

A Distributed Cooperative Coevolutionary Algorithm for 


Multiobjective Optimization 


K. C. Tan, Y. J. Yang and T. H. Lee 
Department of Electrical and Computer Engineering 


National University of Singapore 


10 Kent ridge Crescent Singapore 19260  


Abstract- Evolutionary techniques have become one of 


the most powerful tools for solving multiobjective 


optimization (MOO) problems. However the 


computational cost involved in terms of time and 


hardware often become surprisingly burdensome as 


the size and complexity of the problem increases. This 


paper proposes a distributed cooperative 


coevolutionary algorithm (DCCEA), which evolves 


multiple solutions in the form of cooperative 


subpopulations and exploits the inherent parallelism 


by sharing the computational workload among 


computers over the network. Through its multiple 


features such as archiving, dynamic sharing and 


extending operator, solutions of DCCEA are not only 


pushed to the true Pareto front but also well 


distributed. Simulation results show that DCCEA has 


a very competitive performance and  reduces the 


runtime effectively. 


1 Introduction 


Due to their inherent parallelism and their capability to 


evolve a family of solutions concurrently in a single run, 


evolutionary algorithms have been recognized to be well 


suited for multiobjective optimization problems. Since 


Schaffer’s work, evolutionary techniques for 


multiobjective optimization have been gaining significant 


attention from researchers in various fields and new 


MOEAs (Corne et al, 2000; Deb et al, 2002; Knowles and 


Corne, 2000; Tan et al, 2001, 2003; Zitzler et al, 2001) 


continue to be developed. The main differences among 


existing multiobjective evolutionary algorithms are in 


selective fitness assignment and diversity maintenance.  


Recent advances in evolutionary algorithms indicate 


that the introduction of ecological models and the use of 


coevolutionary architectures are effective ways to broaden 


the use of traditional evolutionary algorithms (Rosin and 


Belew, 1997; Potter and De Jong, 2000). Coevolution can 


be classified into competitive coevolution and cooperative 


coevolution. While competitive coevolution tries to get 


more competitive individuals through evolution, the goal 


of cooperative coevolution is to find individuals from 


which better systems can be constructed. Neef et al (1999) 


adapted the niche radius with competitive coevolution in 


multiobjective optimization. Lohn et al (2002) embodied 


competitive coevolution in the multiobjective optimization, 


which had two populations, the population of candidate 


solutions and the target population consisting of target 


objective vectors. Liu et al (2001) used cooperative 


coevolution to speed up convergence rates of fast 


evolutionary programming on large-scale problems whose 


dimension ranged from 100 to 1000. Keerativuttiumrong 


et al (2002) tried to extend the cooperative coevolution to 


multiobjective optimization by evolving each species with 


the multiobjective genetic algorithm (Fonseca and 


Fleming, 1993). This combination of coevolution and 


MOGA is rather elementary and its performance is not 


satisfactory. 


Although evolutionary algorithm is a powerful tool, it 


needs to perform a large number of function evaluations in 


the evolution process. The computational cost involved in 


terms of time and hardware often become surprisingly 


burdensome as the size and complexity of the problem 


increases. One promising approach to overcome the 


limitation is to exploit the inherent parallel nature of EA 


by formulating the problem into a distributed computing 


structure suitable for parallel processing, i.e., to divide a 


task into subtasks and to solve the subtasks simultaneously 


using multiple processors. This divide-and-conquer 


approach has been applied to EA in different ways and 


many parallel EA implementations have been reported in 


literatures (Cantú-Paz, 1998; Goldberg, 1989b; Rivera, 


2001). As categorized by Rivera (2001), there are four 


possible strategies to parallelize EAs, i.e., global 


parallelization, fine-grained parallelization, coarse-grained 


parallelization, and hybrid parallelization. Because the 


communication amount in coarse-grained parallelization is 


small compared with other parallelization strategies, it is a 


suitable computing model for distributed computer 


network where the communication speed is limited.  


The major concern of this paper is to introduce the idea 


of cooperative coevolution into multiobjective 


optimization and exploit the intrinsic parallelism of 


coevolution. A distributed cooperative coevolutionary 


algorithm (DCCEA) is proposed and implemented based 


on this idea to search the Pareto front effectively and 


reduce the runtime in a Java-based distributed system 


framework named Paladin-DEC (Tan et al, 2002a, 2002b). 


