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Abstract- This paper considers a transportation 


problem for moving empty or laden containers for a 


logistic company. A model for this truck and trailer 


vehicle routing problem (TTVRP) is first constructed 


in the paper. The solution to the TTVRP consists of 


finding a complete routing schedule for serving the 


jobs with minimum routing distance and number of 


trucks, subject to a number of constraints such as time 


windows and availability of trailers. To solve such a 


multiobjective and multi-modal combinatorial 


optimization problem, a hybrid multiobjective 


evolutionary algorithm (HMOEA) is applied to find 


the Pareto optimal routing solutions for the TTVRP. 


Detailed analysis is performed to extract useful 


decision-making information from the multiobjective 


optimization results The computational results have 


shown that the HMOEA is effective for solving 


multiobjective combinatorial problems, such as finding 


useful trade-off solutions for the TTVRP. 


1 Introduction 


Singapore ranks among the top international maritime 


centers of the world. It is the focal point for some 400 


shipping lines with links to more than 740 ports 


worldwide, (Maritime, 2002). A general model for vehicle 


capacity planning system (VCPS) consisting of a number 


of job orders to be served by trucks and trailers daily was 


constructed for a logistic company that provides 


transportation services for container movements within the 


country (Lee et al., 2003). Due to the limited capacity of 


vehicles owned by the company, engineers in the company 


have to decide whether to assign the job orders of 


container movements to its internal fleet of vehicles or to 


outsource the jobs to other companies daily.  


1.1 The Trucks and Trailers Vehicle Routing Problem 


By analyzing different kinds of job orders received from 


the company, this paper presents a transportation solution 


for trucks and trailers vehicle routing problem (TTVRP) 


containing multiple objectives and constraints, which is 


extended from the VCPS model with detail maneuver of 


trailers in a routing plan. In TTVRP, the trailers are 


resources with certain limitations similar to real world 


scenarios and the allocation of trailers in different 


locations could affect the routing plans. The TTVRP is a 


difficult problem which involves many intricate factors 


such as time window constraints and availability of 


trailers. Instead of handling jobs by the internal fleet of 


trucks, the jobs can also be considered for outsourcing, if 


necessary. The routing plans in TTVRP also need to 


determine the number of trailer exchange points (TEPs) 


distributed in the region and to cater different types of 


trailers that are available at the trailer exchange points. In 


this paper, various test cases for the TTVRP model are 


generated with random variables simulating the long-term 


operation of business activities. The management can thus 


formulate the planning for certain variables, such as the 


number of trucks (long term capital cost) so that the day-


to-day operational cost could be kept at the minimum. 


1.2 Background on Vehicle Routing Problems 


The vehicle routing problem with time windows 


(VRPTW) diverts from the famous vehicle routing 


problem (VRP). In this problem, a set of vehicles with 


limited capacity is to be routed from a central depot to a 


set of geographically dispersed customers with known 


demands and predefined time window. Surveys about 


VRPTW can be found in Solomon (1987), Kilby et al., 


(2000), Toth and Vigo (2002), Bräysy and Gendreau 


(2001) etc. In contrast to the TTVRP, the VRPTW neither 


have any limitation on resources of trailers nor the 


outsourcing of jobs to external companies.  


The vehicle scheduling problem (VSP) (Baita et al., 


2000; Dror, 2000) assumed that the routing to different 


sites can be completed with multiple trips. The objective 


is to minimize the number of vehicles and the cost 


function based upon deadheading trips (gas, diver etc) and 


idling time for the vehicle. Its constraints include the 


traveling distance and time for normal service and 


refueling. In contrast to VRP, one customer may be visited 


more than once or not at all, which is solely depending on 


the trips data. Although trips in VSP may be analogous to 


the concept of a job in TTVRP, the VSP does not include 


the complexity of trailer type constraints. 


Chao (2002) presented the problem of TTRP (truck 


and trailer routing problem), which considers the fleet size 


of trucks and trailers in the model. In order to provide 


service to different categories of customers, there are three 


types of routes in a solution: (1) route that a truck travels 


alone (2) route that a truck and trailer are required (3) 


route that trailer is only required at certain sub-tour. 


