
A Distributed Cooperative Coevolutionary Algorithm for 

Multiobjective Optimization 

K. C. Tan, Y. J. Yang and T. H. Lee 
Department of Electrical and Computer Engineering 

National University of Singapore 

10 Kent ridge Crescent Singapore 19260  

Abstract- Evolutionary techniques have become one of 

the most powerful tools for solving multiobjective 

optimization (MOO) problems. However the 

computational cost involved in terms of time and 

hardware often become surprisingly burdensome as 

the size and complexity of the problem increases. This 

paper proposes a distributed cooperative 

coevolutionary algorithm (DCCEA), which evolves 

multiple solutions in the form of cooperative 

subpopulations and exploits the inherent parallelism 

by sharing the computational workload among 

computers over the network. Through its multiple 

features such as archiving, dynamic sharing and 

extending operator, solutions of DCCEA are not only 

pushed to the true Pareto front but also well 

distributed. Simulation results show that DCCEA has 

a very competitive performance and  reduces the 

runtime effectively. 

1 Introduction 

Due to their inherent parallelism and their capability to 

evolve a family of solutions concurrently in a single run, 

evolutionary algorithms have been recognized to be well 

suited for multiobjective optimization problems. Since 

Schaffer’s work, evolutionary techniques for 

multiobjective optimization have been gaining significant 

attention from researchers in various fields and new 

MOEAs (Corne et al, 2000; Deb et al, 2002; Knowles and 

Corne, 2000; Tan et al, 2001, 2003; Zitzler et al, 2001) 

continue to be developed. The main differences among 

existing multiobjective evolutionary algorithms are in 

selective fitness assignment and diversity maintenance.  

Recent advances in evolutionary algorithms indicate 

that the introduction of ecological models and the use of 

coevolutionary architectures are effective ways to broaden 

the use of traditional evolutionary algorithms (Rosin and 

Belew, 1997; Potter and De Jong, 2000). Coevolution can 

be classified into competitive coevolution and cooperative 

coevolution. While competitive coevolution tries to get 

more competitive individuals through evolution, the goal 

of cooperative coevolution is to find individuals from 

which better systems can be constructed. Neef et al (1999) 

adapted the niche radius with competitive coevolution in 

multiobjective optimization. Lohn et al (2002) embodied 

competitive coevolution in the multiobjective optimization, 

which had two populations, the population of candidate 

solutions and the target population consisting of target 

objective vectors. Liu et al (2001) used cooperative 

coevolution to speed up convergence rates of fast 

evolutionary programming on large-scale problems whose 

dimension ranged from 100 to 1000. Keerativuttiumrong 

et al (2002) tried to extend the cooperative coevolution to 

multiobjective optimization by evolving each species with 

the multiobjective genetic algorithm (Fonseca and 

Fleming, 1993). This combination of coevolution and 

MOGA is rather elementary and its performance is not 

satisfactory. 

Although evolutionary algorithm is a powerful tool, it 

needs to perform a large number of function evaluations in 

the evolution process. The computational cost involved in 

terms of time and hardware often become surprisingly 

burdensome as the size and complexity of the problem 

increases. One promising approach to overcome the 

limitation is to exploit the inherent parallel nature of EA 

by formulating the problem into a distributed computing 

structure suitable for parallel processing, i.e., to divide a 

task into subtasks and to solve the subtasks simultaneously 

using multiple processors. This divide-and-conquer 

approach has been applied to EA in different ways and 

many parallel EA implementations have been reported in 

literatures (Cantú-Paz, 1998; Goldberg, 1989b; Rivera, 

2001). As categorized by Rivera (2001), there are four 

possible strategies to parallelize EAs, i.e., global 

parallelization, fine-grained parallelization, coarse-grained 

parallelization, and hybrid parallelization. Because the 

communication amount in coarse-grained parallelization is 

small compared with other parallelization strategies, it is a 

suitable computing model for distributed computer 

network where the communication speed is limited.  

The major concern of this paper is to introduce the idea 

of cooperative coevolution into multiobjective 

optimization and exploit the intrinsic parallelism of 

coevolution. A distributed cooperative coevolutionary 

algorithm (DCCEA) is proposed and implemented based 

on this idea to search the Pareto front effectively and 

reduce the runtime in a Java-based distributed system 

framework named Paladin-DEC (Tan et al, 2002a, 2002b). 

