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ABSTRACT

In this paper an effective meta-heuristic approach is
proposed to realize a satisficing tradeoff method for solv-
ing multiobjective combinatorial optimization problems.
Firstly, Pareto optimal solutions (individuals) are gene-
rated by using a genetic algorithm with family elitist
concept for a multiobjective combinatorial optimization
problem. Then, we try to find a preferred solution of the
decision maker based on the satisficing tradeoff method.
In this paper a new meta-heuristic satisficing tradeoff
method is proposed in which we do not need to solve a
complex min-max problem in each iteration, but we try to
find a min-max solution in the Pareto optimal solutions
(individuals) generated by the genetic algorithm. We
further revise the min-max solution by using a local
search approach such as a simulated annealing method. As
a numerical example a flowshop scheduling problem is
included to verify the effectiveness of the method
proposed in this paper.

1. INTRODUCTION

In advanced production management systems perform-
ance evaluation is usually to be done under multiple
objectives. Furthermore, in production scheduling, per-
formance evaluation is to be done under combinatorial
optimization. Since combinatorial optimization problems
are usually NP-hard or sometimes NP-complete (Cook, et
al., 1998), an optimal solution or even a suboptimal
solution is hard to find even for a single-objective
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problem. Therefore, nobody has tried rigorously to solve
multiobjective combinatorial optimization problems.

In this paper an effective meta-heuristic approach is
proposed to realize a satisficing tradeoff method for
solving multiobjective combinatorial optimization prob-
lems. Firstly, Pareto optimal solutions (individuals) are
generated by using a genetic algorithm (Goldberg, 1989)
with family elitist concept (Bedarahally, et al., 1996) for
a multiobjective combinatorial optimization problem.
Then, we try to find a preferred solution of the decision
maker based on the satisficing tradeoff method. A
conventional satisficing trade-off method (Nakayama and
Sawaragi, 1984) needs to solve a complex min-max
problem in each iteration of the algorithm for a given
aspiration level of each objective function. In this paper a
new meta-heuristic satisficing tradeoff method is pro-
posed in which we do not need to solve a complex min-
max problem in each iteration, but we try to find a min-
max solution in the Pareto optimal solutions (indivi-
duals) generated by the genetic algorithm. We further
revise the min-max solution by using a local search
approach such as a simulated annealing method. As a
numerical example of a multiobjective combinatorial
optimization problem a flowshop scheduling problem is
included.

2. SATISFICING TRADEOFF METHOD

In general, performance evaluation problems in produc-
tion management systems can be formulated as



minimize Ax)=(fi(x), H(X),...,[,(x)

subjectto xE€X

where x denotes decision vector, X denotes the feasible
region of the decision vector, fi(x), i =1,2,...,r denotes
multiple objective functions to be minimized, and r
denotes the number of objective functions.

Basic algorithm of satisficing tradeoff method for solv-
"ing multiobjective optimization problems can be written
as follows (Nakayama and Sawaragi, 1984):

Step 1. Specification of the range of each objective
function:

Specify the ideal value £ and the nadir value f. for each

objective function f(x), i =1,2,...,r by minimizing and

maximizing each objective function independently.

Step 2. Specification of the aspiration level:
Ask the decision maker the aspiration level /7, i =1,2,....r
for each objective.

Step 3. Solving min-max problem:
Let normalized weight for each objective be

1

W = ————

1 *
fi —f»
Solve min-max problem
minimize { max w{ fi(x) - fI)}
x 1Sisr
subjectto x€X
This min-max problem is interpreted to minimize the
maximum value of normalized dissatisfaction level as
shown in Figure 1.
Dissatisfaction

Max value of normalized
¢dissatisfaction level

Aspiration level

Satisfaction

Figure 1 A min-max problem

Instead of solving this min-max problem, an equivalent
optimization problem

minimize {z+ « 2 wil fi)f}
i =1

X,z i=

subjectto  w(f(x)fN=z, i=1.2,...r
x€X

is usually solved for small «, say 10°. Let x be optimal
solution to the min-max problem.

Step 4. Tradeoff analysis:

Showing the solution x and the resulting fx) to the
decision maker we ask him if he would be satisfied with
this solution. If he would not be satisfied with this
solution, we ask him a new aspiration level for each
objective function going back to Step 2.

3. GENERATION OF A SET OF PARETO OPTI-
MAL SOLUTIONS (INDIVIDUALS) BY GENE-
TIC ALGORITHM

In this section we propose a method of generating a set of
Pareto optimal solutions (nondominated solutions) of
multiobjective optimization problems based on the family
elitist strategy (Bedarahally, et al, 1996) in Genetic
Algorithm (GA).