Unlike TTRP, the TTVRP requires the trucks to visit 


trailer exchange points for picking up the correct trailer 


types depending on the jobs to be serviced. Besides, jobs 







that are not routed by self-fleets in TTVRP can be 


outsourced to external companies. 


Generally, vehicle routing problems have been 


attempted by different approaches ranging from exact 


algorithms (Applegate et al., 2002; Bard et al., 2002) to 


heuristics ( Breedam, 2002). A number of meta-heuristics 


such as Tabu search (Cordeau et al., 2001; Lee et al., 


2003), simulated annealing (Chiang and Russel, 1996) and 


genetic algorithms (Gehring and Homberger, 2001) have 


been applied in large-scale vehicle routing problems. The 


TTVRP addressed in this paper is NP-hard, which 


involves the optimization of routes for trucks to minimize 


routing distance and number of trucks concurrently. 


Existing routing approaches that strive to minimize a 


single criterion of routing cost or number of trucks are not 


suitable for solving such a multi-modal and 


mutltiobjective combinatorial problem. The TTVRP 


should be best tackled by multiobjective optimization 


methods, which offer a family of Pareto-optimal routing 


solutions containing both the minimum routing cost and 


number of trucks.  


In this paper, a hybrid multiobjective evolutionary 


algorithm (HMOEA) that incorporates the local heuristic 


search and the concept of Pareto�s optimality for finding 


the trade-off is applied to solve the TTVRP. The HMOEA 


optimizes the objectives concurrently, without the need of 


aggregating multiple criteria into a compromise function. 


Unlike conventional multiobjective evolutionary 


algorithms (MOEAs) that are designed with simple coding 


or genetic operators for parameterized optimization 


problems (Knowles and Corne, 2000), the HMOEA is 


featured with specialized genetic operators and variable-


length chromosome representation to accommodate the 


sequence-oriented optimization problem in TTVRP. 


The paper is organized as follows: Section 2 describes 


the scenario and modeling of the TTVRP. Section 3 gives 


description to the HMOEA and its various features 


including variable-length chromosome representation and 


specialized genetic operators. Pareto fitness ranking and 


sharing, and local search heuristics are also described in 


Section 3. Section 4 presents the extensive simulation 


results and discussions for the TTVRP. Conclusions are 


drawn in Section 5. 


2 The Problem Scenario and Modeling 


The TTVRP model with detail maneuver of the trailers in 


a routing plan is extended from a real world VCPS system 


proposed by Lee et al., (2003). The movement of 


containers among customers, depots and the port are 


major transportation job orders considered. A container 


load is handled like a normal truckload but these loads use 


containers with a chassis instead of trailers only. From the 


equipment assignment point of view, a correct trailer type 


is essential for the routing. For an import job, a loaded 


container is taken from a port to a customer warehouse 


and returned empty to the depot. For an export job, 


however, an empty container is picked up from the depot 


and taken to the warehouse before returning loaded to the 


port. Every job order contains the location of source and 


destination as well as the customers� information. Load 


requirement and time windows are specified as hard 


constraints in the model.  


The routing needs to consider both the locations of 


truck and trailer. Intuitively, there are times when a truck 


has a correct trailer type and thus can serve a job without 


going to a trailer exchange point. Otherwise, a truck is 


required to pick up a trailer (from the nearest TEP where 


the trailer is available) when it has mismatch trailer type 


or does not carry a trailer. The number of trailers available 


at an exchange point depends on how many trailers were 


picked up and returned to the TEP.  


2.1 Modeling the Problem Scenarios 


Based on the scenarios described, some refinements have 


been made to the model proposed by Lee et al., (2003). 


The problem is modeled here on a daily basis where the 


planning horizon spans only one day. All import and 


export jobs consist of two sub-trips and a two-day interval 


at the customer warehouses. The import and export jobs 


can be broken into two independent tasks, where each of 


them falls into a different planning horizon. In this way, 


job orders are broken into sub-job type precisely (referred 


as a task). Generally a task involves traveling from a 


source to destination as listed in Table 1. 