The proposed approach is different from the existing 

cooperative coevolutionary algorithms in its adaptations to 

multiobjective optimization, such as the archive, extending 

operator, and the distributed computing structure. 

The remainder of this paper is organized as follows.

Section 2 presents the design of DCCEA for multi-



objective optimization. Section 3 provides the extensive 

case studies. Finally, conclusions are drawn in section 4. 

2 The Design of Distributed Cooperative 

Coevolutionary Algorithm for Multi-

objective Optimization 

2.1 Extending Cooperative Coevolution into Multi-

objective Optimization  

Given a single objective optimization problem with n

parameters, each parameter is assigned a subpopulation, 

and these n subpopulations coevolve the individuals in 

each of them (Potter and De Jong, 1994; Liu et al, 2001). 

Our algorithm adopts the idea of assigning one 

subpopulation to each parameter and adapts this idea to 

multiobjective optimization problems where multiple non-

dominated solutions are aimed at. Figure 1 depicts the 

principle of cooperation and rank assignment in DCCEA. 

Here, individuals in subpopulation i cooperate with 

representatives of other subpopulations to form complete 

solutions. 

Subpopulation 1

for

variable 1

Collaborate

Subpopulation 2

for

variable 2

Subpopulation n

for

variable n

Representative

Individual

Representative

Evaluate

Assign

rank

Rank

Archive

Complete

solution

Solution and

objective vector

Update

archive

Figure 1. Cooperation and rank assignment in DCCEA

Each subpopulation only optimizes one parameter and 

an individual in a subpopulation is just a component of a 

complete solution. Here, we let the best individual in a 

subpopulation be the representative of the subpopulation. 

To evaluate an individual in a subpopulation, we first 

combine this individual with representatives of other 

subpopulations to form a complete solution. Then this 

complete solution is mapped into an objective vector by 

the objective functions. This objective vector can be used 

to evaluate how well the selected individual cooperates 

with other subpopulations to produce good solutions.  

Multiobjective optimization requires finding a solution 

set whose objective vectors approximate the true Pareto 

front. How to obtain multiple solutions in one run using 

cooperative coevolution? Our approach is to introduce an 

archive into the algorithm, which stores and updates the 

non-dominated solutions found so far. This archive at the 

final generation will be output as the optimal solution set. 

The archive can also be regarded as an elitism mechanism 

since it preserves the best solutions so far. Moreover, the 

archive is used as a comparison set in the rank assignment 

of individuals in subpopulations after these individuals 

obtain their objective vectors through collaboration. A 

canonical Pareto ranking scheme is applied in the rank 

assignment and the rank of an individual i can be given by  
( )  1   irank i n (1)

where in  is the number of archive members dominating 

the individual i in the objective domain.  

The archive has a maximum size, which can be set 

according to the required number of solutions. Each time a 

complete solution is evaluated by the objective functions, 

it will update the archive according to its objective vector. 

When the solution is non-dominated with respect to the 

archive, it is added into the archive and the archive 

members dominated by it are removed. Once the archive is 

full, a truncation method based on niching will be 

activated to replace the most crowded archive member 

with the new non-dominated solution and keep the 

maximum size and diversity of the archive. 

To distribute the solutions evenly along the Pareto front, 

the technique of niche induction by means of a sharing 

function is often implemented in MOEAs. Let ( , )d i j be

the Euclidean distance between objective vectors of 

individuals i and j. The neighborhood size is defined in 

terms of Euclidean distance and specified by the so-called 

niche radius share . The sharing function is defined as 

follows:  

2(1 / )        if d<( )
0                        otherwise

share sharedsh d
(2)

And the niche count function is defined according to 

the sharing function:   

( ) ( ( , ))

j

nc i sh d i j (3)

The niche radius is difficult to determine in practice 

because a-priori knowledge about the shape of the Pareto 

front for most problems is not available. Tan et al. (1999) 

proposed a mechanism of dynamic sharing computation 

that can adaptively update the niche radius along with the 

evolution. The sharing distance 
( )n
share at generation n in 

term of the objective number m, the population size N, and 

the diameter of the population ( )nd  is given by 
( ) 1/(1 ) ( )n m n
share N d (4)

The computation of diameter ( )nd  can be referred to 

(Tan et al., 2003). Formula (4) provides a good approach 



to calculate niche radius, which does not require a-priori

knowledge of the usually unknown trade-off surface. 

