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Abstract- Grouping parts and tools is an essen-
tial problem that arises in the set-up of a Fiex-
ible Manufacturing System (FMS). In the Part-
tool Grouping Problem (PGP), the process of as-
sembling parts is assigned to several machines so
as to optimize plural performance criteria. In
this paper, the PGP is formulated as a multi-
objective optimization problem. Then, for sam-
pling various non-dominated solutions from along
the entire Pareto-optimal front of the PTP, a new
Genetic Algorithm (GA) based on the evolution-
ary theory advocated by Kinji Imanishi is pro-
~posed. While conventional GAs mimic the pro-
cess of natural selection, the proposed GA real-
izes the situation of habitat segregation, i.e., a
principle of coexistence. The Imanishism-based
.GA can find various Pareto-optimal solutions ef-
fectively, because it keeps the diversity of popu-
lation in both of the objective and the problem
spaces without harming the power of local search
operations. The advantage of the Imanishism-
based GA is confirmed quantitatively through
computational experiments conducted on a prac-
tical problem instance of the PGP.

I. INTRODUCTION

A Flexible Manufacturing System (FMS) consists of a
set of computer-controlled machines capable of perform-
ing a number of different operations. In the FMS, a
bunch of related components are processed and assem-
bled simultaneously. Processing a part may require sev-
eral tools, and normally a tool can be used to process
several parts. On the other hand, a tool may be used on
several machines but it has to be loaded and unloaded
holding their operations for a time. Therefore, grouping
parts and associated tools in advance helps to make an
efficient production planning for the FMSJ1, 2].

The Part-tool Grouping Problem (PGP) concerned
with the FMS usually requires the simultaneous opti-
mization of multiple, and often competing, performance
criteria. Concretely, for mandging the entire system effi-
ciently, not only the combination of parts and tools but
also the.number of available machines has to be con-
sidered. However, in order to apply conventional ap-
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proaches for solving the PGP, it has to been reduced to
a single-objective optimization problem such as a liner
integer-programming formulation(l, 2]. With no doubt,
it may be desirable that the PGP is formulated as a
multi-objective optimization problem.

The multi-objective optimization problem has a set of
alternative solutions called Pareto-optimal ones, which
are optimal in the wider sense that no other solutions
are superior to them when all objectives are considered.
Furthermore, the number of the Pareto-optimal solutions
can be extremely large for the PTP formulated as a
multi-objective optimization problem. Therefore, from
the production planner’s point of view, it is desirable to
sample various solutions from along the entire Pareto-
optimal front. Hence, the goal of solving the PTP is to
obtain a set of various solutions distributed uniformly on
the Pareto-optimal front.

Genetic Algorithms (GAs){12] seem particularly suit-
able to solve multi-objective optimization problems, be-
cause they deal simultaneously with a set of possible
solutions so-called population. Actually, a lot of GA
approaches have been proposed for multi-objective opti-
mization problems, which are reviewed in several com-
prehensive works[3, 4, 5]. Regardless of the number of
objective functions, traditional GAs emulate the pro-
cess of natural selection thought by Charles Darwin[6].
However, the selection of only excellent individuals ac-
cording to their fitness is likely to lose the diversity of
population, which causes the undesirable phenomenon
known as premature convergence. In order to find var-
ious Pareto-optimal solutions with such a Darwinism-
based GA, several artificial techniques, namely, fitness
sharing and ranking, need to be combined, and the per-
formance of GA is highly dependent on an appropriate
design of these techniques. v

Kinji Imanishi (1902-1992), Emeritus Professor of
Koto University, is a noted ecologist, a renowned moun-
taineer and explorer, and the recipient of Japan’s Order
of Culture First class. Instead of competition among in-
dividuals in the struggle for existence, namely, the nat-
ural selection, he contends the concept of habitat segre-
gation that is a principle of coexistence(7, 8].

In this paper, a new GA based on the evolutionary
theory asserted by Imanishi is proposed, because it seems
that the weakness of conventional GAs essentially results
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from the concept of natural selection inspired by the Dar-
winism. Then, the Imanishism-based GA is applied to
the PGP formulated as a multi-objective optimization
problem. Keeping the diversity of population in both
the objective and the problem spaces, the Imanishism-
based GA can sample various solutions from along the
entire Pareto-optimal front of the PTP.

