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Abstract- This paper describes Particle Swarm 


Inspired Evolutionary Algorithm (PS-EA), which is a 


hybridized Evolutionary Algorithm (EA) combining 


the concepts of EA and Particle Swarm Theory. PS-


EA is developed in aim to extend PSO algorithm to 


effectively search in multiconstrained solution spaces, 


due to the constaints rigidly imposed by the PSO 


equations. To overcome the constraints, PS-EA 


replaces the PSO equations completely with a Self-


Updating Mechanism (SUM), which emulates the 


workings of the equations. A comparison is performed 


between PS-EA with Genetic Algorithm (GA) and 


PSO and it is found that PS-EA provides an advantage 


over typical GA and PSO for complex multi-modal 


functions like Rosenbrock, Schwefel and Rastrigrin 


functions. An application of PS-EA to minimize the 


classic Fonseca 2-objective functions is also described 


to illustrate the feasiblility of PS-EA as a 


multiobjective search algorithm.


1 Introduction


Population based stochastic search algorithms have been 


very popular in the recent years in the research arena of 


computational intelligence. Some well established search 


algorithms such as Genetic Algorithm (GA) [1-3], 


Evolutionary Strategies (ES) [4], Evolutionary 


Programming (EP) [5] and Artificial Immune Systems 


(AIS) [6], have been successfully implemented to solve 


simple problems like functions optimization to complex 


real world problems like scheduling [7-9] and complex 


network routing problems [3]. 


Swarm intelligence has become a research interest to 


many research scientists of related fields in recent years. 


The main algorithm for swarm intelligence is Particle 


Swarm Optimization (PSO) [10-14], which is inspired by 


the paradigm of birds flocking. PSO is successfully 


implemented in various optimization problems like 


weight training in Neural Networks [12] and functions 


optimization [10,11,13,14]. It is very popular due to its 


simplicity in its implementation, as a few parameters are 


needed to be tuned. It is computational cheap in the 


updating of the individuals per iteration, as the core 


updating mechanism in the algorithm relies only on two 


simple PSO self-updating equations, as compared to using 


mutation or crossover operation in typical Evolutionary 


Algorithm (EA), which requires a substantial computation 


cost to perform decision making, like which individual 


shall go for crossover or mutation process. 


PSO searches for solution in the solution space 


differently from a typical EA. An EA iteratively searches 


for several good individuals in the population, and try to 


make the population to emulate the best solutions found 


in that generation through crossover operation, while the 


mutation operation tries to introduce diversity to the 


population. The problem of premature convergence 


occurs often when all individuals in the solutions become 


very similar to each other. This results the population to 


be stuck in local optima, if the initial best individual as 


found by the EA is very near to a local optima. In the 


workings of PSO, it maintains a memory to store the elite 


individuals of the best global individual (gbest) found, as 


well as the best solutions as found by each individual 


(pbest). Each individual in the population will try to 


emulate the gbest and pbest solutions in the memory 


through updating by the PSO equations. The random 


element in the PSO equations introduces diversity around 


the elite individuals found. 


However, even though PSO is a good and fast search 


algorithm, it has its limitations when solving real world 


problems. The two PSO equations, which are in the 


mathematical format, restrict additional heuristics related 


to the real-world problem to be incorporated in the 


algorithm, while in the case of EA, heuristics can be 


easily incorporated in the population generator and 


mutation operator to prevent wrong updates to the 


individuals to infeasible solutions. Therefore, PSO will 


not perform well in its search in complex multi-


constrained solution spaces, which are the case for many 


complex real world problems like scheduling. To 


overcome the limitations of PSO, this paper proposes a 


hybridized evolutionary algorithm, which allows flexible 


incorporations of the real world heuristics into the 


algorithm, while retaining the workings of PSO. 


This paper describes Particle Swarm Inspired 


Evolutionary Algorithm or PS-EA, which is a hybrid 


model of EA and PSO. PS-EA is compared with PSO and 


GA on five numerical optimization tasks that are 


commonly used for benchmarking purposes of 


optimization algorithms. The results show the advantage 


of PS-EA over GA and PSO in the optimization of 


complex functions like Rosenbrock, Schwefel and 







2.2.1 Derivation of SUMRastrigrin functions. An application of PS-EA to


minimize the classic Fonseca 2-objective functions is also 


described to illustrate the feasiblility of PS-EA as a multi-


objective search algorithm.


