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Abstract. This paper presents a novel perspective to the use of multi-
objective optimization and in particular evolutionary multi-objective op-
timization (EMO) as a measure of complexity. We show that the partial
order feature that is being inherited in the Pareto concept exhibits char-
acteristics which are suitable for studying and measuring the complexi-
ties of embodied organisms. We also show that multi-objectivity provides
a suitable methodology for investigating complexity in artificially evolved
creatures. Moreover, we present a first attempt at quantifying the mor-
phological complexity of quadruped and hexapod robots as well as their
locomotion behaviors.


1 Introduction


The study of complex systems has attracted much interest over the last
decade and a half. However, the definition of what makes a system complex is
still the subject of much debate among researchers [7, 19]. There are numerous
methods available in the literature for measuring complexity. However, it has
been argued that complexity measures are typically too difficult to compute to
be of use for any practical purpose or intent [16]. What we are proposing in
this paper is a simple and highly accessible methodology for characterizing the
complexity of artificially evolved creatures using a multi-objective methodology.
This work poses evolutionary multi-objective optimization (EMO) [5] as a conve-
nient platform which researchers can utilize practically in attempting to define,
measure or simply characterize the complexity of everyday problems in a useful
and purposeful manner.


2 Embodied Cognition and Organisms


The view of intelligence in traditional AI and cognitive science has been
that of an agent undertaking some form of information processing within an ab-
stracted representation of the world. This form of understanding intelligence was
found to be flawed in that the agent’s cognitive abilities were derived purely from
a processing unit that manipulates symbols and representations far abstracted







from the agent’s real environment [3]. Conversely, the embodied cognitive view
considers intelligence as a phenomenon that emerges independently from the par-
allel and dynamical interactions between an embodied organism and its environ-
ment [14]. Such artificial creatures possess two important qualities: embodiment
and situatedness.


A subfield of research into embodied cognition involves the use of artificial
evolution for automatically generating the morphology and mind of embodied
creatures [18]. The term mind as used in this context of research is synonymous
with brain and controller - it merely reflects the processing unit that acts to
transform the sensory inputs into the motor outputs of the artificial creature. The
automatic synthesis of such embodied and situated creatures through artificial
evolution has become a key area of research not only in the cognitive sciences
but also in robotics [15], artificial life [14], and evolutionary computation [2, 10].


Consequently, there has been much research interest in evolving both physi-
cally-simulated virtual organisms [2, 10, 14] and real physical robots [15, 8, 12].
The main objective of these studies is to evolve increasingly complex behaviors
and/or morphologies either through evolutionary or lifetime learning. Needless
to say, the term “complex” is generally used very loosely since there is currently
no general method for comparing between the complexities of these evolved ar-
tificial creatures’ behaviors and morphologies. As such, without a quantitative
measure for behavioral or morphological complexity, an objective evaluation be-
tween these artificial evolutionary systems becomes very hard and typically ends
up being some sort of subjective argument.


There are generally two widely-accepted views of measuring complexity. The
first is an information-theoretic approach based on Shannon’s entropy [17] and is
commonly referred to as statistical complexity. The entropy H(X) of a random
variable X, where the outcomes xi occur with probability pi, is given by


H(X) = −C


N∑


i


pi log pi (1)


where C is the constant related to the base chosen to express the logarithm.
Entropy is a measure of disorder present in a system and thus gives us an in-
dication of how much we do not know about a particular system’s structure.
Shannon’s entropy measures the amount of information content present within
a given message or more generally any system of interest. Thus a more complex
system would be expected to give a much higher information content than a less
complex system. In other words, a more complex system would require more bits
to describe compared to a less complex system. In this context, a sequence of
random numbers will lead to the highest entropy and consequently to the lowest
information content. In this sense, complexity is somehow a measure of order or
disorder.


A computation-theoretic approach to measuring complexity is based on Kol-
mogorov’s application of universal Turing machines [11] and is commonly known
as Kolmogorov complexity. It is concerned with finding the shortest possible com-
puter program or any abstract automaton that is capable of reproducing a given







string. The Kolmogorov complexity K(s) of a string s is given by


K(s) = min{|p| : s = CT (p)} (2)


where |p| represents the length of program p and CT (p) represents the result of
running program p on Turing machine T . A more complex string would thus
require a longer program while a simpler string would require a much shorter
program. In essence, the complexity of a particular system is measured by the
amount of computation required to recreate the system in question.


