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This document outlines a proprietary program called EAGLE. EAGLE — an acronym for Evolutionary Algorithm 

for General Likelihood Estimation — is a parameter estimation algorithm that employs the maximum likelihood 

principle and applies to linear and nonlinear models alike, using two modes of operation. The algorithm’s uni-

level mode is simply a direct numerical maximization method for the likelihood function: its bi-level mode 

allows for a decomposition of the estimation task into two interacting search processes: a ‘Level 1’ algorithm that 

drives the overall search and compensates for any regression “anomalies” that might arise during the solution 

process, and a ‘Level 2’ linear regression algorithm that computes OLS estimates, given data from the former. 

The design of the algorithm is founded on three concepts: (a) model linearization and process decomposition via 

a partitioning of the parameter vector; (b) on-line regression diagnostic testing and control of regression residuals 

via multi-objective optimization — a process that is here called ‘concurrent compensation’; (c) exploitation of 

the location and scale invariance properties of linear regression. The method is easy to implement and builds on 

the established methodology of linear regression about which there is extensive knowledge and experience. 

Several types of numerical examples were estimated using the bi-level algorithm or its uni-level variant, and the 

results show the procedure to be very effective. The bi-level algorithm is statistically robust — it gives a good fit 

even where errors are non-normal. 

Finally, it is important to note that, although EAGLE is explained in terms of the normal distribution, it is not 

restricted to this situation. The design philosophy allows any distribution for the response variable provided one 

can define the appropriate likelihood function and the statistical tests required for concurrent compensation. 

Hence, the term ‘general’ in the acronym ‘EAGLE’. 
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1 Introduction 

The purpose of statistical modelling is to derive, via regression techniques, a mathematical model that adequately 

explains the main variations of a random process, and thus enable one to make meaningful inferences about the 

said process. The extent to which such a derived model fulfils its purpose depends on the statistical efficiency of 

the parameter estimators used. Parameter estimation essentially involves solving an optimization problem, 

commonly formulated either on the ‘Least Squares’ or the ‘Maximum Likelihood’ principle,1 and based on an 

initial statistical model of the process under study. An implicit assumption of either approach is that a solution 

that is the globally optimal can be found, for failure to find such a solution would result in estimators that are 

statistically inefficient, and even inconsistent. 

The mechanism and final output of a regression study depend on the probability distribution of the disturbance 

terms in the initial model. Two fundamental assumptions concerning the nature of the disturbance terms are 

common: (a) that their effects are additive to those of the predictor variables; and (b) that they satisfy the 

‘classical’ or ‘full ideal’ conditions — by which is meant that they are mutually independent; they have a mean 

value of zero; and they have the same constant variance. In general, these assumptions rarely hold, especially 

when one is dealing with observational data. Furthermore, other “anomalies” such as overly influential data 

points, inadequate specification of the functional form of the regression model, and multi-collinearity and errors 

in the independent variables, can adversely affect the regression process and hence the derived model. 

Regression diagnostic tests whose purpose is to ascertain the quality and validity of the final model are therefore 

an important part of every regression study. Unfortunately, current methodologies do not allow for such testing 

concurrently with the parameter estimation process itself: diagnostic tests are normally only possible “after the 

fact”, i.e. one must have derived a model in order to perform regression diagnostic tests. The lack of a “live 

feedback channel” between estimation and testing means that, if the diagnostic test results indicate some 

weakness in the derived model, one is required to repeat the entire modelling exercise. Currently therefore, 

statistical modelling is, to some extent, still a trial-and-error process. 

The need for efficient estimates in statistical modelling cannot be over-emphasised, and finding estimators that 

are statistically efficient is usually an exercise in global numerical optimization (Tvrdík and Křivý, 2004). But 

many existing computational techniques are not always successful at this task: those that involve the inversion of 

the information matrix can break down if the said matrix is ill-conditioned; and those that are gradient-based can 

encounter convergence problems because of ‘flat regions’ in the landscapes of criterion functions typically 

associated with under-identified models (Harvey: 1990, p.115). A different approach is therefore called for. 

The purpose of this document is to outline the capabilities of EAGLE.2 EAGLE — an acronym for Evolutionary 

Algorithm for General Likelihood Estimation — is a parameter estimator that employs the maximum likelihood 

principle and applies to linear and nonlinear models alike, using two modes of operation: it may be used in a 

stand-alone, uni-level mode as a numerical maximum likelihood estimator; or in a bi-level mode as a maximum 

likelihood estimator “sitting on top of” a linear regression package. The algorithm’s bi-level mode concurrently 

compensates for commonly encountered “anomalies” of linear regression by optimising an appropriately defined 

vector-valued function. By this device, the bi-level mode alleviates the trial-and-error aspect of statistical 

modelling. The statistical efficiency requirement is addressed by recourse to evolutionary techniques.  

                                                           
1 However, for linear models in which errors terms are normally distributed, estimators derived by the two methods are identical. 

2 A trial-version of the program may be obtained by contacting: info@Aptech.com or sales@tomopt.com 
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2222 Some Numerical Examples 

2.1 Preamble 

This section presents a sample of examples that sufficiently illustrate the capabilities of EAGLE. The presentation 

follows a set pattern as follows. First, a formal statement of the estimation problem is made; this is followed by a 

listing of EAGLE’s output below which are appended the estimated parameters and equation, and some summary 

statistics of the regression; there then follows a list of diagnostic statistics at the final solution; and finally some 

pertinent remarks are made. The examples reported here are as follows. 