Besides the archive updating, the niche count is also 

applied in the tournament selection to generate the mating 

pool. In case two individuals have the same rank, the one 

with the less niche count wins in the tournament.   

Furthermore, a new feature is introduced to improve 

the smoothness and spread of the solution set. Ordinarily, 

the underpopulated regions are the gaps or boundaries of 

the archive, which should be given more attention if the 

archive is expected to cover the true Pareto front by as 

much as possible. To make these unobvious regions 

outstanding, the extending operator could guide the 

evolutionary search into these areas. The archiving 

scheme plays a critical role in the realization of the 

extending operation. Firstly, since complete solutions are 

all stored in the archive, the subpopulations have no 

pressure to keep the diversity of their own individuals so 

that they can adaptively focus their search in the regions 

that are not explored thoroughly. Secondly, by extracting 

the information of the solution distribution from the 

archive, archive members in the most underpopulated 

regions will be cloned and added into the subpopulations. 

Thus, these members might have a great chance to be 

selected into the mating pool. Detailed description of the 

extending operator is given in figure 2. 

Figure 2.  The procedure of the extending operator 

2.2 The framework of DCCEA 

DCCEA adopts the coarse-grained parallelization strategy 

of EAs. To fit into a distributed scenario, the design of 

DCCEA should concern several features of distributed 

computing such as variant communication overhead, 

different computation speed and network restrictions. The 

toy model with six subpopulations and three peers is given 

in figure 3 to illustrate the design idea of DCCEA.  

As shown in figure 3, each parameter of the problem is 

assigned a subpopulation.  In a distributed scenario, these 

subpopulations are further partitioned into a number of 

groups, which is determined by the available number of 

peers. In figure 3, the six subpopulations are divided into 

3 groups and each of them is assigned to a peer computer. 

Each peer has its own archive and representative and 

evolves its subpopulations sequentially. Inside a peer, the 

complete solution generated through collaboration 

continuously updates the peer archive. The subpopulations 

in the peer update the corresponding peer representatives 

once every cycle. The cooperation among peers is 

indirectly achieved through the exchanges of archive and 

representatives between peers and a central server. In 

distributed scenario, the communication time among peers 

is a conspicuous part of the whole run time. To reduce the 

communication overhead, the exchange of archive and 

representatives between one peer and the central server 

occurs once every several generations. The number of 

generations between two exchanges is called the exchange 

interval.  

ServerServer

Subpopulations Peers Central server

1

3
2

5

4

6

1

2

3

4

5

6

Figure 3. The model for DCCEA 

Generally the peers are not identical and the 

cooperation among peers becomes ineffective if there are 

big differences in the evolution progresses of nodes. In 

such case, the bad cooperation among nodes deteriorates 

the performance of DCCEA. To keep the peers cooperate 

well in the evolution, these peers should be synchronized 

every some generations. Here, the synchronization interval 

is defined as the number of generations between two 

synchronizations. The exchange interval and 

synchronization interval can be fixed or adaptively 

determined along the evolution. 

2.3 The Implementation of DCCEA 

The implementation of DCCEA is imbedded into the 

distributed computing framework named Paladin-DEC 

(Tan et al, 2002a, 2002b) , which is built upon the 

foundation of Java technology offered by Sun 

Microsystems and is equipped with application 

programming interfaces (APIs) and technologies from 

J2EE. As shown in figure 4, the Paladin-DEC software 

consists of two main blocks, i.e., the servant block and 

workshop block that are connected by RMI-IIOP (Remote 

Method Invocation over Internet Inter-ORB Protocol). 

The servant functions as an information center and backup 

station through which peers can check their identifications 

or restore their working status. The workshop is a place 

where peers (free or occupied) work together in groups, 

e.g., the working peers are grouped together to perform 

The Extending Operator: 

Let n be the number of clones 

Step 1)  If the archive is not full, exit. 

Step 2)  Calculate the niche count of each member 

in the archive. Then find the member with the 

smallest niche count. This member resides in the 

most underpopulated region. 

Step 3) Clone n copies of this archive member to 

the subpopulations. Here, each part of this member is

cloned into the corresponding subpopulation. 



the specified task, while the free ones wait for the new 

jobs to be assigned. 