3 Complexity in the Eyes of the Beholder


None of the previous measures are sufficient to measure the complexity of
embodied systems. As such, we need first to provide a critical view of these
measures and why they stand shorthanded in terms of embodied systems.


Take for example a simple behavior such as walking. Let us assume that we
are interested in measuring the complexity of walking in different environments
and the walking itself is undertaken by an artificial neural network. From Shan-
non’s perspective, the complexity can be measured using the entropy of the data
structure holding the neural network. Obviously a drawback for this view is its
ignorance of the context and the concepts of embodiment and situatedness. The
complexity of walking on a flat landscape is entirely different from walking on
a rough landscape. Two neural networks may be represented using the same
number of bits but exhibit entirely different behaviors.


Now, let us take another example which will show the limitations of Kol-
mogorov complexity. Assume we have a sequence of random numbers. Obviously
the shortest program which is able to reproduce this sequence is the sequence
itself. In other words, a known drawback for Kolmogorov complexity is that it
has the highest level of complexity when the system is random. In addition, let
us re-visit the neural network example. Assume that the robot is not using a
fixed neural network but some form of evolvable hardware (which may be an
evolutionary neural network). If the fitness landscape for the problem at hand
is monotonically increasing, a hill climber will simply be the shortest program
which guarantees to re-produce the behavior. However, if the landscape is rugged,
reproducing the behavior is only achievable if we know the seed; otherwise, the
problem will require complete enumeration to recreate the behavior.


In this paper, we propose a generic definition for complexity using the multi-
objective paradigm. However, before we proceed with our definition, we first
remind the reader of the concept of partial order.


Definition 1: Partial and Lexicographic Order Assume the two sets A and
B. Assume the l-subsets over A and B such that A = {a1 < . . . < al} and
B = {b1 < . . . < bl}.
A partial order is defined as A ≤j B if aj ≤ bj , ∀j ∈ {1, . . . , l}
A lexicographic order is defined as A <j B if ∃ak < bk and aj = bj , j < k,
∀j, k ∈ {1, . . . , l}







In other words, a lexicographic order is a total order. In multi-objective opti-
mization, the concept of Pareto optimality is normally used. A solution x belongs
to the Pareto set if there is not a solution y in the feasible solution set such that
y dominates x (ie. x has to be at least as good as y when measured on all ob-
jectives and better than y on at least one objective). The Pareto concept thus
forms partial orders in the objective space.


Let us recall the embodied cognition problem. The problem is to study the
relationship between the behavior, controller, environment, learning algorithm,
and morphology. A typical question that one may ask is what is the optimal
behavior for a given morphology, controller, learning algorithm and environment.
We can formally represent the problem of embodied cognition as the five sets B,
C, E, L, and M for the five spaces of behavior, controller, environment, learning
algorithm, and morphology respectively. Here, we need to differentiate between
the robot behavior B and the desired behavior B̂. The former can be seen as
the actual value of the fitness function and the latter can be seen as the real
maximum of the fitness function. For example, if the desired behavior (task) is to
maximize the locomotion distance, then the global maximum of this function is
the desired behavior, whereas the distance achieved by the robot (what the robot
is actually doing) is the actual behavior. In traditional robotics, the problem can
be seen as Given the desired behavior B̂, find L which optimizes C subject to
E


⋃
M . In psychology, the problem can be formulated as Given C, E, L and M ,


study the characteristics of the set B. In co-evolving morphology and mind, the
problem is Given the desired behavior B̂ and L, optimize C and M subject to
E. A general observation is that the learning algorithm is usually fixed during
the experiments.


In asking a question such as “Is a human more complex than a Monkey?”,
a natural question that follows would be “in what sense?”. Complexity is not
a unique concept. It is usually defined or measured within some context. For
example, a human can be seen as more complex than a Monkey if we are looking
at the complexity of intelligence, whereas a Monkey can be seen as more complex
than the human if we are looking at the number of different gaits the monkey has
for locomotion. Therefore, what is important from an artificial life perspective
is to establish the complexity hierarchy on different scales. Consequently, we
introduce the following definition for complexity.


