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Abstract

The mixed 4/ #L. control problem, nevertheless a continued
research on it, does not have, up 1o now, an exact solution.
This paper develops a methodology for multiobjective prob-
lem solution characterization, employing group properties of
the Pareto-set. A muliiobjective genetic algorithm is built on
the basis of these properties. The sotutions that are found
for the 76 [ 7£. control problem are both consistent and less
conservative, when compared o other algorithms,

1 Introduction

The staternent of a controller design problem as a multiob-
jective optimization problem is known to be more significant
than as a single-objective one, under the viewpoint of real-life
applications [6], In abstract contexts, multiobjective design
methods can be seen as a way for generating design akier-
natives that vary along some sets of the solution space that
are known to have “good solutions”. In fact, multiobjective
coatrollers can present the nice property of producing large
enhancements in some objectives for simall debasements in
other ones {2, 7).

This paper deals with one of the most traditional multiobjec-
tive control design problems: the 26 / #£. design {4, 7], taken
here in the contexts of state-feedback and static output feed-
back. Some group properties of the multiobjective solution
sets (Pareto sets) are employed in order to aggregate the so-
lutions of formerly proposed algorithms. These propertics
are also employed in the construction of a new “multiobjec-
tive genectic algorithm™ that takes any set of solutions as an
“initial population”, in this way generating an enhanced con-
sistent Pareto-set estimate,

2 General Problem Statement

Consider the following linear time-invariant dynamic system:
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r ) = Ax(t)+Bu(r)+§:ngk(t)
k=1
¢ () = Cex(®)+Dwu(t), k=1,....,N (1)
N
W = Cx(t)+ Y Eewe(r)
\ k=1

in which x € R* is the system state vector, # € R™ is the
control input vector and wy € IR{ ,k=1,...,N are the exoge-
nous disturbance vector, z € IRz are the controlled output
and y € ¥ is the measurement output. This system config-
uration describes N channels from the disturbance input wi
lo the controlled variable output z, and associated to each
channel can be defined a performance index to be minimized
or upper bounded.

For conirol purposes it is considered the static output controt
law: u(t) = Ky(t). As a special case, in the standard setting
of the static state feedback design problem, the state vector
x is considered to be available for control law synthesis with
C=1Iand u(t) = Kx(z).

Particularly, the closed-loop transfer functions from wy 10
are denoted’ by

Hyy () = CP (51~ A)~'BY @
in which
Aq=A+BKC
B") =B+ BKE, 3

¢ = G+ DikC

for static output feedback. For static state feedback just con-
siderC=Fand By =0,k=0,...,N,

1The following assumption is made: Doy = DRKEy =0, k=1,...,N.
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Several different performance criteria could be defined for
the closed-loop transfer matrix Hw, (s). In this paper the
#6 and . norms are used. One benefit of the strategy to
be proposed here for the multiobjective control design is to
deal with both static feedback problems above in a systematic
way.

The main multiobjective problem to be addressed in this pa-
per is stated in the sequel for k = 2.

Problem 1: The Mixed #5/7{, Controller Set Computa-
tion Let v, denote the value of the H. norm of the closed-loop
system with optimal 76 norm, and ¥.. the optimal 3. norm,
Let § denote the set of stabilizing static controllers with com-
puatible dimensions. Determine the set %3 such thai:

[ [ K7 = afgxil’}fHmeﬂz N
A ”HWJ-tzll"' S ¥
Ko = ¢ Kowo | | subject to ¢ (4)
Kes
{ [ and Y= <Y<p 1)

3 Multiobjective Approach

In a multiobjective setting, Problem 1 receives another for-
mulation that is mathematically equivalent. Let |H{K)||, be
the 74 norm and [[H{K)}}.. the #£, norm of the closed-loop
system for controller X, considered in the appropriate chan-
nels. These norms define the control objectives, that are of-
ganized in the objective vector:

SE) = [ MHEN:z HEN- |7 ()

A key concept in multiobjective optimization is the efficient
solution set, or Pareto-optimal set, P defined by;

P2 {K,| AK such that f(K) < f(K,) and f(K) ;éf(Kp()G})

Note that the set 2 is a well-defined object, presenting some
properties that are not related to each element of the set,
bui appear on the set as a whole. It can be shown [2] that
P = K3... However, Equation (6) is more convenient for the
purpose of analysing the “group properties” that emerge in
set 2.

