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III. The gep File: Example 3.11 
 

// A Pareto solution of a multi-objective unconstrained static optimization problem 
// Source: Marco, Désidéri and Lanteri (1999)  
 
#definecs p_maxgens  200 
#definecs p_popsize  20 
#definecs p_agents  2 
#definecs p_order   1 
#definecs p_plan   1 
  
#include static_gep_defaults.src 
 
 
let vars[p_agents, p_order] = {1,  // variables controlled by agent 1 

1}  // variables controlled by agent 2 
 

let i_point[p_agents] = 0   0; 
 
adj_mode   = "g";  
solution_type = "i";  
maximise   = false;  
proximity  = true; 
 
p_s_xover = 0.00;   
p_a_xover = 0.55;   
p_b_xover = 0.00;   
p_h_xover = 0.55;   
p_d_xover = 0.55;   
p_shuffle = 0.55; 
 
d_factor  = 0.250;   
quantum_0 = 0.1; 
rand_seed = 2406525;  
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 

  
 
proc (2) = f(i, d, v_array); 
local j,u,x,fv,fv1,fv2,k; 
 k = horizon; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);70 
 
 //evaluate objectives 
 if(d == 1);     fv = x[1,k]^2; 
 elseif(d == 2); fv = (x[1,k] - 2)^2; 
 endif; 
 if (maximise); fv =  fv; else; fv = -fv; endif; 
 retp (fv, v_array); 
endp; 
 
 

 

                                                           
70 Infra page 5, footnote 10. 
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VI. The dat File: Example 3.11 

Table 3.11: Input Data for the Euclidean Compromise Problem I 
 

VARIABLE NAME X1 

UCB  1e20 

LCB -1e20 

USB 6 

LSB -6 

Initial State Vector 0 

Final State Vector 0 

Discrete Values 0 

Inter-connexion 
Matrix  

X1 1 

 
 

V. Points to Note: Example 3.11 
 

1. i_point — The matrix i_point specifies the coordinates of the ‘ideal solution’ in the space of objective function 
values (see ‘General Remarks’ above).    

2. adj_mode — The adj_mode parameter in this case should be set to "g". This effectively switches GENO to a “group 
rational” mode of operation in the quest for a multi-objective solution to the problem.71  

3. solution_type — The solution_type parameter in this case should be set to "i" (for ‘ideal solution’). 

                                                           
71 For expositional purposes, let each component function of the vector J in MP1 be the concern of a decision-maker or player, and let each 
player derive some utility from values attained by his respective ‘outcome’ or ‘payoff’ function. Also, assume the pth player controls a subset, 

N1 p
1T

p
0

p
1T ++ ×⋅⋅×∈ XXx , of the state vector via a set of decisions or actions, N1 p

T
p
0

p
T UU ×⋅⋅×∈u .71 Then it is immediately clear that MP1, in 

all its guises, can be treated essentially as a dynamic game. One may therefore borrow some relevant concepts and analytical tools from the 
theory of games in order to deal with the general multi-criteria problem and vice versa. And as noted above, the ‘Euclidean compromise’ is 
one of a class of solutions for the multi-agent optimisation problem that are based on Vilfredo Pareto’s notion of ‘efficiency’, a typical 
explanation of which may be found in e.g. Fonseca and Fleming (1995). In Game-theoretic terms, a Pareto-efficient solution has the property 
that no player can improve his outcome (i.e. objective function value) without worsening the situation of the other player. It formalises what 
is called group rationality since it would be irrational for the players as a group to settle for a solution that is not Pareto-efficient: by moving 
to an efficient solution (in the sense of Pareto), the outcome for at least one player can improve without damaging the situation for the other. 
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Example 3.12 Multi-objective Static Optimisation: The Euclidean Compromise Solution II 72  
 
 ( ) { })(),(Opt 21 zzzf

z

ff=  

 subject to: 22

1 )3y()1x()( −+−=zf ;  ( ) ( )22

2 2y4x)( −+−=zf  

  ]5,5[]5,5[)y,x( T −×−∈=z  

 
I. GENO Output 
 
 Generation Objective [1] Objective [2] 
 
 0 1.730000 7.930000 
 10 2.500000 2.500000 
 20 2.500000 2.500000 
 40 2.500000 2.500000 
 80 2.500000 2.500000 
 100 2.500000 2.500000 
____________________________________________________________________ 

Solution Vector: z = (2.500000, 2.500000) T 

Objective Function Value: f (z) = (2.500000, 2.500000) T  
 
 
II. General Remarks 

The Pareto frontier is that set of points that minimise the auxiliary objective: 

 ]1,0[),()1()()( 21 ∈αα−+α= zzz ffJ . (3.12a) 

The first order optimality conditions are: 

 α−=⇔=∂∂ 340)( xxJ z ;  α+=⇔=∂∂ 20)( yyJ z  (3.12b) 

Given that ]1,0[∈α , then ]4,1[∈x , ]3,2[∈y , and hence ]10,0[1∈f , ]10,0[2∈f . In this example, the operator 

‘Opt’ denotes minimisation, therefore the ideal solution in the space of outcomes is the point (0, 0). Given a 
candidate solution, z*, its Euclidean distance from the ideal point (in the space of outcomes) is: 

 ( ) 2222222

2

2

1 ])2()4[(])3()1[()()()( −+−+−+−=+= yxyxffR zzz . (3.12c) 

This distance is least when the following holds: 

 103)0)(()0)(( =+⇔=∂∂∧=∂∂ yxyRxR zz . (3.12d) 

There are many points that satisfy condition 3.12d but by evaluating 3.12c at points near the candidate solution, 
z* = (2.5, 2.5)T that are also on the frontier,73 one may verify that z* is indeed a minimum point, viz.: 
 

 ZT = (2.53, 2.49) ZT = (2.47, 2.51) ZT = (2.5, 2.5) ZT = (2.49, 2.503) ZT = (2.51, 2.497) 

f1 2.601 2.401 2.5 2.467 2.533 

f2 2.401 2.601 2.5 2.533 2.467 

Distance Function 3.53977 3.53977 3.53553 3.53592 3.53592 

 
The point z* = (2.5, 2.5)T is thus the Euclidean compromise solution, at least up to the second decimal place. 
And as can be seen, GENO easily computes this solution. 

                                                           
72 Source: Marco, Désidéri and Lanteri (1999).  

73 Note that for the ‘new point’ to be on the Pareto-efficient frontier, the perturbations in the variables must satisfy 03 =δ+δ yx . 
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III. The gep File: Example 3.12 
 

// A Pareto solution of a multi-objective unconstrained static optimization problem 
// Source: Marco, Désidéri and Lanteri (1999)  
 
#definecs p_maxgens  200 
#definecs p_popsize  20 
#definecs p_agents  2 
#definecs p_order   2 
#definecs p_plan   1 
  
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = {1 1,  // variables controlled by agent 1 

1 1}  // variables controlled by agent 2 
 

let i_point[p_agents] = 0   0; 
 
adj_mode   = "g";  
solution_type = "i";  
maximise   = false;  
proximity  = true; 
 
p_s_xover = 0.00;   
p_a_xover = 0.55;   
p_b_xover = 0.00;   
p_h_xover = 0.55;   
p_d_xover = 0.55;   
p_shuffle = 0.55; 
 
d_factor  = 0.250;   
quantum_0 = 0.1; 
rand_seed = 240658;  
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 

  
proc (2) = f(i, d, v_array); 
local j,u,x,fv,fv1,fv2,k; 
 k = horizon; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);74 
 
 //evaluate objectives 
 if(d == 1);     fv = (x[1,k] - 1)^2 + (x[1,k] - 3)^2; 
 elseif(d == 2); fv = (x[1,k] - 4)^2 + (x[1,k] - 2)^2; 
 endif; 
 if (maximise); fv =  fv; else; fv = -fv; endif; 
 retp (fv, v_array); 
endp; 
 
 

 

                                                           
74 Infra page 5, footnote 10. 
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VI. The dat File: Example 3.12 

Table 3.12: Input Data for the Euclidean Compromise Problem II 
 

VARIABLE NAME X1 X2 

UCB  5  5 

LCB -5 -5 

USB  5  5 

LSB -5 -5 

Initial State Vector 0 0 

Final State Vector 0 0 

Discrete Values 0 0 

X1 1 0 
Inter-connexion 
Matrix  

X2 0 1 

 
 

V. Points to Note: Example 3.12 
 

1. i_point — The matrix i_point specifies the coordinates of the ‘ideal solution’ in the space of objective function 
values (see ‘General Remarks’ above).    

2. adj_mode — The adj_mode parameter in this case should be set to "g". This effectively switches GENO to a “group 
rational” mode of operation in the quest for a multi-objective solution to the problem.  

3. solution_type — The solution_type parameter in this case should be set to "i" (for ‘ideal solution’). 
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Example 3.13 Multi-objective Dynamic Optimisation: Efficient Portfolio Selection 75  
 
 ( ) { })(),(=,JOpt 21 TTT1T

u

uuux ff+  

 Subject to: kk1k uxx −=+  

  1u
T

1k
k =∑

=

 

  1x1 = ;   0x 1T =+ ;   ]1,0[u k ∈ ;   6T =  

 Where: ∑
=
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1k
kk1 ur)(

T
uf ;   ∑∑

−

==

=
1t

1k
kttkkt

T

1t
2 uu)( σσρ

T
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Other data:  
 

 Merrill Lynch Paine Webber Digital Equipment Microsoft Silicon Graphics Hewlett-Packard 

Mean Return  15.852 14.262 31.336 25.775 50.228 14.842 

Std Deviation 37.215 41.773 33.165 62.009 60.720 23.757 

 

Correlation Matrix Merrill Lynch Paine Webber Digital Equipment Microsoft Silicon Graphics Hewlett-Packard 

Merrill Lynch 1.000 0.944 0.146 0.231 0.379 0.258 

Paine Webber 0.944 1.000 0.109 0.239 0.413 0.223 

Digital Equipment 0.146 0.109 1.000 -0.169 -0.229 0.691 

Microsoft 0.231 0.239 -0.169 1.000 0.882 -0.256 

Silicon Graphics 0.379 0.413 -0.229 0.882 1.000 -0.284 

Hewlett-Packard 0.258 0.223 0.691 -0.256 -0.284 1.000 

 
I. GENO Output 
 
 Generation Portfolio Return Standard Deviation 
 
 0  33.588800 26.346978  
 20 37.483200 29.805179  
 60 37.483200 29.805179  
 80 37.483200 29.805179  
 100 37.483200 29.805179  
__________________________________________________________________________________________________ 

 Merril Lynch Paine Webber Digital Equip Microsoft Silicon Graph Hewlett-Packard 

Allocation 6u : 0.000000 0.000000 0.300000 0.000000 0.500000 0.200000  

Investment Fund 7x : 1.000000 1.000000 1.000000 0.700000 0.700000 0.200000 0.000000 

  
Portfolio Return: 37.483200 

Standard Deviation: 29.805179 
 

                                                           
75 Source: The portfolio selection model is due to Markowitz (1952).  
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II. General Remarks  
 
Part I: On the Markowitz Investment Model 

The Markowitz model76 is concerned with how a rational investor in the capital markets would select and invest 
his wealth in financial securities. If the individual has a utility function U and there are N securities with random 
single-period returns ir  available for investing in, the Markowitz portfolio selection model has it that the 
investor’s optimal portfolio should be the solution to the programming problem: 

MP13: ( ) ( ){ }ii

01 x,r,wU=Zmax Ex
x

 

 Subject to: 0x i ≥  

  1x
i

i =∑  

 where: 1Z  is the investor's expected utility;  

  E is the mathematical expectation operator; 

  0w  is the investor's initial wealth; 

  ix  is the proportion of wealth allocated to the i-th asset; 

  ir  is the rate of return of the i-th asset. 

If the investor has a negative exponential utility function for wealth, and the returns are joint-normally 
distributed, the expected utility maximisation problem above is equivalent to the Mean-Variance optimisation 
problem given below:77 

MP14: ( ) ∑∑∑
<

−−
ij

ijji

i

1

i

ii

2 cxxrx=Zmax ϕx
x

 

 Subject to: 0x i ≥  

  1x
i

i =∑  

 where: ir  is the expected return for the i-th asset; 

  ijc  is the covariance of returns between the i-th and j-th assets; 

  ix  is the proportion of wealth invested in the i-th asset; 

  ϕ  is the investor’s risk tolerance. 

Even if the investor had any other utility function (other than the negative exponential) and/or the returns were 
not joint-normally distributed, Levy and Markowitz (1979) provide empirical evidence which shows that the 
mean-variance maximand Z2 is a good approximation of Z1 for a wide variety of utility functions. 

Historically, the Mean-Varience model MP14 has usually been solved by either selecting and fixing a risk level 
and then calculating the best achievable portfolio return; or fixing the portfolio return at some arbitrary level and 
then searching for a feasible portfolio of minimum variance that has this rate of return. In either case, one 
normally employs optimization methods to compute the solution. For example, the latter approach would involve 
solving the M-program: 

 

                                                           
76A brief review of the model is in Markowitz (1991) and Sharpe (1991). Some management consulting firms such as Marakon Associates 
and Strategic Planning Associates have in fact proposed employing the equilibrium version of the Markowitz model (the Capital Asset 
Pricing Model or CAPM) not only as a decision making tool for investors with a portfolio of financial assets, but also as a planning tool for 
corporations that manage a portfolio of businesses, SBUs, etc. (Naylor and Tapon: 1982, p.1166). 

77 For a recent review of the Mean-Variance reformulation of  Markowitz’s normative model, see e.g. Sharpe (1991). 
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MP15: ( ) ∑∑
<ij

ijji

i
3 cxx=Zmin x
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 Subject to: 0x i ≥  

   rrx
i

ii =∑  

   1x
i

i =∑  

 where: r  is the required portfolio return; 

  ir  is the expected return for the i-th asset; 

  ijc  is the covariance of returns between the i-th and j-th assets; 

  ix  is the proportion of wealth invested in the i-th asset; 

  ϕ  is the investor’s risk tolerance. 

The method of solution employed by GENO in Example 3.13 is clearly different.78 The re-formulation of the 
Markowitz model as a bi-objective dynamic optimisation problem exploits the fact that GENO can easily 
compute the Euclidean compromise solution — a point that is on the efficient frontier of the portfolio and is 
closest to the ideal outcome. Since, by convexity of the minimum-variance set, the portfolio return cannot exceed 
the maximum of the individual returns of the assets comprising the portfolio;79 since, by logic, the typical 
investor can rationally be expected to exhibit non-satiated risk-averse behaviour;80 and since, by design, GENO 
converges to the Pareto-efficient frontier, the ideal outcome should always be stated as comprising the maximum 
available return (i.e. Silicon Graphics in the example above), and the maximum risk (as measured by the 
portfolio standard deviation) that the investor can bear. 

Better still the problem should be re-scaled such that, (for any rational investor), the ideal solution is the origin 
of the outcome space. In this particular case for example, instead of seeking to maximise the portfolio return, one 
might consider minimising the reciprocal of the portfolio return.81 That is, one considers the model: 

 

MP16: ( ) { })(),(=,JOpt T2T1T1T uuux
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ff+  
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Clearly, logic dictates that the ideal outcome for MP16 is (0, 0). 

                                                           
78 I am unaware of a re-formulation of the Markowitz model that is similar to the bi-objective pseudo-dynamic optimisation model presented 
here, although latterly Armañanzas and Lozano (2005), and Streichert, et al. (2003) have suggested bi-objective static optimisation models 
that are somewhat similar.  

79 See e.g. Luenberger (1998, Chap.6). 

80 Ibid. 

81 This approach is valid provided the returns are positive. 
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II. General Remarks  
 
Part II: On Robust Optimisation  
 
Preamble 
 
All real-life optimal design or control problems involve some system parameters whose true values can never be 
known precisely due to measurement errors, extraneous random noise, or some other technical difficulties. And 
yet these parameters must be assigned some numerical values before optimisation techniques can be applied to 
generate solutions. In many applications, good estimates of system parameters are all that is needed — the 
ensuing variations in the “optimal solution” induced by the uncertainty in parameter values being within 
acceptable margins. But there exist instances where accounting for “system shocks” may be critical, and to this 
end, a research agenda called Robust Optimisation has recently emerged to address the issue. The following is a 
presentation of a decision model (inspired by Markowitz’s Portfolio Theory) that may be used to design robust 
policies for the control of national economies, and on which GENO’s EC solution approach may be applied. 
 