Definition 2: Complexity is a strict partial order relation.


According to this definition, we can establish an order of complexity between
the system’s components/species. We can then compare the complexities of two
species S1 = (B1, C1, E1, L1,M1) and S2 = (B2, C2, E2, L2,M2) as:


S1 is at least as complex as S2 with respect to concept Ψ iff


SΨ
2 = (B2, C2, E2, L2, M2) ≤j SΨ


1 = (B1, C1, E1, L1,M1),∀j ∈ {1, . . . , l},Given


Bi = {Bi1 < . . . < Bil}, Ci = {Ci1 < . . . < Cil}, Ei = {Ei1 < . . . < Eil},
Li = {Li1 < . . . < Lil}, Mi = {Mi1 < . . . < Mil}, i ∈ {1, 2} (3)







where Ψ partitions the sets into l non-overlapping subsets.
We can even establish a complete order of complexity by using the lexico-


graphic order as:


S1 is more complex thanS2 with respect to concept Ψ iff


SΨ
2 = (B2, C2, E2, L2, M2) <j SΨ


1 = (B1, C1, E1, L1,M1),∀j ∈ {1, . . . , l},Given


Bi = {Bi1 < . . . < Bil}, Ci = {Ci1 < . . . < Cil}, Ei = {Ei1 < . . . < Eil},
Li = {Li1 < . . . < Lil}, Mi = {Mi1 < . . . < Mil}, i ∈ {1, 2} (4)


The lexicographic order is not as flexible as partial order since the former re-
quires a monotonic increase in complexity. The latter however, allows individuals
to have similar levels of complexity; therefore, it is more suitable for defining hier-
archies of complexity. Some of the characteristics in our definition of complexity
here include


Irreflexive: The complexity definition satisfies irreflexivity; that is, x cannot
be more complex than itself.


Asymmetric: The complexity definition satisfies asymmetry; that is, if x is
more complex than y, then y cannot be more complex than x.


Transitive: The complexity definition satisfies transitivity; that is, if x is more
complex than y and y is more complex than z, then x is more complex than
z.


The concept of Pareto optimality is similar to the concept of partial order
except that Pareto optimality is more strict in the sense that it does not satisfy
reflexivity; that is, a solution cannot dominate itself; therefore it cannot exist
as a Pareto optimal if there is a copy of it in the solution set. Usually, when we
have copies of one solution, we take one of them; therefore this problem does
not arise. As a result, we can assume here that Pareto optimality imposes a
complexity hierarchy on the solution set.


The previous definition will simply order the sets based on their complexities
according to some concept Ψ . However, they do not provide an exact quantitative
measure for complexity. In the simple case, given the five sets B, C, E, L, and M ;
assume the function f , which maps each element in each set to some value called
the fitness, and assuming that C, E and L do not change, a simple measure of
morphological change of complexity can be


∂f(b)
∂m


, b ∈ B, m ∈ M (5)


In other words, assuming that the environment, controller, and the learning
algorithm are fixed, the change in morphological complexity can be measured in
the eyes of the change in the fitness of the robot (actual behavior). The fitness
will be defined later in the paper. Therefore, we introduce the following definition


Definition 3: Change of Complexity Value for the morphology is the rate
of change in behavioral fitness when the morphology changes, given that
both the environment, learning algorithm and controller are fixed.







The previous definition can be generalized to cover the controller and envi-
ronment quite easily by simply replacing “morphology” by either “environment”,
“learning algorithm”, or “controller”. Based on this definition, if we can come
up with a good measure for behavioral complexity, we can use this measure to
quantify the change in complexity for morphology, controller, learning algorithm,
or environment. In the same manner, if we have a complexity measure for the
controller, we can use it to quantify the change of complexity in the other four
parameters. Therefore, we propose the notion of defining the complexity of one
object as viewed from the perspective of another object. This is not unlike Em-
meche’s idea of complexity as put in the eyes of the beholder [6]. However, we
formalize and solidify this idea by putting it into practical and quantitative us-
age through the multi-objective approach. We will demonstrate that results from
an EMO run of two conflicting objectives results in a Pareto-front that allows a
comparison of the different aspects of an artificial creature’s complexity.