In the sequel, the PGP is formulated as a multi-
objective optimization problem in which three objective
functions ought to be minimized in Section II. The pro-
posed Imanishism-based GA and underlying principles
are described in Section III. First of all, three types of
distances, namely, genotypic, phenotypic and functional
ones, between two individuals are introduced and used to
realize the situation of habitat segregation in the pop-
ulation. The phenotypic distance is also employed in
the Improved Harmonic-Crossover operation that is an
improved version of the Harmonic-Crossover proposed
in our previous papers|9, 10]. Through computational
experiments conducted on a practical problem instance
of the PTP, the merits of the proposed GA are con-
firmed quantitatively in Section IV. Finally, conclusions
are drawn in Section V.

II. PROBLEM FORMULATION

We formulate the PTP concerned with the FMS as a
multi-objective optimization problem. Let suppose that
a fixed number of parts are going to be processed and
then connected to each other with an appropriate tool.
By using some machines, these operations are executed
in parallel. The processing time spent on each part is
the same, and the number of machines is a decision to
be made by the production planner. In order to minimize
the total operation time of the FMS, all parts should be
distributed equally to a large number of machines. How-
ever, since different kinds of tools are used to assemble
these parts, associated parts should be assigned into the
same machine as much as possible. Obviously, trade-off
exists in the objectives.

Supposing that two types of tools are necessary to as-
semble all parts, the relation between parts and tools can
be represented by a graph as shown in Fig.1: a vertex
corresponds to a part, and each edge between two parts
denotes the type of tool used to connect them. There-
fore, a problem instance of the PGP is given by a graph
G = (V, E): E=E“UEP;, E°nEP = (. A feasible
solution of the PTP, which is denoted by s, is a partition
ofv; € Vinto k subsets: V=ViU---UV,U--- UV
VpNVy =0 (p # q); k corresponds to the number of
available machines. Fig.1 also shows a partition of V
into three subsets. EY C E* and Ef C E® denote sub-
sets of edges both endpoints of which are included in the
same subset V, C V. Thereby, we try to minimize the
following three objective functions simultaneously.
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Fig. 1. Graphical representation of a problem instance
of the PGP and its feasible solution, or phenotype.

[ fils) = max{[Vp]}
k
fa(s) = IE“I—;IE;’I "
k
fs(s) = |B°|-)_ |E]|
L p=1

Mathematically, the Pareto-optimal solution of the
PTP, which is optimal in the sense that no improvement
can be achieved in any objective without degradation in
others, is defined as follow: a feasible solution s! is said
to dominate s2, iff V5 € {1,---,3} f;(s!) < f;(s*) and
35 € {1,---,3} fi(s') < f;(s?); s is Pareto-optimal, iff
there doesn’t exist any solution that dominates s.

II1. GENETIC ALGORITHM

In this section, we describe the proposed Imanishism-
based GA, i.e., a new approach to the PTP formulated
as a multi-objective optimization problem.

A. Phenotype and Genotype

In the application of GA to the PGP, we regard each
partition of V, a feasible solution of the PGP, as an
individual so-called phenotype. Then, in order to apply
genetic operations, we encode such a partition of V into
a string of integer A = (aj,---,a,) (n = |V]) so-called
genotype. Each element a; € A (i =1 ~ n) denotes the
subscript p (p = 1 ~ k) of the subset V, in which the
corresponding vertex v; € V is included. .
Although the encoding of phenotype into genotype
seems natural enough, it does not give unique represen-
tation. For example, a phenotype of the PGP in Fig.1
can be represented by k! (k = 3) different genotypes
A* (x =1 ~ 6) as shown in (2), because we have not to
distinguish respective subsets V, CV (p =1 ~ k).
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[ A = (1, 1,2,3,3,2,2)

A = (1,1,3,2 2 3, 3)

A3 = (2,2,1,3,3,1,1)
4 (2)

A = (2,2,3,1,1,3,3)

A% = (3,3,1,2,2,1,1)

| 4% = (3,3,2,1, 1,2 2)

Let {A] be a set of isomorphic genotypes A® (z =1 ~
k!) which represent the same phenotype. We adopt such
a set of isomorphic genotypes [A] as the mathematical
expression of the corresponding phenotype.

