

Copyright 1997-2007: Ike’s Research Ltd

1

A NOTE ON MULTI-OBJECTIVE MATHEMATICAL PROGRAMS

Isaac Siwale

Technical Report No. RD-5-2007

Ike’s Research Limited
265, Southcroft Road

London
SW16 6QT
England

email: ike@FSBusiness.co.uk

Abstract
This note introduces GENO — a commercial solver for multi-objective, non-linear mathematical programs of
various types. Four examples are presented that demonstrate GENO’s efficacy at finding single-point solutions
to the multi-objective problem. Validation of the solutions obtained is provided in an ad hoc fashion.

Key Words: Multi-objective Programming, Multi-criteria Programming, Non-linear Programming.

1 Introduction

Real-world practical problems are often characterised, not by a single objective, but by a set of criteria against

which a solution should be assessed. Such problems are known as multi-objective or multi-criterion optimisation

problems. They may formally be defined as the task of finding a feasible vector, x*, that simultaneously

optimises the p components of an objective or criteria vector, J, viz.:

 () NJ
U

∈=
∈

pJJJJ ,)(,),(),(),(Opt
Tp321

xxxx
x

L

But whereas the idea of “an optimal solution” is a well-defined concept in the uni-objective context (i.e. to get

the “optimal solution” one maximises or minimises a criterion function), the same cannot be said of the multi-

objective case. In general, the functions comprising the vector J of a multi-objective optimisation problem rank

the feasible points in disparate ways: taken pair-wise, some may “compete” in the sense that an improvement

with respect to one criterion requires degradation in the quality of the solution as assessed by another; others may

“collude” in that an improvement in one entails the same in the other; and yet others may be totally independent.

Thus, compared to the uni-objective problem, the mechanism of optimisation in the multi-objective case is no

longer “uni-directional” and notion of “an optimal solution” is not so clear-cut. Instead, one encounters several

types of solutions, most of which require the model-user (i.e. the person for whom the computed solutions are

intended) to articulate his preferences as regards the components of J at some stage during the solution process.

The traditional approach to solving multi-objective problems thus comprises two fairly distinct stages: a ‘search

procedure’ and a ‘decision-making’ process. Depending on how the two are combined, multi-objective solution

methods have traditionally been classified into one of three categories, namely:

Copyright 1997-2007: Ike’s Research Ltd

2

 1. A priori Articulation of Preferences. [Decide-then-Search] The model-user expresses his preferences in
terms of an aggregate utility function prior to optimisation.

 2. A posteriori Articulation of Preferences. [Search-then-Decide] The model-user is presented with a set of
‘efficient solutions’ — a notion normally attributed to Vilfredo Pareto (Coello Coello, 2005). The model-
user proceeds to select a solution from the given set.

 3. Progressive Articulation of Preferences. [Decide-and-Search] Preference articulation by the decision maker
and solution generation proceed in parallel at inter-leafed steps.

Most classical research on the solution of multi-objective optimisation problems has tended to concentrate on

devising techniques for generating the entire set of efficient solutions — the so-called Pareto frontier — in a

search-then-decide solution strategy. The associated algorithms always begin with a “scalarisation” of the

objective vector by some means or other, e.g. the weighted-sum, the ε-perturbation, the Tchybeshev or Min-Max

method. But these classical methods have some major drawbacks: (1) “scalarisation” of the objective vector

means that the solution of the resulting uni-objective problem is dependant on the subjective parameters used in

the “scalarisation” process itself; (2) the algorithms generate only one solution at a time, and so in order to

generate a set of such Pareto-optimal solutions, the algorithm must be applied many times; (3) the efficacy of

most of the algorithms is dependant on the shape of the Pareto frontier;1 (4) if the number of objectives is large,

then the computational effort required to generate an efficient set of solutions can be very substantial; (5)

presenting a visually simple solution set to the model-user (as required by at least the last two solution strategies

outlined above) is difficult except in the bi-objective case.2 Thus, classical techniques are doubly inadequate:

quiet apart from the fact that generating the entire Pareto frontier may be a wasted effort since in the end only

one solution is required, the model-user may not be able to select a solution that properly represents his or her

preferences after all. However, new methods that adequately alleviate some of these problems are now being

devised. In particular, multi-objective evolutionary algorithms are capable of generating the entire Pareto frontier

in a single run.

