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ABSTRACT

In this paper, we propose a multicriteria decision mak-
ing (MCDM) method by using a genetic algorithm (GA).
The system consists of three phases. In the first phase,
a rough set of Pareto optimal solutions is obtained us-
ing Kohonen’s self organizing map (SOM). In the second
phase, the decision maker (DM) selects his preferred so-
lutions among the obtained set, where the mechanism of
GA is used with the DM’s preference assisted by radial
basis function network (RBFN). In the third phase, the
DM can explore the solution space further for the final
decision.

1. INTRODUCTION

MCDM is often practically important in the real world. In
these problems we can seldom expect the existence of the
dominating solutions which optimize the several objec-
tives simultaneously. Therefore Pareto optimal solutions
are crucial.

For the MCDM problems, we have two important issues.
They are

1. generating feasible Pareto optimal solutions,
2. making decision by DM’s preference among Pareto
optimal solutions.

In the traditional MCDM methods, the first problem was
reduced to the mathematical programming problem by
aggregating the vector objective function into a scalar
by pre-determined manner or by some interactive manner
mentioned in the second item above. This method intrin-
sically produces a single solution, and thus the searching
point is usually only one. The primordial drawback of
the traditional methods is that they all lack the parallel
production of searching points. Considering the humans’
decision process, we cannot be satisfied without compaz-
ing many alternatives simultaneously. Even if the shown
alternative is “best one”, we may have a difficulty in de-
cision making and doubt whether there is no better ones
for him /her.

Recently, there are studies to generate many Pareto op-
timal solutions by using GA[10},{7],[1]. This is certainly
an attractive method, because the GA intrinsically treats
multiple alternatives. But there is some kind of inef-
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ficiency in generating Pareto optimal solutions by GA-
based methods that have been proposed so far, because
the new alternatives are to be generated by using only
feasible solutions and thus it is not likely to be easy to
generate ones that are really near the frontier. Thus we
propose here another method to generate Pareto optimal
solutions. It is based on Kohonen’s SOM.

We are interested not only in generating Pareto optimal
solutions, but also in the DM’s selection procedure.

The authors proposed an interactive method for
MCDM(13]. In terms of GA, selection is based on rank-
ing, where the rank levels are two. The rank is decided by
the Pareto optimality and DM’s preference. In this pa-
per, we propose a revised version of the algorithm. The
critical problem is the times of interactions between the
DM and the DSS when the number of objective function
is large. For the GA to work efficiently, a good amount of
the evaluation points by the DM is necessary, which forces
the DM to input evaluations of many alternatives. To cir-
cumvent this problem, the normalized RBFN is applied to
form the utility function.

2. PROBLEM FORMULATION

The MCDM is given by

(P1) {

where X is the set of admissible solutions given a prior:
explicitly and/or implicitly by inequalities. The solutions
of the problem (P1) are called Pareto optimal solutions,
and the whole set of Pareto optimal solutions is denoted
as X(C X). Define also

minimize f(z) = ($1(z)," -, ¢p(z))

subject to z € X C R"

F=§(X)={f(x): 2 € X}

The DM is in charge of getting most preferable solution
z' € X.



3. REVIEW OF RELEVANT STUDIES

3.1 Traditional MCDM Methods

In traditional MCDM methods, the single objective func-
tion or the aggregated vector objective function is opti-
mized by mathematical programming methods. The pa-
rameters for the aggregation are

o weight coefficients (weighting method, weighted min-
imax method)

o weight coefficients and the goal (goal programming,
compromise programming)

o admissible objectives bound (e-constraint
method[3])

o reference point (reference point method[14])

and so on. These parameters are often input interactively,
but they all have the common feature that they yield only
one solution at a time basis. Figure 1 shows the concept
of traditional MCDM flow.

C Problem solver Single Pareto solution
( Parameter )
4 DSS
l .
DM

Fig. 1. Traditional MCDM

3.2 Generating Pareto Optimal Solutions by GA

In real world problems, DMs often need different alter-
natives in decision making[11]. Recently GAs have been
attracting our attention as an efficient technique for gen-
erating Pareto optimal solutions.

GA is an optimization method by using multiple al-
ternatives (or “individuals” in GA terminology), where
“crossover”, “mutation” and “selection” are the funda-
mental genetic operators[2]. GA is used for the optimiza-
tion problems mainly because of its ability to produce
globally (semi) optimal solution. But it has been modi-
fied so that it can yield multimodal problems, where tech-
niques such as crowding and niching are created to avoid
the individuals to converge and to let the individuals be
more variety. Further, by using such techniques, GA has
been applied to exhaustively generating Pareto optimal
solutions.

