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Abstract- This paper describes Particle Swarm 

Inspired Evolutionary Algorithm (PS-EA), which is a 

hybridized Evolutionary Algorithm (EA) combining 

the concepts of EA and Particle Swarm Theory. PS-

EA is developed in aim to extend PSO algorithm to 

effectively search in multiconstrained solution spaces, 

due to the constaints rigidly imposed by the PSO 

equations. To overcome the constraints, PS-EA 

replaces the PSO equations completely with a Self-

Updating Mechanism (SUM), which emulates the 

workings of the equations. A comparison is performed 

between PS-EA with Genetic Algorithm (GA) and 

PSO and it is found that PS-EA provides an advantage 

over typical GA and PSO for complex multi-modal 

functions like Rosenbrock, Schwefel and Rastrigrin 

functions. An application of PS-EA to minimize the 

classic Fonseca 2-objective functions is also described 

to illustrate the feasiblility of PS-EA as a 

multiobjective search algorithm.

1 Introduction

Population based stochastic search algorithms have been 

very popular in the recent years in the research arena of 

computational intelligence. Some well established search 

algorithms such as Genetic Algorithm (GA) [1-3], 

Evolutionary Strategies (ES) [4], Evolutionary 

Programming (EP) [5] and Artificial Immune Systems 

(AIS) [6], have been successfully implemented to solve 

simple problems like functions optimization to complex 

real world problems like scheduling [7-9] and complex 

network routing problems [3]. 

Swarm intelligence has become a research interest to 

many research scientists of related fields in recent years. 

The main algorithm for swarm intelligence is Particle 

Swarm Optimization (PSO) [10-14], which is inspired by 

the paradigm of birds flocking. PSO is successfully 

implemented in various optimization problems like 

weight training in Neural Networks [12] and functions 

optimization [10,11,13,14]. It is very popular due to its 

simplicity in its implementation, as a few parameters are 

needed to be tuned. It is computational cheap in the 

updating of the individuals per iteration, as the core 

updating mechanism in the algorithm relies only on two 

simple PSO self-updating equations, as compared to using 

mutation or crossover operation in typical Evolutionary 

Algorithm (EA), which requires a substantial computation 

cost to perform decision making, like which individual 

shall go for crossover or mutation process. 

PSO searches for solution in the solution space 

differently from a typical EA. An EA iteratively searches 

for several good individuals in the population, and try to 

make the population to emulate the best solutions found 

in that generation through crossover operation, while the 

mutation operation tries to introduce diversity to the 

population. The problem of premature convergence 

occurs often when all individuals in the solutions become 

very similar to each other. This results the population to 

be stuck in local optima, if the initial best individual as 

found by the EA is very near to a local optima. In the 

workings of PSO, it maintains a memory to store the elite 

individuals of the best global individual (gbest) found, as 

well as the best solutions as found by each individual 

(pbest). Each individual in the population will try to 

emulate the gbest and pbest solutions in the memory 

through updating by the PSO equations. The random 

element in the PSO equations introduces diversity around 

the elite individuals found. 

However, even though PSO is a good and fast search 

algorithm, it has its limitations when solving real world 

problems. The two PSO equations, which are in the 

mathematical format, restrict additional heuristics related 

to the real-world problem to be incorporated in the 

algorithm, while in the case of EA, heuristics can be 

easily incorporated in the population generator and 

mutation operator to prevent wrong updates to the 

individuals to infeasible solutions. Therefore, PSO will 

not perform well in its search in complex multi-

constrained solution spaces, which are the case for many 

complex real world problems like scheduling. To 

overcome the limitations of PSO, this paper proposes a 

hybridized evolutionary algorithm, which allows flexible 

incorporations of the real world heuristics into the 

algorithm, while retaining the workings of PSO. 

This paper describes Particle Swarm Inspired 

Evolutionary Algorithm or PS-EA, which is a hybrid 

model of EA and PSO. PS-EA is compared with PSO and 

GA on five numerical optimization tasks that are 

commonly used for benchmarking purposes of 

optimization algorithms. The results show the advantage 

of PS-EA over GA and PSO in the optimization of 

complex functions like Rosenbrock, Schwefel and 



2.2.1 Derivation of SUMRastrigrin functions. An application of PS-EA to

minimize the classic Fonseca 2-objective functions is also 

described to illustrate the feasiblility of PS-EA as a multi-

objective search algorithm.

