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Abstract 

The electricity industry faces the challenge of adapting to new circumstances where 

environmental concerns and the optimal use of resources are crucial. In this scenario, 

Distributed Energy Resources (DER) are recognised as one of the possible solutions for 

sustainable economic development. The optimal integration of DER in the distribution 

networks is essential to maximise DER benefits and minimise the cost of DER integration. An 

adequate DER planning method is required to obtain valuable information for the best 

deployment of these resources.  

The integration of DER has several drivers, such as the minimisation of cost, the reduction 

of carbon emission and the reduction of energy losses, among others. At the same time, 

several stakeholders are involved in DER research, development and management. 

Consequently, a flexible and multi-objective planning method that considers technical, 

environmental and economic impacts of DER integration can provide a deep insight into the 

advantages and drawbacks of DER, and can reflect the different perspectives on the 

problem.  

Most renewable DER have a variable output. Hence, the planning of DER integration must 

consider the stochastic nature of DER. Likewise, the active management of DER and the 

network has been recognised recently as one of the new paradigms for the integration of 

larger penetrations of DER. As a result, an appropriate planning technique for DER 

integration must consider the simultaneous interaction of controllable and stochastic DER to 

provide an adequate evaluation of DER impacts and benefits. 

Novel multi-objective optimisation techniques, known as Multi-objective Evolutionary 

Algorithms (MOEA), have been developed recently. MOEA are able to analyse complex 

objective functions and offer a “true” multi-objective approach. Consequently, MOEA are 

able to handle complex multi-objective problems such as DER planning effectively.  

This thesis proposes to use multi-objective planning to analyse the optimal integration of 

stochastic and controllable DER. It presents the design, development and demonstration of a 

planning framework based on a state-of-the-art MOEA. Results from two relevant case 

studies show that the multi-objective planning method proposed is a novel and valuable tool 

for the analysis of DER integration. The framework proposed is generic and can be applied 

to other energy planning problems. 
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Chapter 1 

1. Introduction  

This chapter introduces the new paradigms and techniques that motivated this research. It 

outlines the objectives and methodology of the thesis. Also, it enumerates the main 

contributions of this thesis, and describes in detail the chapter structure.  

1.1. Thesis Background 

1.1.1. Distributed Energy Resources  

In recent years, climate change has prompted international awareness about the impacts that 

electricity generation and, more generally, the use of energy have on the environment. 

Cleaner ways of generating energy and a more efficient use of it are required to ensure a 

sustainable economic development. For instance, the countries of the European Union have 

committed to supply 20% of their energy from renewable sources by 2020 [1.1]. Besides 

these environmental concerns, the steady rise of fossil fuel costs, coupled with concerns over 

security of supply, are encouraging the use of a more diverse energy mix.  

In this context, local generation of heat and electricity and the local use of renewable energy 

resources are considered as some of the most promising options to provide a more secure, 

clean and more efficient energy supply [1.2]. The traditional centralised structure of power 

systems is being challenged and new concepts proposed. New government policies and 

regulations, the aforementioned environmental targets and technological innovation are 

allowing, and in some cases encouraging, the gradual shift from large centralised power 

plants to smaller and more distributed generators. These generators are connected to the 

distribution system and typically supply energy to a small number of local customers. 

Distributed Generation (DG), also known as Embedded Generation, is defined as “an electric 

power source connected directly to the distribution network or on the customer site of the 

meter” [1.3]. The most common DG technologies include Combined Heat and Power (CHP) 

generators, micro-turbine generators, solar photovoltaic generators (PV), wind generators 

and micro hydro schemes [1.4]. At present, DG is considered within the broader concept of 

Distributed Energy Resources (DER), which also includes responsive loads and energy 

storage [1.5].  
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Figure 1-1 Change from Centralised Structure to Decentralised Structure of Power Systems 

The structural change of power systems is illustrated in Figure 1-1. Distributed Generation 

capacity sizes range from a few kW connected to the low-voltage network (LV micro-

generation) to tens of MW connected to the medium-voltage network (MV large scale DG) 

[1.4]. Distributed generators supply local loads and also interact with the wider system. In 

addition, in the distributed power system a number of large generators remain connected to 

the high voltage network (HV). 

In the particular case of the United Kingdom (UK), the 2006 Energy Review [1.6] 

recognised that renewable DER could help to reduce carbon emissions and that it could 

increase the security of supply by having a more diverse generation mix. Consequently, it 

proposed a set of measures to encourage the use of low-carbon and distributed technologies, 

such as easier access to renewable energy incentives for micro-generators. More recently, the 

2007 UK Energy White Paper [1.2] acknowledged the potential of DER to contribute to the 

achievement of environmental targets and energy security challenges and proposed measures 

to facilitate DG connections, including more flexible licensing arrangements and clearer 

exports rewards for smaller generators. As a result, it can be expected that DER, and 

particularly DG, will play an important role in the future UK electricity system [1.7].  
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1.1.1.1. DER Impacts and Benefits 

The use of Distributed Energy Resources is proposed as one of the possible solution for 

today’s energy challenges. Consequently, the main technical, economic and environmental 

effects of DER have been extensively investigated in recent years. For instance, the book of 

Jenkins et al. [1.4], published in 2000, provides an in-depth discussion of the issues related 

to embedded generation. Similarly, the doctoral theses of Ochoa [1.8] and Thong [1.9], both 

presented in 2006, study in detail the technical impacts of DG on the distribution network. 

Also, several research papers review DER impacts and benefits [1.5],[1.7],[1.10] or study a 

single impact, such as investment deferral [1.11] or line losses [1.12].  

Table 1-1 Summary of DER Benefits and Impacts (Varied Sources) 

 Benefits Impacts 

T
ec

h
n

ic
a

l 

• Improvement of voltage 

profile 

• Reduction of distribution 

losses 

• Reduction of transmissions 

losses 

• Increased reliability 

• Reduction of peak loads  

 

• Voltage rise  

• Increase of line losses 

• Reverse power flows, which might exceed 

thermal limits of equipment 

• Increase of network fault levels 

• Unbalance 

• Transient voltage variations  

• Injection of harmonics  

• Network instability 

E
n

v
ir

o
n

m
en

ta
l • Reduction of carbon emissions 

• High overall efficiencies (e.g. 

micro-CHP)  

 

• Noise and visual pollution (e.g. wind farms) 

• Effect on the ecosystem and fishery (e.g. micro-

hydro) 

• Increment of localised emissions (e.g. micro-

CHP) 

E
co

n
o

m
ic

 

• Reduction of DSO operating 

costs (by line losses reduction) 

• Investment deferral 

• Increased reliability  

• DER developer revenues, less 

up-front capital costs and 

reduced financial risk of 

investment 

• Need for grid reinforcements 

• Increased DSO costs (by increasing losses and 

fault levels) 

• Increased uncertainty in demand prediction 

 

 

 

The main benefits and impacts of DER identified in the literature are summarised in Table 

1-1. Some effects depend on the DER location, size and pattern of output [1.7]. For example, 

DER located close to load centres and with a production coincident with demand reduces 

power flow in lines. This reduction in power-flows results in an improvement of voltage 

profile, and in a decrease in the line losses [1.4]. Moreover, if DER produces power at peak 

times, network investments can be deferred. Similarly, the reliability of the network can be 

increased by DER with constant production (e.g. gas generators) and connected to meshed 
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grids, or by DER that are allowed to operate in islanded mode while connected to radial 

networks. In contrast, DER with a variable output, such as wind generators, or DER 

connected to radial networks and not allowed to work in islanded mode do not increase the 

reliability of the network [1.4]. 

Many of these technical effects translate to economic benefits for the Distribution System 

Operator (DSO) (e.g. reduction of line losses, investment deferral), or for the customer (e.g. 

increased reliability). The economic benefits for the DER owner arise from energy sales. 

Hence, for a DER developer maximising the amount of energy traded, while keeping the 

system within technical operation limits, is paramount. 

Distribution networks were designed deterministically for unidirectional power flows, from 

higher voltages to lower voltages, rather than to accommodate large penetrations of DER. As 

a result, wrongly located DER, DER whose production is not coincident with demand or 

DER whose capacity largely exceeds the capacity of the network, has negative effects, such 

as reverse power flows, increment in line losses and voltage rise. DER located close to fault 

points contribute to the fault currents and might require the replacement of switchgear 

equipment. Other impacts of DER include the degradation of voltage quality, by injecting 

power electronic harmonics, and an increase in network instability, because of the low inertia 

of DER [1.9]. 

 

1.1.1.2. The Need for an Optimal DER Integration 

The distribution network must be kept within operational and design limits at all times to 

provide good-quality energy and avoid damage to the equipment (i.e. voltage and thermal 

constraints, fault level limits). Hence, the technical impacts of DER can limit the installation 

of DER and restrict the associated economic and environmental benefits. In weak rural 

networks, where large amounts of renewable resources are located, the voltage rise is the 

impact limiting the integration of DER [1.10]. In meshed urban networks, where large 

numbers of micro-CHP units could potentially be installed, thermal limits and fault levels are 

also constraining factors [1.4].  

There are two management philosophies to keep the network within operational limits and to 

minimise the steady state impacts of DER: “fit-and-forget” and Active Network 

Management (ANM). Under a traditional “fit-and-forget” connection philosophy, the grid is 
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reinforced to keep the system within deterministic operational limits. Hence, the operational 

problems are solved at the planning stage. Strbac et al. [1.7] identifies that the “fit-and-

forget” approach would require extremely costly reinforcements in the network to 

accommodate large penetrations of DER. Similarly, Pecas-Lopes et al. [1.5] recognise that 

this management philosophy is limiting for the integration of DER.  As a result, “a 

fundamental shift from passive to active network management” was proposed in recent years 

[1.13]. Under this management philosophy the operational problems are solved with the 

active management of the network and the DER (i.e. DER curtailment and/or dispatch). 

ANM has been shown to considerably increase the amount of DER that can be connected to 

the network without the need of reinforcements [1.5]. In this thesis, actively managed DER 

is also referred to as “controllable DER”. 

Under either management approach, the optimal integration of DER in the distribution grid 

is fundamental to guarantee the best use of resources, i.e. maximise benefits and minimise 

costs. The sub-optimal integration of DER under a fit-and-forget management will result in a 

requirement for additional and unnecessary transmission and distribution grid 

reinforcements, network sterilisation, increased line losses and/or unattainable development 

and environmental targets, as demonstrated by other researchers [1.11], [1.12], [1.14]. 

Likewise, the sub-optimal integration of DER under active DER management will result in 

excessive energy curtailment, which could convert an economically feasible project into an 

unfeasible one, as demonstrated in Chapter 6 of this thesis.  

 

1.1.2. Distributed Energy Resources Planning 

Planning can be succinctly defined as “the process of identifying alternatives and selecting 

the best from among them” [1.15]. Distributed Energy Resources planning can be defined as 

a structured approach to optimise the type, location, number and size of distributed resources 

in a particular distribution system given a set of objectives and constraints. The most 

common objective pursued is minimisation of total cost. However, other main drivers are not 

unusual, for example: maximisation of DER capacity, minimisation of active line losses or 

amelioration of voltage profile. Constraints are usually defined by the technical limits of 

DER and network components, and by the power flow equations. 

DER planning can provide valuable information to stakeholders and market players involved 

in DER development, management and regulation. DER developers can obtain information 
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about the most promising locations for DER investments to maximise revenue. For example, 

it is now possible to perform an initial evaluation of DER connection via a web-based tool 

[1.16]. Similarly, DSOs can identify which locations, sizes and types are beneficial (or 

detrimental) for their system operation [1.17]. From a high-level perspective, DER planning 

can provide valuable information about the potential and the impacts of large penetrations of 

DER, identifying the targets that can be reached with an optimal use of resources. 

Consequently, the analysis of optimal integration of DER can inform incentives and policies 

to encourage DER developments in the places, sizes and types that ensure benefits and 

minimise the impacts of DER.  

As a result, in recent years the DER planning problem has been studied from varied 

perspectives, and under different denominations. Diverse methods for optimising the 

location, size and/or type of DER have been proposed, with particular emphasis on DG 

placement and sizing. Chapter 3 provides an extensive review and discussion of DER 

planning methods, with related references. This review highlights that most of the proposed 

techniques are based on assumptions that restrict their application to the planning and 

analysis of stochastic and controllable DER. The term “stochastic DER” is used in this thesis 

to refer to variable energy resources such as wind and solar energy, and heat-lead CHP.  

Most DER planning methods focus on the optimisation of a single objective, usually the 

minimisation of total costs, or the minimisation of line losses. A single-objective approach is 

practical from a DER developer or a DSO point of view. Nonetheless, the integration of 

DER technologies has a wider spectrum of environmental, technical, and economic benefits 

and impacts, as shown in Table 1-1. DER planning is in essence a multi-objective planning 

problem, as discussed next. A multi-objective DER planning method able to evaluate 

stochastic and controllable DER can provide valuable information for the optimal integration 

of DER.  

 

1.1.3. Multi-objective Approaches in Power Systems Planning 

Until the 1970s energy planning was predominantly aimed at finding the most efficient 

solution at the least cost; it was regarded as a single criteria problem. However, in the 1980s 

the need to incorporate environmental and social concerns resulted in an increased use of 

multi-criteria approaches for energy planning. Moreover, after the oil embargo of 1973, 

developed nations became interested in energy efficiency and the use of a diverse pool of 
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energy sources. As a result, multi-criteria approaches were particularly popular for 

renewable energy planning and energy resource allocations. The wide use of multi-criteria 

approaches for energy planning beyond 1990 was recognised as a “paradigm shift” in energy 

planning [1.18].  

In the particular area of power systems planning, the identification of this task as a multi-

objective problem is not recent. For example, Kavrakoğlu et al. [1.19] mentions that “new 

dimensions” were emerging in power systems planning early in the 1980s. It identifies some 

reasons for this “metamorphosis”, these were: the interest in a clean environment, the 

concern over nuclear technology, the sudden increase in energy prices because of the 1973 

oil embargo, supply risks and the threat of energy shortages. It is no coincidence that most of 

these reasons overlap with the drivers for DER.  

In addition, in the 1980s and 1990s a large number of electricity companies around the globe 

were privatised. The new liberalised structure included several different market players, and 

it required the explicit inclusion of additional drivers for planning, mainly performance and 

environmental constraints and reliability targets. Liberalisation also produced the 

decentralisation of the decision making process. Planning was no longer a centralised task. 

Different market players were now involved each one with a different perspective and often 

with conflicting objectives. Planning was no longer targeted at minimising the total overall 

cost but at maximising each utility’s profit [1.20]. Similarly, the deregulated environment 

increased the uncertainty and associated risk for each of the new market players.  

Consequently, it was recognised that power systems planning is in essence a multi-objective 

problem, or that “it is often not possible to identify a single plan which simultaneously 

optimises all objectives” [1.21]. Moreover, Schweppe et al. [1.22] discussed the advantage 

of considering attributes in their “natural” units. Since this change of paradigm, various 

multi-objective approaches for power systems planning and operation have been proposed 

[1.18], [1.23], [1.24]. 

 

1.1.3.1. Multi-objective DER planning 

In an optimisation problem with multiple conflicting objectives the solution is not a unique 

element but instead a group of non-dominated solutions: the Pareto set [1.25]. This new 

concept of optimality was initially proposed by Francis Ysidro Edgeworth in 1881 and later 
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generalised by Vilfredo Pareto in 1896.  A solution belongs to the Pareto set if it cannot 

improve in one objective without detriment to other objectives. A very common example of 

this conflict is the cost versus performance dilemma faced by every buyer on a daily basis, 

illustrated in Figure 1-2.  

In this illustrative example, a planner wants to determine the best energy source for a 

community minimising cost while simultaneously maximising performance, measured in this 

case by the reduction of carbon emissions. The two objectives are conflicting: high 

performance solutions are costly, while cheap solutions have a poor performance. Several 

cost/performance solutions belong to the Pareto set. Since performance can only increase to 

the detriment of cost, the problem is multi-objective and a trade-off is necessary. The planner 

will settle for the cheapest solution that provides his desired level of performance, or 

alternatively, his budget will limit the performance he can obtain. 

 
Figure 1-2 Example of a Multi-objective Problem 

 

This simple example can be extended to more complex DER planning problems. Diverse 

economic, technical and environmental impacts of DER integration can be formulated as 

planning objectives. It is not necessary to convert all objectives to cost, and technical and 

environmental impacts can be formulated in their natural units. The multi-objective 

optimisation of objectives other than total cost can expand the knowledge about the optimal 

DER integration. An analysis of the Pareto front can decipher the extension of the objectives 

and the correlation and trade-offs between objectives. In addition, a multi-objective analysis 
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can express different points-of-view (e.g. DER owner, DSO, regulators, customers, 

environmentalists) facilitating the identification of compromise solutions [1.26].  

In spite of the value of a multi-objective analysis, only a small number of multi-objective 

DER planning methods have been proposed, particularly in the last three years. These 

techniques are also reviewed in Chapter 3. Most of these approaches are unable to deal with 

several types of stochastic and controllable DER simultaneously, as already mentioned for 

single-objective DER planning techniques. Also, few of these methods include 

environmental objectives and almost none considers probabilistic constraints in the analysis. 

These two elements are important because the environmental benefits of DER need to be 

fully evaluated, and recent regulations [1.27] encourage the use of probabilistic constraints.  

Consequently, this thesis identified a clear need for a comprehensive multi-objective 

planning method that includes current drivers of DER integration, and that is able to evaluate 

controllable and stochastic DER. The complexity of DER planning and the specifications for 

a DER planning method are discussed extensively in Chapter 4. 

 

1.1.3.2. The Optimisation/Modelling Dilemma 

DER planning is a multi-objective optimisation problem, with nonlinear and non-convex 

objectives and constraints, and with discrete and integer variables. The solution to this 

complex optimisation problem usually requires simplifying assumptions, and/or the use of 

novel optimisation techniques. However, if the problem is over-simplified, for example by 

considering a single snapshot analysis of stochastic DER, the optimal solutions found are in 

fact sub-optimal, or as phrased by Irving et al. [1.28]: “a real solution to a non-problem”. 

Similarly, a realistic model of DER is worthless when optimised with an inaccurate 

optimisation method, i.e. “a non-solution to a real problem” [1.28]. This illustrates the 

optimisation/modelling dilemma faced in the solution of real optimisation problems, which 

is discussed further in the next chapter.  

In order to generate useful results, the DER planning problem must be solved by an 

optimisation method able to provide an optimal or near-optimal solution and able to evaluate 

a realistic model of DER. A new group of multi-objective optimisation techniques developed 

in recent years, known as Multi-objective Evolutionary Algorithms (MOEA), provide these 

two conditions.    
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1.1.4. Multi-objective Evolutionary Algorithms 

A large number of multi-objective optimisation techniques have been developed since the 

1950s [1.29]. Until recently, multi-objective techniques suggested converting the multi-

objective problem to a single-objective optimisation problem, by emphasising one particular 

solution at a time [1.30]. This is referred to as the “classical” approach to multi-objective 

optimisation [1.25]. A limitation of this approach is that the solutions found are susceptible 

to the shape of the Pareto front and several runs of the optimisation are required to find the 

Pareto set, as illustrated in Chapter 2. This strategy is time-consuming and implies a loss of 

useful information about the optimisation process and about the shape and extension of the 

Pareto set. This type of multi-objective optimisation techniques has already been applied for 

DER planning in recent years, for example by Ochoa [1.8], Celli et al. [1.17] and Harrison et 

al. [1.26]. All of these works are reviewed in Chapter 3. 

In the last two decades, different researchers have proposed a new group of multi-objective 

optimisation techniques. These techniques are based on the principles of natural evolution. 

As a result, these techniques are referred to as Multi-Objective Evolutionary Algorithms. 

One of the main advantages of MOEA is that they deal with multi-objective problems in an 

“ideal” way, without aggregating all objectives into a single measure of performance [1.25]. 

MOEA handle groups of possible solutions simultaneously. Consequently, they are able to 

find several solutions of the Pareto set in a single “run”. Furthermore, MOEA are a powerful 

search method for problems with discrete and integer variables, such as the DER planning 

problem. In addition, MOEA optimisation process does not require derivative information, 

and can optimise objective functions that are discontinuous, non-convex and nonlinear. 

Consequently, MOEA can provide a flexible platform for the analysis of stochastic and 

controllable DER. This capability is exploited in this thesis. 

Since the first MOEA were developed in the mid-1980s, MOEA has become a very active 

research area, as illustrated in Figure 1-3. Several specialised algorithms have been proposed 

and applied to diverse multi-objective problems of engineering, industry and science [1.25]. 

At present, the Strength Pareto Evolutionary Algorithm 2 (SPEA2), developed in 2001 by 

Ziztler et al.[1.31], is one of the most advanced and recognised MOEA. Its suitability for 

dealing with multi-objective problems is well verified, and it has been demonstrated to 

outperform other counterparts both in theoretical and practical problems [1.31], [1.32], 

[1.33].  The concepts and development of MOEA, and the SPEA2 algorithm, are discussed 

extensively in the next chapter.   
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Figure 1-3  MOEA Publications per Year (Up to Early 2007) (Source [1.34]) 

 

Despite the increased attention on MOEA, the power systems engineering research 

community only recently began to pay attention to these optimisation techniques [1.23]. 

Specifically, the application of MOEA to DER planning problems has not yet been widely 

studied [1.35]. Nonetheless, this trend is changing. The comprehensive review of multi-

objective DER planning conducted for this research, and presented in Chapter 3, shows that 

the interest of DER planning researchers in MOEA has increased, especially in the last two 

years. One of the contributions of this thesis is to facilitate the understanding of MOEA and 

their use in DER planning. 

 

1.2. Thesis Objectives and Methodology 

This research is based on the hypothesis that a MOEA-based multi-objective planning tool 

can provide valuable information for the optimal integration of DER in distribution 

networks. Consequently, the main objective of this thesis is to design, develop and test a 

flexible multi-objective planning framework to analyse the integration of Distributed Energy 

Resources.  
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In order to provide a useful analysis of DER integration, the planning framework must make 

it possible to answer the following questions: 

• What are the best configurations for DER in a given distribution network in order to 

achieve multiple objectives?  

• What are the correlations between these objectives when DER is integrated 

optimally in a particular network? 

 

The following methodological steps are essential to achieve the main objective of this thesis, 

and evidence of this approach is provided throughout this thesis: 

• Gain an understanding of multi-objective optimisation and MOEA to select an 

optimal algorithm for the planning framework. 

• Undertake a critical review of the state of the art of techniques for DER and DG 

planning and optimisation, with particular emphasis on multi-objective DER 

planning and optimisation. 

• Explore in detail the complexity of the DER planning problem and determine the 

specifications for a multi-objective planning framework for DER that considers 

current drivers of DER integration. 

• Develop a flexible and modular DER planning framework that includes the most 

important issues identified. Also, outline how the remaining challenges can be 

handled. 

• Finally, demonstrate the ability of the developed framework to answer the questions 

proposed by applying it to a set of relevant case studies. 

 

This thesis aims to provide a powerful analytical tool for DER integration. It is not intended 

to develop a DER planning tool to find the single least-cost solution from a particular point 

of view.  

 

 

 

 



13 

 

1.3. Contributions to Knowledge 

This thesis presents a novel multi-objective planning framework to analyse the optimal 

integration of stochastic and controllable DER. This framework includes current drivers of 

DER integration. It integrates a state-of-the-art MOEA, a stochastic simulation algorithm, an 

AC power flow algorithm and an optimal power flow algorithm into a flexible analysis 

platform. The principal contributions of this thesis are discussed fully in Chapter 7, and are 

summarised next: 

1. It presents a comprehensive review of DER planning techniques. A similar review of the 

research area has not been published. This review identifies the trends in the research 

area, and identifies gaps for future research. 

2. It provides a deep examination of the DER planning problem and the specification for a 

flexible multi-objective planning framework for DER integration analysis. This 

specification discusses the type of techniques that should be used for the analysis of 

stochastic and controllable DER. 

3. It describes in detail the development of an analytical tool for stochastic and controllable 

DER. The detailed development process and the practical details provided are a 

contribution for future researchers that might face similar challenges.  

4. It provides a comprehensive description of the concepts of multi-objective evolutionary 

algorithms applied to the DER problem, and contributes to the future use of these 

techniques in DER planning.    

5. It expands the knowledge about the impacts and benefits of DER integration, by 

discussing the detailed calculation of sixteen different planning attributes and exposing 

findings of optimal DER plans with two specific case studies.  

 

1.4. Thesis Structure 

The structure of this thesis is a reflection of the methodological steps and the contributions of 

this work. The thesis is divided in seven chapters. The chapter interrelation is illustrated in 

Figure 1-4. A detailed description of each chapter is provided next to facilitate the 

understanding and use of this thesis. 

Chapter 1 introduces this thesis. It discusses the background and motivation of this thesis. 

Also, it lists the research objectives and the methodological steps followed.  



14 

 

Chapter 2 has four main sections. The first section covers basic concepts of optimisation, 

and reviews the most common single-objective optimisation techniques used in power 

systems. This section is necessary as it provides adequate background for the review of DER 

planning technique presented in Chapter 3, and helps to understand the advantages of using a 

MOEA for DER planning. The second section of Chapter 2 describes the principles of 

Genetic Algorithms (GA). The basic GA structure constitutes the base for MOEA. Hence, 

each step of GA optimisation is discussed in detail. The third section of this chapter 

introduces the key concepts for multi-objective optimisation, and describes the main types of 

techniques used in this area, with particular emphasis on multi-objective evolutionary 

algorithms. Finally, the Strength Pareto Evolutionary Algorithm 2 (SPEA2), which is used in 

the planning framework implemented in Chapter 5, is described in detail. 

 

1 

2 3 

4 5 

6 7 

 

Figure 1-4 Chapter Interrelation 

 

Chapter 3 presents a critical literature review of the state of the art of Distributed Generation 

and Distributed Energy Resources planning. Initially, the process of power systems planning 

is briefly recalled. Next, a representative sample of single-objective DER planning 

techniques is analysed. This review demonstrates that DER planning objectives are diverse 

and sometimes conflicting and that most techniques cannot handle diverse types of stochastic 

DER simultaneously. It also illustrates the mathematical complexity of DER planning as an 
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optimisation problem. Next, a comprehensive review of multi-objective planning techniques 

is examined. This review discusses in detail the latest developments in the area. Importantly, 

this review highlights the possibilities for further research and places this thesis in the 

context of the research area. 

 Chapter 4 has two sections. In the first section, the DER planning problem is studied in 

detail. This examination illustrates the complexity of the DER planning problem. In addition, 

the main aspects that must be handled when optimising DER are identified.  This study 

determines the specifications for the multi-objective planning framework, considering 

current drivers of DER integration and the characteristic of modern planning techniques. In 

the second section of the chapter, the methods to handle each one of these specifications are 

discussed. The structure of the planning framework is proposed, and each component 

described in detail. Moreover, multi-objective visualisation and analysis techniques, such as 

Principal Component Analysis, are presented. 

In Chapter 5, the implementation of the planning framework, based on the specifications of 

Chapter 4, is described. The planning framework has four main components: a multi-

objective evolutionary algorithm, a stochastic simulation algorithm, a power flow algorithm 

and an optimal power flow algorithm. The implementation of each one of these components 

is detailed. Moreover, the calculation procedure for each one of the planning attributes is 

explained. In addition, practical aspects of the framework development (platform, code, 

speed) are discussed.  

In Chapter 6, the multi-objective planning framework is applied to two relevant case studies. 

The first study examines the integration of micro-generation in an urban low-voltage 

network. Results illustrate the usefulness of the multi-objective approach proposed, and 

demonstrate the ability of the planning framework to deal with a complex stochastic 

problem. The second case study analyses the integration of wind turbines in a medium-

voltage network. Results demonstrate the use of probabilistic constraints. Also, results 

demonstrate that the approach proposed is able to optimise the integration of controllable 

units. The discussion from both case studies provides useful information about DER impacts 

and benefits. 

Chapter 7 presents the conclusions from the framework specification and development and 

from the case studies. The contributions of this work are discussed and further work for the 

development of this research is proposed.  
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1.5. Associated Publications 

The requirements for a planning technique for distributed energy resources and highly 

distributed power systems are discussed in depth and appropriate examples given in: 

• Alarcon-Rodriguez, A.D., Ault, G.W., Curie, R.A.F., McDonald, J.R., “Planning 

the Development of Highly Distributed Power Systems”, 2
nd

 International 

Conference of Distributed Energy Resources, Napa, USA, December 2006. 

• Alarcon-Rodriguez, A.D., Ault, G.W., McDonald, J.R., “Planning the 

Development of Highly Distributed Power Systems”, 19th International Conference 

on Electricity Distribution, CIRED 2007, Vienna, Austria, May 2007. 

• Alarcon-Rodriguez, A.D., Ault, G.W., Curie, R.A.F., McDonald, J.R., “Planning 

Highly Distributed Power Systems: Effective Techniques and Tools” International 

Journal of Distributed energy Resources, Vol. 4, No. 1, January 2008. 

 

The development of a multi-objective planning framework for stochastic and controllable 

Distributed Energy Resources and the analysis of a relevant case study are presented in: 

• Alarcón-Rodríguez, A.D., Haesen, E. Ault, G.W., Driesen, J., Belmans, R., “Multi-

objective Planning Framework for Stochastic and Controllable Distributed Energy 

Resources”, IET Renew. Power Gener., 2009, Vol. 3, Iss. 2, pp. 227–238  

 

The extension of the planning framework to analyse network reinforcements as a planning 

option and a case study that studies the conflict between DSO and DER developers 

objectives were presented in:  

• Haesen, E., Alarcón-Rodríguez, A.D., Driesen, J., Belmans, R., Ault, G.W., 

“Opportunities for Active DER Management in Deferral of Distribution System 

Reinforcements”, 2009 IEEE Power Systems Conference & Exposition, Seattle, 

USA, March 2009 
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Additionally, the author has contributed to the following published papers: 

• Burt, G.M., Tumilty, R.M.,  Lincoln, R.W., Alarcon-Rodriguez, A.D., Ault, G.W., 

Finney, S.J., Infield, D.G., “An Overview of the Highly Distributed Power System”, 

1
st
 International Conference and Workshop on Micro-Cogeneration Technologies 

and Applications, Micro-Gen 2008, Ottawa, Canada, April 2008. 

 

1.6. Summary 

This chapter presents the background to the thesis and introduces the new ideas that motivate 

this investigation. The objective and methodology followed are outlined. In addition, the 

work is put into context and a list of main contributions presented. Finally, the structure and 

scope of the thesis is presented.  

The impacts and benefits of DER are already well covered in literature. Therefore, an 

extensive and detailed discussion of each DER benefit/impact is unnecessary in this chapter. 

For a more comprehensive discussion of DER impacts, the book of Jenkins et al. [1.4], and 

the PhD thesis of Vu Van Thong [1.9] are two helpful references. 
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Chapter 2 

2. Multi-objective Optimisation with Evolutionary 

Algorithms 

2.1. Introduction  

The previous chapter discussed the need for an optimal DER integration. It also mentioned 

that multi-objective DER planning can provide valuable information for the optimal 

integration of DER. The process of DER planning is analysed in-depth in the next two 

chapters. This analysis shows that the optimal integration of DER is a complex optimisation 

problem. Consequently, this chapter discusses the main concepts and techniques of multi-

objective optimisation. 

Optimisation is the task of finding the set of design parameters that maximises a desired 

attribute or minimises an undesirable attribute subject to a group of constraints [2.1].  In 

other words, it involves finding the “best solution” from a set of candidate choices [2.2]. 

Some optimisation methods were developed some time ago; for example, the Lagrange 

constrained minimisation was proposed in 1750. Nonetheless, it was not until the use of 

computers that optimisation techniques became popular and began to be applied to a 

diversity of practical purposes. George Dantzig, who developed the Simplex Method in 

1947, is considered the “father” of modern optimisation. Since this milestone a variety of 

mathematical and heuristics optimisation methods have been proposed.  

When an optimisation problem has a single objective the problem is scalar; the definition of 

“best solution” is one-dimensional and there is only a single best solution (or none, 

eventually). Powerful single-objective optimisation methods based on mathematical 

approaches are available, such as the Simplex method. Similarly, most heuristic optimisation 

techniques have been applied to solve single-objective optimisation problems. Therefore, it 

is common for optimisation problems to be framed in the single-objective paradigm. 

Nonetheless, some practical optimisation problems, such as DER planning, have multiple 

(and usually conflicting) objectives that must be optimised simultaneously. These problems 

are multi-objective problems. The solution to multi-objective optimisation problem is based 

on the multi-dimensional concept of “best solution”: the concept of Pareto optimality, 
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explained in this chapter.  In a multi-objective problem there is no single solution, but a set 

of optimal solutions known as the Pareto set. 

A large number of multi-objective optimisation techniques have been proposed. Initially, 

most of these techniques were based on the iterative resolution of a single-objective 

optimisation problem; this is known as the “classical” approach to multi-objective 

optimisation [2.3]. This approach has been used extensively, mainly because of the existence 

of powerful single-objective optimisation techniques. Nevertheless, this approach has some 

limitations: it produces only a single solution at each iteration, it requires subjective 

information and its success depends on the shape and the continuity of the Pareto front 

[2.3],[2.4],[2.5]. Consequently, in the last two decades a new group of heuristic multi-

objective optimisation techniques has been developed to overcome these limitations. These 

techniques are denominated Multi-objective Evolutionary Algorithms (MOEA), and were 

briefly introduced in the previous chapter.  

The DER planning problem, examined in the next two chapters, is a complex optimisation 

problem. It is multi-objective, nonlinear, and non-convex, with integer and discrete 

variables. MOEA are able to handle these types of problems effectively. Hence, the multi-

objective planning framework presented in this thesis makes use of one of these MOEA: the 

Strength Pareto Evolutionary Algorithm 2 (SPEA2). An adequate system model and a 

flexible and modular approach were identified as requirements for the planning framework, 

as will be discussed in Chapter 4. SPEA2 provides a modular and flexible multi-objective 

approach that allows the interaction of stochastic and controllable DER to be modelled, as 

exposed in Chapters 4 and 5.  

Before embarking on the description of the SPEA2 algorithm, an introduction to 

optimisation and a detailed explanation of Genetic Algorithms (GA) is necessary. Also, in 

order to give a background for the review of DER planning techniques presented in the next 

chapter a brief discussion of other optimisation techniques commonly used in power systems 

is required. This discussion helps to understand the choice of a MOEA approach for DER 

planning.  

This chapter is structured as follows: Initially, the generic formulation of the optimisation 

problem is introduced and key concepts discussed. The different types of optimisation 

problems and the main groups of single-objective optimisation techniques are enumerated. 

The working principles, advantages and drawbacks of GA are examined in detail. Then, the 

concepts of multi-objective optimisation are studied and the advantages of a multi-objective 
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formulation are discussed. Finally, MOEA are introduced and the SPEA2 method is 

described in detail.  

 

2.2.  Optimisation: Key Concepts  

2.2.1. Problem Formulation 

An optimisation problem can be generically expressed as: 
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F(x) is a vector of m objective functions fi(x). For a single-objective problem m=1. In this 

case, all objectives are expressed as minimisation. A maximisation objective can be 

formulated by minimising the negative of the objective function: min-fi(x). x is the decision 

vector that includes the set of n decision variables [x1,x2, x3, … ,xn]. The decision domain Ω is 

defined by the possible values that the decision variables can take. It is also known as the 

“search space”. The decision variables xi can be continuous, discrete or integer in nature. A 

particular case of integer variables are binary variables, which only take two values: 0 or 1.  

The optimisation problem is bounded by equality and inequality constraints, gj and hk 

respectively, which can be linear or nonlinear. For example, constraints can be simple limits 

for the decision variables (e.g. ul xxx ≤≤ ), or more complex functions that depend on 

several decision variables (e.g. h(x) = 0)2( 2

321 ≤−+ xxx ). Problems without constraints 

are referred to as unconstrained optimisation problems. Objective functions and constraints 

are categorised depending on their mathematical nature as linear, quadratic and nonlinear. 

Quadratic objective functions are typically separated from the nonlinear classification 

because special tailored solution methods can be applied to this type of problems when the 

constraints are linear, as examined later in this chapter. 
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2.2.2. Decision Domain, Decision Space and Objective Space 

The decision domain Ω and the constraints gj(x) and hk(x) define a feasible region A [2.6]: 

{ }: 0 0A ∧= ∈ Ω = ≤x g(x) h(x)  (2-2) 

such that all the points that do not belong to A constitute the infeasible region. Table 2-1 

shows some examples for a decision vector with two variables, and illustrates the feasible 

decision domains in each case.  