Robust Economic Policy Design 

 
Most realistic economic models involve some stochastic variables. However, for purposes of formulating 
practical policies, the computational difficulties associated with stochastic models, coupled with other 
conceptual considerations strongly favour the adoption of a suitable deterministic approximation. A standard 
approach in this regard is to assume the deterministic model that results when all the random variables in the 
stochastic model are fixed at their most likely values. This procedure is completely adequate for LQG 
problems:82 in this case, a separation of the problem into a deterministic part and a stochastic part can easily be 
derived, and the Certainty Equivalence Principle applies.83 
 
Unfortunately, the certainty equivalence principle cannot always be applied in the general non-LQG case. To 
partly compensate for this therefore, one needs to formulate the deterministic approximation such that the 
solutions it generates would, to some extent, be unaffected by perturbations in the system. Such solutions are 
termed robust and the need for robust solutions in applied policy-design work is evidently crucial because 
policy-makers are, in general, poorly informed about prospective disturbances that might impinge on the system, 
and it is therefore desirable to design policies that would perform reasonably well under different types of 
possible shocks. This requirement becomes even more important when it is considered that often the solutions 
proposed are of the open-loop type, and hence the disturbance-rejection advantage of feedback is not available. 
Accordingly, Rustem (1989) proposes a technique for generating robust economic policies based on Control 
Theory’s notion of sensitivity (for an alternative approach, see Zhang (2005) and references cited therein). 
 
The Sensitivity Approach 

 
Consider the single-agent stochastic policy optimisation problem below. 

MP17:  
U

min  E { }0UZ0UZUZ ≤=ε ),(G;),,(F),(J  

 where: E denotes mathematical expectation; 

   ε  is the vector of random disturbances; 

   Z is the vector of endogenous variables; 

   U is the vector of decision variables; 

   J is the policy objective function; 

   F is a vector function denoting the model equations; 

   G is a vector function of the constraints imposed on Z and U. 

                                                           
82 These are problems where one seeks to optimise a Quadratic objective functional subject to Linear constraints with additive random 
disturbances drawn from a Gaussian distribution. 

83 The Certainty Equivalent Principle states that, when optimising under uncertainty, one simply adopts the policy rule which is optimal for 
the deterministic part. The principle is universally applicable in LQG problems; and where it applies, a useful result is that the optimal rule is 
universal, i.e. independent of the initial conditions of the problem and the disturbances in the model (Currie and Levine: 1993, p.98)  
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In order to generate optimum policies that are also robust, Rustem (1989) suggests appending a sensitivity 
measure to the original objective function and then solving a deterministic version of the problem. The basic idea 
of the sensitivity technique is to re-formulate the problem such that the sensitivity term so introduced is 
optimised simultaneously with the original objective function. Two types of sensitivity measures may be 
considered: (a) the sensitivity of the optimal objective function with respect to random disturbances; this is given 
by the gradient vector ∂ε∂=ε JJ ; (b) the sensitivity of the optimum path of the endogenous variables with 

respect to random disturbances; this is similarly defined as the matrix ∂ε∂= εε ZZ . 

 
In terms of sensitivity measure (a), robust policies may be obtained by solving the deterministic problem: 

MP18:  
U

min  { }0UZ00UZUZ ≤=α ),(G;),,(F),,(J  

 where: 
0=εεε Σα+α−= JJJJ ,)1( ,  ]1,0[∈α ; 

  Σ  is a positive semi-definite weighting matrix. 
 
Similarly, in terms of measure (b), the applicable deterministic problem is (Rustem: 1989, p.198): 

MP19:  
U

min  { }0UZ0UZUZ 0 ≤=α ),(G;),,(F),,(J  

 where: 
2

F

T)1( εε Σα+α−= ZZJJ ,   ]1,0[∈α ; 

  ∑∑=
j

ij

i

a
2

F
||A  denotes the Frobenous norm of the matrix A. 

 

The function J  is thus a convex combination of the original objective function, J, and a sensitivity measure 
evaluated at the most likely value of the disturbance vector (here taken to be ε = 0 with no loss in generality). 
The weighting matrix Σ depends on the type of uncertainty considered, and its elements determine the relative 
importance attached to the various sources of this class of uncertainty in the system. To compute solutions that 
are robust with respect to perturbations due to the stochastic nature of the behavioural equations, Σ would be 
represented by the variance-covariance matrix of the error terms; for robustness against uncertainty in the 
forecasts of exogenous variables, Σ would be represented by the variance-covariance matrix of the forecast 
errors; and for robustness against uncertainty in estimated model parameters, Σ would be represented by the 
variance-covariance matrix of the estimates.  
 

The sensitivity components of J  can be shown to be related to )},,({ ε∗∗ UZvar J . With reference to the Mean-

Variance objective function 

 { } { } ]1,0[,),,(),,()1( ∈βεβ+εβ−= UZvarUZ JJEG , 

 
Rustem (1989, pp.198-199) shows that if the disturbance vector is ),0(~ Ωε N , then an exact equivalence 

between the robust policy objective J  and the Mean-Variance objective G  is easily established for LQG 
problems by simply defining the weighting matrix Σ as the covariance matrix of the disturbance the vector, ε;84 
Paraskevopolulos, et al. (1991) empirically show that the unperturbed objective function )0,,( UZJ  and the 

associated sensitivity function 
0=εεε ΣJJ ,  are adequate proxy measures of the expected value and variance of  

the random variable ),,( ε∗∗ UZJ  respectively.   

 

                                                           
84 For a non-linear models however, this equivalence does not hold. This is due to the fact that the non-linearity introduces a bias term in 

)}(J{ ⋅E  which renders the assumption that )}(J{ ⋅E  is equal to the deterministic version of the original objective function J to be untrue; 

furthermore, equivalence of )}(J{ ⋅var  to the sensitivity terms introduced can only be established if the coefficient of the first-order Taylor 

series approximation of the nonlinear model at 0====ε  is a constant. However, see Becker, et al. (1994) for a correction that may be used to 
alleviate this. 
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The parameter α of the augmented objective function J  may be therefore interpreted as a risk-aversion factor 
that signifies a trade-off between the size of the expected payoff and the uncertainty associated with the payoff. 
The act of choosing any particular value for α implies a cost-benefit trade-off of some sort: the “cost of α” is the 
detriment in the expected payoff, and the “benefit of α” is the reduction in the degree of uncertainty that is 
associated with the expected payoff. And in this risk-aversion interpretation, α signifies the degree of uncertainty 
in the solution which the decision maker can tolerate: a risk-taker can be expected to exhibit a value of α that is 
close to zero, whereas a more risk-averse decision-maker would be characterised by an α which is close to one. 
 
As regards the determination of the particular value of α that applies to a given implementation, it has been 
suggested that this should be done implicitly. That is say, the analyst should generate a series of solutions 
corresponding to a finite set of robustness parameters, ]1,0[: k ∈αΑΑΑΑ , k = 1, 2, ..., m, i.e.: 

 { } ΑΑΑΑ∈α
∗∗∗∗ εεα k)},,(J{)},,(J{,k UZvar,UZE  

 
The set of solutions should be presented (in tabular or graphical form) to the user who then selects the 
combination that most appeals to him or her. This solution procedure is what is termed a posteriori articulation 

of preferences in the multi-objective optimisation lexicon; it is seemingly viable, but it can be problematic.85 An 
alternative method would be to adopt an a priori articulation of preferences approach such as GENO’s EC 
solution method illustrated by Examples 3.10 through 3.12. In the robust optimisation context, one solves the 
deterministic bi-objective problem: 
 
MP20: ( ) { }),(),,(=,JOpt 21 UZUZUZ

u

ff  

 Subject to: 0UZ =ε),,(F ;  0UZ ≤),(G ;  0=ε  

 Where: ),,(),(1 εUZUZ Jf = ;   
0

UZ =Σ= εεε JJf ,),(2  

 
The challenge now is provide a simple mechanism for determining (the model user’s) ‘ideal outcome’ that 
GENO’s EC method requires. One approach may be to adapt knowledge elicitation techniques that are common to 
developers of computer-based Expert Systems. One could proceed as follows: (1) first solve MP18 (or MP19) to 
establish the two extreme outcomes Js and Jr corresponding to 0≈α  (the “almost sure outcome”) and 1≈α  
(the “risky outcome”) respectively, together with the accompanying sensitivity values Ss and Sr; (2) next, obtain 
the model user’s preference by posing the following question: “On a scale of 1 to 10, given that 1 yields (Js, Ss) 
and 10 yields (Jr, Sr), what is your preference?”; (3) the stated preference—a number on ]10,0[ —can then be 

translated back to the α-scale as αp; (4) MP18 (or MP19) should then be solved to obtain Sαp; (5) the ‘ideal point’ 
in outcome space as required by MP20 is then ],[

pr αSJ . Alternatively, the problem should be re-formulated such 

that the ideal solution is logically the origin of the outcome space. 
 
Closure 

 
The idea of replacing a stochastic programming problem with an approximate deterministic equivalent that 
includes a compensating term to ensure robust solutions affords a method of dealing with the uncertainty that is 
ubiquitous in practical systems. GENO’s EC solution procedure offers a computationally efficient method of 
generating solutions in a given setting.  
                                                           
85 Solving multi-objective problems generally comprises two fairly distinct stages: a search procedure and a decision-making process. 
Depending on how the two are combined, three classes of methods are discernable, namely: 

 1. A priori Articulation of Preferences. [Decide-then-Search] The model-user expresses his preferences in terms of an aggregate 
utility function prior to optimisation. 

 2. A posteriori Articulation of Preferences. [Search-then-Decide] The model-user is presented with a set of non-inferior solutions; 
he proceeds to select a solution from the given set. 

 3. Progressive Articulation of Preferences. [Decide-and-Search] Preference articulation by the decision maker and solution 
generation proceed in parallel at inter-leafed steps. 

Most current research on the numerical solution of multi-objective problems has tended to concentrate on devising techniques for generating 
the entire set of non-inferior solutions, in a ‘search-then-decide’ solution strategy. This approach has major drawbacks: if the number of 
objectives is large, then the computational effort required to generate the entire non-inferior set can be very substantial; worse still, 
presenting a visually simple solution set is impossible except in the two dimensional case. Hence the user may not be able to articulate his 
preferences after all. 
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III. The gep File: Example 3.13 
 

 
// A Pareto solution of a constrained multi-objective dynamic optimization problem  
// Source: See Footnote 75 
 
#definecs p_maxgens  200 
#definecs p_popsize  20 
#definecs p_agents  2 
#definecs p_order   1 
#definecs p_plan   6 
 
#include dynamic_gep_defaults.src 
 
 
let vars[p_agents, p_order] = {1,  // variables controlled by agent 1 

1}  // variables controlled by agent 2 
 

let i_point[p_agents] = 51   25; 
 
adj_mode   = "g";  
solution_type = "i";  
pos_orth   = true;   
proximity  = true; 
 
p_s_xover = 0.55;   
p_a_xover = 0.55;   
p_b_xover = 0.00;   
p_h_xover = 0.55;   
p_d_xover = 0.55;  
p_shuffle = 0.55; 
     
d_factor  = 0.80;   
quantum_0 = 0.1; 
rand_seed = 240658;  
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
 
//problem-specific data 
//source: Schoenberg (1994). 
let ave_ret[p_plan] = 15.852   14.262   31.336   25.775   50.228   14.842; 
let std_dev[p_plan] = 37.215   41.773   33.165   62.009   60.720   23.757; 
 
let corr_mtx[p_plan,p_plan] = {1.000   0.944   0.146   0.231   0.379   0.258, 
           0.944   1.000   0.109   0.239   0.413   0.223, 
           0.146   0.109   1.000  -0.169  -0.229   0.691, 
           0.231   0.239  -0.169   1.000   0.882  -0.256, 
           0.379   0.413  -0.229   0.882   1.000  -0.284, 
           0.258   0.223   0.691  -0.256  -0.284   1.000}; 

 

proc (2) = f(i, d, v_array); 
local u,x,fv,fv1,fv2; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);86 
 
 if(d == 1);   fv = portfolio_return(u); 
 elseif(d == 2); fv = portfolio_risk(u); 
 endif; 
 retp (fv, v_array); 
endp; 
 
 

                                                           
86 Infra page 5, footnote 10. 
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proc (1) = portfolio_return(u); 
local k,fv; 
 fv = 0; 
 for k (1,plan,1); 
  fv = fv + ave_ret[k]*u[k]; 
 endfor; 
 if (maximise); fv = fv; else; fv = - fv; endif; 
 retp(fv); 
endp; 
 
 
proc (1) = portfolio_risk(u); 
local k,t,fv,stop_at,sum1,sum2; 
 fv = 0; sum2 = 0; 
 sum1 = (u[1]^2)*(std_dev[1]^2); 
 for t (2,plan,1); 
  stop_at = t - 1; 
  sum1 = sum1 + (u[t]^2)*(std_dev[t]^2); 
  for k (1,stop_at,1); 
   sum2 = sum2 + corr_mx[t,k]*u[t]*u[k]*std_dev[t]*std_dev[k]; 
  endfor; 
 endfor; 
 fv = sqrt(sum1 + 2*sum2); 
 if (maximise); fv = fv; else; fv = - fv; endif; 
 retp(fv); 
endp; 
 
 
proc (1) = a(i,j,k); retp(state_fn(i,1,k)87); endp; 
 
proc (1) = b(i,j,k); retp(-1.0); endp; 
 
proc (1) = aa(z,w,j,k); retp(z[k]); endp; 
 
proc (1) = bb(z,w,j,k); retp(-1.0); endp; 
 
proc (1) = ee(z,w,j,k); retp((z[k+1] + w[k])); endp; 
 
 
proc (2) = dynamic_control_bounds(i,j,k,low,upp); 
local n, fv, budget, stop_at; 
 budget = 1; 
 if(k == 1); fv = budget; 
 else; 
  fv = 0; 
  stop_at = k - 1; 
  for n (1, stop_at, 1); 
   fv = fv + control_fn(i,j,n);88 
  endfor; 
  if(fv > budget); fv = 0.0; 
  else; fv = budget - fv; 
  endif; 
 endif; 
 upp = min(fv, upp); 
 low = max( 0, low); 
 retp (low,upp); 
endp; 
 

 

                                                           
87 Infra page 26, footnote 39. 

88 Infra page 26, footnote 39. 
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VI. The dat File: Example 3.13 

Table 3.13: Input Data for the Portfolio Selection Problem 
 

VARIABLE NAME X1 

UCB 1 

LCB 0 

USB 1 

LSB 0 

Initial State Vector 0 

Final State Vector 0 

Discrete Values 0 

Inter-connexion 
Matrix  

X1 1 

 

V. Points to Note: Example 3.13 
 

1. i_point — On this type of problem, the components of the i_point should always be (a) the largest asset return in the 
portfolio; (b) the maximum risk (as measured by the standard deviation) that the user is willing to bear.    

2. proximity — The proximity parameter effectively switches GENO to a “next-to-ideal” mode of operation in the quest for a 
multi-objective solution to the problem.  

3. ee(z,w,j,k) — The state vector is fixed at the final “time”, hence the need for the proc ee(z,w,j,k). Note that 
the final value needn’t be ‘0’; it can be any other value between ‘0’ and ‘1’. The ‘0’ ensures that all the 
available funds are invested in the chosen assets. 

4. risk-free asset — If the portfolio includes a risk-free asset, one can easily add this to the computation by merely 
including its rate return and a standard deviation of ‘0’. 

5. allocation bounds — If the investment in a particular asset is required to be within certain bounds, this may easily 
be accommodated via proc dynamic_state_bounds. For instance, in the example 
above, if the funds allocated to Microsoft — the 4th asset in the sequence — are required to 
be at least 15% but less than 20% the total, one need to add code that dynamically modulates 
of the bounds affecting the 5th column of the state matrix as shown below: 

 
proc (2) = dynamic_state_bounds(i,j,k,low,upp); 
local fv1,fv2;  
  fv1 = low; 
  fv2 = upp; 
  if(k == 4); 
  fv1 = state_fn(i,j,k)89 - 0.20; 
  fv2 = state_fn(i,j,k) - 0.15; 
  endif; 
 upp = min(fv2, upp); 
 low = max(fv1, low); 
 retp (low,upp); 
endp; 
 

The code above follows directly from the dynamic constraint kk1k uxx −=+  because if   

4u  is restricted to the set [0.15, 0.20], then by elementary interval arithmetic, the variable 

5x  clearly must lie within the interval [( 4x  - 0.20), ( 4x  - 0.15)]. However, this technique 

is most effective when the restricted asset is located early in the sequence of assets, i.e. k = 1 
or 2. A larger population size may also be necessary. 

