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ABSTRACT

This paper investigates the use of a multi-objective approach
for evolving artificial neural networks that act as controllers
for the legged locomotion of a 3-dimensional, artificial quadruped
creature simulated in a physics-based environment. The Pareto-
frontier Differential Evolution (PDE) algorithm is used to
generate a pareto optimal set of artificial neural networks
that optimizes the conflicting objectives of maximizing loco-
motion behavior and minimizing neural network complexity.
Here we also analyze the evolutionary dynamics of controller
evolution.

Keywords: artificial evolution, artificial life, embodied cog-
nitive science, evolutionary robotics.

1. INTRODUCTION

There has been a strong resurgence of research into the evo-
lution of morphology and controller of physically simulated
creatures. The pioneering and captivating work of Sims [19]
in 1994 has not been parallelled until very recently. Further
work in this area was limited by the complexity of program-
ming a realistic physics-based environment and the steep com-
putational resources required to run the artificial evolution.
These physically realistic simulations of evolving artificial
minds and bodies have become more accessible to the wider
research community as a result of the recent convergence in
the maturation of physics-based simulation packages and in-
crease of raw computing power of personal computers [21].

Research in this area generally falls into two categories:
(1) the evolution of controllers for creatures with fixed [10,
18] or parameterized morphologies [15, 17], and (2) the evo-
lution of both the creatures’ morphologies and controllers si-
multaneously [4, 9, 12, 14]. Some work has also been carried
out in evolving morphology alone [6] and evolving morphol-
ogy with a fixed controller [13]. Related work using mobile
robots have also shown promising results in robustness and
the ability to cope with changing environments by evolving

plastic individuals that are able to adapt both through evolu-
tion and lifetime learning [7, 8, 16]. However, the artificial
evolution conducted in these experiments focused on a single
objective, for example walking, swimming, light-following,
block pushing or obstacle avoidance. A better understanding
of controller complexity and the behavior of evolved con-
trollers should pave the way towards the emergence of more
complex artificial creatures with more complex morpholo-
gies and behaviors.

In this paper, we investigate the use of a multi-objective
approach in evolving controllers for a fixed morphology ar-
tificial creature. A multi-objective approach for evolving the
controller of the creature allows for an investigation into the
relationship between the capability of the evolved locomo-
tion behavior and the size of the brain required for generating
the desired behavior. By generating a pareto-frontier consist-
ing of multiple ANNs with differing locomotion capabilities
and varying architecture complexities, a comparison of con-
troller size against behavior fitness can be made. A further
advantage of using a multi-objective approach for artificial
evolution is that genetic diversity is maintained naturally dur-
ing the course of the evolutionary process. A common prob-
lem with evolutionary optimization algorithms is premature
convergence due to loss of genetic diversity and this phe-
nomenon has been observed to cause problems as well in the
artificial evolution of virtual creatures [11]. An evolutionary
multi-objective algorithm promotes reproductive diversity by
allowing the evolutionary process to optimize along distinct
goals.

This study will hopefully provide some insights into the
architectural complexity of controllers required for generat-
ing walking behaviors in 3D, physically simulated creatures.
In addition, it also provides a new paradigm for evolving con-
trollers as a set of pareto optimal ANNs can be generated in
a single run. This allows the user the option to choose from a
variety of controllers with varying architectural complexities
and behavioral competencies to suit the eventual simulation
environment, constraints and purposes.

The artificial evolutionary system proceeds along two sep-



arate goals: to (1) maximize horizontal locomotion and, (2)
minimize the complexity of the controller. In the current
study, controller complexity is measured using the number
of hidden nodes that are used in the ANN. In future work, we
intend to define more rigorous measures of controller com-
plexity by taking into consideration other ANN architectural
features such as number of connection weights as well as
number of nodes in the input and output layers.

2. METHODS

2.1. Evolving Artificial Neural Networks

Traditionally ANNs are trained using learning algorithms such
asbackpropagation(BP) to determine the connection weights
between nodes. However such methods are gradient-based
techniques which usually suffer from the inability to escape
from local minima when attempting to optimize the connec-
tion weights. To overcome this problem, evolutionary ap-
proaches have been proposed as an alternative method for
optimizing the connection weights. ANNs evolved via this
method is thus referred to as evolutionary artificial neural
networks (EANNs). In the literature, research into (EANNs)
usually involves one of three approaches; evolving the weights
of the network, evolving the architecture, or evolving both
simultaneously. For a thorough review of EANNs, refer to
[22]. In this paper, we are evolving both the weights and
architecture of the ANN.