� Example 1 is from Spitzer (1984); it serves to compare EAGLE with the algorithm reported therein. 

� Example 2 is from Weisberg (1980, p.139); it serves to compare EAGLE with the two-phased Box-Cox / Box-
Tidwell algorithm that Weisberg recommends. 

� Example 3 is from Draper and Smith (1981, p.475), and it is reported in two parts. Example 3a serves to 
demonstrate that EAGLE is equally effective when used in uni-level mode. Example 3b is a repeat of (3a) but this 
time solved using the bi-level mode—its serves to illustrate how EAGLE may be used on nonlinear regression 
equations other than the Extended Box-Cox model. 

� Examples 4, 5 and 6 are standard test problems from the Information Technology Laboratory of the National 
Institute on Standards and Technology.3 They feature in a recent comparative study by Tvrdík and Křivý 
(2004), and therefore serve to compare EAGLE against the various algorithms tested therein. Example 4 is in two 
parts: the results of (4a) were obtained using the uni-level mode, and those of (4b) using the bi-level mode.    

� Example 7 is typical of the artificial problems that were designed to test EAGLE’s efficacy as a parameter 
estimator during its development. 

� Examples 8, 9 and 10 test the effectiveness of EAGLE as a modelling tool in the absence of NIID errors. The error 
terms were intentionally set to violate the normal assumptions made regarding the error distribution. For 
Example 8, the error terms were drawn from a uniform distribution on the interval [-0.5, 0.5]; for Example 9, the 
error terms were assumed to follow a first-order auto-regressive process, namely: 

 )2.0,0(NIID~w;w6.0 tt1itit +ε=ε − . (2.1a) 

For Example 10, the error terms were a sum of the two previous types, i.e.: 

 )2.0,0(NIID~w);5.0,5.0(U~v;wv6.0 tttt1itit −++ε=ε − . (2.1b) 

2.2 Procedure and Results 

The experimental procedure was simply to run EAGLE for a fixed number of generations, several times for each 

example, adjusting some parameters of the program between each execution. For each run, the maximum value 

attained by the likelihood component of the objective function was recorded; the results reported are those 

pertaining to the run with the best likelihood score. They include (1) the progress of the best member of the 

(genetic) population; (2) the estimated parameters at the end of the program run; and (3) the estimated equation 

together with its associated statistics—all figures reported to three decimal places. The equation statistics include 

(a) the adjusted coefficient of multiple determination, (b) the estimated variance, (c) the equation F-Statistic. 

                                                           
3 http://www.itl.nist.gov/div898/strd/general/bkground.html  
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Example 1  
 

Regression Model: itititt3333t2222t111104t x)x,(;)x,()x,()x,()(y =⋅ε+λα+λα+λα+α=λ ffff  

 

Data Source:4 )107474.0,0(NIID~;xxx5.1y ttt3t2t1t ωω++++−=  

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 -19.504083 0.336457 

 20 73.967673 0.000000 

 40 73.985527 0.000000 

 60 73.986482 0.000000 

 70 73.986486 0.000000 

 80 73.986486 0.000000 

 90 73.986487 0.000000 

 100 73.986487 0.000000 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: λλλλ*  = (0.988348, 0.985113, 1.025304, 0.989334) T 
 

Linear Parameter Vector: αααα*  = ( -1.445691, 1.001354, 1.003264, 0.939360) T 
 

Estimated Equation: 
025.1
t3

)89.85(

985.0
t2

)54.89(

988.0
t1

)08.91()84.15(

989.0
t x939.0x003.1x001.1446.1y +++−=  

 

Equation Statistics: 
2
adjR  = 0.999 

2ˆ
εσ  = 8.1706E-2 F = 7.230E3 

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Residual Variance:                         0.006821 

  

        b. Condition Number:                          4.895601 

  

        c. Bamset Statistic:                          2.933684 

  

        d. Skewness Statistic:                        0.150015 

  

        e. Durbin-Watson Statistic:                   1.824442 

  

        f. Shapiro-Francia Statistic:                 0.973536 

 
 
III. General Remarks 

The parameter space ΩΩΩΩ is circumscribed via the input data that is supplied to EAGLE, and for this example, the 

search space was set as ΩΩΩΩ = [-4, 4]4 x RRRR4 x RRRR+. Note that one could choose to “switch off” λ1 - λ3 from the 

evolutionary search by fixing the values at ‘1’ in the input data file since we know, from the data generator, that 

this is the correct value for these particular parameters (see General Remarks on Example 3b for illustration). 

However, for the purposes of this paper, it was felt that the stiffer test of estimating three extra parameters would 

be more informative of the capabilities of EAGLE. Observe that all diagnostic statistics are within their respective 

pre-specified bounds. 