In the literature, there are a number of related topics which can help here.
For example, the VC-dimension can be used as a complexity measure for the
controller. A feed-forward neural network using a threshold activation function
has a VC dimension of O(WlogW ) while a similar network with a sigmoid acti-
vation has a VC dimension of O(W 2), where W is the number of free parameters
in the network [9]. It is apparent from here that one can control the complexity
of a network by minimizing the number of free parameters which can be done
either by the minimization of the number of synapses or the number of hidden
units. It is important to separate between the learning algorithm and the model
itself. For example, two identical neural networks with fixed architectures may
perform differently if one of them is trained using back-propagation while the
other is trained using an evolutionary algorithm. In this case, the separation
between the model and the algorithm helps us to isolate their individual effects
and gain an understanding of their individual roles.


In this paper, we are essentially posing two questions, what is the change
of (1) behavioral complexity and (2) morphological complexity of the artificial
creature in the eyes of its controller. In other words, how complex is the behavior
and morphology in terms of evolving a successful controller?


3.1 Assumptions


Two assumptions need to be made. First, the Pareto set obtained from evo-
lution is considered to be the actual Pareto set. This means that for the creature
on the Pareto set, the maximum amount of locomotion is achieved with the
minimum number of hidden units in the ANN. We do note however that the
evolved Pareto set in the experiments may not have converged to the optimal
set. Nevertheless, it is not the objective of this paper to provide a method which
guarantees convergence of EMO but rather to introduce and demonstrate the
application of measuring complexity in the eyes of the beholder. It is important
to mention that although this assumption may not hold, the results can still be
valid. This will be the case when creatures are not on the actual Pareto-front







but the distances between them on the intermediate Pareto-front are similar to
that of creatures on the actual Pareto-front.


The second assumption is there are no redundancies present in the ANN
architectures of the evolved Pareto set. This simply means that all the input
and output units as well as the synaptic connections between layers of the net-
work are actually involved in and required for achieving the observed locomotion
competency. We have investigated the amount of redundancy present in evolved
ANN controllers and found that the self-adaptive Pareto EMO approach pro-
duces networks with practically zero redundancy.


4 Methods


4.1 The Virtual Robots & Simulation Environment


The Vortex physics simulation toolkit [4] was utilized to accurately simu-
late the physical properties, such as forces, torques, inertia, friction, restitution
and damping, of and interactions between the robot and its environment. Two
artificial creatures (Figure 1) were used in this study.


Fig. 1. The four-legged (quadruped) and six-legged (hexapod) creatures.


The first artificial creature is a quadruped with 4 short legs. Each leg consists
of an upper limb connected to a lower limb via a hinge (1 degree-of-freedom
(DOF)) joint and is in turn connected to the torso via another hinge joint. Each
of the hinge joints is actuated by a motor that generates a torque producing
rotation of the connected body parts about that hinge joint.


The second artificial creature is a hexapod with 6 long legs, which are con-
nected to the torso by insect hip joints. Each insect hip joint consists of two
hinges, making it a 2 DOF joint: one to control the back-and-forth swinging and
another for the lifting of the leg. Each leg has an upper limb connected to a
lower limb by a hinge (1 DOF) joint. The hinges are actuated by motors in the
same fashion as in the first artificial creature.


The Pareto-frontier of our evolutionary runs are obtained from optimizing
two conflicting objectives: (1) minimizing the number of hidden units used in







the ANN that act as the creature’s controller and (2) maximizing horizontal
locomotion distance of the artificial creature. What we obtain at the end of the
runs are Pareto sets of ANNs that trade-off between number of hidden units and
locomotion distance. The locomotion distances achieved by the different Pareto
solutions will provide a common ground where locomotion competency can be
used to compare different behaviors and morphologies. It will provide a set of
ANNs with the smallest hidden layer capable of achieving a variety of locomotion
competencies. The structural definition of the evolved ANNs can now be used as
a measure of complexity for the different creature behaviors and morphologies.


