

Particle Swarm Inspired Evolutionary Algorithm (PS-EA) for

Multiobjective Optimization Problems

Dipti Srinivasan and Tian Hou, Seow
10 Kent Ridge Crescent, Singapore 119260

Department of Electrical & Computer Engineering

National University of Singapore

dipti@nus.edu.sg, g0200633@nus.edu.sg

Abstract- This paper describes Particle Swarm

Inspired Evolutionary Algorithm (PS-EA), which is a

hybridized Evolutionary Algorithm (EA) combining

the concepts of EA and Particle Swarm Theory. PS-

EA is developed in aim to extend PSO algorithm to

effectively search in multiconstrained solution spaces,

due to the constaints rigidly imposed by the PSO

equations. To overcome the constraints, PS-EA

replaces the PSO equations completely with a Self-

Updating Mechanism (SUM), which emulates the

workings of the equations. A comparison is performed

between PS-EA with Genetic Algorithm (GA) and

PSO and it is found that PS-EA provides an advantage

over typical GA and PSO for complex multi-modal

functions like Rosenbrock, Schwefel and Rastrigrin

functions. An application of PS-EA to minimize the

classic Fonseca 2-objective functions is also described

to illustrate the feasiblility of PS-EA as a

multiobjective search algorithm.

1 Introduction

Population based stochastic search algorithms have been

very popular in the recent years in the research arena of

computational intelligence. Some well established search

algorithms such as Genetic Algorithm (GA) [1-3],

Evolutionary Strategies (ES) [4], Evolutionary

Programming (EP) [5] and Artificial Immune Systems

(AIS) [6], have been successfully implemented to solve

simple problems like functions optimization to complex

real world problems like scheduling [7-9] and complex

network routing problems [3].

Swarm intelligence has become a research interest to

many research scientists of related fields in recent years.

The main algorithm for swarm intelligence is Particle

Swarm Optimization (PSO) [10-14], which is inspired by

the paradigm of birds flocking. PSO is successfully

implemented in various optimization problems like

weight training in Neural Networks [12] and functions

optimization [10,11,13,14]. It is very popular due to its

simplicity in its implementation, as a few parameters are

needed to be tuned. It is computational cheap in the

updating of the individuals per iteration, as the core

updating mechanism in the algorithm relies only on two

simple PSO self-updating equations, as compared to using

mutation or crossover operation in typical Evolutionary

Algorithm (EA), which requires a substantial computation

cost to perform decision making, like which individual

shall go for crossover or mutation process.

PSO searches for solution in the solution space

differently from a typical EA. An EA iteratively searches

for several good individuals in the population, and try to

make the population to emulate the best solutions found

in that generation through crossover operation, while the

mutation operation tries to introduce diversity to the

population. The problem of premature convergence

occurs often when all individuals in the solutions become

very similar to each other. This results the population to

be stuck in local optima, if the initial best individual as

found by the EA is very near to a local optima. In the

workings of PSO, it maintains a memory to store the elite

individuals of the best global individual (gbest) found, as

well as the best solutions as found by each individual

(pbest). Each individual in the population will try to

emulate the gbest and pbest solutions in the memory

through updating by the PSO equations. The random

element in the PSO equations introduces diversity around

the elite individuals found.

However, even though PSO is a good and fast search

algorithm, it has its limitations when solving real world

problems. The two PSO equations, which are in the

mathematical format, restrict additional heuristics related

to the real-world problem to be incorporated in the

algorithm, while in the case of EA, heuristics can be

easily incorporated in the population generator and

mutation operator to prevent wrong updates to the

individuals to infeasible solutions. Therefore, PSO will

not perform well in its search in complex multi-

constrained solution spaces, which are the case for many

complex real world problems like scheduling. To

overcome the limitations of PSO, this paper proposes a

hybridized evolutionary algorithm, which allows flexible

incorporations of the real world heuristics into the

algorithm, while retaining the workings of PSO.