The proposed approach is different from the existing 


cooperative coevolutionary algorithms in its adaptations to 


multiobjective optimization, such as the archive, extending 


operator, and the distributed computing structure. 


The remainder of this paper is organized as follows.


Section 2 presents the design of DCCEA for multi-







objective optimization. Section 3 provides the extensive 


case studies. Finally, conclusions are drawn in section 4. 


2 The Design of Distributed Cooperative 


Coevolutionary Algorithm for Multi-


objective Optimization 


2.1 Extending Cooperative Coevolution into Multi-


objective Optimization  


Given a single objective optimization problem with n


parameters, each parameter is assigned a subpopulation, 


and these n subpopulations coevolve the individuals in 


each of them (Potter and De Jong, 1994; Liu et al, 2001). 


Our algorithm adopts the idea of assigning one 


subpopulation to each parameter and adapts this idea to 


multiobjective optimization problems where multiple non-


dominated solutions are aimed at. Figure 1 depicts the 


principle of cooperation and rank assignment in DCCEA. 


Here, individuals in subpopulation i cooperate with 


representatives of other subpopulations to form complete 


solutions. 


Subpopulation 1


for


variable 1


Collaborate


Subpopulation 2


for


variable 2


Subpopulation n


for


variable n


Representative


Individual


Representative


Evaluate


Assign


rank


Rank


Archive


Complete


solution


Solution and


objective vector


Update


archive


Figure 1. Cooperation and rank assignment in DCCEA


Each subpopulation only optimizes one parameter and 


an individual in a subpopulation is just a component of a 


complete solution. Here, we let the best individual in a 


subpopulation be the representative of the subpopulation. 


To evaluate an individual in a subpopulation, we first 


combine this individual with representatives of other 


subpopulations to form a complete solution. Then this 


complete solution is mapped into an objective vector by 


the objective functions. This objective vector can be used 


to evaluate how well the selected individual cooperates 


with other subpopulations to produce good solutions.  


Multiobjective optimization requires finding a solution 


set whose objective vectors approximate the true Pareto 


front. How to obtain multiple solutions in one run using 


cooperative coevolution? Our approach is to introduce an 


archive into the algorithm, which stores and updates the 


non-dominated solutions found so far. This archive at the 


final generation will be output as the optimal solution set. 


The archive can also be regarded as an elitism mechanism 


since it preserves the best solutions so far. Moreover, the 


archive is used as a comparison set in the rank assignment 


of individuals in subpopulations after these individuals 


obtain their objective vectors through collaboration. A 


canonical Pareto ranking scheme is applied in the rank 


assignment and the rank of an individual i can be given by  
( )  1   irank i n (1)


where in  is the number of archive members dominating 


the individual i in the objective domain.  


The archive has a maximum size, which can be set 


according to the required number of solutions. Each time a 


complete solution is evaluated by the objective functions, 


it will update the archive according to its objective vector. 


When the solution is non-dominated with respect to the 


archive, it is added into the archive and the archive 


members dominated by it are removed. Once the archive is 


full, a truncation method based on niching will be 


activated to replace the most crowded archive member 


with the new non-dominated solution and keep the 


maximum size and diversity of the archive. 


To distribute the solutions evenly along the Pareto front, 


the technique of niche induction by means of a sharing 


function is often implemented in MOEAs. Let ( , )d i j be


the Euclidean distance between objective vectors of 


individuals i and j. The neighborhood size is defined in 


terms of Euclidean distance and specified by the so-called 


niche radius share . The sharing function is defined as 


follows:  


2(1 / )        if d<( )
0                        otherwise


share sharedsh d
(2)


And the niche count function is defined according to 


the sharing function:   


( ) ( ( , ))


j


nc i sh d i j (3)


The niche radius is difficult to determine in practice 


because a-priori knowledge about the shape of the Pareto 


front for most problems is not available. Tan et al. (1999) 


proposed a mechanism of dynamic sharing computation 


that can adaptively update the niche radius along with the 


evolution. The sharing distance 
( )n
share at generation n in 


term of the objective number m, the population size N, and 


the diameter of the population ( )nd  is given by 
( ) 1/(1 ) ( )n m n
share N d (4)


The computation of diameter ( )nd  can be referred to 


(Tan et al., 2003). Formula (4) provides a good approach 







to calculate niche radius, which does not require a-priori


knowledge of the usually unknown trade-off surface. 