Table 2-1 Decision Domain Examples 

Decision domain Ω  Example Feasible decision domain (A) 

Continuous 0≤x1≤6 

0≤x2≤2 

ℜ∈x  

 
Discrete Integer 0≤x1≤6 

0≤x2≤2 

Ζ∈x  

 

Mixed Integer – Continuous 0≤x1≤6 

ℜ∈1x  

0≤x2≤2 

Ζ∈2x  

 

Binary Integer x1=[0,1] 

x2=[0,1] 

 

















=Ω

11

10

01

00

 

 

The objective function F(x) maps the decision vector from the decision space to the 

objective space. Thus, a feasible region is also defined in the objective space. Figure 2-1 

shows an example of an optimisation problem with two decision variables (x1,x2) and two 

objective functions defined by: 
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Figure 2-1 Two-objective Example 

The figure illustrates how the function F(x) maps the constrained decision space in the 

objective space. In addition, it is possible to see that both objectives (f1, f2) are incompatible 

because there is no single solution that minimises both objectives at once. The problem is 

multi-objective: instead of a single solution, there is a set of optimal solutions (depicted as a 

bold line in the objective space). Multi-objective problems are developed further later in this 

chapter. Also, the objective space of Figure 2-1 is non-convex, while the decision space is 

convex. The concept of convexity is clarified next. 

 

2.2.3. Convexity 

The concept of convexity is crucial in defining the difficulty of an optimisation problem and 

the method for solving it. A set C is convex if a line segment between any two points in C 

lies in C [2.2]. A function f(x) is convex if the line between two points f(x1) and f(x2) always 

lies above the graph of f(x), in other words: a function f(x) is convex in an interval if and 

F(x) 
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only if its second derivative is always positive or zero in this interval. Figure 2-2 illustrates 

this concept.  

 
Figure 2-2 Non-convex and Convex Functions  

 

The definition of convexity permits the following observations and statements: 

• Discontinuous sets are non-convex by definition (e.g. discrete variables). Therefore, 

integer or mixed integer problems have a non-convex feasible region [2.1] 

• Convex objective functions have a single optimal point. This is the global optima. In 

contrast, non-convex objective functions have more than one optimal point. These 

are local optima. A non-convex function has also only a single global optimal point.   

• Any nonlinear equality constraint is non-convex by definition [2.1].  

• Nonlinear objective functions can be either convex or non-convex, as seen in Figure 

2-2. So, convexity is a more accurate measure of the difficulty of a problem than 

nonlinearity. 

 

Optimisation problems differ greatly in their level of difficulty depending on: the nature of 

the variables (e.g. continuous, discrete, integer), the existence of constraints (constrained, 

unconstrained), the shape/nature of the objectives and constraints functions (e.g. linear, 

nonlinear), the number of objectives (single-objective, multi-objective) and the convexity of 

the problem [2.2]. There is no single method that can solve them all efficiently.  

A comprehensive review of all optimisation methods or an exhaustive explanation of the 

methods is not in the scope of this chapter. Therefore, the next section presents a brief 
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description of single-objective mathematical and heuristic optimisation methods commonly 

used in power systems. This description is intended to provide an adequate background for 

the review of DER planning techniques made in the next chapter, and to support the choice 

of a MOEA approach for DER planning.  

 

2.3. Single-objective Optimisation 

Single-objective optimisation methods are usually classified as mathematical methods and 

heuristic methods [2.7]. These two groups have completely different theoretical bases and 

contrasting benefits and drawbacks. Mathematical methods are designed to solve specific 

types of problems. So, when applied to the right problem, a mathematical method can 

provide an accurate optimal solution in a relatively short period. Linear and convex problems 

can be solved by an appropriate method even when thousands of variables are involved. 

Furthermore, mathematical methods are able to provide proofs for the optimality of the 

solution in these cases. Table 2-2 presents the main groups of mathematical optimisation 

methods. These are classified according to the nature of the variables, objectives and 

constraints. 

Table 2-2 Mathematical Optimisation Techniques 

Optimisation Techniques Variables Objectives Constraints 

Analytical methods 

(calculus) 

Continuous (Real) Continuous and 

differentiable twice 

Continuous and 

differentiable twice 

Linear Programming Continuous (Real) Linear Linear 

Quadratic Programming Continuous (Real) Quadratic Linear 

Nonlinear Programming Continuous Linear/Nonlinear Nonlinear 

Integer Programming Integer Linear/Nonlinear Linear/Nonlinear 

Mixed – Integer 

Programming 

Discrete, 

Continuous 

Linear/Nonlinear Linear/Nonlinear 

Zero-one programming Binary integer Linear/Nonlinear Linear/Nonlinear 

Dynamic Programming Discrete Any, but it should be 

able to split into sub-

problems 

Implicit (non-feasible 

solutions are not 

considered) 

 

Non-convex (nonlinear, discrete and combinatorial) problems present a great level of 

difficulty for mathematical methods, even with small numbers of variables [2.2]. 

Mathematical methods are based on a local search approach [2.8]. So, even if a mathematical 

approach finds an optimal solution for a non-convex problem, there is no guarantee that this 

solution is the global optima. In this case, a compromise is needed, either in terms of finding 
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a suboptimal (local) solution, or in terms of a high computation time to determine the true 

global optima [2.2]. 

Table 2-3 Heuristic Optimisation Methods (Source [2.8]) 

Heuristic Methods Natural Principle 

Evolutionary 

Algorithms 

Genetics and Evolution 

Simulated Annealing Thermodynamics of metal cooling 

Tabu Search Human memory 

Ant colony search Ants’ behaviour to solve problems 

Neural networks Brain functions 

Fuzzy Programming Human linguistic categorisation 

Bacterial Foraging Baceria behaviour to look for food 

 

In contrast, heuristic optimisation techniques are very good at solving the type of problems 

difficult for traditional methods, such as combinatorial, nonlinear and non-convex problems. 

Most heuristic methods are based on principles taken from nature (Table 2-3) and they are 

sometimes referred as “heuristic search” methods. They conduct a “global search” and 

usually find a good approximation of the global optima in a limited period of time [2.8]. 

However, these methods do not guarantee discovery of the absolute global optima. Some 

heuristic methods (e.g. Evolutionary Algorithms) work with a group of solutions 

simultaneously, instead of the point-by-point local search of mathematical approaches. This 

makes them particularly robust for “noisy” objective evaluations [2.9] and ideal to solve 

multi-objective problems in an effective way. Noisy objective evaluations are discussed 

further on a later chapter. 

 

2.3.1. Mathematical Optimisation Methods 

2.3.1.1. Analytical Methods 

Analytical methods are based on the principles of calculus. Extreme points 

(maximum/minimum) of a function f(x) can be found by setting the derivative of the function 

to zero:  

0=
∂

∂

x

f
 

(2-4) 
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Moreover, it is possible to determine whether an extreme point is a maximum or minimum 

by using the second derivative. Minimum points occur when the second derivative is greater 

than zero, while maximum point occurs when the second derivative is negative. If the second 

derivative is equal to zero, it is an inflection point.  

max2

2

min2

2

0

0

x
x

f
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x
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(2-5a) 

 

(2-5b) 

Convex functions have a single optimal solution (e.g. Figure 2-2). In contrast, non-convex 

functions can have several local optima. An analytical method has no information about 

which points are global or local optima, only local behaviour can be determined. Therefore, 

to find the global optima all the optimal points must be identified and classified.  

The analytical procedure can be extended to multi-variable problems by taking the gradient 

of the function, which now includes the partial derivatives of the function in terms of each 

variable, and equate that to zero:  

( , ) 0f x y∇ =  

where ,
x y

 ∂ ∂
∇ =  

∂ ∂ 
 

(2-6a) 

 

(2-6b) 

 

This results in a set of equations that, when solved, identifies the extreme points of the multi-

variable function.  

An extension of this method permits the optimisation of constrained problems. Equality 

constraints g(x) are included using Lagrange multipliers λ, so that the new function to 

optimise is [2.10]: 

( , ) ( ) ( )L x f x g xλ λ= −  (2-7) 

Non-equality constraints h(x) can be included by using the Karush-Kuhn-Tucker (KKT) 

conditions [2.1].  

Analytical methods require continuous objective functions that can be differentiated twice. 

Moreover, when a large number of variables is involved resolving the system of equations by 
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determining the gradient becomes complex, especially when equations are non-convex. Most 

nonlinear optimisation methods are based on these principles [2.10], and they use gradient 

information to guide the local search, first and second derivatives as proof of optimality and 

Lagrange multipliers to include constraints.  

2.3.1.2. Linear Programming 

Linear programming problems are convex optimisation problems with a linear objective 

function, linear constraints and continuous decisions variables. Powerful optimisation 

methods are available to solve this type of problem [2.1]. These methods are based either on 

the Simplex method, or on some sort of interior-point approach. An example of a linear 

problem written in Standard form is: 

min ( )

0 1,2..

0 1,2..

j p

k q

=

= + = =

= + ≤ =

∈ℜ

∈ℜ

j

k

f x ax + b

g (x) cx d

h (x) rx s

x

a,b,c,d,r,s

 

(2-8a) 

(2-8b) 

(2-8c) 

(2-8d) 

(2-8e) 

 

Where x is the vector of decision variables, f(x) is the objective function, g(x) and h(x) the 

equality and inequality constraints, respectively, and a, b, c, d, r and s are the vectors of real 

numbers that define the linear relationships of the problem. 

The Simplex method is based on the knowledge that the optimal point is always found at a 

corner point (or vertex) of the constraint set [2.1]. So, the Simplex method consists of the 

iterative resolution of sets of linear equations, defined by constraints equations and the 

objective function (Figure 2-3). The Simplex method is computationally efficient, and can 

solve optimisation problems with large numbers of variables. 

The Simplex method guarantees an optimal solution. However, in the theoretical worst-case 

scenario, the number of iterations of the Simplex method can grow exponentially with the 

size of the problem [2.1]. Consequently, “interior point” methods have been proposed. These 

methods usually provide faster computation by iteratively computing solutions in the interior 

of the feasible region and moving towards the optimal point, as illustrated in Figure 2-3. 
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Figure 2-3 Simplex and Interior-point Method (Maximisation Problem) 

Linear programming methods can also be used to solve problems with quadratic objective 

functions [2.1], because quadratic functions are convex. However, the constraints must be 

linear. These problems are usually called ‘quadratic programming’, and follow a similar 

solution philosophy. In this case, the solution is not guaranteed to be in a vertex, and can be 

located in the interior of the feasible region [2.11].  

Duality Theory 

The formulation of the problem presented in equations (2-1) is known as the primal problem. 

The concept of duality states that that every primal problem formulation has an associated 

formulation known as the dual problem [2.11]. For example, if the primal problem is: 

min ( )

. .
0

f

s t

=

≤

≥

x cx

Ax b

x

 

(2-9a) 

(2-9b) 

(2-9c) 

 

The dual problem is expressed as: 
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The duality theorem states that the solution to the primal problem provides the solution to the 

dual problem, and vice-versa [2.11]. Both formulations represent essentially the same 

problem. Though, sometimes it is easier to solve the dual problem, for example, when the 

problem has a large number of constraints and few objectives [2.11]. A large part of 

optimisation theory is devoted to the study of duality. However, a review of duality theory is 

beyond the scope of this chapter. Extended explanations can be found in [2.2] and [2.11] 

 

2.3.1.3. Nonlinear Programming 

Nonlinear programming involves problems with nonlinear objectives and/or nonlinear 

constraint functions. Some authors consider “nonlinear problems” only as those not known 

to be convex [2.2]. Convex nonlinear problems have a single feasible region, bounded by 

constraints, and have a single optimal solution, as illustrated in Figure 2-2. Since the optimal 

solution for a convex problem is located in the convex feasible space, it can be iteratively 

approximated from an initial point. Hence, convex nonlinear problems can be efficiently 

solved by interior-point or analytical methods whose working principles were explained in 

the previous sections.  

In contrast, nonlinear non-convex problems have several local optima. This makes these 

problems extremely difficult to solve, because the search can be easily misguided to wrong 

regions of the search space, i.e. local optima, and become trapped there. Moreover, in non-

convex problems the decision and objective space are not necessarily continuous or bounded 

in the same region. Nonlinear (non-convex) problems are usually solved by iterative 

methods. An initial solution is estimated, and then the algorithm iteratively approximates to 

the (local) optima solution. This “hill climbing” (or descending) process requires derivative 

or gradient information to choose the direction of ascent/descent, and a convergence criterion 

to recognise when an optimal point has been found. This process has its basis in the 

analytical resolution, explained in section 2.3.1.1. As in analytical methods, constraints can 

by dealt with by using Lagrange multipliers. In the cases where function derivatives or 

gradient information is not available, the function gradient is approximated from previously 

computed iterations. Other popular nonlinear programming methods approximate the 

nonlinear problem to a quadratic problem, and apply a Quadratic Programming algorithm 

sequentially (i.e. sequential quadratic programming [2.1]). 
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Figure 2-4 Nonlinear Optimisation Problem ( min ( ) cos(10 ) sin(5 ) x
f x x x e

−= ⋅ ⋅ ) 

The “hill climbing” process guarantees the discovery of a local optimal solution. However, 

in any non-convex problem there is no certainty that a local optimal solution is the global 

optima. As a result, the search must be repeated from varied starting points to find the global 

optimal, as illustrated in Figure 2-4. This procedure can be extremely time-consuming when 

the shape of the objective function is intricate or unknown. In extremely difficult problems, 

the global optima cannot be found in a limited time. Hence, to solve a nonlinear non-convex 

problem requires some degree of compromise: accuracy is sacrificed in favour of computing 

time, or vice versa. Heuristic techniques, such as Genetic Algorithms, are particularly 

effective in solving these types of combinatorial nonlinear problems. This will be evident 

from the detailed explanation of GA provided later in this chapter. 

 

2.3.1.4. Integer and Mixed-integer Programming 

Integer and Mixed-integer Linear Programming 

Integer programming problems occur when the decision variables can only take integer 

values. For example, when the solution sought is made up of a combination of investment 

alternatives (e.g. in which locations should DER be installed?) or when fractional units are 

not an option (e.g. how many DER should be installed?). When some of the variables are 
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continuous, the problem is mixed-integer. Although at first glance these problems might 

seem simpler than linear programming, they are actually more complex. Variables in the 

search space can only take particular values and the problem is non-convex. Two main 

approaches are popular to solve these problems: Branch and bound and cutting plane 

methods [2.1]. 

 

 

Figure 2-5 Branch and Bound Method (Adapted from [2.1]) 

 

Branch and bound methods start with a relaxed version of the integer problem. All variables 

are assumed as continuous and a linear programme is solved. In addition, a trial solution for 

the problem of interest is generated, assuming integer values for the decision variables in this 

case. The initial trial is kept as the best solution so far; thus, it is called the “incumbent” 

solution. Next, a variable (for example x2 in Figure 2-5) is branched in its possible integer 

values. The problem is solved again for each case. If any solution performs worse than the 

incumbent solution, this branch is closed off. For example, in Figure 2-5, P1 is bounded; 

solutions with integer values for x1 and x3 can only perform worse than the continuous 

version of the problem. On the contrary, if an integer solution performs better than the 

incumbent solution, it becomes the new best solution. The branch and bound procedure is 

repeated until all possibilities have been analysed. Note that this doesn’t mean that an 
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exhaustive search is made, as the bounding step prevents the algorithm of analysing 

solutions that are known to be suboptimal. 

Cutting plane methods are based on a similar approach [2.1]. The problem is solved 

iteratively as a continuous linear programming problem. In this case, linear constraints that 

“cut the plane” of the decision variables are included in the optimisation at every iteration. 

These constraints permit the best integer solution to be found, by disregarding unfeasible 

non-integer solutions. 

 

Integer and Mixed-integer Nonlinear Programming 

Nonlinear mixed-integer problems combine the difficulties of solving combinatorial 

problems with the complexity of nonlinear (and non-convex) objectives and constraints.  

Usually an attempt is made to linearize the problem objectives and constraints in the first 

instance, as powerful linear programming methods are available. However when this is not 

possible, the solution philosophies used to solve these types of problems are similar to those 

of their linear counterparts. Namely, branch and bound and cutting-plane methods are used. 

Nonetheless, each iteration is made more difficult by the need to solve a nonlinear problem.  

Another approach commonly used to solve nonlinear mixed integer problems is Benders’ 

decomposition. In this technique, the problem is divided into a master (integer or mixed 

integer) and slave problem (nonlinear programming) which are solved independently [2.12]. 

Initially, the variables of the slave problem(s) are fixed to solve the master problem. Once a 

solution is found for the master problem, the optimal solution for the slave problem(s) is 

updated. The process is repeated iteratively, until an optimal solution is reached. An example 

of this approach in power systems can be found in the simultaneous optimisation of 

distribution network investments (master problem, integer programming) and operation 

(slave problem, nonlinear programming) [2.13]. 

 

2.3.1.5. Dynamic Programming 

Dynamic programming provides a very general methodology for problems that can be 

separated into smaller solvable problems. It is based on the principle of optimality, which 

states that “a sub-policy of an optimal policy must be an optimal sub-policy by itself” [2.1]. 
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A dynamic programming problem involves a sequence of stages. At each stage one of the 

optimisation sub-problems is solved, considering the optimisation history (i.e. the stages 

previously visited). This particular feature prevents the method from evaluating all possible 

options. The optimal solution corresponds to the “optimal path” created by determining the 

optimal sub-policies. These characteristics make dynamic programming quite attractive for 

solving problems that involve sequential decisions, for example: the network development 

process [2.7], or generation dispatch [2.1]. However, this technique suffers from the curse of 

dimensionality, that is, the computational complexity of the problem grows exponentially 

with the size of the problem. Therefore, its direct applicability to large problems is limited 

[2.1].  

 

2.3.2. Heuristic Optimisation Methods 

2.3.2.1. Evolutionary Algorithms 

Evolutionary Algorithms are global search methods based on the principles of evolutionary 

theory. There are three main groups of Evolutionary Algorithms: Genetic Algorithms (GA), 

Evolutionary Strategies (ES) and Evolutionary Programming (EP). These were developed 

independently, but share common characteristics. These algorithms are based on stochastic 

search using groups of potential solutions. The best performing solutions are iteratively 

chosen and combined (GA) or modified (EP, ES) to find better solutions, until a stopping 

criterion is met. An example of an EA based optimisation is illustrated in Figure 2-6. 

GAs base their search on the combination of good solutions, by means of a crossover 

operator. In addition, a random search operator (mutation) with low probability of 

occurrence is used to expand the search. GA put an emphasis on the “genetics” of each 

solution; so, the GA theory assumes that exchanging genes between good solutions will 

eventually create better solutions. In contrast, ES and EP base the search on changing good 

solutions by means of the mutation operator. In this case, the asexual evolution process by 

mutation is mimicked. 
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Figure 2-6 Evolutionary Algorithm Example ( min ( ) cos(10 ) sin(5 ) x
f x x x e

−= ⋅ ⋅ ) 

 

Genetic Algorithms are the most popularly used Evolutionary Algorithm [2.14], and these 

terms are sometimes used interchangeably. Most of the applications of heuristic methods to 

power systems are based on GA. The reason is that GAs are very good at dealing with 

combinatorial nonlinear problems, such as the ones encountered in power engineering (e.g. 

generation planning). A detailed explanation of Genetic Algorithm principles, benefits and 

drawbacks is given later in this chapter (section 2.3.4), and their use in multi-objective 

optimisation is discussed in section 2.4.2.2. 

 

2.3.2.2. Simulated Annealing  

Simulated Annealing (SA) is a search method based on the principles of metal annealing 

[2.8]. When metal melts, molecules have high energy and move freely. As they cool down, 

they gradually lose energy and form crystals. If the cooling process is slow enough to permit 

the formation of perfect crystals, the metal will find its state of minimum energy (the optimal 

state). In contrast, if the cooling process is too fast the metal will solidify in a sub-optimal 

crystal formation; thus becoming brittle. The SA analogy is used to optimise a solution 

through a number of “cooling” stages until an optimal state is achieved (Figure 2-7).  
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Figure 2-7 Simulated Annealing Example ( min ( ) cos(10 ) sin(5 ) x
f x x x e

−= ⋅ ⋅ ) 

 

So, SA conducts a pseudo random search where potential solutions move from one point to 

the other. Changes to suboptimal solutions are permitted with a probability that diminishes 

with the search. This allows SA to initially escape from local optima. However, gradually the 

search will cool down and only moves to better solutions are permitted, to find the optimal 

point. The advantages of SA are that it can deal with any type of objective functions and that 

its implementation is very simple [2.8], which is also the case with GA. In contrast, SA 

cannot recognise when it has found an optimal solution, so, it is commonly used as an 

approximation method. 

 

2.3.2.3. Hybrid Techniques  

A particular characteristic of heuristic techniques is their ability to combine easily with other 

heuristic or mathematical techniques. These hybrid techniques combine the ability of each 

technique into powerful search methods. Song et al. [2.8] mention some of these 

combinations: 

• Tabu Search (TS) and Simulated Annealing (SA): TS is an algorithm that bases the 

search on a “memory” process. It keeps a short-term memory “tabu list” of regions 
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of the search space known to be sub-optimal, and a long-term memory of transition 

strategies that improved the search. SA, in contrast, conducts a probabilistic search, 

reducing changes in time. A hybrid of both permits SA to remember regions of the 

search space that were already explored and to apply optimal strategies that help to 

improve convergence towards global optima.  

• SA and GA: SA evaluates a single solution each time while conducting the search. 

However, some attempts have been made to parallelise SA using groups of solutions. 

Similarly, the “cooling” principles of SA have been used in GA to reduce the 

acceptance rate of new populations, enhancing the GA exploration of the search 

space. 

• GA and local search: GAs are very good at searching for the region of the global 

optima, but they often fail to converge to the global optima. Therefore, in this hybrid 

GA a local search algorithm (e.g. “hill climbing”) is started from the optimal 

solution obtained by the GA. 

• GAs and local search: GAs are very good at solving combinatorial problems. 

Therefore, another hybrid application of GAs is nonlinear combinatorial problems. 

In this case, the problem is decomposed and a GA is used to solve the combinatorial 

master problem while a nonlinear mathematical approach is used to solve the slave 

problem. 

 

2.3.3. Single-objective Optimisation in Power Systems 

A large number of power engineering problems require the use of optimisation methods. 

These problems are usually difficult to solve for a number of reasons: objective functions 

include nonlinear terms (power losses, quadratic cost equations); equality constraints are 

frequently defined by the power flow equations, which are nonlinear and non-convex; 

decision vectors include integer (switching operations, investment decisions), discrete 

(capacity) and continuous (operation set points) varuables. Problems are also characterised 

by a large search space in relation to the standards of most optimisation methods [2.1]. 

Song et al. [2.8] suggests that whenever a power systems optimisation problem can be 

mathematically formulated, it should be solved by mathematical optimisation. However, 

given the complexity of most problems, simplifying assumptions must be included in the 

model of the problem [2.15]. The most common applications of traditional mathematical 

methods to power systems problems are summarised in Table 2-4. 
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Table 2-4 Application of Mathematical Optimisation Methods to Power Systems (Source [2.16]) 

Optimisation Method Applications 
Linear programming Load Flow  

Optimal Power Flow (OPF)  

Reactive power planning  

Active and reactive power dispatch 

Nonlinear programming OPF  

Hydrothermal scheduling 

Integer and Mixed integer programming Optimal reactive power planning 

Power systems planning  

Unit commitment  

Generation scheduling 

Dynamic programming Reactive power control  

Transmission planning  

Distribution Planning 

Unit commitment 

 

Conversely, Deb [2.3] recognises that engineering optimisation applications usually involve 

major simulations to compute the objective function, and that consequently classical 

methods are not well suited to solve these practical optimisation problems “without major 

fix-ups”. As an example, Neimane [2.7] mentions that the application of mathematical 

optimisation techniques to real distribution system planning case studies is limited. 

Similarly, Silva et al. [2.17] mention that even if mathematical methods provide an accurate 

optimal solution, they require simplified models. Hence, only sub-optimal solutions are 

provided in a practical sense. Lee et al. [2.18] recognise that when the simplifications violate 

the principles of the mathematical methods (e.g. linearization of nonlinear constraints to 

apply a linear programming method) the solutions found are “certainly” incorrect or even 

infeasible. This trade-off exemplifies the optimisation/modelling dilemma, introduced in the 

previous chapter, and expressed by Irving et al. [2.1]: “It is too easy to fall into the trap of 

finding accurate solutions for ‘non-problems’, or ‘non- solutions’ to real problems.” (Figure 

2-8). 

Heuristic methods are particularly good at solving nonlinear and combinatorial problems, 

and it has been proven that they can outperform classical methods in non-convex problems 

[2.18]. Hence, the application of heuristic methods to power systems problems has gained 

considerable attention in recent years, especially the use of Evolutionary Algorithms. 

Mathematical accuracy is sacrificed to some degree because finding the absolute global 

optimum is not guaranteed. However, modelling accuracy can be increased and any type of 

objective functions or intricate constraints can be included.  
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Figure 2-8 Optimisation/Modelling Dilemma (Adapted from [2.1]) 

An early publication of Miranda et al. [2.19] identified the first applications of GA to power 

systems planning, including capacitor placement, voltage optimisation and load flow 

analysis. Later, Miranda et al. [2.14] reviewed 135 publications recording applications of 

evolutionary computation to power systems.  The range of purposes is extensive and it 

includes network expansion planning, operation planning, analysis and control of power 

systems. More recently, Silva et al. [2.17] reviewed 85 publications, and identified that 

generation scheduling and network expansion planning are the most popular applications. 

Silva et al. [2.17] references a case study in which a GA finds a solution 8% cheaper than the 

one found by conventional optimisation for the transmission expansion problem of the north-

north-eastern network in Brazil. This problem is so complex that the actual optimal is not 

known. The result demonstrates the applicability of GAs to large and complex problems. 

Next, the working principles and structure of GAs is described in detail. 
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2.3.4. Genetic Algorithms 

Initially developed by Holland in the 70’s and popularised by Goldberg [2.20], Genetic 

Algorithms are a search method based on the mechanics of natural selection and genetics. 

Most of GA terminology is based on concepts and terms from genetic science. GAs use a 

population of chromosomes, also known as individuals, each one representing a possible 

solution to the optimisation problem. Each chromosome is assigned a fitness value, based on 

its performance. The fittest individuals are combined through a crossover process to produce 

offspring, which share some features (“genes”) taken from each parent. The worst 

individuals do not reproduce and do not spread the genes into new offspring. Also, from time 

to time, some individuals undergo mutation, which introduces new characteristics to the 

population.  

1. Initial Population

Create an initial 

population of random 

individuals

2. Evaluation

Compute the objective 

values of the solution 

candidates

3. Fitness 

Assignment

Use the objective 

values to determine 

fitness values

4. Selection

Select the fittest 

individuals for 

reproduction

5. Reproduction

Create new individuals 

from the mating pool by 

crossover and mutation

7. Termination

Population Converged?

Maximum number of 

Generation Reached?

End

Final population

Optimal solution

Yes

6. Population Update

Replace all/some 

members of the 

population with the new 

individuals

Objective

Values

Fitness 

Values

Mating

pool

Offspring

New Population

Initial Population

 
Figure 2-9 Basic Genetic Algorithm 

 

The selection/crossover/mutation process is repeated across generations, with the intention of 

eventually creating individuals fitter than their predecessors are. The population size is 

usually kept constant by removing either bad or old individuals; therefore, the average 

fitness of the population will increase in time. Also, the fittest individuals will eventually 
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approximate the global optima. The process continues for a specified number of generations 

or until all the population converges to a single chromosome.  

The basic Genetic Algorithm can be summarised using steps identified in Figure 2-9. 

Depending on the author, the number of steps attributed to a canonical GA varies, but the 

process is the same. Each step is explained in detail next. First, the working principles of GA 

are discussed. 

 

2.3.4.1. How Do GAs Work? 

GAs are based on very simple principles; nonetheless their behaviour is highly nonlinear, 

stochastic and complex [2.3].  Some hypotheses explain some of the reasons why GAs 

perform well in a number of difficult optimisation problems [2.21]. Efficient optimisation 

algorithms must make use of two processes to find the global optima: exploration (cover the 

whole search space) and exploitation (make use of information already known). For instance, 

exhaustive search is good at exploration. In contrast, traditional optimisation methods are 

good at exploitation: they conduct local search based on one-point information. The genetic 

operations of GAs, described next, perform both exploration and exploitation 

simultaneously, in an optimal way. Selection and crossover make use of several solutions 

already known to be good and exploit this information. Afterwards, the mutation operator 

explores the whole search space for better solutions. Moreover, since a GA work with groups 

of solutions simultaneously, it conducts a wider exploration of the search space at every 

iteration. 

The “Schema theorem” [2.20] suggests that fit individuals have chromosomes with particular 

patterns of gene that perform well, called “schemata”. Since fit individuals have more 

chances of reproduction, these schemata are propagated in the population, and the chance of 

finding better solutions increases. Also, since every chromosome has a large number of gene 

patterns, GA implicitly conducts a parallel search over a large number of schemata. This 

implicit parallelism is one of the reasons for the good performance of GA [2.21]. Goldberg 

[2.20] points out that GA have the ability to find good “building blocks”, consisting of 

schemata of short length which work well together and tend to improve the fitness of an 

individual when incorporated to it. GA can successfully search, find and combine good 

“building blocks” to create optimal solutions. So, by combining these building blocks and 

propagating them the fitness or solution quality of the population increases.  
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2.3.4.2. Encoding 

To solve an optimisation problem using GAs it is necessary to encode the decision variables 

into chromosomes. Each decision variable is represented as one gene in the chromosome 

(Figure 2-10). Each chromosome defines a “genotype” which corresponds to a unique set of 

variables in the decision space, the “phenotype”. 

 
Figure 2-10 Chromosome Encoding 

 

Initially, Goldberg [2.20] suggested the binary alphabet to be the most appropriate encoding 

system, as it provides the largest amount of schemata. This is the “traditional way” of 

encoding [2.21]. Even so, it is possible to use other encoding systems, for example, integer 

numbers, sequences, or real numbers. Recently, it has been proven that there is no “best 

choice” for the encoding system and that a single given problem can be solved efficiently 

using different encoding philosophies [2.18]. The crucial aspect is that the algorithm, i.e. the 

encoding and the genetic operators, promote the processing of good “building blocks” [2.3].  

 

 
Figure 2-11 Binary and Integer Encoding 

Figure 2-11 illustrates two possibilities for encoding a three variable problem: using a 5-bit 

binary representation or an integer representation with an alphabet of 32 values 

( 310 ≤≤ x ). Each gene is represented with a different colour. 
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2.3.4.3. Initial population 

Creating the first population is not a trivial step, as it can strongly influence the efficiency of 

the algorithm. The first population consists of a number of trial solutions to the optimisation 

problem, which are encoded into chromosomes. A good first population can reduce the 

evaluation time and prevent premature convergence to local optima [2.10]. In contrast, a bad 

initial population makes the GA search process longer, as this will rely too heavily only on 

the exploration (mutation) operator to find the global optima, resembling an exhaustive 

search.  

So, the first population must provide the algorithm with varied and good schemata to 

conduct the search. The most common approach is the creation of “random” individuals 

[2.3],[2.21]. Nonetheless, if the random parameters are not correctly set, the initial 

population will leave regions of the search space unexplored; thus affecting the efficacy of 

the search efficiency. Consequently, some authors suggest a uniform creation of individuals 

in the decision space instead [2.10]. In addition, if specialised information on the problem is 

known beforehand, for example regions of the decision space that might be optimal, some 

good solutions can be “seeded” in the initial population.  

The population size is also a key factor to achieve an efficient GA. Some authors 

recommend population sizes between 30 and 100 individuals [2.8],[2.22]. However, Deb 

[2.3] demonstrated that the optimal size of the population depends on the difficulty of the 

problem (e.g. solution space landscape, number of variables) and that there is no single 

recommendation that applies to all problems. The more “difficult” the problem, the larger the 

population should be. Goldberg [2.20] provides some discussion on the effects of the relative 

size of the population. It shows that a small population has good initial performance and it 

converges more quickly. Nonetheless, if the population is too small the lack of diversity in 

schemata can cause the algorithm to converge to local optima.  

Hence, the population size must be large enough to provide the GA with a good number of 

schemata to conduct the search. The diversity of schemata will result in convergence of the 

GA towards the global optima. However, there is a trade-off between the speed and the 

accuracy of the algorithm. A large population has greater inertia, so, evolution towards the 

optimal regions will be slower.  
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2.3.4.4. Evaluation and Fitness Assignment 

The evaluation and fitness assignment is sometimes considered as a single step, it consists of 

the translation of the chromosome’s genotype to a fitness value. The fitness value must 

accurately reflect the ability of the individual to achieve the optimisation objective (or 

objectives) [2.21]. The fitness value is used in the next step of the GA (selection) to choose 

the best performing individuals for reproduction.   

The evaluation and fitness assignment consists of three sequential steps, as shown in Figure 

2-12. First, the chromosome needs to be decoded into the decision variables (X). Then, the 

objective(s) values (O) are obtained through the objective evaluation. In basic single-

objective GA, the objective value is directly used as the fitness value (F). However, normally 

the objectives are translated to the fitness value using a fitness function [2.22]. Problem 

constraints are usually included as penalties in the fitness functions [2.3]. These penalties can 

be proportional to the degree of constraint violation. Individuals that violate the problem 

constraints have lower fitness compared to feasible individuals. As a result, the exploration is 

directed towards feasible regions of the search space. Figure 2-12 also provides a power 

system application in DER as an example to provide realism for the three generic steps 

illustrated. 

 

Figure 2-12 Evaluation and Fitness Assignment 

 

To assign the fitness of each individual, quantification of the performance of each solution is 

needed. Since only the objective values are used to determine the fitness of every individual, 

the objective functions do not need to be continuous or differentiable. They can be anything 

from a simple mathematical function to a complex system simulation based on the decision 

variables, or even subjective values based on preference. This characteristic is fundamental 
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because it permits GA the optimisation of complex, non-continuous, non-differentiable 

objective functions. Moreover, this mapping permits the formulation of multi-objective 

problems, explained later in this chapter.  

 

2.3.4.5. Selection 

Fit individuals have good schemata. The GA approach means that these schemata must be 

kept in the population, and must be combined to create even better individuals. GAs ensure 

this by a selection process in which fit individuals are given higher chances of reproduction. 

A “mating pool” is created and used in the next step (crossover) to create new solutions. 

Individuals are selected from the population and “copied” to the mating pool. Several copies 

of a fit individual are possible. The most common selection processes are ‘roulette wheel 

selection’ and ‘tournament selection’ [2.21]. 

In roulette wheel selection the mating pool is filled by successively choosing individuals 

from the population using a random number generator. Each individual is assigned a chance 

of selection proportional to its fitness. The higher its fitness, the greater chance of selection 

an individual gets. This process guarantees that better individuals are chosen more often. 

However, Deb [2.3] recognises that roulette wheel selection methods have a disadvantage; 

they depend on the absolute value of fitness. So, scaling problems can occur. Two extremes 

are exemplified, one in which a single individual has considerably higher fitness than the rest 

of the population. In this case, its chances of selection are close to one, and the mating pool 

is filled with copies of this single chromosome. The other extreme is when all individuals 

have roughly the same fitness. In this case, the chances of selection are approximately the 

same, which is equivalent to not performing the selection process. 

In contrast, tournament selection mimics the natural process of competition for mating 

[2.10]. A small set of individuals (usually two or three) are picked from the population and 

compared in terms of fitness. The best individual is selected and copied to the mating pool 

(Figure 2-13). Individuals are compared until the mating pool is full. Fitter individuals win 

more tournaments and therefore receive more chances of reproduction. One advantage of the 

tournament selection method is that the number of individuals that are compared in each 

tournament can be adjusted to increase the selection pressure and speed the convergence of 

the algorithm. Also, since the selection depends on a relative comparison of fitness, 

tournament selection does not suffer from the scaling problem identified in roulette wheel 
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selection.  Moreover, it has been demonstrated that the tournament selection has better or 

equivalent convergence and computational properties than any other reproduction operator 

[2.3]. 

 
Figure 2-13 Binary Tournament Selection 

 

2.3.4.6. Crossover 

Crossover is the key operator of GA. It guarantees that information is interchanged between 

good chromosomes, eventually leading to the production of better chromosomes. It consists 

of combining pairs of chromosomes from the mating pool (called “parents”) by “swapping” 

their genes to produce a pair of new chromosomes (called “offspring”). The process of 

crossover is repeated until all pairs of chromosomes of the mating pool have been picked. 

However, not all parents are combined. The crossover operator is applied with a probability 

called the crossover rate. Normally this rate is between 0.6 and 1.0 [2.21], although some 

empirical studies suggest that the best crossover rate is between 0.65 and 0.85 [2.8]. The 

parents that are not combined are directly copied to the next population; or with identical 

result, each offspring is an exact copy of each parent.  
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Figure 2-14 Single and Double-Point Crossover 

 

The simplest way of crossover is “single-point crossover”. In this case, the two parent 

chromosomes are split at a single random point, and the segments are interchanged to 

produce the new offspring. So, each offspring inherits one sequence of genes from each 

parent. Another possibility is to cut the parent chromosomes at two points (“double-point 

crossover”). The segment between the two cutting points is swapped between the parent 

chromosomes. Both crossover techniques are illustrated in Figure 2-14. Researchers agree 

that two-point crossover is usually better than single point crossover [2.23], as it permits a 

higher exploration rate of the search space. 