If we analyze the PSO equations as in (1) and (2), we can 

deduce the following possible results:

x becomes e1 or gbest particle

x becomes e2 or pbest particle of x

x remains as it is. 

x is assigned a value near e1 or e2.
2 Workings of PS-EA 

From the analysis of the equations, it is possible to use the

operators of EA to emulate the workings of PSO

equations. Replacing the PSO equations, we introduce a

probability inheritance tree (PIT) as illustrated in Fig. 1.

Particle Swarm Inspired Evolutionary Algorithm (PS-EA)

is a hybridized algorithm combining concepts of PSO and

EA. The main module of PS-EA is the Self-Updating

Mechanism (SUM), which makes use of the Inheritance

Probability Tree (PIT) to do the updating operation of

each individual in the population. A Dynamic Inheritance

Probability Adjuster (DIPA) is incorporated in SUM to

dynamically adjust the inheritance probabilities in PIT 

based on the convergence rate or status of the algorithm

in a particular iteration. In this section, the flow of PS-EA 

and the detailed workings of SUM will be discussed.

2.1 Flow of PS-EA

The general flow of PS-EA is shown as follows:

i) Initialization of initial swarm of particles

ii) Evaluation of particles

iii) Identification of elite particles and save in

memory

iv) Undergo Self Updating Mechanism (SUM)

v) Evaluation of particles
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Fig. 1. Probability Inheritance Tree (PIT) vii) Repeat (iii)-(vi) until stopping criteria are

met
Fig. 1 shows the probability inheritance tree of SUM. 

The end branches at the bottom of the tree show all the

possible results that a parameter value of a particle x can 

be updated. Particle x can inherit the parameter values

from the elite particles or any random neighboring 

particles, undergoes mutation operation or retains its

original value. The mutation operation in SUM emulates

the random element in the PSO equation as in (1). An

additional elite particle popbest, which is the best particle

of a current swarm, is introduced to SUM for faster 

convergence. To introduce more diversity in the swarm of

particles, we allow present[] to inherit parameter values

of a randomly selected neighbor particle in the current

swarm.

It is similar to most population based stochastic search

algorithms, except that it has a memory to store the elite 

particles or individuals, and there is no reproduction of

offspring. All particles in the swarm or population will 

undergo modifications by SUM. The elite particles

include gbest, popbest and pbest particles. It is noted that

popbest is included as one of the elite particles. The

popbest particle is the best particle in the current swarm

or population. More details will be discussed in the sub-

section on SUM.

2.2 Self-Updating Mechanism (SUM) 

The Self-Updating Mechanism (SUM) is derived from the

concepts of PSO. It functions as an emulator of the PSO

self-updating equations as follows: 2.2.2 Operations of SUM

The SUM process can be illustrated by considering the

updating of the first parameter of a particle k. The first 

parameter value of particle k undergoes the SUM. The

parameter has the probability P(Elite) to inherit the value

of one of the elite particles, probability P(Remains) to

retain its original value and probability

P(Neighbor/Mutation) to inherit the value from one of its 

neighboring particles or undergoes a mutation operation.

If it chooses to inherit from one of the elite particles, it

still has to choose whether it will inherit from the global

best particle gbest, the current population best particle

popbest, or the best particle that particle k has in its

v’ = v + c1.U(0,1).{e1-x}+c2.U(0,2).{e2-x} (1)

x’ = x + v’ (2)

where v is the velocity vector, c1 and c2 are the learning 

factors, U(0,1) is the number generator that produces a 

number between 0 and 1 based on uniform distribution,

e1 is gbest particle, e2 is the pbest particle of particle x,

and x is the present considered particle.

The derivation of SUM, the operation of SUM and the

working of DIPA to dynamically adjust the inheritance

probabilities of PIT will be described in the following sub

sections.



memory pbest[k]. The probabilities that it will choose to

inherit from gbest, popbest and pbest[k] are P(gbest),

P(popbest) and P(pbest) respectively. Similarly, if it 

chooses to inherit from a neighbor particle or undergoes 

mutation operation, it will again need to choose between

the both options. The probabilities that it will choose to 

inherit from a randomly selected neighbor particle in the

current population and undergoes mutation operation are

P(Neighbor) and P(Mutate) respectively.

