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Abstract. Fitness landscapes have proved to be a valuable concept in evolutionary biology,
combinatorial optimization, and the physics of disordered systems. Usually, a fitness land-
scape is considered as a mapping from a configuration space equipped with some notion of
adjacency, nearness, distance, or accessibility, into the real numbers. In the context of multi-
objective optimization problems this concept can be extended to poset-valued landscapes. In a
geometric analysis of such a structure, local Pareto points take on the role of local minima. We
show that the notion of saddle points, barriers, and basins can be extended to the poset-valued
case in a meaningful way and describe an algorithm that efficiently extracts these features
from an exhaustive enumeration of a given generalized landscape.
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2 Stadler, Flamm


1. Introduction


Solving optimization problems with multiple, often conflicting, objectives is
in general a very difficult task. Evolutionary algorithms were adapted in the
last decades to this generic problem class, see e.g. [22] for a recent review.
In the case of single objectives a rather elaborate theory of “fitness” land-
scapes (for a review see [21]) has been developed, which so far has not been
systematically extended to the multi-objective case. In this short contribu-
tion we concentrate on one aspect that has received very little attention so
far, namely the saddle points connecting the basins associated with locally
optimal solutions and the barriers in the cost function that separate locally
optimal solutions from better ones. In contrast to much of the literature, which
deals with a continuum setting, we restrict our attention to combinatorial
multi-objective problems.


Consider a general multi-objective combinatorial minimization problem
[7]. The “decision space” thus consists of a finite set X of “configurations”.
Furthermore, we are given a finite number K of objective functions fi : X →
R, 1 ≤ i ≤ K. One says x weakly dominates1 y, in symbols x � y, if fi(x) ≤
fi(y) for all i; x (strictly) dominates y, x ≺ y if x � y and there is at least one
index i such that fi(x) < fi(y). A point x ∈ X is Pareto minimal if it is not
strictly dominated by any other point. The task of multi-objective minimiza-
tion is therefore to identify all Pareto minima, see e.g. [6]. Algorithms for
finding Pareto minimal points exhaustively or by means of GAs are described
e.g. in [3, 12, 15].


Multi-objective minimization may be seen as a generalization of con-
ventional minimization in which the linearly ordered “cost space”, typically
the real numbers R, is replaced by a partially ordered set, or poset for short,
(Y,�). Formally, a poset satisfies the following axioms for all u,v,w ∈ Y


(P0) u� u;


(P1) u� v and v� w implies u� w;


(P2) u� v and v� u implies u = v;


Posets are more general than linearly ordered sets since we do not require that
u� v or v � u for all u,v ∈ Y. If neither of these two inequalities holds then
u and v are incomparable, see e.g. [5]. The K objective functions f i : X → R


can be viewed as a single objective function f : X → (Rk,≤i) where f (x) =
( f1(x), . . . , fK(x)) and the set R


k is endowed with the standard (component-
wise) partial order, i.e., f (x) � f (y) iff fi(x) ≤ fi(y) for all i, 1 ≤ i ≤ K.
For an arbitrary poset-valued cost function f : X → Y we say that x weakly
dominates y if f (x) � f (y) and x strictly dominates y if f (x) � f (y) and
f (x) 6= f (y), i.e., f (x) ≺ f (y).


1 All inequalities are reversed in the case of maximization problems, of course.
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In many cases multi-objective optimization is performed by means of
heuristic search algorithms [4, 6, 7]. It is natural therefore to ask whether
the theory of fitness landscapes can be extended to the poset-valued case.
Formally, a landscape is triple (X ,X , f ) consisting of set of configurations X ,
a topological structure X that determines the mutual accessibility of configu-
rations and a cost or “fitness” function f : X→R. The neighborhood relation
X is typically defined by the “move set” of a search heuristic. In the case of
optimization algorithms it can be chosen by the user; in the case of biological
applications it is typically defined by the mechanisms of mutation or recom-
bination. In this contribution we will restrict ourselves to the simplest case in
which the configuration space (X ,X ) is a finite undirected graph G = (X ,E)
with vertex set X and edge set E . Here edges connect configurations that can
be inter-converted by a single move.