Besides the archive updating, the niche count is also 


applied in the tournament selection to generate the mating 


pool. In case two individuals have the same rank, the one 


with the less niche count wins in the tournament.   


Furthermore, a new feature is introduced to improve 


the smoothness and spread of the solution set. Ordinarily, 


the underpopulated regions are the gaps or boundaries of 


the archive, which should be given more attention if the 


archive is expected to cover the true Pareto front by as 


much as possible. To make these unobvious regions 


outstanding, the extending operator could guide the 


evolutionary search into these areas. The archiving 


scheme plays a critical role in the realization of the 


extending operation. Firstly, since complete solutions are 


all stored in the archive, the subpopulations have no 


pressure to keep the diversity of their own individuals so 


that they can adaptively focus their search in the regions 


that are not explored thoroughly. Secondly, by extracting 


the information of the solution distribution from the 


archive, archive members in the most underpopulated 


regions will be cloned and added into the subpopulations. 


Thus, these members might have a great chance to be 


selected into the mating pool. Detailed description of the 


extending operator is given in figure 2. 


Figure 2.  The procedure of the extending operator 


2.2 The framework of DCCEA 


DCCEA adopts the coarse-grained parallelization strategy 


of EAs. To fit into a distributed scenario, the design of 


DCCEA should concern several features of distributed 


computing such as variant communication overhead, 


different computation speed and network restrictions. The 


toy model with six subpopulations and three peers is given 


in figure 3 to illustrate the design idea of DCCEA.  


As shown in figure 3, each parameter of the problem is 


assigned a subpopulation.  In a distributed scenario, these 


subpopulations are further partitioned into a number of 


groups, which is determined by the available number of 


peers. In figure 3, the six subpopulations are divided into 


3 groups and each of them is assigned to a peer computer. 


Each peer has its own archive and representative and 


evolves its subpopulations sequentially. Inside a peer, the 


complete solution generated through collaboration 


continuously updates the peer archive. The subpopulations 


in the peer update the corresponding peer representatives 


once every cycle. The cooperation among peers is 


indirectly achieved through the exchanges of archive and 


representatives between peers and a central server. In 


distributed scenario, the communication time among peers 


is a conspicuous part of the whole run time. To reduce the 


communication overhead, the exchange of archive and 


representatives between one peer and the central server 


occurs once every several generations. The number of 


generations between two exchanges is called the exchange 


interval.  


ServerServer


Subpopulations Peers Central server


1


3
2


5


4


6


1


2


3


4


5


6


Figure 3. The model for DCCEA 


Generally the peers are not identical and the 


cooperation among peers becomes ineffective if there are 


big differences in the evolution progresses of nodes. In 


such case, the bad cooperation among nodes deteriorates 


the performance of DCCEA. To keep the peers cooperate 


well in the evolution, these peers should be synchronized 


every some generations. Here, the synchronization interval 


is defined as the number of generations between two 


synchronizations. The exchange interval and 


synchronization interval can be fixed or adaptively 


determined along the evolution. 


2.3 The Implementation of DCCEA 


The implementation of DCCEA is imbedded into the 


distributed computing framework named Paladin-DEC 


(Tan et al, 2002a, 2002b) , which is built upon the 


foundation of Java technology offered by Sun 


Microsystems and is equipped with application 


programming interfaces (APIs) and technologies from 


J2EE. As shown in figure 4, the Paladin-DEC software 


consists of two main blocks, i.e., the servant block and 


workshop block that are connected by RMI-IIOP (Remote 


Method Invocation over Internet Inter-ORB Protocol). 


The servant functions as an information center and backup 


station through which peers can check their identifications 


or restore their working status. The workshop is a place 


where peers (free or occupied) work together in groups, 


e.g., the working peers are grouped together to perform 


The Extending Operator: 


Let n be the number of clones 


Step 1)  If the archive is not full, exit. 


Step 2)  Calculate the niche count of each member 


in the archive. Then find the member with the 


smallest niche count. This member resides in the 


most underpopulated region. 


Step 3) Clone n copies of this archive member to 


the subpopulations. Here, each part of this member is


cloned into the corresponding subpopulation. 







the specified task, while the free ones wait for the new 


jobs to be assigned. 