The servant contains three different servers, i.e., logon 

server, dispatcher server, and database server. The logon 

server assigns identification to any registered peers. It also 

removes the information and identification of a peer when 

it is logged off as well as synchronizes the peer’s 

information to the dispatcher server. The dispatcher server 

is responsible for choosing the tasks to be executed, the 

group of peers to perform the execution, and to transfer 

the peers’ information to/from the database server. The 

dispatcher server also synchronizes the information, 

updates the peer’s list, and informs the database server for 

any modification. Whenever there is a task available, the 

dispatcher server will transfer the task to a group of 

selected peers. 

Peer
Peer

Logon server Dispatch server

Peer Peer

Peer
Peer agent

RMI-IIOP

Servant

Workshop

Synchronize

peer data

Store and extract

peer data
Database

Peer

Figure 4. Schematic framework of Paladin-DEC software

The working process of a peer begins when the peer (or 

client) is started and logons to the server, which is realized 

by sending a valid email address to the server. The peer 

computer will then be pooled and waiting for the task to 

be assigned by the server.  Once a peer detects that a task 

is assigned, it will extract the information from the server 

such as class name and path as well as the http server 

address and then load the class remotely from the server. 

If the class loaded is consistent to the Paladin-DEC 

system, it will be allowed to initiate the computation 

procedure. When the peer is allowed to start the 

computation procedure, it first initialize the parameters, 

such as generation number, subpopulation groups, 

subpopulation size, crossover rate, mutation rate. Then the 

peer creates the subpopulations assigned to it. 

Synchronization is crucial to DCCEA to achieve good 

cooperation among peers. When a peer reaches a 

synchronization point, it suspends its evolution until the 

server signals that all the peers have reached the 

synchronization point. In each generation, the peer will 

check whether it is time to exchange the archive and 

representatives between the peer and the server. If the 

conditions of exchange are satisfied, the peer will initiate a 

session in the server that retrieves the archive and 

representatives of the peer, then updates the server archive 

with the peer archive and updates the server 

representatives that correspond to the peer. In the side of 

peer, the peer will obtain the new server archive and 

server representatives and replace its archive and 

representatives. After these steps, the peer evolves its 

subpopulations sequentially one generation. If the peer 

meets the termination conditions, it will initiate a session 

to submit the results, and afterwards, restore itself to the 

ready status. If the user cancels the running job, those 

peers involved in the job will stop the computation and set 

themselves to the ready status. 

2.4 Workload Balancing 

Since the processing power and specification for various 

computers in a network might be different, the feature of 

work balancing that ensures the peers are processed in a 

similar pace is needed in the DCCEA is important because 

the total computation time is decided by the peer that 

finished the work last, and if the peer with the least 

computational capacity is assigned with the most heavy 

workload, not only would longer time be required but the 

bad cooperation among nodes deteriorates the 

performance of DCCEA. Intuitively, work balancing for a 

distributed system could be difficult due to the fact that 

the working environment in a network is often complex 

and uncertain. The DCCEA resorts to a simple work 

balancing strategy by assigning the workload to the peers 

according to their respective computational capabilities. 

As stated in section 2.3, when a peer is first launched, it 

uploads its configuration information, which could be 

accessed by the servant. The hardware configuration of 

the peer is recorded in the information file, such as the 

CPU speed, RAM size, etc. After reading the information 

file, the dispatch server performs a simple task scheduling 

and assigns different tasks to the respective peers 

according to their computational capabilities. 

3 Case study 

In this section, we first describe the test problems used in 

the comparisons. Next, two performance metrics for 

multiobjective optimization are described and defined. 

Then, extensive simulations of the algorithms are 

performed on these test problems. 

3.1 The Test Problems 

Five test problems are resorted to validate the performance 

of DCCEA. Table 1 summarizes features of these test 

problems and these problems are defined in table 2. They 

include important characteristics and are suitable to 

validate the effectiveness of MOEAs. (Knowles and Corne, 

2000; Corne et al, 2000; Deb, 2002; Zitzler et al, 1999, 

2000, 2001), have used these problems in the validations 

of their algorithms. Therefore these problems should be a 

good test suite for a fair comparison of different 

multiobjective algorithms. 