The research tradition in the problem of %4/ #L. conirol syn-
thesis has dealt with the question of finding one controlier
that is expected 10 belong to the set K., Or at least approx-
imates it {4, 7). The approach that is proposed here, on the
contrary, is based on a search for a representative set of so-
lutions describing #, in order to take advantage of the cross-
validation possibilities of the solutions belonging to this set,

3.1 Multiobjective Analysis

For the purpose of discussing the Pareto-set properties that
are relevant here, figure 1 presents typical structures that
emerge after the execution of any computation in order to
estimnate some poinis belonging to 2.
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Figure 1: Typical computational estimates of the Pareto-set P, in
the space of objectives. Ia the figure: the exact Pareto-
set P {continuous line), estimated set P (0), estimated
set P, (), estimated set Py (x), estimated set Py (*), es-
timated set 5 (+). The dashed lines denote the optimal
values of the #4 and #£. norms.

The “exact™ Pareto set P is the continuous curve in figare
1. This *'exact” set, however, is in principle unavailable, in
the sense that, even if one has a set of points that belong to
it, there is no means, up to now, for proofing that fact, In
ordet to characterize solutions that are “likely” to belong to
P (the Pareto candidates), another relation is defined here,
employing only points that are “available™:

Definition 1 [Pareto Candidate Set]

Let f(-) be a vector of objectives and K. C Dom(f(-)) be a
set with a finite number of elements: X = {K,,...,K,}. The
set \W(X), defined by:

¥(X) 2 {K,€ K| AK€ K such that f(K) < f(K,)
and f(K) # f{Kp}} @)

is called the Pareto candidate set, associated to the “sample

set” X, O

In fact, due to the unavailability of the set /P, the characteriza-
tion of solution sets W(-} as Parefo candidates is performed
with falsification procedures, that can show that some sets
are not candidates, but cannot ever show that any set is in
fact a Pareto-set. This is the role of the Pareio candidate set
concept.

Consistency: Given any set X, it can be considered as
a Pareto candidate only if W(X) = X. If this occurs, the set
is said auto-consistent. Otherwise, the possibility of X being
a subset of the Pareto-set P is falsified.

Ordering and Dominance: Given two sets, X; and
Xz, ordering relations between these sets are defined:

X <X o {(YQUXR) DX and WG UX) B X%}

X4H2X2 & (F(ux) o)
(8)
In the case of X) < X3, the possibility of set X3 being a sub-
set of the Pareto-set P is falsified, while the set X; remains
being a Pareto candidate. In this case, X is said t0 dom-
inate X;. There are two possibilities of ron-dominance: if



both relations X3 < A3 and X3 < X3 do not hold, then both
sets become falsified as Pareto candidates; and if both refa-
tions Xj < Xz and Xz = X hold, both sets keep being Pareto
candidates.

With these concepts, figute 1 is analysed. The set of esti-
mates 5 is not auto-consistent, and therefore is falsified as
a Pareto candidate, The sets P} to 2y are each one auto-
consistent and could be considered, therefore, as Parefo-
candidates if only one of them were available. There is an
ordering relation among these Pareto-set estimates:

P<B <Py < {Bs, P} <P (9)

This ordering corresponds to a dominance ordering. If all
these sets were available, the only Fareto candidate would
be B, since:

P =¥(PUBUBUBUB) 10)

The only sets that are niot “ordered”, in figure 1 are #5 and
Py, If they were both available, they would be both falsified
as Pareto candidates, without need for any additional infor-
mation,

Extension: Another kind of analysis that is useful for
evaluation of a Pareto-set estimate is determining to what ex-
tent it covers the Pareto surface. For this purpose, some ad-
ditional definitions are necessary.