The servant contains three different servers, i.e., logon 


server, dispatcher server, and database server. The logon 


server assigns identification to any registered peers. It also 


removes the information and identification of a peer when 


it is logged off as well as synchronizes the peer’s 


information to the dispatcher server. The dispatcher server 


is responsible for choosing the tasks to be executed, the 


group of peers to perform the execution, and to transfer 


the peers’ information to/from the database server. The 


dispatcher server also synchronizes the information, 


updates the peer’s list, and informs the database server for 


any modification. Whenever there is a task available, the 


dispatcher server will transfer the task to a group of 


selected peers. 


Peer
Peer


Logon server Dispatch server


Peer Peer


Peer
Peer agent


RMI-IIOP


Servant


Workshop


Synchronize


peer data


Store and extract


peer data
Database


Peer


Figure 4. Schematic framework of Paladin-DEC software


The working process of a peer begins when the peer (or 


client) is started and logons to the server, which is realized 


by sending a valid email address to the server. The peer 


computer will then be pooled and waiting for the task to 


be assigned by the server.  Once a peer detects that a task 


is assigned, it will extract the information from the server 


such as class name and path as well as the http server 


address and then load the class remotely from the server. 


If the class loaded is consistent to the Paladin-DEC 


system, it will be allowed to initiate the computation 


procedure. When the peer is allowed to start the 


computation procedure, it first initialize the parameters, 


such as generation number, subpopulation groups, 


subpopulation size, crossover rate, mutation rate. Then the 


peer creates the subpopulations assigned to it. 


Synchronization is crucial to DCCEA to achieve good 


cooperation among peers. When a peer reaches a 


synchronization point, it suspends its evolution until the 


server signals that all the peers have reached the 


synchronization point. In each generation, the peer will 


check whether it is time to exchange the archive and 


representatives between the peer and the server. If the 


conditions of exchange are satisfied, the peer will initiate a 


session in the server that retrieves the archive and 


representatives of the peer, then updates the server archive 


with the peer archive and updates the server 


representatives that correspond to the peer. In the side of 


peer, the peer will obtain the new server archive and 


server representatives and replace its archive and 


representatives. After these steps, the peer evolves its 


subpopulations sequentially one generation. If the peer 


meets the termination conditions, it will initiate a session 


to submit the results, and afterwards, restore itself to the 


ready status. If the user cancels the running job, those 


peers involved in the job will stop the computation and set 


themselves to the ready status. 


2.4 Workload Balancing 


Since the processing power and specification for various 


computers in a network might be different, the feature of 


work balancing that ensures the peers are processed in a 


similar pace is needed in the DCCEA is important because 


the total computation time is decided by the peer that 


finished the work last, and if the peer with the least 


computational capacity is assigned with the most heavy 


workload, not only would longer time be required but the 


bad cooperation among nodes deteriorates the 


performance of DCCEA. Intuitively, work balancing for a 


distributed system could be difficult due to the fact that 


the working environment in a network is often complex 


and uncertain. The DCCEA resorts to a simple work 


balancing strategy by assigning the workload to the peers 


according to their respective computational capabilities. 


As stated in section 2.3, when a peer is first launched, it 


uploads its configuration information, which could be 


accessed by the servant. The hardware configuration of 


the peer is recorded in the information file, such as the 


CPU speed, RAM size, etc. After reading the information 


file, the dispatch server performs a simple task scheduling 


and assigns different tasks to the respective peers 


according to their computational capabilities. 


3 Case study 


In this section, we first describe the test problems used in 


the comparisons. Next, two performance metrics for 


multiobjective optimization are described and defined. 


Then, extensive simulations of the algorithms are 


performed on these test problems. 


3.1 The Test Problems 


Five test problems are resorted to validate the performance 


of DCCEA. Table 1 summarizes features of these test 


problems and these problems are defined in table 2. They 


include important characteristics and are suitable to 


validate the effectiveness of MOEAs. (Knowles and Corne, 


2000; Corne et al, 2000; Deb, 2002; Zitzler et al, 1999, 


2000, 2001), have used these problems in the validations 


of their algorithms. Therefore these problems should be a 


good test suite for a fair comparison of different 


multiobjective algorithms. 