These problems were designed using Deb's scheme by 

Zitzler et al (2000), and were used in a performance 

comparison of eight well-known MOEAs. Each of these 

test problems is structured in the same manner and 

consists itself of three functions (Deb, 1999): 

1 1 2

2 2 1 1 2

1

  ( ) ( ( ), ( )) 

  ( ) ( , , ) ( ( ), ( , , ))

 ( , , )

m m

m

Minimize T x f x f x

subject to f x g x x h f x g x x

where x x x

(5)

The definitions of 1, ,f g h  in ZDT1, ZDT2, ZDT3, 

ZDT4 and ZDT6 are listed in table 2. 

Table 1.  Features of the test problems 

Test

Problem 

Features

ZDT1 Pareto front is convex. 

ZDT2 Pareto front is non-convex. 

ZDT3 Pareto front consists of several 

noncontiguous convex parts. 

ZDT4 Pareto front is highly multi-modal and 

there are 219  local Pareto fronts. 

ZDT6 The Pareto-optimal solutions are non-

uniformly distributed along the global 

Pareto front. The density of the solutions is 

lowest near the Pareto-optimal front and 

highest away from the front. 

Table 2. Definitions of 1, ,f g h  in ZDT1, ZDT2, ZDT3, 

ZDT4 and ZDT6 

ZDT1  

1 1

2

2

1 1

1

( )   

( , , ) 1 9 /( 1)

( , ) 1 /

  ( , , ), 30,   [0,1].

m

m i

i

m i

f x x

g x x x m

h f g f g

subject to x x x m and x

(6)

ZDT2

1 1

2

2
2

1 1

1

( )   

( , , ) 1 9 /( 1)

( , ) 1 ( / )

  ( , , ), 30,   [0,1].

m

m i

i

m i

f x x

g x x x m

h f g f g

subject to x x x m and x

(7)

ZDT3

1 1

2

2

1 1 1 1

1

( )   

( , , ) 1 9 /( 1)

( , ) 1 / ( / )sin(10 )

  ( , , ), 30,   [0,1].

m

m i

i

m i

f x x

g x x x m

h f g f g f g f

subject to x x x m and x

(8)

ZDT4

1 1

2
2

2

1 1

1 1

2

( )    

( , , ) 1 10( 1) ( 10cos(4 ))

( , ) 1 /

  ( , , ), 10,  [0,1],

 , , [ 5,5].

m

m i i

i

m

m

f x x

g x x m x x

h f g f g

subject to x x x m x

and x x

(9)

ZDT6
6

1 1 1

0.25
2

2

2
1 1

1

( ) 1 exp( 4 )sin (6 )

( , , ) 1 9(( ) /( 1))

( , ) 1 ( / )

 ( , , ), 10,  [0,1]. 

m

m i

i

m i

f x x x

g x x x m

h f g f g

subject to x x x m x

(10)

3.2 Metrics of Performance 

Two different quantitative performance measures for 

multiobjective optimization are used in this study. They 

are referred from (Deb, 2002) and modified slightly by us.  

The metric of generational distance is a value 

representing how “far” the knownPF  is from truePF  and is 

defined as: 

2 1/ 2

1

1
( )

n

i

i

GD d
n

(11)

where n is the number of members in knownPF , id  is the 

Euclidean distance (in objective space) between member 

i  in knownPF  and its nearest member in truePF . The 

smaller the generational distance is, the closer 

the knownPF is to truePF .

The metric of spacing measures how “evenly” 

members in knownPF  distribute. It is defined as: 

2 1/ 2

1

1
[ ( ) ] /

n

i

i

S d d d
n

(12)

where

1

1
n

i

i

d d
n

, n is the number of members in 

knownPF , id  is the Euclidean distance in objective space 

between the member i  in knownPF  and its nearest member 

in knownPF . The smaller the spacing is, the more evenly 

members in knownPF  distribute. 

3.3 Simulation Results of DCCEA 

DCCEA is integrated into the framework of Paladin-DEC. 

The test environment for DCCEA consists of 11 PCs in 

the campus LAN. Table 3 gives configurations of the 11 

PCs. The server part of Paladin-DEC runs on the PIV 

1600/512. Peers of Paladin-DEC run on other PCs.  