Ultimately, the chromosome can be split at multiple points (“multi-point crossover”) and the 

corresponding segments between parents are exchanged to produce two new offspring. A 

generalisation of multi-point crossover leads to uniform crossover. In this case, a “crossover 

mask” is created using a uniform probability distribution. The crossover mask determines 

which bits (if a binary representation is used) or genes (if an integer or real representation is 

used) from each parent are passed to each offspring (Figure 2-15). Multi-point and uniform 

crossovers might be regarded as more disruptive than single and double point crossover 

because building blocks are more likely to be destroyed [2.23]. However, they favour the 

exploration of the search space, and it has been shown that uniform crossover performs 

better than two-point and single-point crossover [2.10]. 
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Figure 2-15 Uniform Crossover 

 

In terms of DER planning problems, the building blocks are DER (or a combination of DER) 

installed in particular nodes of the network. Hence, the crossover operator exchanges DER 

units between successful topologies. More elaborated crossover operators are possible, for 

example to prevent unfeasible chromosomes to be formed or to enable repair operations. 

However, this implies an additional step of evaluation after the crossover operator. If this 

evaluation is fast, it could speed up convergence. In contrast, if this evaluation is lengthy the 

convergence benefits result in detrimental impact on the algorithm speed. 

Several crossover techniques have been proposed for real encoded GA [2.3],[2.10]. These 

techniques propose the arithmetical combination parent genes to create offspring genes. 

However, these are not employed in this thesis and are not discussed here. 

 

2.3.4.7. Mutation 

The mutation operator provides a search element to the GA. It is very important because it 

keeps the diversity of the population by exploring regions of the decision space that were not 

previously explored [2.3], or by bringing back genes that were removed through selection 

[2.23]. This operator is applied to the offspring after crossover. For a binary encoding GA, 

the mutation operator is a “bit-swapping” operation. For a real encoding GA the mutation 

operator consists of assigning a random value in the search space region to the gene being 

mutated [2.3] (Figure 2-16). Other possibilities have been proposed. An example of a 
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mutation approach is to use normally distributed random numbers (instead of a uniform 

distribution), to ensure that the new gene value is closer to the one being mutated.  

 

Figure 2-16 Mutation 

For DER planning problems changing the gene value means modifying the type or size of 

the DER unit, or adding a new DER if there is none installed in the node. In addition, 

shifting two DER locations (within the same chromosome) has been proposed as a 

specialised mutation operator [2.24].  

As is the case with the crossover operator, mutation has a probability of occurrence known 

as the mutation rate. This rate is expressed as the probability of each bit/gene being mutated. 

Since mutation is a disruptive operator, a low mutation rate is suggested. A value of 1/n 

(where n is the number of bits) has been found to be ideal for binary encodings [2.10]. 

Beasley et al. [2.23] states that the optimal mutation rate is more important than an optimal 

crossover rate. A key aspect of ensuring an appropriate GA search is a diverse set of 

solutions. Haupt et al. [2.10] proved that this diversity could be provided either by a large 

population, or by the mutation operator. So, as the optimal population size decreases, the 

mutation rate must increase. However, Goldberg [2.20] demonstrated that too high a 

mutation rate (>0.5) converts the search into a random search. Another possibility is to adapt 

the mutation rate with time, starting with a high (exploratory) mutation rate in early 

generations that will change to a low (fine-tuning) mutation rate at later generations. 

 

2.3.4.8. Population Updating: Reinsertion and Elitism 

The last step of the GA is to reinsert the newly created offspring into the population. Usually 

the population size is kept constant across generations; so, a replacement process is 

necessary. In a “generation replacement” process, all the old population is replaced by the 
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offspring. So, the number of offspring created must be equal to the population size. This is 

the most common replacement method [2.21]. In “steady-state” replacement only some 

members of the population are replaced, usually two. Typically, the worst members of the 

old population are replaced by the new offspring. Then, only a couple of offspring are 

created every generation. Beasley et al. [2.21] recognise that there are no conclusive results 

that prove this strategy to be better.  

 

Elitism 

A key concept in the population update step is elitism. Elitism gives an opportunity to the 

best performing individuals from the old population to survive directly in the new population 

[2.3]: in this sense it is “survival of the fittest”. It is applied either by comparing offspring 

and parents and choosing the best from them for the new population, or by copying directly a 

number of the best performing individuals from the old population to the new population 

[2.22]. This simple process ensures that a good solution is never lost by crossover or 

mutation and is deterministically kept in the population until a better solution replaces it 

[2.3]. Elitism has been proved to help the convergence of GA to global optima [2.3]. 

Moreover, elitism is a key concept in Multi-Objective Evolutionary Algorithms. MOEA 

based on elitist strategies outperform the non-elitist techniques. [2.15]. The SPEA2 

technique, used in the planning framework and explained later in this chapter, is an elitist 

technique. 

 

2.3.4.9. Convergence 

If the GA is correctly implemented, the population eventually evolves and finds solutions in 

the region of the global optima [2.21]. Since GA is an iterative process, it needs a stopping 

criterion. The most common convergence criteria for single-objective GA are [2.10],[2.21]: 

• All the genes of the population have converged. A gene is said to converge when 

95% of the population shares the same value.  

• A target value for the objective has been reached  

• The fitness of the best individual does not change in a number of continuous 

generations.  

• A predefined number of generations has been reached.  
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2.3.4.10. GA Advantages and Drawbacks 

Advantages 

The main advantage of GA is that these methods can successfully solve optimisation 

problems that traditional optimisation methods find difficult. For example, they can readily 

cope with integer variables, non-convex and non-differentiable functions [2.3],[2.14]. 

Moreover, the addition of constraints does not increase the difficulty of the optimisation 

problem for GA.  

The GA search process is separated from the model and the objective evaluation. Hence, GA 

can be implemented modularly [2.25]. Also, the GA objective evaluation does not require 

functions, only objective values are required. Therefore, separate simulations can be used to 

evaluate objectives. This permits the GA to interface with existing simulation models [2.22] 

and with local search optimisation methods. It will be evident in the subsequent chapters that 

this thesis exploits GA modularity and the possibility of complex objective evaluations. 

GAs are powerful search techniques. Nonetheless, they are based on simple concepts [2.25]. 

The algorithm can be coded without deep mathematical knowledge [2.22]. This particular 

characteristic makes GAs quite attractive to engineers, as it permits employing most time 

and effort in the modelling of the problem itself and not on coding the optimisation problem. 

This in turn is also a benefit. When deep knowledge of the application is available, the GA 

implementation can be enhanced, for example by providing specific first population, 

crossover and mutation operators. Such bespoke GA operators can improve the GA 

performance greatly [2.23]. 

GA work with a group of potential solutions at each iteration step. This provides several 

benefits at the same time. First, the search occurs in several regions of the search space 

simultaneously and it is less likely to be trapped in local optima [2.16]. Second, since GA 

works with sets of solutions simultaneously, it provides a natural way of dealing with multi-

objective problems [2.25]. Finally, the search is robust to variations in single-objective 

evaluations, because it depends on the whole population. Therefore, GA is good for “noisy” 

objective evaluations [2.9],[2.25]. 

GA algorithms require the evaluation of several solutions simultaneously; they are parallel 

algorithms in essence. This particular characteristic makes possible the implementation of 
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GA over several distributed processors [2.25]. Parallel GAs overcome one of the major 

criticisms of GA, the large associated computing time. 

 

Disadvantages 

GA does not guarantee finding the global optima in a set or limited time. This restricts the 

application of GA to real time (i.e. online) optimisation problems [2.22]. Nonetheless, GA 

solutions improve with simulation time [2.25]. Therefore, when a complex optimisation 

problem is approached and computing time is not critical (e.g. planning), GA can provide a 

good compromise between the accuracy of the optimisation method and the detail of the 

model. GA can analyse more detailed models of the optimisation problem. Thus, the 

accuracy lost by GA in terms of providing the absolute global optima is regained by 

permitting a more truthful representation of the problem.  

A large computational time is required in some GA applications and this is mentioned as one 

of the drawbacks of evolutionary approaches. Nonetheless, Miranda et al. [2.14] puts this 

large computational time in context: GA approaches produce results not easily obtained 

before, in terms of the quality of the solutions and in terms of the additional knowledge 

gained about the problem. 

The correct implementation of a GA depends on a number of problem-specific parameters 

(initial population, population size, crossover rate and mutation rate). Some guidelines and 

discussion of these parameters were provided in the previous section. However, generally 

these parameters are problem specific. If the algorithm is not well implemented, premature 

convergence to local optima can occur. This effect is called “genetic drift” [2.22] and it 

occurs when the population is too small to provide diverse schemata and all the genes 

converge prematurely in a wrong region of the search space. In this case, mutation becomes 

the only search operator. The genetic drift can be reduced by increasing the mutation rate 

[2.21], however, if the mutation rate is too large the search becomes a random search [2.20].  

The genetic drift can also be reduced by a large and diverse population, which is the usual 

procedure for intricate optimisation problems [2.10]. However, when the population is too 

large, the algorithm becomes slow, due to the large number of objective evaluations 

required. Moreover, when each objective evaluation is highly complex (e.g. a simulation) 

this can result in an extremely long computing time.   
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Finally, GA is not an effective optimisation method for all types of problems. Some 

objective functions might be very difficult or even impossible to optimise by GA. This 

occurs when the combination of two good building blocks (genes) create a bad chromosome. 

This effect is called “deception”.  The underlying theory of GA doesn’t work with deceptive 

functions [2.22]. Therefore, a crucial step to apply GA to a problem is to recognise if the 

problem being tackled provides building blocks that, when combined, produce good 

chromosomes. Also, in the case of linear and convex functions, there are methods that 

outperform GA in performance and accuracy. Consequently, it is necessary to have a good 

understanding of the problem to be solved in order to choose an adequate solution method.  

 

2.4. Multi-objective Optimisation  

So far, the principles and most common techniques of single-objective optimisation have 

been introduced. However, real problems seldom have a single objective of interest. A 

common example of this dichotomy is the cost versus performance decision faced by any 

investor who wants the best solution at the cheapest price, illustrated in the previous chapter. 

A trade-off exists between cost and performance: how much is an increase in performance 

worth? Or alternatively, how much performance can be sacrificed to save a given amount of 

money? Although real problems are more complex, similar decisions are faced daily by 

engineers and planners.  

Finding a single solution for a multi-objective problem involves two stages: optimisation and 

decision-making. Two contrasting philosophies can be applied, depending on the order in 

which these stages are applied. In the first approach, the decision-making process precedes 

the optimisation process. The problem is modified to fit a single-objective optimisation 

framework. This is called a “preference-based” multi-objective optimisation, and it is 

illustrated in Figure 2-17. The process requires preference information about the problem. 

However, the quantification of subjective preferences is not an easy task, especially if little 

information about the problem is available beforehand. More importantly, this solution 

process is a “black box”: given a set of parameters, a single subjective solution is obtained. 

Hence, valuable information about the problem is lost [2.26]. 
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Figure 2-17 Preference-based Optimisation (Adapted from [2.3]) 

 

In contrast, in the second approach a multi-objective optimisation technique is applied first, 

followed by the decision-making process, as illustrated in Figure 2-18. Some authors believe 

this to be an “ideal” multi-objective optimisation approach for the following reasons:  

• The method is more methodical, more practical and less subjective [2.3].  

• It provides a wider range of alternatives to choose from; therefore, it permits more 

informed decisions [2.27].  

• Since real problems are usually multi-objective, this approach permits a more 

realistic representation of practical problems [2.27].  

• It permits the generation of useful information about the problem being studied 

[2.28]; it is possible to know the scope of every objective and to analyse the 

correlations between objectives. 
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Figure 2-18 "Ideal" Multi-objective Optimisation (Adapted from [2.3])  

 

The last two points are of particular significance for the research presented in this thesis, 

because a more accurate representation of the DER planning problem is possible and a deep 

understanding of DER integration can be obtained by means of a multi-objective 

optimisation technique. 

In the next section, multi-objective optimisation techniques used to generate the set of 

optimal alternatives are presented. In the absence of any preference information, all solutions 

must be considered equivalent: they are all optimal [2.29]. Since this research does not focus 

on the choice of a single solution, the decision making stage is not studied. Several 

techniques for the decision making process to choose a single solution exist. Multi Criteria 

Decision Making (MCDM) is a vast research field. A broad review of MCDM techniques is 

provided in Espie’s doctoral thesis [2.30]. In addition, the application of MCDM to energy 

planning problems is studied by Hobbs and Meier [2.31]. 
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Before describing the most common multi-objective optimisation techniques, it is necessary 

to introduce key concepts of multi-objective optimisation. 

 

2.4.1. Pareto Optimality 

In multi-objective problems, the concept of “dominance” is used to determine if one solution 

is better than others are. A solution x is said to dominate a solution y if the following two 

conditions are true [2.3]: 

• x is no worse than y in all objectives and 

• x better than y in at least one objective 

 

In this case y is said to be “dominated” by x, or alternatively, x is said to be “non-dominated” 

by y. The concept of dominance is exemplified in a two objective minimisation example 

shown in Figure 2-19. 
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Figure 2-19 Pareto Dominance Example 

 

Since both functions are to be minimised, the following dominance relationships can be 

observed: solution 2 dominates solutions 1, 3 and 5; solution 3 only dominates solution 5 and 

solution 4 only dominates solution 5. Conversely, solutions 2 and 4 are non-dominated 
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because there is no solution that dominates them. Note that even if solution 2 is equal in one 

objective to solutions 1 and 3, it still dominates them, given the concept of dominance. 

The non-domination relationship determines the concept of Pareto optimality. A solution is 

said to be Pareto optimal if it is non-dominated by any other solution [2.3]. In other words, a 

Pareto optimal solution cannot be improved in one objective without losing in another one 

[2.15]. So, in this case, solutions 2 and 4 are Pareto optimal. All solutions that are Pareto 

optimal constitute the Pareto set. The objective values of the Pareto set in the objective space 

constitute the Pareto front.   

The concept of dominance explained in this section is known as “weak dominance” and it is 

the most widely used. Hence, in this thesis “dominance” refers to “weak dominance”. Other 

concepts of dominance exist, such as “strict dominance” [2.3] and “significant dominance” 

[2.32], which are not used in this work.   

 

2.4.2. Multi Objective Optimisation Techniques 

A multi-objective problem that has conflicting objectives has no single solution. Normally, 

multi-objective problems have a large number of solutions defined by the Pareto set. Since 

obtaining all Pareto solutions is practically impossible, a subset of the Pareto front is usually 

looked for. Therefore, solving a multi-objective problem involves satisfying three areas 

[2.3][2.15]: 

• Accuracy: To find a set of solutions as close to the real Pareto front as possible. 

• Diversity: To find a set of solutions as diverse as possible 

• Spread: To find a set of solutions that “capture the whole spectrum” of the true 

Pareto front 

 

These requirements are exemplified in Figure 2-20. The first case (Case 1) is able to obtain 

solutions that are accurate and capture the extent of the objectives; nonetheless, the set of 

solutions is not diverse. In the second case (Case 2), a diverse set of well-spread solutions is 

obtained, although these are not accurate. The solutions in the third case (Case 3) are 

accurate and diverse; however, the edges of the Pareto front are not explored. Finally, the 

fourth case (Case 4) illustrates the solution of an ideal algorithm. 
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Figure 2-20 Requirements of a Multi-objective Optimisation Problem 

Methods to obtain several Pareto set solutions are discussed next. These methods are divided 

into two groups. The first makes use of single-objective techniques, therefore is commonly 

referred to as the “classical approach”. In contrast, the second group is based on 

Evolutionary algorithms and permits identification of several solutions of the Pareto front at 

once.  

 

2.4.2.1. Classical Approach 

Classical multi-objective approaches are based on single-objective optimisation methods. 

Single solutions are found using a preference-based approach, illustrated on top of Figure 

2-17. Several solutions of the Pareto front are obtained by solving single-objective problems 

iteratively. Since this approach constitutes a repeated single optimisation, it must deal with 

all the complexities of solving a single-objective problem, discussed at the start of this 

chapter. The two most common classical approaches are described next. 
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Weighted-sum Method 

The weighted-sum method converts the multi-objective problem into a single-objective 

problem by changing the multi-objective function into a weighted-sum of the objectives:  

1

min ( ) ( )
m

i i

i

F x w f x
=

=∑  
(2-11) 

Weights wi indicate the relative importance of each objective fi. Objectives are usually 

normalised so the weight vector wi can take values in the range [0,1]. Similarly, it is usual 

practice to assign weight values so that all weights add to one: 
1

1
m

i

i

w
=

=∑  [2.3].  

This method is exemplified next with a two objective minimisation in Figure 2-21. The 

single-objective function F(x) is a straight line with a slope equal to –w1/w2, depicted as a 

dashed line in Figure 2-21. The position of the line in the objective space depends on the 

value of F(x), as all points in the line have the same value for the objective function F(x). 

Moving the line towards the origin minimises the value of F(x). As a result, the optimal point 

A is located where the objective function is tangential to the Pareto Front [2.3]. 
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Figure 2-21 Weighted-sum Minimisation 
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In a convex Pareto Front, multiple solutions can be found by changing the set of weights 

iteratively [2.3]; that is, changing the slope of the objective function. This is exemplified in 

Figure 2-22, where points B, C and D are the optimal points corresponding to different set of 

weights (slopes). 
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Figure 2-22 Weighted-sum Minimisation – Different Solutions 

 

This method is simple and easy to implement, and in convex problems it has been 

demonstrated that it can find all Pareto front solutions [2.3]. Nonetheless, it has two main 

disadvantages. First, choosing a good set of weights is not an easy task, especially when the 

shape of the Pareto front is not known. Objectives usually do not have the same scales and 

therefore a normalisation is required. Also, different sets of weights may not lead to different 

solutions [2.3].  

For example, in Figure 2-23 the extreme points e and f are the optimal solution for several 

set of weights. Moreover, when the mapping is not linear, uniformly distributed set of 

weights do not produce uniformly distributed Pareto solutions. In complex (i.e. nonlinear and 

non-convex) problems, it is even possible that a single set of weights leads to more than one 

solution. This case is also illustrated in Figure 2-23, where E and F are the optimal solutions 

for the same tangential line.  
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Figure 2-23 Weighted-sum Method with Non-convex Pareto Front 

 

The second disadvantage of the weighted-sum method, and perhaps the most limiting, is that 

this method is unable to find all solutions when the Pareto front is non-convex. This can 

easily be observed in Figure 2-23. The weighted-sum minimisation will never find point A. 

Points E and F are tangential to the objective line that is also tangential to A; though E and F 

have a lower value for the objective function F(x). In general, no point within E and F can be 

found by the weighted-sum method, because tangential lines of greater gradient or lesser 

gradient will first find points with lower objective values in the segments eE and Ff 

respectively. Since it is not easy to know the shape of the Pareto front, or its convexity, 

beforehand, the weighted-sum method needs to be applied with caution [2.3]. 

 

ε -constrained method 

The ε-constrained method was introduced to overcome the difficulties of the weighted-sum 

method with non-convex Pareto fronts. In this case, the multi-objective problem is simplified 

by keeping a single-objective function (fµ), usually the most important objective. The other 

objectives are expressed as inequality constraints. The vector of constraints ε defines upper 

bounds for these objectives. So, the multi-objective function of equation (2-1) now becomes:  

min ( )

1,2,..

f

j m j

µ

µ≤ = ≠j

x

f (x) ε
 

(2-12a) 

(2-12b) 
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The value of the constraint vector represents the trade-off between the objectives. Obtaining 

a good solution for )(xfµ  requires relaxation of the constraints for the rest of the objectives. 

Several solutions of the Pareto Front can be found by changing the ε-constrained vector.  

 

Axf ε≤)(2

Bxf ε≤)(2

Cxf ε≤)(2

Dxf ε≤)(2

Exf ε≤)(2

 

Figure 2-24 ε-constrained Method 

 

For example in Figure 2-24, f1 is kept as the objective function, while f2 is constrained. A 

loose constraint (e.g. εA) permits the lowest possible value for f1 to be found. In fact, any 

constraint above εA will still result in the algorithm finding A as the optimal point. In 

contrast, a tight constraint (e.g. εD) will produce a very high value for f1. However, if the 

constraint is too tight (e.g. εE), there might be no feasible solution for f1.   

The benefit of the ε-constrained is that it can deal with convex or non-convex Pareto fronts. 

However, it requires the same amount of information as the weighted-sum methods. Also, 

the constraint vector must be in the feasible region of each objective, as illustrated in Figure 

2-24. Therefore, previous knowledge about the characteristics of the Pareto front is 

necessary [2.3]. Moreover, when the problem has several objectives, a large amount of 

information is required, and a large number of iterations are needed to find several solutions 

that belong to the Pareto front.  
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2.4.2.2. Evolutionary Approach  

The concepts of multi-objective optimisation and the most common classical multi-objective 

optimisation methods have been introduced in the previous section. The disadvantages of the 

classical approach were also discussed. This subsection examines the evolutionary approach 

of multi-objective optimisation.  

Evolutionary Algorithms work with a number of solutions at any given time. When they 

were developed their potential to solve multi-objective problems was recognised [2.20]. 

Early attempts to use EA to solve multi-objective problems were based on the classical 

approach (e.g. weighted-sum GA or ε-constrained GA); nonetheless, researchers soon started 

to propose novel algorithms that exploited the nature of EA. These Multi-Objective 

Evolutionary Algorithms are based on the same GA structure discussed in depth in section 

2.3.4 and they involve the same steps. However, the fitness assignment and selection 

operators are modified to handle the multi-objective problem; this is explained next. All the 

advantages and drawbacks discussed for GA in previous section are shared by MOEA. So, 

MOEA are ideal for dealing with non-convex, nonlinear combinatorial multi-objective 

problems. Moreover, it has been demonstrated empirically that a single run of MOEA is 

more effective than several runs of classical methods [2.28]. 

Next, an introduction to the development history of these techniques is outlined, discussing 

its origin, the first generation of MOEA and the second generation of MOEA, to which 

SPEA2 belongs to. This elaboration is necessary to illustrate the recent development of the 

area and to show the advantages of SPEA2 over other MOEA. 

 

MOEA Origins 

The Vector Evaluated Genetic Algorithm (VEGA) developed in 1984 is considered the first 

multi-objective evolutionary algorithm. It is a standard GA, in which the selection stage is 

modified. In this case, the mating pool is divided in m subpopulations (m being the number 

of objectives) and parents are selected according to how well they perform in a single 

objective. Then, the subpopulations are shuffled together and crossover and mutation is 

performed as usual. Although this approach generates individuals close to the Pareto, the 

algorithm fails to retain them [2.4]. Moreover, eventually this algorithm converges to the 

extreme of each individual objective (Figure 2-25) [2.15]. 
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f2

f1  

Figure 2-25VEGA Search Directions 

 

First Generation MOEA 

After VEGA, the next decisive milestone is the proposal by Goldberg [2.20] for the use of 

Pareto optimality as fitness criteria. In this case, the population is ranked in fronts (Pareto 

ranking). The non-dominated solutions obtain the highest rank (associated with highest 

fitness) the next front is given the second highest rank and so on, as illustrated in Figure 

2-26.  

 

Figure 2-26 Goldberg’s Pareto Ranking 
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In the selection step, solutions with a higher rank are selected more often for crossover and 

mutation. As a result, the search is pushed towards the Pareto front. Goldberg [2.20] also 

proposed the use of a “niching mechanism” to maintain the diversity of the solutions along 

the Pareto front, in order to obtain a more well spread Pareto front. In this niching 

mechanism, the fitness of each individual is modified according to the distance to its 

neighbours [2.5]. Individuals that are too close together have their fitness reduced. 

Therefore, this approach is also called “fitness sharing”. It is applied as follows: 

∑
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where Sif is the shared fitness of fi, N is the number of neighbouring solutions, and Φ(dij) is a 

niche count. dij indicated by the distance between solutions i and j and shareσ  is the niche 

radius.  

Goldberg’s theoretical background served as the base for several MOEA developed in later 

years. These are considered the “first generation” of MOEA and include the Multi-Objective 

Genetic Algorithm (MOGA) proposed in 1993, the Non-dominated Sorting Genetic 

algorithm (NSGA) published in 1994, and the Niched Pareto Genetic Algorithm (NPGA) 

also from 1994 [2.4]. One of the first comparative studies found MOGA to outperform 

NSGA, NPGA and VEGA. However, one of the major criticisms of all the first generation 

techniques is that their performance depends on the size of the niche ( shareσ ) [2.29], which is 

usually a difficult parameter to set correctly [2.15].  

 

Second Generation MOEA 

The Strength Pareto Evolutionary Algorithm (SPEA) proposed by Zitzler et al. [2.33] in 

1999 started the second generation of MOEA. In this publication, the authors proposed two 

key concepts: the use of elitism to preserve non-dominated solutions and a novel fitness 

assignment that avoids using the niching mechanism. In SPEA, non-dominated solutions are 
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kept in a secondary elite population, called the “external archive”. This method guarantees 

that these solutions won’t be lost through crossover or mutation. Moreover, the elite 

population participate in the selection and crossover process; therefore, the convergence 

towards the Pareto front is speeded.  

The SPEA fitness assignment considers not only dominance relationships, but also the 

distribution of the solutions. The SPEA fitness assignment is different for non-dominated 

(i.e. elite) or population solutions:  

• Solutions in the external archive P’ (i.e. elite solutions) are given a fitness value 

equal to the number of solutions in the population P they dominate, divided by the 

number of solutions in the population.  

• Solutions in the population (P) are given a fitness value equal to the number of 

solutions from the archive (P’) by which they are dominated, plus one. 

 

 

Figure 2-27 SPEA Fitness Assignment Process 

 

Hence, SPEA fitness assignment guarantees that non-dominated solutions have a lower 

fitness (fitness is to be minimised). Also, solutions in crowded regions of the Pareto front 

and the search space have worse fitness, pushing the search towards less crowded regions 

and helping to obtain a well-spread Pareto front by exploring non-explored regions [2.33]. It 

is possible to observe these effects in the example illustrated in Figure 2-27 
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After SPEA was proposed, the use of elite populations (or external archives) in MOEA 

became the norm. It is now a defining characteristic of state-of-the-art MOEA. It was later 

demonstrated that elitism is a theoretical condition to guarantee the convergence of MOEA 

towards the Pareto front [2.4].  

Most elitist MOEA are based on a framework similar to SPEA and only differ in the way 

they perform fitness assignment and selection (clustering) [2.34]. The generic structure of 

MOEA is illustrated in Figure 2-28. Figure 2-29 shows the typical evolution of a MOEA 

towards the Pareto front. 

 

Figure 2-28 Typical Structure of an Elitist MOEA (Adapted from [2.35]) 

 

Coello-Coello [2.4] considers the most representative MOEA of the second generation to be 

the Strength Pareto Evolutionary Algorithm (SPEA), published in 1999; the Pareto Archived 

Evolutionary Strategy (PAES) proposed in 1999; the Nondominated Sorting Genetic 

Algorithm II (NSGA-II) developed in 2000 and the Strength Pareto Evolutionary Algorithm 

2 (SPEA2) from 2001.  
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Figure 2-29Typical MOEA Evolution towards the Pareto Front 

 

The last two (NSGA-II and SPEA2) have gained widespread attention and have begun to be 

applied to a diversity of practical problems, including now DER planning as demonstrated in 

the next chapters. NSGA-II in particular is considered by some authors as “the most popular 

method” [2.34] because of its simplicity and effectiveness. NSGA-II is based on three 

concepts [2.29]: 

• It includes elitism by maintaining non-dominated solutions in the population (it 

doesn’t use an external archive explicitly).  

• Fitness assignment is based on dominated ranking (Figure 2-26). Hence, 

solutions closer to the Pareto front receive a better fitness. 

• It uses a “crowding distance” estimation as a second comparator in the 

tournament selection. So, when solutions of the same rank (or front) are 

compared, the one from the less crowded region is selected for reproduction. 

 

In contrast, SPEA2 is based on a slightly more complicated fitness assignment and clustering 

mechanism, explained in detail in the next section. SPEA2 has been verified to perform 

better than PAES and as well as NSGA-II in the problems studied [2.36]. It has also been 

demonstrated that SPEA2 outperforms NSGA-II in problems with large number of 

objectives [2.34]. Furthermore, Mori et al. [2.37]compared SPEA2 and NSGA-II in a 

practical problem (distribution network expansion planning) and demonstrated that SPEA2 
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outperformed NSGA-II in terms of the quality of the solution and the computational time, in 

the particular problems studied. 

The MOEA research area is very active and the development of a history of MOEA is an 

ongoing process. It can be expected that new developments will be proposed in the coming 

years. The multi-objective planning framework presented in this thesis uses SPEA2. SPEA2 

is a well-tested algorithm that has been demonstrated to outperform other state-of-the-art 

counterparts. Nonetheless, the development of the planning framework presented in later 

chapters is based on the concept of modularity. Therefore, any fitness assignment or 

selection procedure can be included without the need to upgrade the entire planning 

framework. 

 

MOEA Constraint Handling 

Most real optimisation problems involve constraints. Thus, the satisfaction of constraints is a 

crucial aspect for solving optimisation problems effectively. Konak et al. [2.15] list four 

different approaches to constraint handling in single-objective problems using EA: 

• Discard unfeasible solutions 

• Reduce the fitness of infeasible solutions using a penalty function  

• Use genetic operators to ensure that only feasible solutions are produced 

• Repair unfeasible solutions 

 

The second approach is the one most commonly used [2.3]. The implementation of this 

approach in single-objective problems is simple, although it requires the choice of 

appropriate penalty factors. Consequently, Deb et al. [2.29] proposed a parameter-less 

constraint handling. This “constrained tournament selection” was proved to perform better 

than other constraint handling methods [2.29]. Therefore, Deb et al. [2.29] extended this 

concept to the multi-objective case and proposed the concept of “constraint dominance”: A 

solution x is said to “constraint-dominate” a solution y, if any of the following conditions is 

true: 

• Solution x is feasible and solution y is not 
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• Solution x and y are both infeasible, but solution y has a smaller overall constraint 

violation. 

• Solution x and y are feasible and solution x dominates solution y 

 

In this case, feasibility is defined over all m optimisation objectives. Similarly, constraint 

violation is defined over all objectives; thus, a solution that marginally violates a single 

objective is preferred to a solution that violates all objectives. Deb et al. [2.29]  proved this 

constraint handling approach to be better than others found in the literature. This modified 

dominance concept is simple and logical; more importantly, it maintains the modularity of 

MOEA and can be generalised and applied to other MOEA. 

 

MOEA in Power Systems to Date 

For many years, the resolution of multi-objective problems was based on classical multi-

objective approaches, with their associated difficulties. This was also the case for multi-

objective power systems problems. For example, in a state-of-the-art survey published in 

2007, Rivas-Davalos [2.38] recognised that power systems engineering “has been scarcely 

touched” by MOEA (Figure 2-30). This is also evident from the multi-objective DER 

planning review conducted in the next chapter: until recently, the weighted-sum method and 

the constrained method were the most common approaches.  

 

Figure 2-30 Application of MOEA to Power Systems Problems (Source [2.38]) 
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Nonetheless, MOEA can effectively solve the types of problems to which multi-objective 

power systems problems belong. Moreover, MOEA are based on straightforward concepts 

and provide modular solutions. Consequently, in recent years an increase in their application 

to power systems of MOEA has been observed (Figure 2-30). It is likely that MOEA will 

stimulate more interest in the power systems engineering community in the coming years. 

This thesis intends to contribute to motivate this interest and to facilitate the future use of 

MOEA in DER planning and other applications. 

 

2.5. The Strength Pareto Evolutionary Algorithm 2 (SPEA2)  

The SPEA2 algorithm [2.36] is an elitist MOEA developed in response to criticisms of the 

first SPEA algorithm. It has been demonstrated that SPEA2 outperforms most state-of-the-

art algorithms in test problems and outperform them in practical applications. As in any other 

MOEA, SPEA2 is based on the fundamental GA structure described in detail in section 

2.3.4. SPEA2 uses a population (P) of size N and an external archive (A) of size N  that 

stores non-dominated solutions.  

The overall algorithm is repeated for T generations as follows: 

 

Input:  N:   Population size 

  N :  Archive size 

  T:  Maximum number of generations 

Output:  AF:  Final non-dominated set 

 

Step 1:  Initialisation: Generate an initial population Pt and create the empty archive 

external At. Set the generation count t to zero t=0, 

Step 2:  Fitness assignment: Evaluate the population Pt. Determine the fitness values 

of individuals in Pt and At. 

Step 3:  Environmental selection: Copy all non-dominated individuals of Pt and At 

to At+1. If size of At+1 exceeds N  then reduce At+1 by means of a truncation 
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operator, otherwise if size of At+1 is less than N  then fill At+1 with the fittest 

dominated individuals in Pt and At.  

Step 4:  Termination: If t≥T then the final solution is the non-dominated set AF=At+1. 

Stop. 

Step 5:  Mating selection: Perform a binary tournament selection on At+1 in order to 

fill the mating pool. 

Step 6:  Variation: Create the new population Pt+1 by applying crossover and 

mutation operators to the mating pool. Increment generation counter (t = t + 

1) and go to Step 2. 

 

Any multi-objective algorithm has three main goals: accuracy, diversity and spread, as 

illustrated in section 2.4.2. SPEA2 achieves these goals by implementing an enhanced fitness 

assignment procedure that increases selective pressure. Also, this fitness assignment includes 

density information that encourages the exploration of the less dense regions of the objective 

space. Moreover, by means of the truncation operator applied in Step 3 a diverse and well-

spread set of non-dominated solutions is kept. Another particularity of SPEA2 is that only 

members of the elite archive (non-dominated set) participate in the reproduction step.  

Steps 1, 5 and 6 are similar to those of a GA. The termination of the algorithm (Strep 4) is 

usually defined by a limiting number of generations. Steps 2 and 3 are exclusive to SPEA2 

and are explained next 

 

2.5.1. SPEA2 Fitness Assignment 

SPEA fitness assignment was criticised because individuals dominated by the same Pareto 

members received the same level of fitness, and because Pareto front solutions that dominate 

a large amount of solutions are assigned worse fitness [2.3], as illustrated in Figure 2-27.  

Hence, Zitzler et al. [2.36] proposed an improved fine-grained fitness assignment for 

SPEA2. In this case, the fitness of an individual depends both on how many solutions it 

dominates and by how many solutions it is dominated. Initially, a strength value (S) is 

assigned to each element in the combined set P and A, corresponding to the number of 

solutions it dominates, as illustrated on the left-hand side of Figure 2-31. Then, the raw 

fitness value (R) of each solution is calculated as the sum of all the strengths of its 
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dominating elements in P and A, as shown on the right-hand side of the same figure. This 

fitness assignment process ensures that solutions dominated by many individuals (which in 

turn dominate many individuals) are assigned the worse fitness.   
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Figure 2-31 SPEA2 Fitness Assignment 

 

Moreover, it is possible to see that with this fitness-assignment all Pareto solutions get a 

similar raw fitness. In addition, solutions dominated by the same individual (e.g. the cluster 

of three solutions on the top-left corner) are assigned different levels of fitness, according to 

their dominance relationships. Therefore, the solutions closer to the Pareto front, in less 

crowded regions and dominated by fewer individuals, are assigned better fitness. In this 

form, the search is pushed towards the Pareto front, and towards less crowded regions of the 

search space. 

To discriminate between individuals that have identical raw fitness R, R is corrected using a 

local density estimation D. SPEA2 uses the inverse of the distance to the k
th
 nearest 

neighbour as an estimation of density:  

2

1
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+
=

k

i
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σ

 
(2-14) 

 

where 
k

iσ  is the distance to the k
th
 nearest neighbour. Normally, k is assumed to be the 

square root of the population size ( NNk +=  ). A two is added to the denominator to 

ensure its value is greater than zero and that that D(i)<1, so it doesn’t affect the domination 
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count of R. Consequently, the resulting fitness F is the sum of the raw fitness R and the 

density estimation D: 

)()()( iDiRiF +=  (2-15) 

 

This fitness value is used to choose the solutions that will be copied to the external archive 

(environmental selection). Only the fittest solutions survive to be combined and mutated.  

 

2.5.2. SPEA2 Environmental Selection 

In SPEA2, the size of the external archive is kept constant. When the non-dominated 

solutions in the sets Pt and At are copied to the archive (At+1), three possibilities exist: 

• The set of non-dominated solutions (At+1) is exactly the same size as the archive 

( N=t+1A ). In this case, the environmental selection step finishes. 

• The set of non-dominated solutions (At+1) is smaller than the archive ( N<t+1A ). 

In this case, the archive is filled with the best N − t+1A  dominated solutions until it 

is full. 

• The set of non-dominated solutions (At+1) is larger than the archive ( N>t+1A ).  In 

this case, a truncation operator is applied to At+1 to remove solutions until the non-

dominated set fits in the archive. 

 

The truncation operator of SPEA2 guarantees that solutions kept in the external archive are 

well spread, and that boundary solutions are not lost. The truncation operation removes 

solutions iteratively. At each iteration, the individual in At+1 with the closest distance to 

another individual is chosen. If there are several individuals with minimum distance, the 

second minimum distance is used, and so forth.  

Figure 2-32 illustrates the selection of the alternative to remove (left) and the order of 

truncation of three solutions (right), assuming N=7. 
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Figure 2-32 SPEA2 Truncation Operator 

 

Finally, Figure 2-33 illustrates the interaction between the population and the archive in a 

two-generation SPEA2 example. The size of the population is assumed to be N=10, while the 

size of the archive N =5. The steps of objective evaluation, fitness, selection, crossover and 

mutation are not discussed or illustrated, as they were already discussed in-depth previously 

in this chapter. 
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Figure 2-33 SPEA2 Population Interaction 
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2.5.3. SPEA2 in Power Systems  

MOEA are only now starting to gain attention in the power systems community. 