This paper describes Particle Swarm Inspired

Evolutionary Algorithm or PS-EA, which is a hybrid

model of EA and PSO. PS-EA is compared with PSO and

GA on five numerical optimization tasks that are

commonly used for benchmarking purposes of

optimization algorithms. The results show the advantage

of PS-EA over GA and PSO in the optimization of

complex functions like Rosenbrock, Schwefel and

2.2.1 Derivation of SUMRastrigrin functions. An application of PS-EA to

minimize the classic Fonseca 2-objective functions is also

described to illustrate the feasiblility of PS-EA as a multi-

objective search algorithm.

If we analyze the PSO equations as in (1) and (2), we can

deduce the following possible results:

x becomes e1 or gbest particle

x becomes e2 or pbest particle of x

x remains as it is.

x is assigned a value near e1 or e2.
2 Workings of PS-EA

From the analysis of the equations, it is possible to use the

operators of EA to emulate the workings of PSO

equations. Replacing the PSO equations, we introduce a

probability inheritance tree (PIT) as illustrated in Fig. 1.

Particle Swarm Inspired Evolutionary Algorithm (PS-EA)

is a hybridized algorithm combining concepts of PSO and

EA. The main module of PS-EA is the Self-Updating

Mechanism (SUM), which makes use of the Inheritance

Probability Tree (PIT) to do the updating operation of

each individual in the population. A Dynamic Inheritance

Probability Adjuster (DIPA) is incorporated in SUM to

dynamically adjust the inheritance probabilities in PIT

based on the convergence rate or status of the algorithm

in a particular iteration. In this section, the flow of PS-EA

and the detailed workings of SUM will be discussed.

2.1 Flow of PS-EA

The general flow of PS-EA is shown as follows:

i) Initialization of initial swarm of particles

ii) Evaluation of particles

iii) Identification of elite particles and save in

memory

iv) Undergo Self Updating Mechanism (SUM)

v) Evaluation of particles

P(pbest)
P(Mutate)P(Neighbor)

MutationA randomly

picked

neighbor

particle

P(Neighbor/Mutate)

P(popbest)

P(gbest)

Random

neighboring

particles/

Mutation

gbest

popbest

pbest

P(Elite)

Elite

particles

P(Remains)

x

Inherits from

SUM
Particle x

vi) Update the elite particles to memory
Fig. 1. Probability Inheritance Tree (PIT) vii) Repeat (iii)-(vi) until stopping criteria are

met
Fig. 1 shows the probability inheritance tree of SUM.

The end branches at the bottom of the tree show all the

possible results that a parameter value of a particle x can

be updated. Particle x can inherit the parameter values

from the elite particles or any random neighboring

particles, undergoes mutation operation or retains its

original value. The mutation operation in SUM emulates

the random element in the PSO equation as in (1). An

additional elite particle popbest, which is the best particle

of a current swarm, is introduced to SUM for faster

convergence. To introduce more diversity in the swarm of

particles, we allow present[] to inherit parameter values

of a randomly selected neighbor particle in the current

swarm.

It is similar to most population based stochastic search

algorithms, except that it has a memory to store the elite

particles or individuals, and there is no reproduction of

offspring. All particles in the swarm or population will

undergo modifications by SUM. The elite particles

include gbest, popbest and pbest particles. It is noted that

popbest is included as one of the elite particles. The

popbest particle is the best particle in the current swarm

or population. More details will be discussed in the sub-

section on SUM.

2.2 Self-Updating Mechanism (SUM)

The Self-Updating Mechanism (SUM) is derived from the

concepts of PSO. It functions as an emulator of the PSO

self-updating equations as follows: 2.2.2 Operations of SUM

The SUM process can be illustrated by considering the

updating of the first parameter of a particle k. The first

parameter value of particle k undergoes the SUM. The

parameter has the probability P(Elite) to inherit the value

of one of the elite particles, probability P(Remains) to

retain its original value and probability

P(Neighbor/Mutation) to inherit the value from one of its

neighboring particles or undergoes a mutation operation.

If it chooses to inherit from one of the elite particles, it

still has to choose whether it will inherit from the global

best particle gbest, the current population best particle

popbest, or the best particle that particle k has in its

v’ = v + c1.U(0,1).{e1-x}+c2.U(0,2).{e2-x} (1)

x’ = x + v’ (2)

where v is the velocity vector, c1 and c2 are the learning

factors, U(0,1) is the number generator that produces a

number between 0 and 1 based on uniform distribution,

e1 is gbest particle, e2 is the pbest particle of particle x,

and x is the present considered particle.