Table 3. Running Environment of DCCEA 

PC Configuration CPU (MHz)/RAM (MB) 

1 PIV 1600/512 

2 PIII 800/ 512 

3 PIII 800/ 512 

4 PIII 800/ 256 

5 PIII 933/384 

6 PIII 933/128 

7 PIV 1300/ 128 

8 PIV 1300/ 128 

9 PIII 933/ 512 

10 PIII 933/ 512 



11 PIII 933/256 

DCCEA is proposed to exploit the parallelism among 

subpopulations. Because test problems, ZDT1, ZDT2, 

ZDT3, ZDT4 and ZDT6, have a large number of decision 

variables, they are suitable to test DCCEA on the capacity 

of effectively accelerating the multiobjective optimization. 

The parameter configurations of DCCEA can be seen in 

table 4.  

Table 4. The Configurations of DCCEA 

Populations Subpopulation size 20; 

archive size 100 

Chromosome length 30 bits for each variable.  

Selection Binary tournament selection 

Crossover operator Uniform crossover 

Crossover rate 0.8 

Mutation operator Bit-flip mutation 

Mutation rate 2/L, where L is the 

chromosome length. 

Number of evaluations 120,000 

Exchange interval 5 generations 

Synchronization 

interval 

10 generations 

Thirty independent runs are performed with random 

initial population to minimize any bias in the simulations. 

The median runtime of 30 runs is listed in table 5 and 

visualized in figure 5. It can be seen that the median 

runtime goes down as the number of peers increased. In 

the case of ZDT1, the median runtime for 6 peers (each 

peer with 6 subpopulations) is 96 seconds, which is about 

1/3 of the 270 seconds used by 1 peer (each peer with 30 

subpopulations).  It is also evident that 6 peers are enough 

for the acceleration of runtime. When there are more than 

6 peers, the increment of communication cost counteracts 

the reduction of computation cost of each peer and 

saturation of acceleration is nearly achieved. 

Table 5. Median runtime of 30 runs with respect to the 

numbers of peers (unit: second) 

Number 

of peers ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

1 270 242 189.5 209 138 

2 177.5 142.5 128.5 170 137 

3 134 121.5 101 142 124 

4 120 109.5 97 139 121 

5 109 90 88 134 121 

6 96 80 67 123 108 

7 94 73 68.5 111 110 

8 80 74 65 115 109.5 

9 78 72 64 114 109.5 

10 78 76 68 115 110.5 

Figure 5. Median runtime of 30 runs with respect to the numbers 

of peers

The median metrics of 30 runs are summarized in 

figure 6 and 7. It can be seen that the median metrics have 

no distinct change in spite of some small fluctuations on 

the curve for the five test problems as the number of peers 

increases. So it can be said that the DCCEA can 

effectively reduce the runtime while not deteriorating the 

performances as the number of peers increases. 

Figure 6. Median generational distance of 30 runs with respect to 

the numbers of peers 

Figure 7. Median spacing of 30 runs with respect to the numbers 

of peers 

3.4 Comparisons with Other Works 

In this section, simulations are carried out to validate the 

performance of DCCEA through comparisons with other 



recently presented evolutionary multiobjective 

optimization methods. In the comparision, DCCEA with 6 

peers acts as the basis of our algorithm. The evolutionary 

multiobjective optimization methods include PAES 

(Knowles and Corne, 2000), PESA (Corne et al. 2000), 

NSGAII (Deb et al., 2002), SPEA2 (Zitzler and Thiele 

2001) and IMOEA (Tan et al., 2001), which are all 

recently presented algorithms in literatures. Although such 

comparisons are not meant to be exhaustive, it provides a 

good basis to assess the DCCEA. 

In order to guarantee a fair comparison, all MOEAs 

considered are implemented with the same binary coding, 

binary tournament selection, uniform crossover, and bit-

flip mutation. Also, the number of evaluations in each run 

is fixed as 12,000. Table 6 lists other configurations of 

these algorithms that are very common in studies of 

MOEAs. In the experiment, each algorithm runs 30 times 

on each test function to study the statistical performance. 

Table 6. Configuration of PAES, PESA, NSGAII, SPEA2, 

IMOEA. 

Population Population size 1 in PAES; 

population size 100 in PESA, 

NSGAII, SPEA2; initial 

population size 20, maximum 

population size 100 in IMOEA. 

Secondary population (or 

archive) size is 100 for all the 

algorithms.  

Chromosome  Binary coding, 30 bits for each 

variable.  

Crossover operator Uniform crossover 

Crossover rate 0.8 

Mutation operator Bit-flip mutation 

Mutation rate 2/L, where L is the chromosome 

length. 