By introducing the PIT in SUM, the number of 

parameters has increased by eight, which are the eight 

inheritance probabilities. It is therefore a problem for

algorithm designer to determine the correct values for the

inheritance probabilities, where the total parameters to be

set has become nine, considering the eight inheritance

probabilities and the population size. Therefore, Dynamic

Inheritance Probability Adjuster (DIPA) is proposed to

take care in the setting of inheritance probabilities,

reducing to setting of only one parameter, which is the

population size.

2.2.3 Dynamic Inheritance Probability Adjuster (DIPA) 

The dynamic inheritance probability adjuster (DIPA) aims

to solve the problem of setting the correct set of

inheritance probabilities of the SUM. The DIPA gets

feedback on the the convergence status from the

convergence rate feedback mechanism, in order to detect

whether the algorithm is converging well and whether the

search is stuck in some local optima. With the

convergence status as feedback from the mechanism,

DIPA will adjust the inheritance probability reacting to 

the convergence status that it gets.

There is this simple feedback mechanism to indicate 

the convergence status of the algorithm, known as the

convergence rate feedback mechanism. For each iteration, 

the cost of the gbest particle will be logged. The cost of 

the gbest particle can indicate whether the algorithm is

converging or not. For every even-numbered iteration, the

feedback mechanism will calculate the difference of the

costs of the gbest particle in the odd-numbered and even-

numbered iterations. If it is detected that the cost of gbest

particle is not converging well, it will feedback to DIPA, 

which will do the necessary adjustment to the inheritance 

probabilities. It also samples the cost of the gbest particle

in long iteration intervals and check whether the cost of

gbest particle has decreased or not. If it is detected that

the cost has not changed during the long interval, it will

feedback to the DIPA that the algorithm is likely to have

stuck in some local optima. In short, the convergence

status as feedback by the feedback mechanism provides 

the information of the convergence rate and the indication

of long period stuck at some local optima. DIPA will do 

the necessary adjustment when it receives the 

convergence status from the feedback mechanism. The

detailed workings of DIPA can be left to the algorithm

designer to decide.

Thus, the algorithm designer can just set an arbitrary 

set of the initial inheritance probabilities without 

worrying whether the set is a good set or bad set, since

DIPA will adjust the probabilities dynamically in the

algorithm.

3 Experimental Settings 

Five numerical optimization experiments are conducted to

compare the performance of PS-EA with GA and PSO in 

minimizing five popular test functions.

3.1 Test functions 

The following five test functions are widely used for 

benchmarking purposes of optimization algorithms. For 

these functions, there are many local optima and/or 

saddles in their solution spaces. The amount of local 

optima and saddles increases with increasing complexity

of the functions, i.e. with increasing dimension.

The first test function is Griewank function given by:
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The global minimum of f1 is zero, and it occurs when xd = 

0 for all d = 1,2,… D. It has many widespread local

minima. The locations of the minima are however regular 

distributed.

The second test function is Rastrigrin function given

by:

    (7)
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The global minimum of f2 is zero, and it occurs when xd = 

0 for all d = 1,2,… D. It is highly multimodel, and similar

to Griewank, it has widespread local minima which are

regularly distributed.

The third test function is Rosenbrock function given

by:
1

1
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The global minimum of f3 is zero, and it occurs when xd = 

1 for all d = 1,2,… D. It is classic unimodel optimization

problem. The global optimum is inside a long, narrow,

parabolic shaped flat valley, popularly known as the

Rosenbrock’s valley. To find the valley is trivial, but to

achieve convergence to the global optimum is difficult

task.

The fourth test function is Ackley function given by:
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The global minimum of f4 is zero, and it occurs when xd = 

0 for all d = 1,2,… D. It is a highly multimodel function,

similar to Griewank and Rastrigrin.

