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Abstract—This paper introduces an optimal fuzzy pro-
portional–integral–derivative (PID) controller. The fuzzy PID
controller is a discrete-time version of the conventional PID
controller, which preserves the same linear structure of the
proportional, integral, and derivative parts but has constant
coefficient yet self-tuned control gains. Fuzzy logic is employed
only for the design; the resulting controller does not need to
execute any fuzzy rule base, and is actually a conventional PID
controller with analytic formulas. The main improvement is in
endowing the classical controller with a certain adaptive control
capability. The constant PID control gains are optimized by using
the multiobjective generic algorithm (MOGA), thereby yielding
an optimal fuzzy PID controller. Computer simulations are shown
to demonstrate its improvement over the fuzzy PID controller
without MOGA optimization.

Index Terms—Fuzzy control, genetic algorithm, optimization,
proportional–integral–derivative controller.

I. INTRODUCTION

CONVENTIONAL proportional–integral–derivative (PID)
controllers have been well developed and applied for

about half a century [4], and are extensively used for industrial
automation and process control today. The main reason is due
to their simplicity of operation, ease of design, inexpensive
maintenance, low cost, and effectiveness for most linear sys-
tems. Recently, motivated by the rapidly developed advanced
microelectronics and digital processors, conventional PID
controllers have gone through a technological evolution, from
pneumatic controllers via analog electronics to microprocessors
via digital circuits [4], [7].

However, it has been known that conventional PID controllers
generally do not work well for nonlinear systems, higher order
and time-delayed linear systems, and particularly complex and
vague systems that have no precise mathematical models. To
overcome these difficulties, various types of modified conven-
tional PID controllers such as autotuning and adaptive PID con-
trollers were developed lately [1]–[3], [7]. Also, a class of non-
conventional type of PID controller employing fuzzy logic has
been designed and simulated for this purpose [6], [7], [16]–[18],
[21]–[23]. This fuzzy PID controller has the following special
features.
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1) It has the same linear structure as the conventional PID
controller, but has constant coefficient, self-tuned control
gains: the proportional, integral, and derivative gains are
nonlinear functions of the input signals.

2) The controller is designed based on the classical discrete
PID controller, from which the fuzzy control law is de-
rived.

3) Membership functions are simple triangular ones with
only four fuzzy logicIF–THEN rules. The fuzzification,
control-rule execution, and defuzzification steps are all
embedded in the final formulation of the fuzzy control
law. The resulting control law is an explicit conventional
formula, so the controller works just like a conventional
PID controller, while the fuzzification–rules–defuzzifica-
tion routine is not needed throughout the entire control
process.

Stability of these fuzzy PID controllers has also been ana-
lyzed and is guaranteed [6]–[9], [17], [18], [21], [22]. Many
simulation and practical examples have been given to show the
superior performance of this class of fuzzy PID controllers [7],
[8]. However, despite the significant improvement of the fuzzy
PID controllers over their classical counterparts, it is noted that
these fuzzy PID controllers do not meet specific optimality cri-
teria. The constant control gains of these controllers are tuned
manually, so generally do not achieve their best possible perfor-
mance due to the lack of optimization. Therefore, how to incor-
porate optimality into these successful controllers remains an
interesting and important issue to be further addressed.

This paper aims to equip the fuzzy PID controllers with a
certain optimality by using the multiobjective generic algorithm
(MOGA), so as to obtain an optimal fuzzy PID controller. Com-
puter simulations are shown to demonstrate its improvement
over the fuzzy PID controller without MOGA optimization.

The remainder of the paper is organized as follows. In Sec-
tions II and III, a representative fuzzy PID controller is in-
troduced, which is used as a platform for the description of the
GA-based optimization method proposed in the present paper.
This is followed by a detailed description of the GA approach
for the optimization of the fuzzy PID controller in Section IV.
Simulations are then given in Section V to demonstrate the im-
provement of the GA-based optimization on control gain de-
termination, as compared to the fuzzy PID control systems
without using GA optimization. Conclusions are drawn in Sec-
tion VI, with some comments and discussion.