Table 1  The task type and its description 


Task 


type 


Task  Source Dest. Trailer 


type 


1 Port WH 20 


2 Port WH 40 


3 WH Depot 20 


4


Import job 


WH Depot 40 


5 Depot WH 20 


6 Depot WH 40 


7 WH Port 20 


8


Export job 


WH Port 40 


9 Port Depot 20 


10 Depot Port 


/Depot 


20


11 Port Depot 40 


12


Empty 


container 


movement 


Depot Port 


/Depot 


40


*WH � Warehouse 


The number of trailers at TEPs depends on the trailers 


that are left over from the previous planning horizon. All 


the pickup, return and exchange activities can also change 


the number of trailers available. Besides, a number of 


trailers could also be parked at the customer warehouses 


instead of the TEPs. All these undetermined factors 


suggest that the resource of trailers available at each TEP 


at the initial of planning horizon is random. A truck has to 


pick up a correct trailer from the nearest TEP if it serves 


task type 1, 2, 5, 6, 9, 10, 11 or 12 and does not have a 


trailer or has an incorrect trailer type. For task type 3, 4, 7 







or 8, the truck does not need to visit a TEP before 


servicing the task since the correct trailer has been brought 


to the place in advanced. In contrast, trucks that serve sub-


job type 3, 4, 7 or 8 must not have any trailers. In this 


case, if a trailer is attached to the truck, it must be returned 


to a trailer exchange point before servicing the task. For 


example, a truck that serves sub-job type 7 leaves the 


destination (port) of a previous task with a trailer. If the 


same truck is to serve another task type 3, 4, 7 or 8, it 


must travel to a TEP to drop the trailer obtained 


previously. Obviously the availability of trailers at TEPs 


should be updated frequently since the number of trailers 


changes with the pick-up and return activities.  


2.2 Test Cases Generation 


The TTVRP models various factors affecting the routing 


performance, particularly on the importance of trailer 


resources such as the trailers allocation in multiple trailer 


exchange sites and the location of trailer exchange points. 


The test cases are generated based on the scenario of one-


day activity for a logistic company. The time windows for 


the source and destination of each job are generated 


according to the type of jobs. The cost for each task type 


is based on the way tasks are accomplished, i.e., by self-


fleet service or outsourced to external companies. As 


shown in Table 2, the test cases in this category are 


divided into 4 groups with different number of tasks in the 


range of 100 to 132, and all TEPs can contribute to the 


supply of any demands for trailers.  


Table 2  Test cases and the properties 


Group Test case* 
Job 


number 


Trailers at


each TEP 


test_100_1_2 100 1 or 2 


test_100_3_4 100 2 or 3 100


test_100_2_3 100 3 or 4 


test_112_1_2 112 1 or 2 


test_112_2_3 112 2 or 3 112


test_112_3_4 112 3 or 4 


test_120_1_2 120 1 or 2 


test_120_2_3 120 2 or 3 120


test_120_3_4 120 3 or 4 


test_132_1_2 132 1 or 2 


test_132_2_3 132 2 or 3 132


test_132_3_4 132 3 or 4 


*The last digit denotes the number of trailers 


allocated for each TEP 


3 A Hybrid Multiobjective Evolutionary 


Algorithm 


Evolutionary algorithms are global search optimization 


techniques based upon the mechanics of natural selection, 


which have been found to be very effective in solving 


complex multiobjective optimization problems (Burke and 


Newall, 1999; Jaszkiewicz, 2003; Deb, 2001; Knowles 


and Corne, 2000). Without the need of linearly combining 


multiple attributes into a composite scalar objective 


function, evolutionary algorithms incorporate the concept 


of Pareto�s optimality to evolve a family of solutions at 


multiple points along the trade-off surface. Several 


surveys are available for more information of 


multiobjective evolutionary algorithms, e.g., Coello 


Coello et al., (2002), Van Veldhuizen and Lamont (2000), 


and Zitzler and Thiele (1999). Although multiobjective 


evolutionary algorithms have been applied to solve a 


number of domain-specific combinatorial problems, such 


as flowshop scheduling, and timetabling, these algorithms 


are often designed with specialized genetic representation 


or operators for specific applications, which are hard to be 


used directly for solving the TTVRP. 