Schaffer[10] developed a program called Vector Evaluated
Genetic Algorithm (VEGA). In VEGA, selection is made
based on each component’s value interchangeably. In
other words, let ; € X. For j = 1,...,p,1,...,p, ..., selec-
tion is made based on the fitness ¢;(x) with GA’s selec-
tion mechanism. This has the drawback to select only the
element-wise extremals. Thus, two operations are supple-
mentally used to avoid this phenomenon. One is “mate

selection”, which is to mate individuals generated based
on different elements, and another is “non-dominated se-
lection” that is to penalize non-Pareto solutions. That
paper has been the milestone of the research on the use
of GA in generating Pareto optimal solutions.

Ranking is used for the selection operation, so that Pareto
optimal solutions are more likely to remain in the next
generation. Individuals of the same rank should have the
same selection pressure. To alleviate the bias of alterna-
tives (i.e. to generate alternatives uniformly on the Pareto
front), “niching” technique was adopted. Horn et al.[4]
proposed similar technique. Srinivas and Deb[11] pro-
posed also a similar technique, where the sharing method
has some difference from that of Fonseca and Fleming.

3.3 Interaction for Higher-Level Decision Making

If the objective space is one or two-dimensional, the DM
can easily decide his/her attitude by seeing the plot shown
on the screen. But for high dimensional problems, this is
not a trivial problem.

Fonseca and Fleming[1] used “goal attainment method”
as the core methodology for this purpose. There are two
kinds of parameters in that method: the goal vector and
the weight coefficient for each objective. They used GA
for optimizing by the goal vectors.

Another method is to use the collection of Pareto opti-
mal solutions as a database, and the DM searches his/her
preference solution among these finite number of given
points. Next we introduce a GA-based technique for the
higher-level decision making.

3.9.1 GA-Based Interaction. The authors have already
proposed the original version of the algorithm[13]. In
terms of GA, selection is based on ranking, where the
rank levels are two. The rank is decided by the Pareto
optimality and DM’s preference. If an individual is both
Pareto optimal and tentatively acceptable by the DM, its
rank is marked high, otherwise it is marked low.

Next we show the algorithm in [13]. Each alternative is
coded as a chromosome in binary numbers.

The algorithm can be described as follows.

Step A-1: k := 0. Generate an appropriate number
of individuals z;,z2,... (values of the decision vari-
able) and compute their objective function vectors
(f(21), f(x2), ...). Remove dominated members, i.e.,
leave only Pareto optimal solutions. Repeat generat-
ing decision variables until the number of remaining
members becomes appropriately large. The surviv-
ing members constitute the initial population X(0)
for the subsequent search.

Step A-2: k:= k + 1. Create new individuals X (k) by
mating current ones; apply mutation and recombi-
nation as the parent individuals mate.



Step A-3: Evaluate the obtained individuals and let
F(k) = {f(z) : = € X(R)}

Remove dominated (non-Pareto optimal) solutions

from (X (k), F(k)).

Step A-4: If Steps A-2 and A-3 have been repeated sev-
eral times, go to Step A-5. If not, reproduce the
remaining individuals and return to Step A-2.

Step A-5: Show {X(k), F(k)} to the DM. If he accepts
one of them, then stop. If he is not satisfied with
any solution, the DM provides his preference attitude
based on the solutions shown to him, and return to
Step A-2. He may provide the information on his
preference attitude in three different ways.

1) He chooses satisfactory solutions and unsatisfac-
tory solutions. Reproduce the satisfactory solu-
tions and remove the unsatisfactory solutions.

2) He inputs the aspiration levels of the objective
functions, which constitute a desirable point for
him. Compute the distances between the aspira-
tion levels and the shown solutions. Delete (re-
produce) the solutions for which the distances are
long (short). .

3) He inputs the level of each objective function
which should be satisfied at the worst. If every ob-
jective value of a solution is better than the above
level, reproduce it. Otherwise, delete it.

We have found some drawbacks of the above algorithm.
They are

premature convergence This occurs because only the
Pareto optimal solutions remain.

interaction times In the interaction method 1), the
number of evaluations of individuals tend to be large.

The items 2) and 3) above are the methods used in the
traditional MCDM methods. They can be effectively used
for scalarization, but it is doubtful if the required parame-
ters can be easily determined. Moreover, they are not ori-
ented for treating various preferable sets of alternatives.
Fonseca and Fleming[1] used goal programming for GA
whose approach is like 2).