Nonetheless, two applications of SPEA2 to power systems problems can be found in 

literature. Both publications explore the distribution network-planning problem. In [2.39] 

Rivas–Davalos et al. propose the optimisation of two objectives: total cost and energy not 

supplied. The encoding uses an integer number representation. In this case, a chromosome of 

variable length represents the lines used in each solution. Problem-specific crossover and 

mutation operators are used. The authors conclude that SPEA2 is able to tackle complex 

problems such as distribution systems planning. Mori et al. [2.37] present a similar problem. 

In this case, three objectives are proposed: installation cost, cost of losses and network 

voltage profile. The author proposes a binary encoding to represent the investment decisions. 

This paper compares SPEA2 with the NSGA-II and it concludes that SPEA2 performs better 

in terms of the solution’s quality (accuracy, spread) and computational speed, in this 

particular application. Finally, an application of SPEA2 to financial portfolio optimisation is 

found in [2.40]. This paper is not directly related to power systems, although an analogy to 

generation portfolio optimisation could be made. It compares SPEA2 to other MOEA 

(NSGA-II, MOGA and VEGA). The authors demonstrate that SPEA2 is the best for this 

application, “even in small number of generations”.  

 

2.6. Summary 

In this chapter, the key concepts that define an optimisation problem and its complexity have 

been discussed. Initially, single-objective optimisation techniques were reviewed. The 

working principles of the most common single-objective techniques applied in power 

systems were discussed. Mathematical techniques provide high mathematical accuracy, 

although they have to sacrifice model detail in complex problems. In contrast, heuristic 

techniques are able to deal with complex application models, though they have to forgo 

mathematical accuracy in doing this. The optimisation/modelling dilemma was illustrated. A 

particular type of heuristic techniques, Genetic Algorithms, is able to efficiently solve 

combinatorial nonlinear problems. Thus, they have been successfully applied to a number of 

power system problems.  
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GAs are based on simple principles: a population of potential solutions that is iteratively 

combined using probabilistic rules until it converges to the global optima. This chapter 

presented Genetic Algorithms in detail. Each step of the algorithm is discussed.  Moreover, 

the advantages and drawbacks of GA are analysed. One advantage of GA is that they permit 

the solution of multi-objective problems in an ideal way. As a result, they are the base for a 

completely new family of multi-objective optimisation techniques.  

Multi-objective optimisation problems have a different concept of optimality: Pareto 

optimality. These problems do not have a single solution, but a group of optimal solutions: 

the Pareto set. In some cases, a single solution of the Pareto set is required. Then, a decision-

making process is necessary, either to convert the multi-objective problem to a single-

objective problem, or to choose a single solution from the Pareto set. This second approach 

has been recognised by researchers to provide several benefits, including a more truthful 

representation of multi-objective problems. In this case, before the final stage of decision-

making, it is necessary to find a large number of accurate and well-distributed Pareto set 

solutions. This multi-objective optimisation process by itself can provide a lot of useful 

information about the problem, and this is emphasised in this thesis. 

Two different types of multi-objective optimisation techniques are used to find the Pareto 

set. The first type is based on the iterative use of single-objective optimisation techniques to 

find several solutions. This methodology requires a deep knowledge of the problem, it can be 

computationally complex and, in some cases, it cannot deal with non-convex Pareto front.  In 

contrast, multi-objective techniques based on the principles of Genetic Algorithms are able 

to find several solutions of the Pareto set simultaneously. These techniques are known as 

Multi-Objective Evolutionary Algorithms. The research presented in thesis makes use of one 

of these techniques: the Strength Pareto Evolutionary algorithm 2 (SPEA2). SPEA2 has been 

demonstrated to outperform other algorithms in practical problems and has been described in 

this chapter. The following chapter introduces the mathematical formulation of the DER 

planning problem and provides a comprehensive review of single and multi-objective DER 

planning techniques.  
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Chapter 3 

3. Distributed Energy Resources Planning  

3.1. Introduction  

The optimal integration of DER in the distribution grid can provide several benefits. For 

example, it can reduce power losses, improve voltage profiles or decrease carbon emissions. 

In contrast, a sub-optimal integration of DER can have the opposite effects, resulting in 

increased costs, network reinforcements, energy curtailment or even in unsustainable system 

operation conditions. Consequently, DER planning -understood in this work as optimising 

DER type, size and/or location - is crucial to obtain maximum DER benefits, and minimise 

its impacts. DER planning is not just an economic optimisation of resources; it is a powerful 

analytical tool. Each DER benefit or impact can be translated to a planning objective. The 

information of what is “optimal” in each case deepens the knowledge about DER. 

Furthermore, when the problem is formulated as a multi-objective optimisation, a profound 

analysis of DER integration is possible.  

This chapter presents a comprehensive and critical literature review of DER planning 

techniques. Initially, this chapter describes the process of power-systems planning. The link 

between power systems planning and optimisation techniques is discussed. Afterwards, the 

mathematical formulation of the DER planning problem is presented. The mathematical 

complexity of this optimisation problem, and the difficulties associated with solving it, are 

illustrated. Then, relevant single-objective DER planning techniques are analysed. This 

analysis emphasises the different planning objectives proposed, and identifies some of the 

main shortcomings of the single-objective techniques reviewed. Subsequently, a critical 

analysis of multi-objective planning approaches for DER is made. This comprehensive 

review highlights the contributions of different authors and the possibility for further 

developments in the area. Finally, a timeline of multi-objective DER planning and the 

context of this research are discussed.  
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3.2. Power Systems Planning 

Power systems’ planning is the process of finding the best energy sources and equipment, 

together with their location, manner of interconnection and schedule of deployment to serve 

a future demand [3.1], [3.2]. It is a process of optimisation and decision-making and the 

optimal solution depends on the planner’s goals and preferences: what needs to be achieved? 

What defines the best solution? Traditionally, the main goal of power systems’ planning is to 

minimise the total cost. However, planning is not just restricted to economic goals. Other 

planning goals are possible; for example, to find a clean energy supply; to improve the 

system performance; to maximise energy exports or to minimise dependence on energy 

imports, as will be reviewed later in this chapter. In this wider perspective, planning becomes 

a powerful analytical tool. The knowledge of what are “optimal” configurations can guide 

not only adequate investments but also incentives, research and innovation.  

Willis and Scott [3.1] study the investment planning process for Distributed Generation. The 

planning process is considered as a five-step procedure (Figure 3-1). These steps are 

discussed next in the context of this work.  

 

Figure 3-1 Five steps of Planning (adapted from [3.1]) 

This chapter reviews the planning of DER in the long term (years), i.e. investment planning. 

Operational planning, in contrast, refers to the optimisation of the power system’s operation 

in the short term (hours, minutes) to minimise costs and technical impacts. It is not discussed 

in this chapter. The operational planning of controllable DER is discussed briefly in the next 

two chapters.  
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3.2.1. Defining the Planning Problem (Step 1) 

The first step of the planning process is to define the scope of the planning problem: the 

boundaries of the system being studied and the period of the analysis.  

Optimising the whole power system is extremely difficult, if not impossible. Therefore, it is 

decomposed in smaller problems: generation; transmission; sub-transmission and 

distribution planning. Local distribution networks that are weakly connected are analysed 

separately. When vertically integrated DSOs are allowed to invest in DER, these resources 

are included as part of the distribution system planning process. Willis [3.3] and Neimane 

[3.4] provide a comprehensive explanation of the investment planning process of distribution 

networks; these works consider DER as one of the options of the network planner.  

Yet, vertical integration of utilities is not permitted in liberalised electricity markets. In this 

scenario, DSOs are not allowed to invest in DER and are required to provide unrestricted 

access to DER developments, subject to compliance with connection and technical 

guidelines, such as [3.5]. In this case, DER developers determine the most favourable 

investments for maximising revenues by means of DER planning. Likewise, DSOs and 

regulators can identify optimal locations, sizes and types for DER integration. With this 

information, they can provide incentives to improve system performance [3.6], achieve 

environmental targets making an adequate use of existing network assets [3.7] or minimise 

negative DER impacts [3.8]. 

Planning ranges for investment planning are defined as short-term or long-term. Short-term 

plans aim at guaranteeing that immediate demand growth can be served while keeping the 

system within operational limits and standards. So, short-term plans are “project oriented” 

and look for the schedule of additions or projects that the system requires in the near future. 

The minimum period of study for a short-term plan is the time necessary for the plan to be 

approved and the equipment to be purchased, installed and tested: the lead-time [3.1]. A 

guide of lead-times is provided by Willis and Scott [3.1], though it is noted that modern 

power plants can be constructed in shorter times. 

Long-term plans look further ahead into the future. Thus, they are able to include a wider 

range of options in the analysis. Traditionally, in regulated utilities long-term plans aim at 

providing solutions with lasting value: a true minimal cost throughout the useful life of 

equipment (e.g. DSOs). On the contrary, in competitive markets, long-term plans aim at 

recovering capital investments in the shortest period possible or at maximising revenues over 
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the lifetime of investments (e.g. a private DER developer). In both cases, the analysis must 

consider the useful life of alternatives to provide an adequate assessment. In the case of 

distributed generation, the useful life of the equipment is normally considered 20 years [3.3].  

In a long-term plan, it is crucial to take into account all the possible changes that might occur 

in the power systems and its economic environment within the analysis period. These 

changes include: 

• Load growth of existing load points 

• Changes in demand behaviour and profiles (e.g. energy efficiency measures) 

• New loads and/or generation connection 

• Changes in the network infrastructure (e.g. ageing of equipment, interconnections) 

• Technical characteristic of equipment (e.g. increase of efficiency, reduction of 

emissions) 

• Equipment and fuel costs  

• Energy market prices  

• Changes in the regulatory environment (taxes, incentives) 

 

The trends in these parameters are determined by projections and forecasts. Uncertainty in 

the forecasts increases the further one looks into the future. So, it is crucial for long-term 

plans to consider relevant uncertainties. The scenario technique is the most common 

approach for planning in the presence of uncertainty [3.9]. In this case, uncertainties are 

modelled as a set of possible futures/scenarios, each one representing a possible outcome of 

uncertain parameters (e.g. low, medium and high load growth). Next, optimal plans are 

produced for each one of these scenarios. Then, appropriate techniques are used to choose 

plans that are robust (i.e. perform well in all possible futures [3.10]), or that produce the least 

regret for the planner if an undesirable future occurs (Risk analysis [3.11]).  Willis [3.3] 

considers the scenario method to be the only valid way to handle uncertainty, especially 

when multiple-objectives are involved.  

 

3.2.2. Planning Goals, Objectives and Constraints (Step 2) 

Planning goals are expressed in terms of objectives and constraints. Objectives target the 

maximisation/minimisation of an attribute. Objectives are open-ended; each solution is 
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always challenged to do better, the feasible plan with the best attributes must be found. On 

the contrary, constraints only need to be met rather than exceeded [3.3]. Attributes measure 

the quality of a plan in terms of the goals of the planner. So, it is crucial to define planning 

attributes that accurately reflect the goals targeted. Attributes can be technical, economic or 

environmental. Table 3-1 presents this set of key concepts that define the planning problem, 

with relevant examples.   

Table 3-1 Planning Key Concepts 

Concept Definition Example 

Goal  To achieve a set of objectives subject 

to a set of constraints given the 

problem and time frame defined  

To find the minimal cost solution to 

serve the projected demand for feeder 

X subject to environmental constraints 

and current regulations considering an 

horizon of 10 years 

Objective  The minimisation/maximisation of an 

attribute  

Minimise cost  

Maximise energy exports 

Constraint The minimum/maximum value for an 

attribute to make a plan feasible or 

worth of consideration  

Maximum voltage deviation 

Minimum rate of return 

Attribute The measure of the goodness of a plan Installation cost (£) 

CO2 emissions (Tonnes) 

Maximum voltage deviation (V) 

Probability of voltage violation (%) 

Energy losses (kWh) 

 

Some common planning attributes are presented in Table 3-2. In traditional planning 

approaches, all relevant attributes are converted to cost and the total cost is minimised 

subject to a set of technical constraints. However, analysing an attribute in its natural units 

can provide valuable information, for example by means of a multi-attribute formulation of 

the problem. This possibility is explored in Alarcon-Rodriguez et al. [3.12] and developed 

further in this thesis. 

Table 3-2 Planning Attributes 

Technical Economic Environmental 

Voltage  

Energy produced 

Energy not supplied 

Energy exported 

Power losses 

Line loadings 

Harmonic distortion 

Fault level 

Installed capacity 

Cost of equipment 

Cost of operation and maintenance 

of equipment (O&M) 

Outage cost 

Cost of energy produced 

Revenue 

Profit 

Rate of return 

Green house gas 

emissions 

CO2 emissions 

Radioactive waste 

Noise 
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3.2.3. Solving the Planning Problem 

The first two steps define the scope of the planning problem. Steps 3 to 5 provide a 

structured way to find a solution: identify all alternatives, evaluate them, and select the best. 

These steps constitute essentially an optimisation algorithm. Consequently, efficient 

planning methods combine them into a single process [3.3], and make use of some sort of 

optimisation method. Optimisation techniques were already studied in Chapter 2. So, a 

discussion of Steps 3 to 5 in the context of this thesis is provided next. 

 

3.2.3.1. Selection and Evaluation of Alternatives (Steps 3 and 4) 

In the third step, the possible alternatives for solving the planning problem and achieving the 

goals are identified. In terms of an optimisation problem, this means setting the boundaries 

of the search space: what alternatives are going to be considered? What is the decision 

domain? Willis and Scott [3.1] judge this stage to be the most critical and where most 

planning mistakes are made. The most common mistakes are:  

• Failing to consider all relevant options  

• Not including the “do-nothing” case as one of the options.  

 

In addition, another perspective is possible. An analysis of only a set of alternatives permits 

the separation and study of the effect of these in the planning attributes. For example, 

Alarcon-Rodriguez et al. [3.13] propose to analyse only DER and not network 

reinforcements to examine the isolated effect of DER in the planning objectives.  

Alternatives must be evaluated to determine the degree of achievement of objectives, and the 

compliance of constraints. Every attribute must be quantified. In power systems planning 

this stage involves a techno-economic analysis. Normally, technical attributes are quantified 

by power system analyses (load flow, reliability and fault studies). Economic attributes 

require an analysis of cash flows (expenditures and incomes) over the period of the analysis. 

In this case, it is crucial to take into account the time value of money to provide a fair 

comparison of present and future spending and incomes. The time value of money is 
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discussed in Appendix A. Some technical attributes are converted to environmental and 

economic ones using appropriate conversion factors (e.g. CO2 emitted by energy generation, 

cost of energy losses). A key aspect in this stage is to evaluate all alternatives using the same 

procedure, to avoid bias in the comparison of alternatives.  

Willis and Scott [1.15] consider it crucial to evaluate all alternatives. However, the 

exhaustive evaluation of all alternatives can be inefficient or practically impossible when the 

search space is very large. A vast search space is usually produced by alternatives that have a 

combinatorial nature, for example the placement of different type of DER in a distribution 

network. In this case, optimisation algorithms or heuristic searches must be used to guarantee 

an implicit evaluation of all alternatives. Traditional mathematical optimisation techniques 

find the optimal solution using information from the analytical expression of objectives 

(derivatives, gradients). In some cases, planning objectives cannot be expressed as 

continuous and differentiable mathematical functions. Then, heuristic optimisation 

algorithms, such as genetic algorithms, can be used to find a good approximation of the 

optimal solution. GAs need only to evaluate a limited number of solutions to find a (near) 

optimal solution. In conclusion, optimisation algorithms do not require the evaluation of all 

possible alternatives but they must guarantee the exploration of the whole search space. 

 

3.2.3.2. Selection of the Best Alternative (Step 5) 

Power system planning is a multi-objective problem in essence [3.10]. It aims at resolving 

multiple objectives at once. Objectives are frequently in conflict with each other: improving 

one objective will worsen other(s), (e.g. Figure 3-2). A common example of this conflict is 

the line losses versus reinforcement cost trade-off. Investing in line reinforcements will 

reduce losses; in contrast, a low reinforcement cost will lead to high line losses.  
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Figure 3-2 Pareto-set for a Two-objective Optimisation 

A single-objective formulation of the problem is possible when there is no conflict between 

objectives (e.g. Figure 3-3), when a single objective is more important than the rest or when 

preference information permits the accurate combination of objectives into a single-objective 

function, as examined in the previous chapter.  

 
Figure 3-3 Two-objective Optimisation - No conflict 

 

Commonly, power system planning is regarded as a single-objective problem: to minimise 

total cost, subject to technical constraints. Translating several attributes to cost and 

minimising the total cost is essentially a weighted-sum minimisation. In this case, the 

selection of the best alternative is uncomplicated, because there is only one best alternative 

(or none). However, in the absence of preference information, i.e. cost, to aggregate 
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objectives, and when objectives are incompatible, there is no single plan which optimises all 

objectives at once, nor a single objective that is more important than the rest. In this case, all 

optimal solutions must be considered equivalent. The solution of the multi-objective 

planning problem is a set of non-dominated solutions: the Pareto set. This multi-objective set 

of solutions provides rich knowledge about the planning problem, the extension of the 

objectives, the correlation between them, and the possible trade-offs that the planner can 

make. The possibility to study the DER integration problem in depth by means of a multi-

objective formulation is explored in this thesis. 

 

Decision Making 

This thesis is focused on the multi-objective analysis of DER integration. Hence, the choice 

of a single optimal solution based on preference information is not contemplated in this 

work. Even so, for the purpose of completeness, the decision making stage is briefly 

introduced. 

Traditional planning problems do require a single solution. In this case, two approaches are 

possible. They both need unambiguous preferences from the planner. The first approach 

requires a-priori preference information to translate the problem to a single-objective 

optimisation problem. The second uses a-posteriori preference information to choose a 

single optimal solution from the Pareto set [3.14]. Both approaches are illustrated in Figure 

3-4. 

When deep knowledge of the problem and reliable information is known a-priori, it is 

possible to formulate the multi-objective problem as a single-objective optimisation, and 

obtain a single solution, as seen in the left-hand side of Figure 3-4. This is commonly done 

by using a weighted-sum method or choosing a primary objective and setting the rest as 

constraints. In this case, the single optimal solution represents a specific point of view (costs, 

weights or objectives) of the multi-objective problem. When specific attributes are 

aggregated in the weighted-sum, the scope of each planning attribute is obscured and 

information about the possible trade-off between objectives is lost [3.15]. 

In the absence of a-priori preference information, all non-dominated solutions are initially 

considered equivalent. A multi-objective optimisation technique is used to find the Pareto 

front. In some cases, the number of optimal solutions belonging to the Pareto front is very 
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large, so only a sub-set of solutions is actually found. The solutions of the Pareto front 

provide rich knowledge about the planning problem. This information helps the planner 

determine the preferred solution a-posteriori, either by means of simple exploration or 

ideally by means of appropriate decision-making techniques. There are a number of Multi 

Criteria Decision Making (MCDM) techniques that can be applied for this purpose 

[3.16],[3.17]. However, a thorough review of MCDM techniques is beyond the scope of this 

chapter. 

 

Figure 3-4 Finding a Single Solution for a Multi-objective Problem (Adapated from [3.14]) 
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3.3. Distributed Energy Resources Planning 

3.3.1. Problem Formulation  

DER planning is the process of optimising DER type, size and/or location in order to achieve 

a set of objectives and subject to a set of constraints. The DER planning problem can be 

generically expressed as: 
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Where:  

fi : the i
th
 objective function.  

m: the number of objectives. m=1 for a single-objective problem  

x: the decision vector of DER location, sizes and types  

Ω:  the decision domain that defines the possible locations, sizes and types of 

DER (search space) 

gj: the j
th
 equality constraint, usually defined by the power flow equations of the 

network (power balance), discussed in the next chapter. 

hk: the k
th
 inequality constraint, usually technical limits of the equipment (e.g. 

voltage constraints, thermal constraints, short circuit limits, etc), operating 

limits of DER (e.g. maximum capacity) or performance targets (e.g. 

reliability, emissions).  

 

DER planning is a non-convex optimisation problem, because it has nonlinear equality 

constraints defined by the power flow equations. It also has some nonlinear optimisation 

objectives, such as line loss minimisation, discussed in the next section. DER planning 

variables are discrete and integer. These variables are the discrete locations, sizes and types 

of DER and the topology of the network. As a result, DER planning is a non-convex 

combinatorial problem, with several local optima, and one global optimal solution. Non-

convex, nonlinear, combinatorial problems are usually difficult to solve using traditional 

mathematical methods since these methods are designed to find local optima solutions 
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[3.18], as discussed in the previous chapter. The problem is manageable when a small 

number of DER units are analysed, though its complexity is significantly increased when a 

large number of DER units is studied, given the combinatorial nature of the problem. 

Likewise, difficulty is increased greatly when the time variability of DER production and 

demand is considered.  

The complexity of this optimisation task is dealt with using two approaches. The first is to 

apply simplifying assumptions to the formulation of the problem. For example, linearization 

of the objective functions and constraints, reduction of the dimension of the search space, 

assumption of the discrete nature of DER units as continuous, simplification of the time 

variability of load and DER into snapshot analyses. In this way, it is possible to solve the 

optimisation problem using traditional mathematical programming methods, for which 

powerful computer methods are available (e.g. Linear Programming), as reviewed in the 

previous chapter.  

The second approach is based on the use of heuristic optimisation techniques (e.g. Genetic 

Algorithms) which are well suited to deal with non-convex combinatorial problems [3.19] 

and can handle discontinuous search spaces and non-differentiable objective functions. 

Though, the drawback of these techniques is that they only find an approximation of the 

global optimal solution in a limited time. This optimisation/modelling dilemma was already 

introduced in the previous chapter (Figure 3-5). An ideal formulation of the problem should 

be as close to the upper-right corner of the figure as possible. Thus, much care should be 

taken when modelling the problem and choosing an appropriate optimisation method.  

 

 

Figure 3-5 The Optimisation/Modelling Dilemma (Adapted from [3.20]) 
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3.3.2. DER Planning Techniques  

In the last fifteen years, diverse approaches and optimisation methods have been proposed to 

address the DER planning problem, under a variety of denominations: 

- DG Planning 

- DER Planning 

- DG Optimisation 

- Optimal Accommodation of DG  

- Optimal DG Parameters 

- Optimal Sizing and Siting of DG 

- Optimal DG Allocation 

- DG Capacity Evaluation 

- Evaluation of DG using a Multi- 

objective Index 

- Optimal DG Placement 

- Optimal Utilisation of 

Distribution Networks 

 

These approaches differ in the search space, objectives, constraints and assumptions 

considered.  Nonetheless, they all fit in the broad definition of DER planning: to find the 

optimal size, location or type of DER in order to achieve one or more objectives, subject to a 

set of constraints.  

Initially, most of these methods focused on single planning objectives, typically cost 

minimisation or power losses minimisation. However, in the last five years, some authors 

recognised that a multi-objective formulation of the problem better reflects the conflicting 

planning objectives and provides a clearer picture of the conflicts between benefits and 

impacts of DER.  Single-objective and multi-objective methods are reviewed in the next two 

subsections. The publications reviewed are those cited frequently and those considered 

relevant for the research presented in this thesis. The denomination used by each author (DG 

or DER) is conserved in the description below. 

 

3.3.2.1. Single-objective DER Planning Methods 

Single-objective DER planning methods predominantly target four objectives: 

- Minimisation of power losses 

- Minimisation of power losses taking into account cost 
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- Minimisation of total cost  

- Maximisation of DG capacity (or DG energy)  

 

These techniques tend to be grouped together in literature reviews. However, in this review 

they are analysed separately, as they lead to very different results. For example, 

minimisation of power losses aims at finding optimal DER installations to reduce flows in 

lines as much as possible. In this case, voltage profiles are ameliorated and thermal 

constraints are not violated. On the contrary, DER capacity maximisation aims at installing 

the maximum capacity possible without breaking any system constraint. In this case, 

including all relevant constraints in the problem formulation is crucial. When DER capacity 

is maximised, line power flows increase and as a result losses are not minimised; quite the 

opposite, in some cases losses with the maximum DER capacity possible could be even 

higher than in the case of no DER.   

 

Minimisation of Power Losses 

Active energy losses are caused by the flow of electric current through equipment in the 

network. They are proportional to the electric resistance of equipment and the square of the 

current flow. Electrical energy is not always produced where or when it is consumed. 

Therefore, electric energy needs to be transmitted from the generation to the consumption 

point (disregarding the possibility of electric storage in this analysis). Consequently, 

electrical losses cannot be avoided. To give an idea of the magnitude of distribution system 

losses, in the UK these have been estimated as 7% of all energy generated [3.21]. 

Some level of loss reduction can be achieved by reducing power flows in lines, by network 

reinforcements, local generation or energy efficiency measures. A reduction in power flows 

and losses increases the spare transfer capability of the equipment. So, a reduction in losses 

helps to achieve a more efficient use of system capacity and defer network upgrades, all of 

which can provide indirect financial benefits for the DSO. Moreover, energy losses must be 

purchased (and/or produced) by the DSO. Therefore, a reduction in losses also results in 

direct financial benefits. Power loss minimisation is a common goal in academic power 

systems planning, although it is rarely considered in practical planning problems.  
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DER installations tend to produce power close to where it is consumed and, as a result, 

power flows in lines and power loss in the system can be reduced. In contrast, DER located 

in sub-optimal places or DER wrongly sized have a detrimental effect on system losses, as 

already shown by several studies such as [3.22] and [3.23]. In addition, DER production 

must be coincident with demand behaviour, as the opposite would result in an increase of 

line losses, as demonstrated by Alarcon-Rodriguez et al. [3.12]. So, to achieve loss 

reduction, three elements are essential: optimal DER location, DER size and coincidence 

between demand and production. A number of authors have proposed techniques to find the 

best location, size and/or type of DER to reduce losses. Yet, not all of them consider the time 

variability of load and demand, as discussed next.  

Narayan et al. [3.24], published in 1994, is one of the first publications to acknowledge the 

need to develop methods to determine optimal DER installations. It proposes an iterative 

second-order numerical method (nonlinear programming) to find the best sizes of DER in 

predefined locations. The objective is to minimise systems losses, or alternatively reduce a 

particular line loading, subject to a maximum injection of power by DER. The paper makes 

no specific mention of DER and the issue of load variability. However, it presents some 

conclusions that are mentioned by other publications in later years. For example, that large 

reductions in system losses can be obtained with small penetrations of DER.  

Kim et al. [3.25] criticises the use of the second order method, as this method could fail to 

find the global optimal solution by being easily trapped in local optima. So, it proposes a 

modified genetic algorithm (GA) to find the best size allocation of DG at selected nodes of a 

meshed network. The maximum injection of power from DG is constrained. The paper 

shows that the GA-based method finds better solutions than the iterative method presented 

previously by Narayan et al. [3.24]. However, the technique considers only a snapshot 

(maximum demand) of the system, and losses are treated as power instead of aggregated 

energy, so it fails to take into account the dynamic nature of DG and demand.  

Griffin et al. [3.26] tackles the loss minimisation problem from a different perspective. It 

proposes a heuristic iterative method to find the best locations and sizes for distributed 

generators in the sub-transmission system. The objective is to minimise the power losses 

during periods of high power transfer to maximise power exports, subject to voltage and 

thermal constraints. Initially the locations where DG has more effect in loss reduction are 

identified. Then, DG is increased at these locations until losses no longer decrease. Because 

of the approach used, only a near optimal solution is found. The work also analyses the siting 
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of DG on “practical distribution feeders”, and it proposes to use an exhaustive search 

algorithm in this case. This type of search can be computationally expensive for large 

systems or a large number of DG units, reducing its applicability to real size problems. 

Although Griffin et al. argue that the entire load profile should be integrated to truly 

minimise losses, it only considers peak demand and one snapshot of generation. 

Consequently, the method is not appropriate for diverse types of stochastic DG.  

Haesen et al. [3.27] proposes the use of a GA to find the best location of Distributed 

Generators in a residential distribution grid. This publication recognises that the variability 

of load and generation must be considered when analysing DG. As a result, it proposes the 

evaluation of daily profiles for different types of generators. The objective function is the 

minimisation of losses over a period of 24 hours; voltage constraints are considered a penalty 

in the objective function. The minimisation of daily energy losses is a simplification of the 

problem; nonetheless, the approach proposes a way to deal with multiple types of time-

variant DG. This work is the first step towards a more comprehensive multi-objective 

formulation for DER planning, discussed in section 3.3.2.2.  

Analytical techniques have also been proposed to solve the problem of loss minimisation. 

For example, Wang et al. [3.28] proposes an analytical method to find the best location for a 

single DG unit of fixed size. Losses are minimised while the system is kept within voltage 

limits. An advantage of the proposed approach is that it handles time-variant load and DG, as 

well as radial and meshed networks. Similarly, Acharya et al. [3.8] proposes an analytical 

approach to optimise not only the location but also the size of a single DG unit. The 

approach uses an ‘exact loss formula’. Yet, this analysis is based on peak demand. 

Therefore, the quantification of losses is still inaccurate, even using an exact loss formula, 

because load varies over time. The advantage of such analytical techniques is that they are 

not iterative algorithms. Therefore, convergence problems are avoided and a fast solution 

can be obtained [3.28]. However, given the complexity of the problem, these techniques can 

usually only be used to find the best location and size for a small number of DG units. 

Therefore, its applicability to diverse scenarios of multi-type DER penetrations is limited.  

 

Minimisation of Power Losses and Cost 

Losses are effectively an operational cost, so their reduction leads to economic benefits. 

However, a complete minimisation of losses is not desirable if it is not economically 
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efficient. So, loss reduction benefits must always be weighed against the cost of achieving 

them.  

Borges et al. [3.29] recognises that DG loss-minimisation is usually a cost-benefit problem. 

It proposes a GA to find the best location and sizes for DG in order to maximise a cost-

benefit index. This index is calculated as the ratio of losses cost-reduction over the 

annualised cost of installing and maintaining DG (TotalCostDG):  








 −
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where CostLossesNODG is the cost of losses in the base case and CostLossesDG is the cost of 

losses with the optimal DG installations. Optimal DG sites and sizes are optimised from a 

list of candidate solutions. Voltage constraints are considered and the best solution is 

expected to have a minimum reliability index. The technique considers DG always available.  

Therefore, this technique cannot be applied to optimise wind generators or PV. Moreover, 

losses are calculated for a single load-level (peak). Then, the quantification of reduction in 

losses is not always accurate, especially when the load factor is low and the DG capacity 

factor high, or if there is no coincidence between DG production and demand. In these cases, 

the optimal solution found by the algorithm is sub-optimal.  

The problem is approached from a different perspective by Le et al. [3.30]. It proposes a 

sequential quadratic programming algorithm to maximise the reduction of losses, translated 

to cost, minus the annualised cost of DG investment and O&M. In other words, the monetary 

benefit of loss reduction is maximised: 

 ( )DGDGNODG TotalCostCostLossesCostLossesf −−= max  (3-3) 

 

Some network constraints are considered (e.g. voltage constraints), and the number of DG 

units, DG unit sizes, and maximum DG penetration level are considered as constraints. An 

advantage of this approach is that it acknowledges that the time variation of load may have 

an impact on the optimisation, so a load profile is analysed. Also, the approach proposed can 

handle different types of DG (constant output or intermittent). In contrast, the technique 

proposed can only optimise a single type of DG at one time. Therefore, no simultaneous 
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optimisation of different types of DG is possible. Le et al. apply the technique iteratively to 

obtain the trade-offs between line loses and DER penetration. A multi-objective formulation 

of the problem would be more effective for this task. Moreover, the technique is effective to 

optimise a limited number of DG. However, when the number of units is large the number of 

iterations required by the sequential quadratic programming to analyse all the possible 

combinations becomes extreme. 

When the loss minimisation analysis is made in terms of cost, the optimal solution is no 

longer the one that achieves the absolute minimum system losses. In this case, the optimal 

solution depends on the economic parameters chosen (i.e. costs of energy, DG installation 

costs, operation and maintenance costs, discount rate, period analysed). More importantly, 

the optimal solution depends on the way costs and benefits are compared. This is clarified 

next. 

For instance, Borges et al. [3.29] uses a cost-benefit ratio (Equation 3-2), while Le et al. 

[3.30] looks for the solution that maximises the net benefits (Equation 3-3). Taking the 

simple illustrative example of Table 3-3, it is possible to observe that these two metrics lead 

to very different optimal solutions. Alternative 1 is the one that provides the best cost-benefit 

ratio (1.5), although it is the one that produces the least net-benefits (£60k). In contrast, 

Alternative 3 produces the most net-benefits (£200k), but it has the lowest cost-benefit ratio 

(0.5). Using the benefit instead of the net benefit in the cost-benefit ratio calculation 

produces comparable results.  

Table 3-3 Cost-benefit Example 

Alternative Costs (k£) Benefit  

(k£) 

Net Benefit (k£) 

Benefit-Cost 

Cost-Benefit Ratio 

Net Benefit / Cost 

1 40 100 60 1.5 

2 100 200 100 1 

3 400 600 200 0.5 

4 100 160 60 0.6 

5 80 160 80 1 

6 80 180 100 1.25 

 

The use of a cost-benefit ratio has some advantages because the optimal solution is the one 

that maximises the benefit for each monetary unit spent. In other words, it ensures an 

efficient use of resources. So, this metric can be used to prioritise investments when there is 

a limited budget [3.31] 
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Minimisation of Total Cost 

The benefits of DER are not only limited to reduction of losses. So, a number of studies 

propose planning approaches where all relevant benefits, impacts and costs are analysed and 

compared on a fair basis to choose the best solution. Two types of publications are reviewed 

next. The first group [1.15], [3.32] provide guidelines for a structured approach to the DG 

planning problem. They do not describe the use of specific optimisation methods; instead, 

they extend traditional power systems planning concepts to the problem of DER planning. 

On the other hand, in the second group of publications [3.33], [3.34], [3.35], [3.36] 

optimisation techniques proposed for cost minimisation DER planning are described. 

Willis and Scot [1.15] explores in detail the DG planning problem. Some of the concepts of 

this book have already been reviewed at the beginning of this chapter.  The problem is 

addressed from a DG developer’s point of view. The developer in this case can either be a 

DSO that can own and operate DG or a private investor that invests in DG to supply its own 

energy at the lowest cost or to make a profit. The optimal DG solution is defined from an 

economic point of view where investment alternatives are analysed in-depth and compared 

on a fair basis. Therefore, all relevant attributes and the time value of money must be 

included in the analysis. Moreover, complying with several technical criteria (constraints) is 

also crucial. The final decision can be made based on different economic criteria (e.g. 

maximisation of revenue, minimisation of total cost, maximisation of a cost-benefit index, 

etc). The book provides a comprehensive study of the issues that must be considered by a 

private DG developer. The approach proposed can be seen as an extension of well-

established traditional power system planning approaches.  

Dugan et al. [3.32] also extends traditional distribution planning concepts into DG planning. 

In this case, DG is considered an investment option for the utility-planner, and a total cost 

minimisation analysis is used for finding the best DG investment plan. Based on the 

simulation of yearly profiles, the planner computes the cost of pre-selected alternatives and 

finds the best plan. All relevant attributes need to be converted to cost (reliability, losses, 

power quality, unserved energy) and the authors recognise that “decisions will be 

significantly affected by which costs are included in the analysis”. So, a careful analysis of 

all the relevant attributes is necessary.  
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In the two previous approaches, a limited number of pre-defined alternatives are compared, 

taking into account all the relevant aspects. However, in some DER planning problems there 

are no pre-defined alternatives; only a search space is defined by objective functions and 

decision variables (Equation 3-1). In this case, the planner needs to find the best locations, 

sizes and types of DG to address a problem (e.g. load-growth, substation overload) at the 

minimum total cost. All investment alternatives are not explicitly enumerated as their 

number is very large. Also, finding the best solution by simulating all alternatives would be 

prohibitive in terms of the number of alternatives to be compared. Therefore, in this case the 

use of optimisation techniques is mandatory, as already explained earlier in this Chapter, and 

discussed next.  

El-Khattam et al. [3.33] considers DG as an investment option for the DSO. It proposes the 

use of a mixed integer nonlinear optimisation technique to find the best size and site of DG, 

in order to minimise the total cost. The costs considered include DG, reinforcement 

investments, O&M costs, losses and additional energy bought from the transmission system 

connection. The analysis proposed considers only a snapshot of demand. DG is assumed to 

always be available and to have no time variability in relation to the load. Therefore, the cost 

quantified for attributes that depend on DG and load variability is not accurate (e.g. cost of 

losses, energy bought from the transmission system). Moreover, as the method cannot 

account for time-variant DG it would need to be adapted to analyse distributed energy 

resources such as wind, PV or heat-led CHP.  