                                                           
89 Infra page 26, footnote 39. 



 
 
 

   
Copyright  1997-2006: Ike’s Research Ltd 

67 

 

Example 3.14 Multi-objective Optimisation: A Dynamic Non-cooperative Game 90  
 

Problem 1: ( ) )(Qu)T2(x=Jmax
1-T

0 =k 

2

k

11

T1 xux,
u

−− ∑−  

 Subject to: 2

k

1
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  2

k

21

k

2

k
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1k u)T(xx2x −
+ +−=  

  R∈kx ;  ]100,100[u k −∈ ;  )0,0(,5T 0 == x . 
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Problem 3: ( ) )(Q])u()q[()x()q(s=Jmax
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Problem 4: ( ) )(Q])u(r)x(s[)x(q=Jmin
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90 Source: Problems 1, 3, 4 and 7 are from Michalewicz (1994); Problems 2, 5 and 6 are from Larson and Casti (1978); and the dynamic game 
formed by introduction of the coupler Q(x) is original to Siwale (2002).  
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I. GENO Output Case I: Simultaneous Solution of De-coupled System 
 
Generation Object [1] Object [2] Object [3] Object [4] Object [5] Object [6] Object [7] 
 
 0   -5.351000    -14.500000 1.874277 -20928.379923   2024.055000     -0.883203     15.640603 
 40   0.119994    -11.500000 2.105092 -10000.500013   4413.550436     -0.647443     15.955390 
 80   0.120000    -11.500000 2.105094 -10000.500012   4415.711874     -0.632810     15.955390 
 100  0.120000    -11.500000 2.105094 -10000.500012   4415.712306     -0.632385     15.955390 
 120  0.120000    -11.500000 2.105094 -10000.500012   4415.712306     -0.630116     15.955390 
 140  0.120000    -11.500000 2.105094 -10000.500012   4415.712306     -0.630041     15.955390 
 160  0.120000    -11.500000 2.105094 -10000.500012   4415.712306     -0.629934     15.955390 
 180  0.120000    -11.500000 2.105094 -10000.500012   4415.712517     -0.629107     15.955390 
 200  0.120000    -11.500000 2.105094 -10000.500012   4415.712518     -0.629050     15.955390 
 220  0.120000    -11.500000 2.105094 -10000.500012   4415.712520     -0.629036     15.955390 
 240  0.120000    -11.500000 2.105094 -10000.500012   4415.712520     -0.629028     15.955390 
 260  0.120000    -11.500000 2.105094 -10000.500012   4415.712521     -0.629025     15.955390 
 280  0.120000    -11.500000 2.105094 -10000.500012   4415.712521     -0.629016     15.955390 
 300  0.120000    -11.500000 2.105094 -10000.500012   4415.712521 -0.629013 15.955390 
______________________________________________________________________________________________________________ 
 
 
Solution to Problem 1:  Optimum Objective Function Value = 0.120000 
  
Control 1:   0.000000   0.000000   0.000000   0.000000   0.000000  
Control 2:   0.800000   0.600000   0.400000   0.200000   0.000000  
State 1:     0.000000   0.000000   0.032000   0.088000   0.160000   0.240000  
State 2:     0.000000   0.032000   0.088000   0.160000   0.240000   0.320000 
 
 
Solution to Problem 2:  Optimum Objective Function Value = -11.500000 
  
Control 3:  -1.000000  -1.000000   0.000000   1.000000   0.000000  
Control 4:  -1.000000   1.000000   1.000000   1.000000   0.000000  
State 3:     1.000000   2.000000   1.000000   0.000000   0.000000   0.000000  
State 4:     2.000000   0.000000  -1.000000  -1.000000   0.000000   0.000000 
 
 
Solution to Problem 3:  Optimum Objective Function Value = 2.105094 
  
Control 5:   0.225661   0.211887   0.198954   0.186810   0.175407  
State 5:     1.000000   0.789825   0.589497   0.398354   0.215775   0.041175 
 
 
Solution to Problem 4:  Optimum Objective Function Value = -10000.500012 
  
Control 6:  -0.500013  -0.002500  -0.000012   0.000000   0.000000  
State 6:   100.000000   0.499987   0.002499   0.000013   0.000000   0.000000 
 
 
Solution to Problem 5:  Optimum Objective Function Value = 4415.712521 
  
Control 7:   1.056631   1.556632   1.723301   1.806636   1.856800  
State 7:     8.000000   6.943369   5.386737   3.663436   1.856800   0.000000 
 
 
Solution to Problem 6:  Optimum Objective Function Value = -0.629013 
  
Control 8:   0.963664   0.022570   0.001489  -0.571663  -1.005097  
State 8:     2.000000   2.963664   2.997695   2.999929   2.142424   1.000000 
 
 
Solution to Problem 7:  Optimum Objective Function Value = 15.955390 
  
Control 9:   6.830134   8.264463  10.000000  12.100000  14.641000  
State 9:   100.000000 103.169866 105.222389 105.744628 104.219091 100.000000 
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I. GENO Output Case II:  Nash Equilibrium Solution of Coupled System 
 
Generation Object [1] Object [2] Object [3] Object [4] Object [5] Object [6] Object [7] 
 
 0   -11177.654097 -11186.803097 -11170.428820 -32100.683020  -9148.248097 -11173.416805 -11156.662494   
 40    0.079364  -11.540636    2.064451 -10000.540649 4406.813592   -0.679876   15.914752   
 80    0.119376  -11.500624    2.104470 -10000.500636 4415.646404   -0.633010   15.954766   
 100   0.119756  -11.500244    2.104849 -10000.500257 4415.698417   -0.632335   15.955145   
 120   0.119774  -11.500226    2.104868 -10000.500238 4415.701403   -0.632316   15.955164   
 140   0.119788  -11.500212    2.104881 -10000.500225 4415.701590   -0.632152   15.955178   
 160   0.119804  -11.500196    2.104898 -10000.500208 4415.701831   -0.632116   15.955194   
 180   0.119799  -11.500201    2.104893 -10000.500213 4415.703547   -0.632038   15.955189   
 200   0.119780  -11.500220    2.104874 -10000.500232 4415.703528   -0.631963   15.955170   
 220   0.119776  -11.500224    2.104869 -10000.500237 4415.703527   -0.631939   15.955165   
 240   0.119778  -11.500222    2.104871 -10000.500235 4415.703528   -0.631937   15.955167   
 260   0.119777  -11.500223    2.104871 -10000.500235 4415.703530   -0.631934   15.955167   
 280   0.119963  -11.500037    2.105057 -10000.500049 4415.703716   -0.631283   15.955353   
 300   0.119960  -11.500040    2.105054 -10000.500052 4415.703713   -0.631024   15.955350 
______________________________________________________________________________________________________________ 
 
 
Solution to Problem 1:  Optimum Objective Function Value = 0.119960 
  
Control 1:  0.000000  0.000000  0.000000  0.000000  0.000000  
Control 2:  0.800000  0.600000  0.400000  0.200000  0.000000  
State 1:    0.000000  0.000000  0.032000  0.088000  0.160000  0.240000  
State 2:    0.000000  0.032000  0.088000  0.160000  0.240000  0.320000 
 
 
Solution to Problem 2:  Optimum Objective Function Value = -11.500040 
  
Control 3: -1.000000 -1.000000  0.000000  1.000000  0.000000  
Control 4: -1.000000  1.000000  1.000000  1.000000  0.000000  
State 3:    1.000000  2.000000  1.000000  0.000000  0.000000  0.000000  
State 4:    2.000000  0.000000 -1.000000 -1.000000  0.000000  0.000000 
 
 
Solution to Problem 3:  Optimum Objective Function Value = 2.105054 
  
Control 5:  0.225661  0.211887  0.198954  0.186810  0.175407  
State 5:    1.000000  0.789825  0.589497  0.398354  0.215775  0.041175 
 
 
Solution to Problem 4:  Optimum Objective Function Value = -10000.500052 
  
Control 6: -0.500013 -0.002501 -0.000013  0.000000  0.000000  
State 6:  100.000000  0.499987  0.002499  0.000012  0.000000  0.000000 
 
 
Solution to Problem 5:  Optimum Objective Function Value = 4415.703713 
  
Control 7:  1.057573  1.557582  1.724254  1.807591  1.853000  
State 7:    8.000000  6.942427  5.384845  3.660591  1.853000  0.000000 
 
 
Solution to Problem 6:  Optimum Objective Function Value = -0.631024 
  
Control 8:  0.965796  0.022102  0.000538 -0.587641 -1.003520  
State 8:    2.000000  2.965796  2.999112  2.999919  2.118446  1.000000 
 
 
Solution to Problem 7:  Optimum Objective Function Value = 15.955350 
  
Control 9:  6.830135  8.264463 10.000000 12.100000 14.640999  
State 9:  100.000000 103.169865 105.222389 105.744628 104.219090 100.000000 
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II. General Remarks 

This example was formulated for two reasons: (a) to demonstrate an additional capability of GENO, namely that 
of simultaneously solving a set of dynamic optimisation problems; (b) to test GENO’s ability at computing the 
Nash equilibrium solution of a dynamic non-cooperative game. To this end, a ‘coupler function’ Q(x) was added 
to a collection of optimal control problems: when “switched on”, the coupler essentially turns the disparate group 
of optimisation problems into a dynamic game expressed in extensive form (Basar and Olsder: 1999, Chap.5). 

It has long been known that a discrete-time optimal control problem is essentially a static mathematical program. 
This immediately becomes apparent when one adopts the ‘variable stacking’ technique wherein each sampling 
instant is interpreted as simply a label for an independent variable.91 The individual problems comprising 
Example 13 can therefore be regarded as static mathematical programs, and GENO’s performance on the static 
optimisation problem has been amply demonstrated by Examples 3.1 through 3.6. By the same token, the 
coupled system following the introduction of the coupler function can be converted into a static game, and 
Examples 3.9 through 3.10 confirm GENO’s efficiency on this type of problem. However, because GENO does 
not explicitly use ‘variable stacking’,92 and although the algorithm has been shown to perform well on the single-
objective dynamic problem (via Examples 3.7 and 3.8), and separately on the static games, a direct evaluation 
using a truly dynamic game would still be informative. 

In order to validate the Nash solution, the coupler term was designed such that the Nash equilibrium solution 
coincides with that of the de-coupled system. That is to say, if x* denotes the Nash equilibrium solution and 

)(),( xx d

i

c

i
JJ  the ith payoff when the system is coupled and de-coupled respectively, then by design:93 

 iJJQ c

i

d

i
∀=⇔= ),()(0)(: **** xxxx . (13a) 

By this means, one can therefore ascertain whether GENO manages to find the Nash equilibrium or not. 

Apart from serving as a reference for the Nash computation, the de-coupled system also provides further tests of 
GENO on dynamic optimisation problems. In all cases, the quality of the GENO solution is at least as good as that 
computed by others: and in cases where the solutions are the same, GENO is always more efficient compared to 
other numerical techniques of the same type, i.e. it uses a smaller population and fewer generations. 94 
Furthermore, GENO solves all the problems simultaneously, using a single population. 

It is not hard to imagine that the induced Nash equilibrium problem has a complex landscape in outcome space. 
Fonseca and Flemming (1995) graphically show that, even for a simple bi-objective problem, the introduction of 
constraints can result in landscapes that are very difficult to search. They write: 

“Despite the underlying objectives being continuous, smooth and uni-modal, the landscapes can be seen to 
exhibit features such as discontinuities, non-smoothness and flat regions. Optimisers capable of coping with 
such features are [therefore] necessary.” (p.18) 

For a problem with a large number of objectives, the situation can only be a lot worse. Yet, even in this case 
where there are seven objectives to be optimised GENO manages to compute a close approximation to the Nash 
solution. The results labelled ‘Nash solution of coupled system’ show the computed Nash solution to be accurate 
up to the third decimal place on a majority of the criteria at generation 300. 

 

                                                           
91 See e.g. Whittle (1982). 

92 Recall that the design of the algorithm assumes a dynamic formulation, with the static problem being treated as the degenerate case.  

93 The implicit assumption underlying 13a is that x* is the global solution (or nearly so) for each sub-problem. Clearly this must be the case 
for otherwise there would exist opportunities to unilaterally improve one payoff by adopting a different strategy from that which obtains at 
the equilibrium point contrary to the definition of an equilibrium point as defined by John Nash (Nash, 1951). 

94 See Michalewicz, et al. (1992); Michalewicz (1994, Chapter 6), and Larson and Casti (1978, Chapter 3). 
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III. The gep File: Example 3.14 
 

// Nash solution of a constrained multi-objective dynamic optimization problem 
// Source: Larson and Casti(1978); Michalewicz(1994); Siwale(2002)  

 
#definecs p_maxgens 300 
#definecs p_popsize 30 
#definecs p_agents  7 
#definecs p_order   9 
#definecs p_plan    5 
 
#definecs p_coupler true // Options: true   for the coupled system 

           //    false  for the de-coupled system 
 
#include dynamic_gep_defaults.src 
 
let vars[p_agents, p_order] = { 
     1   1   0   0   0   0   0   0   0,    //variables controlled by agent 1  
     0   0   1   1   0   0   0   0   0,    //variables controlled by agent 2  
     0   0   0   0   1   0   0   0   0,    //variables controlled by agent 3  
     0   0   0   0   0   1   0   0   0,    //variables controlled by agent 4  
     0   0   0   0   0   0   1   0   0,    //variables controlled by agent 5  
     0   0   0   0   0   0   0   1   0,    //variables controlled by agent 6  
     0   0   0   0   0   0   0   0   1     //variables controlled by agent 7  
     }; 
 
let ff_states[p_order] = 0   0   0   0   0   0   0   0   1;   
let cc_states[p_order] = 0   1   1   1   1   1   1   1   1; 
 
adj_mode   = "s";  
solution_type = "e";  
 
p_s_xover  = 0.55;   
p_a_xover  = 0.55;   
p_b_xover  = 0.00;   
p_h_xover  = 0.55;   
p_d_xover  = 0.55;  
p_shuffle  = 0.55; 
     
d_factor   = 0.80;   
quantum_0  = 0.1; 
rand_seed  = 240658; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp;  
 
 
// Problem-specific data: The optimal control matrix as computed by the de-coupled system 
let nash_c_mtx[p_order, 5] = {   
  0.000000  0.000000  0.000000  0.000000  0.000000,  
  0.800000  0.600000  0.400000  0.200000  0.000000, 
 -1.000000 -1.000000  0.000000  1.000000  0.000000, 
 -1.000000  1.000000  1.000000  1.000000  0.000000, 
  0.225661  0.211887  0.198954  0.186810  0.175407, 
 -0.500013 -0.002501 -0.000013  0.000000  0.000000, 
  1.057077  1.557078  1.723745  1.807100  1.855000,  
  0.965827  0.021971 -0.000323 -0.584176 -1.003733,  
  6.830135  8.264463 10.000000 12.100000 14.640999 
  }; 
 
// Problem-specific data: The optimal state matrix as computed by the de-coupled system   
let nash_x_mtx[p_order, 6] = {   
    0.000000  0.000000  0.032000  0.088000  0.160000   0.240000, 
    0.000000  0.032000  0.088000  0.160000  0.240000   0.320000, 
    1.000000  2.000000  1.000000  0.000000  0.000000   0.000000, 
    2.000000  0.000000 -1.000000 -1.000000  0.000000   0.000000, 
    1.000000  0.789825  0.589497  0.398354  0.215775   0.041175, 
  100.000000  0.499987  0.002499  0.000012  0.000000   0.000000, 
    8.000000  6.942923  5.385845  3.662100  1.855000   0.000000, 
    2.000000  2.965827  2.998945  2.998461  2.121974   1.000000, 
  100.000000  103.169866  105.222389  105.744628  104.219090 100.000000  
  }; 
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proc (2) = f(i, d, v_array); 
local q1,q2,s1,s2,v1,r2; 
local x,fv,fv1,j,k,m,u; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
 { q1, s1, v1 } = (0.95, 0.5, 0.50); 
 { q2, s2, r2 } = (1.00, 1.0, 1.00); 
 { u, x } = assign_sequences(i,d,u,x);95 
 