The derivation of SUM, the operation of SUM and the

working of DIPA to dynamically adjust the inheritance

probabilities of PIT will be described in the following sub

sections.

memory pbest[k]. The probabilities that it will choose to

inherit from gbest, popbest and pbest[k] are P(gbest),

P(popbest) and P(pbest) respectively. Similarly, if it

chooses to inherit from a neighbor particle or undergoes

mutation operation, it will again need to choose between

the both options. The probabilities that it will choose to

inherit from a randomly selected neighbor particle in the

current population and undergoes mutation operation are

P(Neighbor) and P(Mutate) respectively.

By introducing the PIT in SUM, the number of

parameters has increased by eight, which are the eight

inheritance probabilities. It is therefore a problem for

algorithm designer to determine the correct values for the

inheritance probabilities, where the total parameters to be

set has become nine, considering the eight inheritance

probabilities and the population size. Therefore, Dynamic

Inheritance Probability Adjuster (DIPA) is proposed to

take care in the setting of inheritance probabilities,

reducing to setting of only one parameter, which is the

population size.

2.2.3 Dynamic Inheritance Probability Adjuster (DIPA)

The dynamic inheritance probability adjuster (DIPA) aims

to solve the problem of setting the correct set of

inheritance probabilities of the SUM. The DIPA gets

feedback on the the convergence status from the

convergence rate feedback mechanism, in order to detect

whether the algorithm is converging well and whether the

search is stuck in some local optima. With the

convergence status as feedback from the mechanism,

DIPA will adjust the inheritance probability reacting to

the convergence status that it gets.

There is this simple feedback mechanism to indicate

the convergence status of the algorithm, known as the

convergence rate feedback mechanism. For each iteration,

the cost of the gbest particle will be logged. The cost of

the gbest particle can indicate whether the algorithm is

converging or not. For every even-numbered iteration, the

feedback mechanism will calculate the difference of the

costs of the gbest particle in the odd-numbered and even-

numbered iterations. If it is detected that the cost of gbest

particle is not converging well, it will feedback to DIPA,

which will do the necessary adjustment to the inheritance

probabilities. It also samples the cost of the gbest particle

in long iteration intervals and check whether the cost of

gbest particle has decreased or not. If it is detected that

the cost has not changed during the long interval, it will

feedback to the DIPA that the algorithm is likely to have

stuck in some local optima. In short, the convergence

status as feedback by the feedback mechanism provides

the information of the convergence rate and the indication

of long period stuck at some local optima. DIPA will do

the necessary adjustment when it receives the

convergence status from the feedback mechanism. The

detailed workings of DIPA can be left to the algorithm

designer to decide.

Thus, the algorithm designer can just set an arbitrary

set of the initial inheritance probabilities without

worrying whether the set is a good set or bad set, since

DIPA will adjust the probabilities dynamically in the

algorithm.

3 Experimental Settings

Five numerical optimization experiments are conducted to

compare the performance of PS-EA with GA and PSO in

minimizing five popular test functions.

3.1 Test functions

The following five test functions are widely used for

benchmarking purposes of optimization algorithms. For

these functions, there are many local optima and/or

saddles in their solution spaces. The amount of local

optima and saddles increases with increasing complexity

of the functions, i.e. with increasing dimension.

The first test function is Griewank function given by:

1cos
4000

1

1 1

2
1

D

d

D

d

d
d

d

x
xf (6)

The global minimum of f1 is zero, and it occurs when xd =

0 for all d = 1,2,… D. It has many widespread local

minima. The locations of the minima are however regular

distributed.

The second test function is Rastrigrin function given

by:

 (7)

D

d

dd xxf

1

2
2 102cos10

The global minimum of f2 is zero, and it occurs when xd =

0 for all d = 1,2,… D. It is highly multimodel, and similar

to Griewank, it has widespread local minima which are

regularly distributed.