The definition of a poset-valued combinatorial landscape is straight-
forward: we simply replace the real-valued cost function f : X → R by a
poset-valued function f : X → R. In a classical landscape, a configuration x
is a global minimum if f (x) ≤ f (y) for all y ∈ X and a local minimum if
f (x) ≤ f (y) for all neighbors y of x. The generalization to the poset-valued
case is straight-forward and well known: A configuration x is a Pareto mini-
mum if x is not strictly dominated by any configuration y, and a local Pareto
minimum if it is not strictly dominated by a G-neigboring configuration.
Pareto minima therefore take the place of ordinary minima in a poset-valued
landscape. This is in complete analogy to the better-studied continuum case
[6] and provides a first hint that the notion of a poset-valued landscape might
be useful.


The topic of this article is not optimization per se. Instead, we are in-
terested in generalizing methods for characterizing geometrical properties of
ordinary landscapes to the poset-valued case. In particular, we will be con-
cerned with the saddle points that separate local Pareto points from each other
and the barriers that separate local Pareto points from better solutions. To this
end, we describe a method for efficiently extracting the relevant information
from small toy problems. In fact, we assume throughout this contribution that
we can enumerate the decision space X exhaustively.


2. Basins and Barriers


Let us first consider the case of a linearly ordered objective space, i.e., a con-
ventional fitness landscape. In spin glass physics, for instance, the nontrivial
breaking of ergodicity in spin glass systems is usually described by the so-
called many-valley scenario in which the ease with which one valley can be
reached from another one depends on the saddle points connecting them [20].
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Similarly, basins and barriers play a crucial role for the folding dynamics of
biopolymers [23, 9], and in the theory of Simulated Annealing [1, 2].


The energy of the lowest saddle point separating two local minima x and
y is


f̂ [x,y] = min
p∈Pxy


max
z∈p


f (z) (1)


where Pxy is the set of all paths p connecting x and y by a series of consecutive
mutations.


If the energy function is non-degenerate, i.e., two configurations have
distinct fitness values, then there is a unique saddle point s = s(x,y) con-
necting x and y characterized by f (s) = f̂ [x,y]. The extension to degenerate
fitness functions is discussed in detail in [11]. To each saddle point s there
is a unique collection of configurations B(s) that can be reached from s by a
path along which the energy never exceeds f (s). In other words, the config-
urations in B(s) are mutually connected by paths that never go higher than
f (s). This property warrants to call B(s) the valley or basin below the saddle
s. Furthermore, suppose that f (s) < f (s′). Then there are two possibilities:
if s ∈ B(s′) then B(s) ⊆ B(s′), i.e., the basin of s is a “sub-basin” of B(s′),
or s /∈ B(s′) in which case B(s)∩B(s′) = /0, i.e., the valleys are disjoint. This
property arranges the local minima and the saddle points in a unique hierar-
chical structure which is conveniently represented as a tree, termed barrier
tree.


In the poset case we have to modify the paths p that enter the definition
in equ.(1). Adjacent configurations are not necessarily �-comparable, hence
we cannot determine an analogue of height along arbitrary path. As a con-
sequence, we have to require that Pxy consists only of those paths in which
consecutive configurations are comparable. Let p ∈ Pxy. Then


σ(p) = {x ∈ p| 6 ∃y ∈ p : f (x) ≺ f (y)} (2)


consists of all points along a path that do not strictly dominate another point
in p. Obviously, σ(p) plays the role of the local maxima along p. In particular,
σ(p) contains the points in p with maximal values of any linear extension of
≺. Next we consider the union


Σxy =
�


p∈Pxy


σ(p) (3)


of the “maxima” along all possible paths. The set S(x,y) of poset-saddle
points between x and y can now be defined as the Pareto points in Σxy, i.e., as


S(x,y) =
{


z ∈ Σx,y
∣


∣ 6 ∃u ∈ Σx,y : f (u)≺ f (z)
}


(4)


In particular, S(x,y) contains the saddle points w.r.t. all linear extensions of
the partial order. It should be noted that the poset-saddle points defined here
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are completely different from the saddle points of the Lagrangian-type scalar-
izations of multi-objective optimization problems that are considered e.g. in
[14].