 //list of objectives 
 fv = 0.0; 
 if(d == 1);   
  for k (1, plan, 1); 
   fv = fv + u[2,k]*u[2,k]; 
  endfor; 
  fv = x[1,horizon] - (fv/(2*horizon));  

elseif(d == 2);  
  for k (1, plan, 1); 
   fv = fv + abs(x[3,k]) + abs(x[4,k]) + 0.5*abs(u[3,k]) + 0.5*abs(u[4,k]); 
  endfor; 
  fv = fv + abs(x[3,horizon]) + abs(x[4,horizon]);  
  fv = -fv; 
 elseif(d == 3);  
  for k (1, plan, 1); 
   fv = fv + (q1^(k-1))*(u[5,k]^(1-v1)); 
  endfor; 
  fv = fv + s1*(x[5,horizon]^(1-v1))*(q1^plan); 
 elseif(d == 4);  
  for k (1, plan, 1); 
   fv = fv + s2*x[6,k]*x[6,k] + r2*u[6,k]*u[6,k]; 
  endfor; 
  fv = fv + q2*x[6,horizon]*x[6,horizon]; 
  fv = -fv; 
 elseif(d == 5);  
  fv =  1.0; 
  for k (1, plan, 1); 
   fv = fv*(1 + k*u[7,k]); 
  endfor; 
 elseif(d == 6);  
  for k (1, plan, 1); 
   fv = fv + (2 + u[8,k])*(3.0^(-x[8,k])); 
  endfor; 
  fv = fv + abs(x[8,horizon] - 1); 
  fv = -fv; 
 elseif(d == 7);   
  for k (1, plan, 1); 
   fv = fv + (u[9,k]^0.5); 
  endfor; 
 endif;  
 if (maximise); fv = fv - coupler(d,x); else; fv = - fv + coupler(d,x); endif; 
 retp (fv, v_array); 
endp; 
 
 
proc (1) = a(i,j,k); 
local fv; 
 if(j == 1);   fv = state_fn(i,2,k);96 
 elseif(j == 2); fv = 2*state_fn(i,2,k) - state_fn(i,1,k); 
 elseif(j == 3); fv = state_fn(i,3,k) + state_fn(i,4,k); 
 elseif(j == 4); fv = state_fn(i,4,k) - state_fn(i,3,k); 
 elseif(j == 5); fv = 1.02*state_fn(i,j,k); 
 elseif(j == 6); fv = 0.01*state_fn(i,j,k); 
 elseif(j == 7); fv = state_fn(i,j,k); 
 elseif(j == 8); fv = state_fn(i,j,k); 
 elseif(j == 9); fv = 1.1*state_fn(i,j,k); 
 endif; 
 retp(fv); 
endp; 

                                                           
95 Infra page 5, footnote 10. 

96 Infra page 26, footnote 39. 
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proc (1) = b(i,j,k); 
local fv; 
 if(j == 1);   fv =  0.00; 
 elseif(j == 2); fv =  1.00/(horizon*horizon); 
 elseif(j == 3); fv =  1.00; 
 elseif(j == 4); fv =  1.00; 
 elseif(j == 5); fv = -1.02; 
 elseif(j == 6); fv =  1.00; 
 elseif(j == 7); fv = -1.00; 
 elseif(j == 8); fv =  state_fn(i,j,k) - 2*state_fn(i,j,k) + \ 
         1.25*(state_fn(i,j,k)^2.0) - 0.25*(state_fn(i,j,k)^3.0); 
 elseif(j == 9); fv = -1.00; 
 endif; 
 retp(fv); 
endp; 
 
proc (1) = aa(z,w,j,k); 
local fv; 
 if(j == 1);   fv = z[2,k]; 
 elseif(j == 2); fv = 2*z[2,k] - z[1,k]; 
 elseif(j == 3); fv = z[3,k] + z[4,k]; 
 elseif(j == 4); fv = z[4,k] - z[3,k]; 
 elseif(j == 5); fv = 1.02*z[j,k]; 
 elseif(j == 6); fv = 0.01*z[j,k]; 
 elseif(j == 7); fv = z[j,k]; 
 elseif(j == 8); fv = z[j,k]; 
 elseif(j == 9); fv = 1.1*z[j,k]; 
 endif; 
 retp(fv); 
endp; 
 
proc (1) = bb(z,w,j,k); 
local fv; 
 if(j == 1);   fv =  0.00; 
 elseif(j == 2); fv =  1.00/(horizon*horizon); 
 elseif(j == 3); fv =  1.00; 
 elseif(j == 4); fv =  1.00; 
 elseif(j == 5); fv = -1.02; 
 elseif(j == 6); fv =  1.00; 
 elseif(j == 7); fv = -1.00; 
 elseif(j == 8); fv =  z[8,k] - 2*z[8,k] + 1.25*(z[8,k]^2.0) - 0.25*(z[8,k]^3.0); 
 elseif(j == 9); fv = -1.00; 
 endif; 
 retp(fv); 
endp; 
 
proc (1) = ee(z,w,j,k); 
local fv; 
 if(j == 9); fv = (z[9,k+1] + w[9,k])/1.1; 
 else;     fv = 0.0; 
 endif; 
 retp(fv); 
endp; 
 
proc (2) = dynamic_control_bounds(i,j,k,low,upp); 
local fv, budget; 
 budget = 8; 
 if(j == 5); fv = state_fn(i,j,k); 
 elseif(j == 7);  
  if(k == 1); fv = budget; 
  else; 
   fv = 0; 
   for n (1, (k - 1), 1); 
    fv = fv + control_fn(i,j,n); 
   endfor; 
   fv = budget - fv; 
   if(fv < 0); fv = 0.0; endif; 
  endif; 
 else; fv = large; 
 endif; 
 upp = min( fv, upp); 
 low = max(-large, low); 
 retp (low, upp); 
endp; 



 
 
 

   
Copyright  1997-2006: Ike’s Research Ltd 

74 

 
proc (1) = coupler(d,u,x); 
local j,k,fv1,fv2; 
 fv1 = 0; fv2 = 0; 
 if(p_coupler); 
  for j (1, order, 1);  
   for k (1, plan, 1); 
    fv1 = fv1 + (nash_c_mtx[j,k] - u[j,k])^2; 
    fv2 = fv2 + (nash_x_mtx[j,k] - x[j,k])^2; 
   endfor; 
   fv2 = fv2 + (nash_x_mtx[j,horizon] - x[j,horizon])^2; 
  endfor; 
 endif; 
 retp (fv1 + fv2); 
endp; 

 
VI. The dat File: Example 3.14 

Table 3.14: Input Data for the Dynamic Non-cooperative Game  
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 X8 X9 

UCB  10  10  1  1 1e20  100 5 1 1e20 

LCB -10 -10 -1 -1 0 -100 0 -1 0 

USB  1e20 1e20 2  2 1e20  1e20 8 3  1e20 

LSB -1e20 0 -2 -2 0 -1e20 0 0 -1e20 

Initial State Vector 0 0 1 2 1 100 8 2 100 

Final State Vector 0 0 0 0 0 0 0 0 100 

Discrete Values 0 0 1 1 0 0 0 0 0 

X1 0 1 0 0 0 0 0 0 0 

X2 1 1 0 0 0 0 0 0 0 

X3 0 0 1 1 0 0 0 0 0 

X4 0 0 1 1 0 0 0 0 0 

X5 0 0 0 0 1 0 0 0 0 

X6 0 0 0 0 0 1 0 0 0 

X7 0 0 0 0 0 0 1 0 0 

X8 0 0 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X9 0 0 0 0 0 0 0 0 1 

 

V. Points to Note: Example 3.14 
 

1. p_coupler — A problem-specific Boolean matrix that couples or de-couples the system 
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Example 3.15: Mixed-integer Non-linear Programming: Process Synthesis I 97 
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I. GENO Output 
 
 Generation Objective 
 
  0 10.360000 
  50 4.811778 
 100 4.636855 
 150 4.636853 
 200 3.714389 
 250 3.714353 
 300 3.714353 
 350 3.714353 
 400 3.714353 
 450 3.714353 
 460 3.714353 
 470 3.557803 
 480 3.557471 
 490 3.557466 
 500 3.557466 
_________________________________________________ 

Optimal State Vector: x  = ( 0.200000, 1.280557, 1.954526, 1.000000, 0.000000, 0.000000, 1.000000 ) T 

Objective Function Value: J (x, y) = 3.557466 
 
 
 
II. General Remarks  

This problem was originally proposed by Floudas, et al. (1989) and was subsequently tackled by others using 
various techniques; the latest effort appears to be that by Angira and Babu (2002) who used a differential 
evolution algorithm.  

The best known solution as reported by Angira and Babu (2002) (and presumably all previous authors cited 
therein) is as follows: 

Best Objective Function Value: J (x, y) = 3.557466 

Optimal Control Sequence: x  = ( 0.200000, 1.280557, 1.954526, 1.000000, 0.000000, 0.000000, 1.000000 ) T 

As can be seen above, the solution by GENO is better than the best currently known solution, albeit marginally.  

                                                           
97 Source: Floudas, Aggarwal and Ciric (1989). 
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III. The gep File: Example 3.15 
 

// Single-objective constrained static optimization problem 
// Source: Floudas, Aggarwal and Ciric (1989).  
 
#definecs p_maxgens 500 
#definecs p_popsize 20 
#definecs p_agents 1 
#definecs p_order  7 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1   1   1   1   1   1   1; 
let discrete_var[p_order]  = 0   0   0   1   1   1   1; 
 
adj_mode    = "s"; 
solution_type  = "e"; 
maximise    = false; 
 
timer     = true; 
sol_mtx_check  = true; 
constraints_check = true; 
 
//cross-over probabilities 
p_s_xover   = 0.55;   
p_a_xover   = 0.55;   
p_b_xover   = 0.00;   
p_h_xover   = 0.55;   
p_d_xover   = 0.55;   
p_shuffle   = 0.00; 
 
d_factor    = 0.80;   
quantum_0   = 0.1; 
rand_seed     = 2406525; 
 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
 
proc (2) = f(i, d, v_array); 
local c_vector,fv,u,x,z; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);  
 
 //evaluate constraints 
 c_vector = constraints(0,x,horizon); 
 v_array  = evaluate_constraints(c_vector,v_array); 
 
 //evaluate objective 
 fv = objective(0,x,horizon); 
 retp (fv,v_array);  
endp; 
 
 
proc (1) = objective(z,x,k);  
local fv; 
 fv = (x[1,k] - 1)^2 + (x[2,k] - 2)^2 + (x[3,k] - 3)^2 + (x[4,k] - 1)^2 + (x[5,k] - 1)^2 + 
(x[6,k] - 1)^2 - ln(x[7,k] + 1); 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
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proc (1) = constraints(z,x,k); 
local c; c = zeros(9,1); 
 c[1] = x[1,k] + x[2,k] + x[3,k] + x[4,k] + x[5,k] + x[6,k] - 5; 
 c[2] = x[1,k]^2 + x[2,k]^2 + x[3,k]^2 + x[6,k]^2 - 5.5; 
 c[3] = x[1,k] + x[4,k] - 1.2; 
 c[4] = x[2,k] + x[5,k] - 1.8; 
 c[5] = x[3,k] + x[6,k] - 2.5; 
 c[6] = x[1,k] + x[7,k] - 1.2; 
 c[7] = x[2,k]^2 + x[5,k]^2 - 1.64; 
 c[8] = x[3,k]^2 + x[6,k]^2 - 4.25; 
 c[9] = x[3,k]^2 + x[5,k]^2 - 4.64; 
 retp (c); 
endp; 
 

 

VI. The dat File: Example 3.15  

Table 3.15: Input Data for Process Synthesis I 
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 

UCB  10  10  10  1  1  1  1 

LCB 0 0 0 0 0 0 0 

USB  10  10  10  1  1  1  1 

LSB 0 0 0 0 0 0 0 

Initial State Vector 0 0 0 0 0 0 0 

Final State Vector 0 0 0 0 0 0 0 

Discrete Values 0 0 0 1 1 1 1 

X1 1 0 0 0 0 0 0 

X2 0 1 0 0 0 0 0 

X3 0 0 1 0 0 0 0 

X4 0 0 0 1 0 0 0 

X5 0 0 0 0 1 0 0 

X6 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X7 0 0 0 0 0 0 1 

 

V. Points to Note: Example 3.15 
 

1. Method — This is a standard implementation of version MPa of the original mathematical program. The 0-1 integer 
variables are easily accommodated by declaring the matrix discrete_var and making the appropriate 
entries in the dat file as illustrated above. But note that on other type of programs involving discrete variables 
(e.g. Example 3.4 in this Manual), the type of entries made in the dat file and the indicator matrix 
discrete_var should not be confused: the former is always a 0-1 indicator matrix with a ‘1’ entry for each 
discrete variable, and a ‘0’ entry otherwise; the later should contain the actual discrete values for each discrete 
variable, and an entry of ‘0’ for all non-discrete variables. Note that in this particular case, the discrete value 
just happens to be 1. 
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Example 3.16: Mixed-integer Non-linear Programming: Process Synthesis II 98 
 

 ( )
)]x5.0exp(1[9.0

x
50

)]x4.0exp(1[8.0

)x1(
50x6x7)x1(5.5x5.7=Jmin

1

3

2

3
2133 −−

+
−−

−
+++−+x

x
 

 Subject to:   0x2)]x5.0exp(1[9.0 31 ≤−−−  

  0)x1(2)]x4.0exp(1[8.0 32 ≤−−−−  

  31 x10x ≤  

  )x1(10x 32 −≤  

  ),0[x1 ∞∈ ;  ),0[x 2 ∞∈ ;  }1,0{x 3 ∈  

 
I. GENO Output 
 
 Generation Objective 
 
 0 107.966428 
 10 99.240140 
 20 99.239680 
 30 99.239680 
 40 99.239635 
 50 99.239635 
 60 99.239635 
 70 99.239635 
 80 99.239635 
 90 99.239635 
 100 99.239635 
 110 99.239635 
 120 99.239635 
 130 99.239635 
 140 99.239635 
 150 99.239635 
 160 99.239635 
 170 99.239635 
 180 99.239635 
 190 99.239635 
 200 99.239635 
____________________________________________________________________ 

Optimal State Vector: x  = (3.514237, 0.000000, 1.000000) T 

Objective Function Value: J (x, y) = 99.239635 
 

 
 
II. General Remarks  

This problem was originally proposed by Kocis and Grossmann (1989). It is a process synthesis model in which 
the objective is to select two candidate reactors in order to minimise the production cost. The version solved here 
is that in which the equation constraints have been eliminated using the algebraic manipulations as alluded to in 
§ 3.4.3 above.  

The problem was subsequently tackled by others using various techniques, and the latest effort appears to be that 
by Angira and Babu (2002) who used a differential evolution algorithm. The best function value (as reported by 
Angira and Babu (2002) and, presumably all previous authors cited therein) is 99.245209. As can be seen above, 
GENO finds a better solution within 50 generations. 

                                                           
98 Source: Babu and Angira (2002) 
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III. The gep File: Example 3.16 
 
// Single-objective constrained static optimization problem 
// source: Babu and Angira (2002)  
 
#definecs p_maxgens 500 
#definecs p_popsize 20 
#definecs p_agents 1 
#definecs p_order  3 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1   1   1; 
let discrete_var[p_order]  = 0   0   1;  
 
adj_mode    = "s"; 
solution_type  = "e"; 
maximise    = false; 
 
timer     = true; 
sol_mtx_check  = true; 
constraints_check = true;     
 
//cross-over probabilities 
p_s_xover   = 0.55;   
p_a_xover   = 0.55;   
p_b_xover   = 0.00;   
p_h_xover   = 0.55;   
p_d_xover   = 0.55;   
p_shuffle   = 0.00; 
   
d_factor    = 0.80;   
quantum_0   = 0.1; 
rand_seed   = 240657;  
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
proc (2) = f(i,d,v_array); 
local c,fv,u,x,z; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);  
 
 //evaluate constraints 
 c = constraints(0,x,horizon); 
 v_array = evaluate_constraints(c,v_array); 
 
 //evaluate objective 
 fv = objective(0,x,horizon); 
 retp (fv,v_array);  
endp; 
 
proc (1) = objective(z,x,k); 
local fv,fv1,fv2; 
 fv1 = 0.8*(1 - exp(-0.4*x[2,k])); 
 fv2 = 0.9*(1 - exp(-0.5*x[1,k])); 
 fv = 7.5*x[3,k] + 5.5*(1 - x[3,k]) + 7*x[1,k] + 6*x[2,k]\ 

  + 50*(1 - x[3,k])/max(small,fv1) + 50*x[3,k]/max(small,fv2); 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
 
proc (1) = constraints(z,x,k); 
local c; c = zeros(5,1); 
 c[1] = 0.9*(1 - exp(-0.5*x[1,k])) - 2*x[3,k]; 
 c[2] = 0.8*(1 - exp(-0.4*x[2,k])) - 2*(1 - x[3,k]); 
 c[3] = x[1,k] - 10*x[3,k]; 
 c[4] = x[2,k] - 10*(1 - x[3,k]); 
 c[5] = x[3,k] - 1; 
 retp (c); 
endp; 
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VI. The dat File: Example 3.16  

Table 3.16: Input Data for Process Synthesis II 
 

VARIABLE NAME X1 X2 X3 

UCB 10 10 1 

LCB 0 0 0 

USB 10 10 1 

LSB 0 0 0 

Initial State Vector 0 0 0 

Final State Vector 0 0 0 

Discrete Values 0 0 1 

X1 1 0 0 

X2 0 1 0 
Inter-connexion 
Matrix  

X3 0 0 1 

 
 

V. Points to Note: Example 3.16 
 

1. Method — This is a standard implementation of version MPa of the original mathematical program. The 0-1 integer 
variables are easily accommodated by declaring the matrix discrete_Var and making the appropriate 
entries in the dat file as illustrated above. But note that on other type of programs involving discrete variables 
(e.g. Example 3.4 in this Manual), the type of entries made in the dat file and the indicator matrix 
discrete_var should not be confused: the former is always a 0-1 indicator matrix with a ‘1’ entry for each 
discrete variable, and a ‘0’ entry otherwise; the later should contain the actual discrete values for each discrete 
variable, and an entry of ‘0’ for all non-discrete variables. Note that in this particular case, the discrete value 
just happens to be 1. 