The third test function is Rosenbrock function given

by:
1

1

222
13 1100

D

d

ddd xxxf (8)

The global minimum of f3 is zero, and it occurs when xd =

1 for all d = 1,2,… D. It is classic unimodel optimization

problem. The global optimum is inside a long, narrow,

parabolic shaped flat valley, popularly known as the

Rosenbrock’s valley. To find the valley is trivial, but to

achieve convergence to the global optimum is difficult

task.

The fourth test function is Ackley function given by:

D

d

d

D

d

d x
D

x
D

eeef 1
1

2

2cos
11

2.0

4 2020 (9)

The global minimum of f4 is zero, and it occurs when xd =

0 for all d = 1,2,… D. It is a highly multimodel function,

similar to Griewank and Rastrigrin.

The fifth and last test function is Schwefel function

given by:
D

d

dd xxDf

1

5 sin418.9829 (10)

The global minimum of f5 is zero, and it occurs when xd =

420.9867 for all d = 1,2,… D. Schwefel function is

deceptive in that the global minimum is geometrically

distant, over the parameter space, from the next best local

minima. The solution space is wickedly irregular with

many local optima. The search algorithms are potentially

prone to convergence in the wrong direction in the

optimization of this function.

3.2 GA Scheme

The GA scheme used in the comparison experiment is

used as suggested in a journal paper by Digalakis, J.G.

and Margaritis, K.G. [2]. The scheme is shown in Table 1.

Table 1: GA Scheme

Crossover

Probability

0.95

Crossover

Scheme

Single point crossover

Crossover Parent

Selection Scheme

Random selection (no elitism)

Mutation

Probability

0.1

Child Production

Scheme

A child chromosome is added to the population

from any crossover or mutation operation.

New generation

selection scheme

Best fixed number of chromosomes are selected

from the “expanded” population of parent and

child chromosomes for the next GA operations

3.4 PSO Scheme

The PSO scheme used in the experiment is used as

suggested in a conference paper by M. Lvbjerg, T. K.

Rasmussen and T. Krink [14]. The PSO equations used

follows (1) and (2), except that (1) is modified to as

follows:

v' = w.v + c1.U(0,1).(e1- x) + c2.U(0,1).(e2-x) (11)

where w is the additional initial weight, which varies from

0.9 to 0.7 linearly with the iterations.

The learning factors, c1 and c2 are set to be 2 and.

The upper and lower bounds for v[], (Vmin, Vmax) are set

to be the maximum upper and lower bounds of x, i.e.

(Vmin, Vmax) = (x_min, x_max). If the sum of accelerations

would cause the velocity on that dimension v’, to exceed

Vmax or Vmin, , then the velocity on that dimension v’, is

limited to Vmax or Vmin respectively.

3.3 PS-EA Scheme

An infeasible set of initial inheritance probabilities are

used to test the performance of DIPA module of PS-EA.

The purpose of setting the initial inheritance probabilities

differently is to observe whether DIPA works properly to

adjust the inheritance probabilities back to that ensures an

effective search.

Having the inheritance probabilities to be set fixed as

according Table 2 will result in slow convergence or even

deterioration in the overall fitness of the swarm

population. Thus, infeasible set of initial inheritance

probabilities are purposely set to verify whether DIPA is

able to adjust the set of inheritance probabilities for

effective search.

3.4 Common experimental settings

The population size is set as 125 and the initialization

ranges for the test functions are shown in Table 3.
Table 3: Initialization range for the test functions.

Function Initialization range

f1 (-600,600)n

f2 (-15,15)n

f3 (-15,15)n

f4 (-32.768,32.768)n

f5 (-500,500)n

The corresponding maximum generation for each

dimension of the test function is shown in Table 4.

Table 4: Maximum generation for each dimension of the

test function.

Dimension 10 20 30

Maximum

Generation

500 750 1000

Each algorithm will be run for each dimension (10, 20

and 30) for each test function for 30 trials and the mean

best and standard deviation (unbiased) for runs will be

collected for comparison.

4 Simulation Results and Discussion

After 30 trials of running each algorithm for each test

function, the results on the best mean and the standard

deviations were obtained and tabulated in Table 5. The

best means obtained represents the performance of the

algorithm in convergence, and the standard deviations

obtained indicate the stability of the algorithms.