                                                           
4 Source: Spitzer (1984) 
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Example 2  
 

Regression Model: itititt111102t x)x,(;)x,()(y =⋅ε+λα+α=λ ff  

 
Data Source: Weisberg (1980, p.139) 
 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 0.748053 0.000000 

 20 3.084515 0.000000 

 40 3.085529 0.000000 

 60 3.085678 0.000000 

 80 3.085689 0.000000 

 100 3.085753 0.000000 

 120 3.085753 0.000000 

 140 3.085830 0.000000 

 160 3.085833 0.000000 

 180 3.085836 0.000000 

 200 3.085840 0.000000 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: λλλλ*  = (0.098790, 0.599230) T 
 

Linear Parameter Vector: αααα*  = ( -8.583067, 8.267309) T 
 

Estimated Equation: 
099.0
t1

)300.11()5.501(

599.0
t x267.8583.8y +−=

−
 

 

Equation Statistics: 
2
adjR  = 0.851 

2ˆ
εσ  = 9.391E-2 F = 1.429E2 

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Residual Variance:                        0.093913 

  

        b. Condition Number:                         9.650907 

  

        c. Bamset Statistic:                         4.441987 

  

        d. Skewness Statistic:                      -0.324212 

  

        e. Durbin-Watson Statistic:                  1.854155 

  

        f. Shapiro-Francia Statistic:                0.970265 

 
 
III. General Remarks 

For this example, the search space was set as ΩΩΩΩ = [-4, 4]2 x RRRR2 x RRRR+. Although the quality of fit, as measured by 

R2, is only marginally better than that reported by Weisberg (1980, p.139), namely R2 = 0.844, EAGLE achieves an 

88.3% reduction in the residual variance — σ2 = 0.093913 as compared to σ2 = 0.802. Furthermore, all diagnostic 

statistics are within their respective pre-specified bounds.  
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Example 3a  
 

Regression Model: ( ) tt1100t )8x(exp)49.0(y ε+−β−α−+α=  

 
Data Source: Draper and Smith (1981, p.475) 
 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 24.582465 0.327134 

 10 190.758330 0.000172 

 20 197.732063 0.000125 

 30 199.277558 0.000116 

 40 199.300319 0.000116 

 50 199.301601 0.000116 

 60 199.301671 0.000116 

 70 199.301995 0.000116 

 80 199.301995 0.000116 

 90 199.301996 0.000116 

 100 199.301996 0.000116 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: ββββ* = (0.390139, 0.101631)T 
 

Estimated Equation: ( ))8x(102.0exp099.0390.0y t1t −−+=  

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Residual Variance:                        0.000116 

 

        b. Residual Standard Deviation:              0.010785 

 

        c. Residual Sum of Squares:                  0.005002 

 
 
III. General Remarks 

This example is not particularly difficult to solve. In fact, Draper and Smith (pp.476-481) demonstrate that one 

can solve it “by hand” using an analytic-cum-graphical method, amongst other techniques. The point of including 

it here is merely to show that EAGLE’s uni-level mode is effective, and to provide a simple example that illustrates 

how one applies the bi-level method to nonlinear models via variable transformations (see Example 3b below). 

For this example, the search space was set as ΩΩΩΩ = [-10, 10] x [-10, 10], and the problem was solved by EAGLE in 

the uni-level mode. The results by EAGLE are practically similar to those reported by Draper and Smith; they 

however do not report an estimate for the equation variance.  
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Example 3b  
 

Regression Model: ( ) 1ttt111tt1111102t 49.0yy;)8x(exp;))x,,(1()(y fff −=−β−=ε+λβ−α+α=λ  

 
Data Source: Draper and Smith (1981, p.475) 
 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
  0 190.440197 0.278732 

 20 198.804557 0.000000 

 40 198.805651 0.000000 

 80 198.805689 0.000000 

 100 198.805689 0.000000 

 120 198.805689 0.000000 

 140 198.805689 0.000000 

 160 198.805689 0.000000 

 180 198.805689 0.000000 

 200 198.805689 0.000000 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: (β*, λλλλ*) = (0.099155, 1.000000, 1.000000)T 
 

Linear Parameter Vector: αααα* = (-0.001122, 0.390750)T 
 

Estimated Equation: ))8x(099.0exp(099.0390.0y t1t −−+=  

 

Equation Statistics: 
2
adjR  = 0.991 

2ˆ
εσ  = 1.190E-4 F = 4.495E3 

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Residual Variance:                         0.000119 

  

        b. Condition Number:                          3.159270 

  

        c. Bamset Statistic:                          0.340370 

  

        d. Skewness Statistic:                        0.300266 

  

        e. Durbin-Watson Statistic:                   1.980297 

  

        f. Shapiro-Francia Statistic:                 0.937487 

 
 
III. General Remarks 

This example is a repeat of Example 3a but this time solved using the bi-level algorithm. An explanation of the 

regression equation is provided in § 4 below. The search space was set as ΩΩΩΩ = [0, 1] x [1, 1]2 x RRRR2 x RRRR+. That is to 

say: β ∈ [0, 1], λ1 ∈ {1}, λ2 ∈ {1}, αααα ∈ RRRR
2 and σ2 ∈ RRRR+. This input data specification effectively “switches off” 

the Box-Cox vector λλλλ from the evolutionary search. Apart from the equation variance, the estimated parameters 

are essentially the same as those in Example 3a. But, of course, the bi-level method yields more information 

concerning the final solution in the form of diagnostic statistics. And, as can be seen above, all these are within 

their respective pre-specified bounds. 
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Example 4a  

 

Regression Model: ( ) tt121t )xexp(1y ε+β−−β=  

 
Data Source:5 National Institute of Standards and Technology (NIST) 

 Statistical Reference Datasets 

 Reference code: BoxBOD 

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 -23.954259 2935.852000 

 20 -16.361263 233.633674 

 40 -16.360885 233.604216 

 60 -16.360854 233.601779 

 80 -16.360854 233.601775 

 100 -16.360854 233.601775 

 120 -16.360854 233.601775 

 140 -16.360854 233.601775 

 160 -16.360854 233.601775 

 180 -16.360854 233.601775 

 200 -16.360854 233.601775 

 220 -16.360854 233.601775 

 240 -16.360854 233.601775 

 260 -16.360854 233.601775 

 280 -16.360854 233.601775 

 300 -16.360854 233.601775 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: ββββ* = (213.809409, 0.547237)T 
 

Estimated Equation: ( ))x547.0exp(1809.213y t1t −−=  

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Residual Variance:                       233.601775 

  

        b. Residual Standard Deviation:              15.284037 

  

        c. Residual Sum of Squares:                1168.008877 

 
 
III. General Remarks 

For this example, the search space was set as ΩΩΩΩ = [0, 1000] x [0, 1000], and the problem was solved by EAGLE in 

the uni-level mode. All estimates coincide exactly with the certified values reported by NIST.  