B. Metric Functions

We introduce metric functions to the search space of
genotypes, the problem space of phenotypes and the ob-
jective space respectively. First of all, we define a geno-
typic distance between two genotypes A = (a1, --,an)
and B = (b, -, by) by the Hamming distance as,

n

> h(ai,bs) 3)

i=1

3,(A,B) =

where, if a; = bi, h(a,-,bi) = 0; if a; 75 bi, h(ai, b,) =1.

Then, we define a phenotypic distance between two
phenotypes [A] and [B] by the least genotypic distance
between the sets of isomorphic genotypes.

dp([4], [B]) = min{8,(4,B) | A€ [4], B [B]} (4)
From (3) and (4), the following relation holds.
6p([4], [B]) < 64(A,B) <n (8)

where, A € (4], B € |B].

The phenotypic distance defined in (4) is justified by
the following Theorem 1 and Theorem 2[10}.

Theorem 1: &, in (4) satisfies the metric axiom.

[Al =[B] & &(A],[B])=0
5p([4,1B)) =2 ©
5p([A4) [Bl) = &(B),[4])

p([A], € < &AL IB]) + (Bl [C))

]

Theorem 2: The phenotypic distance can be evalu-

ated in a polynomial time complexity: O(n + k3). O

Finally, in the objective space of tlie PTP, we define a

functional distance between two points f([A]) and f({B])
by using the Manhattan distance as,

3
S (£([A]), £((B))) Z - f(B) | (6)
where, £((4]) = (f1(14]), f2((4]), f(lA).
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C. Harmonic Crossover

In the design of GA to the PGP, encoding solution as
a string allows the application of one-point (1X), two-
point (2X) and uniform (UX) crossovers[11]. We could
enhance the performance of these traditional crossovers
by using a new crossover technique named the Harmonic
crossover (H-crossover)(9, 10]. In order to preserve the
common characteristics of parents in their child, the
H-crossover considers the phenotypic distance between
them in genetic recombination process. Assuming that
every crossover creates one child from two parents, C is
created from A and B in the following procedure.
[H-crossover]

Step 1: Transform one of the parents B € [B] to an
isomorphic genotype B* € [B] so that the geno-
typic distance d4(A, B®) turns to the minimum,
ie., 8,(A, B*) = 6,(|4], [B]) holds.

Step 2: Applying one of the traditional crossovers,
namely, 1X, 2X and UX, to the parents A and B?,
create a new child C. a

For example, let’s apply the uniform crossover (UX)
to A and B in (7), where §4(A, B) = 6 holds initially.
Specifying random cut points with an arbitrary bit mask
M = (m,---,my) of set {0, 1}, a child C is created
from A and B as shown in (8).

M = (0,1,0, 1,0, 1, 0)
A = (1,1,223,3,2) (7)
B = (1,2 3, 4,2 2 4)
C=(1,224,3,2 2 (8)

where, if m; =0, ¢; = a;;if m; =1, ¢; = b;.

On the other hand, let’s apply the Harmonic uniform
crossover (H-UX) to the same parents in (7). In Step 1
of the H-crossover, we transform B € [B] to B* € [B] as

shown in (9), where the genotypic distance is minimized
such as §4(A, B?) = §,(|A], [B]) =

= (11 37 41 27 37 37 2) (9)

In Step 2, applying the traditional UX to A and B?,
a new child is obtained as shown in (10).

C=(,3,223, 3,2 (10)

The next theorem says that the child [C] created by
the H-crossover always comes to a point on the segment
between its parents [A] and [B] in the problem space{10].
Consequently, we can conclude that the characteristic of
parents is preserved in their child.

Theorem 3: Employing the H-crossover, the following
holds among child [C] and its parents [4], [B].

65(14], [C]) + 6,((B, [C)) = 6,([4), [B)  (11)

[}
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problem space

search space —

Fig. 2. Behavior of children and parents according to
the Harmonic and the Improved Harmonic crossovers.