The fifth and last test function is Schwefel function

given by:
D

d

dd xxDf

1

5 sin418.9829   (10) 



The global minimum of f5 is zero, and it occurs when xd = 

420.9867 for all d = 1,2,… D. Schwefel function is 

deceptive in that the global minimum is geometrically 

distant, over the parameter space, from the next best local 

minima. The solution space is wickedly irregular with 

many local optima. The search algorithms are potentially 

prone to convergence in the wrong direction in the 

optimization of this function. 

3.2 GA Scheme 

The GA scheme used in the comparison experiment is 

used as suggested in a journal paper by Digalakis, J.G. 

and Margaritis, K.G. [2]. The scheme is shown in Table 1. 

Table 1: GA Scheme 

Crossover

Probability

0.95 

Crossover

Scheme 

Single point crossover 

Crossover Parent 

Selection Scheme 

Random selection (no elitism) 

Mutation 

Probability

0.1 

Child Production 

Scheme 

A child chromosome is added to the population 

from any crossover or mutation operation. 

New generation 

selection scheme 

Best fixed number of chromosomes are selected 

from the “expanded” population of parent and 

child chromosomes for the next GA operations 

3.4 PSO Scheme 

The PSO scheme used in the experiment is used as 

suggested in a conference paper by M. Lvbjerg, T. K. 

Rasmussen and T. Krink [14]. The PSO equations used 

follows (1) and (2), except that (1) is modified to as 

follows: 

v' = w.v + c1.U(0,1).(e1- x) + c2.U(0,1).(e2-x)  (11) 

where w is the additional initial weight, which varies from 

0.9 to 0.7 linearly with the iterations. 

The learning factors, c1 and c2 are set to be 2 and. 

The upper and lower bounds for v[], (Vmin, Vmax) are set 

to be the maximum upper and lower bounds of x, i.e. 

(Vmin, Vmax) = (x_min, x_max). If the sum of accelerations 

would cause the velocity on that dimension v’, to exceed 

Vmax or Vmin, , then the velocity on that dimension v’, is 

limited to Vmax or Vmin respectively. 

3.3 PS-EA Scheme 

An infeasible set of initial inheritance probabilities are 

used to test the performance of DIPA module of PS-EA. 

The purpose of setting the initial inheritance probabilities 

differently is to observe whether DIPA works properly to 

adjust the inheritance probabilities back to that ensures an 

effective search.  

Having the inheritance probabilities to be set fixed as 

according Table 2 will result in slow convergence or even 

deterioration in the overall fitness of the swarm 

population. Thus, infeasible set of initial inheritance 

probabilities are purposely set to verify whether DIPA is 

able to adjust the set of inheritance probabilities for 

effective search.

3.4 Common experimental settings 

The population size is set as 125 and the initialization 

ranges for the test functions are shown in Table 3. 
Table 3: Initialization range for the test functions. 

Function Initialization range 

f1 (-600,600)n

f2 (-15,15)n

f3 (-15,15)n

f4 (-32.768,32.768)n

f5 (-500,500)n

The corresponding maximum generation for each 

dimension of the test function is shown in Table 4. 

Table 4: Maximum generation for each dimension of the 

test function. 

Dimension 10 20 30

Maximum 

Generation

500 750 1000

Each algorithm will be run for each dimension (10, 20 

and 30) for each test function for 30 trials and the mean 

best and standard deviation (unbiased) for runs will be 

collected for comparison. 

4 Simulation Results and Discussion 

After 30 trials of running each algorithm for each test 

function, the results on the best mean and the standard 

deviations were obtained and tabulated in Table 5. The 

best means obtained represents the performance of the 

algorithm in convergence, and the standard deviations 

obtained indicate the stability of the algorithms. 