These problems were designed using Deb's scheme by 


Zitzler et al (2000), and were used in a performance 


comparison of eight well-known MOEAs. Each of these 


test problems is structured in the same manner and 


consists itself of three functions (Deb, 1999): 


1 1 2


2 2 1 1 2


1


  ( ) ( ( ), ( )) 


  ( ) ( , , ) ( ( ), ( , , ))


 ( , , )


m m


m


Minimize T x f x f x


subject to f x g x x h f x g x x


where x x x


(5)


The definitions of 1, ,f g h  in ZDT1, ZDT2, ZDT3, 


ZDT4 and ZDT6 are listed in table 2. 


Table 1.  Features of the test problems 


Test


Problem 


Features


ZDT1 Pareto front is convex. 


ZDT2 Pareto front is non-convex. 


ZDT3 Pareto front consists of several 


noncontiguous convex parts. 


ZDT4 Pareto front is highly multi-modal and 


there are 219  local Pareto fronts. 


ZDT6 The Pareto-optimal solutions are non-


uniformly distributed along the global 


Pareto front. The density of the solutions is 


lowest near the Pareto-optimal front and 


highest away from the front. 


Table 2. Definitions of 1, ,f g h  in ZDT1, ZDT2, ZDT3, 


ZDT4 and ZDT6 


ZDT1  


1 1


2


2


1 1


1


( )   


( , , ) 1 9 /( 1)


( , ) 1 /


  ( , , ), 30,   [0,1].


m


m i


i


m i


f x x


g x x x m


h f g f g


subject to x x x m and x


(6)


ZDT2


1 1


2


2
2


1 1


1


( )   


( , , ) 1 9 /( 1)


( , ) 1 ( / )


  ( , , ), 30,   [0,1].


m


m i


i


m i


f x x


g x x x m


h f g f g


subject to x x x m and x


(7)


ZDT3


1 1


2


2


1 1 1 1


1


( )   


( , , ) 1 9 /( 1)


( , ) 1 / ( / )sin(10 )


  ( , , ), 30,   [0,1].


m


m i


i


m i


f x x


g x x x m


h f g f g f g f


subject to x x x m and x


(8)


ZDT4


1 1


2
2


2


1 1


1 1


2


( )    


( , , ) 1 10( 1) ( 10cos(4 ))


( , ) 1 /


  ( , , ), 10,  [0,1],


 , , [ 5,5].


m


m i i


i


m


m


f x x


g x x m x x


h f g f g


subject to x x x m x


and x x


(9)


ZDT6
6


1 1 1


0.25
2


2


2
1 1


1


( ) 1 exp( 4 )sin (6 )


( , , ) 1 9(( ) /( 1))


( , ) 1 ( / )


 ( , , ), 10,  [0,1]. 


m


m i


i


m i


f x x x


g x x x m


h f g f g


subject to x x x m x


(10)


3.2 Metrics of Performance 


Two different quantitative performance measures for 


multiobjective optimization are used in this study. They 


are referred from (Deb, 2002) and modified slightly by us.  


The metric of generational distance is a value 


representing how “far” the knownPF  is from truePF  and is 


defined as: 


2 1/ 2


1


1
( )


n


i


i


GD d
n


(11)


where n is the number of members in knownPF , id  is the 


Euclidean distance (in objective space) between member 


i  in knownPF  and its nearest member in truePF . The 


smaller the generational distance is, the closer 


the knownPF is to truePF .


The metric of spacing measures how “evenly” 


members in knownPF  distribute. It is defined as: 


2 1/ 2


1


1
[ ( ) ] /


n


i


i


S d d d
n


(12)


where


1


1
n


i


i


d d
n


, n is the number of members in 


knownPF , id  is the Euclidean distance in objective space 


between the member i  in knownPF  and its nearest member 


in knownPF . The smaller the spacing is, the more evenly 


members in knownPF  distribute. 


3.3 Simulation Results of DCCEA 


DCCEA is integrated into the framework of Paladin-DEC. 


The test environment for DCCEA consists of 11 PCs in 


the campus LAN. Table 3 gives configurations of the 11 


PCs. The server part of Paladin-DEC runs on the PIV 


1600/512. Peers of Paladin-DEC run on other PCs.  