4. NEW MCDM METHOD
The algorithm consists of three phases:

1. Generating Pareto optimal solutions
2. Selecting among the prepared alternatives
3. Exploring new alternatives

The basic flow is denoted in Figure 4. In the following,
these phases are explained in more detail.

4.1 Phase 1

Step 1 (Generation of Pareto optimal solutions)
k := 0, and generate Pareto optimal solutions.
Here, we propose a new method based on Kohonen’s
SOM, which is the mapping from input data to 2-
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Fig. 2. Flow of the algorithm

dimensional grid, on each grid point a vector of the
size of input vector is prepared([5], [6]. It has two
convenient features for this applications:
1. The topological relation is well preserved.
2. The distribution of input data reflects to the num-
ber of grid points on the map.
The first feature can be used for detecting Pareto
optimal points. Suppose a grid point p is mapped
from different category of data z; € X and z, € X,
i.e. feasible and non-feasible solutions. This means
z1,%, are near the boundary. If 1 — pi1, z2 — pa
and (p;,p:) are neighbors, (z1,x2) are also under-
stood as located near boundaries. Pareto optimal is
judged among the vectors that appeared above.
The second feature can be used for generating solu-
tion alternatives near the boundary. The point that
should be further explored is where
e in the map, different category data are mapped
nearby
o the code vector on SOM is not very similar.
In this algorithm, pick up the feasible solutions found
there, and judge whether they are Pareto optimal or
not by comparing them to other vectors. Suppose
K Pareto optimal solutions were found. Then create
new vectors around them so that they are not domi-
nated until the total number amounts to the original
number of vectors.
For the problems where finite number of alternatives
X are given a priori, the algorithm can be used be-
ginning with the second phase using X: the Pareto
optimal ones in X. Because the input-output rela-
tion is already found and there is no need to generate
new points in the first place, it is sufficient to use ¥
for GA operations in the next phase.

4.2 Phase 2

In this phase, DM selects his preferred solutions among
the prepared (X, F), and find most preferable ones in



the iterating interaction.

Step 2: Here the DM chooses samples from F(k). Sup-

pose that the sample size is N.

Step 2-1: Pick up a point f € F randomly and
¥(k) = {f}.

Step 2-2: Randomly pick up two samples fi,f2
from F. Select the one f whose smallest distance
from the already selected ones is larger than the
other, i.e.

Wf =2l > lIf: —gll, Vp,g€¥(k)i=1,2
and add this point to ¥(k):
¥(k) = ¥(k) U {f}

Step 3: Show estimates of utility function

Except the first generation, DSS shows the esti-
mate of the alternatives in ¥(k). The histogram
of their utility value is also shown to DM.

The estimates are computed by using normalized
RBFN. Suppose the DSS has collected M evalu-
ations y(f1), ¥(f2), -, y(fm) by the DM’s pref-
erence. Based on these evaluations, we form the

normalized RBFN as

M M
() =Y wen(llf = £:1)/ Y_ n(llf - £ill)

=1 F=1

where the suffix is the index, % is the RBF which
is here defined as a Gaussian function

n(r) = exp(~r’/o?)

where o is a predetermined parameter. This net-
work smoothly connects the evaluated value, and
keeps the value outside the evaluated values. To
decide {w;} from the given data, we can get the

coefficients wy, - - -, wnm by
w1 P11 M y(f 1)
wM M1 PMM y(fm)
where

M
pis = n(llfs = £/ D_ n(lifs - £ll)

I=1

Input preference When the shown preference val-
ues are not appropriate, the DM inputs his prefer-
ence values y{f;) to the sample data f; € ¥(k);i =
1,2,---

Re-calculate RBFN Based on the evaluates
{y(f;) : fi € ¥(k);i = 1,2,---}, DSS forms an
RBFN. This step exploits the past interaction to
release the DM’s task, but the DM has to remem-
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ber his attitude he made in the past. Here, we

took an approach to add the outputs of RBFNs

that were obtained up to the current iteration.
Figure 3 shows the given data, and Figure 4 shows
the function surface generated by normalized RBFN
using data in Figure 3, where o = 1.

451

4.5

35 4 45

Fig. 3. Given data points (circle is the position, value is
the utility value)

Fig. 4. Function surface by normalized RBFN

Step 4: Crossover and mutation operations are domne in
the function space. The nearest point in F to the
newly generated point is selected as a new member
of ¥(k) if it is not a member yet.