D. Improved Harmonic Crossover 9

We propose a new genetic operation so-called the Im-
proved Harmonic Crossover (IH-crossover), which com-
bines the above-mentioned H-crossover with a local op-
timization algorithm. First of all, a new child C created
by using the H-crossover. Then a local optimization al-
gorithm is employed to improve the initial solution [C]
intensively. The local optimization algorithm transforms
(C] into another individual [D] by changing the values
of respective elements ¢; € C randomly as long as [C] is
dominated by [D], and ends when no further improve-
ment can be made. ‘At that time, in order to keep the
parents’ characteristics acquired by the H-crossover, the
alteration of ¢; € C is prohibited on the common ele-
ments included in both parents A and B?.

The next theorem says that the child [D] created by
the IH-crossover always comes to a point in the area
between its parents {A] and [B] in the problem space.
Consequently, we can conclude that the characteristic
of parents is preserved even after the application of the
local optimization algorithm.

Theorem 4: Employing the IH-crossover, the follow-
ing holds among child [D] and its parents [A], [B].

max{8,([4], (D)), &,([Bl, D))} <5,({4],(B]) (12)

Proof: See appendix. O

A schematic of Theorem 3 and Theorem 4 is shown
in Fig.2 for the case where the H-crossover creates a new
child C from parents A and B, after that the restricted
local optimization algorithm transforms C into D in the
search space. According to Theorem 4, it is guaranteed
that the child [D] created by the IH-crossover always
exists in the dark-shaded area in the problem space.

E. Habitat Segregation

In order to keep the diversity of population, we pro-
pose a new generation alternation model inspired by
the principle of habitat segmentation. Instead of indi-
viduals. Tmanishi pays attention to interaction between
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species, and contends that there is no struggle to sur-
vive among different species. Therefore, we try to hold
various species in the population as much as possible.

First of all, in order to distinguish between species, we
compare two individuals based on their structural and
functional differences. Namely, we introduce two kind
of species-radiuses L, and Ly. The structural species-
radius L, is given by phenotypic distance measure in
the problem space. On the other hand, the functional
species-radius Ly is given by functional distance measure
in the objective space. Thereby, if two individuals [A]
and [B] satisfy both of the following conditions, they are
regarded as the same species.

or(E([AD.£([B])) < Lf (13)
5(A],[B]) < Ly

The IH-crossover creates a new child D from two par-
ents A and B selected randomly. Then, an individual [E]
that belongs to the same species with [D] is selected from
the current population. If [E] is dominated by [D), [E]
is replaced by [D]. In the case that such an individual of
the same kind does not exist in the population, the worst
one assigned the largest rank is eliminated. In order to
evaluate the dominance property for each individual in
the population, we adopt the ranking method[12]. This
method assigns the rank 1 to the non-dominated individ-
uals in a population and ignore them, and then assigns
the rank 2 to the non-dominated individuals in the rest
of the population, and so on.

In the following generation alternation model of the
proposed GA, we need to decide three GA-parameters,
namely, population size |P|, terminal generation T, and
functional species-radius Ly. The structural species-
radius L, is controlled automatically.

[Generation Alternation Model]

Step 1: Create a set of genotypes randomly as an ini-
tial population P(0). Set generation t = 0. Set
structural species-radius L, = |V} initially.

Step 2: Select two parents A and B ([4] # [B]). Em-
ploying the IH-crossover, create a new child D.

Step 3: If 3E € P(t) satisfies &;(f(|E]), f([D])) < Ly,
then go to Step 4, else go to Step 7.

Step 4: If 6,([E], [D]) < L, holds, then go to Step 5,
else go to Step 6.

Step 5: If [D] is dominated by [E], then eliminate D,
else eliminate E. Go to Step 10.

Step 6: If (D] ([E]) is dominated by [E} ([D}), then
eliminate D (FE); otherwise, comparc them for the
margin of the structural species-radius, and elim-
inate one (D) or E) that has the closer phenotype
in the current population. Go to Step 10.
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Step 7: If 3G € P(t) satisfies §,([G], [D]) < Ly, then
go to Step 8, else go to Step 9.

Step 8: If [D] ([G]) is dominated by [G] ([D]), then
eliminate D (G) and go to Step 10; otherwise, let
L,= 5,,“([G], [D]) and go to Step 9.

Step 9: Eliminate an individual that is assigned the
largest rank from the current population P(t).