Table 5: Mean best costs and Standard deviation (unbiased) 

obtained from  30 trials for the optimization of each 

dimension 

(a) Function dimension 10 and maximum generation of 500 
GA PSO PS-EA Func 

Mean 

best cost 

Standard 

deviation

Mean best 

cost

Standard 

deviation

Mean 

best 

cost

Standard 

deviation

f1 0.050228 0.029523 0.079393 0.033451 0.2223 0.0781

f2 1.3928 0.76319 2.6559 1.3896 0.43404 0.2551

f3 46.3184 33.8217 4.3713 2.3811 25.303 29.7964

f4 0.59267 0.22482 9.8499x10-13 9.6202 x10-13 0.19209 0.1951

f5 1.9519 1.3044 161.87 144.16 0.32037 1.6185

(b) Function dimension 20 and maximum generation of 750 
GA PSO PS-EA Func 

Mean 

best 

cost

Standard 

deviation

Mean best 

cost

Standard 

deviation

Mean 

best 

cost

Standard 

deviation

f1 1.0139 0.026966 0.030565 0.025419 0.59036 0.2030

f2 6.0309 1.4537 12.059 3.3216 1.8135 0.2551

f3 103.93 29.505 77.382 94.901 72.452 27.3441

f4 0.92413 0.22599 1.1778 x10-8 1.5842 x10-8 0.32321 0.097353

f5 7.285 2.9971 543.07 360.22 1.4984 0.84612

(c) Function dimension 30 and maximum generation 1000
GA PSO PS-EA Func 

Mean 

best 

cost

Standard

deviation

Mean best 

cost

Standard 

deviation

Mean

best 

cost

Standard 

deviation

f1 1.2342 0.11045 0.011151 0.014209 0.8211 0.1394

f2 10.4388 2.6386 32.476 6.9521 3.0527 0.9985

f3 166.283 59.5102 402.54 633.65 98.407 35.5791

f4 1.0989 0.24956 1.4917 x10-6 1.8612 x10-6 0.3771 0.098762

f5 13.5346 4.9534 990.77 581.14 3.272 1.6185



Table 5a shows the results of the simulation for the

performance of each algorithm in optimizing the various 

functions of dimension 10 and maximum generation of

500 after running 30 trials. From the results in Table 5a, it

is found that PS-EA outperforms GA and PSO in the

optimization of Rastrigrin and Schwefel functions, which

are highly multimodel, PS-EA has perform particularly

well in the optimization of Schwefel, which is wickedly

irregular with many local optima. PS-EA middle-performs

in the optimization of Rosenbrock and Ackley functions,

and worst-performs in the optimization of Griewank

function. Despite the average performance PS-EA has 

displayed in optimizing Griewank, Rosenbrock and 

Ackley function, it can be explained on the fact that there

is explicit probability in SUM that the particle can inherit

parameter values of the not-so-good or even worse

particles, like inheriting from the neighbor particles or

undergo a random mutation in SUM. As compared to

PSO or GA, which always lead the population with good

solutions. The diversity factor introduced in PS-EA by

SUM is believed to be the main reason for slow

convergence in Griewank, Rosenbrock and Ackley

function, but however, the results obtained by PS-EA are

still within satisfactory region and it has shown its great

search ability and local optima avoidance ability in its

performance in Schwefel’s function, which is well known

for its deceptive property in its location of the global 

minimum, and to “cheat” optimization algorithms to

converge in the wrong direction.

With the results, PS-EA has proven experimentally to

be a good optimization algorithm for multi-model test

functions of Rastrigrin and Schwefel, as well as unimodel

function of Rosenbrock. In the optimization of Griewank

and Ackley functions, it middle-performs between GA

and PSO. However, the results of PS-EA in the

optimization of the two functions have been quite

satisfactory, as the mean results are very near to the

respective global minimum of the function. It is also

observed that PS-EA is a good algorithm when the

function dimension increases. It is shown in its

optimization of Rastrigrin, Rosenbrock and Schwefel

functions at the function dimension of 30 as in Table 5c, 

where the results obtained by PS-EA are much better than 

GA and PSO. 

On the stability of PS-EA, except for Griewank and

Ackley function, it has the best stability as compared to

the PSO and GA. For Griewank, even though it is the

least stable algorithm as compared to GA and PSO, the

difference in the stability is considerably small. As for

Ackley, the stability of PS-EA lies between GA and PSO.

In overall, PS-EA is relative a stable algorithm that obtain

reasonable consistent results.