 

2. solution control — Note the objective includes terms of the form 

 
)]x4.0exp(1[8.0

)x1(

2

3

−−

−
 

These can cause the program to break down when the denominator vanishes. The code 
fragment max(small,fv1) ensures that there is no dividion by zero during the execution of 
the program.  
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Example 3.17: Mixed Integer Non-linear Programming: Process Synthesis III 99 
 

 ( ) 140)1xxln(60
2.1

x
exp)xexp( =Jmin 54

2
1

TT +++−







+++ ybxayx,

yx,
 

 Subject to: 0)1xxln( 54 ≤++− ; 0x2xx2xx 64321 ≤++−−−  

  0x2xx75.0xx 64321 ≤++−−− ;   0xx 63 ≤−  

  0x2xx2 643 ≤−+ ;   0xx2.0 54 ≤−  

  01y10)xexp( 11 ≤−− ;   01y10
2.1

x
exp 2

2 ≤−−







 

  0y10x25.1 33 ≤− ;   0x5.0x 45 ≤−     

    0y10xx 454 ≤−+ ; 0y10x2x2 563 ≤−+−     

  1yy 21 =+ ;   01yy 54 ≤−+   

    T)20,5,15,15,15,10( −−−−=a ;   T)6,10,6,8,5(=b  

    T)3,2,2,2,2,2(=c ;   cx0 ≤≤ ;  5}1,0{∈y  

 
I. GENO Output 
 
 Generation Objective 
 
 0 88.945294 
 50 73.053334 
 100 73.048097 
 150 73.048097 
 200 73.048085 
 250 73.048085 
 300 73.048085 
 350 73.048082 
 400 73.048081 
 500 73.048081 
____________________________________________________________________ 

Optimal State Vector: x  = (0.000000, 2.000000, 1.100000, 0.625000, 0.312500, 1.100000) T 

Optimal discrete Vector: y  = (0, 1, 1, 1, 1, 0) T  

Objective Function Value: J (x, y) = 73.048081 
 

 
II. General Remarks  

This problem was originally proposed by Duran and Grossmann (1986) and was subsequently tackled by others 
using various techniques; the latest effort appears to be that by Goyal and Ierapetritou (2005) who used an 
algorithm that is based on simplicial approximation. The best known solution is: 

Best Objective Function Value: J (x, y) = 73.035 

Optimal Control Sequence: x = (0.000000, 2.000000, 1.078000, 0.652000, 0.326000, 1.078000) T 

Optimal Control Sequence: y = (0, 1, 1, 1, 1, 0) T 

 
As can be seen above, a straight forward implementation of version MPa of the M-program yields a nearly-
optimal solution. 

                                                           
99 Source: Duran and Grossmann (1986). 
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III. The gep File: Example 3.17 
 

// A constrained uni-objective static optimization problem 
// Source: Duran and Grossmann (1986).  
 
#definecs p_maxgens 200 
#definecs p_popsize 20 
#definecs p_agents 1 
#definecs p_order  10 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1   1   1   1   1   1   1   1   1   1; 
let discrete_var[p_order]  = 0   0   0   0   0   0   1   1   1   1;  
 
adj_mode     = "s"; 
solution_type   = "e"; 
maximise     = false; 
 
timer      = true; 
sol_mtx_check   = true; 
constraints_check  = true;     
 
//cross-over probabilities 
p_s_xover   = 0.55;   
p_a_xover   = 0.55;   
p_b_xover   = 0.00;   
p_h_xover   = 0.55;   
p_d_xover   = 0.55;   
p_shuffle   = 0.55; 
   
d_factor    = 0.80;   
quantum_0   = 0.1; 
rand_seed   = 240657; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 

 
proc (2) = f(i, d, v_array); 
local c,fv,u,x,z; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);  
 
 //evaluate constraints 
 z = equations(x,0,horizon); 
 c = constraints(z,x,horizon); 
 v_array  = evaluate_constraints(c,v_array); 
 v_array[2] = v_array[2] + distance_to_set(0,1,z[1]); 
 
 //evaluate objective 
 fv = objective(z,x,horizon); 
 retp (fv,v_array);  
endp; 

 
 

proc (1) = objective(z,x,k); 
local fv; 
 fv = 140 + 5*z[1] + 8*x[7,k] + 6*x[8,k] + 10*x[9,k] + 6*x[10,k] - 10*x[1,k] \ 

  - 15*x[2,k] - 15*x[3,k] + 15*x[4,k] + 5*x[5,k] - 20*x[6,k] \ 
  - + exp(x[1,k]) + exp(x[2,k]/1.2) - 60*ln(x[4,k] + x[5,k] + 1); 

 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
 
 
proc (1) = equations(x,y,k); 
local z; z = zeros(1,1);  
 z[1] = 1 - x[7,k]; 
 retp (z); 
endp; 
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proc (1) = constraints(z,x,k); 
local c; c = zeros(14,1);  
 c[1] = -ln(x[4,k] + x[5,k] + 1); 
 c[2] = x[4,k] + 2*x[6,k] - x[1,k] - x[2,k] - 2*x[3,k]; 
 c[3] = x[4,k] + 2*x[6,k] - x[1,k] - x[2,k] - 0.75*x[3,k]; 
 c[4] = x[4,k] - x[6,k]; 
 c[5] = 2*x[4,k] - x[5,k] - 2*x[6,k]; 
 c[6] = x[5,k] - 0.5*x[4,k]; 
 c[7] = 0.2*x[4,k] - x[5,k]; 
 c[8] = x[9,k] + x[10,k] - 1; 
 c[9] = exp(x[1,k]) - 10*z[1] - 1; 
 c[10] = exp(x[2,k]/1.2) - 10*x[7,k] - 1; 
 c[11] = 1.25*x[3,k] - 10*x[8,k]; 
 c[12] = x[4,k] + x[5,k] - 10*x[9,k]; 
 c[13] = 2*x[6,k] - 2*x[4,k] - 10*x[10,k]; 
 c[14] = x[9,k] + x[10,k] - 1; 
 retp (c); 
endp; 
 

 

VI. The dat File: Example 3.17  

Table 3.17: Input Data for Process Synthesis III 
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

UCB 2 2 2 2 2 3 1 1 1 1 

LCB 0 0 0 0 0 0 0 0 0 0 

USB 2 2 2 2 2 3 1 1 1 1 

LSB 0 0 0 0 0 0 0 0 0 0 

Initial State Vector 0 0 0 0 0 0 0 0 0 0 

Final State Vector 0 0 0 0 0 0 0 0 0 0 

Discrete Values 0 0 0 0 0 0 1 1 1 1 

X1 1 0 0 0 0 0 0 0 0 0 

X2 0 1 0 0 0 0 0 0 0 0 

X3 0 0 1 0 0 0 0 0 0 0 

X4 0 0 0 1 0 0 0 0 0 0 

X5 0 0 0 0 1 0 0 0 0 0 

X6 0 0 0 0 0 1 0 0 0 0 

X7 0 0 0 0 0 0 1 0 0 0 

X8 0 0 0 0 0 0 0 1 0 0 

X9 0 0 0 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X10 0 0 0 0 0 0 0 0 0 1 

 
 

V. Points to Note: Example 3.17 
 

1. Method — This is a standard implementation of version MPa of the original mathematical program. The 0-1 integer 
variables are easily accommodated by declaring the matrix discrete_var and making the appropriate 
entries in the dat file as illustrated above. But note that on other type of programs involving discrete variables 
(e.g. Example 3.4 in this Manual), the type of entries made in the dat file and the indicator matrix 
discrete_var should not be confused: the former is always a 0-1 indicator matrix with a ‘1’ entry for each 
discrete variable, and a ‘0’ entry otherwise; the later should contain the actual discrete values for each discrete 
variable, and an entry of ‘0’ for all non-discrete variables. Note that in this particular case, the discrete value 
just happens to be 1. 
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Example 3.18: Generalised Disjunctive Programming: Process Synthesis IV 100 
 
 ( ) c)2x()3x(=min 2

2

2

1 +−++yx,
x

J  

 Subject to: 321 YYY ∨∨ 101 

 Where: )2c()01xx(Y 2

2

2

11 =∧≤−+⇒ 102 

  )1c()01)1x()4x((Y 2

2

2

12 =∧≤−−+−⇒  

  )3c()01)4x()2x((Y 2

2

2

13 =∧≤−−+−⇒  

  2,1i],8,0[x i =∈ ;  3,2,1i},False,True{Yi =∈  

 
I. GENO Output 
 
 Generation Objective 
 
 0 3.340000 
 10 1.180000 
 20 1.174100 
 30 1.171716 
 40 1.171716 
 50 1.171640 
 60 1.171581 
 70 1.171575 
 80 1.171573 
 90 1.171573 
 100 1.171573 
 110 1.171573 
 120 1.171573 
 130 1.171573 
 140 1.171573 
 150 1.171573 
 160 1.171573 
 170 1.171573 
 180 1.171573 
 190 1.171573 
 200 1.171573 
____________________________________________________________________ 

Optimal State Vector: Tx  = ( 3.292887, 1.707100, 1.000000, 0.000000 )T 

Objective Function Value: J (x, y) = 1.171573 
 
 
II. General Remarks  

This is a simple Generalised Disjunctive Program (GDP) whose purpose is to illustrate how GENO may be 
programmed to solve such problems via the Big-M relaxation method. Techniques for converting a GDP into a 
nonlinear mixed-integer program may be found in Raman and Grossmann (1991); and Grossmann (2002) 
reviews deterministic numerical algorithmics that are currently available for solving MINLPs.  

As can be seen above, a straight forward implementation of version MPa of the M-program yields the optimal 
solution. Also note that unlike with other (deterministic) solution algorithms, the Big-M parameters needn’t be 
known in advance. 

                                                           
100 Source: Lee and Grossmann (2000). 

101 The notation ∨  denotes the ‘exclusive-OR’ logical operator, and the proposition 
321 YYY ∨∨  asserts that exactly one constraint is 

operational at any time. 

102 Algebraic expressions may be interpreted as logic propositions (see e.g. Denvir: 1986). 
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III. The gep File: Example 3.18 
 

// A constrained uni-objective static optimization problem 
// Source: Lee and Grossmann (2000).  
 
#definecs p_maxgens 200 
#definecs p_popsize 20 
#definecs p_agents 1 
#definecs p_order  4 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1   1   1   1; 
let discrete_var[p_order]  = 0   0   1   1;  
 
adj_mode     = "s"; 
solution_type   = "e"; 
maximise     = false; 
 
timer      = true; 
sol_mtx_check   = true; 
constraints_check  = true;     
 
//cross-over probabilities 
p_s_xover   = 0.55;   
p_a_xover   = 0.55;   
p_b_xover   = 0.00;   
p_h_xover   = 0.55;   
p_d_xover   = 0.55;   
p_shuffle   = 0.55; 
   
d_factor    = 0.80;   
quantum_0   = 0.1; 
rand_seed   = 240657; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 

 
proc (2) = f(i, d, v_array); 
local c,fv,u,x,z; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);  
 
 //evaluate constraints 
 z = equations(x,0,horizon); 
 c = constraints(z,x,horizon); 
 v_array  = evaluate_constraints(c,v_array); 
 v_array[2] = v_array[2] + distance_to_set(0,1,z[1]); 
 
 //evaluate objective 
 fv = objective(z,x,horizon); 
 retp (fv,v_array);  
endp; 

 
 

proc (1) = objective(z,x,k); 
local fv; 
 fv = (x[1,k] - 3)^2 + (x[2,k] - 2)^2 + 2*z[1] + x[3,k]+ 3*x[4,k]; 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
 
 
proc (1) = equations(x,y,k); 
local z; z = zeros(1,1); 
 z[1] = 1 - x[3,k] - x[4,k]; 
 retp (z); 
endp; 
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proc (1) = constraints(z,x,k); 
local c, M; c = zeros(3,1); 
 M = large; 
 c[1] =  x[1,k]^2 + x[2,k]^2 - 1 - M*(1 - z[1]); 
 c[2] = (x[1,k] - 4)^2 + (x[2,k] - 1)^2 - 1 - M*(1 - x[3,k]); 
 c[3] = (x[1,k] - 2)^2 + (x[2,k] - 4)^2 - 1 - M*(1 - x[4,k]); 
 retp (c); 
endp; 
 

 

VI. The dat File: Example 3.18  

Table 3.18: Input Data for Process Synthesis IV 
 

VARIABLE NAME X1 X2 X3 X4 

UCB 8 8 1 1 

LCB 0 0 0 0 

USB 8 8 1 1 

LSB 0 0 0 0 

Initial State Vector 0 0 0 0 

Final State Vector 0 0 0 0 

Discrete Values 0 0 1 1 

X1 1 0 0 0 

X2 0 1 0 0 

X3 0 0 1 0 

Inter-connexion 
Matrix  

X4 0 0 0 1 

 

V. Points to Note: Example 3.18 
 

1. MINLP reformulation — Logic propositions can always be converted into algebraic inequalities by associating a 
binary variable with each literal.103 By this device, the proposition 

 
321 YYY ∨∨  

translates into the linear inequality 

 1yyy 321 =++ . 

The Big-M relaxation of the inequality in logic propositions such as  

 )2c()01xx(Y 2

2

2

11
=∧≤−+⇒   

is simply 

 )y1(M1xx
1

2

2

2

1
−≤−+ .  

Note 1: Y1 = True implies c = 2 and Y1 = False implies c = 0, hence the code fragment 
2*z[1] in proc (1) = objective(z,x,k). 

Note 2: Y1 = True implies y1 = 1 which in turn implies that the inequality 01xx 2

2

2

1
≤−+  

applies. On the other hand, Y1 = False implies y1 = 0 which in turn implies that the 

inequality 01xx 2

2

2

1
≤−+  is irrelevant.   

2. Method — After reformulating the GDP as an MINLP as outlined above, the problem implementated as version MPa of 
the original mathematical program. The 0-1 integer variables are accommodated by declaring the matrix 
discrete_var and making the appropriate entries in the dat file as illustrated above. 

                                                           
103 See Raman and Grossmann (1991) and references cited therein. 
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Example 3.19: Generalised Disjunctive Programming: Process Synthesis V 104 
 

 ( ) 140)1xxln(60
2.1

x
exp)xexp( =Jmin 54

2
1

TT +++−







+++ ybxayx,

yx,
 

 Subject to: 0)1xxln( 54 ≤++− ; 0x2xx2xx 64321 ≤++−−−  

  0x2xx75.0xx 64321 ≤++−−− ;   0xx 63 ≤−  

  0x2xx2 643 ≤−+ ;   0xx2.0 54 ≤−  

  0x5.0x 45 ≤− ;   54321 YYYYY ∨∨∨∨  

  )YY()YY( 2121 ∨¬∨¬∨ ; 54 YY ¬∨¬   

 Where: )5c()011)x(exp(Y 111 =∧≤−⇒ ; )0c()0x(Y 111 =∧=⇒¬  

  )8c()011
2.1

x
(expY 2

2
2 =∧≤−








⇒ ; )0c()0x(Y 222 =∧=⇒¬  

  )6c()010x25.1(Y 333 =∧≤−⇒ ; )0c()0x(Y 333 =∧=⇒¬  

  )10c()010xx(Y 4544 =∧≤−+⇒ ; )0c()0x()0x(Y 4543 =∧=∧=⇒¬  

  )6c()010x2x2(Y 5635 =∧≤−+−⇒ ; )0c()0xx(Y 5365 =∧≤−⇒¬  

  T)20,5,15,15,15,10( −−−−=a ;    T)6,10,6,8,5(=b  

  T)3,2,2,2,2,2(=c ;    cx0 ≤≤ ;   i∀∈ },False,True{Yi  

 
I. GENO Output 
 
 Generation Objective 
 
 0 125.990343 
 50 73.053334 
 100 73.048086 
 150 73.048086 
 200 73.048085 
 300 73.048085 
 400 73.048085 
 500 73.048085 
____________________________________________________________________ 

Optimal State Vector: x  = (0.427900, 2.000000, 1.100000, 0.625000, 0.312500, 1.100000)T 

Optimal discrete Vector: y  = (0, 1, 1, 1, 1, 0)T  

Objective Function Value: J (x, y) = 73.048085 
 

 
II. General Remarks  

This is a repeat of Example 3.17 but this time expressed as a Generalised Disjunctive Program. This example also 
illustrates how disjunctions that involve propositions of the form )0c()0x(Y iii =∧=⇒¬  are treated.105 As can 

be seen above, a straight forward implementation of version MPa of the M-program yields a nearly-optimal 
solution. Note that unlike other solution algorithms where a judicious choice of the Big-M parameter is 
imperative (Lee, S. and I. E. Grossmann: 2005), here this parameter needn’t be known in advance. 