If we analyze the PSO equations as in (1) and (2), we can 


deduce the following possible results:


x becomes e1 or gbest particle


x becomes e2 or pbest particle of x


x remains as it is. 


x is assigned a value near e1 or e2.
2 Workings of PS-EA 


From the analysis of the equations, it is possible to use the


operators of EA to emulate the workings of PSO


equations. Replacing the PSO equations, we introduce a


probability inheritance tree (PIT) as illustrated in Fig. 1.


Particle Swarm Inspired Evolutionary Algorithm (PS-EA)


is a hybridized algorithm combining concepts of PSO and


EA. The main module of PS-EA is the Self-Updating


Mechanism (SUM), which makes use of the Inheritance


Probability Tree (PIT) to do the updating operation of


each individual in the population. A Dynamic Inheritance


Probability Adjuster (DIPA) is incorporated in SUM to


dynamically adjust the inheritance probabilities in PIT 


based on the convergence rate or status of the algorithm


in a particular iteration. In this section, the flow of PS-EA 


and the detailed workings of SUM will be discussed.


2.1 Flow of PS-EA


The general flow of PS-EA is shown as follows:


i) Initialization of initial swarm of particles


ii) Evaluation of particles


iii) Identification of elite particles and save in


memory


iv) Undergo Self Updating Mechanism (SUM)


v) Evaluation of particles
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vi) Update the elite particles to memory
Fig. 1. Probability Inheritance Tree (PIT) vii) Repeat (iii)-(vi) until stopping criteria are


met
Fig. 1 shows the probability inheritance tree of SUM. 


The end branches at the bottom of the tree show all the


possible results that a parameter value of a particle x can 


be updated. Particle x can inherit the parameter values


from the elite particles or any random neighboring 


particles, undergoes mutation operation or retains its


original value. The mutation operation in SUM emulates


the random element in the PSO equation as in (1). An


additional elite particle popbest, which is the best particle


of a current swarm, is introduced to SUM for faster 


convergence. To introduce more diversity in the swarm of


particles, we allow present[] to inherit parameter values


of a randomly selected neighbor particle in the current


swarm.


It is similar to most population based stochastic search


algorithms, except that it has a memory to store the elite 


particles or individuals, and there is no reproduction of


offspring. All particles in the swarm or population will 


undergo modifications by SUM. The elite particles


include gbest, popbest and pbest particles. It is noted that


popbest is included as one of the elite particles. The


popbest particle is the best particle in the current swarm


or population. More details will be discussed in the sub-


section on SUM.


2.2 Self-Updating Mechanism (SUM) 


The Self-Updating Mechanism (SUM) is derived from the


concepts of PSO. It functions as an emulator of the PSO


self-updating equations as follows: 2.2.2 Operations of SUM


The SUM process can be illustrated by considering the


updating of the first parameter of a particle k. The first 


parameter value of particle k undergoes the SUM. The


parameter has the probability P(Elite) to inherit the value


of one of the elite particles, probability P(Remains) to


retain its original value and probability


P(Neighbor/Mutation) to inherit the value from one of its 


neighboring particles or undergoes a mutation operation.


If it chooses to inherit from one of the elite particles, it


still has to choose whether it will inherit from the global


best particle gbest, the current population best particle


popbest, or the best particle that particle k has in its


v’ = v + c1.U(0,1).{e1-x}+c2.U(0,2).{e2-x} (1)


x’ = x + v’ (2)


where v is the velocity vector, c1 and c2 are the learning 


factors, U(0,1) is the number generator that produces a 


number between 0 and 1 based on uniform distribution,


e1 is gbest particle, e2 is the pbest particle of particle x,


and x is the present considered particle.