                                                           
5 http://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml 
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Example 4b  
 

Regression Model: )xexp()x,,(;)x,,()(y t11t111tt1111102t β−−=⋅βε+λβα+α=λ ff  

 
Data Source:6 National Institute of Standards and Technology (NIST) 

 Statistical Reference Datasets 

 Reference code: BoxBOD 

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 -12.526729 0.734905 

 20 -13.835578 0.223179 

 40 -13.857588 0.214621 

 60 -13.875464 0.207697 

 80 -13.875508 0.207680 

 100 -13.875508 0.207680 

 180 -13.875508 0.207680 

 260 -13.875508 0.207680 

 300 -13.875508 0.207680 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: (β*, λλλλ*) = (0.118188, 1.000000, 1.000000)T 
 

Linear Parameter Vector: αααα* = (292.776993, 196.251984)T 
 

Estimated Equation: )x118.0exp(252.196777.292y t1t −−=  

 

Equation Statistics: 
2
adjR  = 0.958 

2ˆ
εσ  = 102.020 F = 91.780 

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Residual Variance:                       102.020043 

  

        b. Condition Number:                         16.567751 

  

        c. Bamset Statistic:                          4.968858 

  

        d. Skewness Statistic:                        0.055823 

  

        e. Durbin-Watson Statistic:                   2.707680 

  

        f. Shapiro-Francia Statistic:                 0.880162 

 
 
III. General Remarks 

A quasi-linearization technique similar to that employed in Example 3b was applied to the original model 

])xbexp[1(by t121t −−= . The search space was set as ΩΩΩΩ = [0, 1] x [1, 1]2 x RRRR2 x RRRR+, thus effectively “switching 

off” the Box-Cox vector λλλλ from the evolutionary search. The residual variance is much reduced, although, 

obviously the estimated equation is different in structure from the original model.  

                                                           
6 http://www.itl.nist.gov/div898/strd/nls/data/boxbod.shtml 
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Example 5  
 

Regression Model: )y(Lny;)x()x,,(;)x,,()(y tt
1

1t1t111tt1111102t =β+=⋅βε+λβα+α=λ −ff  

 
Data Source:7 National Institute of Standards and Technology (NIST) 

 Statistical Reference Datasets 

 Reference code: MGH10 

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 55.380769 1.357790 

 40 139.010110 0.000000 

 80 139.011494 0.000000 

 120 139.011494 0.000000 

 160 139.011494 0.000000 

 200 139.011494 0.000000 

 240 139.011494 0.000000 

 280 139.011494 0.000000 

 300 139.011495 0.000000 

 400 139.011495 0.000000 

 500 139.011495 0.000000 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: (β*, λλλλ*)  = (344.424058, 1.000000, 1.000000)T 
 

Linear Parameter Vector: αααα*  = (-5.155381, 6157.861348)T 
 

Estimated Equation: 
1

t1t )424.344x(861.6157155.5y −++−=  

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Residual Variance:                         0.000000 

  

        b. Condition Number:                      16049.902801 

  

        c. Bamset Statistic:                          2.571227 

  

        d. Skewness Statistic:                        0.500043 

  

        e. Durbin-Watson Statistic:                   1.585406 

  

        f. Shapiro-Francia Statistic:                 0.907896 

 
 
III. General Remarks 

A quasi-linearization approach similar to that used in Example 3b may, in principle, be applied directly to the 

original model ])bx(bexp[by 1
3t121t

−+= , but better results accrue by first transforming the model into the 

additive structure, 1
3t121t )bx(b)b(Ln)y(Ln −++= , and then applying the said method. Although the condition 

number seems large, EAGLE’s estimates of the parameters b1, b2 and b3 almost coincide with the NIST values; the 

much reduced residual variance suggests that the former may be closer to the true parameter values.  

                                                           
7 http://www.itl.nist.gov/div898/strd/nls/data/mgh10.shtml 
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Example 6  
 

Regression Model: t
13

7
2

65
3

4
2

321t )xxx1()xxx(y ε+β+β+β+β+β+β+β= −  

 
Data Source:8 National Institute of Standards and Technology (NIST) 

 Statistical Reference Datasets 

 Reference code: Thurber 

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 216.0429101 17947.531325 

 40 -126.335747 924.228482 

 80 -98.015677 199.965475 

 120 -96.312494 182.377868 

 160 -96.286273 182.119560 

 200 -96.283877 182.095975 

 240 -96.282545 182.082866 

 280 -96.280425 182.062002 

 320 -96.279969 182.057518 

 360 -96.278832 182.046323 

 400 -96.277112 182.029398 

 440 -96.275290 182.011473 

 480 -96.273570 181.994554 

 500 -96.273389 181.992774 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: ββββ* = (1286.786376, 1506.499750, 595.180611, 77.685168, 0.981125, 0.404239, 0.050574)T 
 

Estimated Eqn: 
13232

t )x051.0x404.0x981.01()x685.77x181.595x50.150679.1286(y −++++++=  

 
______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Residual Variance:                         181.992774 

 

        b. Residuals Standard Deviation:               13.490470 

 

        c. Residuals Sum of Squares:                 5641.775992 

 
 
III. General Remarks 

As with Example 5 above, EAGLE’s estimates of the parameters b1, b2, b3 b4, b5, b6 and b7 almost coincide with the 

NIST values; however, the residual variance is smaller and this suggests that the EAGLE parameters may be closer 

to the true values.  