The ANN architecture used in this study is a fully-connected feed-forward
network with recurrent connections on the hidden units as well as direct input-
output connections. Recurrent connections were included to allow the creature’s
controller to learn time-dependent dynamics of the system. Direct input-output
connections were also included in the controller’s architecture to allow for direct
sensor-motor mappings to evolve that do not require hidden layer transforma-
tions. Bias is incorporated in the calculation of the activation of the hidden as
well as output layers.


The Self-adaptive Pareto-frontier Differential Evolution algorithm (SPDE)
[1] was used to drive the evolutionary optimization process. SPDE is an elitist
approach to EMO where both crossover and mutation rates are self-adapted.
Our chromosome is a class that contains one matrix Ω and one vector ρ. The
matrix Ω is of dimension (I + H) × (H + O). Each element ωij ∈ Ω, is the
weight connecting unit i with unit j, where i = 0, . . . , (I − 1) is the input unit i,
i = I, . . . , (I +H − 1) is the hidden unit (i− I), j = 0, . . . , (H − 1) is the hidden
unit j, and j = H, . . . , (H + O − 1) is the output unit (j −H).


The vector ρ is of dimension H, where ρh ∈ ρ is a binary value used to indicate
if hidden unit h exists in the network or not; that is, it works as a switch to turn a
hidden unit on or off. Thus, the architecture of the ANN is variable in the hidden
layer: any number of hidden units from 0 to H is permitted. The sum,


∑H
h=0 ρh,


represents the actual number of hidden units in a network, where H is the
maximum number of hidden units. The last two elements in the chromosome are
the crossover rate δ and mutation rate η. This representation allows simultaneous
training of the weights in the network and selecting a subset of hidden units as
well as allowing for the self-adaptation of crossover and mutation rates during
optimization.


4.2 Experimental Setup


Two series of experiments were conducted. Behavioral complexity was in-
vestigated in the first series of experiments and morphological complexity was
investigated in the second. For both series of experiments, each evolutionary run
was allowed to evolve over 1000 generations with a randomly initialized popula-
tion size of 30. The maximum number of hidden units was fixed at 15 based on
preliminary experimentation. The number of hidden units used and maximum
locomotion achieved for each genotype evaluated as well as the Pareto set of







solutions obtained in every generation were recorded. The Pareto solutions ob-
tained at the completion of the evolutionary process were compared to obtain a
characterization of the behavioral and morphological complexity.


To investigate behavioral complexity in the eyes of the controller, the mor-
phology was fixed by using only the quadruped creature but the desired behavior
was varied by having two different fitness functions. The first fitness function
measured only the maximum horizontal locomotion achieved but the second fit-
ness function measured both maximum horizontal locomotion and static stability
achieved. By static stability, we mean that the creature achieves a statically sta-
ble locomotion gait with at least three of its supporting legs touching the ground
during each step of its movement. The two problems we have are:
(P1)


f1 = d (6)


f2 =
H∑


h=0


ρh (7)


(P2)
f1 = d/20 + s/500 (8)


f2 =
H∑


h=0


ρh (9)


where P1 and P2 are the two sets of objectives used. d refers to the locomotion
distance achieved and s is the number of times the creature is statically stable
as controlled by the ANN at the end of the evaluation period of 500 timesteps.
P1 is using the locomotion distance as the first objective while P2 is using a
linear combination of the locomotion distance and static stability. Minimizing
the number of hidden units is the second objective in both problems.


To investigate morphological complexity, another set of 10 independent runs
was carried out but this time using the hexapod creature. This is to enable
a comparison with the quadruped creature which has a significantly different
morphology in terms of its basic design. The P1 set of objectives was used to keep
the behavior fixed. The results obtained in this second series of experiments were
then compared against the results obtained from the first series of experiments
where the quadruped creature was used with the P1 set of objective functions.