The issue of incorporating the model-user’s preferences is an active area of research (see e.g. Deb, 2006). But

despite this, there is yet to be a method—evolutionary or otherwise—that adequately addresses user preferences,

as well as producing a single solution in a single run. Indeed, the single-solution design objective does not even

seem to be on the “currently recommended” research agenda.3 But given the severe practical limitations that this

omission entails, and given the fact that, in the end, only one Pareto-efficient solution is all that model-user

requires, I would contend that the design of algorithms that produce a single-point efficient solution in a single

run is of paramount importance.

1 Kasprzak, E. M. and K. E. Lewis (2001) summarise the literature on this well-know fact as follows: “The weighted-sum method of
generating Pareto sets was shown to work well with convex problems decades ago by Geoffrion (1968) and while it is still a very popular
method its deficiencies have been noted. Messac, et al. (2000) have effectively illustrated the problems associated with choosing weights for
an aggregate objective function and has derived conditions that predict which Pareto solutions can be found using weights. Das and Dennis
(1997) note that even with convex problems, taking an even spread of weights will not result in an even spread of points in the Pareto set and
this renders some sections of the Pareto frontier difficult to populate” (Paraphrased from p. 3).

2 The purpose of generating a well-sampled Pareto frontier is so that the model-user can take an “informed decision”: this assumes the
search-then-decide or the search-and-decide strategies. The decide-then-search strategy is difficult to implement except on problems with a
“small” number of objectives. Coello Coello (2000b) has identified this issue as one of several that need urgent attention: he writes:
“Evolutionary multi-objective approaches . . . tend to become cumbersome and even useless as we increase the number of objectives.
Approaches such preference relations are sensitive to the number of objective and to the changes in the order of the questions asked to the
decision maker”

3 Witness the evaluation desiderata for multi-objective evolutionary algorithms suggested by Ang and Li (2001).

Copyright 1997-2007: Ike’s Research Ltd

3

The purpose of this note is to introduce to optimisation practitioners, a commercial solver called GENO.4 The

design of GENO was inspired by Game-theoretic notions of what constitutes a solution in multi-agent problems.5

GENO implements an evolutionary algorithm that readily computes single-point efficient solutions to multi-

objective problems using the Equilibrium and Compromise solution concepts. No formal proofs are offered in

support of this assertion in this note: rather, the approach taken is to show, via analysis or by recourse to some

established results, that the GENO solution is indeed what it purports to be in each case. A brief description of the

code’s capabilities follows.

2 The GENO Code

GENO is a real-coded genetic algorithm that can be used to solve uni- or multi-objective optimisation problems.

The problems presented may be static or dynamic in character; they may be unconstrained or constrained by

equality or inequality constraints, coupled with upper and lower bounds on the variables. The variables

themselves may assume real or discrete values in any combination.

Although the generic design of the algorithm assumes a multi-objective dynamic optimisation problem, GENO

may be “specialized” for other classes of problems such as the general static optimisation problem, the mixed-

integer problem, and the two-point boundary value problem, by mere choice of a few parameters. Thus, not only

can GENO compute different types of solution to multi-objective problems, it may also be set to generate real or

integer-valued solutions, or a mixture of the two as required, to uni-objective static and dynamic optimisation

problems of varying types. These properties are easily pre-set at the problem set-up stage of the solution process.

A detailed description of the algorithm is beyond the scope of this note:6 rather, the aim here is to demonstrate its

capabilities via several numerical examples as follows.

3 Examples

Two types of single-point solutions are presented: Example 1 computes the compromise solution of a bi-

objective problem; Example 2 presents comparative results on a well known equilibrium problem; Example 3

presents the compromise solution of a simple test problem; and Example 4 presents a new benchmark solution

for a mixed-variable nonlinear program via the equilibrium solution concept of John Nash (1951).

Example 1 [Source: Fonseca and Flemming (1995)]

 () { })(),(Opt 21 xxxf
x

ff=

 Subject to:]2,2[−∈x ; ()

−−−= ∑
=

n

i

i
nxf

1

2

1 1exp1)(x ; ()

+−−= ∑
=

n

i

i
nxf

1

2

2 1exp1)(x ; n = 8.

4 GENO is an acronym for General Evolutionary Numerical Optimiser.

5 Surprisingly, the intuitively obvious connection between game theory and the general multi-criteria optimisation problem has not been
exploited as much as one would expect. Of late however, this appears to be changing: see e.g. Basar, T. and Olsder, G. L. (1982); Coello
(1996, Chap.2); Andersen, K. A. and M. Lind (1999); Sefrioui, M. and J. Periaux (2000); Conley, J. P., et al. (2000).