5 Multiobjective optimization using PS-EA 

In this section, we shall consider applying PS-EA to

solve a classic multi-objective problem: Fonseca 2-

objective minimization problem [15] as follows:Table 5b shows the results of the simulation for the

performance of each algorithm in optimizing the various 

functions of dimension 20 and maximum generation of

750 after running 30 trials. From the results in Table 5b, it

is found that PS-EA outperforms GA and PSO in the

optimization of Rastrigrin, Rosenbrock and Schwefel

functions. It is noted for the optimization of Rosenbrock

function, PS-EA has overtaken PSO as the best

convergence performer at a higher dimension of 20 at just

a margin. This suggests that PS-EA is performing better at

a higher complexity.  However, more conclusive result on 

the performance of PS-EA may be obtained when its

performance maintains at higher function dimension of 

30, which will be shown in the results in the next section.

On the optimization of Griewank and Ackley functions,

PS-EA remains as the middle performer, with PSO and 

GA as the best and worst performers respectively. 

Minimize:
28

1

8211
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i

ixxxxf (11)

28
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where 8,...,2,1,22 ixi .

The true Pareto optimal set for this problem

is 8,...,2,1,
8

1

8

1
,... 821 ixxxx i . To 

apply PS-EA in this multiobjective problem, the

algorithm is modified as in Fig. 2. 
Table 5c shows the results of the simulation for the

performance of each algorithm in optimizing the various 

functions of dimension 30 and maximum generation of

1000 after running 30 trials. From the results in Table 5c, 

it is found that PS-EA maintains itself as the best

performer in the optimization of Rastrigrin, Rosenbrock

and Schwefel functions, and a middle-performer in the

optimization of Griewank and Ackley functions.  For PS-

EA performance in Rosenbrock function, PS-EA 

performs significantly better with a mean best cost of 

98.407 versus 402.54 as obtained by PSO. Thus, it is

conclusive to say that PS-EA is performing better in

functions of high dimension and complexity.

1. Initialization of swarm

2. Evaluation of particles (based on shared fitness and Pareto ranking).

3. While (NOT maximum generation) 

a. Identify pbest 

b. PS-EA operations 

c. Evaluation of extended population 

d. Selection for next generation 

4. Use either the final population of particles or pbest as the final solutions for

the Pareto front.

Fig. 2. The flow of Multiobjective PS-EA (MOPS-EA).

With MOPS-EA as modified from PS-EA, simulation

tests were conducted to solve the Fonseca’s problem. A



sample objective curve, as shown in Fig. 3 is plotted at

the

100th generation, showing the objective positions of pbest

particles.

Fig. 3. Objective curve showing the true Pareto front and

the found Pareto optimal set (+) at the 100th generation of 

PS-EA.

As shown in Fig. 3, it is observed that the final solution of

pbest particles (as denoted by +) converges closely to the true 

Pareto front. This application establishes the applicability of this

algorithm for searching in multi-modal, as well as, 

multiobjective problem domains.

6 Conclusion

PS-EA, as have been discussed, builds on the established

works of EA and is extended with the workings of PSO. 

While retaining the flexibility to add heuristics into the

algorithm, PS-EA does not compromise a great scale in its 

performance, as compared to original PSO. In this paper,

PS-EA is compared to GA and PSO for optimization of

five well-known test functions of Griewank, Rastrigrin,

Rosenbrock, Ackley and Schwefel. PS-EA extends its

capability as a potential multiobjective search algorithm

in its application to minimize the Focenca 2-objective 

functions.

From the simulation results, some conclusive

observations can be made as follows:

i. PS-EA is a good performer in optimizing difficult

functions of high dimensions, like Rosenbrock,

Rastrigrin and Schwefel functions.

ii. PS-EA is an average performer in optimizing fairly 

difficult functions like Griewank and Ackley

functions.

iii. Even an infeasible set of initial inheritance

probabilities will yield a good search by PS-EA. 

This confirms the operations of DIPA as a good 

dynamic parametric adjuster.

iv. The DIPA module of PS-EA has reduced the hassle

of algorithm designers to set many parameters, and 

has worked well to adjust the inheritance

probabilities.

v. PS-EA is well suited to for multi-modal functions

of high dimension, as well as, multiojective

problems.

Future works shall involve in applying PS-EA to solve

real world problems, like scheduling, network routing and

power forecasting. Future developments of MOPS-EA 

will also be continued.Feasible region
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