Table 5: Mean best costs and Standard deviation (unbiased)

obtained from 30 trials for the optimization of each

dimension

(a) Function dimension 10 and maximum generation of 500
GA PSO PS-EA Func

Mean

best cost

Standard

deviation

Mean best

cost

Standard

deviation

Mean

best

cost

Standard

deviation

f1 0.050228 0.029523 0.079393 0.033451 0.2223 0.0781

f2 1.3928 0.76319 2.6559 1.3896 0.43404 0.2551

f3 46.3184 33.8217 4.3713 2.3811 25.303 29.7964

f4 0.59267 0.22482 9.8499x10-13 9.6202 x10-13 0.19209 0.1951

f5 1.9519 1.3044 161.87 144.16 0.32037 1.6185

(b) Function dimension 20 and maximum generation of 750
GA PSO PS-EA Func

Mean

best

cost

Standard

deviation

Mean best

cost

Standard

deviation

Mean

best

cost

Standard

deviation

f1 1.0139 0.026966 0.030565 0.025419 0.59036 0.2030

f2 6.0309 1.4537 12.059 3.3216 1.8135 0.2551

f3 103.93 29.505 77.382 94.901 72.452 27.3441

f4 0.92413 0.22599 1.1778 x10-8 1.5842 x10-8 0.32321 0.097353

f5 7.285 2.9971 543.07 360.22 1.4984 0.84612

(c) Function dimension 30 and maximum generation 1000
GA PSO PS-EA Func

Mean

best

cost

Standard

deviation

Mean best

cost

Standard

deviation

Mean

best

cost

Standard

deviation

f1 1.2342 0.11045 0.011151 0.014209 0.8211 0.1394

f2 10.4388 2.6386 32.476 6.9521 3.0527 0.9985

f3 166.283 59.5102 402.54 633.65 98.407 35.5791

f4 1.0989 0.24956 1.4917 x10-6 1.8612 x10-6 0.3771 0.098762

f5 13.5346 4.9534 990.77 581.14 3.272 1.6185

Table 5a shows the results of the simulation for the

performance of each algorithm in optimizing the various

functions of dimension 10 and maximum generation of

500 after running 30 trials. From the results in Table 5a, it

is found that PS-EA outperforms GA and PSO in the

optimization of Rastrigrin and Schwefel functions, which

are highly multimodel, PS-EA has perform particularly

well in the optimization of Schwefel, which is wickedly

irregular with many local optima. PS-EA middle-performs

in the optimization of Rosenbrock and Ackley functions,

and worst-performs in the optimization of Griewank

function. Despite the average performance PS-EA has

displayed in optimizing Griewank, Rosenbrock and

Ackley function, it can be explained on the fact that there

is explicit probability in SUM that the particle can inherit

parameter values of the not-so-good or even worse

particles, like inheriting from the neighbor particles or

undergo a random mutation in SUM. As compared to

PSO or GA, which always lead the population with good

solutions. The diversity factor introduced in PS-EA by

SUM is believed to be the main reason for slow

convergence in Griewank, Rosenbrock and Ackley

function, but however, the results obtained by PS-EA are

still within satisfactory region and it has shown its great

search ability and local optima avoidance ability in its

performance in Schwefel’s function, which is well known

for its deceptive property in its location of the global

minimum, and to “cheat” optimization algorithms to

converge in the wrong direction.

With the results, PS-EA has proven experimentally to

be a good optimization algorithm for multi-model test

functions of Rastrigrin and Schwefel, as well as unimodel

function of Rosenbrock. In the optimization of Griewank

and Ackley functions, it middle-performs between GA

and PSO. However, the results of PS-EA in the

optimization of the two functions have been quite

satisfactory, as the mean results are very near to the

respective global minimum of the function. It is also

observed that PS-EA is a good algorithm when the

function dimension increases. It is shown in its

optimization of Rastrigrin, Rosenbrock and Schwefel

functions at the function dimension of 30 as in Table 5c,

where the results obtained by PS-EA are much better than

GA and PSO.

On the stability of PS-EA, except for Griewank and

Ackley function, it has the best stability as compared to

the PSO and GA. For Griewank, even though it is the

least stable algorithm as compared to GA and PSO, the

difference in the stability is considerably small. As for

Ackley, the stability of PS-EA lies between GA and PSO.