The direct evaluation of equ.(1) is an extremely laborious task even in
ordinary landscapes [19] that becomes hopeless already for moderately small
toy landscapes. Consequently, do not attempt to use eqns. (2–4). Instead, we
follow the approach of [9] and modify the “flooding algorithm” barriers.
This approach, however, forces us to be content with one representative of
S(x,y) for each pair of local Pareto points x and y.


3. The Flooding Algorithm


Let us first consider the case of linear order [9, 11]. Starting with the lowest
energy configurations the flooding algorithm barriers explicitly builds up
the basins B(s) of the local minima s in the following way. For each config-
uration x that is read in, all its neighbors are generated and compared with a
hash table that contains all previously read configurations:


(a) if x has no neighbor that was read in previously, then it is a local mini-
mum;


(b) if x has neighbors that all belong to the basin B(s) of a single local
minimum s, then x also belong to B(s);


(c) if x has neighbors in k > 1 basins B(s1), . . . ,B(sk) then it merges these
basins, i.e., it is a saddle point. In this case, the basins B(s1), . . . ,B(sk)
are united and are assigned to the deepest of these local minima.


The element x is then labeled with the local minimum to which it belongs and
entered into the hash table. The run time is O(E) since for each configuration
we need to check each neighbor, i.e., we consider each edge of G twice. The
effort for one step is constant due the the use of the hash table. The memory
requirements are determined by the size of hash table, i.e. O(|X |).


It is not hard to see that this procedure extends to partially ordered sets.
The crucial observation is that for each configuration x we only need to check
those neighbors y that have comparable fitness values, i.e., for which we have
either f (x) ≺ f (y), f (x) = f (y), or f (x)� f (y).


Every partial order admits a linear extension, that is, a well-order <̇ such
that x≺ y implies x<̇y. Let us assume that X is sorted w.r.t. <̇. When x is read
then the hash contains already all configurations that strictly dominate x. On
the other hand, x does not strictly dominate any of the current hash entries.
Hence it suffices to check for each neighbor y of x if (i) it is contained in the
hash and (ii) if it dominates x at least weakly. The configuration x belongs to
the basin B(s) if and only if these two conditions are satisfied. If x belongs
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Algorithm 1 POSET FLOODING


Input: G = (X ,E), �, linear extension <̇
Output: A barrier forest F for (X ,�)


1: Sort X w.r.t. <̇ in ascending order
2: H ← /0; /∗ Hash table containing all read points ∗/


B ← /0; /∗ List of all “active” basins ∗/


F← /0. /∗ Barrier Tree ∗/


3: for each x ∈ X do
4: Z←{z ∈G-neighbors(x)|z ∈H and z� x}.
5: B = {b1, . . . ,bl}← {b ∈ B |Z∩b 6= /0}.
6: if |B|= 0 then
7: /∗ x is a local Pareto point ∗/


add x as new component to the forest F ;
B ← B ∪{x}.


8: if |B|= 1 then
9: /∗ x belongs to basin b ∗/


b← b∪{x}.
10: if |B| ≥ 2 then
11: /∗ x is a “saddle” ∗/


record x as node connecting b1 . . .bl in F;
b1← b1∪b2∪ . . .∪bl ∪{x};
B ← B \{b2∪ . . .∪bl}.


12: mark x with (a pointer to) the basin to which it belongs and enter x into
the hash table H .


13: determine global Pareto minima in F.


to more than one basin we have a saddle point in the sense defined in the
previous section (it is not hard to explicitly backtrack the path p that connects
the corresponding minima). Since basins are merged when the first saddle
point that connects them is encountered, the representative of S(x,y) that is
chosen by this procedure depends explicitly on the linear extension <̇. A more
formal description of the poset flooding algorithm is given as Algorithm 1.


It is important to notice that the flooding algorithm always produces a
tree in the linearly ordered case. For partially ordered sets, however, we only
obtain a forest. In particular, if Y is an anti-chain, the barrier forest is the
completely disconnected graph.