Number of 

evaluations 

120,000

Hyper-grid size 32 x 32 grid in PAES and PESA. 

Figure 8 gives the generated Pareto front for ZDT4 and 

ZDT6 by DCCEA with 6 peers. The results approximate 

the true Pareto front very well and our eyes almost cannot 

tell the difference between the generated and the true 

Pareto fronts.

Table 7 and 8 summarizes the simulation results with 

respect to the two performance metrics. For almost all the 

test problems and metrics, the performance of PAES is the 

worst. The reason may be that PAES is just a non-

population based local search algorithm where mutation 

acts as a local search method. With respect to generational 

distance, DCCEA is outstanding in ZDT4 and ZDT6. 

Because of the many local Pareto fronts of ZDT4 and non-

uniform distribution of ZDT6, these two problems are 

difficult for MOEAs. It means that DCCEA has a strong 

ability to escape from harmful local optima. For other 

problems, the performance of DCCEA on generational 

distance is also very competitive. Concerning the metrics 

of spacing, DCCEA has shown to be the best in all cases.  

This means that DCCEA has an excellent ability to 

maintain diversity of the solution set. In brief, the DCCEA 

is strongly competitive in comparison with other MOEAs.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) ZDT4 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) ZDT6 
Figure 8. Generated Pareto front for ZDT4 and ZDT6 by 

DCCEA with 6 peers. 

Table 7. Median generational distance of 30 runs  

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

DCCEA 1.70E-04 1.15E-04 1.05E-04 4.35E-05 3.42E-08

PAES 4.93E-03 4.95E-03 1.94E-02 1.00E-00 1.41E-01

PESA 3.93E-06 3.89E-06 1.19E-04 7.70E-01 2.71E-02

NSGAII 1.49E-03 7.44E-04 2.27E-03 7.66E-01 7.50E-03

SPEA2 1.95E-03 2.23E-03 2.93E-03 7.79E-01 1.08E-02

IMOEA 2.25E-04 1.43E-04 1.26E-03 7.80E-01 5.07E-07

Table 8. Median spacing of 30 runs  

ZDT1 ZDT2 ZDT3 ZDT4 ZDT6 

DCCEA 0.1272 0.1273 0.224 0.0994 0.1251 

PAES 0.901 0.9658 2.0254 2.4148 3.4356 

PESA 0.5148 0.5 0.6542 0.6119 1.6997 

NSGAII 0.4339 0.3081 0.4844 0.481 0.6184 

SPEA2 0.5717 0.589 0.6582 0.6347 0.8389 

IMOEA 0.3449 0.2215 0.2502 0.7609 0.5491 



4. Conclusion 

This paper has applied the coevolution mechanism into 

multiobjective optimization. A number of subpopulations 

represent different decision variables and evolve 

independently. The cooperation among subpopulations is 

achieved through the sharing of archive and 

representatives of subpopulations. Such a loosely coupled 

paradigm can be easily formulated into a distributed 

computing structure suitable for parallel processing. 

Computational results show that the DCCEA can 

dramatically reduce the runtime while keeping the 

performance as the peer number increases. 

Bibliography

E. Cantú-Paz, “A survey of parallel genetic algorithms,” 

Calculateurs Paralleles, Reseaux et Systems Repartis,

Paris: Hermes, vol. 10, no. 2, pp. 141-171, 1998. 

D.W. Corne, J.D. Knowles, and M.J. Oates, “The Pareto 

envelope-based selection algorithm for multiobjective 

optimization,” in Proceedings of the Parallel Problem 

Solving from Nature VI Conference (PPSN VI), pp. 839-

848, Springer, 2000. 

K. Deb, “Multiobjective genetic algorithms: problem 

difficulties and construction of test problem,” 

Evolutionary Computation, vol. 7, no. 3, pp. 205-230, 

1999.

K. Deb, Multiobjective optimization using evolutionary 

algorithms. John Wiley & Sons, New York, 2001. 

K. Deb, et al, “A fast and elitist multiobjective genetic 

algorithm: NSGA-II,” IEEE Transactions on Evolutionary 

Computation, vol. 6, no. 2, pp.182-197, 2002.  