 

                                                           
8 http://www.itl.nist.gov/div898/strd/nls/data/thurber.shtml 
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 Example 7  
 

Regression Model: itititt3333t2222t111104t x)x,(;)x,()x,()x,()(y =⋅ε+λα+λα+λα+α=λ ffff  

 

Data Source:9 )1,0(U10~x);001.0,0(NIID~;x4x3x2y ittt
44.0
t3

33.0
t2

22.0
t1

55.0
t ωω+++=  

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 -95.443155 0.000000 

 20 0.457075 0.000000 

 40 65.053261 0.000000 

 60 108.181866 0.000000 

 80 125.908667 0.000000 

 100 210.723094 0.000000 

 120 210.773047 0.000000 

 140 213.506937 0.000000 

 160 213.506970 0.000000 

 180 213.516967 0.000000 

 200 213.516967 0.000000 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: λλλλ*   =  (0.220080, 0.329999, 0.440010, 0.550100) T 
 

Linear Parameter Vector: αααα*   =  ( -0.001952, 2.000582, 3.002066, 4.002574) T 
 

Estimated Equation: 
440.0
t3

)1000(

330.0
t2

)1000(

220.0
t1

)1000()1000(

550.0
t x003.4x002.3x001.2002.0y

>>>>
+++−=  

 

Equation Statistics: 
2
adjR  = 1.000 

2ˆ
εσ  = 0.000 F = 2.141E10 

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Variance:                                 0.000000 

  

        b. Condition Number:                         8.661957 

  

        c. Bamset Statistic:                         5.669785 

  

        d. Skewness Statistic:                       0.493459 

  

        e. Durbin-Watson Statistic:                  1.780419 

  

        f. Shapiro-Francia Statistic:                0.961181 

 
 
III. General Remarks 

For this example, the search space was set as ΩΩΩΩ = [-4, 4]4 x RRRR4 x RRRR+. The estimation results above speak for 

themselves. 

 

                                                           
9 Siwale (2002) 



 
 
 

   
Copyright  1997-2008: Ike’s Research Ltd 

12 

Example 8  
 

Regression Model: itititt3333t2222t111104t x)x,(;)x,()x,()x,()(y =⋅ε+λα+λα+λα+α=λ ffff  

 

Data Source: )5.0,5.0(U~;xxx5.1y ttt3t2t1t −ωω++++−=  

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 -20.086104 0.000000 

 10 35.072423 0.000000 

 20 36.547247 0.000000 

 30 36.889041 0.000000 

 40 36.902160 0.000000 

 50 36.904674 0.000000 

 60 36.904765 0.000000 

 70 36.904832 0.000000 

 80 36.904835 0.000000 

 90 36.904835 0.000000 

 100 36.904835 0.000000 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: λλλλ*  = (1.014330, 0.819143, 1.056153, 0.981380) T 
 

Linear Parameter Vector: αααα*  = (1.328126, 0.828662, 1.396256, 0.847389) T 
 

Estimated Equation: 
056.1
t3

)89.84(

819.0
t2

)45.88(

014.1
t1

)45.88()60.15(

981.0
t x847.0x396.1x829.0328.1y +++=  

 

Equation Statistics: 
2
adjR  = 0.988 

2ˆ
εσ  = 7.596E-2 F = 7.418E2 

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Variance:                                 0.075962 

  

        b. Condition Number:                         5.023523 

  

        c. Bamset Statistic:                         3.090866 

  

        d. Skewness Statistic:                       0.325685 

  

        e. Durbin-Watson Statistic:                  1.673699 

  

        f. Shapiro-Francia Statistic:                0.949291 

 
 
III. General Remarks 

For this example, the search space was set as ΩΩΩΩ = [-4, 4]4 x RRRR4 x RRRR+. And, as can be seen from the diagnostic tests 

at the solution, the algorithm “normalises” the error distribution and yields a very good fit to the data. 
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Example 9  
 

Regression Model: itititt3333t2222t111104t x)x,(;)x,()x,()x,()(y =⋅ε+λα+λα+λα+α=λ ffff  

 

Data Source: )2.0,0(NIID~;6.0;xxx5.1y tt1tttt3t2t1t φφ+ω=ωω++++−= −  

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 -16.349574 0.000000 

 20 37.635034 0.000000 

 40 38.384242 0.000000 

 60 38.553593 0.000000 

 80 38.554459 0.000000 

 100 38.554463 0.000000 

 120 38.554463 0.000000 

 140 38.554463 0.000000 

 160 38.554463 0.000000 

 180 38.554463 0.000000 

 200 38.554463 0.000000 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: λλλλ*   =  (0.819380, 1.161990, 1.064060, 0.346684) T 
 