                                                           
104 Source: Grossmann and Lee (2002). 

105 Such disjunctions are “absorbed” into the entire M-program resulting in “binary-modulated” terms such x3y1. 
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III. The gep File: Example 3.19 
 

// A constrained uni-objective static optimization problem 
// Source: Grossmann and Lee (2002).  
 
#definecs p_maxgens 200 
#definecs p_popsize 30 
#definecs p_agents 1 
#definecs p_order  10 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1   1   1   1   1   1   1   1   1   1; 
let discrete_var[p_order]  = 0   0   0   0   0   0   1   1   1   1;  
 
adj_mode     = "s"; 
solution_type   = "e"; 
maximise     = false; 
 
timer      = true; 
sol_mtx_check   = true; 
constraints_check  = true;     
 
//cross-over probabilities 
p_s_xover   = 0.55;   
p_a_xover   = 0.55;   
p_b_xover   = 0.00;   
p_h_xover   = 0.55;   
p_d_xover   = 0.55;   
p_shuffle   = 0.55; 
   
d_factor    = 0.250;   
quantum_0   = 0.1; 
rand_seed   = 2406525; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.003); endp; 

 
proc (2) = f(i, d, v_array); 
local c,fv,u,x,z; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);  
 
 //evaluate constraints 
 z = equations(x,0,horizon); 
 c = constraints(z,x,horizon); 
 v_array  = evaluate_constraints(c,v_array); 
 v_array[2] = v_array[2] + distance_to_set(0,1,z[1]); 
 
 //evaluate objective 
 fv = objective(z,x,horizon); 
 retp (fv,v_array);  
endp; 

 
 

proc (1) = objective(z,x,k); 
local fv; 
 fv = 5*z[1] + 8*x[7,k] + 6*x[8,k] + 10*x[9,k] + 6*x[10,k]; 
 fv = fv + 140 - 10*x[1,k]*z[1] - 15*x[2,k]*x[7,k] - 15*x[3,k]*x[8,k] \ 
  + 15*x[4,k]*x[9,k]  + 5*x[5,k]*x[9,k] - 20*x[6,k] + exp(x[1,k]*z[1]) \ 
  + exp((x[2,k]*x[7,k])/1.2) - 60*ln(x[4,k]*x[9,k] + x[5,k]*x[9,k] + 1); 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
 
 
proc (1) = equations(x,y,k); 
local z; z = zeros(1,1);  
 z[1] = 1 - x[7,k]; 
 retp (z); 
endp; 
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proc (1) = constraints(z,x,k); 
local c, M; c = zeros(15,1);  
 M = large; 
 c[1] = -ln(x[4,k]*x[9,k] + x[5,k]*x[9,k] + 1); 
 c[2] = x[4,k]*x[9,k] + 2*x[6,k] - x[1,k]*z[1] - x[2,k]*x[7,k] - 2*x[3,k]*x[8,k]; 
 c[3] = x[4,k]*x[9,k] + 2*x[6,k] - x[1,k]*z[1] - x[2,k]*x[7,k] - 0.75*x[3,k]*x[8,k]; 
 c[4] = x[3,k]*x[8,k] - x[6,k]; 
 c[5] = 2*x[3,k]*x[8,k] - x[4,k]*x[9,k] - 2*x[6,k]; 
 c[6] = x[5,k]*x[9,k] - 0.5*x[4,k]*x[9,k]; 
 c[7] = 0.2*x[4,k]*x[9,k] - x[5,k]*x[9,k]; 
 c[8] = exp(x[1,k]*z[1]) -  11; 
 c[9] = exp((x[2,k]*x[7,k])/1.2) - 11; 
 c[10] = 1.25*x[3,k]*x[8,k] - 10; 
 c[11] = x[4,k]*x[9,k] + x[5,k]*x[9,k] - 10; 
 c[12] = 2*x[6,k] - 2*x[3,k]*x[8,k] - 10 - M*(1 - x[10,k]); 
 c[13] = x[6,k] - x[3,k]*x[8,k] - M*x[10,k]; 
 c[14] = 1 - z[1] - x[7,k] - x[8,k] - x[9,k] - x[10,k]; 
 c[15] = x[9,k] + x[10,k] - 1; 
 retp (c); 
endp; 
 

 

VI. The dat File: Example 3.19  

Table 3.19: Input Data for Process Synthesis V 
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 

UCB 2 2 2 2 2 3 1 1 1 1 

LCB 0 0 0 0 0 0 0 0 0 0 

USB 2 2 2 2 2 3 1 1 1 1 

LSB 0 0 0 0 0 0 0 0 0 0 

Initial State Vector 0 0 0 0 0 0 0 0 0 0 

Final State Vector 0 0 0 0 0 0 0 0 0 0 

Discrete Values 0 0 0 0 0 0 1 1 1 1 

X1 1 0 0 0 0 0 0 0 0 0 

X2 0 1 0 0 0 0 0 0 0 0 

X3 0 0 1 0 0 0 0 0 0 0 

X4 0 0 0 1 0 0 0 0 0 0 

X5 0 0 0 0 1 0 0 0 0 0 

X6 0 0 0 0 0 1 0 0 0 0 

X7 0 0 0 0 0 0 1 0 0 0 

X8 0 0 0 0 0 0 0 1 0 0 

X9 0 0 0 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X10 0 0 0 0 0 0 0 0 0 1 

 

V. Points to Note: Example 3.19 
 

1. Method — In the MINLP reformulation, disjunctions of the form such as 

 )5c()011)x(exp(Y 111 =∧≤−⇒  )0c()0x(Y 111 =∧=⇒¬  

are eliminated by replacing the continuous variable x1 and the discrete variable c1 with the “binary-
modulated” terms x1y1 and c1y1 respectively throughout the M-program. 
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Example 3.20: Generalised Disjunctive Programming: Job Shop Scheduling 106 
 
 ( ) T=min yx,

x
J  

 Subject to: 0T8x1 ≤−+  

  0T5x 2 ≤−+  

  0T6x 3 ≤−+  

  321 YYY ∨∨  

 Where: )05xx(Y 311 ≤+−⇒ ;  )02xx(Y 131 ≤+−⇒¬  

  )01xx(Y 322 ≤+−⇒ ;  )06xx(Y 232 ≤+−⇒¬  

  )05xx(Y 213 ≤+−⇒ ;  )0xx(Y 123 ≤−⇒¬  

  ),0[T ∞∈ ;  ),0[x i ∞∈ ;  }False,True{Yi ∈ ;  i∀  

 
I. GENO Output 
 
 Generation Objective 
 
 0 92193810385651892000.000000 
 10 6586481546.200001 
 20 17.270000 
 30 12.081000 
 40 11.059000 
 50 11.012100 
 60 11.000000 
 70 11.000000 
 80 11.000000 
 90 11.000000 
 100 11.000000 
 ___________________________________________________________________________________ 

Optimal State Vector: x = ( 3.000000, 0.000000, 1.000000, 0.000000, 1.000000, 0.000000 ) T 

Objective Function Value: J (x, y) = 11.000000 
 

 
 
II. General Remarks  

This is a simple Generalised Disjunctive Program (GDP) whose purpose is to illustrate how GENO may be 
programmed to solve such problems via the Big-M relaxation method. The techniques for converting a GDP into 
a nonlinear M-program are outlined in Raman and Grossmann (1991); and Grossmann (2002) reviews the 
algorithmic techniques that are currently available for solving the resulting MINLP. As can be seen above, a 
straight forward implementation of version MPa of the M-program yields the optimal solution. Note that unlike 
other solution algorithms where a judicious choice of the Big-M parameter is imperative because 

“If the value [of M] is too small, then feasible points may be cut off. If [the value] is too large, then the continuous relaxation might 
be too loose yielding poor lower bounds” (paraphrased from Lee, S. and I. E. Grossmann: 2005) 

with GENO, this parameter needn’t be known in advance. 

                                                           
106 Source: Lee and Grossmann (2000). 
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III. The gep File: Example 3.20 
 

// A constrained uni-objective static optimization problem 
// Source: Lee and Grossmann (2000)  
 
#definecs p_maxgens 500 
#definecs p_popsize 30 
#definecs p_agents 1 
#definecs p_order  7 
#definecs p_plan  1 
 
#include static_gep_defaults.src 
 
let vars[p_agents, p_order] = 1   1   1   1   1   1   1; 
let discrete_var[p_order]  = 0   0   0   1   1   1   0;  
 
adj_mode     = "s"; 
solution_type   = "e"; 
maximise     = false; 
 
timer      = true; 
sol_mtx_check   = true; 
constraints_check  = true; 
 
//cross-over probabilities 
p_s_xover   = 0.55;   
p_a_xover   = 0.55;   
p_b_xover   = 0.00;   
p_h_xover   = 0.55;   
p_d_xover   = 0.55;   
p_shuffle   = 0.00; 
   
d_factor    = 0.80;   
quantum_0   = 0.1; 
rand_seed   = 240657; 
 
proc (1) = m_rate(i,d); retp(0.05); endp; 
 
proc (1) = bm_rate(d); retp(0.005); endp; 
 
  
proc (2) = f(i, d, v_array); 
local c,fv,u,x,z; 
 u = matinit(order, plan, 0); 
 x = matinit(order, horizon, 0); 
  {u,x} = assign_sequences(i,d,u,x);  
 
 //evaluate constraints 
 c = constraints(0,x,horizon); 
 v_array  = evaluate_constraints(c,v_array); 
 
 //evaluate objective 
 fv = objective(0,x,horizon); 
 retp (fv,v_array);  
endp; 
 
 
proc (1) = objective(z,x,k); 
local fv; 
 fv = x[7,k]; 
 if (maximise); fv = fv; else; fv = -fv; endif; 
 retp(fv); 
endp; 
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proc (1) = constraints(z,x,k); 
local c, M; c = zeros(10,1); 
 M = large; 
 c[1] = x[1,k] - x[3,k] + 5 - M*(1 - x[4,k]); 
 c[2] = x[3,k] - x[1,k] + 2 - M*x[4,k]; 
 c[3] = x[2,k] - x[3,k] + 1 - M*(1 - x[5,k]); 
 c[4] = x[3,k] - x[2,k] + 6 - M*x[5,k]; 
 c[5] = x[1,k] - x[2,k] + 5 - M*(1 - x[6,k]); 
 c[6] = x[2,k] - x[1,k] - M*x[6,k]; 
 c[7] = x[1,k] + 8 - x[7,k]; 
 c[8] = x[2,k] + 5 - x[7,k]; 
 c[9] = x[3,k] + 6 - x[7,k];  
 c[10] = 1 - x[4,k] - x[5,k] - x[6,k]; 
 retp (c); 
endp; 
 

 

VI. The dat File: Example 3.20  

Table 3.19: Input Data for the Job Shop Scheduling Problem  
 

VARIABLE NAME X1 X2 X3 X4 X5 X6 X7 

UCB  120  120  120  1  1  1  1e20 

LCB 0 0 0 0 0 0 0 

USB  120  120  120  1  1  1  1e20 

LSB 0 0 0 0 0 0 0 

Initial State Vector 0 0 0 0 0 0 0 

Final State Vector 0 0 0 0 0 0 0 

Discrete Values 0 0 0 1 1 1 0 

X1 1 0 0 0 0 0 0 

X2 0 1 0 0 0 0 0 

X3 0 0 1 0 0 0 0 

X4 0 0 0 1 0 0 0 

X5 0 0 0 0 1 0 0 

X6 0 0 0 0 0 1 0 

Inter-connexion 
Matrix  

X7 0 0 0 0 0 0 1 

 

V. Points to Note: Example 3.20 
 

1. Method — In the MINLP reformulation, propositions of the form  

 0)(gY ii ≤⇒ x  

are replaced by Big-M relaxations of the form 

 )y1(M)(g ii −≤x ; 

and propositions of the form 

 0)(gY
jj

≤⇒¬ x  

are replaced by Big-M relaxations of the form 

 
jj

My)(g ≤x . 
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4. SummarySummarySummarySummary 
 

This document has outlined the usage of a program called GENO, and has presented some numerical results that 
attest to their efficacy on a variety of problems. The program is easy to use. Apart from the program file (a listing 
of which is repeated here as a reminder), the user only needs to supply: (a) a source file with a ‘.gep’ filename 
extension that contains the GAUSS code for the problem at hand; (b) a data file with a ‘.dat’ filename extension 
that provides the data required. GENO exhibits impressive numerical performance on a wide range of problems. 
Some salient programming points are listed below. 
 
Program 4.1: A Typical GENO Program 

 

 

 new; 

 #linesoff 

  use geno; 

  #include ../source/static_opt/sc_sp1.gep; 

  load input_data[] = ../data/sc_sp1.dat;  

  create sol_fp = ../output/sc_sp1.out with sc, horizon, 8; 

  output file = ../output/sc_sp1.txt reset; 

  outwidth 250; 

  call geno_main;  

  output off;  

  fp = close(sol_fp); 

 end; 

 

 

� Generic type — GENO solves dynamic optimisation problems of various types whose generic form is given by program 
MP1 above; the static optimisation case is easily accommodated by merely making the assignment: 
p_plan = 1.  

� dynamics — When solving actual dynamic optimisation problems, the dynamic constraints are explicitly coded in proc 
a(i,j,k), proc b(i,j,k), proc aa(z,w,j,k), proc bb(z,w,j,k); if the state vector is 
fixed at the final time, then one need to code proc ee(z,w,j,k) as well. On the other hand, if the 
problem is in fact static, then there is no need for the explicit coding mentioned above because the implied 

dynamic process is simply i

k

i

k

i

1k uxx +=+ , and this is already coded in static_gep_defaults.src. 

� ff_sates — The procedure proc ee(z,w,j,k) is the state equation expressed in “reverse”, i.e. it gives kx  in terms of 

1k+x  and ku . This is procedure is crucial to GENO’s capability on two-point boundary value problems; and 

this perhaps highlights a weakness of the program in its current version in that it may not be easy to “factor 

out” kx  from the coefficient expressions A and B of MP1 in all cases. On two-point boundary value 

problems, the values of the fixed states should be provided in the data file.  

� Discrete values — Problems with discrete variables are easily accommodated in GENO; one merely defines the matrix 
discrete_vars and provides the actual values of the discrete variables in the data file. 

� Multiple objectives —  Solving multi-objective problems for various types of solution is easily implemented: one 
merely needs to appropriately define proc f(i,d,v_array) and set the parameters 
adj_mode and solution_type to their appropriate values. 

� Tuning — On most problems, tuning the algorithm for optimum performance may be achieved by “tweaking” only five 
parameters: rand_seed, d_factor, the return values of m_rate, bm_rate, and occasionally p_popsize. 
However, it should always be remembered that “the quest for a magic set of parameter values that will give the 
best possible results [in every case] is a fool’s errand” (Michalewicz and Fogel: 2000, p.277). 
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Appendix Appendix Appendix Appendix IIII    

An Introduction to Genetic Algorithms107 

I. Introduction 

The Genetic Algorithm (or GA for short) is a recent development in the arena of numerical search methods. GAs 
belong to a class of techniques called Evolutionary Algorithms, including Evolutionary Strategies, Evolutionary 
Programming and Genetic Programming. One description of GAs is that they are stochastic search procedures 
that operate a population of entities; these entities are suitably coded candidate solutions to a specific problem; 
and the GA solves the problem by artificially mimicking evolutionary processes observed in natural genetics. 

Naturally, terminology from the field of natural genetics is used to describe genetic algorithms. In a biological 
organism, the structure that encodes how the organism is to be constructed is called the chromosome. One or 
more chromosomes may be required to completely specify the organism; the complete set of chromosomes is 
called a genotype, and the resulting organism is called a phenotype. Each chromosome comprises a set of genes, 
each with a specific position or locus on the chromosome. The loci in conjunction with the values of the genes 
(which are called the alleles) determine what characteristics are expressed by the organism. 