3.1 Genetic Algorithm and Multiobjective Optimiza-
tion

GA (Holland, 1975; Goldberg, 1989) is one of the most

promising evolutionary computation method in which the

process of biological evolution is simulated. GA for a

particular problem have the following five components:

(1) A genetic representation for a solution to the
problem,

(2) A way to create an initial population of individuals
which represent potential solutions,

(3) A function for evaluating fitness of the solutions,

(4) Genetic operators such as crossover, mutation and
inversion that alter the composition of offsprings
during the reproduction, and

(5) Parameter values that the GA uses, e.g. population
size, number of generations, crossover rates, proba-
bility of mutation.

A significant advantage of GA for applying to multi-
objective optimization problems is that GA can generate a
set of Pareto optimal solution (individuals) simuita-
neously (Fonseca and Fleming, 1995; Tamaki and
Nishino, 1998), where a Pareto optimal solution is a
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nondominated solution such that there exists no feasible
solution which improves all the objective functions.
Therefore, the decision maker has to tradeoff among
multiple objective functions to improve some of them.

3.2 Generation of a Set of Pareto Optimal Solutions
(Individuals) by GA

For applying GA to multiobjective optimization problems
it is necessary to find an effective method for selecting
Pareto optimal individuals in the current population.
Several approaches have been proposed in this direction.
Here, we propose a method to use family elitist strategy
(Bedarahally, et al., 1996) in addition to parallel selection
(Goldberg, 1989) and Pareto preservation strategy
(Tamaki and Nishino, 1998).

(1) Parallel Selection:

Individuals of population are divided into sub-popula-
tions where the number of sub-populations is equal to r,
the number of objective functions. Sub-populations of the
next generation are reproduced from the current
population based on the value of each objective function.

(2) Pareto Preservation Strategy:
All the Pareto optimal individuals in a population at each
generation are preserved in the next generation. If the

number of Pareto optimal individuals would exceed the
size of the population, parallel selection would be per-
formed.

(3) Family Elitist Strategy:

Population is divided into several families. Each family
contains r individuals. Pairing, crossover, mutation and
reproduction are performed in a family. Parallel selection
and Pareto preservation strategy are used for reproduc-
tion.

Pareto preservation strategy for multiobjective optimiza-
tion corresponds to elitism (Goldberg, 1989) for single-
objective optimization, and non-dominated individuals
contained in a population in each generation are all pre-
served in the next generation. By this strategy compro-
mise solution could be obtained. Parallel selection from
the Pareto optimal individuals enables us to improve each
objective function further. :

Family elitist strategy enables us to avoid the situation
that the population is composed of strong individuals
only. Therefore, we could expect to get Pareto optimal
individuals from wider area of a set of feasible solutions
without converging to unbalanced solution at the early
stage. Figure 2 shows a family elitist concept used in GA
and Figure 3 shows genetic operations in the families.

-th (++1)-th
generation generation
Family 1
Family 1 Family 2
Family 2
Family N Family N
N > N
Population Population
Crossover Reproduction
Mutation

Figure 2 Introducing a family elitist concept in GA.
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Select individuals based
on each objective function

Individual 1

Individual 2
Individual 1 Individual 1
Individual 2 Individual r Individual 2
’ Individual 7 ’ P! Individual r
Family i Offsprings Family i
Population Family i
Crossover Reproduction
Mutation
Figure 3 Genetic operations in families.
Generation of Pareto optimal
solutions (individuals) by GA
Setting up aspiration level
]
\ 4 A 4
Selection of the /A set of Pareto optimal
best individual ; solutions (individuals)
I \
Tradeoff analysis ¢
Local search by SA

Solving min-max problem

Is the DM satisfied
with this solution?

Figure 4 Flow of a meta-heuristic satisficing tradeoff method.

4. META-HEURISTIC SATISFICING TRADEOFF
METHOD

Satisficing tradeoff method is applicable for any prob-
lems, if we could provide a method to solve min-max
problems, but for a complex combinatorial multiobjective
problems, it is hard to solve min-max problem. For a
larger scale problem it is getting harder to solve min-max

problem in a short time.