Linear Parameter Vector: αααα*   =  (1.588204, 0.114435, 0.056432, 0.071302) T 
 

Estimated Equation: 
064.1
t3

)89.84(

162.1
t2

)45.88(

819.0
t1

)45.88()60.15(

347.0
t x071.0x056.0x114.0588.1y +++=  

 

Equation Statistics: 
2
adjR  = 0.984 

2ˆ
εσ  = 5.28E-4 F = 5.478E2 

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Variance:                                 0.000528 

  

        b. Condition Number:                         7.112158 

  

        c. Bamset Statistic:                         2.874424 

  

        d. Skewness Statistic:                       0.103995 

  

        e. Durbin-Watson Statistic:                  1.500000 

  

        f. Shapiro-Francia Statistic:                0.977277 

 
 
III. General Remarks 

For this example, the search space was set as ΩΩΩΩ = [-4, 4]4 x RRRR4 x RRRR+. As can be seen from the diagnostic tests at 

the solution, the algorithm “normalises” the error distribution and yields a very good fit to the data. 
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Example 10  
 

Regression Model: itititt3333t2222t111104t x)x,(;)x,()x,()x,()(y =⋅ε+λα+λα+λα+α=λ ffff  

 
Data Source: 
 

)5.0,5.0(U~)2.0,0(NIID~;6.0;xxx5.1y tttt1tttt3t2t1t −ϕφϕ+φ+ω=ωω++++−= −  

 
 
I. EAGLE Output  
 
 Generation Objective 1 Objective 2 

 
 0 -17.754724 0.000000 

 20 34.702001 0.000000 

 40 35.472699 0.000000 

 60 35.519152 0.000000 

 80 35.522458 0.000000 

 100 35.523771 0.000000 

 120 35.523772 0.000000 

 140 35.523772 0.000000 

 160 35.523772 0.000000 

 180 35.523772 0.000000 

 200 35.523782 0.000000 

______________________________________________________________________________________________________ 
 

Nonlinear Parameter Vector: λλλλ*  = (0.790770, 0.932208, 1.216555, 1.252945) T 
 

Linear Parameter Vector: αααα*  = (-0.861939, 3.162547, 2.635666, 1.482148) T 
 

Estimated Equation: 
217.1
t3

)89.84(

932.0
t2

)45.88(

790.0
t1

)71.89()60.15(

253.1
t x482.1x636.2x162.3862.0y +++−=  

 

Equation Statistics: 
2
adjR  = 0.990 

2ˆ
εσ  = 8.077E-1 F = 8.30E2 

______________________________________________________________________________________________________ 

 
 
II. Regression Diagnostics at Solution 
 
        a. Variance:                                 0.431597 

  

        b. Condition Number:                         4.408000 

  

        c. Bamset Statistic:                         2.392576 

  

        d. Skewness Statistic:                       0.097269 

  

        e. Durbin-Watson Statistic:                  1.500000 

  

        f. Shapiro-Francia Statistic:                0.983248 

 
 
III. General Remarks 

For this example, the search space was set as ΩΩΩΩ = [-4, 4]4 x RRRR4 x RRRR+. Once again, diagnostic statistics at the final 

solution show that EAGLE manages to “normalise” the error distribution and yields a very good fit to the data. 
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3333 Discussion 

On Example 1  

This example serves to compare the performance of EAGLE to the method advocated by Spitzer (1982; 1984). 

In his study, Spitzer generates 60 data points in which the regressor values are from a uniform distribution 

with a mean of 2.25 and variance of 1.021. He computes the response values using the model: 

 )107474.0,0(NIID~;xxx5.1y iii3i2i1i εε++++−=  (3.1) 

He proceeds to fit the normal Box-Cox model to the data thus generated, using the maximum likelihood 

principle. To solve the likelihood maximisation problem, Spitzer first re-scales the Box-Cox model and then 

derives a supposedly equivalent non-linear least squares problem. His solution procedure is a modification of 

Newton’s algorithm, which he informally describes as follows: 

“First minimise the [sum of squares function] S(λ, ββββ) with respect to ββββ, conditional on λ. The ββββ that minimises the 

S(λ, ββββ)  a function of λ, and therefore S(λ, ββββ)  is a function of λ only. The (k+1)-dimensional problem has now 
been transformed into a one-dimensional problem. Second, take a single Newton iteration towards minimising 

S(λ, ββββ)  with respect to λ. These two steps are repeated until a convergence criterion is met” (Paraphrased from 
Spitzer: 1982, p.761)  

His estimated equation is: 

 i3
)75.11(

i2
)8.19(

i1
)78.11()27.29(

188.1
i x479.1x523.1x486.1491.3y +++−= . 

Example 1 is essentially equivalent to the model studied by Spitzer. However, the generalised nature of the 

EBC specification presumably renders it more difficult to solve due to the larger number of parameters — 

eight as compared to five in Spitzer’s model. Nevertheless, EAGLE’s bi-level procedure yields an equation that 

is much closer to the true equation than Spitzer’s algorithm, namely: 

 025.1
t3

)89.85(

985.0
t2

)54.89(

988.0
t1

)08.91()84.15(

989.0
t x939.0x003.1x001.1446.1y +++−= . 

In addition, the theoretical foundation of EAGLE is firmer than Spitzer’s method since it does not involve a re-

scaling of the regression model—a technique that is rather problematic. The said re-scaling procedure has 

been common practice since Zarembka (1968). Of late however, others have questioned its validity. Dagenais 

and Dufour (1994) show that because the scaling factor applied in deriving the ‘scaled model’ is in fact a 

random variable, one is lead to use an incorrect concentrated log likelihood function for the scaled variables. 