Abbass et al. first introduced the Pareto-frontier Dif-
ferential Evolution (PDE) algorithm for vector optimization
problems [3]. PDE is an adaptation of the originalDifferen-
tial Evolution(DE) algorithm introduced by Storn and Price
[20] for optimization problems over continuous domains. In
this initial investigation, the PDE algorithm outperformed all
previous methods on five benchmark problems. PDE com-
bined with local search was later introduced for evolving
ANNs in the MPANN algorithm [1]. MPANN was found
to be highly effective for knowledge discovery in databases.
In subsequent work, the MPANN algorithm was empirically
shown to possess better generalization in medical diagnosis
of breast cancer whilst incurring a much lower computational
cost [2].

2.2. Representation

Similar to [1, 2], our chromosome is a class that contains one
matrix Ω of real numbers representing the weights of the ar-
tificial neural network and one vectorρ of binary numbers
(one value for each hidden unit) to indicate if a hidden unit
exists in the network or not; that is, it works as a switch to
turn a hidden unit on or off. The sum of all values in this
vector represents the actual number of hidden units in a net-
work. This representation allows simultaneous training of
the weights in the network and selecting a subset of hidden

units. The morphogenesis of the chromosome into the ANN
is depicted in Figure 1.
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Figure 1: The representation used for the chromosome.

2.3. The PDE algorithm

We have a multi-objective problem with two objectives
in this study: (1) one is to maximize the horizontal distance
travelled by the creature from its initial starting position, and
(2) to minimize the number of hidden units. The pareto-
frontier of the tradeoff between the two objectives will have
a set of networks with different number of hidden units and
different locomotion behaviors. An entire set of controllers
is generated in each evolutionary run without requiring any
further modification of parameters by the user. The PDE al-
gorithm for evolving ANNs consists of the following steps:

1. Create a random initial population of potential solutions. The
elements of the weight matrixΩ are assigned random values
according to a Gaussian distributionN(0, 1). The elements
of the binary vectorρ are assigned the value 1 with probabil-
ity 0.5 based on a randomly generated number according to
a uniform distribution between[0, 1]; otherwise 0.

2. Repeat

(a) Evaluate the individuals in the population and label
those who are non-dominated.

(b) If the number of non-dominated individuals is less than
3 repeat the following until the number of non-dominated
individuals is greater than or equal to 3:

i. Find a non-dominated solution among those who
are not labelled.

ii. Label the solution as non-dominated.

(c) Delete all dominated solutions from the population.

(d) Repeat

i. Select at random an individual as the main par-
entα1, and two individuals,α2, α3 as supporting
parents.

ii. Crossover:with some probabilityUniform(0, 1),
do

ωchild
ih ← ωα1

ih + N(0, 1)(ωα2
ih − ωα3

ih ) (1)



ρchild
h ←

{
1 if(ρα1

h + N(0, 1)(ρα2
h − ρα3

h )) ≥ 0.5
0 otherwise

(2)
otherwise

ωchild
ih ← ωα1

ih (3)

ρchild
h ← ρα1

h (4)

and with some probabilityUniform(0, 1), do

ωchild
ho ← ωα1

ho + N(0, 1)(ωα2
ho − ωα3

ho ) (5)

otherwise
ωchild

ho ← ωα1
ho (6)

where each weight in the main parent is perturbed
by adding to it a ratio,F ∈ N(0, 1), of the dif-
ference between the two values of this variable in
the two supporting parents. At least one variable
must be changed.

iii. Mutation: with some probabilityUniform(0, 1),
do

ωchild
ih ← ωchild

ih + N(0, mutation rate) (7)

ωchild
ho ← ωchild

ho + N(0, mutation rate) (8)

ρchild
h ←

{
1 ifρchild

h = 0
0 otherwise

(9)

(e) Until the population size isM

3. Until maximum number of generations is reached.

3. EXPERIMENTS

3.1. The Simulation Model

The simulation is carried out in a physically realistic envi-
ronment which allows for rich dynamical interactions to oc-
cur between the creature and its environment. This in turn
enables complex walking behaviors to emerge as the crea-
ture evolves the use of its sensors to control the actuators in
its limbs through dynamical interactions with the environ-
ment. Furthermore, the accurate modelling of the simulation
environment plays a crucial part in producing artificial crea-
tures that move and behave realistically in 3D [21]. A dy-
namic rather than kinematic approach is paramount in allow-
ing for effective artificial evolution to occur. Physical prop-
erties such as forces, torques, inertia, friction, restitution and
damping need to be incorporated into the artificial evolution-
ary system. To this end, the Vortex physics engine [5] was
employed to generate the physically realistic artificial crea-
ture and its simulation environment. A screen capture of the
quadruped moving in its environment is shown in Figure 2.