6 A free trial-version of the program can be obtained by contacting current vendors at: info@Aptech.com

Copyright 1997-2007: Ike’s Research Ltd

4

I. GENO Output

 Generation Objective [1] Objective [2]

 0 1.000000 0.999912
 10 0.632121 0.632121
 20 0.632121 0.632121
 30 0.632121 0.632121
 40 0.632121 0.632121
 50 0.632121 0.632121
 60 0.632121 0.632121
 70 0.632121 0.632121
 80 0.632121 0.632121
 90 0.632121 0.632121
 100 0.632121 0.632121

__

Solution Vector: x = (0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000, 0.000) T

Objective Function Value: f (x) = (0.632121, 0.632121) T

II. Remarks

Preamble

For a multiple objective optimisation problem, the solution ideally ought to be a win-win situation in which each
individual objective function attains its best possible value within the constraints of the problem. But, as the
name implies, the ‘ideal solution’ is usually unattainable; all one can hope for is to numerically approach such a
point as closely as possible. The ‘Euclidean compromise’ is a solution concept for the multi-objective
optimisation problem that is based on the notion of ‘being close to ideal’. The Euclidean compromise solution
(ECS) is that point on the Pareto frontier that is closest to the ideal solution, as measured by the Euclidean
distance metric. This example serves to illustrate the effectiveness of GENO at computing the ECS of a multiple
objective optimisation problem. The example is simple enough to afford an analytical determination of the ECS,
against which the performance of GENO may be measured.

The Euclidean Compromise Solution: An Analytical Approach

In order to compute the Euclidean compromise solution, one needs to know the location of the ‘ideal point’ in the
space of objective function values (hereafter called the ‘space of outcomes’). For this example, ‘Opt’ operator
denotes minimisation, and it is easy to show that, for all n, the minimum of

1
f is 0, and this is located at:

 ()nnxx
n

1,..,1),..,(
1

= . (1a)

Similarly, the minimum of
2
f is 0, and this is located at

 ()nnxx
n

1,..,1),..,(1 −−= . (1b)

The ideal solution is therefore the point (0, 0) in the space of outcomes, and clearly, this is unattainable. To
ascertain the point on the Pareto frontier that is closest to the ideal, one may proceed as follows.

According to Fonseca and Fleming (1995, p.51), the Pareto frontier is the set of all vectors x such that:

 ()nxnxxx
n

11
121

)...(≤≤−∧=== . (1c)

Copyright 1997-2007: Ike’s Research Ltd

5

The distance to the ideal point in the space of outcomes is given by:

 ())()()(2

2

2

1 xxx ffR += . (1d)

The minimum distance occurs at a solution to the following equations:

()

0
)(

)(2
)(

)(2
)()(2

1)(2
2

1
1

2

2

2

1

=

∂
∂

+
∂

∂

+
=

∂
∂

iii
x

f
f

x

f
f

ffx

R x
x

x
x

xx

x
, i∀ (1e)

where: () ()

−−−=
∂

∂ ∑
=

n

i

ii

i

nxnx
x

f

1

2
1 1exp12

)(x
, i∀ (1f)

and: () ()

+−+=
∂

∂ ∑
=

n

i

ii

i

nxnx
x

f

1

2
2 1exp12

)(x
, i∀ (1g)

It follows that:

() () () ()

+−+−=

−−−⇒=
∂

∂ ∑∑
==

n

i

ii

n

i

ii

i

nxfnxnxfnx
x

R

1

2

2

1

2

1 1exp)(11exp)(10
)(

xx
x

, i∀ . (1h)

By inspection, one can see that the point 0...: 21

* ====
n
xxxx is the only point on the Pareto frontier that

solves equation (1h), and the objective function values are equal at this point i.e., f1 (x*) = f2 (x*) = 0.632121. As
can be seen from the results presented above, GENO easily finds this solution.7

Concluding Remarks

The Euclidean Compromise Solution is a member of a class of solutions first suggested by Yu (1973). Although
this approach is the subject of much current research, most this effort is directed at generating a set of solutions
(in a search-then-decide strategy) as opposed to producing a single point as advocated in this note. However,
classical compromise programming methods do at least identify many more points on the Pareto frontier unlike
the weighted-sum approaches which have been shown to be incapable of generating points from all parts of the
efficiency frontier in some cases.