Teng et al. [3.34] uses a slightly different perspective: ‘value-based planning’. The ratio of 

benefits over costs is maximised by means of a genetic algorithm that optimises DG 

locations and DG types from a predefined list of possible investments. The cost-benefit 

index used as the objective function includes “benefits received by the utility and its 

customers” and the costs incurred by DG installation, operation and maintenance. The 

benefits taken into account are reduction in power costs, reduction in the cost of losses and 

reduction in the customer interruption cost, as a measure of reliability. Although some of the 

constraints that should be included are mentioned, there is no explicit indication of the way 

these are handled by the GA algorithm. Moreover, load and DG variability is not 

acknowledged.   
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In the publications reviewed so far, the problem is addressed from the perspective of the 

DER developer. However, some authors consider the problem from the point of view of a 

DSO that cannot invest in DER. 

Celli et al. [3.35] proposes the use of a genetic algorithm to find the best location and 

optimal sizes for DG units. The objective function is the minimisation of the total cost of 

network reinforcements, network operation and energy losses. Some of the power system 

constraints are included (voltage rise, fault currents). The analysis considers the peak load, 

and it uses an ‘utilisation factor of energy losses’ to correct the value of losses from peak 

load to give a better approximation of the real cost. So, the technique finds the solution with 

the minimal operational cost for the DSO. However, there is no discussion of whether the 

information found (best location/sizes) could serve the DSO as a guideline to promote 

attractive DG investments. Moreover, only the network costs are determined, the analysis 

does not consider the cost of installing or operating DG. Therefore, it is probable that the 

minimum cost solution for the DSO is extremely expensive for the DG developer. A multi-

objective approach to this problem could illustrate compromise solutions that minimise both 

the DSO costs and the DG developer costs, as examined later. 

This approach is extended in Carpinelli et al. [3.36]. In this case, the sizing and siting of DG 

is considered under uncertainty. The uncertainty of wind energy production is modelled in a 

number of different scenarios. For each scenario, wind farm production is calculated by 

means of Monte Carlo Simulation. Then, the best locations and sizes for DG for each 

scenario of wind production are found using the single-objective method developed by Celli 

et al. [3.35]. Each optimal solution found is evaluated in all the scenarios; a matrix of 

objective values for every alternative/scenario is produced. Decision theory is used to find 

the overall optimal solution. The paper suggests the use of different decision theory 

paradigms (e.g. least regret, probabilistic) to choose the final solution. Though, Miranda et 

al. [3.11] already demonstrated that the use of probabilistic choice leads to riskier decisions, 

Carpinelli et al. acknowledges that the planner could benefit from the knowledge of which 

locations are more convenient to have private DG units to minimise losses, keeping the 

system under statutory limits. Moreover, it provides a method for considering uncertainties 

in the selection of the optimal solution. 
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Maximisation of DG Capacity and DG Energy 

In some developed countries, including the UK, environmental targets promoted the 

development of policies and incentives that encourage the connection of vast amounts of 

renewable generators. These type of generators need to be located wherever the renewable 

resources are available therefore, in many cases they will be connected to distribution 

networks. Since distribution networks were designed primarily to feed loads and not to 

accommodate large amounts of distributed generation, many operational and planning 

challenges arise, such as reverse power flows, voltage rise, and increased fault currents. The 

impacts of DG on the networks will trigger the need for network reinforcement or, 

alternatively, for some operational solutions such as reactive compensators or active network 

management [3.37]. Consequently, total costs will be increased.  

However, if an efficient use of resources is looked for, it is rational to maximise the use of 

the existing network before costs are incurred in reinforcements, regardless of who is 

charged for these costs. Therefore, it is essential to determine first the maximum capacities 

of DG that can be connected in the network without degrading system operation [3.38]. 

Hence, in this case, including all relevant constraints in the problem formulation is crucial. 

The next group of papers propose optimisation methods to deal with this problem. Some of 

these methods have been later adapted to examine other objective functions or even to 

provide multi-objective formulations. However, they are all discussed in this section, to 

expose the evolution of the approaches. 

Harrison and Wallace [3.38], [3.39] present an Optimal Power Flow (OPF) approach to 

maximise DG capacity installed in predefined locations without violating network 

constraints (voltage, thermal) and without reinforcement of the network. The method is 

based on an established approach for load shedding. It is adapted to the DG case by 

considering DG as negative load; consequently, minimisation of load curtailment cost 

becomes maximisation of DG installation benefits. This paper enlightens about the effect of 

considering DG connections on a “one by one” basis instead of a whole network approach. It 

shows that in the first case, some network capacity is sterilised. Consequently, it 

demonstrates that a more ample planning approach is needed, where system-wide 

implications are taken into account.  

Installed capacity is an attribute that does not vary with time so, the use of a single load 

scenario (worst case) is correct. The time variability of load and generation is not explored; 

the technique is a “single deterministic optimisation”. Nonetheless, the authors point out that 
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it could be implemented sequentially to handle time-variant load and energy resources; in 

this case, it could handle aggregated objectives such as DG energy, losses or CO2 emissions. 

A limitation of the proposed approach is that it does not find the best location for DG 

installations; the possible DG locations for which sizes are optimised are pre-defined. 

Therefore, to find the best locations for a number of DG installations, an OPF must be run 

for each combination of possible locations.  

In [3.40] Harrison et al. use the OPF approach to evaluate the incentives provided to DSOs 

and DER developers for loss reduction and reinforcement deferral. Two different objective 

functions are analysed. Each objective function reflects the point of view of a DG developer 

and a DSO, respectively, both trying to maximise their net benefits. A multi-objective 

formulation based on the ε-constrained method is presented. Moreover, a multi-period OPF 

is proposed, which evaluates a load duration curve to provide a better estimation of losses. 

Harrison et al. show that DG developers and DSOs have conflicting objectives and that a 

multi-objective formulation can effectively replicate different perspectives for the DG 

planning problem. Moreover, this work demonstrates that incentives do have a major impact 

on stakeholders’ optimal locations and sizes for DG. For example, DG developers are not 

directly exposed to the effect of losses, so they try to maximise capacity and profit.  On the 

other hand, DSOs have a loss reduction incentive that outweighs the benefit of connecting 

DG.  Subsequently, they would prefer smaller DG investments that provide a larger 

reduction in losses, to the detriment of a DG developer’s profit. A trade-off analysis enables 

the identification of several possible compromise solutions. A similar analysis is made for 

reinforcement deferral incentives. Nonetheless, a limitation of the proposed approach is that 

DG is considered as a firm supply of energy, operating constantly at rated power. This 

restricts the analysis of time-variant generators such as renewable DG and heat-led CHP. In 

addition, the ε-constrained method has some drawbacks, such as the requirement for a large 

number of iterations to find several solutions of the Pareto front, and a need for previous 

information on the problem, which were already discussed in the previous chapter. 

Harrison et al. [3.7] recognises that most DG planning approaches attempt either the 

optimisation of DG sizes (for predefined locations), or the optimisation of DG locations (for 

predefined DG sizes), but not both simultaneously. So, this work [3.7] upgrades the OPF 

approach to simultaneously optimise both optimal locations for DG connections and the 

sizes of DG. The optimisation objective is the maximisation of the connected capacity of 

DG. A “Hybrid GA and OPF” technique is proposed. In this case, the ability of GA to solve 

complex combinatorial problems is used to find the best locations for DG. At the same time, 
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the OPF approach previously described is used in the GA evaluation step to determine the 

maximum capacity of DG that can be connected in each of the selected locations. So, the 

approach makes use of two powerful optimisation methods, exploiting their strong points. A 

limiting aspect is that the number of DG units to connect must be known beforehand. In 

Harrison et al. [3.6], the applicability of this approach to a different objective function is 

demonstrated. In this case, the objective is to maximise DSO’s benefits including DG 

connection charges and loss reduction incentives. In this paper, Harrison et al. recognise that 

the approach is still a single snapshot analysis and that, as a result, the effects of load 

variation are not explored. So, they identify that a multi-period approach is required to 

analyse different types of time-variant generation or include probabilistic constraints.  

Keane et al. [3.41] explores a similar problem: the maximisation of total DG capacity 

installed, subject to power system constraints. In this work, the approach is based on the 

linearization of the problem. A linear relationship between capacity added and constraints is 

approximated for each node by adding incremental capacities of DG at each node in turn. 

Similarly, the interdependence between different nodes’ constraints is calculated. Once 

constraints have been linearized, a linear programming algorithm is used to find the 

maximum DG capacity that can be added without violating them. The constraints included 

are voltage rise, thermal limits of equipments, short circuit limits, and short circuit ratios. In 

addition, an energy resource constraint can be added to each node, adding realism to the 

analysis.  

A drawback of the linearization of the problem is that the optimal solution could actually be 

sub-optimal, or even unfeasible, if inappropriate ranges of DG capacities are used to 

determine the linear equations for the optimisation problem formulation. The reason for this 

is that the solution of a linear programming problem lies always on a corner point of the 

constraint set, as already illustrated in Figure 2-3, in the previous chapter. Hence, if 

constraints are not linearized properly, the optimal solution is actually infeasible. In addition, 

the paper mentions that wind energy is one of the most common energy sources for DG. 

However, it fails to mention that the use of probabilistic analysis for this type of energy 

sources could give a better picture of constraint violations and foster larger renewable energy 

production, as demonstrated in Chapter 6 of this thesis. 

In a more recent publication, Keane et al. [3.42] presents an iterative linear programming 

optimisation to allocate non-firm DG capacity in order to maximise energy harvesting and at 

the same time minimise voltage constraint violations. So, in this case the analysis goes 
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beyond the worst-case scenario, and considers the possibility of allowing some voltage 

constraint violations in order to maximise the energy produced by DG (non-firm capacity 

allocation). Keane et al, propose a novel objective function: a cost-benefit index which 

considers the ratio of energy produced by DG over the connection cost. This objective 

function also considers a voltage sensitivity factor for each network node. This factor is 

calculated using the methodology explained in a previous paragraph (reference [3.41]), and it 

reflects the voltage rise caused by power injections in other nodes. So, the energy is 

maximised while the connection cost and voltage rise are minimised. Moreover, other 

network constraints (thermal constraints, short circuit limits) are explicitly considered by the 

optimisation, using the approach described in the previous paragraph.  

Keane et al. [3.42] demonstrates that non-firm allocation can increase the energy production 

of different types of DG, compared with the firm allocation approach. Furthermore, the 

authors compare the results with a non-firm allocation approach that does not consider 

voltage rise minimisation. This comparison confirms that the approach with the voltage 

sensitivity factor in the objective function minimises the amount of curtailed energy. 

However, this comparison does not offer an explicit trade-off analysis of energy produced 

vs. energy curtailed, which could be obtained by a multi-objective formulation of the 

problem. Moreover, care must be taken with the linearization of constraints because 

solutions could be sub-optimal or fall in the unfeasible region of the solution space, as 

aforementioned.   

 

Further Comments on Single-objective Techniques 

DG as a firm supply of Energy 

Most of the papers reviewed mention the growing interest in renewable generation as one of 

the drivers for the increase in DG. However, few of them present approaches that can 

actually deal with the time-variability of these types of energy resources which is one of their 

most prominent characteristics from a power system viewpoint. Most approaches consider 

DG to be a firm supply of energy. As a result, most analyses are based on a single-scenario 

analysis, commonly worst case or peak demand. In some cases, this analysis can be accurate, 

for example in capacity maximisation, as capacity is an attribute that does not vary over 

time. However, in other cases it will lead to inaccuracies in the attribute evaluation (e.g. 
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losses), sub-optimal solutions, or eventually result in the inapplicability of the proposed 

techniques to time-variant DER.  

Publications that acknowledge that the variability of DG and load has considerable effects on 

attribute calculation deal with the problem using three different methods: 

• Simulation of load and DG production profiles  

• Use of a Load duration curve  

• Use of correction factor for losses or for capacity factor of DER  

 

Complexity is increased when different types of DG interact at the same time, or when the 

controllability of some units is considered. A snapshot of the system is unable to capture all 

the benefits and impacts of DG. As a result, the applicability of these techniques to time-

variant or controllable DER is limited. This important issue is summed up well by Dugan et 

al.: “Methods for including DER into the planning process must be able to capture time and 

location specific benefits” [3.43].  

 

Planning Constraints 

The number of constraints considered by the different approaches reviewed above varies 

significantly. These constraints can be divided in two groups, as seen in Table 3-4. 

Table 3-4 DER Planning Constraints 

Power System Constraints DER Constraints 

Maximum voltage deviation 

Maximum thermal loading of equipment and lines 

Short circuit levels 

Short circuit ratio 

Reliability levels 

Maximum power injected  

Total amount of DG 

Maximum size of DG units 

Maximum energy resource per node 

Maximum DG penetration 

 

 

The first group of constraints (power system constraints) determines the feasibility of a 

solution, while the second group determines the search space. The best solution could be 

found in terms of other objectives, but if this solution violates the technical constraints of the 

power system, it might not be acceptable. Special attention should be given to voltage 

constraints when analysing rural or weak networks, which is a common case with distributed 

generation.  
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Moreover, deterministic network constraints provide only one view of the problem, and 

could sometimes limit more in-depth analyses. A probabilistic analysis of time-variant DG 

and load permits the assessment of the probability of constraint violation. This in turn better 

reflects the effects and costs of possible decisions to be taken, and could lead to a more 

objective decision-making process [3.44] and provide a better tool for accurate cost-benefit 

analysis [3.6]. Probabilistic constraints are discussed extensively in the next chapter. 

 

Dynamic Planning 

All of the publications reviewed consider the power system as a static entity and planning as 

a single-stage task. Possible changes in the network topology and/or the possibility of timing 

DER investments are not dealt with. Dynamic planning formulations are known for having 

the “curse of dimensionality”, where the size of the problem increases exponentially to the 

number of stages considered. While it cannot be denied that ‘a dynamic problem formulation 

results in a dramatic increase of computational efforts’ [3.4], it is also necessary to remember 

that sub-optimal plans are caused not only by wrong capacities or wrong location of 

equipments, but also by poor timing of the investments [3.45]. So, if the DER planning task 

is aimed at optimising investments, the possibility of timing them must be considered, either 

by dynamic or pseudo-dynamic approaches, for example Neimane [3.4]. 

 

3.3.2.2. Multi-objective DER Planning Methods  

DER planning is a multi-objective problem in essence. The benefits and impacts of DER are 

various, and each one can be translated to a planning objective, or alternatively expressed as 

a constraint. In the last section, it was possible to see that this problem is commonly 

formulated as a single-objective problem. However, a multi-objective formulation of the 

problem provides several advantages:  

• It provides a more realistic model of the problem [3.46], clearly a prerequisite to 

provide realistic solutions, as already explained in section 3.3.1. 

• It permits the formulation of different perspectives on the problem (e.g. different 

stakeholders’ goals), helping to achieve a compromise solution [3.40], as already 

reviewed in the previous section.  
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• The information obtained from the whole Pareto front (the extent of objectives and 

their correlations) can inform the planner’s decision-making process as already 

illustrated in section 3.2.3.2. 

 

Multi-objective optimisation problems are solved by two fundamentally different groups of 

techniques. These techniques are either based on preference information and the repetition of 

a single-objective optimisation (e.g. classical methods such as the weighted-sum, ε-

constrained) or on a true multi-objective formulation of the problem (e.g. SPEA2). The 

advantages and drawbacks of both types of methods were already explained in the previous 

chapter.  

Only a small number of authors have proposed multi-objective approaches for the DER 

planning problem, especially in the last five years. Initially, classical multi-objective 

optimisation techniques were used. Then, the recognition that a true-multi objective 

approach provides a better way of solving the problem encouraged the use of specialist 

genetic algorithms such as the ones described in the previous chapter. In the next sections, 

these multi-objective DER planning approaches are reviewed. They have been grouped 

based on authors (or research groups) and this can be read as the ‘schools’ from which this 

thinking on DER planning optimisation is emerging. A chronological sequence is followed 

to emphasise the recent evolution of this research area.  

 

University of Cagliari 

Celli et al. [3.47] presented in the 2003 Power Tech Conference one of the first works to 

discuss the advantages of a multi-objective formulation for DG planning. This work 

proposes the use of a GA based ε-constrained method to find the best sizes and locations for 

DG to minimise several objectives: cost of reinforcements, cost of energy non-served, cost of 

power losses, cost of energy bought and a harmonic distortion index. In addition, technical 

constraints of the network are taken into account (voltage, line current and short circuit 

limits). The problem is analysed from the point of view of a DSO that has no control over 

DG investments. Hence, Celli et al. mention that the information produced by the planning 

tool can be used to determine any incentives the utility could offer to DG developers.  
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This work was later improved and published in 2005 [3.48]. In this second publication, Celli 

et al. acknowledge load and DG variability. So, the objective function is evaluated by means 

of a simplified probabilistic load-flow, previously developed by Celli et al. [3.49]. This 

probabilistic load flow assumes linear correlations among DG units, and between loads and 

DG units. Therefore, controllable DG units cannot be analysed.  

Later, Carpinelli et al. [3.50] extends the multi-objective approach in order to include 

uncertainties in DG energy production. Each one of the possible futures is formulated as a 

scenario. Subsequently, a “double trade-off method” is used. This method can be 

summarised in five steps: 

1. Formulate the problem as a single-objective problem: use one objective of interest 

for the planner as the master objective, and the rest of the objectives as constraints.  

2. For each objective chosen and for each scenario, apply the e-constrained method 

[3.48] to find several Pareto solutions.  

3. Evaluate the set of optimal solutions of each scenario in the remaining scenarios. 

4. For each scenario, determine the set of non-dominated alternatives (conditional set).  

5. Finally, find the global decision set: the alternatives that are not dominated in at least 

one future, that is, the union of the conditional sets.  

 

The robustness of each of the alternatives in the global decision set is calculated and used to 

choose the best plans. The robustness of an alternative is defined as the proportion of 

scenarios where it belongs to the conditional set. That is, the alternatives with the highest 

robustness are those which belong to the Pareto front in most of the possible futures 

(scenarios). The method is based on the trade-off analysis proposed by Burke et al. in 1988 

[3.10] and it is a practical way to deal with uncertainties under a multi-objective perspective.  

Carpinelli et al. [3.50]  analyses three minimisation objectives: cost of energy losses, voltage 

profile and total harmonic distortion. The voltage profile objective is calculated as the mean 

deviation of voltage across the network. This might obscure localised benefits of DG, or 

alternatively, hide problems that are not solved by DG. Moreover, the work failed to 

recognise that in radial networks (as the case study presented) voltage deviation and line 

losses are positively correlated. Reduced line flows produce lower voltage deviations, and 

lower line losses.  
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The double trade-off approach is applied in Carpinelli et al. [3.51] to the optimal sizing and 

siting of power-electronic interfaced (controllable) DG. An inner optimisation is used in 

every evaluation step of the GA to determine the best operation mode of the power electronic 

interface. This inner optimisation has the objective of reducing harmonic distortion and 

improving voltage profile by managing reactive power. In this approach, the variability of 

DG is not addressed. Though, importantly, this paper illustrates the possibility of GA to 

accommodate inner optimisation algorithms to handle controllable DER. It proposes the use 

of reactive power management to control voltage profiles. Nonetheless, because of the high 

R/X ratio of distribution lines, voltage magnitudes are also dependant on active power 

injections, as illustrated in Chapter 5. Hence, active power management of DG/DER should 

also be considered to manage voltage profiles. An inner optimisation for active power 

management for DER within the planning framework is proposed later in this thesis.   

Until 2008, all the multi-objective formulations proposed by the power systems research 

group of the University of Cagliari were based on the ε-constrained method. The method is 

presented by this research group as a “multi-objective evolutionary algorithm”; yet, it 

actually is a single-objective GA that obtains a number of multi-objective solutions 

iteratively. This process has been classified as a “naïve” approach for multi-objective 

optimisation [3.52] and has been criticised for needing strong a-priori knowledge of the 

problem [3.53], being time consuming (each single solution of the Pareto front requires 

several iterations) and not being appropriate for a large number of objectives [3.52].  

In Carpinelli et al. [3.50] the authors already recognised that a-priori preferences could 

notably affect the final solutions. Moreover, in the 2008 PMAPS conference [3.54], Celli et 

al. acknowledged that the use of true multi-objective approaches “seems more effective than 

the previous one adopted”, in reference to the ε-constrained method. So, in this latter work 

the planning approach previously proposed in [3.48] is updated to a state-of-the-art Multi 

Objective Evolutionary Algorithm (NSGA-II). Also, this work proposes a problem 

formulation that can handle different types of generators simultaneously. Moreover, in this 

recent publication Celli et al. [3.54] recognises that one of the drivers for DG is the 

environmental benefits that some of these technologies can provide; so, an environmental 

objective (CO2 emissions) is explicitly included. So, in their most recent work, the authors 

provide a comprehensive formulation of the problem from the DSO perspective, including 

technical, economic and environmental objectives. DG and load time-variability are 

acknowledged, and DG production and load is treated probabilistically. Although, in the case 
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study proposed only simplistic daily load curves are used, ignoring seasonal variations of 

DG and load.  

In summary, though all the publications reviewed Celli, Carpinelli et al. highlight the 

advantages of using a multi-objective approach; they recognise that a multi-objective 

approach permits a better simulation of reality and that it can help in the decision-making 

process. They mention a key aspect: “a (planning) tool should leave the planner the faculty 

of choosing which aspects to consider in his search of the optimal solution” [3.48]. These 

publications brought the research community’s attention towards the multi-objective nature 

of the DER planning problem. As a result, [3.48] is frequently cited in recent works in the 

area. 

Conversely, these approaches have some limitations. For example, the probabilistic approach 

used [3.49] cannot handle controllable DER units. So, when controllable units were analysed 

(for instance in [3.51]) the variability of DG was not included. Furthermore, probabilistic 

information is available. However the use of the probability of constraint violation as a 

planning objective/constraint is not investigated, even when new regulations favour the use 

of probabilistic treatment of constraints, for example the European Standard EN 50160 

[3.55]. In these works, the great potential of presenting multi-objective results in a graphical 

way is never explored in depth. Most importantly, the correlation between the different 

objectives is not analysed. Finally, since the problem is formulated from a single perspective 

(DSO), some objectives are not evaluated (e.g. DG cost). As a result, the optimal solutions 

from the DSO perspective are not compared with the cost of installing and operating DG, 

which would provide an overall (social) least-cost solution.  

 

Ochoa et al.: A Multi-objective Performance Index 

The work of Ochoa et al. [3.56] focuses on the technical impacts of DG. It proposes the use 

of a “multi-objective performance index” to evaluate various technical impacts of DG in 

unbalanced distribution networks: active power losses, maximum voltage drop and short 

circuit currents. This performance index is calculated as a weighted-sum of these technical 

impacts. In order to find the best locations for DG connections in distribution networks, 

Ochoa et al. propose to use a GA, and employ the weighted-sum index as the objective 

function. So, the best locations that minimise DG impacts are determined. This publication 

recognises that DSOs might not have control over DG investments, but that information 
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about optimal DG locations could shape the nature of the contract between the DSO and the 

DER developer.  

Subsequently, Ochoa et al.demonstrate the applicability of the multi-objective performance 

index to single DG/Load scenarios [3.57] and to time-varying generation [3.58]. The analysis 

of two additional impacts is added: reserve capacity of conductors and reactive power losses. 

However, in both of these publications, the approach is limited to an evaluation of possible 

DG connections (exhaustive location of DG units in diverse nodes), rather than applying an 

optimisation algorithm to find the best locations/sizes for DG. Even so, the approach is a 

powerful tool for DG impacts evaluation as it considers unbalanced networks, load and DG 

variability. Moreover, it acknowledges that other impacts (economic, environmental) could 

be included in the evaluation.  

The multi-objective index evaluates several impacts. However, in the case of radial networks 

(as most distribution networks in normal operation), it can be demonstrated that most of the 

impacts have a high positive correlation. For example, active and reactive line losses are 

concurrent. Similarly, line losses (active and reactive) and reserve capacity of conductors 

both depend on line flows. Likewise, line losses and maximum voltage levels have a positive 

correlation. As a result, the weighted-sum is measuring several times the same basic effect, 

i.e. the reduction of line flows. A multi-objective formulation of the problem and an 

adequate analysis of objectives correlation (e.g. by means of Principal Component Analysis, 

explained later in this thesis) could identify these relationship and determine the minimum 

number of impacts that need to be analysed [3.59].  

The multi-objective index is a weighted-sum of the technical impacts; that is, a single value 

that represents not only the technical impacts of DG but also the point of view of the planner. 

The implications of using this weighted-sum are discussed in Ochoa’s doctoral thesis [3.23]. 

In this work, he recognises that the major drawback of the weighted-sum approach is the 

difficulty of determining appropriate values for the weights when there is not enough 

information about the problem. So, he proposes a true multi-objective formulation of the 

problem.  In this case, the NSGA is used to locate a small number of fixed size wind turbines 

in order to maximise/minimise energy exports (for profit or energy independence, 

respectively) and minimise energy losses and short circuit limits. In this way, it is possible to 

investigate a compromise between DG benefits, and impacts. Moreover, Ochoa mentions 

that while more objectives could be included in the MO formulation (NSGA), care must be 
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taken to guarantee that objectives are not concurrent. However, the same should be applied 

to the single-objective weighted-sum, as was already explained in the previous paragraph. 

 

Haesen et al.: Multi-objective Planning of Stochastic DER 

The work of Haesen et al. provides a comprehensive examination of the DER planning 

problem. First, the use of single and multi-objective optimisation techniques for the DER 

planning problem is examined in [3.15]. Next, the application of a traditional mathematical 

approach is analysed and compared with a GA-based approach [3.60]. The authors identify 

that a multi-objective formulation able to optimise different types of stochastic DER is 

required. Consequently, they propose a multi-objective approach based on SPEA and yearly 

profile simulation [3.61]. This approach is extended further with the analysis of controllable 

storage units [3.62] and the use of a state-of-the-art multi-objective optimisation algorithm 

[3.63]. A detailed discussion of these publications is provided next. 

Initially, Haesen et al.[3.15] discusses the drawbacks of single-objective formulations and 

recognise the advantages of a true multi-objective approach. Accordingly, a multi-objective 

DER optimisation based on the SPEA algorithm is proposed. The objective function 

evaluation includes the simulation of daily DER production and load profiles; this method 

permits the optimisation of several types of DER simultaneously. The SPEA multi-objective 

DER planning approach is compared with the iterative use of a single-objective method, 

previously proposed by Haesen et al.[3.27]. The comparison shows that single weighted-sum 

solutions are better than the ones found in the Pareto front by SPEA, but that in contrast the 

whole Pareto front provides a wider range of possible solutions. Also, each weighted-sum 

solution is highly sensitive to the set of parameters chosen. Therefore, if a single solution is 

looked for, inaccuracy in any parameter will lead the search towards mistaken regions of the 

Pareto set and produce a sub-optimal plan. As a result, Haesen et al. suggest the use of both 

methods to gain insight into the planning problem. However, finding each single weighted-

sum solution requires as many iterations as finding the whole Pareto front (using SPEA).  

Importantly, in this work, Haesen et al. recognise that in cases when attributes cannot be 

converted to cost accurately, or when a larger number of objectives are analysed, the true 

multi-objective optimisation becomes essential. Finally, this publication proposes the use of 

bi-objective plots to examine correlations or conflicts between objectives. This visualisation 

technique becomes extremely useful when the number of objectives is greater than three.  



119 

 

In the next publication of Haesen et al. [3.60], the use of traditional mathematical 

optimisation techniques for planning time-variant DER is studied. The DER planning 

problem is formulated as an iterative Mixed Integer Quadratic Programming problem. 

Traditional optimisation techniques require mathematical formulations of the objective 

functions. These formulations can only include deterministic profiles. As a result, the authors 

conclude that traditional optimisation techniques cannot model the stochastic aspects of DER 

and load effectively. In addition, the authors identify that some objectives (e.g. voltage sags, 

reliability) cannot be formulated as a mathematical function of DER type, placement and 

size.  

As a result, Haesen et al. highlight that GA can handle objectives that are too complex to be 

formulated in an analytical expression. So, the use of Monte Carlo Simulation (MCS) in the 

objective evaluation is suggested, instead of the daily profiles simulation used in [3.15]. The 

MCS method produces an accurate evaluation of the stochastic performance of DER and 

load without the need for an analytical formulation. Moreover, it permits the evaluation of 

other objectives (i.e. reliability) that are difficult to formulate analytically. In the approach 

proposed, MCS consists of the simulation of a number of different yearly profiles. The 

planning methodology for stochastic DER is summarised in a further publication [3.61]. In 

this work, the authors recognise that an optimisation approach should be as adapted to the 

problem as possible, a clear allusion to the optimisation/modelling dilemma already 

discussed in section 3.3.1.  

The GA-MCS approach provides a practical way of evaluating topologies with stochastic 

DER although two trade-offs can be identified. First, the optimisation/modelling trade-off 

[3.20]: GA permit the evaluation of more realistic models, but the convergence towards 

global optima cannot be reached in limited time. In contrast, analytical expression are able to 

find the global optima (with appropriate parameters), yet, they are limited to evaluate 

simplified models. The second trade-off relates to the accuracy of the MCS. The accuracy of 

MCS evaluations depends on the number of trials or years simulated. So, accuracy improves 

but to the detriment of the speed of the GA, and vice versa.  

The SPEA planning approach is used by Haesen et al. in [3.62] to analyse the incorporation 

of a single controllable energy storage unit into a distribution grid with stochastic DER. In 

this case, an inner optimisation algorithm is used in the objective evaluation stage of the GA 

to optimise the operation of the storage unit. Simultaneously, the external multi-objective 

optimisation is used to optimise the rating (power) and capacity (energy) of the storage unit. 
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This inner optimisation offers a practical method to optimise a controllable DER in a 

stochastic environment. This method can be modified to optimise controllable and stochastic 

DER simultaneously, as demonstrated later in this thesis.  

In the CIRED 2007 conference presentation [3.64], Haesen proposed the use of Principal 

Component Analysis (PCA), a powerful method to reduce the dimensions of a multi-

objective problem and analyse multiple objectives correlations. Finally, after CIRED 2007, 

the approach based on the SPEA algorithm was upgraded to an improved version of this 

algorithm: SPEA2 [3.63]. Previous studies had shown that the SPEA algorithm is 

outperformed by both the NSGA-II [3.65] and SPEA2 [3.66], as already discussed in the 

previous chapter.  

In summary, the method proposed by Haesen et al.permits the multi-objective optimisation 

of diverse types of time-variant DER or controllable energy storage. However, it has some 

limitations: 

• The work focuses on stochastic DER, including renewable generation. However, no 

attempt is made to quantify environmental benefits, or formulate an environmental 

objective.  

• MCS provide rich probabilistic information. Haesen et al. [3.62] proposes the use of 

the 95% percentile of maximum voltage deviation as an objective, targeting the 

amelioration of voltage profile according with the EN50160 regulation [3.55]. Still, 

the trade-offs between the probability of constraint violation and other objectives are 

not investigated. For example, an analysis of the trade-off between risk of voltage 

violation and environmental benefits (CO2 emissions) could determine if current 

probabilistic regulations should be modified to obtained larger greenhouse gasses 

emissions reductions.  

• A practical method to evaluate controllable storage units is proposed. The approach 

can optimise controllable energy storage when DER units are already installed. 

However, the approach is not able to optimise stochastic units that can be controlled 

(e.g. curtailment of wind generators, dispatch of CHP units), or the simultaneous 

optimisation of stochastic and controllable units. 

• Finally, it is not possible to infer from the works published how network constraints 

are treated in the multi-objective formulation. No constraint management under the 

multi-objective formulation is proposed. 
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The work of Haesen et al. has some parallels with the research presented in this thesis, 

particularly the proposal of a true-multi-objective formulation and an appropriate method to 

evaluate several types of stochastic DER units. A timeline presented later in this chapter 

demonstrates that both pieces of research occurred simultaneously. The coincidences in the 

approach were identified early in the development of this research. This in turn made it 

possible to establish contact with the ESAT research group at KU Leuven, particularly with 

Edwin Haesen, and pursue a collaborative approach to push forward the research in this area 

jointly. An inner optimisation algorithm for controllable DER units, initially proposed by 

Edwin Haesen was integrated into the flexible planning framework proposed in this thesis. 

This resulted in the planning methodology for stochastic and controllable DER units 

summarised in Alarcon-Rodriguez et al. [3.13].  

A fundamental difference exists in the way Haesen et al. studied the problem and the way it 

is accomplished in this thesis. Haesen et al. followed an inductive approach, starting from a 

single-objective formulation [3.27] to determine the best approach to handle multiple 

objectives [3.15] and stochastic DER units [3.60]. In contrast, the research presented in this 

thesis first established the characteristics of the problem to be solved, described in Alarcon-

Rodriguez et al.[3.12], and then deduced the best techniques to be used. The DER planning 

problem was recognised to be multi-objective so, the use of an appropriate and state-of-the-

art multi-objective optimisation algorithm was proposed. DER was recognised to be time-

variant; consequently, a suitable approach to handle stochastic generation (and demand) was 

ascertained. This reasoning is explained in detail in the next chapter. 

 

Other Multi-objective Approaches 

The methods presented next are limited for the problem studied in this thesis; nonetheless, 

some key contributions are highlighted. 

Pelet et al.[3.67] study the optimisation of the design parameters of an integrated energy 

system (diesel and PV generators) for a remote community. Detailed analytical formulations 

are used for the diesel engines and PV operation, cost and emissions calculation. Two 

objectives are used: total cost and CO2 emissions. This approach underlines that a true-multi 

objective formulation permits more informed decisions. Moreover, the conflict between cost 

and environmental benefits is recognised: clean solutions are more expensive.  
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Mori et al. [3.68] present an approach based on SPEA2 to optimise distribution network 

expansion. This approach considers DG as an option for the planner, together with possible 

substations and lines. It aims at minimising three objectives: power losses, cost of new 

equipments and voltage deviation. The cost objective only considers installation costs and it 

does not take into account operating costs of DG (fuel, O&M). So, the optimal solution 

could be more expensive in the long-term. In addition, the problem is approached like a 

capacitor placement problem, disregarding the time variability of DG. The whole planning 

exercise is made in terms of peak power. As a result, only a single type of DG (constant 

power) can be handled by the formulation. Nonetheless, an important point of this work is 

that it demonstrates that SPEA2 provides better solutions than NSGA-II in the case study 

presented, although SPEA2 computational time is slightly higher than NSGA-II. 

Haghifam et al. [3.69] also assumes that DG is a constant power source. The authors propose 

an approach based on NSGA-II. The planning objectives include total cost (net present value 

of energy bought from the transmission system, DG installation and operation), technical and 

economic risks. The novelty of this work is that it proposes to minimise the maximum risk of 

constraint violation as one of the planning objectives. In this case, load behaviour uncertainty 

is modelled using fuzzy numbers. The risk of voltage constraint violations is calculated as 

the fuzzy possibility of voltage constraint violation. The economic risk is treated similarly: 

the uncertainty of market price of energy is modelled using fuzzy numbers. Then, the fuzzy 

possibility of DG being a more expensive solution is calculated and minimised. Fuzzy 

numbers permit the representation of uncertain variables for which limited information is 

available. Therefore, a quasi-probabilistic formulation of the problem is possible. An 

analogy can be made between the fuzzy “possibility” of constraint violation and the more 

elaborated “probability” of constraint violation. However, the calculation of this latter 

requires more detailed information about the load behaviour (e.g. load curve duration, load 

profile, load model).  

 

Multi-objective DER planning: A Timeline 

The most important advances in the area of multi-objective DER planning are illustrated in 

the timeline of Figure 3-6. This timeline shows that most advances were proposed in the last 

three years. Some trends can be identified:  
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Figure 3-6 Multi-objective DER Planning Timeline 

 

• The gradual adoption of state-of-the-art MOEA, instead of preference optimisation 

techniques.  

• The stochastic analysis of DER and load is prevalent, either by means of 

probabilistic load flow or simulation of profiles. Though, few authors propose to 

evaluate constraints probabilistically.  

• The use of GA permits the incorporation of inner optimisation algorithms in the 

objective evaluation, which in turn permits the simulation of controllable energy 

storage and DER units. It is expected that the possibility of inner optimisation will 

be used more widely, as the concept of active management of DER and networks 

becomes widespread.  

• Most of the authors recognise the benefits of a multi-objective formulation. 

However, only Haesen et al.propose effective ways to illustrate results (when the 

number of objectives is larger than three) and analyse the objectives correlation.  
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• Finally, most of the authors recognise that one of the drivers for DER development 

is the environmental benefits that can be obtained from an adequate integration of 

these technologies. As a result, new approaches must incorporate explicitly 

environmental objectives. 

 

A second timeline is included in Figure 3-6 to place the development of this thesis in the 

context of the papers examined. Key milestones of the development are provided in terms of 

relevant publications and presentations. It is demonstrated in the next chapters that this work 

incorporates and expands the latest developments of the area. A multi-objective planning 

framework for diverse types of DER is proposed, making use of a state-of-the-art multi-

objective optimisation algorithm. Technical, economic and environmental objectives are 

considered. In addition, a flexible treatment of constraints is included. Finally, emphasis is 

made in the appropriate analysis of results. 

3.4. Summary 

DER planning is defined as finding the optimal DER size, type and/or location to achieve a 

variety of objectives. It is a complex optimisation problem, whose solution requires the use 

of simplifying assumptions or heuristic algorithms. A trade-off exists between the detail of 

the model and the accuracy of the optimisation method used. Much care should be taken 

when modelling the problem and choosing an appropriate optimisation method. 