Consider the space 7 of the objective vectors, Lete >0Obea
fixed real number, and & € 9 a solution point. The set 8(-,-)
is defined by:

3(e,h) = {g € 7 such that [g — A| <€} (11)
Take the set X = {x;,..., 0}, X C 7.

Definition 2 [e-Extension] The set @(t, X) defined by
e, X) = Lv} 8(g,x:) (12)
i=1

is the e-extension of the set X. a

For any set X, ©{g,X) D X trivially. Consider now two sets
X1 and X5 such that X) < X; and X; < X3, i.e., both sets are
Pareio candidates, and let be given an £ > 0. The following
relations become defined:

e X)X & X 3x
(13}
[
QX)X & 42X
The following situations can ogcur:

E
Xy :E) Xp and Xz O Xj: In this case, the sets Xy and X arc
said extent-equivalent.

£ E
X1 D X and X3 2 X;: Tn this case, the set X is said to be
an exteni-subset of set X;.

E &
Xy A Xz and X5 7 X): In this case, the sets are said to be
extent-incommensurable.

If some set is an extent-subset or if it is extent-
incommensurable when compared with another set, then it
becomes falsified as a Pareto candidate.

Extremal Data: Specifically for the 6/ #£. problem
in the full state-feedback case, there are other consistency
data that are @ priori Xnown: there are analytical tools for
calculating the individual optima of beth the #6 and 7L, ob-
jectives. This means that the extremal poinis of the Pareto set
are known. In figre 1, if this were the case, the sets P; and
%4 would become both falsified as Pareto candidates. The
sets P and B, taken individually, would remain as candi-
dates.

4 Current Approaches

The following constrained mono-objective optimization
problem is the useal formulation for the generation of so-
lutions for the multiobjective #5 / #4, problem:

Problem 2: The Mixed 74/#L. Single-Run Design. Let the
disturbance attenuation level Y > O be assigned with a fixed
value, Let S denoie the set of stabilizing static controllers of
compatible dimensions, Find Kz.. € S such that:

Ky minimizes {|[Ha,;, (K2
(14)
SubjECt to "szzz(K)”"“ <Y

This is a constrained non-linear, non-smooth and non-convex
mono-objective optimization problem with a possibly non-
convex, non-compact and unbounded feasible set. The set of
solutions of the multiobiective problem is obtained by vary-
ing the constraint paramenter y. Note that, due to these char-
acteristics, the set of exact solutions for different ¥'s cannot
be affirmativeily characterized — this implies the need for a
falsification procedure for solution characterization.

Let be given any optimizaticn algorithm to solve Problem 2
several times, with different ¥'s, in order to generate an es-
timate of the Pareto set. The estimated set is likely to be
not only a Pareto sub-optimum, but even non auto-consistent,
due 1o the facts: a single solution is found in each optimiza-
tion algorithm run; the solutions are not taken as a set with set
properties; the mono-objective optimization algorithms that
are employed are likely 10 find only local minima of Prob-
lem 2; these minima are not necessarily related, from one run
to another one. An exception occurs for the earlier LMI (Lin-
ear Matrix Inequatities) formulation of the mixed objective
problem, in tenms of conservative convex atgorithms. It is
based on sufficient but not necessary conditions, what means
that Problem 2 is modified in LMI formulation, being only
approximativelly solved. Therefore, these algorithms lead to
solutions that do not belong to the Pareto set and, in fact,
can be sigrificantly far from it. However, since the LMI for-
mulation becomes convex, any single run of the optimization
problem leads to its giobal solution. Due jo this, the LMI
algorithm does furnish points that are auto-consistent. How-
ever, it is an easy task finding other solutions that lie below
the curve Py that is found with the LMI algorithm.