In the GA analogy, a problem would first be coded and in this regard, genetic algorithms have traditionally used 
a binary representation in which each candidate solution is coded as a string of 0’s and 1’s. The GA’s 
“chromosomes” are therefore the strings of 0’s and 1’s, each representing a different point in the space of 
solutions. Normally each candidate solution (or “organism”) would have only one chromosome, and so the terms 
organism, chromosome and genotype are often used synonymously in GA literature. At each position on a 
chromosome is a gene that can take on the alleles 0 or 1; the phenotype is the decoded value of the chromosome. 
The population of candidate solutions represent a sample of different points of the search space, and the 
algorithm’s genetic processes (see below) are such that the chromosomes evolve and become better and better 
approximations of the problem’s solution over time. 

Before a GA can be run, a fitness function is required: this assigns a figure of relative merit to each potential 
solution. Before fitness values can be assigned, each coded solution has to be decoded and evaluated, and the 
module designed to do this is generally called the evaluation function. But whereas the evaluation function is a 
problem-specific mapping used to provide a measure of how individuals have performed in the problem domain, 
the fitness function, on the other hand, is a problem-independent mapping that transforms evaluation values into 
an allocation of reproductive opportunities. For any given problem therefore, different fitness functions may be 
defined. At each generation, the chromosomes in the current population are rated for their effectiveness as 
candidate solutions, and a process that emulates nature’s survival-of-fittest principle is applied to generate a new 
population which is then “evolved” using some genetic operators defined on the population. This process is 
repeated a sufficient number of times until a good-enough solution emerges. The three primary genetic operators 
focused on in practice are selection, crossover and mutation. 

II. Selection 

This operator is sometimes called Reproduction. The reproduction operation is in fact comprised of two phases: 
the selection mechanism and the sampling algorithm. The selection mechanism assigns to each individual x, a 
positive real number, called the target sampling rate (or simply: fitness), which indicates the expected number of 
offspring reproduced by x at generation t. In the commonly used fitness proportionate selection method, an 
individual is assigned a target sampling rate equal to the ratio of the individual’s evaluation to the average 
evaluation of all chromosomes in the population. This simple scheme however suffers from the so-called scaling 

problem where a mere shift of the underlying function can result in significantly different fitness values.108 A 
technique that has been suggested to overcome this is to assign target sampling rates according to some form of 
population ranking scheme. Here, individuals are first assigned a rank based on their performance as determined 
by the evaluation function; thereafter, the sampling rates are computed as some linear or non-linear function of 
the ranks. 
                                                           
107 Only a brief description of genetic algorithms is provided here. Readers requiring a more detailed account of the subject should consult 
standard texts such as Goldberg (1989), Michalewicz (1994) or Mitchell (1996); or survey papers such as Beasley, et al. (1993), Whitley 
(1994) or Chipperfield (1997). A large part of this exposition closely follows Michalewicz (1994: Chapters 3, 4).  

108For example, given two chromosomes with evaluation values 2 and 1 say, the first will get twice as many offspring as the second. If the 
evaluation function is changed by simply adding 1 to all values, the two strings will score 3 and 2, a ratio of only 1.5 
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After fitness values have been assigned, the sampling algorithm then reproduces copies of individuals to form an 
intermediate mating population. The most common method of sampling the population is by the roulette wheel 
method in which each individual is assigned a slice of a virtual roulette wheel which is proportional to the 
individual’s fitness. To reproduce a population of size P, the wheel is spun P times. On each spin, the individual 
under the wheel’s maker is selected to be in the mating pool of parents who are to undergo further genetic action. 
An alternative approach and one which minimises spread

109 is Stochastic Universal Sampling (SUS). Here, 
rather than spin the wheel P times to select P parents, SUS spins the wheel once but with P equally spaced 
pointers which are used to select the P parents simultaneously. Reproduction may also be done by a tournament 
selection. A typical implementation is as follows. Two individuals are chosen at random from the population and 
a random number r is chosen between 0 and 1. If r < k (where k is a tuning parameter, say 0.75), the fitter of the 
two individuals is selected to go into the mating pool; otherwise the less fit individual is chosen. The two are 
then returned to the original population and can be selected again. 

Reproductive processes may be implemented in generational or steady-state mode. Generational reproduction 
replaces the entire population with a new population, and the GA is said to have a generation gap of 1. Steady-
state reproduction on the other hand replaces only a few individuals at a time. Elitism is an addition to selection 
that forces the GA to retain some number of the best individuals at each generation. Such individuals can be lost 
if they are not selected to reproduce or if they are operated on by the genetic operators. 

The selection operator is the driving force in GAs, and the selection pressure
110 is a critical parameter. Too much 

selection pressure may cause the GA to converge prematurely; too little pressure makes the GA’s progress 
towards the solution unnecessarily slow. 

III. Crossover 

The crossover operation is also called recombination. It is generally considered to be the main exploratory 
device of genetic algorithms. This operator manipulates a pair of individuals (called parents) to produce two new 
individuals (called offspring or children) by exchanging corresponding segments from the parents’ coding. The 
simplest form of this operator is the single-point crossover, and this is as illustrated below where the crossover 
point is the position marked by the symbol, |. 

 
5) 4 | 3 2 (1 :Parent2

e) d | c b (a :Parent1
  →

3position  at  Crossover  
e) d |3 2 (1 :Child2

5) 4 |c b (a :Child1
 

Other binary-coded crossover operators which are variations of the above scheme have since been defined, e.g., 
two-point crossover, uniform crossover and shuffle crossover. For real-coded GAs, recombination is usually 
defined in a slightly different way. We mention three crossover operators that are employed by GENO: 

• ARITHMETIC CROSSOVER. This operator produces two offspring that are convex combinations of the parents. If the 
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• HEURISTIC CROSSOVER. This operator combines two chromosomes and produces one offspring as follows: if v
kc  

and w
kc  are two parent chromosomes such that the fitness of v

kc  is not worse than that of w
kc , then the offspring is: 
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v
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x
k cccc −⋅α+= ,  where  ]1,0[UD~α .  

Here, the idea is to use the “quasi-gradient” of the evaluation function as a means of directing the search process. 

• DIFFERENTIAL CROSSOVER. This operator uses three parents: one parent is taken as the “base”, and the other two 

are used to generate the search direction. Thus, if B
Tu , v

Tu  and w
Tu , are the parent chromosomes with B

Tu  as the 

“base”, then the offspring are: 

 )( v
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w
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B
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1
T uuuu −⋅α+=   and  )( w

T
v
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B
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2
T uuuu −⋅α+= ,  where  ]1,0[∈α .  

In GENO, the factor α  is pre-selected from the unit interval, although random variable may also be used. 

                                                           
109For large populations, a good sampling algorithm should statistically result in the expected number of offspring for each individual. 
However, with the relatively small populations typically used in GAs, the actual number of offspring allocated to an individual is often far 
from its expected value. The range of possible actual values, given an expected value is called the spread. 

110A definition of selection pressure is that it is the target sampling rate assigned to the best member of the population (Hancock: 1994).  
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IV. Mutation 111 

By modifying one or more of the gene values of an existing individual, mutation creates new individuals and 
thus increases the variability of the population. The mutation operator ensures that the probability of reaching 
any point in the search space is never zero. The mutation operator is applied to each gene of the chromosome 
depending on whether a random deviate drawn from a certain probability distribution is above a certain 
threshold. Usually the uniform or normal distribution is assumed. Again, depending on the representation 
adopted, variations of the basic mutation operator may be defined. 

V. Why Genetic Algorithms Work 

Currently, there are several competing theories that attempt to explain the macroscopic behaviour of GAs. The 
original description of GAs as schema processing algorithms by John Holland (1975) has underpinned most of 
the theoretical results derived to date. However, other descriptive models based on Equivalence Relations, Walsh 
functions, Markov Chains and Statistical Mechanics have since been developed. A survey of these models is 
beyond the scope of this introductory exposition.112 Instead, we provide a sketch of the logic leading up to one of 
the main explanatory models, namely The Building Block Hypothesis. We begin by stating some definitions. 

• DEFINITION A1. [Schema; Schemata] A schema is a template that defines the similarities among chromosomes 
which is built by introducing the don’t care symbol (*) in the alphabet of genes. It represents all chromosomes 
which match it at every locus other than the ‘*’ positions. For example, the schema (1 0 * * 1) represents of four 
chromosomes, i.e.: (1 0 1 1 1), (1 0 1 0 1), (1 0 0 1 1) and (1 0 0 0 1). A collection of schema is a schemata. 

• DEFINITION A2. [Order] The order of a schema S (denoted by o(S)) is the number of non-don’t care positions in 
the schema. For example, the schemata S1 = (1 0 * * 1), S2= (* 0 * * 1), S3= (* * 1 * *) are of orders 3, 2 and 1, 
respectively. 

• DEFINITION A3. [Defining Length] The defining length of a schema S (denoted by )S(δ ) is the positional distance 
between the first and last fixed positions (i.e., the non-don’t care sites) in the schema. It defines the compactness of 
the information contained in the schema. For example, defining lengths of the three schemata S1 = (1 0 * * 1), S2= 
(* 0 * * 1), S3= (* * 1 * *) are )S( 1δ  = 4, )S( 2δ  = 3 and )S( 3δ  = 0, respectively. 

• DEFINITION A4. [Schema Fitness] The schema fitness is the average of the fitness of all chromosomes matched by 
the schema in a given population. That is, given the evaluation function eval(.) defined on a population of 
chromosomes jx  of size P, the fitness of schema S at generation t is: 

 ∑
=

=
P

1j

j P)(eval)t,S(eval x  (A1) 

The evolutionary process of GAs consists of four basic steps which are consecutively repeated, namely: 

 1tt +←  

 select )t(P  from )1t(P − ; 

 recombine and mutate )t(P ; 

 evaluate )t(P . 

The main evolutionary process takes place in the select, recombine and mutate phases. After the selection step, 
we can expect to have )1t,S( +ξ  chromosomes matched by the schema S in the mating pool. For an average 
chromosome matched by the schema S, the probability of its selection is equal to )t(F)t,S(eval  where )t(F  is the 

total fitness for the whole population. Since the number of chromosomes matched by schema S before selection 
is )t,S(ξ , and the number of single chromosome selections is P, it follows that: 

 )t(F)t,S(evalP)t,S()1t,S( ⋅⋅ξ=+ξ  (A2) 

or, in terms of the average fitness of the population, P)t(F)t(F = : 

 )t(F)t,S(eval)t,S()1t,S( ⋅ξ=+ξ  (A3) 

                                                           
111 Advocates of Evolutionary Strategies consider this operator to be more fundamental than cross-over. Their argument is that crossover can 
essentially be viewed as a series of mutations applied to adjacent genes with probability one.    

112Readers interested in this aspect may wish to consult Radcliffe (1991); White and Flockton (1995); Mitchell (1996). 
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In other words, the number of chromosomes grows as the ratio of the fitness of the schema to the average fitness 
of the population. This means that an above-average schema receives an increasing number of matching 
chromosomes in the next generation, a below-average schema receives a decreasing number of chromosomes, 
and an average schema remains the same.  

The schema growth equation (A3) however has to be modified to take into account the destructive effects of 
recombination and mutation. For chromosomes of length m, the crossover site is selected uniformly from among 
(m - 1) possible sites. A schema S would be destroyed if the crossover site is located within its defining length. 
The probability of this happening is )1m()S()S(pd −δ=  and, hence, the probability of a schema surviving the 

crossover operation is, 

 ( ))1m()S(1)S(ps −δ−= . (A4) 

The crossover operator is however only applied selectively according to some probability ( cp , say). 

Furthermore, even when the crossover site is within the defining length there is always a finite chance that the 
schema may survive. These considerations dictate the modification of (A4) to, 

 ( ))1m()S(p1)S(p cs −δ⋅−≥ . (A5) 

Thus, the combined effects of selection and recombination are summarised by: 

 ( ) ( )( )1m)S(p1)t(F)t,S(eval)t,S()1t,S( c −δ⋅−⋅⋅ξ≥+ξ . (A6) 

The mutation operator changes a single gene with probability mp . It is clear that all the fixed positions of a 

schema must remain intact if the schema is to survive mutation. Since each mutation is independent of all others, 
the probability of a schema S surviving mutation is therefore: 

 ( ) )S(o

ms p1)S(p −= . (A7) 

And for 1pm << , )S(ps  may be approximated by the first two terms of its binomial expansion, i.e.: 

 { })S(op1)S(p ms ⋅−≈ . (A8) 

Therefore, ignoring higher-order terms involving products of cp  and mp , the combined effects of selection, 

crossover and mutation is summarised by the following reproductive schema growth inequality: 

 ( ) ( )( )1m)S(p)S(op1)t(F)t,S(eval)t,S()1t,S( cm −δ⋅−⋅−⋅⋅ξ≥+ξ . (A9) 

Clearly, the disruptive effects of mutation and crossover are greater, the higher the order, and the longer the 
defining length of the schema. One can therefore expect that later generations of chromosomes would 
increasingly be comprised of short, low-order schemata of above-average fitness. This observation is captured by 
the Schema Theorem which states: 

• THEOREM A1. [Schema Theorem] Short, low-order, above-average schemata receive exponentially increasing 
trials in subsequent generations of a genetic algorithm. 

An immediate result of this theorem is the assertion that genetic algorithms explore the search space by short, 
low-order schemata which are used for information exchange during recombination. This observation is 
expressed by the Building Block Hypothesis which states:  

• HYPOTHESIS A1. [Building Block Hypothesis] A genetic algorithm seeks near-optimal performance through the 
juxtaposition of short, low-order, high-performance schemata called building blocks. 

Over the years, many GA applications which support the building block hypothesis have been developed in 
many different problem domains. However, despite this apparent explanatory power, the hypothesis is not 
universally valid. In particular, it is easily violated in the so-called deceptive problems.113  

                                                           
113A problem is referred to as deceptive if the average fitness of schemata that are not contained in the global optimum is greater than the 
average fitness of those that are. A problem is said to be fully deceptive if all low-order schemata containing a sub-optimal solution are better 
than other competing schemata (Beasley, et al.: 1993, p.173). 
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VI. Setting GA Parameters 114 

Before one can use a GA, one needs to specify some parameter values namely the selection pressure, the 
population size, and the crossover and mutation rates. Both theoretical and empirical studies show that “optimal” 
values for these parameters depend on how difficult the problem at hand is. And since prior determination of the 
degree of difficulty a particular problem poses is hard, there are no generally accepted recipes for choosing 
effective parameter values in every case. However, many researchers have developed good heuristics for these 
choices on a variety of problems, and this section outlines some their recommendations. 

� Experimental Studies 

De Jong (1975) 

Kenneth A. De Jong tested various combinations of GA parameters on five functions with various characteristics 
including continuous and discontinuous, convex and non-convex, uni-modal and multi-modal, deterministic and 
noisy for his PhD Thesis. His function suite has since been adopted by many researchers as the standard test bed for 
assessing GA designs.115 

De Jong used a simple GA with roulette wheel selection, one-point cross-over and simple mutation to investigate the 
effects of four parameters namely: population size, crossover rate, mutation rate and the generation gap. His main 
conclusions were that: 

• Increasing the population size resulted in better long-term performance, but smaller population sizes 
responded faster and therefore exhibited better initial performance 

• Mutation is necessary to restore lost alleles but this should be kept low at a low rate for otherwise the GA 
degenerates into a random search 

• A cross-over probability of around 0.6 worked best. But increasing the number of cross-over points 
degraded performance 

• A non-overlapping population model worked better in general 

• In summary, he concluded that the following set of parameters were efficient (at least for the functions 
that he studied): population size — 50 - 100; crossover probability — 0.6; mutation probability — 0.001; 
generation gap — 1 

De Jong’s work was very important in that it provided practical guidelines for subsequent applications of GA’s. 
His recommendations for the various parameters have been so widely adopted that they are sometimes referred to 
as “the standard settings”. But subsequence research revealed that applying De Jong’s parameter values cases can 
be a serious mistake in some cases.     

Schaffer, Caruana, Eshelman and Das (1989) 

Recognising that parameter values can have a significant impact on the performance of a GA and that a more 
thorough investigation was needed, Schaffer et al. (1989) expanded De Jong’s experimental setup. In addition to the 
five functions that he had studied, they introduced five more and performed a more exhaustive assessment of the 
direct and cross effects of the various parameters on a GA’s performance. A notable observation they made was that 
good GA performance results from an inverse relationship between population size and the mutation rate, i.e. high 
mutation rates were better for small population sizes and low mutation rates were good for large populations. Whilst 
recognizing that their results may not generalise beyond the 10 functions in their test suite, they recommend the 
following parameter values: 

• Population size:  20 - 30 

• Mutation rate:  0.005 – 0.1 

• Cross-over rate: 0.75 – 0.95 

De Jong’s work was very important in that it provided practical guidelines for subsequent applications of GA’s. 
His recommendations for the various parameters have been so widely adopted that they are sometimes referred to 
as the “standard settings”.    

