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Abstract- The paper presents the lateral acceleration
control design of non-linear missile model using a multi-
objective evolutionary optimisation method (NSGA-II -
like). The controller design for the uncertain plants is
carried out by minimising gain and phase margins and
tracking performance objectives of the corresponding
vertices. Pareto surfaces are used to identify a feasi-
ble control structure and analyse its performance trade-
offs. Based on the selected trade-off solution, the in-
terpolated controller, whose poles, zeros and gains are
linear continuous functions of Mach number and inci-
dence, are designed for the whole operating envelope.
The interpolated controller is now synthesised by min-
imising the Euclidean distance of multiple operating
points’ objective values. The stability is preserved by ad-
ditionally overlapping these operating regions. The non-
linear simulation results show that the resulting interpo-
lated controller is indeed a robust tracking controller for
all possible perturbations.


1 Introduction


This paper looks at the application of multi-objective evo-
lutionary optimisation to a robust autopilot design. The
aim is to synthesise the fixed-structure controller by shap-
ing the open-loop frequency responses system’s to lie out-
side the specified constant gain contour, as well results in
the closed-loop responses are within the tracking bounds.
However, finding a feasible control structure (and further-
more tuning it) that meet the frequency bounds can be very
difficult, and the resulting interpolated controller may not
be stabilising. By formulating the former to an optimisation
problem, the Pareto optimal solutions of difference control
structures can be searched using the Evolutionary Strategy
and non-dominated ranking method. The feasible solutions
can then be found and their trade-offs subsequently be anal-
ysed. Note that the ES also allows the inner and outer loop-
shaping to be carried out simutaneously. To ensure the sta-
bility of the interpolated controller, the controllers’ operat-
ing regions are required to be overlapped.


This paper is organised as follows. The missile’s lateral
dynamics and autopilot requirements are described in sec-
tion 2. 2 DOF controller design using the frequency domain
method and brief description of multi-objective evolution-
ary algorithms are stated in section 3. The gain-scheduling


synthesis is presented in section 4.


2 Missile Model and Autopilot Requirements


2.1 Non-Linear Model


The missile model used in this study is taken from Horton’s
MSc thesis [Horton, 1992]. It describes a 5 DOF model
in parametric format with severe cross-coupling and non-
linear behaviour. This study will look at the reduced prob-
lem of a 2 DOF controller for the lateral motion (on the xy
plane in Figure 1). The airframe is roll stabilised (λ = 45◦),
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Figure 1: Airframe Axes and Nomenclature.


and no coupling is assumed between pitch and yaw chan-
nels. With these assumptions, the equations of motion are
given by


v̇ = yv(M, σ)v + yζ(M, σ)ζ − Ur,


=
1


2m
ρV S(Cyv


v + V Cyζ
ζ) − Ur,


ṙ = nv(M, σ)v + nr(M, σ)r + nζ(M, σ)ζ,


=
1


2Iz
ρV Sd(Cnv


v +
1


2
dCnr


r + V Cnζ
ζ) (1)


where the variables are defined in Figure 1. Here v is
the side-slip velocity, r is the body rate, ζ the rudder fin
deflections, yv, yζ semi-non-dimensional force derivatives
due to lateral velocity and fin angle, nv , nr, nζ semi-non-
dimensional force derivatives due to side-slip velocity, body
rate and fin angle. U is the forward velocity. Furthermore,
m = 150 kg (125 kg) is the missile mass when full (all
burnt), ρ = ρ0 − 0.094h air density (ρ0 = 1.23 kg/m3 is
the sea level air density and h the missile altitude in km),
V the total velocity in m/s, S = πd2/4 = 0.0314 m2 the
reference area (d = 0.2 m is the reference diameter) and







Iz = 75 kg · m2 (60 kg · m2) is the lateral inertia when full
(all burnt). For the coefficients Cyv


, Cyζ
, Cnv


, Cnr
, Cnζ


only discrete data points are available, obtained from wind
tunnel experiments. The interpolation formulas, involving
the Mach number M and incidence σ, have been evaluated
with the results summarised in Table 1.