The derivation of SUM, the operation of SUM and the


working of DIPA to dynamically adjust the inheritance


probabilities of PIT will be described in the following sub


sections.







memory pbest[k]. The probabilities that it will choose to


inherit from gbest, popbest and pbest[k] are P(gbest),


P(popbest) and P(pbest) respectively. Similarly, if it 


chooses to inherit from a neighbor particle or undergoes 


mutation operation, it will again need to choose between


the both options. The probabilities that it will choose to 


inherit from a randomly selected neighbor particle in the


current population and undergoes mutation operation are


P(Neighbor) and P(Mutate) respectively.


By introducing the PIT in SUM, the number of 


parameters has increased by eight, which are the eight 


inheritance probabilities. It is therefore a problem for


algorithm designer to determine the correct values for the


inheritance probabilities, where the total parameters to be


set has become nine, considering the eight inheritance


probabilities and the population size. Therefore, Dynamic


Inheritance Probability Adjuster (DIPA) is proposed to


take care in the setting of inheritance probabilities,


reducing to setting of only one parameter, which is the


population size.


2.2.3 Dynamic Inheritance Probability Adjuster (DIPA) 


The dynamic inheritance probability adjuster (DIPA) aims


to solve the problem of setting the correct set of


inheritance probabilities of the SUM. The DIPA gets


feedback on the the convergence status from the


convergence rate feedback mechanism, in order to detect


whether the algorithm is converging well and whether the


search is stuck in some local optima. With the


convergence status as feedback from the mechanism,


DIPA will adjust the inheritance probability reacting to 


the convergence status that it gets.


There is this simple feedback mechanism to indicate 


the convergence status of the algorithm, known as the


convergence rate feedback mechanism. For each iteration, 


the cost of the gbest particle will be logged. The cost of 


the gbest particle can indicate whether the algorithm is


converging or not. For every even-numbered iteration, the


feedback mechanism will calculate the difference of the


costs of the gbest particle in the odd-numbered and even-


numbered iterations. If it is detected that the cost of gbest


particle is not converging well, it will feedback to DIPA, 


which will do the necessary adjustment to the inheritance 


probabilities. It also samples the cost of the gbest particle


in long iteration intervals and check whether the cost of


gbest particle has decreased or not. If it is detected that


the cost has not changed during the long interval, it will


feedback to the DIPA that the algorithm is likely to have


stuck in some local optima. In short, the convergence


status as feedback by the feedback mechanism provides 


the information of the convergence rate and the indication


of long period stuck at some local optima. DIPA will do 


the necessary adjustment when it receives the 


convergence status from the feedback mechanism. The


detailed workings of DIPA can be left to the algorithm


designer to decide.


Thus, the algorithm designer can just set an arbitrary 


set of the initial inheritance probabilities without 


worrying whether the set is a good set or bad set, since


DIPA will adjust the probabilities dynamically in the


algorithm.


3 Experimental Settings 


Five numerical optimization experiments are conducted to


compare the performance of PS-EA with GA and PSO in 


minimizing five popular test functions.


3.1 Test functions 


The following five test functions are widely used for 


benchmarking purposes of optimization algorithms. For 


these functions, there are many local optima and/or 


saddles in their solution spaces. The amount of local 


optima and saddles increases with increasing complexity


of the functions, i.e. with increasing dimension.


The first test function is Griewank function given by:


1cos
4000


1


1 1


2
1


D


d


D


d


d
d


d


x
xf    (6) 


The global minimum of f1 is zero, and it occurs when xd = 


0 for all d = 1,2,… D. It has many widespread local


minima. The locations of the minima are however regular 


distributed.


The second test function is Rastrigrin function given


by:
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The global minimum of f2 is zero, and it occurs when xd = 


0 for all d = 1,2,… D. It is highly multimodel, and similar


to Griewank, it has widespread local minima which are


regularly distributed.


The third test function is Rosenbrock function given


by:
1
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The global minimum of f3 is zero, and it occurs when xd = 


1 for all d = 1,2,… D. It is classic unimodel optimization


problem. The global optimum is inside a long, narrow,


parabolic shaped flat valley, popularly known as the


Rosenbrock’s valley. To find the valley is trivial, but to


achieve convergence to the global optimum is difficult


task.


The fourth test function is Ackley function given by:
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The global minimum of f4 is zero, and it occurs when xd = 


0 for all d = 1,2,… D. It is a highly multimodel function,


similar to Griewank and Rastrigrin.