The barrier forest can be computed efficiently provided (i) we know
a linear extension of the partial order � and (ii) we can efficiently decide
whether or not x≺ y for all pairs x and y. The run-time of the poset version of
the algorithm is therefore O(|E|q) where q is the number of operations nec-
essary for checking domination. Since the computation of a linear extension
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from an arbitrary poset requires in the worst case O(|X |2) steps this part will
in general dominate the CPU requirements.


It is interesting to compare the performance of Algorithm 1 with the
approach of Kung, Luccio & Preparata [15] for finding the global Pareto
points in a set of K-dimensional vectors. The latter task can be performed
in O(|X | logmin(1,K−1) |X | steps.


For poset landscapes arising form multi-objective minimization prob-
lems with K objective functions, however, the auxiliary function


f̃ (x) =
K


∑
i=1


ai fi(x) (5)


with arbitrary constants ai > 0 is a linear extension of ≺. Furthermore q =
O(K) since we have to make one comparison with each of the functions f i.
Hence the linear extension can be computed in O(K|X |) time, sorting requires
O(|X | ln |X |). The classes of graphs that are of interest as search spaces satisfy
|E|= O(|X | lnp |X |) with some p≥ 1, in most cases p = 1. The total runtime
of Algorithm 1 is then O(K|E|) = O(K|X | logp |X |) and hence for p = 1
coincides with the theoretical lower bound [15].


4. Global Pareto Points


As a by-product of the flooding algorithm we can determine the set G of
global Pareto points as well. It is more efficient, however, to extract G from
the barrier forest. The following, rather trivial observation, is the basis for our
approach.


LEMMA 1. A vertex x is either a Pareto minimum or it is strictly dominated
by a local Pareto minimum.


Proof. Suppose x is not a Pareto minimum. Then there is y ∈ X such that
y≺ x. If y is not a local Pareto minimum then it has a neighbor y′ that satisfies
y′ ≺ y and hence also y′ ≺ x. If y′ is not locally Pareto minimal we can repeat
the argument to find a neighbor y′′ of y′ and so on. However, since x 6≺ x and
X is finite, this sequence must terminate after a finite number k of steps with
a local Pareto minimum y(k) ≺ x.


As a consequence, we can identify the Pareto minima from the set M of local
Pareto minima, i.e., from the tips of the barrier forest alone. The computa-
tional effort is O(|M |2).
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5. Computational Examples


An overview of the existing literature on multi-objective optimization prob-
lems can be found in [7]. The most important classes of problems include
shortest path problems, assignment problems and their generalization, and
knapsack problems.


5.1. KNAPSACK PROBLEMS


In the simplest version a knapsack problem [16, 17] consists of a set of n
objects with values vi > 0 and weights wi > 0. The task is to chose a subset
J ⊆ {1, . . . ,n} that simultaneously minimizes


f1(J) = ∑
i∈J


vi and f2(J) =−∑
i∈J


wi (6)


It is natural to consider the knapsack problem on the hypercube, i.e., each
configuration is a string x of length n where xi = 1 if i ∈ J and xi = 0 if i /∈ J.
The neighborhood is defined by flipping a bit in the string x, i.e., by adding
or removing an item to or from the knapsack. If q /∈ J then f1(J ∪{q}) =
f1(J) + vq > f1(J) and f2(J ∪ {q}) = f2(J)−wq < f2(J), while for q ∈ J
we have f1(J \ {q}) = f1(J)− vq < f1(J) and f2(J \ {q}) = f2(J) + wq >
f2(J). Thus neighboring conformations on the boolean hypercube are always
incomparable, i.e., every configuration is a local Pareto point. The the barrier
forest is therefore trivial, see Fig. 1a.


5.2. A WEB ACCESS PROBLEM


The task of a Web Access Problem is to retrieve a list L of documents from
a set S of servers [8]. Each server s ∈ S hosts a collection Ds ⊆ L of these
documents. Furthermore, there is time delay ts and cost cs associated with
accessing s. The task is retrieve all documents of L such that the total cost
and the maximal waiting time of a query Q⊆ S, represented by set Q of hosts
that are accessed, is minimized. Again we may encode Q as a binary string x,
xs = 1 if s ∈Q and xs = 0 otherwise. Flipping a bit, i.e., adding or removing a
server from a query appears to be the natural definition of the neighborhood,
which is used in the computational example.