II. FUZZY PI D CONTROLLER

The fuzzy PI D controller is a digital controller, which con-
tains a fuzzy PI D control units arrangement, called the deriva-
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Fig. 1. Conventional continuous-time PI+D control system.

tive of output, as shown in Fig. 1. This arrangement is often de-
sirable if the reference input contains discontinuities [24].

In the design phase [8], [21], we start with the continuous
conventional PI D controller and then use the standard bilinear
transform to convert it to the corresponding digital controller.
The next two sections discuss this procedure.

A. Fuzzy PI Controller

The output of the conventional analog PI controller in the
frequency domain, as can be verified easily from Fig. 1, is
given by

where and are the proportional and integral gains, re-
spectively, and is the tracking error signal.

This equation can be transformed into the discrete version by
applying the bilinear transformation

, where is the sampling period, which results in the
following form:

By letting

and

and then taking the inversetransform, we obtain

(1)

Dividing (1) by and then rearranging terms, we have

(2)

where

(3)

with

(4)

(5)

Here, is the incremental control output of the PI con-
troller, is the error signal, and is the rate of
change of the error signal.

By further replacing the term with a fuzzy con-
trol action , we arrive at

(6)

in which is a constant control gain to be determined.

B. Fuzzy D Controller

The D controller in the PI D control system, as shown in
Fig. 1, satisfies

(7)

where is the control gain and is the output signal.
Under the bilinear transformation, (7) becomes

(8)

so that

(9)

Dividing (9) by and then rearranging terms yields

(10)

where is a constant control gain to be determined,

(11)

is the incremental control output of the fuzzy D controller,

(12)

is the rate of change of the output, and

(13)

To enable better performance of this D controller, we have
slightly modified (11) by adding the signal to its
right-hand side, where

(14)

so as to obtain

(15)

C. Fuzzy PI D Controller

Finally, the overall fuzzy PI D control law can be obtained
by algebraically summing the fuzzy PI control law (6) and the
fuzzy D law (10) together. The result is

(16)

Equation (16) will be referred to as the fuzzy PID control law
throughout the paper.

The overall conventional PID control system is shown in
Fig. 2. To this end, the fuzzy PI and fuzzy D controllers will be
inserted into the figure, resulting in the configuration shown in
Fig. 3.
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Fig. 2. Conventional digital PI+D control system.

Fig. 3. Fuzzy PI+D control system.

III. FUZZIFICATION, CONTROL RULE BASE, AND

DEFUZZIFICATION

The fuzzy PID controller was designed by following the stan-
dard procedure of fuzzy controllers design, which consists of
fuzzification, control rule base establishment, and defuzzifica-
tion.

A. Fuzzification

We fuzzify the PI and D components of the PID control
system individually and then combine the desired fuzzy
control rules for each of them, taking into consideration the
overall PI D fuzzy control law given in (16). The input and

output membership functions of the PI component are shown in
Fig. 4(a) and (b), respectively, while those for the D component,
in Fig. 5(a) and (b), respectively.

The fuzzy PI controller employs two inputs, the error signal
with and the rate of change of

the error signal with
and has a single output , as shown in Fig. 4, where

the constant .
Similarly, the fuzzy D controller has two weighted inputs

and and its output is denoted
as .

It should be noted that a single constantis used in these
membership functions since the inputs and outputs will be
weighted by the gains , , , , and , where the
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(a)

(b)

Fig. 4. Membership functions for the PI component. (a) Input membership
functions. (b) Output membership functions.

(a)

(b)

Fig. 5. Membership functions for the D component. (a) Input membership
functions. (b) Output membership functions.

gains and the constant are determined by MOGA later
in specific applications.

B. Fuzzy Control Rules

Using the aforementioned membership functions, the fol-
lowing control rules are established for the fuzzy PI controller.