A large number of techniques have been proposed for DER planning. Most of these 

techniques are focused on single-objective optimisation. In recent years, the multi-objective 

nature of the problem has been recognised, and the specific area of multi-objective DER 

planning has rapidly evolved. 

A review of a representative sample of single-objective DER planning techniques is 

presented in the chapter. The review shows that objectives pursued by single-objective 

techniques are diverse, and it attests that these objectives can be conflicting in nature. 

Moreover, it is illustrated that the DER planning problem can be approached from several 

perspectives. The analysis of techniques confirmed that most of the single-objective 

techniques cannot adequately handle several types of stochastic or controllable DER 

simultaneously.  
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In addition, a critical review of literature devoted to multi-objective planning of DER is 

presented. The analysis demonstrates the evolution in the nature of the optimisation 

techniques used for the problem; state-of-the-art MOEA have been gradually adopted by 

different researchers. Moreover, the different approaches to handling time-variant and 

controllable DER are enumerated. Finally, a timeline illustrates the recent and rapid 

development of this particular research area and, most importantly, places the research 

presented in this thesis in the context of the publications discussed.  

The next chapter analyses in detail the DER planning problem. This analysis identifies the 

requirements for a DER planning technique for the analysis of DER integration. 

Consequently, the specifications, structure and techniques for the planning framework are 

proposed.  
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Chapter 4 

4. Specification of the DER Planning Framework 

4.1. Introduction  

Chapter 1 discussed the importance of an optimal DER integration. Chapter 2 presented key 

concepts of single and multi-objective optimisation techniques. Particular emphasis was 

made in describing multi-objective evolutionary algorithms (MOEA). Chapter 3 provided a 

critical review of single and multi-objective DER planning techniques. This evaluation 

identified some of the shortcomings of DER planning techniques in relation to the objectives 

proposed in this research. Similarly, it recognised the possible further developments in the 

area. 

This chapter presents the specification of a planning framework for DER integration 

analysis. First, the DER planning problem is examined from the perspective of this 

research’s objective. In this context: What constitutes the DER planning problem? What are 

the degrees of complexity of this analysis? The answers to these questions determine the 

structure and the appropriate type of techniques required for the planning framework. 

Similarly, it establishes which simplifications are possible. This analysis also elucidates the 

reasons behind the choice of a flexible and multi-objective platform, explicitly included in 

the title and objectives of this research.  

The chapter is structured as follows. Initially, the objective and scope of the DER planning 

framework are described. Next, the complexity of the DER planning problem is examined in 

the context of this research. In addition, relevant characteristics of modern planning 

techniques are reviewed. This analysis determines the high-level structure of the framework 

and the particular characteristics of the optimisation method and evaluation techniques used. 

Additionally, the planning attributes for the analysis of DER integration are selected. 

Subsequently, the structure of the planning framework is described in detail. Throughout this 

chapter possible improvements are discussed where appropriate. 
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4.2.  Planning Framework Objective and Scope 

4.2.1. Objective  

The main objective of the DER planning framework is to analyse DER integration. Hence, 

the planning framework must answer the following questions: 

• What are the best configurations for DER in a given distribution network in order to 

achieve multiple objectives?  

• What are the correlations between these objectives when DER is integrated 

optimally in a particular network? 

 

The framework provides a better understanding of DER integration by finding several Pareto 

optimal DER configurations and analysing the relationship between multiple objectives of 

DER integration. Planning objectives reflect relevant benefits and impacts of DER 

integration. The selected planning attributes are listed in Table 4-1, later in this chapter.  

 

4.2.2. Scope 

This thesis proposes a high-level analysis of DER integration in which a large number of 

alternatives and varied attributes are evaluated, as opposed to an exhaustive technical 

analysis of a single alternative. The high-level analysis proposed is based on the evaluation 

of DER impacts over a long-term. Hence, the planning framework includes only steady-state 

impacts of DER integration. The analysis of the impacts of DER on the transient behaviour 

of the power system is beyond the scope of this work. Stability studies of the distribution 

power system are usually conducted as a second stage in the planning process [4.1], and they 

require detailed dynamic models of loads, DER and network components [4.2].  

This research encloses both: the specification and development of a DER planning 

framework, described in this chapter and the next; and the analysis of relevant case studies to 

illustrate the proposed approach, presented in Chapter 6.    
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4.3. The DER Planning Problem 

Neimane [4.3] analysed the complexity of the distribution network-planning problem and 

identified that this complexity is caused by multiple and conflicting objectives, the dynamic 

nature of the planning problem, the large number of variables and uncertain information. 

This analysis is taken as starting point. It is extended to the DER planning problem, and 

adapted to the context of this thesis. Hence, in the context of the objectives of this research, 

the DER planning problem is characterised by: 

• Multiple and conflicting objectives  

• Multiple perspectives on the problem and the need for a flexible approach 

• DER diversity and the stochastic nature of the power system  

• The dynamic nature of the planning problem 

• Uncertainty in information 

 

Each one of these aspects is examined in detail next. The large number of variables, 

identified by Neimane [4.3] as an issue in distribution systems planning, is not studied in this 

work. A large number of variables are inherent to any complex planning problem. 

Consequently, a platform and optimisation technique capable of handling large problems is 

considered essential for the planning framework. 

 

4.3.1. The Need for A Flexible Multi-Objective Approach 

This section discusses the requirement for a flexible and multi-objective approach in detail. 

Three fundamental aspects are analysed: Section 4.3.1.1 discusses the inadequacy of a 

single-objective approach to answer the questions proposed in this thesis, and summarises 

the advantages of a proper multi-objective approach, already introduced in the previous 

chapters. Section 4.3.1.2 emphasises that the technical constraints of the network must be 

included in the analysis of DER integration. This section shows that planning constraints can 

be formulated in different ways to provide a deep analysis of DER integration. Finally, the 

discussion of section 4.3.1.3 highlights that a useful analytical tool requires a flexible 

approach, both in terms of planning objectives and constraints and in terms of the decision 

variables of DER integration.  



137 

 

4.3.1.1. Multiple and Conflicting Objectives 

The multi-objective nature of the DER planning problem is evident from the discussion of 

previous chapters. DER impacts and benefits are numerous, and each one can be potentially 

formulated as a planning objective. Single-objective DER planning approaches, reviewed in 

Chapter 3, focus on either the optimisation of technical impacts or economic attributes. 

Three main groups are recognised:  

• A single technical impact/benefit is optimised (e.g. line loss minimisation, energy 

harvesting maximisation) subject to the technical constraints of the network 

• A single technical impact/benefit is translated to cost and minimised/maximised (e.g. 

maximisation of line losses economic benefit, maximisation of installed capacity 

benefits) subject to the technical constraints of the network 

• Several impacts/benefits are aggregated into a single cost attribute or a performance 

index which is minimised/maximised (e.g. Ochoa’s performance index, total cost 

minimisation). Similarly, in terms of investment planning of DER, minimisation of 

total cost (or maximisation of revenue) is the sole objective, the other attributes are 

either translated to cost or regarded as constraints.  

 

A single-objective approach is adequate when there is a single impact/benefit of interest, 

when all costs represent a single point of view [4.4], or when there is strong preference-

information to aggregate technical impacts into a single performance index [4.5].  

Nonetheless, many of the DER planning objectives are contrasting in nature.  Moreover, 

several perspectives of the problem are possible since several stakeholders are involved in 

DER research, planning and development. Subsequently, there is no single-optimal solution, 

but a Pareto set of optimal solutions. If each attribute is combined into a single measure of 

performance, the specific impacts and benefits of DER (or the different perspectives of the 

problem) are hidden and the analysis of DER integration is limited significantly. 

Consequently, a single-objective approach is not appropriate to provide a deep analysis of 

DER integration. 

The advantages of a multi-objective formulation were already introduced in chapters 2 and 3. 

For example, a multi-objective approach provides a more realistic representation of the DER 

problem and expresses different perspectives on it. In addition, the whole scope of each 

benefit and impact and the correlations between them can be investigated. Thus, a multi-
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objective approach permits a deeper analysis of DER integration, which is the key objective 

of the DER planning framework.  

Moreover, a multi-objective formulation allows attributes to be expressed in their natural 

units, differing from traditional single-objective approaches that require conversion of all 

attributes to cost or to a dimensionless measure of performance. So, a multi-objective 

analysis can include objectives that cannot be easily translated to cost (e.g. voltage deviation, 

probability of constraint breaches), making trade-offs among fundamental concerns more 

explicit [4.6]. Consequently, the possibilities for the analysis of DER integration are 

extended.  

This section clarified the reasoning behind a crucial requirement for the planning framework: 

a multi-objective approach. The need to analyse multiple objectives determines not only the 

nature of the optimisation method, it must be multi objective, but also the requirement for an 

evaluation procedure able to compute the relevant benefits and impacts of DER integration. 

Additionally, in this section the need for a flexible approach is introduced. The planning 

framework must be flexible not only in terms of the analysis of several different objectives, 

but also by permitting the analysis of non-cost objectives. The need for a flexible approach is 

extended later in section 4.3.1.3, when planning goals and decision variables are discussed. 

 

4.3.1.2. DER Planning Constraints 

Equality and Inequality Constraints 

Planning constraints are part of most planning and optimisation problems, and are as 

important as planning objectives. Mathematically, constraints are expressed as equality and 

inequality constraints. In power systems planning, equality constraints are determined by the 

requirement for power balance in the nodes and in the system: the active and reactive power 

injected to a node must be similar to the active and reactive power withdrawn from it [4.7]: 
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where g represents generators, t represents lines and d the loads connected to node i. P and Q 

stand for the power injected to bus i.  
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The set of power balance equations for all nodes is known as the power flow equations. The 

resolution of the power flow equations determines voltages and line flows. These equality 

constraints are not flexible, i.e. this condition must be satisfied, as they model the natural 

behaviour of energy flows.  

Technical limits of the network and equipment define the inequality constraints of the 

optimisation. Traditionally, these are used as planning constraints. The technical constraints 

commonly considered are maximum and minimum node voltage deviation, maximum 

thermal loading of equipment and maximum fault levels. In addition, limits to the size of 

DER equipment are imposed to reflect energy resource availability and technical connection 

restrictions, as well as constraints in operation conditions (e.g. fixed power factor). The most 

common technical constraints are expressed next: 
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where V is the voltage at the i
th
 node, DER is the DER installed at that node, S is the apparent 

power flow at the k
th
 line (or equipment) and S(sc) is the short circuit current in that 

equipment.  

Some flexibility can be permitted in the analysis of inequality constraints, as explained in a 

later section. This flexible treatment of planning constraints, referred as to 

Multiobjectivisation, permits a wider analysis of DER integration.  

 

Voltage and Thermal Constraints: AC and DC Power Flow Formulations  

The resolution of the power flow equations permits the calculation of node voltages and line 

power flows. Two formulations are possible for the power flow equations: AC or DC. AC 

power flow equations are nonlinear, and their resolution requires an iterative process, where 

convergence sometimes cannot be achieved [4.8]. In addition, nonlinear equality constraints 

are non-convex and increase the difficulty of the optimisation problem, as already explained 

in previous chapters. In contrast, DC power flow equations are linear; thus, they can be 

integrated into linear optimisation formulations for which powerful optimisation packages 

are available. Nonetheless, DC power flow looks only at active power flows, its formulation 
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assume power lines to be purely inductive, and voltage nodes to be one per unit. DC power 

flow formulation disregards active line losses and cannot determine voltage rise impacts. 

Consequently, the use of DC power flow to DER planning is limited to networks with high 

X/R ratios and particular scenarios where voltage rise is not of concern [4.9].  

Voltage constraints are of particular interest in DER planning. This constraint is often the 

limiting factor in the installation of more DER capacity [4.10],[4.11], especially in weak 

networks such as rural networks [4.12]. For this reason, an AC power flow formulation is 

essential for attribute valuation in the planning framework. The non-convexity of an AC 

power flow formulation determines the need for an optimisation method able to handle 

nonlinear equality constraints. The particular AC power flow calculation used in the 

planning framework is described in the next chapter.  

Thermal loading of lines can be determined by either approach (AC or DC). Thermal 

loadings are initially reduced by increasing penetration of DER; consequently, these 

constraints tend to be disregarded when analysing low penetrations of DER. Nonetheless, it 

has been demonstrated that the thermal limits of equipment can be exceeded by reverse 

power flows with high penetrations of DER [4.13]. Hence, thermal constraints must be 

considered when analysing large penetrations of DER.  

 

Probabilistic Voltage Constraints 

Until recently, voltage constraints of the network were expressed deterministically, for 

example, +10%/-6% for low-voltage networks and ±6% for medium-voltage networks 

[4.10]. Consequently, traditional DER planning approaches used these deterministic limits. 

Nonetheless, this approach has been recognised to restrict the potential of DG [4.12],as 

variable DG only produce its maximum output for a limited period. New regulations propose 

the use of stochastic constraints. These constraints permit the violation of technical limits for 

a maximum established amount of time. For example, the European standard EN 50160 

requires a voltage magnitude with a maximum variation of +10/-10% for 95% of the week, 

considering mean 10 minutes rms values [4.14].  

The use of stochastic voltage constraints permits a “more objective” evaluation of the 

potential of DER [4.12].  In addition, when probabilistic constraints are combined with the 

flexible approach described later in this section (Multiobjectivisation), a powerful analysis of 
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DER integration is possible. So, a probabilistic treatment of voltage constraints must be 

possible within the DER planning framework. This requires the stochastic evaluation of DER 

integration, which is discussed in section 4.3.2. 

 

Fault Level Constraints 

Fault levels are usually a concern with large penetrations of DER in high and medium-

voltage urban networks [4.13]. These networks are usually meshed and provide several low 

impedance paths for the fault currents. DER increase the fault levels in the system, and 

therefore prompt the requirement for larger switchgear equipment. Some planning 

methodologies consider fault level constraints [4.7], [4.15]. In these approaches, the limits 

imposed by switchgear equipment are included as constraints in the planning formulation to 

limit DER integration. Other approaches include short circuit currents in the optimisation 

objective to restrict the effect of DER in fault currents [4.5]. In contrast, in low-voltage and 

rural networks (i.e. radial networks), voltage and thermal limits are the main constraining 

factors [4.13],[4.16].  

The case studies presented in Chapter 6 focus on radial networks, where fault levels are 

usually not considered a constraining factor, as discussed in the previous paragraph. Thus, a 

fault level calculation was not implemented in the planning framework. In this case, fault 

level calculation and protection design are assumed as a step conducted after planning. As 

part of further work, a fault level calculation could be included in the multi-objective 

planning framework to make sure that the switchgear in the network is capable of dealing 

with the expected fault currents. The modular approach of the planning framework, 

discussed in the next chapter, facilitates the addition of new analyses such as fault level 

calculation   

 

A Flexible Treatment of Constraints: Multiobjectivisation 

In traditional planning approaches, if a solution violates the technical constraints of the 

network it is “unfeasible” and it cannot be accepted, regardless of its performance in other 

planning objectives. Nonetheless, a more flexible analysis permits the quantification of the 

effect of constraints on other planning objectives. This approach is known as 

“Multiobjectivisation” [4.17] and it consists in formulating the technical impacts that define 
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planning constraints as planning objectives, for example: minimise maximum voltage 

deviation, minimise maximum thermal loading of lines, minimise the probability of voltage 

violation, minimise fault level, etc. A multi-objective formulation of this problem permits the 

evaluation of the benefits in other objectives from relaxing some of the constraints. 

Following a similar reasoning, it is also possible to convert any planning objective into a 

planning constraint. Alternatively, the maximisation/minimisation of an attribute can be 

formulated as an objective with a minimum/maximum attainment level (i.e. a “constrained 

objective”). Multiple objectives and constraints can be analysed simultaneously. This degree 

of flexibility in the analysis reflects either planning conditions (e.g. to minimise total cost 

constrained to a budget limit), scenario conditions (for example to constrain the maximum 

penetration of DER), or determines minimum attainable conditions for the planning task (e.g. 

maximum allowable CO2 emissions that any plan can have).  

Summarising the discussion presented in section 4.3.1.2, the following requirements for the 

planning framework are identified: 

• The objective evaluation must quantify relevant technical impacts of DER 

integration. These include voltage rise. Hence, the use of an AC power flow 

formulation is mandatory 

• The optimisation method must be able to handle any type of equality and inequality 

constraints (linear and nonlinear) 

• A probabilistic treatment of voltage constraints must be possible 

• A flexible approach is needed: any attribute should be able to be formulated as a 

planning constraint or a planning objective 

 

4.3.1.3. Flexibility  

The requirement for a flexible approach in terms of objectives and constraints has already 

been introduced in the previous sections, and it is summarised next. Additionally, the need 

for a flexible approach to the decision variables of DER integration is discussed. 
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Flexibility in Terms of Planning Goals, Objectives and Constraints 

In traditional, centralised power systems planning the planning goal is unique: to find the set 

of investments that minimises total cost subject to a set of technical and environmental 

constraints. With the decentralisation of energy markets, planning is no longer a centralised 

task. Several market players are involved and each one has different planning goals, usually 

still related to economic optimisations. The need for flexible planning approaches in this 

liberalised market environment is evident. For example, Dugan et al. [4.18] recognise that a 

planning tool must be flexible and adaptable. Planning goals differ from one planner to the 

next, and even different projects from the same planner can require a different perspective. 

Similarly, Celli et al. [4.19] propose that a planning tool should let the planner select which 

aspects to include in his search for the optimal solution.  

Nonetheless, the concept of flexibility proposed in the previous sections is not restricted to 

investment analyses from different perspectives. The optimisation of the varied technical, 

environmental and economic benefits and impacts of DER integration can provide a deeper 

analysis, and produce valuable information for DER integration. So, the flexibility of the 

approach in terms of objectives and constraints is essential to create a useful analytical tool.  

 

Flexibility in Terms of Decision Variables  

Flexibility is also required in terms of the type of decision variables included in the 

optimisation analysis. For instance, an analysis of DER integration can consist of optimising 

the size and location of a single unit; or finding the optimal size and location for varied 

numbers of DER units of different types. Eventually, the analysis can consist of finding the 

best configuration of DER in the whole network, assuming that every node is a potential 

location for DER installations. Thus, a question arises, is it possible to implement a planning 

framework flexible enough to handle all these possibilities? This thesis tries to answer to this 

question. Again, the need for flexibility is critical in determining the most adequate 

optimisation method. A crucial requirement is the ability of the optimisation algorithm to 

handle discrete and integer variables characteristic of DER siting and sizing planning 

problems. In addition, the DER planning framework should be able to optimise diverse types 

of DER simultaneously.  

Hence, the requirements for a flexible planning framework discussed in section 4.3.1.3. are: 
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• Include any planning attribute as objective or constraint 

• Permit different types DER integration analyses: sizing and/or siting of single unit, 

various units or eventually considering the whole network as the search space. 

4.3.2. DER diversity 

DER are characterised by a high degree of diversity on: 

• Geographical distribution: Diverse connection points in the network 

• Energy sources:   Variable, constant 

• Technologies:   Generation technology, control technology 

  

Each one of these has a considerable effect on planning attributes, objectives and constraints. 

Simplified approaches, some of which were reviewed in the previous chapter, tend to focus 

only on the geographical distribution of DER. In these approaches, DER (typically only DG) 

is assumed to be a constant supply of energy and a single snapshot of the power system is 

analysed, usually the worst-case scenario of maximum generation and minimum load. This 

simplification is adequate in some cases and it permits the use of powerful optimisation 

methods to obtain mathematically accurate results for the set problem.  

However, DER diversity in terms of energy sources requires particular attention. The 

benefits of DER depend not only in the location and size of the generation, but also in the 

complex relationship of generation and demand over time. The interaction of diverse time-

variant energy sources and demand is a stochastic problem. The problem becomes more 

complex when the evaluation of controllable technologies is proposed. A simplified 

deterministic approach limits the analysis of time-variant energy resources (e.g. wind and 

solar energy), or the consideration of controllable technologies. Hence, adequate stochastic 

evaluation techniques are required to handle this type of problem. 

 

4.3.2.1. Stochastic Nature of DER  

Variable Energy Sources 

From a modelling point of view, energy resources are differentiated by their variability [4.2]: 

• Variable or uncontrollable energy sources (e.g. wind, solar, tidal)  
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• Constant or controllable energy sources (e.g. hydro, gas, diesel, biomass) 

 

Variable energy sources depend on external or non-controllable weather parameters (e.g. 

wind, irradiation, tides) that vary according to time and location. These resources are 

stochastic and characterised by hourly and seasonal variations. Since the primary energy 

resource cannot be stored, electrical energy generation cannot be pre-scheduled to match 

electrical energy demand. Therefore, the electrical power generated reproduces the stochastic 

nature of the energy source. Hence, these DER are known as stochastic DER or intermittent 

DER [4.12].  

The electrical output of stochastic DER at any point in time is uncertain. Nonetheless, the 

characteristic hourly and seasonal patterns of the primary energy resources can be known, 

given historic data or appropriate weather models. So, DER production fluctuations are 

usually modelled using time-series of historical weather data and DER models [4.2][4.5], 

[4.20],[4.21], [4.22] or alternatively, historical time series data of a similar DER is used 

directly if available [4.22].  

In contrast, when the primary energy sources can be stored (e.g. oil storage, gas tanks, hydro 

dam, biomass storage), the production of energy can be prescheduled, i.e. dispatched, 

according to demand, market signals and/or the availability of the resource. Power 

generation is modelled as a constant source, or as an output whose pattern is known 

beforehand. A special case is CHP generation. CHP generation depends on a constant energy 

source (e.g. gas, diesel or biomass); however, in some cases CHP generation aims at 

supplying the heat demand, and electricity is regarded as a non-controllable by-product. In 

this case, CHP electricity production is modelled based on the demand of thermal energy 

[4.23]. 

 

Demand Fluctuations 

Electrical demand is determined by the end-uses of electrical energy. These are domestic 

appliances (such as white goods, computers, air-conditioning and heaters), lights and 

industrial processes (mainly electrical motors). At the domestic level, each single household 

demand is characterised by sharp needle peaks and high variability [4.1]. Nonetheless, at an 

aggregated level (e.g. a distribution transformer, a substation) demand is the result of 
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multiple small decisions by individuals. Hence, demand peaks and valleys interleave and the 

resulting aggregated demand is smoother. The same analysis can be applied to commercial 

and industrial energy uses [4.1].  

Demand varies over time; thus, it is also a stochastic process. At an aggregated level, 

demand fluctuations are caused by the variations of weather and the main end uses of 

energy, such as lighting, cooling, cooking, heating and industrial processes. Demand at any 

point in time cannot be predicted with certainty; however, the long-term behaviour of hourly, 

daily (weekday/weekend day) and seasonal variations can be estimated. Demand variation 

over time is usually represented by load curves. Load curves provide a time-series of 

demand, spaced uniformly (15, min, 30 min, 1h) for a given a time span (a day, a week, a 

year, etc). Commonly, load curves are classified according to customer class (domestic, 

commercial, industrial, etc). Distribution networks are commonly planned to supply the 

maximum coincident demand of all customers (i.e. the coincident peak load) [4.24]. 

Nonetheless, when DER is included in the analysis, the problem becomes more complex, as 

the network impacts depend not only on the coincident peak loads but also on the interaction 

of DER and load over time.  

Dugan et al. [4.18] recognise that a single snapshot power flow is not able to capture all the 

issues that must be addressed when planning DER. Mendez et al. [4.22] analysed extensively 

the effect of different penetrations of different stochastic DG on distribution system losses. 

Results of this analysis showed that the variability of the energy source and the correlation 

with load are key factors. A similar analysis is made in Alarcon-Rodriguez et al. [4.25], 

where different load and DER profiles are analysed using a multi-attribute analysis (line 

losses, CO2 emissions, energy generated). This analysis concluded that DER production and 

load profiles have a large effect on the quantification of planning attributes and optimal 

solutions.  

One snapshot of the power system is unlikely to adequately capture the stochastic nature of 

DER and load, and reflect the benefits and drawbacks of DER. In addition, some of the 

attributes are stochastic in nature, for example the probabilities of constraint violation, 

discussed previously. Therefore, the DER planning process requires a stochastic evaluation 

of planning attributes to capture the effect of variations of DER and demand.   
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Electrical Energy Storage 

The addition of electrical energy storage results in an apparent alteration of the demand and 

DER production profiles. For example, the time variability of load can be smoothed to avoid 

peaks [4.1]. Similarly, stochastic DER production can be stored to produce a more constant 

output. Also, electrical energy storage makes it possible to provide energy when the primary 

energy resource is not available, for example at night for photovoltaic systems. Alternatively, 

it is possible to control storage units to maximise energy exports [4.21] or respond to other 

market signals. In all cases, the size of the storage must be optimised evaluating cost and 

benefits [4.26]. Additionally, the control of the storage units requires an operational short-

term optimisation. Barton et al. [4.27] showed that electrical storage (particularly flywheel 

storage) can permit the harvesting of larger amount of wind energy “given reasonable 

storage cost assumptions”. In contrast, Foote et al. [4.26] performed detailed cost-benefit 

studies and concluded that the short and medium term cost of electrical storage units remain 

too high to make it viable.  

Most DER planning approaches do not consider storage units in their analysis, mainly 

because the cost effectiveness of these technologies has not yet been fully demonstrated. 

Stand-alone DER applications (e.g. PV panels for isolated communities) represent a different 

situation, where storage units are cost effective. The DER planning framework presented in 

this thesis does not consider electrical storage units. Nonetheless, it will be clear from the 

implementation presented in the next chapter that an optimisation of storage units could be 

integrated within the planning framework if required.  

 

4.3.2.2. Controllable DER Technologies  

Distribution networks were designed primarily to feed loads and not to accommodate large 

amounts of distributed generation. As a result, the sub-optimal integration of DER results in 

operational and planning challenges such as reverse power flows, voltage rise, and increased 

fault currents. These impacts trigger the need for network equipment reinforcement. 

Consequently, some authors, reviewed in the previous chapter, propose planning 

methodologies to determine the optimal location and sizes to maximise the penetration of 

DER without the need for reinforcement solutions. These approaches model DER as a 

passive element in the network, similar to a negative load.  
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Nonetheless, an alternative approach is possible to enable large penetrations of DG without 

degrading system operation: active network management (ANM). ANM consists of the 

active management of DG and the network to overcome the negative impacts of DG, mainly 

voltage rise effect. Liew et al. [4.28] present different active management philosophies to 

maximise the penetration of wind generation in distribution networks. These include power 

generation curtailment, reactive compensation and on load tap changing (OLTC) 

coordination. Mutale [4.29] demonstrated that these active management philosophies can 

permit the connection of large amounts of DG without network reinforcements. In addition, a 

extensive report [4.30] studies the possibility of distributed generation to provide ancillary 

services and support system operation. It concludes that, although at present few distributed 

generators are equipped with the necessary infrastructure to provide ancillary services, the 

opportunity for DG to provide these services will surely increase as DG penetration and 

availability increase.  

The active management of DG effectively involves short-term operational planning. The 

curtailment/dispatch of DG is optimised given a set of objectives (minimise cost, minimise 

curtailed energy, maximise energy export) and subject to network constraints. AMN requires 

coordination with centralised voltage regulation schemes, together with communication and 

control technologies challenges. In addition to DG, other DER are active in nature. For 

example, responsive loads react to overload conditions to guarantee network operation, or 

storage units that are operated according to technical and/or market conditions in the power 

system.  

In this research, the possibility of including some controllable DER technologies is 

considered. Particularly, the possibility of DG to be dispatched or curtailed to keep the 

system within operational constraints (voltage/thermal) is explored. Although responsive 

loads are not modelled in this work, the algorithm proposed in the next chapter can handle 

the simulation of this DER. A description is provided in the next chapter. The technological 

challenges of implementing these active management schemes are not examined. Currie et 

al. [4.31] outlines some of these challenges. Storage units are not considered, as 

aforementioned.  
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4.3.3. Dynamic Nature of the Planning Problem 

The focus of traditional power system planning in a deregulated environment is to find the 

best schedule of investments to serve future demand achieving a set of objectives and 

complying with a set of constraints. Hence, investment planning is essentially a dynamic 

optimisation problem: the best scheduling of investments must be found in order to 

maximise the associated benefits. Nonetheless, the complexity of dynamic optimisation is 

such that, although most of the literature reviewed recognises that the planning problem is a 

dynamic task, few of the techniques proposed incorporate dynamic or pseudo-dynamic 

approaches. For example, Skok et al. recognise that “dynamic planning has never been a 

definite success” [4.32]. Planning is usually regarded as a static optimisation task [4.3]. Plans 

are produced assuming that equipment will be installed in a single year, usually the first, to 

cover a future demand. Pseudo-dynamic approaches divide the analysis period into a number 

of sub-periods and solve the static planning problem for each sub-period.  

In the case of DER planning, analysing the dynamic nature of the planning problem is 

realistic if the analysis is conducted from a developer’s point of view (e.g. a DER developer, 

or a DSO that can invest in DER) and the plan will be used as an investment decision. The 

optimality of plans in this case is defined by a single economic objective. A dynamic 

formulation of the problem dramatically increases the computational effort required [4.3]. 

The number of decision variables increases proportionally with the number of stages 

considered and the size of the search space increases exponentially. So, considering even a 

few stages can convert a manageable problem to a very complex and unsolvable optimisation 

task. However, sub-optimal plans are caused not only by wrong investments or wrong 

location of equipments, but also by poor timing of the investments [4.33]. So, dynamic 

planning should be considered if the extra effort and computation of the analysis is 

outweighed by the benefits of knowing the optimal timing of investments.  

Miranda et al. [4.34] proposes the use of a GA to solve the problem of network expansion 

planning; in this case, the timing of investments is directly coded into the GA chromosome. 

Skok et al. [4.32] also propose the use of a GA based approach to solve a similar problem. In 

this case, a “master” GA is used to find the best location for investments, while a “slave” GA 

is used to determine the optimal timing of each investment. Mitra et al. [4.35] propose a 

dynamic programming (DP) formulation to find the best development plan for a micro-grid. 

However, as was mentioned in Chapter 2, this method cannot be successfully applied to 

large problems. Neimane [4.3] proposes the use of a hybrid GA-DP formulation for the 
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problem of distribution system planning. A DP stage is used in the evaluation stage of the 

GA to find the best timing of investments. Any of these formulations could be adapted to the 

DER planning problem, if finding the best timing of investments is required.  

In contrast, if DER planning is used to analyse the benefits and impacts of DER on a 

network where DER installations are considered as arbitrary (e.g. private DER investments, 

domestic micro-generation), the increased complexity of a dynamic planning formulation is 

not outweighed by the usefulness of the information provided by the results. In this case, i.e. 

when the planner is not responsible for the timing of the DER investments, the timing issue 

is effectively an exogenous factor in the planning problem.  Moreover, if the analysis is 

multi-objective, considering the dynamic nature of the problem becomes even more 

complex, as optimality is defined in a multi-dimensional space. In that case, aggregation of 

objectives (or choosing a chief objective) is necessary to solve the dynamic problem, adding 

subjectivity to the analysis. The drawbacks of this subjective analysis were discussed in 

previous chapters. What is more, the increased number of decision variables results in an 

enlarged Pareto set. A large number of optimal solutions may result in “information 

pollution”, i.e. the generation of so much data that it cannot be successfully analysed to 

produce useful conclusions [4.6].  

Given the nature of the analysis proposed in this thesis, dynamic planning will not be 

included. The complexity of the problem-formulation would be significantly increased 

without a proportional increment in the quality of the information obtained. Yet, even if the 

framework doesn’t take into account the dynamic nature of planning, it is essential to 

consider the time value of money (in the form of discount rates), load growth and the 

possible changes in the network over the period of the study, even for a single stage analysis. 

Moreover, it must be emphasised that if the framework will be extended to produce an 

investment planning tool, considering the possibility of timing investments is essential to 

provide more optimal results.  

 

4.3.4. Uncertainty 

Chapter 3 already mentioned that long-term plans must take into account all the possible 

changes that might occur in the power system and its economic environment within the 

analysis period. Projections and forecasts determine the trends in these parameters. 

Uncertainty in the forecasts increases the further into the future one looks. A high degree of 
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uncertainty results in planning decisions of low quality that produces sub-optimal solutions 

[4.3], as illustrated in the second case study of Chapter 6. Nonetheless, traditional planning 

techniques are often deterministic and static. Information is assumed to be certain, known 

and unchanging. This assumption is commonly made to simplify the resolution of the 

planning problem.   

In the case of DER investment planning, producing an optimal solution that is robust and/or 

flexible to uncertainty is essential. Robustness implies that the solution will perform well no 

matter which future scenario occurs, while flexibility in this case means that the planning 

solution can be easily adapted if an undesirable future occurs [4.3]. Choosing such a solution 

requires a decision making stage in the planning process. The preference of the planner (or 

decision maker) towards risk is reflected in the single optimal solution chosen. The scenario 

technique, explained briefly in the previous chapter, is the most common approach for 

planning in the presence of uncertainty. This method is considered as the only valid method 

to handle uncertainty, especially in multi-objective problems [4.1]. A key aspect is to define 

relevant uncertainties, i.e. those that have a large effect on the outcome of the planning 

process. In the case of DER planning the main sources of uncertainty are related to load 

growth, load profiles, the future availability (and cost) of DG technologies, and fuel and 

energy prices. 

In this work, DER integration is analysed under a high-level multi-objective perspective. In 

this analysis, all solutions are considered equivalent and there is no need for a decision-

making stage to choose a single investment solution. Hence, considering uncertainty as a risk 

based decision-making stage is not included as an explicit requirement for the DER planning 

framework. Nevertheless, the effects of key uncertainties in the multi-objective analysis can 

be evaluated using a “scenario” approach, illustrated in Figure 4-1 and explained next.  
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Figure 4-1 Multi-objective Scenario Analysis 

 

In the Scenario analysis, the multi-objective optimisation is repeated using different 

assumptions for uncertain parameters (e.g. load growth, DER revenue, load profiles). Then, 

the optimal solutions (of each scenario) are evaluated in all scenarios to determine solutions 

that are robust, i.e. perform well in all futures. Thus, the scenario approach Figure 4-1 

consists of the sequential combination of multi-objective optimisations (one for each future) 

and further objective evaluations. This scenario analysed is briefly demonstrated in one case 

study of Chapter 6. It is considered more important to demonstrate in detail other key 

features of the planning framework, such as the analysis of multiple solutions and multiple 

objectives, in diverse problems of DER integration.  

This section focused on the analysis of uncertainty in forecasted parameters, i.e. long-run 

uncertainties. Another degree of uncertainty exists due to the stochastic evaluation of DER 

attributes, in which models are used and only a limited number of DER/demand events are 

evaluated (e.g. evaluation of a limited number of samples or a set of typical DER and 

demand days within the whole planning period). In this case, the evaluation of attributes is 

only an approximation with an established accuracy. This uncertainty is discussed further in 

section 4.5.2.2 and in the next chapter. 
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4.4. Specification of the DER Planning Framework 

The analysis performed in the previous section identified the required characteristics of the 

DER planning framework. In summary, the DER planning framework must:  

1. Deal with multiple objectives 

2. Provide a flexible approach in terms of objectives and constraints 

3. Provide a flexible approach in terms of the possible analyses of DER integration  

4. Consider the stochastic nature of the power system  

5. Permit the analysis of diverse types of DER 

 

4.4.1. Specification of the Optimisation Method 

The requirements for the planning framework determine the specifications for the 

optimisation method. The optimisation method must effectively deal with: 

• Multiple objectives  

• Any type and number of constraints and objectives 

• Integer and discrete variables  

• The optimisation of several types of DER simultaneously 

 

4.4.2. Specification of the Planning Attributes 

Planning objectives focus on the minimisation or maximisation of attributes, while planning 

constraints determine the limits for them. Hence, the selection of the attributes is a key step; 

these must reflect relevant impacts and benefits of alternative solutions. The planning 

attributes included in the framework are listed in Table 4-1. They were determined from the 

review of planning techniques described in the previous chapter, the analysis of the DER 

planning problem presented in this chapter and from discussions with researchers across 

different disciplines. The calculation of each attribute is discussed in detail in the next 

chapter. 
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Table 4-1Attributes - DER Planning Framework 

Technical Units  Environmental Units 

Line Losses  MWh/year  CO2 emissions factor 

(load) 

gCO2/kWh 

Network over voltage 

Probability   

%  CO2 emissions factor 

(total) 

gCO2/kWh 

Maximum voltage 

deviation 

V    

Network overload 

probability   

%    

Maximum thermal 

loading 

%    

Imported Energy  MWh/year  Economic Units 

Exported Energy MWh/year  Annualised cost of DER £/year 

Grid dependency (total 

energy flow through 

network connections) 

MWh/year  Levelised cost per kWh of 

DER 

£/kWh 

DER Energy 

penetration  

%  Annualised DER net 

benefits 

£/year 

Curtailed energy MWh/year    

Dispatched energy MWh/year    

 

An increase in the power system reliability is also recognised as one the potential benefits of 

DER, as already discussed in Chapter 1. A key aspect of increased reliability is the 

availability of DER. Jenkins et al. [4.2] demonstrated that low capacity factor DER (e.g. 

solar, wind) have only a small positive effect on reliability. In addition, when installed in 

radial networks, DER only increase reliability indices if it is permitted to work on an 

“islanded” mode [4.2]. In contrast, DER can reduce network reliability by adding internal 

failures [4.36]. The focus of case studies presented in Chapter 6 is on radial distribution 

networks and on DER with low capacity factor. The possibility of DER working in “islanded 

mode” is not contemplated in these case studies. Hence, reliability indices are not increased 

by the presence of DER, and reliability indexes are not included as planning attributes. In 

this thesis, the reduction of network reliability by DER internal failures is considered 

negligible and it is not evaluated. Some methods to quantify reliability indices of distribution 

networks with DER units are proposed by Jenkins et al. [4.2], and Sun et al. [4.37].  