This section presents a hybrid multiobjective 


evolutionary algorithm designed for solving the TTVRP 


problem. The program flowchart of the HMOEA is 


illustrated in Section 3.1. The remaining sections present 


various features of HMOEA, including the variable-length 


chromosome representation in Section 3.2, specialized 


genetic operators in Section 3.3, Pareto fitness ranking in 


Section 3.4, and fitness sharing in Section 3.5. Following 


the concept of hybridizing local optimizers with 


multiobjective evolutionary algorithms for better local 


exploitations, Section 3.6 describes the local heuristic that 


is incorporated in HMOEA. 


3.1 Program Flowchart of HMOEA 


The program flowchart of HMOEA is shown in Fig. 1. 


The simulation begins by reading the information of all 


tasks. An initial population is then built such that each 


individual must at least be a feasible candidate solution. 


The initialization process is started by inserting tasks into 


an empty route one-by-one in a random order, where any 


task violating the constraints is deleted from the current 


route. The route is then accepted as part of the solutions 


and a new empty route is added to serve the deleted and 


remaining tasks. This process continues until all tasks are 


routed and a feasible initial population is built as depicted 


in Fig. 2. 


Once an initial population is formed, all individuals in 


the population will be evaluated and ranked according to 


the Pareto ranking scheme. A simple fitness sharing 


approach (Fonseca and Fleming, 1998) is applied to 


distribute the population along the Pareto front uniformly. 


The tournament selection scheme (Tan et al., 2001) with a 


tournament size of 2 is then performed, where individuals 


in the population are randomly grouped into pairs and 


those individuals with a lower rank in partial order will be 


selected for reproduction. A simple elitism mechanism 


(Tan et al., 2001) is employed to achieve a faster 


convergence and better routing solutions. The specialized 


genetic operators in HMOEA consist of route-exchange 


crossover and multimode mutation. To improve the local 


exploitation and internal routing of individuals, simple 


heuristic is performed at each generation of the HMOEA. 


It should be noted that the feasibility of all new 


individuals reproduced after the process of specialized 







genetic operations and local heuristic are retained without 


the need of any repairing mechanism. The evolution 


process repeats until a predefined number of generations 


are reached or no significant performance improvement is 


observed over the last 5 generations. 


Fig 1 The program flowchart of HMOEA 


Fig 2. The procedure of building an initial population 


3.2 Variable-Length Chromosome Representation 


The chromosome in an evolutionary algorithm is often 


represented as a fixed-structure bit string and the bits 


position in a chromosome are usually assumed to be 


independent and context insensitive. However, such a 


representation is not suitable for the order-oriented 


combinatorial TTVRP problem, for which the sequence 


among customers is essential. In HMOEA, a variable-


length chromosome representation is adopted, where each 


chromosome encodes a complete routing plan including 


the number of routes and tasks served by the trucks, e.g., a 


route is a sequence of tasks to be served by a truck. A 


chromosome may consist of several routes and each route 


is a sequence of tasks to be served. Such a variable-length 


representation is efficient and allows the number of trucks 


to be manipulated and minimized directly for the 


multiobjective optimization in TTVRP. Any task that is 


not assigned to a route is considered for outsourcing. 


3.3 Specialized Genetic Operators 


Specialized genetic operators of route-exchange crossover 


and multimode mutation are incorporated in HMOEA as 


described in the following sub-sections: 


3.3.1 Route-exchange Crossover 


Classical one-point crossover may produce infeasible 


routing sequence for combinatorial problems because of 


the duplication and omission of vertices after 


reproduction. A simple route-exchange crossover is 


adopted in HMOEA, which allows good sequence of 


routes or genes in a chromosome to be shared with other 


chromosomes in the population. The operation starts by 


grouping chromosomes into pairs randomly and the 


crossover is performed according to a predefined 


crossover rate (PC). The operation consists of two 


independent steps: (1) Two random routes (one from each 


chromosome) are selected and swapped between the two 


chromosomes; (2) The route with the highest number of 


tasks from each chromosome is swapped. To ensure the 


feasibility of chromosomes after crossover, each task can 


only appear once in a chromosome. Deleting a task from a 


route will only incur certain waiting time before the next 


task is served, and thus will not result in any conflicts for 


the time windows. Besides, any task that violates the 


trailer resources constraint will be assigned for 


outsourcing and hence all the reproduced chromosomes 


are feasible.  