Aerodynamic Interpolated formula
derivative


Cyv
−26 + 1.5M − 60|σ|


Cyζ
−10 + 1.4M − 1.5|σ|


Cnr
−500 − 30M + 200|σ|


Cnv
smCyv


, where
sm = d−1[(1.3 + m/500)


−(1.3 + 0.1M + 0.3|σ|)]
Cnζ


sfCyζ
, where


sf = d−1[(1.3 + m/500)− 2.6]


Table 1: Aerodynamic Derivatives of the Non-Linear Model
(λ = 45◦).


V =
√


U2 + v2 is to total velocity. It is assumed that
U � v, so that the total incidence σ can thus be taken as
σ = v/U , as sin σ ≈ σ for small σ. Finally, the Mach num-
ber is obviously defined as M = V/a, where a = 340 m/s
is the speed of sound.


2.2 Closed-Loop Performance Requirements


The autopilot is required to track ±500 m/s2 lateral ac-
celeration commands ayd over the whole flight enve-
lope (see Figure 2). Note that the lateral acceleration
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Figure 2: Velocity Operating Envelope.


ay at the center of gravity is defined by ay = v̇ +
Ur. It must also be as robust to the variation in mass
(see Figure 3) and uncertainty in aerodynamic derivatives
(∆Cyv


, ∆Cyζ
, ∆Cnv


, ∆Cnr
, ∆Cnζ


= ±5%). A list of per-
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Figure 3: Mass Variations. The Propellant is Constantly
Burnt.


formance specification (for a step input) is given in the time-
domain using familiar figures as follows:


1. Steady state gain 0.9 ≤ ay(s)
ayd


(s)


∣


∣


∣


s=0
≤ 1.1,


2. Settling time 0.1 ≤ ts ≤ 0.3,


3. Damping ratio 0.6 ≤ ζay
≤ 0.8,


4. Gain margin GM ≥ 9 dB, Phase margin PM ≥ 40◦.


3 Design of Lateral Missile Autopilot


3.1 2 DOF Autopilot Configuration


The basic 2 DOF lateral autopilot is shown schematically in
Figure 4 where la = 0.9 m (0.8 m) is the accelerometer mo-
ment arm when full (all burnt). By linearising the nonlinear
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Figure 4: 2 DOF Autopilot Configuration.


dynamic equation (1) about an operating point results in the
transfer functions:


Grζ
(s) =


nζs − (nζyv − nvyζ)


s2 − (yv + nr)s + (Unv + yvnr)
,


Gayr
(s) =


yζs
2 − yζnrs − U(nζyv − nvyζ)


nζs − (nζyv − nvyζ)
. (2)







3.2 Frequency-Response Design Method


3.2.1 Tracking Models


In this work, the desired tracking ratios are modeled in the
frequency domain to satisfy the required gain and phase
margins and the desired time domain performance speci-
fications (see section 2.2). The system’s tracking perfor-
mance specifications are based upon satisfying all of the
step forcing functions TU (t) and TL(t) shown in Figure 5,
where TU (s) = (34.43s + 4889)(s2 + 80s + 4444) and
TL(s) = 2.503×104/(s3+84.5s2+2405s+2.781×104).
They represent the upper and lower bounds of tracking per-
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Figure 5: Time Domain Response Specifications.


formance specifications whom an acceptable response ay(t)
must lie within. The Bode plot of the upper bound TU (jω)
and lower bound TL(jω) for |T (jω)| = |ay(jω)/ayd(jω)|
are shown in Figure 6.
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Figure 6: Frequency Domain Response specifications.


3.2.2 Loop-shaping


A robust controller can be designed by synthesising a rate


feedback Kr and compensator C(s) that 1) results in an
open-loop transmission L(jω) satisfies the desired gain and
phase margins. 2) results in the closed-loop magnitude vari-
ation δT (jωi) being smaller than or equal to δ(jωi) of Fig-
ure 6, i.e. high open-loop gain |L(jω)| is usually a conse-
quence (see Figure 8). 3) results in TL(jωi) ≤ T (jωi) ≤
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Figure 7: Nichols Chart (In unity-feedback case, δT (jωi) is
attenuated as a result of high open-loop gain |L(jωi)|).