The list in Table 4-1 provides a wide range of technical, economic and environmental 

attributes. It demonstrates that the planning framework can handle diverse types of 

objectives. Moreover, it will be evident from the specification and development presented 

next that the planning framework could analyse other attributes if necessary, such as 

harmonic distortion, fault levels, total DSO cost, fossil fuel use and reliability. 
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4.4.3. Specification for the Attribute Evaluation 

From the specifications for the planning framework enumerated at the start of section 4.4 and 

the list of attributes presented in Table 4-1, it is determined that the attribute evaluation 

must:  

• Consider the stochastic nature of the power system. Characteristic fluctuations in 

DER production and demand must be analysed  

• Be based on an AC power flow formulation to quantify relevant impacts of DER 

integration (e.g. voltage rise, probability of voltage violation) 

• Evaluate several types of DER simultaneously 

• Analyse controllable DER  

 

Next, the desired characteristic of modern planning techniques, summarised by Ault et al. 

[4.33], are examined briefly. Some of these determine additional requirements for the 

planning framework, and lead to the structure proposed in section 4.5. 

 

4.4.4. Desired Characteristics of Modern Planning Techniques 

Ault et al. [4.33] explore the desired characteristic of modern power systems planning 

techniques. These are grouped according to their relation with the planning activity. Three 

groups are of particular interest for this research: the planning activity scope, the planning 

framework structure and planning data and information. For these groups, Ault et al. [4.33] 

determine that effective planning approaches should: 

a) In terms of the planning active scope: 

 

• Deal with multiple-criteria 

• Enable consideration of multiple and diverse solutions 

• Provide whole system solutions: optimise the system rather than particular 

components 

 

b) In terms of the planning framework 

 

• Be modular in terms of access to analytical components 
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• Provide means of integrating analytical modules and interfacing with other 

applications 

• Be as automated and interactive as appropriate 

 

c) In terms of planning data and information: 

 

• Provide bulk data-handling facilities 

• Provide auditable planning records 

• Enable data and model reuse 

• Enable reuse of solutions 

• Facilitate the use of planning rationale 

 

Some of these requirements are similar to those identified for the DER planning framework. 

For example, the requirement for multiple criteria in the analysis, already discussed in a 

previous section, and the need for multiple and diverse solutions, which is an essential 

condition for a multi-objective optimisation. In addition, Ault et al.’s work suggests that the 

planning framework must be able to produce whole-system solutions. The importance of a 

whole system planning analysis, instead of a one-by-one optimisation, has been 

demonstrated by Harrison et al. [4.38]. Whole-system analyses achieve more optimal 

solutions, and avoid undesirable impacts and network sterilisation, as discussed in the 

previous chapter.  

Also, Ault’s analysis adds a key requirement for the planning framework: modularity. A 

modular implementation of the planning framework will permit the use of “the most 

appropriate analytical functions and applications for the planning task” [4.39]. Modularity 

also provides a solution to some of the requirements enumerated in the previous section. A 

planning framework based on a modular approach permits the evaluation of any number and 

type of attributes, because each particular evaluation can be implemented as a module if 

necessary. Moreover, it is possible to incorporate new objective evaluations easily, without 

the need for a whole reformulation of the framework.  

Finally, the requirement for appropriate data handling is essential in providing a useful 

analytical tool. Only a careful recording of optimal solutions will permit an adequate 

analysis of DER impacts and benefits. Moreover, input information must also be correctly 

stored. In this way, it will be possible to repeat analyses or evaluate different scenarios by 
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changing some of the assumptions. Similarly, if the optimal solutions are properly stored, 

these can be reused; either to compare them with a new set of results or as the starting point 

for a new analysis.  

 

4.5. Planning Framework Structure  

The requirements for the planning framework were summarised in the previous section (4.4). 

In addition, following Ault et al.’s analysis of modern planning techniques, the requirements 

of modularity and a proper recording of input and output information were incorporated in 

this work. Consequently, the structure of the planning framework is designed according to 

these specifications. Figure 4-2 illustrates the high-level structure of the proposed planning 

framework and the information flow and interrelation of the building blocks. The multi-

objective optimisation and the objective evaluation are the key components and are 

explained first. The stochastic objective evaluation is one part of the multi-objective 

optimisation. Nonetheless, given its importance, it is considered separately. 

 

 

Figure 4-2 Multi-objective Planning Framework - High-level Structure 
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4.5.1. Multi-objective Optimisation Algorithm 

The analysis of the DER planning problem determined that the planning framework must 

make use of an optimisation method that:  

• Can optimise multiple objectives simultaneously 

• Can handle any type of constraints and objectives 

• Can handle integer and discrete decision variables 

• Can optimise several types of DER simultaneously 

 

Moreover, an explicit need for a modular approach is identified. Multi Objective 

Evolutionary Algorithms (MOEA), extensively discussed in Chapter 2, offer all of these 

characteristics. MOEA allow the simultaneous optimisation of several DER types, with an 

appropriate chromosome encoding, as demonstrated in the next chapter. Additionally, the 

fitness assignment procedure permits the selection of any attribute as a planning goal and/or 

planning constraint, providing the framework with the flexibility required. The treatment of 

any type of constraints, also required by the planning framework, is facilitated by the 

concept of constraint dominance, discussed in Chapter 2.  

Hence, it is determined that the planning framework will be based on a MOEA. Particularly, 

the Strength Pareto Evolutionary Algorithm 2 (SPEA2) is selected, as it outperforms other 

MOEA in practical applications and it performs well in problems with a large number of 

objectives. Even so, the framework structure presented in this chapter is generic, and can be 

applied to any MOEA.  

Figure 4-3 shows the basic structure of the SPEA2 algorithm and illustrates the input and 

output information flow and the interaction with the stochastic evaluation module discussed 

in the next section. Input information is required in terms of the SPEA2 algorithm 

parameters (population and archive size, crossover and mutation rates, maximum number of 

generations). In addition, information about which attributes are assigned as objectives 

and/or constraints is required to calculate the fitness of each solution using the concept of 

constraint dominance. The key element of the framework, and therefore of the SPEA2 

algorithm, is the evaluation of attributes. This evaluation is performed by means of a 

stochastic simulation, consisting on the repetition of power flow analysis for diverse 

situations of DER production and demand. The evaluation of attributes is discussed in detail 

next. 
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Figure 4-3 SPEA2 Basic Structure with Input and Output Information  

 

4.5.2. Attribute Evaluation 

The analysis of the DER planning problem determined a key requirement for the planning 

framework: the need for a stochastic evaluation of planning attributes. Three other 

requirements in relation to the evaluation of attributes were also identified. First, the explicit 

need for an AC power flow formulation to quantify voltage rise and probabilistic voltage 

constraint violations. Also, an appropriate procedure to evaluate controllable DER units is 

required. Finally, the evaluation of attributes must be able to evaluate different types of DER 

simultaneously. A stochastic evaluation process that complies with all of these requirements 

is discussed next. 
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4.5.2.1. Evaluation of Stochastic Processes 

A stochastic process is a model of a system that “develops randomly in time according to 

probabilistic rules” [4.2]. The power system is a stochastic process. As such, the state of the 

power system at a particular point in time cannot be predicted accurately. Nonetheless, the 

long-term behaviour of DER and demand follows well-studied trends, and can be modelled 

using time series or probabilistic approaches. These models permit the estimation of the 

long-term behaviour of the power system and to quantify the planning attributes. Two 

general approaches exist to evaluate stochastic attributes: direct analytical techniques and 

stochastic simulation techniques [4.40].  

 

Analytical Approach 

Analytical approaches represent the system by a mathematical model and use convolution 

techniques to find the expected values of the stochastic variables (mean and standard 

deviation). They usually provide a fast solution, although they require simplifications and 

assumptions. An example commonly found in power systems applications is the analytical 

resolution of probabilistic load flow (PLF) [4.41]. This type of PLF is based on the 

linearization of the power flow equations and probability theory. PLF calculates the 

stochastic network variables (power flows and voltages) given the probability distribution of 

each load and generator. Although it provides a fast solution, its assumptions are limiting for 

the analysis stochastic and controllable DER. Analytical PLF assumes total independence or 

linear correlations between input variables (loads and generation). This restricts the analysis 

of controllable units. Moreover, PLF was initially developed to be used in transmission 

systems and the linearization of power equations results in larger mistakes when applied to 

distribution systems, due to the larger voltage deviations that exist at the distribution level 

[4.42].  

The assumptions required by analytical methods restrict the scope of the analysis. Hence, the 

evaluation attributes of the proposed planning framework is based on stochastic simulation.  
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Simulation Approach 

Stochastic simulation techniques estimate the attributes by simulating the actual process and 

the stochastic nature of the variables [4.40]. These techniques are widely used for the 

estimation of reliability indices in power systems. It is also possible to use them to evaluate 

the effect of the stochastic behaviour of DER and demand in the planning attributes [4.40]. 

In this case, a series of deterministic power flow calculations, each one for a possible 

condition of DER production and demand, is conducted. The attributes are estimated from 

these observations. The accuracy of the information obtained increases with the number of 

evaluations. For this reason, stochastic simulations require a large computational time, 

although with the capabilities of modern computers this need not be excessive. Nonetheless, 

they are able to provide rich information about the problem being studied. Moreover, 

stochastic simulations do not require an over-simplified model of the system studied; thus, 

they can take into account “virtually any aspect” [4.40]. This is a key feature as it allows the 

consideration of controllable units, as explained later in this chapter and demonstrated in the 

next chapters.  

Stochastic simulation techniques are loosely referred as Monte Carlo Simulation (MCS), 

although strictly MCS only applies to completely random processes [4.40]. Moreover, an 

important feature of MCS techniques is the generation of random numbers. In this work, the 

generation of random numbers is not studied. Hence, the evaluation step is referred only as 

“stochastic simulation”.  

 

4.5.2.2. Stochastic Simulation 

The generic structure for the stochastic simulation proposed is presented in Figure 4-4. 

Deterministic power flow calculations for possible conditions of the power system (DER 

production/ demand) are performed in succession. Events are sampled using information of 

DER production and demand profiles. The network variables (voltages, power flows) permit 

the calculation of other electrical attributes (e.g. line losses, imported and exported power). 

This in turn permits the calculation of economic and environmental attributes. The process is 

repeated for a number of simulations or until a convergence condition based on a required 

degree of precision is achieved. 
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Figure 4-4Stochastic Simulation 

 

Sampling Techniques 

The sampling of simulation periods (or events) can be conducted in two forms: random or 

sequential. Random sampling is based on simulating any interval randomly. Sequential 

sampling follows a chronological order of intervals during the simulation. The use of either 

approach depends on whether the history of the simulation has any effect on the present 

conditions (e.g. energy storage optimisation, hydro generation). Billiton and Allan [4.40] 

recognise that the sequential approach always works, while the random approach is more 

restrictive, although generally faster.  
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In this work, events are sampled from time-series of DER and demand, as discussed in the 

next section and illustrated in the next chapter (Figure 5-19). Random sampling refers to pick 

randomly events from the time series, while sequential sampling refers to simulate events at 

regular intervals. The implementation of both approaches is illustrated and practical 

implications are discussed extensively in the next chapter.  

A key aspect for the MOEA objective evaluation is that in every generation all solutions 

must be evaluated using the same procedure, as the contrary could result in an erroneous 

dominance comparison. Hence, when sequential sampling is used the same sequence of 

events must be evaluated to evaluate all solutions. Similarly, if random sampling is used, the 

same sequence of random numbers must be used to evaluate all individuals. This technique 

is known as “correlated sampling” and it helps to reduce the variance introduced by the 

random sampling [4.40]. 

 

Stochastic Simulation - Input 

The stochastic simulation requires information about the stochastic behaviour of DER and 

load. It is not uncommon in DER planning techniques to evaluate a single “characteristic” 

day, disregarding weekday and seasonal variations for simplicity. Nonetheless, this 

simplification hides some of the most important impacts of DER. Hence, hourly, daily and 

seasonal fluctuations of DER must be evaluated. The use of annual simulation is common to 

determine the impact of several DER solutions [4.18]. Longer term fluctuations are not taken 

into account. 

It is assumed that the input information for the stochastic simulation is in the form of time 

series of data of demand and DER production (also known as profiles or load curves). The 

use of this format has been chosen because information in this format is readily available, 

either from historical records of weather, demand and DER production or from profiles 

produced specifically for research purposes from simulation and/or laboratory testing. 

Moreover, time series of DER and data can be created using appropriate statistical models. 

The use of load-curve methods is encouraged by Rackliffe et al. [4.43] in their guidelines for 

planning DG, as “statistical and load duration curve methods are not nearly as accurate in 

estimating cost and reliability”.  
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The data available for the cases studies, described in detail in Chapter 6, consists of two sets 

of yearly and seasonal profiles with resolutions of 30 and 5 minutes respectively. These 

profiles represent varied DER and load types with 17,520 samples (one year of half hours) or 

6,048 samples (three characteristic weeks with five minutes samples) for each profile, 

according on the data set. For the purposes of the case studies, it is assumed that each set of 

profiles is synchronised. An important aspect of the evaluation of attributes is to take into 

account the correlation between loads, and between loads and DER. Therefore, with both 

sequential and random sampling the interdependence between DER types and load types is 

taken into account by sampling all profiles at the same time [4.41].  

The simulation of attributes in the case studies of Chapter 6 is based on the set of time series 

of DER production and load available. This is a simplification in terms of the strict 

principles of stochastic simulation. A more comprehensive evaluation of attributes would be 

based on the creation of a wider range of simulation events, either by a statistical analysis of 

DER and demand production or by using a larger set of data (e.g. several years). However, 

more detailed modelling of time series of DER production and load from larger statistical 

data is not within the scope of this work. The author is not aware of DER planning 

approaches based on simulation periods longer than one year of hourly data (8760 samples). 

Therefore, the approach proposed is sufficient to demonstrate the planning framework and 

provide a good estimation of the attributes, with a reasonable evaluation speed. The trade-

offs between the evaluation accuracy and the algorithm speed is elaborated in a later section. 

A comparison of the attribute evaluations with results from larger data sets might be a 

worthwhile future exercise to quantify the error introduced.   

 

Power Flow Calculation and Inner Optimisation 

The key element of the stochastic evaluation is the power flow calculation. This calculation 

is based on the resolution of the power flow equations (Equation 4-1), and determines the 

electrical variables (voltages and flows) for every simulated event. Most attributes are 

calculated based on these variables. Since the power flow calculation must be repeated 

numerous times, it is crucial to have a fast and reliable algorithm. Moreover, the type of 

networks evaluated (radial, balanced) determines the need for a specific type of power flow 

approach. The particular algorithm used and its implementation are described in the next 

chapter. 
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The control of DER represents a short-term operational planning of the power system. As 

such, it can be implemented in the stochastic evaluation of attributes.  The methodology 

illustrated in Figure 4-5 is applied in each time step evaluation, when the evaluation of 

controllable units is required. The particular Optimal Power Flow (OPF) formulation used 

and its practical implementation are described in the next chapter. If only un-controllable 

units are evaluated then only a power flow is performed without the OPF correction of 

constraints violations. Similarly, a single power flow evaluation is required to evaluate worst 

scenario conditions (min demand/ max generation). 

Power Flow Calculation

AC Power Flow

Check System 

Constraints (V,I)

Optimal Power Flow

Minimise (Dispatch, Curtailment)

Subject to System Constraints

Calculate 

Attributes

Constraints Violated

OK

 

Figure 4-5 Power Flow Calculation 

 

Stochastic Simulation - Output 

For every event t and for every attribute Ai, an observation ait is produced. Then, the 

attributes can be estimated. Commonly, attributes are calculated as the mean of the 

observations:  
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where n is the number of evaluations. Eventually, a conversion factor can be used to 

transform units (e.g. generated energy to CO2 emissions), or to provide average daily, 

monthly or annual values. Moreover, obtaining other type of information is possible. For 

example, it is possible to capture the extreme occurrence of the simulated attributes: 

[ ]naaaA 222122 ,...,,max=  (4-4) 

 

This is not exactly the same as performing a worst-case scenario analysis, although it 

provides a good approximation with enough samples. It is also possible to estimate the 

probability of an event occurring (e.g. a constraint violation) by keeping a count of these 

occurrences: 
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The three approaches presented permit the estimation of the attributes presented in Table 4-

1. It is evident that the accuracy of the attributes increases with the number of evaluations. 

This is discussed next. In addition, the stochastic simulation is able to provide more detailed 

information on each attribute if required, such as standard deviation, median, percentiles and 

histogram.  

 

Stopping Criteria  

Two types of stopping conditions are commonly used. One is to evaluate a predefined 

number of samples. This condition is normally used with sequential sampling or with 

random sampling when the behaviour of the system is well understood. The second type of 
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stopping condition is based on setting a pre-defined precision for the attributes. The simplest 

form of this condition is the use of the relative uncertainty R as stopping criterion [4.44]: 

nx

s
R =   

(4-6) 

 

where s is the standard deviation of the sample, x  the mean value of the sample, n the 

number of simulations. The relative uncertainty decreases with the number of evaluations. 

Hence, there is a clear trade-off between the speed of the algorithm and the accuracy of the 

attributes.  

MOEA must evaluate hundreds of alternatives over hundreds of generations. Thus, a small 

saving in the simulation time represents a large amount of computation time. The production 

of fast evaluations of the alternatives is crucial. Nonetheless, fast evaluations have reduced 

accuracy. This trade-off is illustrated in Figure 4-6.  
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Figure 4-6 Simulation Accuracy vs. MOEA Speed Trade-off 

 

A more elaborated stopping criterion generates attributes that have a certain confidence level 

of the estimate, given a required precision or confidence interval. Evaluations with 

guaranteed confidence levels and confidence intervals could be used when the interest lies in 
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a particular solution, or a small group of solutions. However, the use of the relative 

uncertainty is sufficient for the high-level analysis proposed and for the purpose of the 

stochastic evaluation. The goal of the stochastic evaluation is to provide an estimate of each 

alternative’s performance, to permit dominance comparisons and guide the search towards 

optimal regions of the search space.  

 

Noisy Objective Evaluations 

When random sampling is used, attributes values for the same DER topology could vary 

between consecutive evaluations, unless the same sequence of random intervals is used every 

time. This variation is commonly referred as a “noisy” objective evaluation. Evolutionary 

Algorithms search principles assume deterministic objective evaluations. Although, single-

objective EA shows “remarkable robustness to all noise levels” [4.45], this is not the case for 

multi–objective EA. Noise has a negative effect on the accuracy of the Pareto set found, 

depending on the noise level. This problem is obviously non-existent when sequential 

sampling is used, as the attribute values for the same DER topology is constant over 

consecutive evaluations in this case. 

Bui et al. [4.46] conducted a comprehensive study of the SPEA2 and NGSA-II algorithms in 

noisy evaluations. Results showed that the SPEA2 algorithm is robust to small amounts of 

noise (R<0.10). In this case, it produces a good approximation of the Pareto set, and 

outperforms NSGA-II. As can be expected, the accuracy of results improves with longer 

simulation runs (larger number of generations). However, for larger noise in the evaluations 

(R≥0.10) the performance of both algorithms, especially SPEA2, is greatly affected.  

Consequently, when random sampling is used, it is essential to guarantee a given accuracy to 

permit consistent comparisons (R<0.10). When this required degree of accuracy cannot be 

achieved in realistic time, the use of sequential sampling is indispensable. The effect of 

different number of evaluations in the computational speed and in the relative precision of 

the estimated attributes is investigated in the next chapter. Results from this investigation are 

used as a guideline to define the sampling technique to use, the stopping criteria R and the 

maximum number of evaluations.  

The optimisation of noisy objective functions is recognised as one of the current challenges 

of the MOEA research area [4.17]. Recently, specialised algorithms for the optimisation of 
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noisier problems have been proposed. For example, Eskandari et al. [4.47] propose the 

concept of “Stochastic Pareto dominance” and present the Stochastic Pareto Genetic 

Algorithm (SPGA, April 2008). The implementation of these specialised algorithms is not 

contemplated in this research; nonetheless, it is recognised as one of the possible avenues for 

further work.  

Stochastic Simulation – Information Flow  

Finally, the information flow between the stochastic evaluation of attributes and the multi-

objective algorithm is illustrated in Figure 4-7.  

 

Figure 4-7 Stochastic Evaluation - Information Flow 
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The MOEA chromosome, once decoded, informs about each alternative configuration of 

DER locations, sizes and types. The stochastic simulation performs several power flows 

using this information and information on DER production and load profiles as an input. 

Also, power flows involve a model of the electric network studied, which is discussed in the 

next chapter. Conversion factors are required to transform electrical attributes into economic 

and environmental variables; thus, they must be provided as input information. Some 

economic attributes are calculated directly from the chromosome information. 

The stochastic evaluation calculates attributes values for each alternative configuration of 

DER. MOEA determines the fitness of each alternative given the attribute values, and using 

the constrained dominance concept and the chosen objectives/constraints of the particular 

analysis. The stochastic evaluation can evaluate attributes that are neither objectives nor 

constraints. Hence, it is also possible to visualise the effect of the optimisation on other 

attributes of interest. This process is clarified with the explanation and examples provided in 

the next two chapters. 

 

4.5.3. Planning Framework- Input Information 

The input data required for the analysis is divided into four groups as seen on the right hand 

side of Figure 4-8. This information is stored in “input files”, which permit the reuse of 

information and the reproduction of analyses.  

A MOEA is used in the planning framework. The parameters for the MOEA must be 

provided. These are population(s) size, crossover and mutation rate and maximum number of 

generations. A discussion on the effect of these parameters was provided in Chapter 2. 

Usually these parameters are problem specific. Some further discussion is provided in the 

next two chapters. Moreover, a problem specific first population creation, which also 

requires input information, is proposed in the next chapter. 

The second group of input information refers to the goal of the analysis: what are the 

benefits and impacts that are going to be analysed? So, the planning objectives and 

constraints must be selected. Any attribute can be a planning objective, a planning constraint 

or both. In addition, the planning framework calculates attributes that are neither objectives 

nor constraints, permitting a wider analysis of DER integration. 
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Figure 4-8 Planning Framework Information Input 

 

The third group of input information is related to economic and environmental conversion 

factors. This information depends on market conditions and the DER technologies.  These 

include: 

• DER emission rates (gCO2/kWh) 

• Grid equivalent emission factor (gCO2/kWh) 

• DER installation cost (£/kW) 

• DER O&M cost (£/kWh or % of installed cost) 

• DER benefits (£/kWh) 

• Discount rate for DER (%) 

• Time frame analysis for DER (years) 

 

The fourth set of input information provides the data to perform the objective evaluation: 

 

• Network Electrical Data 

o Network topology 

o Circuit impedance 
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o Operating limits:  

� Maximum and minimum voltage limits 

� Thermal limits 

• Load 

o Load type of each node 

o Load maximum value per node 

o Load profiles per load type 

• DER  

o DER production profiles per DER type 

o DER maximum capacities per DER type 

 

The main goal of the case studies presented in Chapter 6 is to demonstrate the flexibility and 

applicability of the planning framework and to produce conclusions about DER benefits and 

impacts. Hence, these case studies use historic data of load profiles. Some case studies 

include historic data of DER production while others are based on profiles produced by 

means of weather data and DER models. Detailed information is provided on each case 

study. The use of historic and modelled data is reasonable for the purposes of the case 

studies. A similar approach can be found in other studies that consider the time-variability of 

DER and load [4.5][4.22].  

In addition, in the case studies of Chapter 6 load profiles and DER production profiles are 

considered invariant over the years; hence, no efficiency measures or climate change effects 

are included in the analysis. The use of more elaborated forecasting techniques for load and 

DER is essential for a practical study. Load forecasting techniques are well covered in the 

literature (see for example [4.1[) and are not included in this thesis. The study and 

development of other parts of the planning framework are more important to demonstrate the 

novelty of this research. Hence, most time was spent in the research and development of the 

flexible multi-objective approach proposed and on the analysis of different problems of DER 

integration.  

 

4.5.4. Planning Framework – Output Information 

The output of the planning framework must generate an answer the two questions proposed 

in section 4.2. The first question is related to the decision space (what are the best 
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configurations to achieve several objectives?) while the second one is related to the objective 

space (what are the correlations between objectives?). The MOEA solution provides the 

answer to the first question. The optimal configurations are known, and it is possible to 

analyse trends in DER deployments (e.g. nodes and DER sizes) or particular configurations, 

as illustrated in Chapter 6. Answering the second equation requires a further step of analysis 

and visualisation.  

4.5.4.1. Multi-objective Visualisation and Analysis 

A two objective trade-off can easily be visualised in a two-dimensional graph. In the case of 

a tri-objective analysis, a useful visualisation technique is the scatter plot, where the two 

chief objectives are plotted in the main axes (x and y) while the third objective determines 

the colour (or size) of the data points. An example is illustrated in Figure 4-9.   

 

Figure 4-9 Example of a Scatter Plot 

 

Nonetheless, illustrating a set of solutions with a large number of objectives is more difficult. 

The simplest option is to use bar plots [4.48]. First, the solutions are arranged in terms of one 

of the objectives. Then, each objective for each solution is plotted with a bar (usually of 

different colour). Since objectives ranges usually vary (i.e. different units and different 

magnitudes), normalised scales are used. The bar plot is useful to illustrated a small number 

of solutions. Even so, visualisation of trends becomes harder for larger sets. 

In this case, the set of results P of the optimisation of m objectives can be visualised by 

projecting it in every two-objective plane. This gives a set of m(m-1) bi-objective plots, each 

one illustrating the trade-offs between a pair of objectives. Only m(m-1)/2 plots are 

necessary if only one plot is produced for every pair of objectives (instead of two).  
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Moreover, since the diagonal of the graph is not used, it is possible to plot the histogram for 

each objective, or other useful information, in this ‘space’ if required. This visualisation 

method is referred to as a “scatter plot matrix” method. This method permits the visual 

identification of conflict or correlation between pairs of objectives. Moreover, maximum and 

minimum attainment levels (and therefore the range) of each objective are identified. Figure 

4-10 illustrates an example using a set of results with three objectives. 

 

Figure 4-10 Scatter-Plot Matrix Method 

 

The determination of correlations between pairs of objectives is very important. Strong 

negative correlation between two objectives indicates a conflict between them. In contrast, 

when two objectives have a high positive correlation, they represent the same causal effect. 

Hence, only one of the objectives needs to be studied. Reducing the number of objectives in 

the study facilitates the analysis of results.  

Linear correlations can be determined by Principal Component Analysis (PCA) [4.49]. In a 

PCA all elements in P undergo a linear transformation along the eigenvectors of the 

covariance matrix of P
T
P. The eigenvector corresponding to the largest eigenvalue represents 
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the direction that exhibits the largest variance in P; the second largest eigenvalue 

corresponds to the second orthogonal direction of largest variance in P and so on. In other 

words, the axes are rotated to coincide with the orthogonal directions of largest variance in 

the data. Commonly only two or three principal components are visualised [4.3]. Projection 

along the two eigenvectors (or principal components) corresponding to the two largest 

eigenvalues of the original objective directions gives a set of two-dimensional axes in which 

linear correlations are visualised. It was confirmed by test cases in this thesis that the 

reduction of an m-dimensional trade-off set to the two principal components still maintained 

over 80% percent of the total variance in the original set, given the attributes proposed in 

Table 4-1.  
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Figure 4-11 Principal Component Analysis 

 

In the PCA plot, the x-axis corresponds to the largest variance in objective values, while the 

y-axis corresponds to the second largest orthogonal variance. The vectors illustrate the 

direction and magnitude of variation on the objectives. The angle between vectors indicates 

the linear correlation between objectives. A small angle means a strong linear correlation; a 

square angle means no linear correlation in the analysed data. A negative correlation results 

in opposite vectors. Three vectors separated by 120 degrees show objective interdependence, 

each objective is negatively correlated with the remaining two. PCA is a statistical analysis 
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method, which includes the calculation of the covariance between objectives. Hence, 

objectives correlations are also quantified numerically, besides being illustrated in the PCA 

plot. 

The PCA plot illustrates only linear correlations. Therefore, care must be taken when 

nonlinear correlation exists between objectives. For example, the U-shape at the top of 

Figure 4-10 results in a very small linear correlation in Figure 4-11. Consequently, it is 

advisable to analyse the PCA plot together with the Scatter-Plot Matrix plot to get a better 

understanding of the problem. Other multi-objective visualisation methods were studied, 

such as the Value Path and the Star Coordinate method [4.48]. Nonetheless, these methods 

could not illustrate correlations as clearly as the combined use of the Scatter-Plot Matrix and 

PCA plot, for a large number of solutions.  

 

4.5.4.2. Decision Making 

It is not the objective of the planning framework to provide a single solution. Nonetheless, 

the high-level structure of a further “Decision making” module is proposed in Figure 4-12. 

As explained in Chapter 2, the multi-objective formulation of the problem permits a deep 

understanding of it. Then, it is possible for the planner to express preferences using 

appropriate decision-making techniques and choose a single solution. Several publications 

review Multi Criteria Decision making techniques (see for example Hobbs and Meier [4.6] 

and Deb [4.48]). Once a single solution is chosen further engineering, design and financial 

studies must be conducted to produce an investment plan. The information obtained by 

means of the planning framework could also support further refinement of the analysis (e.g. 

study other objectives, change constraint limits, analyse a different scenario) to gain more 

understanding of the problem or a given sub-set of solutions of particular interest.  
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Figure 4-12 Decision Making Module 

4.6. Summary 

Based on an analysis of the DER planning problem under the perspective of this work, the 

key requirements for the planning framework have been identified. The DER planning 

problem is characterised by multiple and conflicting objectives. Also, many perspectives for 

a DER integration analysis are possible. Therefore, the DER planning framework must be 

based on an appropriate multi-objective optimisation technique. Moreover, a crucial degree 

of flexibility is required in terms of planning objectives and constraints.  

DER is also characterised by a high degree of diversity in technologies and energy sources. 

These have a determinant effect on planning objectives and constraints. Thus, simplified 

methods for evaluating the time variability of DER would undermine the very nature of the 

proposed study. An appropriate approach for the analysis of diverse types of stochastic and 

controllable DER is required. 

Based on these requirements, which include an explicit need for a modular approach, the 

structure of the planning framework is proposed. It is based on a state-of-the-art MOEA and 

has an inner module for DER stochastic simulation. The proposed structure provides a 

flexible approach in which different stochastic attributes can be evaluated. In addition, the 

structure of the optimisation and simulation modules permits the selection of different 

attributes as planning objectives and constraints. The solution enables the incorporation of 
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other attributes evaluations and further modules to process input information and/or analyse 

output information.  

The specific techniques implemented in the next chapter have been outlined. The 

optimisation is based on the SPEA2 algorithm. The objective evaluation is based on a 

stochastic simulation, which includes an inner loop AC power flow. Controllable units are 

analysed using an OPF. Some of the issues and assumptions surrounding the 

implementations of these techniques have been introduced. Simplifications to the planning 

framework, and relevant methods to handle them, have also been mentioned. In the next 

chapter, the practical implementation of the planning framework is discussed in detail. 
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Chapter 5 

5. Development of the DER Planning Framework 

5.1. Introduction  

The previous chapter discussed the complexity of the DER planning problem. Based on this 

analysis, it identified the requirements and proposed the structure for a planning framework 

for DER integration analysis. The planning framework is based on the SPEA2 algorithm, 

whose structure and working principles were described in detail in Chapter 2. The evaluation 

of the objectives within the SPEA2 algorithm is based on the stochastic simulation of 

potential DER configurations. The structure of this stochastic evaluation was described in the 

previous chapter. This stochastic evaluation makes use of a power flow algorithm and of an 

optimal power flow optimisation when controllable units are being evaluated.  

This chapter explains the implementation of the planning framework into a multi-objective 

analytical tool. Each one of the techniques on which the framework is based is discussed. 

The chapter describes essential assumptions and decisions on which the implementation is 

based. Moreover, it discusses the platform in which the framework was implemented and the 

reasons why this platform was chosen.  

This chapter is structured as follows: Initially, the platform and structure of the planning 

framework are introduced. Next, the development of SPEA2 operators for the DER planning 

problem and the choice of SPEA2 parameters are detailed. Afterwards, the power flow 

algorithm used is explained. Then, the optimal power flow optimisation, and its 

implementation as a linear programming problem are discussed. In a subsequent section, the 

detailed calculation of each of the planning attributes is explained, discussing the importance 

of each planning attribute in the context of DER planning. Finally, the sampling procedure 

within the stochastic evaluation is explained. In particular, different sampling techniques are 

examined, and their effect on the speed and accuracy of the stochastic evaluation illustrated.  

 

5.2. Platform and Structure   

The choice of an adequate software platform and structure for the planning framework is a 

key aspect. The software platform has a determinant effect on computation speed. Also, it 
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decides the time spent on the software coding. In addition, an adequate software platform 

and structure will ensure the future use and development of the framework by other 

researchers, and its integration with other existing models/simulation frameworks.  

 

5.2.1. Platform 

The planning framework was implemented in Matlab. This software platform was chosen for 

the following reasons: 

• It is a well-known software platform, widely used in the power systems research 

community  

• It has built-in functions for matrix algebra and complex number manipulation  

• It has advanced graphical visualisation techniques for multi-dimensional data 

• It can be linked to Excel for information input and output 

• It provides an optimisation tool-box with a linear programming solver, used in the 

resolution of the inner OPF 

• It provides built-in functions for Principal Component Analysis 

• Its ease of use and the author’s familiarity with it 

 

The planning framework uses a large number of matrix and vector calculations. As a result, 

all matrices are stored as sparse matrices, to reduce the use of RAM memory, and increase 

computation speed. The Profiler function of Matlab was used extensively to enhance the 

computation speed of every single procedure.  

 

5.2.2. Structure   

Each element of the planning framework is implemented as a Matlab function with the form: 

1 2 1 2( , ,...., ) ( , ,..., )n noutput output output function input input input= . 

Figure 5-1illustrates the main functions implemented within the planning framework.  
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Figure 5-1Planning Framework Structure 

These functions are grouped into five main procedures, as illustrated in Figure 5-1. Each 

function is independent and only linked to the rest of the code through the input and output 

arguments. Functions operate with variables within their own workspace, as opposed to 

scripts that use global variables. As a result, functions can be modified, extended or replaced 

when necessary without updating the rest of the code. This ensures the modularity of the 

planning framework. Modularity facilitates the inclusion of new objective evaluations (e.g. 
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fault calculations, reliability) and the test and development of different SPEA2 operators 

(e.g. first population, crossover and mutation operators). 

 

5.2.3. Input and Output Information 

Input information is provided in three Excel files. The first file stores the objectives and 

constraints of the study. This file also contains input data on each DER type considered in 

the study such as: maximum DER sizes and numbers, the controllability of the DER unit 

(curtailment/dispatch); emissions factor; capacity costs; dispatch and curtailment costs; 

operation and maintenance costs; and benefits per unit of energy of each DER type. The 

second file provides the production profiles for each DER type and demand profiles linked to 

each network node by the load type. The third file provides the network impedances, the 

network topology data, the load installed in each node and the corresponding load type. The 

UKGDS format [5.1] is used for the profiles and network files. The SPEA2 algorithm 

parameters are provided in the Matlab command line. Output information consisting of the 

optimal configurations and their objectives values are stored in Excel files once the SPEA2 

provides an optimal solution. 

 

5.3. SPEA2 Applied to the DER problem 

The working principles of evolutionary algorithms and the structure of the SPEA2 algorithm 

were discussed in detail in Chapter 2. In this section, the practical implementation of the 

SPEA2 algorithm for the DER planning problem is described.  

 

5.3.1. Decision Variables and Chromosome Structure 

A key step in the solution of a problem by means of EA is the adequate encoding of the 

decision variables. An appropriate encoding philosophy must reflect the building blocks of 

the problem. Four types of decision variables are considered by the planning framework. 

These are the optimal number of DER units to install, the optimal locations where DER units 

should be installed, the optimal DER types and the optimal DER capacities to install in each 

location. Given these decision variables, the basic building block of the DER planning 
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problem is the DER unit. DER units installed in each node are encoded as genes, as 

explained next. The network configuration is used as the structure of the chromosome. The 

network is assumed unchanged during the period of analysis.  

 

5.3.1.1. Encoding 

Every DER installed in each node is encoded as one gene in the chromosome. The 

chromosome is represented by a vector with a number of elements equal to the number of 

network nodes. Each network node is represented as concatenation of integer numbers, as 

illustrated in Table 5-1. 