Evolutionary algorithms alleviate most of the limitations of classical multi-objective solution methods. GENO is
an evolutionary solver that does not use scalarisation of the objective vector in the solution process; neither does
it need to explicitly estimate the Pareto frontier. Furthermore, the model-user is not required to express any
preference prior, post or during the solution process. Rather it is assumed that the user is rational and would
therefore prefer the ideal solution if this were attainable: as a compromise, he accepts the compromise solution as
being the best that can be done. The algorithm is capable of converging to any point on the Pareto frontier that is
closest, by some measure, to the ideal solution—this being ascertained logically by the analyst.8 The current
design employs the Euclidean metric but other measures may be used. Finally, it should be noted that, provided
the components of the objective vector are properly scaled in outcome space, the solution generated by GENO
will always exhibit a “middling” characteristic,9 which is intuitively what is desired of a compromise solution.

As can be seen from the results presented above, the solution generated by GENO is the same as that determined
analytically; the algorithm converges to the Euclidean compromise solution within ten generations.

7 The graphics accompanying this example pertain to a different version of the problem in which outcomes are restricted as follows:

 f1 ∈ (-∞, ∞); f2 ∈ [0.4, 0.6].

They were generated by an earlier (and less efficient) version of the program (circa, 1998): they have been included in this presentation
merely to provide visual proof that GENO does indeed produce a solution that is located on the Pareto frontier, at least in this case.

8 See also Example 3 below and Example 3.13 in Siwale (2006)

9 The term “middling” was brought to the multi-objective programming lexicon by Schaffer (1984) who noted that his VEGA technique
tended to produce solutions that excelled on one criterion, but performed poorly on others. He argues that what is desirable of a compromise
solution is that it should have acceptable performance simultaneously on all criteria, i.e. a “middling” performance.

Copyright 1997-2007: Ike’s Research Ltd

6

Graphic 1: Population Progression towards the Pareto Frontier 10

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

10 The Pareto front is depicted by the grey curve.

Figure 1b: Population Distribution at Generation 20

Figure 1a: Population Distribution at Generation 0

Figure 1c: Population Distribution at Generation 40

Copyright 1997-2007: Ike’s Research Ltd

7

Graphic 1: Population Progression towards the Pareto Frontier (Continued)

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 1e: Population Distribution at Generation 80

Figure 1d: Population Distribution at Generation 60

Figure 1f: Population Distribution at Generation 100

Copyright 1997-2007: Ike’s Research Ltd

8

Example 2: [Source: Murphy, Sherali and Soyster (1982)]

 () T521),,,(Opt JJJ L=q
q

J

 Subject to:

 ())()(=
iii

i qfpqJ −qq ;
i

i

))(1(

)(
)(

ii

)1(

i
iiii α

α+

α+
+=

K

q
qcqf ;

β

5000
)(

=

Q
qp ; ∑

=

=
n

1i

iqQ ; }5...,,2,1{=i

 Problem-specific Data:

Firm
i
c

i
K

i
α β

1 10 5 1/1.2 1/1.1

2 8 5 1/1.1 1/1.1

3 6 5 1.00 1/1.1

4 4 5 1/0.9 1/1.1

5 2 5 1/0.8 1/1.1

I. GENO Output

Generation
*

1q
*

2q
*

3q
*

4q
*

5q

 0 36.100000 63.500000 40.500000 40.600000 21.700000
 20 36.930000 41.810000 43.710000 42.660000 39.180000
 60 36.932500 41.818160 43.706590 42.659240 39.178900
 80 36.932511 41.818141 43.706578 42.659240 39.178952
 90 36.932511 41.818141 43.706579 42.659240 39.178953
 100 36.932511 41.818141 43.706579 42.659240 39.178953

Equilibrium Solution:
*q = (36.932511, 41.818141, 43.706578, 42.659240, 39.178952)T

II. Remarks

This example was originally formulated by Murphy, et al. (1982) and has since been numerically solved by
Harker (1984), Jörnsten (1991), as well as Kolstad and Mathiesen (1991). To provide a benchmark against which
GENO may be compared to these other algorithms, a solution that is accurate to 18 decimal places was found (by
solving the system of non-linear equations arising from the optimality conditions) using the FindRoot facility of
Mathematica.11 The results below clearly show that GENO computes the most accurate solution.

qi Benchmark Murphy, et al. Harker Jörnsten Kolstad, et al. GENO

1 36.932510815735757481 36.9120 36.93180 36.9300 36.9350 36.932511

2 41.818141660437635128 41.8200 41.81755 41.8200 41.8182 41.818141

3 43.706578522274216542 43.7050 43.7060 43.7100 43.7066 43.706578

4 42.659239743305114839 42.6650 42.6588 42.6600 42.6593 42.659240

5 39.178952516625022418 39.1820 39.1786 39.1800 39.1790 39.178952

11 In this case, the problem is convex and the solution is easy to obtain directly from the optimality conditions derived by Rosen (1965).