Different algorithms have been employed as optimization en-
gine instances for solving Problem 2. Recently, an iterative
non-convex algorithm that solves a sequence of LMI (Lin-
ear Matrix Inequalities) problems that approximate the exact

3999



BMI (Bilinear Matrix Inequalities) form of Problem 2 has
been propesed in order 1o furnish less conservative solutions
to 24 /7L problems [5]. Other heuristic solutions have been
proposed for these problems, sometimes employing Genetic
Algorithms {3], or other non-convex optimization schemes
{7], with the aim of approaching solutions belonging to the
set 2. All these algorithms can furnish solutions that are not
auto-congsistent.

The old, popular and consesrvative, LMI formulation and its
succedaneum, the BMI formnlation, are studied here as ref-
erence solutions that will initialize the multiobjective algo-
rithm. Any other solutions could be employed for the same

purpose.

4.1 Matrix Inequalities Formulations

In a matrix inequality setting the exact mixed control prob-
lem, as formulated above, is the direct combination of the
actual 4 norm computation with the Bounded Real Lemma.
Namely, assuming that the closed-loop system is asymptoti-
cally stable, the optimal 74 norm computation is perfortned
by

”me ”% = )}:{fj{Tr(])} (15)
s.L [ C“))' ] >0 (16)

X2+ XA,
i B0yx, <o @

Where for a symmetric block matrix, the symbol # denotes
the sub-matrices that lie above the main block-diagonal,

On the other hand the Bounded Real Lemma is stated in the
following way: Let ¥ > 0 be given, Ay is asymptotically sta-
ble and || H w, il < vif and only if there exists a symmetric
definite positive mattix X.. such that

ALIX,, + XA * *
BEYX. -1 x {<0 (18)
c? 0 —¥I
Thus the exact mixed #4/H. control problem can be comr-
pletety restated as in the following, with the simple sub-

stitution of the closed-loop matrices given in (3) into
(16), 17, (18):

Problem 3: Determine a stabilizing static feedback control
K that achieves

r = T
8 AT}
J *
s.t X->0, [(C1+D|KC)’ Xz] >0
(A+BKCYXy+X2{A+BKC) <0
(B1+BKE\)'X, -1

(B;+ BKE;) X - x| <0

{(A +BKCYX.o +Xo{A+BKC) *

G+ DEC 0~

4.1.1 Standard LMI Formulation: For the state
feedback case, the conventional strategy adopted in the lit-
erature is based on the simple change of variables of type
K =ZW™!, with the imposition W = X5 '=x;!,C=1and
Ey =0, k= 1,2 in Problem 3. This allows to obtain the
following optimization LMI control synthesis description:

Probiem 4:
T = Zn%r} r{J}

*]>0

st [(qw +DZy W

) 4
{AW+WA +Z'B +BZ _*I] <0

B, .

AW+ WA +Z'B +BZ = *
<9
CW+DoZ 0 —¢I

where [|[Hyw, |3 <Y, iHyw, |l < ¥ and the static state feed-
back gain is given by K =ZW 1,

4.1.2 BMI Formulation: This formulation is derived
from the recent paper [3] (for details one can see that paper),
The key idea is to handle the non-affine characteristics intro~
duced by non-positive quadratic terms when one substitutes
(3) in (16)-(18) by means of matrix upper bounds. Problem3
becomes, after these operations ([S5]) :

Problem 5:
Q = X rr,r‘nr,},K {Tr(N)}
J *
5.t X.>0, [(Cl +DiKCY XJ >0

r Py * *  x
BX2 @ o x

BX,+KC 0 I *

L B'X; KE, 0 -I

., * * ok

B;_Xu lI’,..g * *

BX.+KC 0 —I =
B'X. KE, 0 I

*
*
* <0
*
| Cy+DHKC 0 0 0 —’)‘21

@) = A'Xp4XpA-2X,BLy - 2L\B'Xy + 211,
—CK'M-MKC+M'M

Dy = AX.+XA-2X.BI,-2B'K..+ 20,

—~CK'M -M'KC+M'M

—I - EK'N —NKE) + NN,

—1 - E,K'Ny — NJKE; + NUN,
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M=KC, L, =BX;, L,=BX., Ny=KE), N, =KE;
Note that Problem 5 can be easily restated as a static state
feedback mixed problem with C =1 and E, =0, k= 1,2.
Adopting the above formulation, the following iterative al-
gorithm is proposed in [5].