3.3.2 Multimode Mutation 


During the crossover by HMOEA, routes� sequence is 


exchanged in a whole chunk and no direct manipulation is 


made to the internal ordering of the nodes for the TTVRP. 


A multimode mutation is adopted in HMOEAto optimize 


the local route information of a chromosome. A random 


number is generated to choose between two possible 


operations. The first operation picks two routes in a 


chromosome randomly and concatenates the first route to 


the second route before deleting the first route from the 


chromosome. In the second operation, the sequence that 


contains all the outsourced tasks is evaluated as a new 


route. The approach also checks feasibility on the route in 


order to delete any task that causes violation, and those 


deleted tasks will be considered as outsourced tasks. 


3.4 Pareto Fitness Ranking 


The role of HMOEA for multiobjective optimization in 


TTVRP is to discover such a set of Pareto-optimal 







solutions concurrently. The Pareto fitness ranking scheme 


(Tan et al., 2001) for multiobjective optimization is 


adopted here to assign the relative strength of individuals 


in a population. The ranking approach assigns the same 


smallest rank for all non-dominated individuals, while the 


dominated individuals are inversely ranked according to 


how many individuals in the population dominating them 


based on the following criteria: (1) A smaller number of 


trucks but an equal cost of routing (2) A smaller routing 


cost but an equal number of trucks and (3) A smaller 


routing cost and a smaller number of trucks. Therefore the 


rank of an individual p in a population is given by (1+q),


where q is the number of individuals that dominating the 


individual p based on the above criteria. 


3.5 Fitness Sharing 


A simple fitness sharing (Fonseca and Fleming, 1998) is 


incorporated in HMOEA to prevent genetic drift, which is 


a phenomenon where a finite population tends to settle on 


a single optimum even if many other local optima exist. 


The sharing approach measures the niching distance in the 


objective domain to achieve diversity of solutions on the 


tradeoff curve. The niche radius,  is a parameter that 


defines the size of neighborhood. The distance between 


individuals is normalized to the maximum range of 


objective space. Let dist(x,y) be the normalized distance 


between individual x and individual y, the sharing 


function sh can be defined as follows, 


( )
( )


2


1 ( , ) /     if ( , ) <
( , )


0                         otherwise


dist x y dist x y
sh dist x y


σ σ−
=   (1) 


The sharing value of an individual will be increased by 


other individuals that are found located within the niche 


radius. The niche count nc is defined as, 


( )( ) ( , )
y i n d i v i d u a l s


n c x s h d i s t x y
∈


=  (2) 


During the tournament selection, individuals with a lower 


rank in partial order will be selected for reproduction, 


where the partial order ranking between two individuals 


depends on both their Pareto rank and niche counts. 


Rigorously, the partial order 
p


≥ for two individuals i and j


is defined as, 
p


i j≥ , if [ ]( ) ( )rank i rank j>  or 


[ ]( ) ( ) and ( ) ( )rank i rank j nc i nc j= > .


3.6 Local Search Exploitation 


As stated by Tan et al., (2001), the role of local search is 


vital in order to encourage better convergence and to 


discover any missing trade-off regions in evolutionary 


multiobjective optimization. In HMOEA, the local search 


starts by scanning through all routes in a chromosome, 


where any routes that contain a smaller number of tasks 


than a threshold are identified. These identified routes will 


be grouped into pairs randomly. All the tasks in each pair 


are then combined to form a new route that is sorted in 


ascending order by the earliest service time. After the 


merging, feasibility check is performed such that any 


infeasible tasks are moved to the outsourced list. 