Step 5: k:=k + 1 and go to Step 2.

The GA operations are based on the methods by
Michalewicz[8]. In the ranking method, the reproductive
number is based on the ranking,

r=-—aq+b

where r is the reproductive number, g is the ranking, with
b= 2 or 3 and a > 0 is decided appropriately.



Table 1 GA used here

code real value code
crossover | arithmetical crossover, simple crossover|8]
mutation | non-uniform mutation p,, = 0.1
selection | ranking selection
4.3 Phase 3

In the last phase, DM has selected his preferred
solution(s) among the prepared alternatives. Here, he
searches and makes the final decision.

Step 6: Explore new points of DM’s preference.

DSS shows the final alternatives to DM. DM selects sev-
eral points that he likes among them. Due to GA, new
points are generated, and this interaction is repeated until
he is satisfied.

5. NUMERICAL EXAMPLE

Here we demonstrate a numerical example with two-
dimensional input. The problem is given by

minimize f(z) = (z1,z3)

? +22>1+0.1cos (16atcta.n 2)
(m1=3)"+ (- 1) <}
0<z,zz <7

(P2) s. t.

Figure 5 shows the feasible solutions. Note that such an
exhaustive solutions are not shown on a plane nor gener-
ated for high dimensional system. This figure is only for
demonstration.

0.8}
o.6F
041

0.2F

Fig. 5. Feasible solutions

The used SOM is 10 x 10 size. It was learned by presenting
the 30 times of 500 learning vectors interchangeably.

Figure 6 shows the SOM at the second generation. We can
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Fig. 6. SOM at second generation

see that the vectors are more concentrated at the Pareto
optimal frontier.

Figure 7 shows the set of solutions that were finally gener-
ated (10th generation) in phase 1, and these are shown to
DM. In high dimensional systems, this kind of map can-
not be shown. The vector values (or some visually shown
figure in certain sophisticated manner) of the points de-
noted by the circles are shown to DM.

0.8F
o8
04}

o L 1 L L L )
0 02 0.4 0.6 08 1 1.2

Fig. 7. Alternatives finally generated in phase 1

Now phase 2 begins. Table 2 shows the samples at 1st
run. DM inputs evaluations for 10 alternatives. The size
of population is between 100 and 150 whose number is
variate on the selection condition. In normalized RBFN,
oc=0.1

Table 3 shows the samples at the second run. The third
row shows the estimated evaluations by using the RBFN.
The 4th row shows the values entered by the DM.

Table 4 shows the 5th run. Suppose that the DM satisfies



Table 2

Entered preferences at the 1st turn

£ 0.05 -0.12 048 0.51 0.56
2 1.04 098 087 0.80 0.78
input 0 0 1 3 5
z1 0.75 0.78 0.78 0.83 1.04
T2 0.73 0.57 0.54 049 0.05
input 3 1 0 0 0

Table 3 Entered preferences

at the 2nd turn

1 0.47 0.51 0.59 0.62 0.65
T2 091 0.81 0.77 0.77 0.77
RBFN | 1.74 3.03 3.92 4.03 3.93
input 1 2 5 4 3
E2 0.76 0.77 0.81 0.85 0.86
T2 0.71 0.57 0.51 0.48 048
RBFN | 264 0.51 0.28 0.16 0.15
input 2 1 0 0 0
with this evaluations.
Table 4 Result at the 5nd turn
2y 0.565 0.568 0.568 0.572 0.579
9 0.775 0.775 0.775 0.775 0.774
RBFN 10.33 10.38 10.39 10.45 10.54
zy 0.585 0.595 0.596 0.601 0.626
22 0.774 0.773 0.773 0.773 0.773
RBFN | 10.625 10.703 10.707 10.723 10.586

Table 5 shows the best alternatives obtained at the fi-
nal run. In this case, the DM can easily decide his best
alternative among these ones. So, phase 3 is omitted.

6. CONCLUSIONS

We proposed an interactive decision making method for
multi-criteria optimization problems. Various techniques
are included: to generate many Pareto optimal solutions
by SOM, and GA-based interaction for selecting preferred
solutions, and GA-based generation of new alternatives.
The algorithm is particularly useful in the problems of
which objective functions are not given explicitly and/or
not differentiable. A numerical example shows the basic
interaction manner. RBEN was used for the selection,
but there still remains to develop a sophisticated selection
method.
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