Figure 2: Screen capture of quadruped in the simulation en-
vironment.

The artificial creature is a basic quadruped with 4 short
legs. Each leg consists of an upper limb connected to a lower
limb via a hinge (one degree-of-freedom) joint and is in turn
connected to the torso via another hinge joint. The mass of
the torso is 1kg and each of the limbs is 0.5kg. The torso
has dimensions of 4 x 1 x 4m and each of the limbs has di-
mensions of 1 x 1 x 1m. The hinge joints are allowed to ro-
tate between -1.57 to 0 radians for limbs that move counter-
clockwise and 0 to 1.57 radians for limbs that move clock-
wise from their original starting positions. Each of the hinge
joints are actuated by a motor that generates a torque pro-
ducing rotation of the connected body parts about that hinge
joint. Correspondingly, the artificial creature has 12 sensors
and 8 actuators. The 12 sensors consist of 8 joint angle sen-
sors(x1, x2, x3, x4, x5, x6, x7, x8) corresponding to each of
the hinge joints and 4 touch sensors(x9, x10, x11, x12) cor-
responding to each of the 4 lower limbs of each leg. The 8
actuators(y1, y2, y3, y4, y5, y6, y7, y8) represent the motors
that control each of the 8 articulated joints of the creature.
These motors are controlled via outputs generated from the
ANN controller which is then used to set the desired velocity
of rotation of the connected body parts about that joint.

3.2. Experimental Setup

A total of 480 evolutionary runs were conducted with varying
population sizes, crossover rates, and mutation rates while
fixing the fitness evaluation window to 500 timesteps. The
crossover rate used were 0, 0.1, 0.2, 0.5 and 1 and the muta-
tion rates used were also 0, 0.1, 0.2, 0.5 and 1 (the evolution-
ary setup with a crossover rate of 0 and a mutation rate of 0
was omitted since this setup does not generate any variabil-
ity at all in the population). The maximum number of hid-
den units permitted in evolving the artificial neural network
was fixed at 15 nodes. Each experimental setup was repeated
using 10 different seeds to allow the artificial evolution to
commence from different starting points in the search space.
The number of generations and population size were fixed at
20 and 30 respectively for the first set of runs. In the second
set of runs, these parameter values were reversed to 30 for



number of generations and 20 for population size to enable
a fair comparison between the effect of the two population
sizes (the total number of genotypes over the entire span of
the evolutionary process was kept constant at 600 genotypes
in both these setups).

4. RESULTS AND DISCUSSION

4.1. Evolutionary Parameters

First we analyzed the effect of population size on the evolved
locomotion behaviors. Overall, there did not appear to be any
obvious differences in the range and quality of the evolved
controllers between population sizes of 20 and 30. Both pro-
duced a considerably similar quality of locomotion behav-
iors although a larger population size did seem to produce
controllers that were slightly better in terms of average lo-
comotion fitness. There were 12 different combinations of
crossover and mutation rates with a population size of 30 in
which the best average locomotion fitness exceeded 2.5m as
compared to only 8 with a population size of 20. Both also
generated a relatively similar spread of locomotion behaviors
although again a larger population size did seem to produce
more varied genotypes in terms of the number of hidden units
that were used in the ANN. There were 12 different combina-
tions of crossover and mutation rates with a population size
of 30 that produced 11 or more different ANN architectures
compared to only 10 with a population size of 20. As such,
there is a very slight advantage in using a larger population
size in terms of quality and spread of the locomotion behav-
iors.