4 Computational Results 


The HMOEA was programmed in C++ based on a 


Pentium III 933 MHz processor with 256 MB RAM under 


the Microsoft Windows 2000. Table 3 shows the 


parameter settings chosen after some preliminary 


experiments. These settings should not be regarded as an 


optimal set of parameter values, but rather a generalized 


one for which the HMOEA performs fairly well over the 


test problems. 


 Table 3 Parameter settings 


Parameter Value 


Crossover rate 0.8 


Mutation rate 0.3 


Population size 800 


Generation size 1000 or no improvement over the 


last 5 generations 


Niche radius 0.04 


This section contains the computational results and 


analysis of optimization performances for all problem 


instances. Section 4.1 studies the performance of Pareto-


optimality for multiobjective optimization using the test 


cases. In Section 4.2, the optimization performance of 


HMOEA is compared with two other multiobjective 


evolutionary algorithms based upon a few performance 


measures. 


4.1 Multiobjective Optimization Performance 


4.1.1 Pareto Front 


In solving a vehicle routing problem, the logistic manager 


is often interested in not only getting the minimum routing 


cost, but also the smallest number of trucks required to 


service the plan. In order to reduce the routing cost, more 


number of trucks is often required and vice versa, i.e., the 


two criteria are noncommensurable and often competing 


with each other. Fig. 3 shows the evolution progress of 


Pareto front for 6 random selected test cases. In the 


simulation, the largest available vehicle number is limited 


to 35, which is more than sufficient to cater the number of 


tasks in each test case. The various Pareto fronts obtained 


at the initial generation (First), two intermediate 


generations (Int 1 and Int 2) and the final generation 


(Final) are plotted with different markers as shown in Fig. 


3. As can be seen, there is only a small number of non-


dominated solutions appeared at the initial generations, 


which are also congested at a small portion of the solution 


space. However, as the evolution proceeds, the diversity 


of the population increases significantly and the non-


dominated solutions gradually evolve towards the final 


trade-off curve. A dashed line connecting all the final non-


dominated solutions is drawn for each test case in Fig. 3, 


which clearly shows the final trade-off or routing plan 


obtained by the HMOEA. It is noted that the Pareto front 


includes the plan with zero truck number that subcontracts 


all tasks to external company, although such a policy is 


apparently not practical to adopt and is against the will of 


the logistic management. 
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Fig. 3  The evolution progress of Pareto front for test cases 


4.1.2 Routing Plan 


The average best routing cost for each truck number of the 


12 test cases are plotted in Fig. 4, which shows an obvious 


trade-off between the two objectives of routing cost and 


truck number in TTVRP. This trade-off curve is useful for 


the decision-maker to derive an appropriate routing 


schedule according to the current situation. If the number 


of trucks available in a company is fixed, the logistic 


manager can estimate the required routing cost from the 


trade-off curve in Fig. 4.  
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Fig. 4  The trade-off between cost of routing and number of 


trucks 


In contrast, if the manager is given a specified budget 


or routing cost, he or she can then determine the minimum 


number of internal trucks to be allocated so that the 


spending can be kept below the budget allowed. For 


example, if the routing cost is to be kept below 5100, then 


the company must allocate at least 10 trucks for serving 


the task orders. However, if only 15 trucks are allocated 


by the company, then the incurred routing cost would be 


around 4900 to 5000, including the cost payment for 


outsourced companies. 


4.2 Comparison Results 


In this section, the performance of HMOEA is compared 


with two variants of evolutionary algorithms, i.e., MOEA 


with standard genetic operators as well as MOEA without 


hybridization of local search. The comparison allows the 


effectiveness of the various features in HMOEA, such as 


the specialized genetic operators and local search 


heuristic, to be examined. The multiobjective evolutionary 


algorithm with standard generic operators (STD_MOEA) 


includes the commonly known cycle crossover and RAR 


mutation. The cycle crossover is a general crossover 


operator that preserves the order of sequence in the parent 


partially and was applied to solve the traveling salesman 


problems by Oliver et al. (1987). The remove and reinsert 


(RAR) mutation operator removes a task from the 


sequence and reinsert it to a random position (Gendreau et 


al., 1999). The multiobjective evolutionary algorithm 


without hybridization of local search (NH_MOEA) 


employs the specialized genetic operators in HMOEA but 


excludes the local search heuristic. The experiment setups 


and parameters for STD_MOEA and NH_MOEA are 


similar to the settings for HMOEA as shown in Table 3. 