(R1) IF AND , THEN PI output .
(R2) IF AND , THEN PI output .
(R3) IF AND , THEN PI output .
(R4) IF AND , THEN PI output .

“PI output” is the fuzzy PI control output , “ ”
means “error positive,” and “ ” means “output positive,” etc.
Also, the logical “AND” takes the minimum.

Similarly, from the membership functions of the fuzzy D con-
troller, the following control rules are used for the D component.

(R5) IF AND , THEN D output .
(R6) IF AND , THEN D output .
(R7) IF AND , THEN D output .
(R8) IF AND , THEN D output .

In the above rules, “D output” is the fuzzy D control output
, and the other terms are defined similarly to the PI

component.
These eight rules altogether yield the control actions for the

fuzzy PI D control law.
The formulation of these rules can be understood as follows.

If we look at Rule 1 (R1) for the PI controller, condition
(the error is negative) implies that the systems outputis above
the setpoint, and (rate of error negative) implies
(meaning that the controller at the previous step is driving the
system output upward). Since the component of (16)
contains more control terms with gain parameters than the D
controller, we set this term to be negative and set the
component to be zero. Thus, the combined control action will
drive the system output downward by Rules (R1) and (R5) of
both controllers. Rules 2, 3, and 4 are similarly determined.

C. Defuzzification

In the defuzzification step, for both fuzzy PI and D con-
trollers, the centroid formula is employed to defuzzify the
incremental control of the fuzzy control law (16) as shown in
(17) at the bottom of the page.

For the fuzzy PI controller, the value ranges of the two in-
puts, the error and the rate of change of the error, are actually
decomposed into 20 adjacent input-combination (IC) regions, as
shown in Fig. 6(a). This figure is understood as follows. We put
the membership function of the error signal [given by the curves
for in Fig. 4(a)] over the horizontal axis in Fig. 6(a), and put
the membership function of the rate of change of the error signal
[given by the same curves in Fig. 4(a) for] over the vertical
axis in Fig. 6(a). These two membership functions then overlap
and form the third-dimensional picture [which is not shown in
Fig. 6(a)] over the two-dimensional regions shown in Fig. 6(a).
When we look at region IC1, for example, if we look upward
to the -axis, we see the domain and the mem-
bership function (in the third dimension) over of the error
signal; if we look leftward to the axis, we see the
domain and the membership function (in the third di-
mension) over of the rate of change of the error signal.

The control rules for the fuzzy PI controller [(R1)–(R4)], with
membership functions and IC regions together, are used to eval-
uate appropriate fuzzy control laws for each region.

In so doing, we consider the locations of the error
and the rate in the regions IC1 and IC2 [see
Fig. 6(a)]. Let us look at region IC1, for example, where

is in the range and in . For

membership value of input output corresponding to the membership value of input
membership value of input

(17)
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Fig. 6. Regions of (a) fuzzy PI and (b) fuzzy D controller input-combination values.

these two signals, we have [see Fig. 4(a)].
Hence, Fig. 4(a) and (R1), where the logical “AND” is used,
together lead to

error AND rate

Therefore, Rule 1 (R1) yields

(R1)
the selected input membership value is

the corresponding output membership value is

Similarly, in region IC1, Rules 2–4, (R2)–(R4), and the logical
“AND” used in (R2)–(R4) together yield

(R2)
the selected input membership value is

the corresponding output membership value is

(R3)
the selected input membership value is

the corresponding output membership value is

(R4)
the selected input membership value is

the corresponding output membership value is

It can be verified that the above are true for the two regions
IC1 and IC2. Thus, in regions IC1 and IC2, it follows from the
defuzzification formula (17) that

To this end, by applying , [obtained
from Fig. 4(b)], and the following straightline formulas from the
geometry of the membership functions associated with Fig. 6(a):

we obtain

Here, we note that in regions IC1 and IC2. In the
same way, one can verify that in regions IC5 and IC6 we have

where it should be noted that in regions IC5 and
IC6. Hence, by combining the above two formulas we arrive at
the following result for the four regions IC1, IC2, IC5, and IC6:

Working through all regions in the same way, we obtain the
following formulas for the 20 IC regions:

IC 1, 2, 5, 6

in IC 3, 4, 7, 8

in IC9, 10

in IC11, 12

in IC13, 14

in IC15, 16

in IC18, 20

in IC17

in IC19.