5 Results & Discussion


5.1 Morphological Complexity


We first present the results for the quadruped and hexapod evolved under P1.
Figure 2 compares the Pareto optimal solutions obtained for the two different
morphologies over 10 runs. Here we are fixing E and L; therefore, we can either
measure the change of morphological complexity in the eyes of the behavior or
the controller; that is, δf(B)


δM or δf(C)
δM respectively. If we fix the actual behav-


ior B as the locomotion competency of achieving a movement of 13 < d < 15,
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Fig. 2. Pareto-frontier of controllers obtained from 10 runs using the quadruped and
hexapod with the P1 set of objectives.


then the change in the controller δf(C) is measured according to the number
of hidden units used in the ANN. At this point of comparison, we find that the
quadruped is able to achieve the desired behavior with 0 hidden units whereas
the hexapod required 3 hidden units. In terms of the ANN architecture, the
quadruped achieved the required level of locomotion competency without using
the hidden layer at all, that it relied solely on direct input-output connections
as in a perceptron. This phenomenon has been previously observed to occur in
wheeled robots as well [13]. Therefore, this is an indication that from the con-
troller’s point of view, given the change in morphology δM from the quadruped
to the hexapod, there was an increase in complexity for the controller δC from 0
hidden units to 3 hidden units. Hence, the hexapod morphology can be seen as
being placed at a higher level of the complexity hierarchy than the quadruped
morphology in the eyes of the controller.


If we would like to measure the complexity of the morphology using the be-
havioral scale, we can notice from the graph that the maximum distance achieved
by the quadruped creature is around 17.8 compared to around 13.8 for the hexa-
pod creature. In this case, the quadruped can be seen as being able to achieve a
more complex behavior than the hexapod.


5.2 Behavioral Complexity


A comparison of the results obtained using the two different sets of fitness
functions P1 and P2 is presented in Table 1. Here we are fixing M , L and E and
looking for the change in behavioral complexity. The morphology M is fixed by
using the quadruped creature only. For P1, we can see that the Pareto-frontier
offers a number of different behaviors. For example, a network with no hidden
units can achieve up to 14.7 units of distance while the creature driven by a
network with 5 hidden units can achieve 17.7 units of distance within the 500







Type of Pareto No. of Locomotion Static
Behavior Controller Hidden Units Distance Stability


P1 1 0 14.7 19
2 1 15.8 24
3 2 16.2 30
4 3 17.1 26
5 4 17.7 14


P2 1 0 5.2 304
2 1 3.3 408
3 2 3.6 420
4 3 3.7 419


Table 1. Comparison of global Pareto optimal controllers evolved for the quadruped
using the P1 and P2 objective functions.


timesteps. This is an indication that to achieve a higher speed gait entails a more
complex behavior than a lower speed gait.


We can also see the effect of static stability, which requires a walking behavior.
By comparing a running behavior using a dynamic gait in P1 with no hidden
units against a walking behavior using a static gait in P2 with no hidden units,
we can see that using the same number of hidden units, the creature achieves
both a dynamic as well as a quasi-static gait. If more static stability is required,
this will necessitate an increase in controller complexity.


At this point of comparison, we find that the behavior achieved with the P1
fitness functions consistently produced a higher locomotion distance than the
behavior achieved with the P2 fitness functions. This meant that it was much
harder for the P2 behavior to achieve the same level of locomotion competency
in terms of distance moved as the P1 behavior due to the added sub-objective
of having to achieve static stability during locomotion. Thus, the complexity of
achieving the P2 behavior can be seen as being at a higher level of the complexity
hierarchy than the P1 fitness function in the eyes of the controller.


6 Conclusion & Future Work


We have shown how EMO can be applied for studying the behavioral and
morphological complexities of artificially evolved embodied creatures. The mor-
phological complexity of a quadruped creature was found to be lower than the
morphological complexity of a hexapod creature as seen from the perspective of
an evolving locomotion controller. At the same time, the quadruped was found
to be more complex than the hexapod in terms of behavioral complexity. For
future work, we intend to provide an empirical proof of measuring not only be-
havioral complexity but also environmental complexity by evolving controllers
for artificial creatures in varied environments. We also plan to apply these mea-
sures for characterizing the complexities of artificial creatures evolved through
co-evolution of both morphology and mind.
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