Table 3. Running Environment of DCCEA 


PC Configuration CPU (MHz)/RAM (MB) 


1 PIV 1600/512 


2 PIII 800/ 512 


3 PIII 800/ 512 


4 PIII 800/ 256 


5 PIII 933/384 


6 PIII 933/128 


7 PIV 1300/ 128 


8 PIV 1300/ 128 


9 PIII 933/ 512 


10 PIII 933/ 512 







11 PIII 933/256 


DCCEA is proposed to exploit the parallelism among 


subpopulations. Because test problems, ZDT1, ZDT2, 


ZDT3, ZDT4 and ZDT6, have a large number of decision 


variables, they are suitable to test DCCEA on the capacity 


of effectively accelerating the multiobjective optimization. 


The parameter configurations of DCCEA can be seen in 


table 4.  


Table 4. The Configurations of DCCEA 


Populations Subpopulation size 20; 


archive size 100 


Chromosome length 30 bits for each variable.  


Selection Binary tournament selection 


Crossover operator Uniform crossover 


Crossover rate 0.8 


Mutation operator Bit-flip mutation 


Mutation rate 2/L, where L is the 


chromosome length. 


Number of evaluations 120,000 


Exchange interval 5 generations 


Synchronization 


interval 


10 generations 


Thirty independent runs are performed with random 


initial population to minimize any bias in the simulations. 


The median runtime of 30 runs is listed in table 5 and 


visualized in figure 5. It can be seen that the median 


runtime goes down as the number of peers increased. In 


the case of ZDT1, the median runtime for 6 peers (each 


peer with 6 subpopulations) is 96 seconds, which is about 


1/3 of the 270 seconds used by 1 peer (each peer with 30 


subpopulations).  It is also evident that 6 peers are enough 


for the acceleration of runtime. When there are more than 


6 peers, the increment of communication cost counteracts 


the reduction of computation cost of each peer and 


saturation of acceleration is nearly achieved. 


Table 5. Median runtime of 30 runs with respect to the 


numbers of peers (unit: second) 


Number 


of peers ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 


1 270 242 189.5 209 138 


2 177.5 142.5 128.5 170 137 


3 134 121.5 101 142 124 


4 120 109.5 97 139 121 


5 109 90 88 134 121 


6 96 80 67 123 108 


7 94 73 68.5 111 110 


8 80 74 65 115 109.5 


9 78 72 64 114 109.5 


10 78 76 68 115 110.5 


Figure 5. Median runtime of 30 runs with respect to the numbers 


of peers


The median metrics of 30 runs are summarized in 


figure 6 and 7. It can be seen that the median metrics have 


no distinct change in spite of some small fluctuations on 


the curve for the five test problems as the number of peers 


increases. So it can be said that the DCCEA can 


effectively reduce the runtime while not deteriorating the 


performances as the number of peers increases. 


Figure 6. Median generational distance of 30 runs with respect to 


the numbers of peers 


Figure 7. Median spacing of 30 runs with respect to the numbers 


of peers 


3.4 Comparisons with Other Works 


In this section, simulations are carried out to validate the 


performance of DCCEA through comparisons with other 







recently presented evolutionary multiobjective 


optimization methods. In the comparision, DCCEA with 6 


peers acts as the basis of our algorithm. The evolutionary 


multiobjective optimization methods include PAES 


(Knowles and Corne, 2000), PESA (Corne et al. 2000), 


NSGAII (Deb et al., 2002), SPEA2 (Zitzler and Thiele 


2001) and IMOEA (Tan et al., 2001), which are all 


recently presented algorithms in literatures. Although such 


comparisons are not meant to be exhaustive, it provides a 


good basis to assess the DCCEA. 


In order to guarantee a fair comparison, all MOEAs 


considered are implemented with the same binary coding, 


binary tournament selection, uniform crossover, and bit-


flip mutation. Also, the number of evaluations in each run 


is fixed as 12,000. Table 6 lists other configurations of 


these algorithms that are very common in studies of 


MOEAs. In the experiment, each algorithm runs 30 times 


on each test function to study the statistical performance. 


Table 6. Configuration of PAES, PESA, NSGAII, SPEA2, 


IMOEA. 


Population Population size 1 in PAES; 


population size 100 in PESA, 


NSGAII, SPEA2; initial 


population size 20, maximum 


population size 100 in IMOEA. 


Secondary population (or 


archive) size is 100 for all the 


algorithms.  


Chromosome  Binary coding, 30 bits for each 


variable.  


Crossover operator Uniform crossover 


Crossover rate 0.8 


Mutation operator Bit-flip mutation 


Mutation rate 2/L, where L is the chromosome 


length. 