(18)

Similarly, defuzzification of the fuzzy D controller follows
the same procedure as described above for the PI component,
except that the input signals in this case are different. The IC
combinations of these two inputs are decomposed into twenty
similar regions, as shown in Fig. 6(b).
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Similarly, we obtain the following formulas for the D con-
troller in the 20 IC regions:

in IC 1, 2, 5, 6

in IC 3, 4, 7, 8

in IC9, 10

in IC11, 12

in IC13, 14

in IC15, 16

in IC17, 19

in IC18

in IC20.

(19)

An important final remark is that the stability of this fuzzy
PI D controller has been thoroughly analyzed, with sufficient
conditions derived, in [8], [21].

IV. OPTIMIZATION OF CONTROL GAINS BASED ON GA

The basic principles of GAs were first proposed by Holland
[15]. The GA is inspired by the mechanism of natural selec-
tion, where stronger individuals would likely be the winners in
a competing environment. Here, GA uses a direct analogy of
such natural evolution.

The GA presumes that a potential solution of a problem is
an individual and can be represented by a set of parameters.
These parameters are regarded as the genes of a chromosome.
A positive value, generally known as the fitness value, is used
to reflect the degree of “goodness” of the chromosome for the
problem that would be highly related with its objective value.

Throughout a genetic evolution, the fitter chromosome has
the tendency to yield good quality offspring, which means a
better solution to the problem. Initially, a population pool of
chromosomes is randomly installed. In each cycle of genetic
operation termed as evolving process, a group of those chromo-
somes, generally called “parents” or a collection term “mating
pool,” are selected via a specific fitness proportionate selection
routine. The genes of the parents are to be mixed and recom-
bined for the production of offspring in the next generation. It is
expected from this process of evolution (manipulation of genes)
that the “better” chromosome will create a larger number of off-
spring, and thus has a higher chance of surviving in the sub-
sequent generation, emulating the survival-of-the-fittest mech-
anism in nature.

The cycle of evolution is repeated until a desired termination
criterion is reached. This criterion can also be set by the number
of evolution cycles (computational runs), or the amount of vari-
ation of individuals between different generations, or a prede-
fined value of fitness.

Detailed design of the GA can be referred to in [13], [19], and
[20].

A. Chromosome Representation

Referring to Section III, there are seven control parameters
, to be determined for an op-

timal fuzzy PI D controller. Hence, the chromosomecan be
defined as

(20)

with real-number representation.

B. Genetic Operations

The specialized genetic operations developed in GENOCOP
[20] for real-number-represented chromosome are adopted.

For crossover, theth gene of the offspring can be deter-
mined by

(21)

where are uniformly distributed random numbers,
and are selected parents.

Mutation is performed within the confined region of the chro-
mosome by applying Gaussian noise to the genes [20].

C. Objective Functions

For the general control problem, it is desirable to optimize a
number of different system performances.

Consider a step input and the output response . The
following objectives are stated for our design.

1) Minimizing the maximum overshoot of the output

(22)

2) Minimizing the settling time of the output

(23)

such that , .
3) Minimizing the rise time of the output

(24)

such that and .

D. Pareto-Based Fitness Assignment

Instead of aggregating the objectives with a weighting func-
tion, a multiobjective approach [11] is applied.

Definition: For an -objective minimization problem, is
dominated by if

and

s.t. (25)

The chromosome can then be ranked with

rank (26)

if is dominated by other chromosomes in the population.
Hence, a Pareto-based fitness can be assigned to each chromo-
some according to its rank in the population.
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Fig. 7. Output response of the fuzzy PID controller.