                                                           
114 This section is largely sourced from Lobo (2000: Chapter 3). 

115 As regards multi-objective optimisation, Schaffer (1984) suggested some simple bi-objection problems which he used to evaluate his 
multi-objective genetic algorithm called VEGA. His simple unconstrained two-objective functions comprised the test suite for validating 
most of the evolutionary multi-objective optimisation techniques developed in the ensuing years (Coello Coello, 2001, p.4). 
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� Theoretical Studies 

Several researchers have theoretically analysed the dynamics of GAs. In his survey, Lobo (2000: chapter 3) reports 
the most notable of these as being the work on selection by Goldberg and Deb (1991); the work on mutation by 
Mühlenbein (1992) and Bäck (1993); the research on population sizing by Goldberg, Deb and Clark (1992) and Harik 
et al. (1997); and the work on control maps by Goldberg, Deb and Thierens (1993) and Thierens and Goldberg 
(1993). The insights and practical implications afforded by these studies are summarised below. 

• On Selection. In the absence of all other operators, repeated use of the selection operator would 
eventually result in a population comprised of the single chromosome with the highest fitness. Goldberg 
and Deb define the takeover time as the time it takes (as measured by the number of generations elapsed) 
for this event to occur. They derived takeover time formulae for various selection schemes and validated 
these using computer simulations. For fitness proportionate selection schemes, the takeover time depends 
on the fitness function distribution; for order-based selection, the takeover time is independent of the 
fitness function and is of the order O (log P), where P is the population size. Obviously the takeover time 
is increases in the presence of cross-over and mutation, but one must be careful not to exert too much 
selection pressure to cancel the diversifying effects of these operators. 

• On Mutation. Independently of each other Mühlenbein (1992) and Bäck (1993) analysed the effects of 
mutation on a simple (1 + 1) evolutionary algorithm.116 They both concluded that for a chromosome of 
length L, the optimal fixed mutation rate is L -1. Intuitively, it is easy to see why there should be this 
inverse relationship between chromosome length and mutation rate. Besides exploring the search space, 
the mutation (and to so extent, cross-over operation) can disrupt building blocks during the course of a 
GA run. And obviously, this is more likely to occur for long chromosomes than short ones since the 
operator is applied (with probability) to each gene. So in order to minimise building block disruption, one 
should decrease the mutation rate for relatively longer chromosomes. 

• On Population Size. Studies on population size attempt to formulate schema growth equations similar to 
A3 that have population size as a variable. Unfortunately, population sizing equations are difficult to use 
in practice. Lobo (2000) notes: 

“In order to apply [the equation] the user has to know or estimate the selective advantage that a building 
block has over its closest competitors; he has to estimate the building block’s fitness variance, he has to 
estimate the maximum level of deception in the problem at hand; and of course he has to hope that the 
building blocks are going to mix well, which may not occur in practice” (paraphrased from p.34) 

It is difficult to see how these population sizing studies can be used to further inform the choice of parameter 
values suggested by the empirical work of De Jong (1975) or Schaffer, et al. (1989). 

• On Selection. Increasing the population size resulted in better long-term performance, but smaller 
population sizes responded faster and therefore exhibited better initial performance 

� Parameter Adaptation 

We mention, in passing, parameter adaptation techniques. These methods change GA parameters as the search 
progresses. There are three main approaches: (1) centralised methods change parameter values based on a central 
learning rule;117 (2) decentralised methods encode the parameters values into the chromosomes themselves;118 (3) 
meta-GA’s attempt to optimise parameter values by evolving these values for the actual GA that is run at a lower 
level using the parameters identified by the meta-level GA.119 The main advantage of a GA so designed is that the 
user is no longer required to specify parameter values prior to executing the search. 

VII. Concluding Remarks 

Genetic Algorithms are simple and yet powerful search and optimisation procedures that are widely 
applicable. Unfortunately, our current knowledge is such that one cannot rigorously predict whether a GA 
is going to efficient in any given instance due to the difficult in choosing the parameters of the algorithm. 
Nevertheless, the parameters recommended for GENO are efficient, at least on the examples reported. 
These parameters were arrived at after extensive trials guided by the empirical and theoretical work 
outlined above: they are summarised in Table 1A below.   

                                                           
116 In the evolutionary strategies lexicon, the notation (1 + 1) denotes an algorithm that has one parent and creates one child through 
mutation; the better of the two becomes the next parent in the next generation.     

117 Cavicchio (1970), Davis (1989), Julström (1995), Smith and Smuda (1995), Lobo and Golberg (1997) 

118 Bagley (1967), Bäck (1992)  

119 Weinberg (1970), Mercer and Sampson (1978), Greffenstette (1986). 
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Table 1A: GENO Parameters: 120 Default Values   
 

PARAMETER TYPE DEFAULT VALUE REMARKS 

adj_mode character none This parameter is problem-dependent. It should be set 
to "s" for uni-objective optimisation problems, or if 
one seeks a Nash equilibrium solution of a multi-
objective problem; it should be to "g" in all other 
cases. 

bm_rate real matrix 0.005 This parameter is the probability of boundary 
mutation and is returned from a simple procedure.121 
It is problem-dependent but the default value is 
usually efficient. 

constraints_check Boolean false This parameter it allows one to choose whether or not 
to display values of the constraints at the end of the 
program run.  

d_factor real matrix 0.15 – 0.8 This is a weighting factor on the direction component 
of the differential cross-over operator.122 The 
parameter is problem-dependent but the default range 
is usually efficient. 

m_rate real matrix 0.05 This parameter is the probability of ordinary mutation 
and is returned by a simple procedure.123 It is 
problem-dependent but the default value is usually 
efficient. 

maximise Boolean true This parameter is problem-specific: set this to false if 
the problem is about minimisation. 

p_a_xover real matrix 0.55 This parameter is problem-dependent: it specifies the 
probability threshold for the arithmetic cross-over 
operator. The default value is usually efficient. 

p_agents integer none This parameter is problem-specific: it declares the 
number of sub-objective in a multi-objective problem 

p_b_xover real matrix 0.005 This parameter is problem-dependent: it specifies the 
probability threshold for the boundary cross-over 
operator. The default value is usually efficient. 

p_d_xover real matrix 0.55 This parameter is problem-dependent: it specifies the 
probability threshold for the differential cross-over 
operator. The default value is usually efficient. 

p_eqms integer 1 A constant equal to 1.124 

p_h_xover real matrix 0.55 This parameter is problem-dependent: it specifies the 
probability threshold for the heuristic cross-over 
operator. The default value is usually efficient. 

                                                           
120 The Table is arranged in alphabetical order for easy of reference. More information on some of these parameters may be found on the list 
entitled Points to Note: The gep Source File on pages 6 and 7 of this Manual.   

121 This is in anticipation of future program development. 

122 Infra, page 81. 

123 This is in anticipation of future program development. 

124 This parameter is a legacy of the original GENO design. It is located in the source file static_gep_defaults.src (or its dynamic 
equivalent dynamic_gep_defaults.src) in order to minimise clutter in the gep file. 
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Table 1A: Continued 
 

p_maxgens integer none This parameter specifies the maximum number of 
generations that the algorithm will execute. The most 
efficient value is dependent on the problem and the 
population size but it would be safe to assume that 
GENO solves most problems within 500 generations 

p_mingens integer 2 This parameter should always be 2. 

p_order integer none This parameter is problem-specific: it specifies the 
total number of variables in the problem. 

p_plan integer none This parameter is problem-specific: it specifies the 
length of the control vector along the time dimension 

p_popsize integer 10 - 30 This parameter specifies the population size. The 
most efficient value is problem-dependent but most 
likely to be within the range shown  

p_s_xover real matrix 0.55 This parameter is problem-dependent: it specifies the 
probability threshold for the simple cross-over 
operator. The default value is usually efficient. 

p_shuffle real matrix 0.55 This parameter is problem-dependent: it specifies the 
probability threshold for shuffling the population. 
The default value is usually efficient. 

p_u_xover real matrix 0.55 This parameter is problem-dependent: it specifies the 
probability threshold for the uniform cross-over 
operator. The default value is usually efficient. 

pos_orth Boolean true This parameter is problem-specific: set this to false if 
the static constraints are of the ‘less than’ type. 

quantum_0 real matrix none This parameter is problem-dependent: is specifies the 
initial size of quanta. In setting this parameter, the 
object should be to ensure that the initial population 
is sufficiently diverse on all dimensions. In this 
regard, a choice of the smaller between 0.1 and 10% 
of the smallest variable range is normally efficient. 
But if one seeks an integer solution, then this 
parameter should be set to 1. 

rand_seed real matrix none This is a seed value for the random number generator. 

solution_type character none This parameter is problem-dependent: it defines the 
type of solution sought. 

timer Boolean false This parameter declares whether to display GENO’s 
loop time at the end of the program run 

vars binary 
matrix 

none This parameter is problem-specific: it is an ‘incidence 
matrix’ that shows what variables are in each sub-
problem of the multi-agent optimisation problem. 

vdu_output Boolean false This parameter declares whether to display progress 
of the best chromosome or its fitness. 

view_vars Boolean false In conjunction with vdu_output, this parameter 
allows one to choose between viewing the variables 
in the best chromosome or its fitness.  
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Appendix IIAppendix IIAppendix IIAppendix II    
 
 
Table 2A: Example GENO programs: A General Classification  
 
 

PROBLEM TYPE STATIC OPTIMISATION DYNAMIC OPTIMISATION 

SINGLE OBJECTIVE su_sp1 

su_sp2 

Su_sp3 

 

sc_sp1     [versions: a, b & d] 

sc_sp2     [versions: a, b & c] 

sc_sp3     [versions: a, aa, b & d]  

sc_sp4     [versions: a, aa, & b] 

sc_sp5     [versions: a, b & d] 

sc_sp6     [versions: a & b] 

sc_sp7     [versions: a, b & c] 

sc_sp8     [versions: a & b] 

sc_sp9     [versions: a & b] 

sc_sp10   [versions: a, aa, & b]  

sc_sp11   [versions: a, aa, & b]  

sc_sp12   [versions: a, aa, & b] 

sc_sp13   [versions: a, aa, & b]  

sc_sp14   [versions: a & b] 

 

sc_dp1 

sc_dp2a 

sc_dp2b 

sc_dp3 

sc_dp4 

sc_dp5 
 
 
 

 

MULTIPLE OBJECTIVES mu_sp1 

mu_sp2 

mu_sp3 

mu_sp4 

 

mc_dp1a 

mc_dp1b 

mc_dp2 

 
Legend: 
 

 sc_sp — Single-objective Constrained Static Optimisation Problem 

 su_sp — Single-objective Unconstrained Static Optimisation Problem 

 sc_dp — Single-objective Constrained Dynamic Optimisation Problem 

 su_dp — Single-objective Unconstrained Dynamic Optimisation Problem 

 mc_sp — Multiple-objective Constrained Static Optimisation Problem 

 mu_sp — Single-objective Unconstrained Static Optimisation Problem 

 mc_dp — Multiple-objective Constrained Dynamic Optimisation Problem 

 mu_dp — Single-objective Unconstrained Dynamic Optimisation Problem 
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Table 2B: Example GENO Programs: Reference to Further Information  
 

PROBLEM Location in: ‘Supplement to User Manual’ 

su_sp1 Example 31,  p.42 

su_sp2 Example 27,  p.38 

su_sp3 Example 40,  p.51 

sc_sp1 Example 7,  p.9 

sc_sp2 Example 12,  p.15 

sc_sp3 Example 14,  p.17 

sc_sp4 Example 6,  p.8 

sc_sp5 Example 8,  p.10 

sc_sp6 Example 5,  p.7 

sc_sp7 Example 13,  p.16 

sc_sp8 Example 11,  p.13 

sc_sp9 Example 22,  p.32 

sc_sp10 Example 14,  p.17 

sc_sp11 Example 41,  p.52 

sc_sp12 Example 42,  p.53 

sc_sp13 Example 43,  p.54 

sc_sp14 Example 44,  p.55 

sc_dp1 Example 35,  p.46 

sc_dp2 Example 15,  p.18 

sc_dp3 Example 21,  p.28 

sc_dp4 Example 16,  p.19 

sc_dp5 Example 36,  p.47 

mu_sp1 Example 19,  p.23 

mu_sp2 Example 1,  p.2 

mu_sp3 Example 2,  p.4 

mu_sp4 Example 3,  p.5 

mc_dp1a Example 20,  p.24 

mc_dp1b Example 20,  p.24 

mc_dp2 - 
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Appendix IIIAppendix IIIAppendix IIIAppendix III    
 
Table 3A: A Classification of Constrained Non-linear Programming Problems 125 
 
 

CONSTRAINED NLP CLASS VARIABLE TYPE FUNCTION TYPE 

C1 Continuous Continuous and Differentiable 

C2 Continuous Continuous and Non-differentiable 

C3 Continuous Discontinuous 

C4 Discrete Continuous and Differentiable 

C5 Discrete Continuous and Non-differentiable 

C6 Discrete Discontinuous 

C7 Mixed-integer Continuous and Differentiable 

C8 Mixed-integer Continuous and Non-differentiable 

C9 Mixed-integer Discontinuous 

C10 Continuous Stochastic Objective and Constraints 

C11 Discrete Stochastic Objective and Constraints 

C12 Mixed-integer Stochastic Objective and Constraints 

C13 Continuous Vector Objective Function 

C14 Discrete Vector Objective Function 

C15 Mixed-integer Vector Objective Function 

C16 Continuous Dynamic Constraints 

C17 Discrete Dynamic Constraints 

C18 Mixed-integer Dynamic Constraints 

 

 

 

 

                                                           
125 Global optimisation problems are very heterogeneous: they encompass the usual categories of mathematical programming models, 
specifically including linear models and the broad nonlinear category. Unsurprisingly, there is no universally accepted way of categorizing 
nonlinear programs. This classification is essentially that from Zhang (2001) to which the classes C13 through C18 have been added. Classes 
C16-18 were included in order to emphasize the fact that GENO is equally applicable to dynamic optimisation problems, despite the fact that 
the discrete-time dynamic programming problem can in principle be converted to a static program by the technique of variable stacking.  
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Table 3B: A Comparative Capability Map of Some Existing NLP Solvers  
 
 

APPLICABILITY 126 CONSTRAINED 

NLP SOLVER 

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 

CONVEXITY 

REQUIRED 
PRINCIPAL METHODS INPUT FORMATS SPECIAL REQUIREMENTS 

DONLOP2  �                  No Sequential Quadratic Programming Fortran, AMPL  

LANCELOT �                  No Sequential Quadratic Programming SIF, AMPL  

LOQO �                  Yes Infeasible primal-dual interior-point AMPL, Matlab  

MINOS �                  No Sequential linearly constrained algo GAMS, AMPL Modest Nonlinearity 

KNITRO �                  No primal-dual interior-point AMPL Modest Free Variables 

SNOPT �                  No Sequential Quadratic Programming Fortran, GAMS, AMPL  

CONOPT �                  No Feasible Path Method GAMS  

FSQP �                  No Sequential Quadratic Programming AMPL  

HQP/OMUSES �                  No Newton-type SQP, integer-point SIF, C++  

MOSEK �                  Yes Best Interior-point method AMPL  

GENECOP � � �                No Genetic Algorithm C  

COBYLA2 � � �                No SLP with Gradient estimates Fortran Inequality Constraints Only 

BARON �   �   �            No Branch and Reduce Baron Model Functions are Factorable 

BNB �   �   �            No Branch and Bound Matlab  

MINLP_BB �   �   �            No Branch and Bound, SQP AMPL  

SBB �   �   �            No Branch and Bound GAMS  

MITTLP �   �   �            Yes Extended Cutting Plane C  

ALPHAECP �   �   �            No Extended Cutting Plane Fortran, LP Pseudo-convex functions  

AUGMENTED          �         No Interior-point, augmented system Standard SLP Linear Programs Only  

MSLIP          �         No Nested Benders Decomposition Standard SLP Linear Programs Only 

GENO � � � � � � � � � � � � � � � � � � No Multi-objective Genetic Algorithm GAUSS, C++, Mathematica  

 
 

                                                           
126 See Table 3A above for an explanation of the NLP classes C1, C2, . . , C18. 