The quality of an answer is defined by the union


R(Q) =
�


s∈Q


Ds (7)


of documents that are retrieved. One may use |R(Q)| as a quality measure
in which case we again obtain a knapsack type problem. Instead we require
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Figure 1. Barrier forests of two small examples. The global Pareto points are marked by
asterisks. The abscissa gives f̃ (x) = f1(x)+ f2(x).
(a) The barrier forest for the simple 0/1 knapsack problem (5 items with randomly assigned
weights and values) is trivial because every configuration (+ means i ∈ J, - means i /∈ J) is a
local Pareto point.
(b) Barrier forest of a Web Access Problem with n = 20 servers, |L| = 100 documents, and
qmax = 0.1. Here the two global Pareto points are located in a common subtree.


that all documents in L must be retrieved and consider all other queries as
failures. The two cost functions are


C(Q) = ∑
s∈Q


cs T (Q) = max
s∈Q


ts (8)


We model the individual hosts by randomly assigning a document d ∈ Ds


with a site dependent probability qs. The values of qs are themselves random
numbers uniformly distributed in [0,qmax]. An example is shown as Fig. 1b.
Note the difference of the tree structure in comparison with the knapsack
problem.


5.3. RNA SECONDARY STRUCTURES


An RNA molecule is a linear polymer composed of so-called nucleotides
that can be represented by a string from the alphabet {A,C,G,U}. RNAs
form complex three-dimensional structures that is dominated by specific base
pairs forming the molecule’s secondary structure. Consider an RNA sequence
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...(((((....)))))..(((.((...))(((......))))))


Figure 2. Secondary structures are outer-planar graphs, i.e., they can be drawn in the plane
such that all base pair are below the outline and there are no crossings. The energy E of
a sequence x and particular structure is given as the sum of contributions from the “loops”
(planar faces), two of which are shaded here. Stabilizing contributions arise from so-called
stacks or parallel base pairs, which correspond to quadrangles in the graph, while all other
loops lead to destabilizing energy contributions.
The dot-parenthesis notation (below), which represents unpaired positions as dots and base
pairs as matched pair of parentheses, is used as a convenient string representation of secondary
structures by the Vienna RNA Package.


x = (x1,x2, . . . ,xn) of length n. We write (i, j) for a base pair between the
sequence positions i and j, where (xi,x j) is one of the six allowed pairs
{AU,UA,CG,GC,GU,UG}. The base pairs satisfy the following three con-
straints:
(i) Each nucleotide takes part in at most one base pair.
(ii) If (i, j) is base pair, then |i− j|> 3.
(iii) If (i, j) and (k, l) are base pairs and i < k < j then i < l < j.
An example of an RNA secondary structure is shown in Fig. 2.


The conformational energy E of an RNA molecule depends both on
its sequence and its structure. The standard energy model assumes that E
is the sum of contribution of the “loops”, i.e., the faces of the planar rep-
resentation in Fig. 2. These contributions have been obtained from detailed
measurements, see e.g. [18]. The secondary structure that minimizes E can
be computed efficiently using a dynamic programming algorithm [24].


Not only the thermodynamics but also the kinetics of RNA folding can
be studied at the level of secondary structures. In order to investigate the
dynamics of the folding process one considers the insertion or removal of a
base pair as elementary step of the dynamics [9]. The transition probabilities
for such steps are also be derived from measured energy parameters. For a
recent review of the various aspects of the RNA world in silico see [10].
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(a) (b)