C.M. Fonseca, and P.J. Fleming, “Genetic algorithms for 

multiobjective optimization, formulation, discussion and 

generalization,” in Proceeding of the Fifth International 

Conference on Genetic Algorithms, Morgan Kaufmann, 

San Mateo, CA, pp. 416-423, 1993. 

D.E. Goldberg, and J. Richardson, “Genetic algorithms 

with sharing for multi-modal function optimization,” in 

Proceedings of the Second International Conference on 

Genetic Algorithms, pp. 41-49, 1987. 

D.E. Goldberg, “Sizing populations for serial and parallel 

genetic algorithms”, in Proceedings of the Third 

International Conference on Genetic Algorithms, pp. 70-

79, 1989. 

N. Keerativuttiumrong, N. Chaiyaratana and V. 

Varavithya, “Multiobjective co-operative co-evolutionary 

genetic algorithm,” in Proceedings of the Parallel 

Problem Solving from Nature VII Conference (PPSN VII),

pp. 288-297, 2002. 

J.D. Knowles, and D.W. Corne, “Approximating the non-

dominated front using the Pareto archived evolution 

strategy,” Evolutionary Computation, vol. 8, no. 2, pp. 

149-172, 2000.

Y. Liu, X. Yao, et al, “Scaling up fast evolutionary 

programming with cooperative coevolution,” in 

Proceedings of the 2001 Congress on Evolutionary 

Computation, vol. 2, pp.1101-1108, 2001.  

J.D. Lohn, W.F. Kraus and G.L. Haith, “Comparing a 

coevolutionary genetic algorithm for multiobjective 

optimization,” in Proceedings of the 2002 Congress on 

Evolutionary Computation, v. 2, pp. 1157-1162, 2002. 

M. Neef, D. Thierens, and H. Arciszewski, “A case study 

of a multiobjective recombinative genetic algorithm with 

coevolutionary sharing,” in Proceedings of the 1999 

Congress on Evolutionary Computation, pp. 796-803, 

1999.

M.A. Potter, and K.A. De Jong, “A cooperative 

coevolutionary approach to function optimization,” in 

Proceedings of the Parallel Problem Solving from Nature 

III Conference (PPSN III), pp.249–257, Berlin, Germany, 

1994.

M.A. Potter, and K.A. De Jong, “Cooperative coevolution: 

an architecture for evolving coadapted subcomponents,” 

Evolutionary Computation, vol. 8, no. 1, pp.1-29, 2000. 

W. Rivera, “Scalable parallel genetic algorithms”, 

Artificial Intelligence Review, vol. 16, pp.153-168, 2001. 

C.D. Rosin, and R.K. Belew, “New methods for 

competitive coevolution,” Evolutionary Computation, vol. 

5, no. 1, pp. 1-29, 1997. 

J.D. Schaffer, “Multiple-objective optimization using 

genetic algorithms,” in Proceedings of the First 

International Conference on Genetic Algorithms, pp. 93-

100, 1985. 

K.C. Tan, T.H. Lee, and E.F. Khor, “Evolutionary 

algorithms with dynamic population size and local 

exploration for multiobjective optimization,” IEEE

Transactions on Evolutionary Computation, vol. 5, no. 6, 

pp. 565-588, 2001. 

K.C. Tan, T.H. Lee, J. Cai, and Y.H. Chew, “Automating 

the drug scheduling of cancer chemotherapy via 

evolutionary computation,” in Proceedings of the 2002 

Congress on Evolutionary Computation, pp. 908-913, 

2002a.

K.C. Tan, A. Tay, and J. Cai, “Design and implementation 

of a distributed evolutionary computing software,” IEEE

Transactions on System, Man and Cybernetics: Part C,

2002b.

K.C. Tan, E.F. Khor, T.H. Lee, and R. Sathikannan, “An 

evolutionary algorithm with advanced goal and priority 

specification for multiobjective optimization,” Journal of 

Artificial Intelligence Research, vol. 18, pp.183-215, 2003. 

E. Zitzler, K. Deb, and L. Thiele, “Comparison of 

multiobjective evolutionary algorithms: empirical results,” 

Evolutionary Computation, vol. 8, no. 2, pp.173-195, 

2000.

E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: 

improving the strength Pareto evolutionary algorithm,” 

Technical Report 103, Computer Engineering and 

Networks Laboratory (TIK), Swiss Federal Institute of 

Technology (ETH) Zurich, Switzerland, May 2001. 