They write: 

“Re-scaling the dependent variable with the sample geometric mean (without taking into account the random 
nature of the scaling factor) leads one to use the wrong likelihood function: the estimated model is not the same 
as the original specification. The sample geometric mean modifies the model in basic way and thus involves 
much more than a mere unit change [. . .] regression standard errors obtained from the re-scaled model are not 
generally valid, so that these standard errors cannot be used to build confidence sets for either the original or the 
re-scaled model” (Paraphrased from p.571) 

Finally, note that, because both levels of the EAGLE algorithm employ the maximum likelihood principle, the 

computed estimates are asymptotically efficient. 
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On Example 2  

This example affords a comparison of EAGLE to the two-phase Box-Cox/Box-Tidwell estimation procedure 

suggested by Box and Cox (1964). Weisberg (1980, p.138-144) uses the Box-Cox/Box-Tidwell approach to 

fit the EBC model to some data pertaining to the growth rate of Oak trees. Weisberg initially estimates the 

optimum transform for the response variable as λ2 = 1.3 by the graphical method of Box and Cox, but 

rationalises down to λ2 = 1 as follows: 

“The 90% confidence interval for λ2 is the set [0.9, 1.7]. Since this interval includes the value λ2 = 1 
corresponding to no transformation, it appears that little is to be gained by transforming the response variable. 

Box and Cox suggest using relatively simple choices for λ2 since the difference between λ2 = 1.3 and λ2 = 1 is 

small in terms of the values of yλ but the interpretation of the latter is generally simpler than that of the former.” 
(Paraphrased from p.141) 

Having adopted the value of λ2 = 1, Weisberg then uses the Box-Tidwell method to estimate the optimum 

transform for the independent variable as λ1 = 0.0926. He then asserts (p.142) that: 

“for most practical purposes, it is adequate to note that λ1 is nearly zero, and a log transformation is suggested”. 

Thus, he reports his final estimated equation as: 

 )(Ln980.2928.3
)64.11()15.5(

tt xy +−=  

 2R  = 0.844 2ˆ
εσ  = 0.802 

By contrast, the EAGLE only needs a single run to estimate all the parameters of the regression model. The 

estimated equation is: 

 099.0
t1

)300.11()5.501(

599.0
t x267.8583.8y +−=

−
 

 2
adjR  = 0.851 2ˆ

εσ  = 0.094 

Note that, although EAGLE reports only a slightly higher quality of fit, the equation variance is significantly 

better than that reported by Weisberg.  

On Example 3  

The first part of this example is a direct numerical maximization of the log likelihood function; it needs no 

further comment except to point out that EAGLE’s solution agrees with that reported by Draper and Smith 

(pp.476-481). The purpose of the second part is to provide a simple illustration of how one would implement 

the bi-level mode in this case. 

The original regression model is:  

 t
)8x(

t
te)49.0(y ε+α−+α=
−β−  (3.2a) 
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To estimate equation (3.2a) using EAGLE’s bi-level mode, one assumes the quasi-linear model: 

 tt10t zy ε+δ+δ=  (3.2b) 

where: α≡δ0 ; )49.0(1 α−≡δ ; ))8x(ˆexp(z t
k

t −β−=  

At the k-th iteration, the Level 1 algorithm transforms the original regressor data according to 

 ))8x(ˆexp(z t
k

t −β−=  (3.2c) 

Given the transformed data, the Level 2 program evaluates the OLS estimators for kk
1

k
0 ˆ,ˆ,ˆ σδδ . Note that 

because the linear parameters in (3.2b) are not independent, the parameter α can only be retrieved from δ0 or 

δ1 if the following constraint is satisfied exactly:  

 049.010 =−δ+δ  (3.2d) 

Although EAGLE accommodates such constraints on OLS parameters, there is no guarantee that the constraint 

will be satisfied at the final solution. An alternative approach that estimates the original parameters directly 

and does not require a constraint follows a trivial manipulation of (3.2b) to yield the regression equation: 

 tttt )z1(z49.0y ε+−α=−  (3.2e) 

The results reported for Example 3b were obtained using this regression model. Apart from the equation 

variance, the estimated parameters are essentially the same as those in Example 3a. But, of course, the bi-level 

method yields more information concerning the final solution in the form of diagnostic statistics. 

On Example 4, 5 and 6  

These examples are part of the NIST test suite for nonlinear regression algorithms. They feature in a recent 

comparative study by Tvrdík and Křivý (2004) in which several statistical packages for least squares 

regression were tested, namely: NCSS 2001, where the Levenberg-Marquardt algorithm is used; S-PLUS 4.5 

which employs the Gauss-Newton algorithm; SPSS 10.0 which uses the modified Levenberg-Marquardt 

algorithm; and SYSTAT 8.0 where both a modified Gauss–Newton algorithm and the simplex method are 

implemented. These three examples were selected because they were the ones that most of the statistical 

packages in the Tvrdík- Křivý study found difficult to solve. Table 4.1 below is an extract from there to 

which has been added the result by EAGLE for comparison. And, as can be seen, most of the packages were 

not completely successful in all cases despite the fact that the recommended starting values are actually very 

near to the certified estimates.  