The fifth and last test function is Schwefel function


given by:
D
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The global minimum of f5 is zero, and it occurs when xd = 


420.9867 for all d = 1,2,… D. Schwefel function is 


deceptive in that the global minimum is geometrically 


distant, over the parameter space, from the next best local 


minima. The solution space is wickedly irregular with 


many local optima. The search algorithms are potentially 


prone to convergence in the wrong direction in the 


optimization of this function. 


3.2 GA Scheme 


The GA scheme used in the comparison experiment is 


used as suggested in a journal paper by Digalakis, J.G. 


and Margaritis, K.G. [2]. The scheme is shown in Table 1. 


Table 1: GA Scheme 


Crossover


Probability


0.95 


Crossover


Scheme 


Single point crossover 


Crossover Parent 


Selection Scheme 


Random selection (no elitism) 


Mutation 


Probability


0.1 


Child Production 


Scheme 


A child chromosome is added to the population 


from any crossover or mutation operation. 


New generation 


selection scheme 


Best fixed number of chromosomes are selected 


from the “expanded” population of parent and 


child chromosomes for the next GA operations 


3.4 PSO Scheme 


The PSO scheme used in the experiment is used as 


suggested in a conference paper by M. Lvbjerg, T. K. 


Rasmussen and T. Krink [14]. The PSO equations used 


follows (1) and (2), except that (1) is modified to as 


follows: 


v' = w.v + c1.U(0,1).(e1- x) + c2.U(0,1).(e2-x)  (11) 


where w is the additional initial weight, which varies from 


0.9 to 0.7 linearly with the iterations. 


The learning factors, c1 and c2 are set to be 2 and. 


The upper and lower bounds for v[], (Vmin, Vmax) are set 


to be the maximum upper and lower bounds of x, i.e. 


(Vmin, Vmax) = (x_min, x_max). If the sum of accelerations 


would cause the velocity on that dimension v’, to exceed 


Vmax or Vmin, , then the velocity on that dimension v’, is 


limited to Vmax or Vmin respectively. 


3.3 PS-EA Scheme 


An infeasible set of initial inheritance probabilities are 


used to test the performance of DIPA module of PS-EA. 


The purpose of setting the initial inheritance probabilities 


differently is to observe whether DIPA works properly to 


adjust the inheritance probabilities back to that ensures an 


effective search.  


Having the inheritance probabilities to be set fixed as 


according Table 2 will result in slow convergence or even 


deterioration in the overall fitness of the swarm 


population. Thus, infeasible set of initial inheritance 


probabilities are purposely set to verify whether DIPA is 


able to adjust the set of inheritance probabilities for 


effective search.


3.4 Common experimental settings 


The population size is set as 125 and the initialization 


ranges for the test functions are shown in Table 3. 
Table 3: Initialization range for the test functions. 


Function Initialization range 


f1 (-600,600)n


f2 (-15,15)n


f3 (-15,15)n


f4 (-32.768,32.768)n


f5 (-500,500)n


The corresponding maximum generation for each 


dimension of the test function is shown in Table 4. 


Table 4: Maximum generation for each dimension of the 


test function. 


Dimension 10 20 30


Maximum 


Generation


500 750 1000


Each algorithm will be run for each dimension (10, 20 


and 30) for each test function for 30 trials and the mean 


best and standard deviation (unbiased) for runs will be 


collected for comparison. 


4 Simulation Results and Discussion 


After 30 trials of running each algorithm for each test 


function, the results on the best mean and the standard 


deviations were obtained and tabulated in Table 5. The 


best means obtained represents the performance of the 


algorithm in convergence, and the standard deviations 


obtained indicate the stability of the algorithms. 