In this paper we propose a meta-heuristic satisficing
tradeoff method. In this method we generate a set of
Pareto optimal solutions (individuals) of a combinatorial
multiobjective optimization problem by GA and use them
as a candidate of solution of the min-max problem to be
solved. That is, we choose a solution of min-max problem
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from a set of Pareto optimal solutions (individuals).
Starting from this solution we try to pursue local search
by a simulated annealing method. Tradeoff analysis
among multiple objective functions is performed by inter-
action with the decision maker. That is, a solution ob-
tained by the local search is shown to the decision maker.
If he is satisfied with this solution, iteration is terminated.
If not we ask him to revise his aspiration level for each
objective function. Then, we try to find another min-max
solution from the Pareto optimal solutions (individuals),
and so forth. Figure 4 shows a flow of meta-heuristic
satisficing tradeoff method.

In this meta-heuristic satisficing tradeoff method we just
try to find a min-max solution from the Pareto optimal
solutions (individuals) of the combinatorial multiobjec-
tive optimization problem instead of solving complex
_min-max problem in each iteration. Therefore, we could
expect to get a satisfied preferred solution for the
decision maker within a short computation time.
Furthermore, by using family elitist strategy in GA for
obtaining Pareto optimal solutions we could expect to get
better compro-mise solution in a set of Pareto optimal
solutions com-pared with the method without using
family elitist strategy.

5. FLOWSHOP SCHEDULING PROBLEM

A flowshop scheduling problem in this paper has two
cascade processes A and B. Process A has two parallel
processing units 1 and 2. There exists no buffer between
these two processes. All the products are first processed
at the Process A either by the processing unit 1 or 2, and
immediately right after this process they are processed at
the Process B. There are four objectives to be minimized
as follows:

Minimize f; = total processing time

Minimize f, = number of setups at Process A

Minimize f; = the sum of variation rate of the products
processed

Minimize f; = the penalty for violating the continuous
processing constraints

5.1 Generation of Pareto Optimal Solutions (Indivi-
duals) by GA

Figure 5 shows an example of representing individuals in
order to generate a set of Pareto optimal solutions (indivi-
duals). Figure 6 shows an example of restriction when
we take into account the processing order. Figure 7
shows an example of crossover operation in GA and
Figure 8 shows an example of mutation operation.
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Processingorder 4 7: 1 2 6, 3 5 8
Machinenumber 0 1; 1 0 1:0 1 1
Processing order 7 415 6 1 2i8
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Figure 5 An example of individuals.
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Figure 6 Generating an individual taking into
account the restriction of serial processing order.
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Figure 7 An example of crossover operation.

. 1
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Figure 8 An example of mutation operatiom.

Since there are 4 objective functions to be minimized,
number of individuals in a family is set to 4.



5.2 Computaional Results

We solved a flowshop scheduling problems to process
100 products by the meta-heuristic satisficing tradeoff
method. We compared the method having family elitist
strategy dealing with 25 families with the method having
no family elitist strategy in GA. We obtained better solu-
tion by the method having family elitist strategy as shown
in Tables 1 and 2.

Parameter values used in GA are as follows:
(a) Number of the individuals: 100

(b) Number of generations: 1000

(c) Rate of crossover: 0.6

(d) Rate of mutation: 0.001

Parameter values used in simulated annealing are as
follows:

(a) Initial temperature: 100

(b) Freezing temperature: 0.1

(c) Number of perturbations at each temperature: 1000

(d) Decreasing rate of temperature: 0.9

Table 1 Computational result with family elitist
strategy (Number of families: 25).

Criteria h f £ A
1 Aspiration level 416 0 156 0

Value 442 27 30.11 1024
2 Aspiration level 442 27 30.11 0
Value 446 28 32,69 52
3 Aspiration level 460.9 324 35.82 0
Value 452 30 33.00 24
4 Aspiration level 469.9 38.8842.67 0
Value 469 35 39.63 0

Table2 Computational result without family
elitist strategy.

Criteria fi 5 fi /i
1 Aspiration level 416 0 156 0

Value 494 49 4024 1028
2 Aspirationlevel 494 490 4024 O
Value 471 46 3941 262
3 Aspiration level 509.6 49.0 40.24 0
Value 508 43 36.54 2
4 Aspiration level 509.6 58.8 47.97 0
Value 502 45 3933 0

6. CONCLUDING REMARKS

In this paper a meta-heuristic satisficing tradeoff method
is proposed to solve multiobjective combinatorial optimi-
zation problems effectively. Since many performance
evaluation problems in production management are
multiobjective and combinatorial in nature, the method
proposed in this paper is expected to be used effectively
in many real production management systems.

Further research problems to improve the method are
how to set up aspiration levels, how to evaluate Pareto
optimality of the individuals, application to many kinds
of real problems, and so forth.
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