TU (jωi) (If it is not possible, further design of a prefilter
F (s) is required.) [Houpis and Rasmussen, 1999].


With these design objectives, the resulting controller’s
performance can then be measured by evaluating the
following robustness assessment functions:


Gain and Phase Margins Based Cost Function
A look at the Nichols Chart qualitatively reveals that gain
and phase margin can be defined in term of max


ω
|T (jω)|.


For instance, if |T (jω)| ≤ 3 dB, it is guaranteed that GM >
4 dB and PM > 45◦ (see Figure 7) [Sidi, 2001].


Adopting these relationships, the gain and phase margin
based cost function can be given by


J1i
= max


ωL≤ω≤ωU


|T1i
(jω)| + γ0


γ + γ0
, (3)


where i = 1, . . . , NOV is the vertices index, T1(jω) =
ay(jω)/ayd1(jω) and γ0 is some unity-feedback constant
gain contour.


By using a standard block diagram reduction rules, L(s)
can be written as


L(s) =
−C(s)J(s)(lasGrζ


(s) + Gayζ
(s))Hay


(s)


1 − KrF (s)Grζ
(s)Hr(s)


, (4)


where J(s), Hr(s), Hay
(s) are fin servo, rate gyro


and accelerometer dynamics, respectively. Note that
|la(jω)Grζ


(jω) + Gayζ
(jω)| ≤ |Gayζ


(jω)| and
∠la(jω)Grζ


(jω) + Gayζ
(jω) ≥ ∠Gayζ


(jω) (see Figure
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Figure 8: Frequency Responses of Gayζ
(jω) and


la(jω)Grζ
+ Gayζ


(linearised at M = 3.0 and σ = 2.5◦).


8). Thus, if the relative stability condition is satisfied
(J1i


≤ 1), then the achieved margins will be greater than or
equal to the designed values.


Tracking Boundaries Based Cost Function
Consider the tracking specifications given in Figure 6, the
upper tracking boundary cost function can be defined by,


JUi
= max


ωL≤ω≤ωU


|Ti(jω)| − |TR(jω)|
|TU (jω)| − |TR(jω)| , (5)


where TR(jω) is a nominal tracking frequency responses.
Similarly for the lower tracking bound case


JLi
= max


ωL≤ω≤ωU


|TR(jω)| − |Ti(jω)|
|TR(jω)| − |TL(jω)| . (6)


Taking both JUi
and JLi


into account, a composite cost
function can therefore be written as


J2i
= max{JUi


, JLi
} (7)


(shaded region in Figure 6).


3.3 Controller Parameters Tuning via Multi-Objective
Optimisation


3.3.1 Multi-Objective Optimisation using Evolution
Strategies


Basic scheme of the (µ + λ)-ES’s used in this paper
is as that described in [Deb, 2001, Hughes et al., 2003].
Each ES trial starts with random variable vectors ~x of µ
individuals whose initial strategy parameters are chosen as
~σ = (~xU −~xL)/8 where ~xU , ~xL are variable vectors’ upper
and lower bounds, respectively. At each generation, λ


offsprings are created through recombination and mutation
described below:


Intermediate Crossover
For any randomly chosen parents (~x1, ~σ1) and (~x2, ~σ2), an
offspring (~x, ~σ) is computed from


xi = γix
1
i + (1 − γi)x


2
i ,


σi = βiσ
1
i + (1 − βi)σ


2
i , (8)


where γi and βi are random numbers between -0.25 and
1.25.


Non-Isotropic Self-Adaption
Given an offspring (~x, ~σ), a resulting mutated offspring
(~x′, ~σ′) is calculated by using the logarithmic update rules


σ′
i = σi exp(τ ′N(0, 1) + τNi(0, 1)),


x′
i = xi + σ′


iNi(0, 1), (9)


where N(0, 1) and Ni(0, 1) are one-dimensional nor-
mally distributed random variables with zero mean and
unity standard deviation. The parameter τ ′ and τ are
learning parameters which are set as τ ′ = (2n)−1/2 and
τ = (2n1/2)−1/2, where n is the dimension of the variable
vector.