Table 5: Mean best costs and Standard deviation (unbiased) 


obtained from  30 trials for the optimization of each 


dimension 


(a) Function dimension 10 and maximum generation of 500 
GA PSO PS-EA Func 


Mean 


best cost 


Standard 


deviation


Mean best 


cost


Standard 


deviation


Mean 


best 


cost


Standard 


deviation


f1 0.050228 0.029523 0.079393 0.033451 0.2223 0.0781


f2 1.3928 0.76319 2.6559 1.3896 0.43404 0.2551


f3 46.3184 33.8217 4.3713 2.3811 25.303 29.7964


f4 0.59267 0.22482 9.8499x10-13 9.6202 x10-13 0.19209 0.1951


f5 1.9519 1.3044 161.87 144.16 0.32037 1.6185


(b) Function dimension 20 and maximum generation of 750 
GA PSO PS-EA Func 


Mean 


best 


cost


Standard 


deviation


Mean best 


cost


Standard 


deviation


Mean 


best 


cost


Standard 


deviation


f1 1.0139 0.026966 0.030565 0.025419 0.59036 0.2030


f2 6.0309 1.4537 12.059 3.3216 1.8135 0.2551


f3 103.93 29.505 77.382 94.901 72.452 27.3441


f4 0.92413 0.22599 1.1778 x10-8 1.5842 x10-8 0.32321 0.097353


f5 7.285 2.9971 543.07 360.22 1.4984 0.84612


(c) Function dimension 30 and maximum generation 1000
GA PSO PS-EA Func 


Mean 


best 


cost


Standard


deviation


Mean best 


cost


Standard 


deviation


Mean


best 


cost


Standard 


deviation


f1 1.2342 0.11045 0.011151 0.014209 0.8211 0.1394


f2 10.4388 2.6386 32.476 6.9521 3.0527 0.9985


f3 166.283 59.5102 402.54 633.65 98.407 35.5791


f4 1.0989 0.24956 1.4917 x10-6 1.8612 x10-6 0.3771 0.098762


f5 13.5346 4.9534 990.77 581.14 3.272 1.6185







Table 5a shows the results of the simulation for the


performance of each algorithm in optimizing the various 


functions of dimension 10 and maximum generation of


500 after running 30 trials. From the results in Table 5a, it


is found that PS-EA outperforms GA and PSO in the


optimization of Rastrigrin and Schwefel functions, which


are highly multimodel, PS-EA has perform particularly


well in the optimization of Schwefel, which is wickedly


irregular with many local optima. PS-EA middle-performs


in the optimization of Rosenbrock and Ackley functions,


and worst-performs in the optimization of Griewank


function. Despite the average performance PS-EA has 


displayed in optimizing Griewank, Rosenbrock and 


Ackley function, it can be explained on the fact that there


is explicit probability in SUM that the particle can inherit


parameter values of the not-so-good or even worse


particles, like inheriting from the neighbor particles or


undergo a random mutation in SUM. As compared to


PSO or GA, which always lead the population with good


solutions. The diversity factor introduced in PS-EA by


SUM is believed to be the main reason for slow


convergence in Griewank, Rosenbrock and Ackley


function, but however, the results obtained by PS-EA are


still within satisfactory region and it has shown its great


search ability and local optima avoidance ability in its


performance in Schwefel’s function, which is well known


for its deceptive property in its location of the global 


minimum, and to “cheat” optimization algorithms to


converge in the wrong direction.


With the results, PS-EA has proven experimentally to


be a good optimization algorithm for multi-model test


functions of Rastrigrin and Schwefel, as well as unimodel


function of Rosenbrock. In the optimization of Griewank


and Ackley functions, it middle-performs between GA


and PSO. However, the results of PS-EA in the


optimization of the two functions have been quite


satisfactory, as the mean results are very near to the


respective global minimum of the function. It is also


observed that PS-EA is a good algorithm when the


function dimension increases. It is shown in its


optimization of Rastrigrin, Rosenbrock and Schwefel


functions at the function dimension of 30 as in Table 5c, 


where the results obtained by PS-EA are much better than 


GA and PSO. 


On the stability of PS-EA, except for Griewank and


Ackley function, it has the best stability as compared to


the PSO and GA. For Griewank, even though it is the


least stable algorithm as compared to GA and PSO, the


difference in the stability is considerably small. As for


Ackley, the stability of PS-EA lies between GA and PSO.


In overall, PS-EA is relative a stable algorithm that obtain


reasonable consistent results.