Step 10: Let t = t + 1. If t = T, then output all
non-dominated individuals in the final population
P(T), else go to Step 2. O

IV. COMPUTATIONAL RESULTS

In this section, the computational results are de-
scribed which have been carried out using the proposed
Imanishisim-based GA for solving a practical problem
instance of the PTP.

The problem instance G = (V, E* U E®) consists
of 64 parts (|[V] = 64) and 56 x 2 edges (|E*| = 56
and |EP| = 56). For the Imanishism-based GA, we fix
GA-parameters as T = 10* and |P| = 50 except the
functional species-radius Ly, and employ the Improved
Harmonic uniform crossover (IH-UX) to create a new
child. The Imanishism-based GA was programmed in
C-language and run on a personal computer {(CPU: intel
Pentium III; 400{MHz]).

At first, we chose the functional species-radius as
Ly = 5. Fig.3 plots the values of objective functions
f = (f1, f2, f3) evaluated for individuals included in the
initial and the final populations respectively. Comparing
the distribution of them, we can confirm that all of the
individuals have made rapid progress without losing the
diversity of population.

Next, we decreased the functional species-radius to
L; = 0. Fig.4 plots the values of objective functions
in the same way with Fig.3. Comparing the result of
Fig.4 with that of Fig.3, the final population in Fig.4 has
been converged in the objective space. Actually, the final
population in Fig.4 (Ly = 0) contains 6 non-dominated
solutions, whereas the final population in Fig.3 (Ly = 5)
contains 8 non-dominated solutions.

In order to evaluate the performance of the generation
alternation mode! inspired by the principle of habitat
segregation, we observed the average distance between
individuals in each population P(t) (¢t =0 ~ T'). Fig.5
shows the mean value of functional distance against to
the generation, where the results are averaged over 10
runs. Similarly, Fig.6 shows the mean value of pheno-
typic distance. From the results of Fig.5 and Fig.6, we
can confirm that the diversity of population is preserved
in both of the objective and the problem spaces by choos-
ing an appropriate functional species-radius L.
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Fig. 3. Initial (denoted by x) and final (denoted by +)
populations in the objective space (L = 5).

f1
60
50
40

f2 0 o 10 3

Fig. 4. Initial (denoted by x) and final (denoted by +)
populations in the objective space (Ly = 0).

V. CONCLUSIONS

In this paper, the PGP has been formulated as a multi-
objective optimization problem. Then a new GA based
on an Ant-Darwinism, i.e., the evolutionary theory ad-
vocated by Kinji Imanishism, has been proposed and
applied to the PGP successfully.

In order to sample various solutions from along the
Pareto-optimal front of the PGP, the concept of habitat
segregation was reflected in the design of the proposed
GA. Concretely, two types of species-radiuses were intro-
duced into the objective and the problem spaces respec-
tively to keep the diversity of population. Furthermore,
the Improved Harmonic Crossover, which contained a
local optimization algorithm, was proposed and used to
find a Pareto-optimal solution effectively. Finally, com-
putational experiments were conducted on a practical
problem instance of the PGP. As a result, we could con-
firm the advantage of the proposed GA.

In future works, we would like to apply the proposed
Imanishism-based GA to many sort of multi-objective
optimization problems which arise in the design of FMS.
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APPENDIX

We can regard that each element a; of genotype A =
(a1, -, an) indicates both its value a; € {1,---,k} and
its position ¢ € {1,---,n}. Hereafter, we call such an
element a; (¢ = 1 ~ n) gene. Considering a genotype A
as a set of gene, A = {a1, -, an}, we can describe the

" genotypic distance between A and B as follow.

§,(A,B) =n—|AN B| (14)

The IH-crossover is applied to genotypes A € [A] and
B* € [B] which satisfy the following equation.

8p([A], [B]) = &,(A, B?) (15)

* Since the child D has common genes of its parents A
and B?, the following relation holds among them.

(.

DDANB* AN ADANB?

AN D| > |AN B (16)
From (14) and (16),
d;(A,D) = n—|AND|
( g < n-lanp| =648 7
From (5), (15) and (17),
& ([A],[D]) < 64(A, D) (18)
< 64(A,B*) = 6,(|4], [B])
Similarly, we can derive the following relation.
3p([B], [D]) < 6p([A], [B]) (19)
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