In overall, PS-EA is relative a stable algorithm that obtain

reasonable consistent results.

5 Multiobjective optimization using PS-EA

In this section, we shall consider applying PS-EA to

solve a classic multi-objective problem: Fonseca 2-

objective minimization problem [15] as follows:Table 5b shows the results of the simulation for the

performance of each algorithm in optimizing the various

functions of dimension 20 and maximum generation of

750 after running 30 trials. From the results in Table 5b, it

is found that PS-EA outperforms GA and PSO in the

optimization of Rastrigrin, Rosenbrock and Schwefel

functions. It is noted for the optimization of Rosenbrock

function, PS-EA has overtaken PSO as the best

convergence performer at a higher dimension of 20 at just

a margin. This suggests that PS-EA is performing better at

a higher complexity. However, more conclusive result on

the performance of PS-EA may be obtained when its

performance maintains at higher function dimension of

30, which will be shown in the results in the next section.

On the optimization of Griewank and Ackley functions,

PS-EA remains as the middle performer, with PSO and

GA as the best and worst performers respectively.

Minimize:
28

1

8211
8

1
exp1,...,,

i

ixxxxf (11)

28

1

8212
8

1
exp1,...,,

i

ixxxxf (12)

where 8,...,2,1,22 ixi .

The true Pareto optimal set for this problem

is 8,...,2,1,
8

1

8

1
,... 821 ixxxx i . To

apply PS-EA in this multiobjective problem, the

algorithm is modified as in Fig. 2.
Table 5c shows the results of the simulation for the

performance of each algorithm in optimizing the various

functions of dimension 30 and maximum generation of

1000 after running 30 trials. From the results in Table 5c,

it is found that PS-EA maintains itself as the best

performer in the optimization of Rastrigrin, Rosenbrock

and Schwefel functions, and a middle-performer in the

optimization of Griewank and Ackley functions. For PS-

EA performance in Rosenbrock function, PS-EA

performs significantly better with a mean best cost of

98.407 versus 402.54 as obtained by PSO. Thus, it is

conclusive to say that PS-EA is performing better in

functions of high dimension and complexity.

1. Initialization of swarm

2. Evaluation of particles (based on shared fitness and Pareto ranking).

3. While (NOT maximum generation)

a. Identify pbest

b. PS-EA operations

c. Evaluation of extended population

d. Selection for next generation

4. Use either the final population of particles or pbest as the final solutions for

the Pareto front.

Fig. 2. The flow of Multiobjective PS-EA (MOPS-EA).

With MOPS-EA as modified from PS-EA, simulation

tests were conducted to solve the Fonseca’s problem. A

sample objective curve, as shown in Fig. 3 is plotted at

the

100th generation, showing the objective positions of pbest

particles.

Fig. 3. Objective curve showing the true Pareto front and

the found Pareto optimal set (+) at the 100th generation of

PS-EA.

As shown in Fig. 3, it is observed that the final solution of

pbest particles (as denoted by +) converges closely to the true

Pareto front. This application establishes the applicability of this

algorithm for searching in multi-modal, as well as,

multiobjective problem domains.

6 Conclusion

PS-EA, as have been discussed, builds on the established

works of EA and is extended with the workings of PSO.

While retaining the flexibility to add heuristics into the

algorithm, PS-EA does not compromise a great scale in its

performance, as compared to original PSO. In this paper,

PS-EA is compared to GA and PSO for optimization of

five well-known test functions of Griewank, Rastrigrin,

Rosenbrock, Ackley and Schwefel. PS-EA extends its

capability as a potential multiobjective search algorithm

in its application to minimize the Focenca 2-objective

functions.

From the simulation results, some conclusive

observations can be made as follows:

i. PS-EA is a good performer in optimizing difficult

functions of high dimensions, like Rosenbrock,

Rastrigrin and Schwefel functions.

ii. PS-EA is an average performer in optimizing fairly

difficult functions like Griewank and Ackley

functions.

iii. Even an infeasible set of initial inheritance

probabilities will yield a good search by PS-EA.