4.2.1 Average Routing Cost 


To compare the quality of solutions produced by the 


algorithms, the average routing cost (ARC) of the non-


dominated solutions in the final population is calculated 


for various test cases with different number of tasks as 


shown in Fig. 5. In the figure, the average value of ARC is 


plotted for each group of the test cases with equal number 


of tasks. As can be seen, the STD_MOEA incurs the 


highest ARC since its operators are not tailored made for 


the TTVRP problem. According to the no free lunch 







theorem (Wolpert and Macready, 1996), any optimization 


methods should be tailored to the problem domain for best 


performance. The results in Fig. 5 also illustrate that the 


HMOEA outperforms NH_MOEA and STD_MOEA 


consistently, which produces the lowest routing cost for all 


test cases. Since the search space of the multiobjective 


TTVRP optimization is complex, it is expected that the 


problem-specific HMOEA should povide an efficient and 


high-performance routing solution.  
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Fig. 5  The average routing cost for various algorithms 


4.2.2 Ratio of Non-dominated Individuals 


In multiobjective optimization, it is often desired to find  


many useful candidate solutions that are non-dominated in 


a population, which could be measured by the ratio of 


non-dominated individuals (RNI) as proposed by Tan et 


al., (2001). Given a population X, the RNI  is defined as, 


_
( )% 100%


nondom indiv
RNI X


N
= ×    (4) 


where nondom_indiv is the number of non-dominated 


individuals in population X, while N is the size of the 


population X. Without loss of generality, Fig. 6 shows the 


RNI for the three algorithms based on a randomly selected 


test case 132_3_4. As can be seen, the RNI value of 


STD_MOEA is the lowest among the three algorithms and 


in the process of computation, the evolution in 


STD_MOEA stopped at around 90 generations as no 


improvement was observed for 5 generations 


continuously. The results also show that the search 


performance of HMOEA for non-dominated solutions is 


slightly better than NH_MOEA. Besides, the HMOEA 


also has the best average RNI of 1.89 as compared to the 


value of 1.71 and 0.44 for NH_MOEA and STD_MOEA, 


respectively. 


4.2.3 Simulation Time 


The computational time for different algorithms is studied 


in this sub-section. The three algorithms adopt the same 


stopping criteria in the simulation, i.e., the evolution stops 


after 1000 generations or when no improvement is found 


for the last 5 generations. Fig. 7 shows the normalized 


simulation time for the three algorithms based on four 


randomly selected test cases, e.g., test_100_3_4, 


test_112_3_4, test_120_3_4 and test_132_3_4. As can be 


seen, the STD_MOEA requires the shortest time to 


converge or halt the evolution. The optimization results 


obtained by the STD_MOEA are much inferior probably 


because the population in STD_MOEA has converged 


prematurely to local Pareto front. The results also show 


that the computation time required by HMOEA is better 


than NH_MOEA for the all the instances. 
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5 Conclusions


A transportation problem for moving empty or laden 


containers for a logistic company has been considered and 


a model for the truck and trailer vehicle routing problem 


(TTVRP) has been constructed in the paper. The objective 


of the routing problem is to minimize the routing distance 


and the number of trucks required, subject to a number of 


constraints such as time windows and availability of 


trailers. To solve such a multiobjective and multi-modal 


combinatorial optimization problem, a hybrid 


multiobjective evolutionary algorithm (HMOEA) featured 


with specialized genetic operators, variable-length 


representation and local search heuristic has been applied 







to find the Pareto optimal routing solutions for the 


TTVRP. Detailed analysis has been performed to extract 


important decision-making information from the 


multiobjective optimization results. The computational 


results have shown that the proposed HMOEA and 


features incorporated are effective for solving  


multiobjective combinatorial optimization problems such 


as finding useful trade-off solutions for the TTVRP. 
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