Sequence Structure ∆G lnτ f̃ B min
1 CGGGCCGCGGCCCG (((((....))))) -9.7 1.279 -3.944
2 GGGGCCGCGGCCCC (((((....))))) -10.6 2.084 -3.890 0.869 1
3 GGGGCCCGGGCCCC (((((....))))) -10.6 2.136 -3.858 0.245 2
4 CGGCCCGCGGGCCG (((((....))))) -9.7 1.501 -3.809 1.000 1
5 CGCCCCCCGGGGCG (((((....))))) -9.7 1.556 -3.775 1.306 1
6 GGCCCCGCGGGGCC (((((....))))) -10.6 2.354 -3.725 1.171 5
7 GGGCCCGCGGGCCC (((((....))))) -10.6 2.364 -3.719 0.889 4
8 GGGCCCCGGGGCCC (((((....))))) -10.6 2.438 -3.673 0.122 7


11 GGGCCGCGCGGCCC (((((....))))) -9.7 1.802 -3.624 0.766 7
15 GCCCGGCGCCGGGC (((((....))))) -9.7 1.940 -3.540 0.980 10
16 GCCGGGCGCCCGGC (((((....))))) -9.7 1.959 -3.528 1.180 13
17 CGCCCGGCCGGGCG (((((....))))) -8.8 1.257 -3.519 0.898 5
18 CGCCGGGCCCGGCG (((((....))))) -8.8 1.262 -3.516 1.916 1
67 GCCCCCGCGGGGGC (((((....))))) -10.6 3.941 -2.753 0.765 37


145 CCCGGGCGCGCCCG ..((((....)))) -6.1 1.256 -2.204 0.887 112
170 CCCGGCGCGCGCCG ..((((....)))) -5.8 1.217 -2.082 1.184 69
244 GGGCCGGGCGGCGC ..((((....)))) -4.8 1.215 -1.595 0.845 1
254 CCCGGCCCGCGCCG ..((((....)))) -4.7 1.204 -1.553 0.488 170
315 CGCCGGGCCCCCGC ...(((....))). -3.7 1.071 -1.147 0.568 1


Figure 3. RNA secondary structure folding landscape of the GC sequences of length n = 14;
see Fig. 2 for the explanation of the dot-parenthesis notation for RNA secondary structures.
Objective functions are the thermodynamic stability of the ground state structure ∆G and the
(logarithm of) the expected folding time lnτ. Point mutations G↔ C define the move set.
(a) Full tree. (b) Detail of the 100 local Pareto points with the lowest values of f̃ . Global
Pareto points are labeled. Detailed information on the global Pareto points is compiled below.
B denotes the height of the barrier w.r.t. f̃ ; the “min” column gives a (local) Pareto point
with smaller f̃ than is reachable across the barrier; structures are displayed in dot-parenthesis
notation, see Fig. 2. non-global Pareto points are shown in bold.


One interesting question about biopolymer folding is the relationship
between thermodynamic stability and foldability. The latter can be measured
for instance by the expected time that is need for the open chain (which has no
base pairs) to reach the ground state structure. In particular, one is interested
in those sequences that are both exceptionally stable and fold rapidly. It seems
natural, therefore to consider the poset-valued landscape in which f1(x) =
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Figure 4. The path connecting the global Pareto points 1 and 16 in the GC landscape of Fig. 3
visualizes the rugged structure of the landscape. Above: Local or global Pareto points are
labeled by L or G, resp., and their rank w.r.t. f̃ , saddle points are indicated by S and appear as
local maxima along the connecting path. Intermediate sequences along connections between
saddles and Pareto points are indicated by I.
Below: The same path in the ∆G/lnτ plane. Local Pareto points are shown as circles (full for
the two global Pareto points), � marks saddle points, and intermediate points are shown as
crosses.
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∆G(x) is the ground state energy of the sequence x and f2(x) = lnτ(x) is the
(logarithm of) the expected folding time. For the computations reported here
the programs RNAfold (to obtain the ground state structure) and kinfold
(for simulating folding trajectories) were used. Both are part of the Vienna
RNA Package and can be obtained free of charge on the internet.2 . The fold-
ing times reported here are averages over 1000 runs of kinfold for each
sequence. The auxiliary function is defined as f̃ (x) = ∆G(x)/s′+ lnτ(x)/s′′


where s′ and s′′ are the standard deviations of the ∆G(x) and lnτ(x) across
all sequences. In order to keep the computational efforts at a reasonable level
we restrict ourselves to GC-only sequences. It is argued e.g. in [13] that the
RNA landscapes with reduced alphabets share the qualitative properties with
the full biophysical GCAU-alphabet.