Iterative Algorithm
STEP 1 - Set K(® = K, where K is the optimal solution
of Problem 4 as well as (X\7) ! = (™)~ =W and
M=% =Y Seti=1
STEP 24 - In Problem 3 set Xz = X; 2! , X = X5 an
r=ri-1,

STEP 2B - With K = K{-1) fixed, solve Problem 3 with
respect to X3 > 0, XUV > 0 and 16D, -
STEP 2 - In Problem 5, set M = K¢, Ly = B'x{'™Y,

I =B'x4V N, = K6-UE, and N; = K& DE, (for
the particular case of state feedback E = 0, k = 1,2

and C=1I).
STEP 3 - Solve Problem 5 for XZ") >0, X9 5 0, KD and
o,

STEP 4 - If |0~ — Qf}H] < ¢ for a sufficiently small pos-
itive scalar £, then stop. Else, set i =+ 1 and return to
step 2a.

For the static output feedback problem, the algorithm can be
started with any feasible coniroller X that assures a distur-
bance attenuation level ¥, i.e. [|Hyw, . < ¥ and with finite
|z, w, }|3. In this case one can use, for example, the approach
proposed in [1].

5 Multiobjective Genetic Algorithm

The problem of optimization of arbitrary functionals has
been, since the early development of the optimization theory,
a main goal. However, each different method that was devel-
oped was built with several assumptions on the structure of
the functional to be optimized: linearity, convexity, differen-
tiability, etc. The class of methods that has attained the best
approximation to the problem of “arbitrary functional opti-
mization” is the family of “stochastic optimization methods”,
A group of methods that has attained large applicability, from
this class, is the family of “Genetic Algorithms”,

Due to the “global optimization™ properties of the Genetic
Algorithms, they have become a natural tool for problems
like the %6/ 2L, design {3]. Another potential reason for this
suitability is pointed out bere: since the genetic algorithms
work with populations of candidate solutions, instead of &
single candidate solution like other optimization methods,
they are able 10 incorporate operators that exploit the group
properties of the Pareto-set estimates.

5.1 Multiobjective Genetic Algorithm Construction

The multiobjective genetic algorithm ¢an be built throught
the modification of any mono-objective genetic algorithm. A
“Genetic Algorithm” can be defined as the successive appli-
cation of the following operations fo a set of tentative solu-
tions of the problem (calted “population”):
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crossover: The population is divided in pairs, and each pair
of sotutions is replaced by a new pair, thal is generated
empleying information retained from the original pair;

mutation: Soine solutions (“individuals”) are randomly
chosen to receive a perturbation in its parameters;

selection: The population that arises afier the crossover
and mutation operations is modified, with the exclu-
sion of some “individuals” and the replication of other
ones, being maintained the total size of the population.
The probability of being replicated is greater for the
greater optimization functional values (for maximiza-
tion problems);

elitism: Some individuals (the “best” ones) are determinis-
tically maintained in the poputation.

After some applications of these operations, the “population™
converges to solutions that, in some sense, are “good approx-
imations” of the global solutions of the problem.

Any mono-objective genetic algorithm can be adapted
through the following guidelines, in order to make a multi-
objective genetic algorithm:

s Select, from the initial population Qyp, the group of in-
dividuals that form the maximal consistent subset Fp.
This operation is defined by: % ="P(Q).

s At each iteration, a new population @, is generated by
the application of the genetic operators. Re-calculate
the estimate 2 = ¥(Q), eventually excluding some
individuals and including other ones, The set %, is em-
ployed as the “elit set” in the “elitism” operation.

e A “niche” technique shonld be employed, in order to
avoid the inclusion of points that ar¢ mnch close one
to the other in the set . In this way, the solution £,
set suffers a pressure for covering the whole set P,

= The functional that guides the selection operation
should be composed with the individual functionals
that compose the objective vector, In the specific im-
plementation employed here, they are scaled and then
aggregated with the operator max.