Number of 


evaluations 


120,000


Hyper-grid size 32 x 32 grid in PAES and PESA. 


Figure 8 gives the generated Pareto front for ZDT4 and 


ZDT6 by DCCEA with 6 peers. The results approximate 


the true Pareto front very well and our eyes almost cannot 


tell the difference between the generated and the true 


Pareto fronts.


Table 7 and 8 summarizes the simulation results with 


respect to the two performance metrics. For almost all the 


test problems and metrics, the performance of PAES is the 


worst. The reason may be that PAES is just a non-


population based local search algorithm where mutation 


acts as a local search method. With respect to generational 


distance, DCCEA is outstanding in ZDT4 and ZDT6. 


Because of the many local Pareto fronts of ZDT4 and non-


uniform distribution of ZDT6, these two problems are 


difficult for MOEAs. It means that DCCEA has a strong 


ability to escape from harmful local optima. For other 


problems, the performance of DCCEA on generational 


distance is also very competitive. Concerning the metrics 


of spacing, DCCEA has shown to be the best in all cases.  


This means that DCCEA has an excellent ability to 


maintain diversity of the solution set. In brief, the DCCEA 


is strongly competitive in comparison with other MOEAs.


0 0.2 0.4 0.6 0.8 1
0


0.2


0.4


0.6


0.8


1


(a) ZDT4 


0 0.2 0.4 0.6 0.8 1
0


0.2


0.4


0.6


0.8


1


(b) ZDT6 
Figure 8. Generated Pareto front for ZDT4 and ZDT6 by 


DCCEA with 6 peers. 


Table 7. Median generational distance of 30 runs  


ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 


DCCEA 1.70E-04 1.15E-04 1.05E-04 4.35E-05 3.42E-08


PAES 4.93E-03 4.95E-03 1.94E-02 1.00E-00 1.41E-01


PESA 3.93E-06 3.89E-06 1.19E-04 7.70E-01 2.71E-02


NSGAII 1.49E-03 7.44E-04 2.27E-03 7.66E-01 7.50E-03


SPEA2 1.95E-03 2.23E-03 2.93E-03 7.79E-01 1.08E-02


IMOEA 2.25E-04 1.43E-04 1.26E-03 7.80E-01 5.07E-07


Table 8. Median spacing of 30 runs  


ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 


DCCEA 0.1272 0.1273 0.224 0.0994 0.1251 


PAES 0.901 0.9658 2.0254 2.4148 3.4356 


PESA 0.5148 0.5 0.6542 0.6119 1.6997 


NSGAII 0.4339 0.3081 0.4844 0.481 0.6184 


SPEA2 0.5717 0.589 0.6582 0.6347 0.8389 


IMOEA 0.3449 0.2215 0.2502 0.7609 0.5491 







4. Conclusion 


This paper has applied the coevolution mechanism into 


multiobjective optimization. A number of subpopulations 


represent different decision variables and evolve 


independently. The cooperation among subpopulations is 


achieved through the sharing of archive and 


representatives of subpopulations. Such a loosely coupled 


paradigm can be easily formulated into a distributed 


computing structure suitable for parallel processing. 


Computational results show that the DCCEA can 


dramatically reduce the runtime while keeping the 


performance as the peer number increases. 


Bibliography


E. Cantú-Paz, “A survey of parallel genetic algorithms,” 


Calculateurs Paralleles, Reseaux et Systems Repartis,


Paris: Hermes, vol. 10, no. 2, pp. 141-171, 1998. 


D.W. Corne, J.D. Knowles, and M.J. Oates, “The Pareto 


envelope-based selection algorithm for multiobjective 


optimization,” in Proceedings of the Parallel Problem 


Solving from Nature VI Conference (PPSN VI), pp. 839-


848, Springer, 2000. 


K. Deb, “Multiobjective genetic algorithms: problem 


difficulties and construction of test problem,” 


Evolutionary Computation, vol. 7, no. 3, pp. 205-230, 


1999.


K. Deb, Multiobjective optimization using evolutionary 


algorithms. John Wiley & Sons, New York, 2001. 


K. Deb, et al, “A fast and elitist multiobjective genetic 


algorithm: NSGA-II,” IEEE Transactions on Evolutionary 


Computation, vol. 6, no. 2, pp.182-197, 2002.  