For Example 4b, a quasi-linearization technique similar to that employed in Example 3b was applied to the 

original model ])xbexp[1(by t121t −−= . Thus, one assumes the quasi-linear model: 

 tt10t zy ε+δ+δ=  (3.3) 

where: 110 b≡δ−=δ ; )xˆexp(z t
k

t β−=  

The parameter constraint corresponding to (3.2d) is simply: 010 =δ+δ . 
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For Example 5 and Example 6, EAGLE’s estimates of the model parameters almost coincide with the NIST 

values; however, the residual variance is smaller in both cases, and this suggests that the EAGLE parameters 

may be closer to the true values. 
 
Table 3.1: The Reliability of Statistical Packages (Source: Tvrdík and Křivý, 2004)  
 

 EAGLE NCSS 2001 S-PLUS 4.5 SPSS 10.0 SYSTAT 8.0 
[Simplex] 

SYSTAT 8.0 
[Gauss-Newton] 

Example 4a OK F OK F / OK F OK 

Example 4b OK - - - - - 

Example 5 OK F F / OK F F / OK OK 

Example 6 OK F F F OK OK 

Legend: OK — success; F — Failure; F / OK — Failure from first starting point; success from second starting point  

On Example 7  

Example 7 is an artificial problem whose regressor data is random sample from a uniform distribution on the 

interval [0.5, 4]; a linear model, together with a normally distributed random variable, generated the response 

data. The sample size was set at 30. The variance of the random errors was deliberately set low in order to 

discount the possibility of estimating models other than those used to generate the data. The estimated 

equation for this example is practically the same as the true model and needs no further comment. 

On Example 8, 9 and 10  

The results for Example 8 through 10 show that the bi-level technique estimates the best equation for any 

given set of data. Even where the errors are significantly non-NIID, the method manages to “normalise” the 

error distribution and provide a good fit, as may be seen from the equation statistics for Example 8, 9 and 10. 

Other studies with comparable error distributions such as Spitzer (1978; 1984) and Showalter (1994) did not 

achieve a similar quality of fit, despite using considerably larger sample sizes. 

In General  

Maximum likelihood estimation is usually performed by numerical optimization methods, and finding ML 

estimators that are statistically efficient is an exercise in global optimization (Tvrdík and Křivý, 2004). But, 

as pointed out earlier (infra, p.2), many existing techniques are not always successful at this task. However, it 

is increasingly being recognised that evolutionary methods can be efficient estimators because a well-

designed Evolutionary Algorithm does not depend on the convexity or smoothness of the likelihood function, 

and it converges to the global solution, albeit in probability only (Rudolph, 1994). EAGLE has, therefore, a 

distinct advantage over traditional methods. Because it is an evolutionary approach, it is numerically more 

stable, and its estimates are relatively more efficient in many difficult cases. The examples presented here 

support this assertion. Finally, it is important to note that, although EAGLE has been described in terms of the 

normal distribution, it is not restricted to this situation. The design philosophy allows any distribution for the 

response variable provided one can define the appropriate likelihood function and the statistical tests required 

for concurrent compensation. Hence, the term ‘general’ in the acronym ‘EAGLE’. 
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4444 Summary and Conclusions 

This document has outlined EAGLE. EAGLE is a parameter estimation algorithm that employs the maximum 

likelihood principle and applies to linear and nonlinear models alike, using two modes of operation. The 

algorithm’s uni-level mode is simply a direct numerical maximization method for the likelihood function: its bi-

level mode allows for a decomposition of the estimation task into two interacting search processes: a ‘Level 1’ 

algorithm that drives the overall search and compensates for any regression “anomalies” that might arise during 

the solution process, and a ‘Level 2’ linear regression algorithm that computes OLS estimates, given data from 

the former. 

The design of the algorithm is founded on three concepts: (a) model linearization and problem decomposition via 

a partitioning of the parameter vector; (b) on-line regression diagnostic testing and control of regression residuals 

via multi-objective optimization — a process that is here called ‘concurrent compensation’; (c) exploitation of 

the location and scale invariance properties of linear regression. The idea of linearizing a nonlinear model by a 

transformation of the variables is certainly not original to EAGLE. In fact, Draper and Smith (1981, p.459) point 

out that most authors use the words ‘intrinsically linear’ in this sense. However, as of this writing, I am unaware 

of any other regression technique that employs regression diagnostic tests in the manner described here. The 

method is easy to implement and builds on the established methodology of linear regression about which there is 

extensive knowledge and experience. 

The algorithm’s uni-level mode is a bi-objective evolutionary design that directly maximises the likelihood 

function and minimises the residual variance. But unlike some existing maximum likelihood algorithms, about 

which Harvey (1990) writes: 

“Most non-linear routines are subject to problems of execution, while the results are liable to misinterpretation. A 
good deal of care is therefore required” (p.122)  

EAGLE is a numerically stable global optimizer: none of the numerical problems that are typically associated with 

traditional optimization techniques arise in the case of EAGLE because it is an evolutionary approach that does 

not require the information matrix, or any its approximations. 

Both modes of operation allow for functional constraints of the form g(ΦΦΦΦ1) ≤ 0 on the nonlinear parameters. In 

addition, the criterion vector J of the bi-level scheme may be augmented by a component that restricts the OLS 

parameters to a particular region of the search space. 

Several types of numerical examples were estimated using the bi-level algorithm or its uni-level variant, and the 

results show the procedure to be very effective. The bi-level algorithm is statistically robust — it gives a good fit 

even where errors are non-normal. 
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