5 Multiobjective optimization using PS-EA 


In this section, we shall consider applying PS-EA to


solve a classic multi-objective problem: Fonseca 2-


objective minimization problem [15] as follows:Table 5b shows the results of the simulation for the


performance of each algorithm in optimizing the various 


functions of dimension 20 and maximum generation of


750 after running 30 trials. From the results in Table 5b, it


is found that PS-EA outperforms GA and PSO in the


optimization of Rastrigrin, Rosenbrock and Schwefel


functions. It is noted for the optimization of Rosenbrock


function, PS-EA has overtaken PSO as the best


convergence performer at a higher dimension of 20 at just


a margin. This suggests that PS-EA is performing better at


a higher complexity.  However, more conclusive result on 


the performance of PS-EA may be obtained when its


performance maintains at higher function dimension of 


30, which will be shown in the results in the next section.


On the optimization of Griewank and Ackley functions,


PS-EA remains as the middle performer, with PSO and 


GA as the best and worst performers respectively. 


Minimize:
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where 8,...,2,1,22 ixi .


The true Pareto optimal set for this problem


is 8,...,2,1,
8


1


8


1
,... 821 ixxxx i . To 


apply PS-EA in this multiobjective problem, the


algorithm is modified as in Fig. 2. 
Table 5c shows the results of the simulation for the


performance of each algorithm in optimizing the various 


functions of dimension 30 and maximum generation of


1000 after running 30 trials. From the results in Table 5c, 


it is found that PS-EA maintains itself as the best


performer in the optimization of Rastrigrin, Rosenbrock


and Schwefel functions, and a middle-performer in the


optimization of Griewank and Ackley functions.  For PS-


EA performance in Rosenbrock function, PS-EA 


performs significantly better with a mean best cost of 


98.407 versus 402.54 as obtained by PSO. Thus, it is


conclusive to say that PS-EA is performing better in


functions of high dimension and complexity.


1. Initialization of swarm


2. Evaluation of particles (based on shared fitness and Pareto ranking).


3. While (NOT maximum generation) 


a. Identify pbest 


b. PS-EA operations 


c. Evaluation of extended population 


d. Selection for next generation 


4. Use either the final population of particles or pbest as the final solutions for


the Pareto front.


Fig. 2. The flow of Multiobjective PS-EA (MOPS-EA).


With MOPS-EA as modified from PS-EA, simulation


tests were conducted to solve the Fonseca’s problem. A







sample objective curve, as shown in Fig. 3 is plotted at


the


100th generation, showing the objective positions of pbest


particles.


Fig. 3. Objective curve showing the true Pareto front and


the found Pareto optimal set (+) at the 100th generation of 


PS-EA.


As shown in Fig. 3, it is observed that the final solution of


pbest particles (as denoted by +) converges closely to the true 


Pareto front. This application establishes the applicability of this


algorithm for searching in multi-modal, as well as, 


multiobjective problem domains.


6 Conclusion


PS-EA, as have been discussed, builds on the established


works of EA and is extended with the workings of PSO. 


While retaining the flexibility to add heuristics into the


algorithm, PS-EA does not compromise a great scale in its 


performance, as compared to original PSO. In this paper,


PS-EA is compared to GA and PSO for optimization of


five well-known test functions of Griewank, Rastrigrin,


Rosenbrock, Ackley and Schwefel. PS-EA extends its


capability as a potential multiobjective search algorithm


in its application to minimize the Focenca 2-objective 


functions.


From the simulation results, some conclusive


observations can be made as follows:


i. PS-EA is a good performer in optimizing difficult


functions of high dimensions, like Rosenbrock,


Rastrigrin and Schwefel functions.


ii. PS-EA is an average performer in optimizing fairly 


difficult functions like Griewank and Ackley


functions.


iii. Even an infeasible set of initial inheritance


probabilities will yield a good search by PS-EA. 


This confirms the operations of DIPA as a good 


dynamic parametric adjuster.


iv. The DIPA module of PS-EA has reduced the hassle


of algorithm designers to set many parameters, and 


has worked well to adjust the inheritance


probabilities.


v. PS-EA is well suited to for multi-modal functions


of high dimension, as well as, multiojective


problems.


Future works shall involve in applying PS-EA to solve


real world problems, like scheduling, network routing and


power forecasting. Future developments of MOPS-EA 


will also be continued.Feasible region
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