C.M. Fonseca, and P.J. Fleming, “Genetic algorithms for 


multiobjective optimization, formulation, discussion and 


generalization,” in Proceeding of the Fifth International 


Conference on Genetic Algorithms, Morgan Kaufmann, 


San Mateo, CA, pp. 416-423, 1993. 


D.E. Goldberg, and J. Richardson, “Genetic algorithms 


with sharing for multi-modal function optimization,” in 


Proceedings of the Second International Conference on 


Genetic Algorithms, pp. 41-49, 1987. 


D.E. Goldberg, “Sizing populations for serial and parallel 


genetic algorithms”, in Proceedings of the Third 


International Conference on Genetic Algorithms, pp. 70-


79, 1989. 


N. Keerativuttiumrong, N. Chaiyaratana and V. 


Varavithya, “Multiobjective co-operative co-evolutionary 


genetic algorithm,” in Proceedings of the Parallel 


Problem Solving from Nature VII Conference (PPSN VII),


pp. 288-297, 2002. 


J.D. Knowles, and D.W. Corne, “Approximating the non-


dominated front using the Pareto archived evolution 


strategy,” Evolutionary Computation, vol. 8, no. 2, pp. 


149-172, 2000.


Y. Liu, X. Yao, et al, “Scaling up fast evolutionary 


programming with cooperative coevolution,” in 


Proceedings of the 2001 Congress on Evolutionary 


Computation, vol. 2, pp.1101-1108, 2001.  


J.D. Lohn, W.F. Kraus and G.L. Haith, “Comparing a 


coevolutionary genetic algorithm for multiobjective 


optimization,” in Proceedings of the 2002 Congress on 


Evolutionary Computation, v. 2, pp. 1157-1162, 2002. 


M. Neef, D. Thierens, and H. Arciszewski, “A case study 


of a multiobjective recombinative genetic algorithm with 


coevolutionary sharing,” in Proceedings of the 1999 


Congress on Evolutionary Computation, pp. 796-803, 


1999.


M.A. Potter, and K.A. De Jong, “A cooperative 


coevolutionary approach to function optimization,” in 


Proceedings of the Parallel Problem Solving from Nature 


III Conference (PPSN III), pp.249–257, Berlin, Germany, 


1994.


M.A. Potter, and K.A. De Jong, “Cooperative coevolution: 


an architecture for evolving coadapted subcomponents,” 


Evolutionary Computation, vol. 8, no. 1, pp.1-29, 2000. 


W. Rivera, “Scalable parallel genetic algorithms”, 


Artificial Intelligence Review, vol. 16, pp.153-168, 2001. 


C.D. Rosin, and R.K. Belew, “New methods for 


competitive coevolution,” Evolutionary Computation, vol. 


5, no. 1, pp. 1-29, 1997. 


J.D. Schaffer, “Multiple-objective optimization using 


genetic algorithms,” in Proceedings of the First 


International Conference on Genetic Algorithms, pp. 93-


100, 1985. 


K.C. Tan, T.H. Lee, and E.F. Khor, “Evolutionary 


algorithms with dynamic population size and local 


exploration for multiobjective optimization,” IEEE


Transactions on Evolutionary Computation, vol. 5, no. 6, 


pp. 565-588, 2001. 


K.C. Tan, T.H. Lee, J. Cai, and Y.H. Chew, “Automating 


the drug scheduling of cancer chemotherapy via 


evolutionary computation,” in Proceedings of the 2002 


Congress on Evolutionary Computation, pp. 908-913, 


2002a.


K.C. Tan, A. Tay, and J. Cai, “Design and implementation 


of a distributed evolutionary computing software,” IEEE


Transactions on System, Man and Cybernetics: Part C,


2002b.


K.C. Tan, E.F. Khor, T.H. Lee, and R. Sathikannan, “An 


evolutionary algorithm with advanced goal and priority 


specification for multiobjective optimization,” Journal of 


Artificial Intelligence Research, vol. 18, pp.183-215, 2003. 


E. Zitzler, K. Deb, and L. Thiele, “Comparison of 


multiobjective evolutionary algorithms: empirical results,” 


Evolutionary Computation, vol. 8, no. 2, pp.173-195, 


2000.


E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: 


improving the strength Pareto evolutionary algorithm,” 


Technical Report 103, Computer Engineering and 


Networks Laboratory (TIK), Swiss Federal Institute of 


Technology (ETH) Zurich, Switzerland, May 2001. 