In Fig. 3 we summarize the results for GC sequences of length 14.
Among the 16384 sequence we find 720 local Pareto points of which 19
are global Pareto points. They fall roughly into two classes: those that are
close to the global optimum of thermodynamic stability share the most stable
secondary structures, and those that fold exceptionally fast also sharing a
common structural motif. The rugged structure of the landscape is reflected
by the geometry of the paths that connect Pareto points with each other, Fig. 4.


For larger landscapes, the number of Pareto points and connecting sad-
dles increases exponentially so that a graphical representation soon becomes
infeasible. Nevertheless, we see that the global Pareto points also fall into a
small number of classes that are characterized by their secondary structures.
It is interesting to note that the global Pareto points are widely separated in
sequences space; connecting paths typically run through a large number of
saddles and local Pareto points, as shown in Fig. 4.


6. Discussion


The (local) Pareto points of a multi-objective optimization problem can be
seen as the generalization of the (local) optima of a fitness landscape. In
this contribution we have shown that the notion of a saddle point and the
concept of paths connecting local optima can also be transferred from con-
ventional, real valued, landscapes to poset-valued landscapes. This implies
that barrier trees can be defined for multi-objective optimization problems.
We have described an algorithm that generates these trees and an efficient
implementation that allows us to study the landscapes of moderate size prob-
lems in great detail. As the focus of this contribution is the method rather
than its application we provide only a few examples to illustrate the type of
information that can be gained.


2 http://www.tbi.univie.ac.at/RNA
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In contrast to the well-ordered case the “barrier trees” need not be con-
nected in the case of posets. Disconnectedness points at a particularly rugged
structure and indicates that the move set is not suitable for local search. For in-
stance, packing or unpacking single items in a knapsack problem will always
produce incomparable weight/value pairs. Other move-sets might be much
better suited for this class of problems. The structure of the barrier trees for
small instances could be used to compare difference move sets. Move sets
that reduce the number of local Pareto points and/or the height of the saddles
points that separate them can be exprected to lead to improved heuristics also
for larger instances of the same problem class.


Another application is the systematic investigation of the relationships
between different properties of biopolymers. As an example we have consid-
ered here the thermodynamic and kinetic properties of RNA folding. We find
that global Pareto points are widely separated in sequence space, i.e., there are
no indications for a substantial clustering of stable, fast-folding sequences.


The current approach produces a single representative of the saddle point
set S(x,y) that depends explicitly on the choice of the linear extension <̇ of
the poset. It would be of interest to list the complete set S(x,y) instead. It is
not clear, however, whether the flooding algorithm can be modified to do this
efficiently.


The definition of saddle points by means of paths that are constrained
such that its points are locally comparable can in principle be extended to
continuous search spaces; we suspect, however, that it will not be possible to
compute them efficiently from the path-based definition.


The approach presented here is intended as a tool for analyzing a land-
scape that is known exhaustively. In principle, it could be turned into a method
for optimization. In the linearly ordered case the idea is the following: As part
of the flooding algorithm we explicitly construct all neighbors of a configu-
ration. At this point we might in addition evaluate their cost function. If a
neighbor y has a cost that is smaller than the current point, we store it in
a “waiting list”, otherwise we insert it into the list of unread points at the
appropriate position. We stop the flooding algorithm at a maximum value of
the cost function (or when all basins are connected). At this point the “waiting
list” contains entry points to basins that were not represented in the beginning.
We use gradient descent to find the local minima associated with “waiting
list” configurations and repeat the flooding algorithm. The entire procedure is
iterated until the “waiting list” produced by the modified flooding algorithm
is empty. The same approach could be applied to the multi-objective case
using Algorithm 1 as the starting point.
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Availablity


Algorithm 1 is implemented in the current version 1.0.0 of the program barriers
which is available from http://www.tbi.univie.ac.at/TBI/software.html.
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