Pareto-based ranking can correctly assign all nondominated
chromosomes with the same fitness. However, the Pareto set
may not be uniformly sampled. Usually, the finite populations
will converge to only one or some of these, due to stochastic er-
rors in the selection process. Such phenomenon is known as ge-
netic drift. Therefore, fitness sharing [14] is adopted to prevent
the drift and promote the sampling of the whole Pareto set by the
population. The individual is penalized due to the presence of
other individuals in its neighborhood. The number of neighbors
governed by their mutual distance in objective spaces is counted
and the raw fitness value of the individual is then weighted by
this niche count. Eventually, the total fitness in the population
is redistributed favoring those regions with less chromosomes
located in them.

V. RESULTS

A. Nonlinear Model

The examples chosen here for simulation and comparison are
taken from [21], where they were simulated and compared to the
classical PID controllers.

The first example is a nonlinear process with the following
simple model:

for which fuzzy PI D parameters were determined manually
as: , , , , ,

, , , and the set oint in
order to obtain similar responses to that given in [21].

The output response obtained is shown in Fig. 7, where it
clearly reveals that the fuzzy PID controller tracks the setpoint
without any oscillation or steady-state error. On the contrary, the
conventional PI D controller is not able to track the set oint, no
matter how one changes its parameters [21].

Fig.7 also depicts the output performance of the optimal fuzzy
PI D controller, in which the gain is located by MOGA. The
obtained parameters are , , ,

, , , nd
. It clearly reveals that the fuzzy PID controller, after

optimization via the GA, has generally better steady-state and

Fig. 8. Output response and reference.

transient responses, due to the multiobjective optimal criteria
formulated for the set-point tracking control tasks.

B. Solar Plant Process

A similar optimal fuzzy controller is designed for the solar
plant model at Tabernas, in Almería, Spain [5], [12, Fig. 1]. This
solar plant consists of 480 distributed solar ACUREX collectors
arranged in 20 rows forming ten parallel loops. Each loop is
about 172-m long. The collector uses parabolic mirrors to reflect
solar radiation onto a pipe for heating up the oil inside while
circulation. A sunlight tracking system is installed to drive the
mirrors to revolve around the pipes to achieve a maximum of
sun radiation. The cold inlet oil is pumped from the bottom of
the storage tank and passes through the field inlet. The heated oil
is then transferred to a storage tank for generating the electrical
power. The system is provided with a three way valve located
in the field outlet to allow the oil to be recycled in the field until
its outlet temperature is adequately heated for entering into the
top of the storage tank.

The most important objective of this control system is to
maintain the outlet oil temperature at a desirable level in spite
of disturbances, which may be caused by the changes of solar
radiation level, mirror reflectivity, and/or inlet oil temperature.

The following solution set is selected for the control purpose:

Fig. 8 shows the outlet temperature of the controlled plant for
a step set point of 180C. It can be observed that the output
is well tracking the reference temperature with fluctuation less
than 0.6 C and the overshoot is just about 3C, even with a
large variation on the solar radiation as shown in Fig. 9. The oil
flow is also plotted in Fig. 10 for reference.

It should be noted that the abnormal response in the starting
phase of the operation is mainly due to a number of factors.

• The initial temperature profile inside the tubes (including
the interconnection tube between the tank and the point
in which the inlet oil temperature sensor is placed) is un-
known and it causes a wrong result in the numerical inte-
gration algorithm in the simulator.

• The oil flow is usually saturated to the minimum value in
order to produce the maximum oil heating.
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Fig. 9. Solar radiation.

Fig. 10. Oil flow.

VI. CONCLUSION

An optimal fuzzy PID controller has been proposed in this
paper. It is a discrete-time version of the conventional PID con-
troller, with adaptive control capability and optimized via the
multiobjective GA. The results demonstrate that its performance
is much better than that of the one with manually tuned gains.
This optimal fuzzy PID controller is suitable for the control of
nonlinear plants in industrial applications, as demonstrated by
the examples given in this paper.
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