In this way, instead of searching for single solutions, the
whole set ? is searched, as an object with intrinsic properties.
The design procedure starts with any non-consistent or con-
servative algorithm, that furnishes an initial solution set %,
that is further refined by a Multiobjective Genetic Algorithm
(MGA). Dencte by Z the Pareto-set candidate produced by
MGA at i-th iteration. The multiobjective genetic operators
have been tailored such that;

niche+selection: Produces 2 pressure that leads the Pareto
estimate E’,,.g, to increase its “extension”,

elitism: Detemnmsucally guarantees that: () B3 < P and
@) Ba1 5 2
selection: Produces the enhancement pressure that a][ows

that eventually iy; < 2 and & 25 Byt
The multiobjective genetic algorithin, therefore, extends the

initial algorithm selutions in two senses: (i) Pareto set esti-
mates that are under the former estimates are nsually found



by the MGA; (ii) Some “failures” in the estimate of F are
“repaired” by the MGA. Some “holes” in the Pareto set esti-
mates can be filled by the MGA, in this way enhancing the
Pareto estimate.

6 Example

In this section, for the sake of space, only one example of
algorithm combination with the multiobjective genetic algo-
rithm is presented. A single-channel case is employed, for
simplicity.

6.1 Full state feedback

A very simple system is presented, in order to aliow the vi-
sualization of the objective space (of #£ and 7L closed-loop
norms). The matrices of the system are:

A=[—O.3868 0'0751J,Bl=[0'0591 0 ]

0 —0.0352 0 1.7971
—0.6965 _ (00346 0.0535 _ 0
B_[1.6961]’C‘_[ 0 0 ]’D‘“[o.szsnl
This system is controlled with a state-feedback controller:
u= [ K K ]X

The controtler design problem is solved throngh: (i) the stan-
dard {(conservative) LMI formulation defined in Problem 4;
(ii) the “less conservative” BMI formulation defined in Prob-
lem 5; and (iii) the multiobjective genetic algorithm, starting
both from the solution set of Problem 4 and of Problem 5.
The closed-loop norms obtained are ploted in figure 2,

Figure 2: Parcto-sct estimates, in the space of objectives, obtained
from: (continuous line)- L. MI standard formulation; ¢o)-
BM1I “less conservative” formulation; (x)- multiobjec-
tive genetic algorithm starting from the LMI solutions;
{*)- multichjective genetic algorithm starting from the
BMI solutions.

Figure 2 shows that, in this case, the BMI formulation has
generated some solutions that are even more conservalive
than the ones generated with the LMI formulation. Both ini-
tial condition sets fot the multiobjective genetic algorithm
have lead to the same solution set, that is less conservative
and consistent with the characteristics of a Pareto-set. The
MGA solution sets cover all the extension beiween the two
individual optima, while the BMI solution set leaves some
spaces unfilled.
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7 Conclusions

By construction, it becomes a tautology that the output Py,
of the proposed multiobjective genetic algorithm is the best
estimate that is available for the Pareto-set in mixed %5 / #L,
control design problems. The main consequences of this fact
are: (i) Any algorithm that claims to find “the least conserva-
tive” solutions for this problem shouid have its output set B,

such that B, < B, and B, 5 Prupa. The proposed schetme
can be seen, therefore, as a strong validation procedure for
any mixed criteria controller design algorithm; (ii} Other-
wise, any algorithm should be coupled to MGA, in order to
be able to generate the best approximation to the Pareto-set
P. Any algorithm that does not intend to cormpletely solve the
mixed problem, but only find some tentative solutions can be
aggregated in this way.

Up to the present knowledge on the mixed 4 / #L. problem,
the best design procedure is aiways finished by the applica-
tion of MGA, for finding better solutions, or for corroborat-
ing the conjecture (that cannot be proven) that some solution
is already the best possible one.

The presented methodology. although being presented in the
context of the 76 /#L. control problem, is not specific for
this domain, Any design problem with multiple objectives
could be anaiysed under the proposed tools, with minor adap-
tations,
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