Copyright 1997-2007: Ike’s Research Ltd

9

Example 3 [Source: Marco, Désidéri and Lanteri (1999)]

 () { })(),(Opt 21 zzzf
z

ff=

 subject to: 22

1)3y()1x()(−+−=zf ; () ()22

2 2y4x)(−+−=zf ;]5,5[]5,5[)y,x(T −×−∈=z

I. GENO Output

 Generation Objective [1] Objective [2]

 0 1.730000 7.930000
 10 2.500000 2.500000
 20 2.500000 2.500000
 40 2.500000 2.500000
 80 2.500000 2.500000
 100 2.500000 2.500000
__

Solution Vector: z = (2.500000, 2.500000) T

Objective Function Value: f (z) = (2.500000, 2.500000) T

II. Remarks

The Pareto frontier is that set of points that minimise the auxiliary objective:

]1,0[),()1()()(21 ∈αα−+α= zzz ffJ . (3a)

The first order optimality conditions are:

 α−=⇔=∂∂ 340)(xxJ z ; α+=⇔=∂∂ 20)(yyJ z (3b)

Given that]1,0[∈α , then]4,1[∈x ,]3,2[∈y , and hence]10,0[1∈f ,]10,0[2∈f . In this example, it is required

to minimise both objectives, and therefore the ideal solution in the space of outcomes is the point (0, 0). Given a
candidate solution, z*, its Euclidean distance from the ideal point (in the space of outcomes) is:

 () 2222222

2

2

1])2()4[(])3()1[()()()(−+−+−+−=+= yxyxffR zzz . (3c)

This distance is least when the following holds:

 103)0)(()0)((=+⇔=∂∂∧=∂∂ yxyRxR zz . (3d)

There are many points that satisfy condition 3d. But by evaluating equation 3c at points that are on the frontier,12
and are near the candidate solution, z* = (2.5, 2.5)T, one may verify that z* is indeed a minimum distance point.
The Table below illustrates.

 ZT = (2.53, 2.49) ZT = (2.47, 2.51) ZT = (2.5, 2.5) ZT = (2.49, 2.503) ZT = (2.51, 2.497)

f1 2.601 2.401 2.5 2.467 2.533

f2 2.401 2.601 2.5 2.533 2.467

Distance Function 3.53977 3.53977 3.53553 3.53592 3.53592

As can be seen in the Table above the point z* = (2.5, 2.5)T is indeed the Euclidean compromise solution, at least
up to the second decimal place. And GENO easily converges to this solution.

12 Note that for the ‘new point’ to be on the Pareto-efficient frontier, the perturbations in the variables must satisfy 03 =δ+δ yx .

Copyright 1997-2007: Ike’s Research Ltd

10

Example 4: [Source: Coello Coello (2000a)]

 () 2

13

2

14

2

32431 84.191661.37781.16224.0=min xxxxxxxxxJ +++x
x

 Subject to: 02404 ≤−x
13

 00193.0 31 ≤+− xx

 000954.0 32 ≤+− xx

 00002961
3

4 3

34

2

3 ≤+π−π− ,,xxx

 2,1},N,N0625.0x:x{]99,0625.0[x iii =∈=∩∈ iZ ; 4,3],200,0.10[=∈ ix
i

I. GENO Output 14

 Generation Objective 1 Objective 2

 0 1500647.737740 0.000000
 100 6059.828502 0.000000
 200 6059.715394 0.000000
 320 6059.714347 0.000000
 340 6059.714347 0.000000
 360 6059.714336 0.000000
 380 6059.714336 0.000000
 400 6059.714336 0.000000
 480 6059.714336 0.000000
 500 6059.714336 0.000000
__

Optimal Variable Vector: x = (0.812500, 0.437500, 42.098446, 176.636596) T

Objective Function Value: J (x) = 6059.714336

II. Remarks

This problem has previously been tackled by Deb (1997) using GeneAS (Genetic Adaptive Search); by Kannan
and Kramer (1994) using an augmented Lagrangian multiplier method; and by Sandgren (1988) using a branch
and bound technique; and by Coello Coello (2000a) using a genetic algorithm. Coello Coello (2000a, p.18)
presents a comparison of these methods together with his technique: the table below is an extract from there to
which has been appended the result by GENO.