Different combinations of crossover and mutation rates
did appear to produce results that varied across two broad
spectrums. With both population sizes of 20 and 30, two dis-
tinct groups of controllers were generated through the evolu-
tionary process: (1) runs that produced high quality solutions
but with a low spread of genotypes, and (2) runs that pro-
duced mediocre solutions with a high spread of genotypes.
Again, the quality of the solutions refers to the average loco-
motion fitness and the spread of genotypes refers to the num-
ber of ANNs with different sizes in terms of hidden units.
The first group of pareto optimal solutions with high qual-
ity and low spread were observed when fairly low mutation
rates of 0.1 and 0.2 were used in combination with a low
to medium crossover rate of between 0.1 to 0.5. The sec-
ond group of pareto optimal solutions with lower quality but
with a much wider spread of controller sizes were observed
when a high mutation rate of 1 was used. In this latter case,
crossover did not seem to affect the spread very much as all
rates between 0 and 1 generated between 13 and 15 different
genotypes. One exception to this observation was noticed
in the run with a population size of 20 that had a mutation
rate of 0 but still produced a wide spread of 14 controllers
with different sizes. This may be explained by the very high
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Figure 3: The average fitness for each number of hidden
units with population sizes 20 (on left) and 30 (on right).
Crossover and mutation combinations plotted from top to
bottom are (0.2,0.1), (0.2,0.2), (0.2,0.5), (0.2,1.0), (0.5,0.5),
and (1.0,1.0)



crossover rate of 1 which compensated for the non-existence
of mutation. Another interesting phenomenon that could be
observed only in the runs which used a population size of 30
was the ability of the evolutionary process to generate both
high quality solutions (where the best average locomotion fit-
ness was above 2.5m) as well as a large spread of 13 different
controller sizes. This was achieved with a mutation rate of 1
and crossover rates of 0.2 and 0.5.

In summary, high quality and a low spread of solutions
were obtained with low mutation and low to medium crossover
whereas mediocre solutions with a wider variety of controller
sizes were obtained with high mutation and low to high crossover.
Population size did not appear to significantly affect the qual-
ity and spread of pareto optimal solutions in these experi-
ments although a very slight advantage in terms of quality
and variety of controller sizes was observed with the larger
population size of 30.

4.2. Evolutionary Dynamics

The best evolved controller in terms of the maximum hor-
izontal distance moved from its initial position had a com-
paratively simple architecture with only 4 hidden units. This
result was achieved with an evolutionary run that had simi-
larly low crossover and mutation rates of 0.2 with a popula-
tion size of 30 over 20 generations. To enable an analysis of
the evolutionary dynamics that generated the best controller,
the pareto-frontier of this particular setup is reported at each
generation and is depicted graphically in Figure 4.

Figure 4: Pareto-frontier over 20 generations

Looking at the 1st generation, we observe a fairly even
spread across different controller complexities ranging from
5 to 9 hidden units and which had similarly low locomo-
tion capabilities. By the 2nd generation, we begin to see the
effects of evolutionary pressure attempting to minimize the
controller’s complexity where the range of hidden units is re-
duced to between 4 and 6. An increase in genetic diversity is
noticed in the 4th generation where five pareto optimal solu-
tions were found. A sharp increase in locomotion capability

and decrease in controller complexity is observed in the 5th
generation. As a result of the strong evolutionary pressure
to decrease the size of the ANN, a random controller with
no hidden units appears in the 7th generation but does not
achieve very much in terms of movement. Again genetic di-
versity emerges in the ninth generation with the reappearance
of genotypes with 2 and 5 hidden units from previous genera-
tions that were lost during the reproduction process. The evo-
lutionary process jumps to a higher fitness value in the 10th
generation and this is where we start to see the optimization
process begin to converge. There is no improvement at all
in the 11th generation and the 12th generation only sees the
addition of a single new genotype to the pareto-frontier. The
only significant improvement between the 13th and 15th gen-
erations is in the ANN with 4 hidden units which increases
its distance travelled by approximately 2m. The last signif-
icant though relatively small improvement comes in the last
generation where the locomotion fitness of the ANN with 4
hidden units approaches 10.

Overall we see from the evolutionary dynamics of con-
troller evolution that it is generally very hard for larger con-
trollers with more hidden units to survive due to the strong
evolutionary pressure of minimizing ANN complexity. This
observation may also be attributed to the fact that a larger
controller does not easily lead to locomotion behaviors that
can’t be achieved with a smaller controller. As a result, larger
controllers find it hard to compete with smaller controllers in
trying to maximize the horizontal distance travelled by the
quadruped.

5. CONCLUSION

We have demonstrated a multi-objective approach to evolv-
ing artificial neural networks for controlling the locomotion
of a 3D, physically simulated artificial creature. The pareto-
frontier that resulted from each single evolutionary run pro-
vided a set of ANNs which maximized the locomotion capa-
bilities of the creature and at the same time minimized the
size of the controller. The evolutionary dynamics for con-
troller synthesis were analyzed to provide a high-level view
of the progression of the artificial evolution. For future work,
we intend to investigate the effects of controller complexity
when both the morphology and controller are co-evolved si-
multaneously.
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