This confirms the operations of DIPA as a good

dynamic parametric adjuster.

iv. The DIPA module of PS-EA has reduced the hassle

of algorithm designers to set many parameters, and

has worked well to adjust the inheritance

probabilities.

v. PS-EA is well suited to for multi-modal functions

of high dimension, as well as, multiojective

problems.

Future works shall involve in applying PS-EA to solve

real world problems, like scheduling, network routing and

power forecasting. Future developments of MOPS-EA

will also be continued.Feasible region

References

[1] Anna Hondroudakis, Joel Malard and Gregory V. Wilson, “An

Introduction to Genetic Algorithms Using RPL2: The EPIC

Version”, Computer Based Learning Unit, University of Leeds,

1995.
Unfeasible region

[2] Digalakis, J.G. and Margaritis, K.G., “An experimental study of

benchmarking functions for genetic algorithms”, 2000 IEEE

International Conference on Systems, Man, and Cybernetics, pp.

3810 -3815 vol.5, 2000

[3] Sinclair, M.C, “The application of a genetic algorithm to trunk

network routing table optimization”, 10th.Performance

Engineering in Telecommunications Network Teletraffic

Symposium, pp. 2/1 -2/6, 1993.

[4] Greenwood, G.W.; Lang, C.; Hurley, S, “Scheduling tasks in real-

time systems using evolutionary strategies”, Proceedings of the

Third Workshop on Parallel and Distributed Real-Time Systems,

pp. 195-196, 1995.

[5] Fogel, D. and Sebald, A.V., “Use Of Evolutionary Programming

In The Design Of Neural Networks For Artifact Detection”,

Proceedings of the Twelfth Annual International Conference of

the IEEE Engineering in Medicine and Biology Society, pp. 1408

–1409, 1990.

[6] Meshref, H. and VanLandingham, H., “Artificial immune systems:

application to autonomous agents”, 2000 IEEE International

Conference on Systems, Man, and Cybernetics, pp. 61 -66 vol.1,

2000.

[7] Calogero Di Stefano and Andrea G.B. Tettamanzi, “An

Evolutionary Algorithm for Solving the School Time-Tabling

Problem”, Proceedings of Applications of Evolutionary

Computing, pp. 452—462, 2001.

[8] Dipti Srinivasan, Tian Hou Seow and Jian Xin Xu, “Automated

Time Table Generation Using Multiple Context for University

Modules”, Proceedings of IEEE Congress of Evolutionary

Computation, Vol. 2, pp. 1751-1756, 2002.

[9] Dipti Srinivasan, Seow Tian Hou, Xu Jian Xin, “Constraint-Based

University Time-Tabling Using Evolutionary Algorithm”,

Proceedings of the 4th Asia-Pacific Conference on Simulated

Evolution And Learning, Vol. 2, pp. 252-256, 2002.

[10] James Kennedy, Russell C. Eberhart, with Yuhui Shi, “Swarm

Intelligence”, Morgan Kaufman Publishers, 2002.

[11] Eberhart, Yuhui Shi, “Particle Swarm Optimization:

developments, applications and resources”, Proceedings of the

2001 Congress on Evolutionary Computation, , Vol 1, pp. 81-86,

2001.

[12] Chunkai Zhang; Huihe Shao; Yu Li, Systems, “Particle swarm

optimisation for evolving artificial neural network”, 2000 IEEE

International Conference on Man, and Cybernetics,vol. 4, pp.

2487-2490 ,2000.

[13] Peter J. Angeline, “Using selection to improve particle swarm

optimization”, The 1998 IEEE International Conference on IEEE

World Congress on Computational Intelligence Evolutionary

Computation Proceedings, pp. 84 –89, 1998.

[14] M. Lvbjerg and T. Rasmussen and T. Krink, “Hybrid particle

swarm optimiser with breeding and subpopulations”, Proceedings

of the Genetic and Evolutionary Computation Conference, 2001.

[15] K.C. Tan, T.H. Lee, E.F.Khor, “Evolutionary algorithms with goal

and priority information for multiobjective optimzation,” in Proc.

1999 Congr. Evolutionary Computation, vol. 1, Washington, DC,

July 1999, pp. 106-113.