 Coello Coello Deb (1997) Kannan, et al. Sandgren GENO

Best Function Value 6069.3267 6410.3811 7198.0428 8129.1036 6059.714336

As can be seen, the solution by GENO is by far the best amongst those considered; in fact, as of this writing, it is
the best of all the solutions that I am aware of.15 Note also that in the final solution vector, x1 and x2 are integer
multiples of 0.0625 as required.

13 This constraint is in fact superfluous since x4 ∈ [0, 200] is there. But it is retained in order to preserve the original problem specification.

14 Legend: Objective 1 is the actual function being minimised; Objective 2 is a merit function for an auxiliary mathematical program (not
shown) associated with the constraints: details are in Siwale (2006, pp.12 - 14); an entry of ‘zero’ implies that the constraints are satisfied.

15 Hedar and Fukushima (2005, p.19) claim to have found a better solution valued 5868.764836, but it should be noted that their solution
ignores the discreteness restriction on x1 and x2, and so their algorithm cannot, strictly speaking, be compared to GENO.

Copyright 1997-2007: Ike’s Research Ltd

11

4 Summary

This note has introduced GENO — a solver for multi-objective non-linear programs (amongst other types).

Several numerical examples solved using GENO were presented. The results show that GENO does generate

efficient single-point solutions to the multi-objective optimisation problem in a single run.

Although the algorithm’s design does not explicitly allow for the incorporation of specific model-user

preferences, the implicit assumption is that the user is assumed to be rational and would therefore readily accept

the solution generated as the best that can be done.

GENO computes a new benchmark result for Examples 4 for designers of other algorithms to aim for.

References

ANDERSEN, K. A. and M. Lind (1999). Computing the NTU-Shapley Value of NTU-games defined by Multiple Objective
Linear Programs. International Journal of Game Theory, 28, pp.585-597

ANG K. H. and Y. Li (2001). Multi-Objective Benchmark Studies for Evolutionary Computation. 2001 Genetic and
Evolutionary Computation Conference. Workshop Program, San Francisco, California, pp. 393--396

BAŞAR, T. and G. J. Olsder (1999). Dynamic Non-cooperative Game Theory. SIAM Classics in Applied Mathematics, 23,
SIAM, Philadelphia

COELLO COELLO, C. A. (1996). An Empirical Study of Evolutionary Techniques for Multi-objective Optimization in
Engineering Design. Unpublished Ph.D. Dissertation, Department of Computer Science, Tulane University, U.S.A.

COELLO COELLO, C. A. (2000a). Constraint-handling Using an Evolutionary Multi-objective Optimisation Technique. Civil
Engineering and Environmental Systems, 17, pp. 319-346.

COELLO COELLO, C. A. (2000b). Handling Preferences in Evolutionary Multiobjective Optimization: A Survey. In 2000
Congress on Evolutionary Computation, volume 1, pages 30-37, Piscataway, New Jersey.

COELLO COELLO, C. A., G. T. Pulido and E. M. Montes (2005). Current and Future Research Trends in Evolutionary Multi-
objective Optimization. [Online] Available from: List of References on Evolutionary Multiobjective Optimization
[Accessed January 3, 2007].

CONLEY, J. P., R. McLean and S. Wilkie (2000): “Axiomatic Foundations for Compromise Theory: The Duality of Bargaining
Theory and Multi-Objective Programming”, Forth coming in Games and Economic Behaviour.

DAS, I. and J. Dennis (1997). A Closer Look at Some Drawbacks of Minimising Weighted Sums of Objectives for Pareto Set
Generation in Multi-criteria Optimisation Problems. Structural Optimisation, 14, pp. 63-69.

CVETKOVIC, D. and C. A. Coello Coello (2005). Human Preferences and Their Applications in Evolutionary Multi-Objective
Optimization. [Online] Available from: List of References on Evolutionary Multiobjective Optimization [Accessed
January 10, 2007].