After that, a selection pool of µ + λ solutions is formed.
The objective values are evaluated (J1i


, J2i
in section


3.2.2) and then sorted (see below). The best µ solutions
will be chosen as new parents using non-dominated ranking
described as follows:


Elitist Non-Dominated Selection
A selection procedure used here is as NSGA-II described
in [Deb, 2001]. Each generation, µ + λ solutions are
first classified using a non-dominated sorting. The best µ
solutions are selected from the solutions of different non-
dominating fronts Fj , one at a time. However, when the
last allowed front FM is being considered, there may exist
more solutions than the remaining required solutions (i.e.
∑M


j=1 |Fj | > µ). In stead of arbitrarily discarding some


members from FM , the most widely spread µ−∑M−1
j=1 |Fj |


solutions are included using the crowding distance values
defined as


Crowding Distance Assignment Procedure:


3 For each n = 1, . . . , |FM |, set dn = 0.


2 For each objective function m = 1, . . . , NOBJ, find
the sorted indices vector Im = sort(fm, >).


3 For m = 1, . . . , NOBJ, assign dIm
1


= dIm
|FM |


= ∞,







and for all other solutions n = 2, . . . , |FM | − 1, as-
sign:


dIm
n


= dIm
n


+
f


Im
n+1


m − f
Im


n−1


m


fmax
m − fmin


m


(10)


where In denotes the solution index of the nth mem-
ber in the sorted list Im. fmax


m = max
x∈FM


fm(x), and


similarly for fmin
m .


3.3.2 Implication of Trade-Offs


Suppose the controller’s order is prespecified (e.g. Kr,
C(s) = Kp(s+zp)/(s+pp), and F (s) = Kf (s+zf)/(s+
pf )). Then, the optimisation variables are Kr, Kp, zp, pp,
Kf , zf and pf . This is similar for difference control struc-
tures.


To ensure internal stability, it is desired that a mini-
mum phase and stable controller is designed. Since there
is no prior information about the range of the parameters in
the controller, the quite large ranges of all parameters (e.g.
[10−7, 104]) are chosen. Likewise classical loop-shaping,
these set of parameters are then translated into the logarith-
mic space (i.e. [10−7, 104] now becomes [−7, 4]), thus


~x = [K̄r, K̄p, z̄p, p̄p, K̄f , z̄f , p̄f ], (11)


where K̄r = log10 Kr, K̄p = log10 Kp, etc..., is now
formed a variables vector for the ES. This also proves to
speed up the convergence of the ES [Chen et al., 1998].


Consider the operating region 2.5 ≤ M ≤ 3.5 and 0.0 ≤
σ ≤ 5.0. Let γ0 = −6 dB, γ = 3 dB, TR(s) = 1451/(s2 +
53.33s+1451), TU (s) = (34.43s+4889)/(s2+80s+4444)
and TL(s) = 2.503× 104/(s3 +84.5s2 +2405s+2.781×
104). Pursuing the method described in section 3.3.1 (using
(100+100)-ES), the Pareto-optimal solutions for difference
control structures are shown in Figure 9.


It can be seen that the requirements given in section 2.2
is satisfied with 1st-order C(s) and 1st-order F (s). Its
three difference Pareto-optimal solutions are shown in Fig-
ure 10. The solution with minimum tracking performance
index while satisfying gain and phase margin requirements
(J1 < 1) is usually preferred (i.e. solution A in Figure 10).
However, the phase margin are significantly decreased rela-
tively compared to a slight improvement in tracking perfor-
mance (see Figure 11 and 12). In addition, when the de-
signed controllers are interpolated, the performance degra-
dations of the resulting controller is likely in this case. But
then gain and phase margins are the constraints that must
be met, hence such compromised solution as B is preferred
in this case. The step responses of the vertex systems are
shown in Figure 13.