DEB, K. (1997). GeneAS: A Robust Optimal Design Technique for Mechanical Component Design. In D. Dasgupta, and Z.
Michalewicz (Eds.). Evolutionary Algorithms in Engineering Applications. Springer-Verlag, Berlin.

DEB, K. (1999). Multi-objective Evolutionary Algorithms: Introducing Bias Amoung Pareto-optimal Solutions. KanGAL
Report No. 99002, Indian Institute of Technology, Kanpur, PIN 208 016, India. [Online] Available from: List of
References on Evolutionary Multiobjective Optimization [Accessed January 10, 2007].

DEB, K. (2006). Reference Point Based Multi-objective Optimization Using Evolutionary Algorithms. International Journal of
Computational Intelligence Research, 2, pp. 273-286.

FONSECA, C. M. and P. J. Flemming (1995). An Overview of Evolutionary Algorithms in Multi-objective Optimisation.
Evolutionary Computation, 3, pp. 1-16.

GEOFFRION, A. M. (1968). Proper Efficiency and the Theory of Vector Maximization. Mathematical Analysis and
Applications, 22, pp. 618-630.

Copyright 1997-2007: Ike’s Research Ltd

12

HARKER, P. T. (1984). A Variational Inequality Approach for the Determination of Oligopolistic Market Equilibrium.
Mathematical Programming, 30, pp. 105-111.

HEDAR, A. and M. Fukushima. (2005). Derivative-Free Filter Simulated Annealing Method for Constrained Continuous
Global Optimisation. In G. Di Pillo and F. Giannessi (Eds.). Nonlinear Optimisation and Applications 2. Kluwer,
Amsterdam.

JÖRNSTEN, K. O. (1991). A Method to determine Oligopolistic Market Equilibra Based on a Convex Optimisation
Formulation. Optimisation, 22, pp. 439-447

KANNAN, B. K. and S. N. Kramer (1994). An Augmented Lagrangian Multiplier Based Method for Mixed Integer Discrete
Continuous Optimisation and its Applications to Mechanical Design. Journal of Mechanical Design. Transactions
of the ASME, 116, pp. 318-320.

KASPRZAK, E. M. and K. E. Lewis (2001). Pareto Analysis in Multi-objective Optimization Using the Co-linearity Theorem
and Scaling Method. Structural and Multi-disciplinary Optimization, 22, pp. 208-218.

KOLSTAD, C. O. and L. Mathiesen (1991). Computing Cournot-Nash Equilibra. Operations Research, 39, pp. 739-748

MARCO, N., J.A., Désidéri, and S. Lanteri (1999). Multi-Objective Optimization in CFD by Genetic Algorithms. Rapport de
Recherche, No. 3686, Institut National de Rechereche en Informatique et en Automatique.

MESSAC, F. H., J. D. Sundaraj, R. V. Tappeta and J. E. Renaud (2000). The ability of Objective Functions to Generate Non-
convex Pareto Frontiers. AIAA Journal, 38, pp. 1084 - 1091.

MURPHY, A., H. D. Sherali and A. L. Soyster (1982). A Mathematical Programming Approach for Determining Oligopolistic
Market Equilibrium. Mathematical Programming, 26, pp. 40-47.

NASH, J. (1951). Non co-operative Games. Annals of Mathematics, 54, pp. 287-295.

ROSEN, J. B. (1965). Existence and Uniqueness of Equilibrium Points for Concave n-person Games, Econometrica, 33,
pp.520-534.

SANDGREN, E. (1988). Nonlinear Integer and Discrete Programming in Mechanical Design. Proceedings of ASME Design
Technology Conference, Kissimine, Florida, pp. 95-105.

SCHAFFER, J. D. (1984). Some Experiments in Machine Learning Using Vector Evaluated Genetic Algorithms. Unpublished
PhD Dissertation, Vanderbilt University, Nashville, U.S.A.

SEFRIOUI, M. and J. Periaux (2000): “Nash Genetic Algorithms: Examples and Applications”, 2000 Congress on Evolutionary
Computation, July, IEEE Service Centre, San Diego, California, 1, pp.509-516.

SIWALE, I. (2006). GENOTM 1.0: The GAUSS User Manual, 4th Edition. Technical Report No. RD-3-2005, Ike’s Research Ltd,
London

YU, P. L. (1973). A Class of Solutions for Group Decision Problems. Management Science. 19. pp. 936-946