Note that the influence of a non-minimum phase zero
zNMP on the output response is expected (i.e.an undershoot
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Figure 9: Pareto-Optimal Solutions for Difference Control
Structures (at 500th-generation).
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C(s) and F (s) configuration.
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Figure 13: Step Responses of the Vertex Systems.
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Pareto-Optimal Solutions.


and delay in the output response). Using 1st-order Padé
approximation, a time delay Td is calculated to be 2/zNMP


[Franklin et al., 1994].


4 Robust Gain-Scheduled Controller


4.1 Stability Preserving Interpolation Method


To obtain the non-linear controller, following the previous
design method, Kr, C(s) and F (s) must be designed for
each operating point. By using a fixed control structure
(C(s) = Kp(s+zp)/(s+pp), F (s) = Kf (s+zf)/(s+pf)
in this case), the controllers are then interpolated by linear
interpolation of poles, zeros and gains. However, to ensure
the stability of the interpolated controller, these operating
regions must be overlap [Stilwell and Rugh, 2000] (see Fig-
ure 14).


4.2 Design of Linear Interpolated Controller


Instead of using piecewise linear interpolation, the con-
troller’s poles, zeros and gains are prespecified as linear
functions of Mach number M and incidence σ (e.g. Kr =
kr0


+krM
M+krσ


|σ|), whose coefficients straightforwardly
are the optimisation variables (kr0


, krM
,...,kpf σ


). Follow-
ing the trade-offs implication in section 3.3.2, the compos-
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Figure 14: Two Scheduled Controllers.


ite objective values at each design point n = 1, . . . , NOC
is given by


Jn = max
i=1,...,NOV


{Jn
1i


, Jn
2i
}. (12)


These objective values Jn = 1, . . . , NOC are then com-
bined into a single objective value J using a Euclidean dis-
tance given by


J =


(


NOC
∑


n=1


|Jn|2
)1/2


. (13)


This is sufficient since the previously obtained Pareto-
optimal solutions are convex.


The design is now carried out by minimising (13) (using
(1,000+1,000)-ES) which results are in Figure 15 and 16
and Table 2. The resulting controller well satisfies the per-
formance specifications in all operating regions (i.e. Jn < 1
in Figure 16). Note that ~x = [k̄r0


, k̄rM
, . . . , k̄pf σ


] is as pre-
viously formed a variables vector for the ES. Employing the
non-linear 2 DOF model described in section 2.1, the time
responses of the interpolated controller are shown in Figure
17.


Poles, Zeros Interpolated formula
and Gains


Kr 0.04975− 3.7895× 10−6M + 4.0004× 10−5|σ|
Kp 0.00019776− 2.5921× 10−6M − 7.4025× 10−6|σ|
zp 29.7157 + 2.0687M + 0.14944|σ|
pp 11.7764− 0.0071308M + 0.83534|σ|
Kf 0.007496 + 0.0003413M + 0.00028804|σ|
zf 3569.8013− 6.9168M − 7.5136|σ|
pf 21.5537 + 1.0348M − 8.1409|σ|


Table 2: Poles, Zeros and Gains Interpolated Formulas.


5 Conclusions


The paper presents the lateral acceleration control design of
a non-linear missile model using the multi-objective evolu-
tionary optimisation method. The design is carried out by
shaping the uncertain open-loop responses to lie outside the
specified constant gain contour, as well results in the uncer-
tain closed-loop responses are within the tracking bounds
(in this case an additional 1st-prefilter is required). Using
the Pareto surfaces, the feasible control structure is identi-
fied and its performance trade-offs are analysed. The unity
weighted Min-Max solution is chosen as a decision choice.
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Figure 15: The Convergence History of the Solution Repre-
senting the Best Controller.
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Figure 16: The Objective Values Jn.


To obtain the non-linear controller, the interpolated con-
troller, whose poles, zeros and gains are linear continuous
functions of Mach number M and incidence σ, are designed
for the whole operating envelope. The controller is syn-
thesised by minimising the Euclidean distance of multiple
operating points’ objective values. The non-linear simula-
tion results show that the resulting interpolated controller is
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Figure 17: Lateral Acceleration Control Responses.


indeed a robust tracking controller for all possible perturba-
tions.
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