Table 5-1Chromosome Encoding 

Network Node Node 1 Node 2 Node 3 Node i Node n 

Chromosome Genes G1jG12G11 G2jG22G21 G3jG32G31 GijGi2Gi1 GnjGn2Gj1 

 

Each integer number Gij in the gene corresponds to j
th
 DER type installed in the i

th
 node. By 

default, it is assumed that every node in the network is a possible location for a DER 

installation. If only some nodes are studied, a reduced network structure is used as the base 

of the chromosome. Similarly, the installation of specific DER types in particular nodes can 

be restricted to reflect existing technical constraints, as illustrated in one case study in the 

next chapter.  

The planning framework must analyse several types of optimisation problems, as discussed 

in the previous chapter (section 4.3.1.3.). Hence, flexibility is required in the encoding 

system. Table 5-2 shows three different types of analysis that the planning framework 

supports, and the encoding for Gij used for each analysis.  

The total number of units in the whole system can be limited for each DER type, as in the 

examples provided in Table 5-2. The procedures for first population creation, crossover and 

mutation explained next include routines to guarantee that the maximum number of DER 

units per type is not exceeded. Alternatively, the analysis can be targeted at finding the 

optimal configuration for the whole network. In this latter case, the maximum number of 

units per type in the whole network is not limited. Still, the maximum number of DER units 

of a type per node is limited (analysis 2 in Table 5-2), or the maximum size of DER units is 
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restricted (analysis 3 in Table 5-2). These possibilities are clarified with the two case studies 

presented in the next Chapter. 

Table 5-2 Gene Encoding 

 Analysis Type Gij Decoding Example 

A
n

a
ly

si
s 

1
a

 

Optimisation of the location 

for DER units of 

predetermined size:  
 

A number of DER units per 

type must be optimally located 

in the network. A single unit of 

each type can be installed per 

node. This problem is a sub-

category of the one expressed 

in the next row. 

 

1 or 0 1 if unit of type i 

is installed in 

node j, 0 

otherwise.  

Find the best locations 

for two 500 kW CHP 

installations and three 

200 kW wind turbines. 

Only one unit of each 

type can be installed per 

node. 

 

A
n

a
ly

si
s 

2
 

Optimisation of the location 

of DER installations and the 

number of installations per 

node:  
 

A number of DER units per 

type must be optimally located 

in the network. Each node can 

have up to ntype DER 

installations per type. The size 

of each DER type is 

predefined. 

 

0,1,2….,ntype The number 

represents the 

number of units of 

type i installed in 

the node j, from 0 

to a maximum of 

ntype.  

Find the best location for 

20 PV systems of 1 kW 

each one and 5 micro-

wind turbines of 2 kW 

each one. Each node can 

have a maximum of 3 

systems of each type.  

A
n

a
ly

si
s 

3
 

Optimisation of the location 

and size of DER installations: 
  

A number of DER units must 

be optimally located in the 

network. Also, the size of each 

unit is optimised (per type). A 

maximum capacity is defined 

for each DER type. 

 

0,1,2,…,99 

 

The number 

represents the size 

of the DER unit of 

type i installed in 

node j in % of 

maximum 

capacity.  

Find the best size and 

location for 40 systems 

of each DER type. Each 

node can have PV 

installation up to 50 kW 

and CHP units up to 20 

kW.  

 

The second and third type of analysis are based on the assumption that DER units are 

scalable and that capacity factors are constant for all DER sizes installed in the same area. In 

this case, the same production profile can be applied to all DER sizes. This assumption is 

solid for modular systems such as PV installations and some gas generators. In contrast, this 

assumption is weak for wind turbines, as normally the capacity factors of wind turbines of 

different size vary. Hence, for a more adequate sizing analysis of non-scalable technologies, 

such as wind turbines, each generator size should be considered as a different DER type, 
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with an appropriate production profile applied. Then, the first analysis type should be used to 

determine the optimal sizes.  

 

5.3.1.2. Decoding 

The decoding procedure translates the chromosome vector into a matrix of installed 

capacities of DER (CDER). Each element CDERij in the i
th
 row and j

th
 column corresponds 

to the size of the DER of type i installed in the node j:  

11 12 1 1

21

1

1

...

... ... ... ...

... ...

... ...

j Node

i ij iNode

Type Typej TypeNode

Nodes

CDER CDER CDER CDER

CDER
CDER Types

CDER CDER CDER

CDER CDER CDER

 
 
 =
 
 
  

 

 

  

(5-1) 

The matrix CDER permits the direct calculation of some basic attributes of the configuration 

represented by the chromosome, such as installed capacities and installation costs. These 

basic attributes are used to determine some of the planning attributes discussed in the 

previous chapter. The calculation of all of the attributes is explained in section 5.6. 

 

5.3.2. First Population Creation 

The creation of a diverse first population is essential to guarantee the exploration of the 

whole search space, as discussed in Chapter 2. Most GA-based DER planning techniques are 

based on the creation of random but feasible topologies for the first population. In the 

planning framework, two methodologies are used to create the first population.  

First, a user-defined fraction of the first population is created by adding random DER units. 

Each initial solution is restricted to a maximum penetration level for each DER type. This 

maximum penetration level is defined depending on the conditions of the analysis, such as 

DER sizes, maximum number of units, size of the network and loading level of the feeders. 

This limit prevents the algorithm from creating unfeasible topologies. The remainder of the 

population is created by adding increasing penetrations of each DER type to all the nodes 

that are considered for DER installations, deterministically, up to the maximum penetration 

limit set for each DER type. This procedure is a “uniform” first population creation, as 
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suggested by Haupt et al. [5.2]. The “do-nothing” case (i.e. no DER) is also included in the 

first population, as it is known to be Pareto optimal in some objectives (e.g. DER installation 

cost, DER penetration level).  

These three procedures provide the SPEA2 algorithm with varied topologies to start the 

search. In addition, if there are solutions that are known to be near optimal, for example from 

a previous study or from an examination of the problem objectives, these should be “seeded” 

in the initial population to increase the search speed. 

 

5.3.3. Objective Evaluation and Constraint Handling  

In every evolutionary generation, planning attributes are computed for every potential 

solution by the stochastic evaluation process. A matrix of planning attributes is created. Each 

column of the matrix corresponds to a planning attribute, listed in Table 4-1 of the previous 

chapter. Each row corresponds to a potential solution, i.e. a chromosome of the population. 

The calculation of each attribute is detailed later in this chapter (section 5.6). 

The objectives and constraints of the analysis are defined in an input file for each particular 

study. Any attribute can be selected as a planning objective, planning constraint or both. 

Given the specific objectives, a matrix of objectives O is created by copying the respective 

columns of the attribute matrix, as illustrated in Figure 5-2. Since all the attributes are 

computed and stored in the attribute matrix, planning attributes that are not planning 

objectives can still be studied and visualised. Next, given the constraints defined for the 

analysis, an overall constraint violation Cj is calculated for every j
th
 chromosome, as the sum 

of the relative constraint violations: 

ij i

j

i i

a c
C

c

−
=∑  

 

(5-2) 

 

where ai is the i
th
 attribute of the jth chromosome and ci is the respective constraint value. 

Constraints can be defined for all, some or none of the planning attributes. A check routine 

prevents errors when the constraints are set to zero. The constraint-dominance concept, 

explained in Chapter 2, is used to include planning constraints in the SPEA2 algorithm. This 

method ensures a flexible approach as an attribute that is an objective can also be 
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constrained, attributes can be constrained even if they are not planning objectives, and if no 

constraints are defined (C=0) the usual concept of dominance is applied. 

  

 

Figure 5-2 Attributes, Objectives and Constraints 

 

Finally, once the dominance relationships between all solutions have been computed, the 

fitness of each solution is calculated according to the specific fitness assignment procedure 

of SPEA2, explained in Chapter 2. 

 

5.3.4. Selection  

Binary tournament has better or equivalent convergence and computational properties than 

any other reproduction operator [5.3]. Hence, for the selection step, a binary tournament 

procedure has been implemented, as illustrated in Figure 5-3.  
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Figure 5-3 Binary Tournament 

Pairs of solutions are chosen and their fitness compared. The index of the fittest solution is 

stored in a mating pool vector. In the unlikely case that two solutions have exactly the same 

fitness value, one of them is chosen randomly and its index copied to the mating pool. The 

procedure is repeated until the mating pool is full, that is when enough “parents” have been 

chosen to create a completely new population. Since each parent creates a new member, the 

size of the mating pool is equal to the size of the population. 
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5.3.5. Crossover 

In the DER planning problem the ‘crossover’ procedure exchanges groups of DER units 

between two successful topologies to eventually find optimal DER mixes and configurations 

that perform better in one or more objectives. Different crossover types were reviewed in 

Chapter 2. Uniform crossover has been demonstrated to perform better than two-point and 

single-point crossover in other problems [5.2]. In the DER planning problem, uniform 

crossover facilitates the search for optimal DER mixes in the nodes, as explained next. 

Hence, this crossover type was implemented in the planning framework.  

The single-point and double-point crossover operators exchange large groups of adjacent 

genes at once, as illustrated in Chapter 2. These operators are less disruptive, and groups of 

genes (i.e. DER) from the initial solutions are likely to remain together for several 

evolutionary generations.  As a result, when using single or double-point crossover the 

search for optimal DER mixes in the nodes relies heavily in the mutation operator, which 

usually has a low probability of occurrence. Tests conducted in this research showed that 

“building blocks” created in the first population remained in the final solution after hundreds 

of generations. On the contrary, uniform crossover exchanges each gene independently, not 

in groups, according to a ‘crossover mask’ created using uniform random numbers. Because 

this crossover method is more disruptive, it favours the exploration of the whole search space 

[5.4]. Hence, new DER mixes are created in the nodes at every evolutionary generation, and 

uniform crossover is more likely to find optimal DER mixes in the nodes. Optimal solutions 

are kept in the elite population for the next generation. Therefore, these solutions are not 

destroyed. 

 

5.3.5.1. Crossover Operator Implementation 

Two different uniform crossover approaches are necessary, depending on whether the 

number of DER units per type is limited or not.  

 

Whole Network Analysis 

When any number of DER units per type can be installed in the network, the crossover 

process is exactly as discussed in Chapter 2 and illustrated in Figure 2-15. A crossover mask 
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vector of the same length of the chromosomes is created. Then, genes between two parent 

chromosomes are exchanged to create two offspring chromosomes. The process is repeated 

iteratively; pairs of parents are chosen from the mating pool, until a whole new population 

has been created. 

 

Limited Number of DER 

If the number of DER units per type is restricted for the whole network, the previous 

procedure might result in configurations that exceed the maximum number of DER units per 

type. For example, imagine that the limit of DER is half of the network nodes, and that the 

first parent has DER installed in all odd nodes, while the second parent has DER in all even 

nodes. Then, it is possible that one of the offspring could exceed the limit of DER (half of 

the network nodes), unless the crossover mask perfectly balances the exchange of 

genes/DER. Therefore, to avoid exceeding the limit of DER per type, an additional step is 

added.  

 

Figure 5-4 Crossover for Limited Number of DER Units 

For each chromosome, and for each DER type, two vectors are created. The first vector 

stores the DER sizes and the second vector the DER locations of the chromosome. The 

length of each vector is the maximum number of DER units for that type. Then, both DER 
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sizes and DER locations are exchanged between the parent chromosomes, using the same 

crossover mask. This can be understood as “moving” a DER unit from one topology to the 

other, depending on the crossover mask values. This method prevents a topology from 

exceeding the limit of DER. Moreover, it supports the crossover between solutions with 

different numbers of units (of the same type), as seen in the example illustrated in Figure 

5-4. Also, since this procedure is performed independently for each DER type, different 

maximum number of units can be defined for each DER type. Once the crossover process is 

performed for all DER types, the full chromosome is “reconstructed”. 

In the example of Figure 5-4, only a DER type is illustrated. The limit of DER units is three. 

A parent with three DER units and a parent with two DER units are mated. The crossover 

mask indicates whether a unit is being exchanged or not (0 if it is exchanged).   

Finally, a “check” routine is implemented to prevent a child chromosome being assigned two 

units in the same node. For example, if the second unit of parent 1 (30 in node 4) was located 

in node 3 instead, and given the crossover mask, offspring 2 will be assigned two units in 

node 3 (15 and 30) simultaneously. The check routine prevents this problem occurring, 

impeding the exchange of the gene. 

 

5.3.6. Mutation 

The mutation operator provides the population with new genes, and favours the exploration 

of the whole search space. Even if it has a low probability of occurrence, it is important for 

maintaining the diversity of the population, as discussed in Chapter 2.  

 

5.3.6.1. Mutation Operator Implementation 

As in the case of crossover, two different mutation procedures were implemented, depending 

on whether the number of DER units per type is restricted or not. 
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Whole Network Analysis 

In the case that only a placement analysis is carried on (Analysis 1 in Table 5-2), and if the 

number of DER units is not restricted per type, the mutation operator simply consists of a 

“bit-flipping” operation. Therefore, if a gene is being mutated, its binary value is flipped.  

When the analysis includes sizing of DER units (Analysis 2 and 3, Table 5-2), and with a 

probability equal to the mutation rate, each gene is mutated as follows: 

• If a generator of type j exists in node i (Gij>0):  

o It is removed with a low probability (p1)  

o Its size is changed to a random value with a high probability (1-p1).  

• If there is no generator of type j in node i (Gij>0):  

o A generator of random size is added to node i  

 

A probability p1 is added to allow the mutation operator to delete DER units. Deletion is 

necessary as test cases showed that DER penetrations tend to increase rapidly in this type of 

analysis, because of the crossover operator. Therefore, the ‘0’ gene must be re-included in 

the chromosomes from time to time to preserve diversity.  The value of p1 was determined 

empirically (10-20%). 

 

Limited Number of DER per Type 

When the number of DER per type is limited in the network, two vectors for each DER type 

and for each chromosome are created, as illustrated for the crossover operator in the previous 

section (Figure 5-4). Then, if the gene is being mutated, values from each vector are changed 

as follows: 

• If a generator of type j exists in node i (Gij>0) either:  

o Its location is changed and the size maintained, with 50% of probability. 

o Its size is changed (or bit flipped to zero) and the location maintained, with 

50% of probability. 

• If there is no generator of type j in node i (Gij=0):  

o A generator of random size is added (or bit flipped to one) in a random 

location  
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5.3.7. SPEA2 Parameters 

Four parameters must be set for the SPEA2 algorithm. These are the population size, the 

archive size, the crossover rate and the mutation rate. It was already discussed in Chapter 2 

that the size of the population depends on the difficulty of the problem. The more “difficult” 

the problem, the larger the population should be, because small populations do not provide 

enough diversity [5.5]. However, if the population is too large the computation time could be 

extremely large, without a proportional increase in the quality of the solution [5.6].  

Similarly, the archive size is one of the more influential parameters in SPEA2. The archive 

solutions have a direct participation in the fitness assignment procedure, and only solutions 

from the archive participate in the selection, crossover and mutation procedures. Ziztler et al. 

[5.7] mention that too many non-dominated solutions (i.e. a large archive) might reduce 

selection pressure, as most solutions will have a similar fitness. In his doctoral thesis, Ziztler 

[5.5] used archive sizes between 25% and 80% of the population size for test problems using 

the SPEA algorithm. For SPEA2 [5.8], the authors used an archive size equal to the 

population size in all the test problems they conducted and they used population sizes 

between 250 and 400. A similar approach was applied by Mori et al. [5.9] in a power 

systems application reported in Chapter 2: the archive size was set equal to the population 

size, and population sizes of 100 and 200 were used. On the contrary, Rivas-Davalos et al. 

[5.10] used a population size of 200 and archive size of 50 for other power systems 

application.  

In the test studies conducted in this thesis, population sizes between 100 and 400 members 

were used. The archive size was set equal to between 25% and 75% of the population size. 

The implementation of SPEA2 in Matlab was validated using both test functions for which 

the Pareto front is known [5.8], and using the DER planning problem. In this latter case, and 

because the Pareto front is not known, the results obtained by SPEA2 were contrasted with 

results obtained by exhaustive random trials. In the problems studied, and given enough 

generations (>300), the SPEA2 satisfactorily approximated the Pareto front. 

An appropriate mutation rate is important to maintain the diversity of the population. Ziztler 

et al. [5.8] used a mutation rate of 0.006 for the SPEA2 binary test problems. Deb et al. 

[5.11] employed a mutation rate of 1/n for NSGA-II for real coded problems, where n is the 

number of decision variables. Man et al. [5.4] reported some guidelines that suggest using a 
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mutation rate of 0.001 for large populations (100) and a mutation rate of 0.01 for small 

populations (30). In this work, the mutation rate is set equal to 1/n, where n is the number of 

genes, as suggested by Deb et al. [5.11]. Hence, on average one gene of each chromosome 

will be mutated in every generation.   

SPEA2 is an elitist algorithm. Optimal solutions are preserved for the next generation in the 

external archive. Hence, a high crossover rate (0.8-1.0) is commonly used in elitist MOEA 

[5.7], [5.12], [5.13]. In this work, a crossover rate between 0.90 and 0.95 is applied. So, 

between 5% and 10% of the parents are not combined, but are mutated at every generation to 

produce new offspring. The implementation of dynamic mutation and crossover rates in the 

DER planning problem, as suggested in [5.14], is recognised as an interesting possibility for 

further work.  

 

5.4. Power Flow Algorithm 

The case studies presented in Chapter 6 are concentrated on radial distribution networks. 

Radial networks represent the instance where vast amounts of DER will potentially be 

integrated (e.g. rural areas, LV networks with micro generation) and where DER impacts 

have been recognised to limit DER integration [5.15]. Moreover, almost all MV distribution 

networks are operated radially [5.16]. In the case studies, networks are assumed to be 

balanced. The study of balanced radial networks requires the use of particular power-flow 

techniques. Newton-Raphson methods, commonly used in interconnected transmission 

system studies, are not appropriate for the analysis of distribution networks because of the 

high R/X ratios and the weakly meshed or radial structure of these networks [5.16] [5.17]. 

Instead, a number of algorithms have been proposed specifically for the analysis of radial 

distribution systems. These methods exploit the radial structure of the network and provide a 

simple formulation. In addition, they are quite robust for heavy loads and less sensitive to 

high R/X ratios [5.18].  

The power-flow calculation implemented in this work is based on the method proposed by 

Bombard et al. [5.17]. It is a backward/forward sweep (BFS) method for balanced radial 

distribution systems. The BFS algorithm implementation is explained in detail in Appendix 

B. Next, some key assumptions of its implementation are discussed. 
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5.4.1. Power Flow Algorithm: Input and Output 

The input arguments required for the power flow algorithm are the grid voltage, the network 

topology and impedance and the active and reactive load injected in each node. A node-to-

branch-incidence matrix L is determined from the topology of the network, as explained in 

Appendix B. A diagonal matrix Z is used to represent network impedances. The radial 

distribution circuits are modelled as a series impedance z=r+j*x. Each i
th
 diagonal element of 

Z corresponds to the complex impedance of the i
th
 branch. Capacitance effects are ignored. 

This model is adequate for most radial distribution systems, except in the cases of long lines 

where a π model is required [5.16].  

The vectors of power withdrawn at each node Pnode and Qnode are the difference between the 

load power (PLoad, QLoad) and the total power injected by DER units (PDER, QDER):  

= −node Load DERP P P  (5-3a) 

= −node Load DERQ Q Q  (5-3b) 

 

The BFS is a deterministic calculation for a single snapshot of the system. Therefore, the 

load power (PLoad, QLoad) and the DER injected power of each node (PDER, QDER)  are 

sampled from the load profile of each node load type and from the DER profile of the 

installed DER in each node. The sampling implementation is discussed later in this chapter 

(section 5.7). Constant power models are assumed for both loads and DER. This model is 

commonly used for loads in distribution systems planning [5.19], and it is also appropriate to 

model most distributed generators in steady state operation [5.20], [5.21]. 

The output arguments of the BFS algorithm are the vectors of node voltages, line and node 

currents.  

 

Node voltages:    Vnode=[V1, V2,…,Vi,…Vn]
T
 

Line currents:   Iline=[Iline1, Iline2,...,Ilinei,....,Ilinen]
T
 

Node currents:   Inode=[Inode1, Inode2,…,Inodei,…,Inoden]
T 
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The analysis is single phase; all node voltages are phase voltages. It is assumed that the grid 

voltage Vgrid is constant. The BFS power flow is implemented as an independent function. 

Therefore, other power flow calculation for unbalanced or meshed networks can be 

integrated when required, provided that the output arguments maintain the format and 

structure mentioned. 

 

5.4.2. Accuracy and Performance 

Because of the stochastic evaluation of attributes and the use of an Evolutionary Algorithm, 

the power flow analysis is performed millions of times in a single DER integration analysis. 

Therefore, the power flow calculation must be accurate and fast. Three different radial 

networks were analysed (19, 83 and 355 nodes). Node voltages and power flows were 

compared with result obtained using two commercial packages: PSS/E and PSCAD. In all 

cases, the relative errors obtained were less than 0.1%. A single power flow calculation takes 

between 2 and 3 milliseconds. A whole year simulation (17520 samples) of a 355-node 

network is performed in around 40 seconds with a voltage resolution of 1e-5 volts in a 

desktop computer with a 3GHz core-duo processor and 4GB of RAM. It was not possible to 

find recent references to the performances of other power-flow algorithms. Nonetheless, to 

the knowledge of the author this speed is comparable with other open source power-flow 

packages, such as PSAT [5.22].   

 

5.5. Optimal Power Flow (OPF)  

In transmission systems, voltage magnitudes are strongly linked with reactive power flows 

[5.23]. Hence, voltage control in transmission networks relies mostly on reactive power 

control. However, in distribution systems the case is different. Distribution networks are 

characterised by higher R/X ratios and mainly active power flows. As a result, the voltage 

drop depends both on the active current flowing and the resistance, and also on the reactive 

power flow and the inductance, as illustrated in Figure 5-5. Consequently, the control of 

active power generation can provide effective voltage support [5.21] [5.23][5.24].  
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Figure 5-5 Phasor Diagrams for Active and Reactive Power Flows (Adapted from [5.24]) 

In the centre of Figure 5-5 (case a) it can be observed that when power flows are mainly 

active and circuits have a high R/X ratio, the voltage drop can be managed by controlling the 

active power. Hence, in this thesis the possibility to control active DG power to keep the 

system within operational constraints (voltage/thermal) is explored. Specifically, it is 

assumed that active power from renewable DER generators can be curtailed, while CHP 

units can be re-dispatched to support network operation. CHP production is assumed to be 

heat lead; thus, it must satisfy heat loads and cannot be curtailed. This active power control 

of DG can be formulated as an optimal power flow (OPF) problem, explained next. A 

discussion on the technology and implementation of the DG control scheme is not in the 

scope of this thesis.  

 

5.5.1. OPF Formulation 

The objective function of the OPF is:  

min ( ) dispCHP curtDGf C C= +disp curtP P P  
(5-4) 

Subject to: 

≤ ≤

≤

≤ ≤ −

≤ ≤

min node max

line max

disp max out

curt out

V V V

I I

0 P CHP CHP

0 P DER

 

(5-5a) 

(5-5b) 

(5-5c) 

(5-5d) 

 

where CdispCHP and CcurtDG represent the costs of dispatch and curtailment, and Pdisp and Pcurt 

represents the vectors of active power dispatched and active power curtailed per node, 

respectively. Vmin and Vmax are the constraints for the vector of node voltages Vnode. Imax is 

the maximum current transfer capacity of each line, and Iline is the vector of line current 
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flows. CHPout is the vector of CHP production in each node, while CHPmax is the vector of 

installed CHP capacities per node.  

The difference between CHPmax and CHPout vectors determine the margin of dispatch per 

node. DERout is the vector of renewable power production per node and constrains the 

maximum power that can be curtailed in each node. These concepts are illustrated for one 

node in Figure 5-6. Each element of the vectors DERout and CHPout varies for every 

simulated event. The sampling of events within the stochastic simulation is discussed later in 

this chapter. Only those CHP units with dispatch margin and those renewable generators 

with curtailable energy are considered as decision variables in every OPF optimisation. 

 

 
Figure 5-6 CHP Dispatch and Renewable DG Curtailment 

 

The goal of the optimisation is to minimise the total cost of dispatch and curtailment subject 

to thermal and voltage constraints. This aims at reducing the additional use of fossil fuels 

and maximising the energy from renewable sources. It is possible to formulate the objective 

as a pure power dispatch/curtailment minimisation, by making costs Ci equal to one. 

Furthermore, the curtailment and dispatch costs C can be represented as vectors to provide 

nodal, i.e. localised, price signals for CHP dispatch and DER curtailment. Similarly, it is also 
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possible to use a cost matrix C in the stochastic simulation. In that case, the matrix C 

provides localised and time dependant costs for curtailment and dispatch. 

 

5.5.2. Linear Programming OPF 

The OPF formulation has a linear objective (5-4) and nonlinear and linear constraints (5-5a 

and 5-5b; 5-5c and 5-5d, respectively). The nonlinear constraints are based on the AC radial 

power flow equations, explained in Appendix B. It is possible to linearize these constraints 

by approximating the voltage and current phasors magnitudes by their real part. The 

approximation of the voltage magnitude |V| by its real part V
r
 leads only to small errors when 

node voltage angles are small with respect to the substation reference voltage (V
r
>>V

i
) 

[5.16], as illustrated in Figure 5-7. This is the case in normal load flow conditions in 

distribution systems [5.16].  

V
i

Im
a
g
in
a
ry
 A
x
is

 

Figure 5-7 Voltage Phasor 

These approximations permit the formulation of all objectives and constraints as a linear 

combination of the decision variables Pdisp and Pcurt. As a result, the OPF can be formulated 

and solved as a linear programming problem in a standard form, such as: 

min ( )f X  (5-6) 

Subject to: 

≤

≤ ≤

AX b

LB X UB
 

(5-7a) 

 

(5-7b) 
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Where the decision vector X is the dispatched and curtailed power vectors Pdisp and Pcurt. 

The cost function f(X) is formulated by the cost vectors C of equation (5-4). Upper bounds 

UB are defined by equations (5-5c) and (5-5d); lower bounds LB are zero. Matrices of 

coefficients A and vectors of limits b are a linear function of the voltages and currents 

vectors before the optimisation.  

Voltage constraints are expressed as:  

V V V

V V V

− ≤

− + ≤

disp curt max

disp curt min

A P A P b

A P A P b
 

(5-8a) 

(5-8b) 

Where: 

2 2

( )1

( )1

V

V max grid

V grid min

V -V

V -V

γ γ    + −
    = −

    
    

= + −

= − +

r i i r

node node node node
T T

node node

r i

max T load T load

r i

min T load T load

V V V V
A R X

V V

b R I X I

b R I X I

 

(5-9a) 

 

 

(5-9b) 

(5-9c) 

 

Current flow constraints are expressed as: 

( )

( )

− + ≤

− ≤

I disp I curt Imin

I disp I curt Imax

A P A P b

A P A P b
 

(5-10a) 

(5-10b) 

Where: 

2

γ +
=  

 
 

= −

= +

r i

node node
I

node

r

Imin max load

r

Imax max load

V V
A T

V

b I TI

b I TI

 

(5-11a) 

 

(5-11b) 

(5-11c) 

 

Vnode and Iload are the node voltages and node currents in the network before the 

optimisation. The superscripts r and i denote the real and imaginary parts of the vectors’ 

elements. RT and XT are resistance and impedance matrices, explained in Appendix C. T is 
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the topology matrix, explained in Appendix B andγ  is the power factor of the generators 

(Q/P). The complete derivation of the matrices A and b is explained in Appendix C.  

After the optimisation, node power injections of equation (5-3) are updated with Pdisp and 

Pcurt and voltage and power flows are re-calculated by means of the AC power flow 

algorithm (BFS), as illustrated in Figure 5-11 later in this chapter. Since the problem is 

nonlinear (voltages and currents depend on the injected powers Pdisp and Pcurt, which in turn 

depend on voltage and currents), the linear OPF only provides approximations of the optimal 

dispatched and curtailed powers. A more accurate solution could be obtained by an iterative 

linear programming formulation, in which voltage and currents in equations (5-9) and (5-11) 

are updated after each run of the OPF. The accuracy is increased to the detriment of the 

speed of the algorithm. In contrast, a single iteration provides a fast approximation of 

optimal dispatch and curtailment. The computation time of the OPF is a key factor for the 

analysis of controllable DER. This aspect will be discussed further at the end of this chapter. 

 

 

Figure 5-8OPF Example 

Figure 5-8 illustrates two examples of optimal CHP dispatch and DER curtailments. Voltage 

limits are set at +/- 6%. In both cases, voltage constraints were only monitored at critical 
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nodes of the network. Checking only critical nodes of the network reduces the computation 

time, as explained in the next section. Depending on the particular voltage profile and 

thermal loading of the grid, optimal DER adjustment solutions can simultaneously include 

curtailment and dispatch in different parts of the network. As only some node voltages are 

checked, it is possible that some node voltages will result in small constraint violations, as 

seen in the right-hand side of Figure 5-8. Hence, it is important to select adequate points in 

the network to check the voltages, for example, the end of feeders for heavily loaded circuits. 

In the planning framework, the OPF is solved using the Linear Programming function of 

Matlab (linprog). Nonetheless, since the problem is expressed in standard form, any 

commercial optimisation package can be used to solve it.  Also, other formulations for this 

OPF problem are possible, such as a sequential linear programming formulation 

aforementioned or a nonlinear AC OPF formulation, such as the one proposed by Zhou et al. 

[5.21], in which voltage sensitivities are calculated using the Jacobean matrix. 

 

5.5.3. OPF Validation 

The OPF was evaluated under a large and diverse set of DER production and demand 

situations. A large network was used in the analysis (UKGDS rural network with 355 nodes 

[5.1]). Twenty thousand different scenarios of under-voltage (dispatch), over-voltage 

(curtailment) and excessive thermal loading were simulated. This is a comprehensive 

validation, as situations of over and under-voltage occur only in a small percentage of events 

(<5%) when a whole year (17520 samples) is simulated. 

In cases where an optimal solution is known to exist (i.e. DER can be curtailed or 

dispatched), it was confirmed that the OPF algorithm corrects the problem and provides a 

feasible solution. For example, Figure 5-9 and Figure 5-10 show the minimum/maximum 

voltage before and after the OPF, for cases of dispatch and curtailment, respectively. It can 

be seen that even in extreme situations of under/over voltage the OPF produces a solution. 

The maximum thermal loadings in these cases were also analysed and confirmed to be 

within limits. 
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Figure 5-9DER Dispatch – Minimum Voltage Before and After OPF 

 

Several of these cases were studied individually to confirm that the solutions provided are 

(near) optimal. This verification consisted of placing renewable and dispatchable generators 

of different costs in the same node or region of the network and confirming that a merit order 

was followed in the curtailment/dispatch. Finally, diverse scenarios where DER cannot 

provide network support were simulated. The analysis included scenarios where there is not 

enough generation to dispatch or when generation cannot be curtailed (e.g. CHP). It was 

confirmed that in these cases the OPF algorithm couldn’t find any optimal solution, because 

the problem is mathematically unfeasible. 
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Figure 5-10 DER Curtailment – Maximum Voltage Before and After OPF 

 

5.5.3.1. Post OPF Attribute Calculation 

When the network problem can be solved by DER, the OPF produces a dispatch/curtailment 

solution (Pdisp and Pcurt). Using the solution vectors, the DER power injected in each node is 

corrected and power flows recalculated using the AC power flow, as already mentioned. In 

contrast, if DER cannot provide network support, the OPF fails to produce an optimal 

solution. In this case, planning attributes are calculated based on the initial conditions, as 

illustrated in Figure 5-11. 

Following this procedure, a true multi-objective analysis of the problem is provided. 

Solutions that can provide network support are suboptimal in terms of dispatched and 

curtailment energy (assuming these are to be minimised), but have improved values of line 

losses, voltages and thermal loadings. In contrast, solutions that are not able to provide 

network support in extreme situations have zero dispatch or curtailment power and cost; they 

are optimal in these attributes. Nonetheless, these solutions are penalised in other technical 

attributes such as line losses, probability of voltage violations and maximum voltages and 

thermal loadings.  
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Figure 5-11 Post OPF Attribute Calculation 

 

5.5.4. OPF Performance 

The resolution of one OPF for the 355 node UKGDS network takes between 5 and 20 

seconds, depending on the number of DER units analysed and if all nodes voltages are 

considered as optimisation constraints, in a desktop computer with a 3GHz core-duo 

processor and 4GB of RAM. The linprog algorithm uses more time when it is unable to find 

an optimal solution (i.e. the optimisation problem is unfeasible), as iterations are performed 

until a maximum limit is reached. A lengthy evaluation can be acceptable when the interest 

lies in a single solution. However, when hundreds of solutions need to be evaluated, reducing 

the computation time is crucial. Therefore, additional steps to reduce the computation time 

are proposed.  

First, computing unsolvable optimisation problems requires the most computation, and it is 

unnecessary. Therefore, an “OPF check” routine is implemented to identify unfeasible 

optimisation problems prior to the execution of the OPF. Only two power flows are 
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necessary to check these conditions, as seen in Figure 5-12. Hence, the OPF is only 

performed if there is at least one generator to dispatch or one generator to curtail and if one 

of the following conditions applies: 

• The problem is only an over-voltage problem, and it can be solved by curtailing all 

curtailable generation (i.e. a feasible solution exists). 

• The problem is only an under-voltage problem and it can be solved by dispatching 

all dispatchable generators (i.e. a feasible solution exists).  

• There exists problems of over and under-voltage simultaneously. 

•  There exists a problem of thermal congestion in lines 

 

Second, the OPF computation time depends on the number of variables and constraints 

included in the formulation. Thus, as a simplification, voltage constraints are only checked at 

certain ‘nodes of interest’, usually critical nodes of the network: end of laterals, main 

feeders. Reducing the number of voltage constraints enhances greatly the performance of the 

algorithm. For example, considering only six nodes in the 355-node network reduces the 

computation time of each OPF to an average of 0.4 seconds. The assumption is solid, as 

voltages in adjacent nodes of the network are interrelated. Checks that are more extensive 

could be made, to the detriment of the speed of the algorithm. Thermal constraints are still 

checked in all lines. 
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Figure 5-12 OPF Feasibility Check 
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5.6. Planning Attributes 

5.6.1. Technical Attributes 

The calculation of the technical attributes, listed in Table 5-3, is based on the vector outputs 

of the BFS power flow (Vnode, Iline, Inode), the OPF algorithm (Pcurt, Pdisp), information about 

DER sizes and locations provided by the chromosome (CP), and a vector of capacity factors 

of each DER type (CF). Attributes have been divided according to their calculation 

procedure, and each one is explained next.   

 

Table 5-3Technical Attributes 

Attributes  Units 

DER Energy penetration  % 

Line Losses  MWh/year 

Imported Energy  MWh/year 

Exported Energy MWh/year 

Grid dependency (total energy flow 

trough network connections) 

MWh/year 

Curtailed energy MWh/year 

Dispatched energy MWh/year 

Network over voltage Probability   % 

Maximum voltage violation V 

Network overload probability   % 

Maximum thermal violation % 

 

5.6.1.1. DER Energy and DER Penetration Level 

The ratio of DER installed over the system load is a measure of the level of DER 

penetration. Some authors define this ratio in terms of installed DER capacity over peak load 

(e.g. [5.25]). Nonetheless, when several types of DER are integrated and each type has a 

different capacity factor it is more illustrative to express the penetration level as the ratio of 

annual DER energy to annual load. The total DER energy produced in the whole network 

can be determined by: 

TotalE k= ⋅ ×CF CP  (5-12) 

where CF is a horizontal vector of the capacity factor of each DER type. Each element of 

CF corresponds to the average of the production profile of each DER type normalised in 

terms of the capacity. CP is a vertical vector of installed DER per type, calculated as the sum 
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of the rows of the CDER matrix (equation 5-1); k is a conversion factor to obtain daily, 

monthly or annual energy values. In this work annual values are analysed, so, k=8760 

hours/year.  

The penetration level of DER in terms of total DER energy is calculated as: 

100DERpenetrationLevel
×

= ×
×

CF CP

LF LP
 

(5-13) 

LF is a horizontal vector of the load factor of each load, calculated as the average of each 

load profile; and LP is the vertical vector of peak loads at each node. The annual conversion 

factors k in the numerator and denominator cancel each other. 

The energy produced by each DER type is calculated as the dot multiplication of the capacity 

vector CP by the transposed of the vector CF: 

T
k= ⋅ ⋅TypeE CF CP  (5-14) 

 

EType is a vertical vector; therefore, each row is the energy produced by each DER type. The 

annual energy production per type is used to determine the CO2 emissions, explained later in 

this chapter. If required the penetration level of each type of DER can be calculated using the 

Etype vector, or for each type of energy resource (e.g. renewable, fossil fuel, CHP, etc) using 

a similar approach. 

In some single-objective analyses reviewed in Chapter 3 DER penetration level, or a similar 

attribute (e.g. DER capacity, DER energy), is formulated as a maximisation objective, 

subject to network constraints. In those cases, DER penetration level is maximised to make 

the most of the associated benefits of DER (e.g. reduction of CO2 emissions, renewable 

energy production). Nonetheless, in a multi-objective analysis the impacts and benefits of 

DER are explicitly formulated as objectives. Hence, two perspectives are possible. These are 

explained next. 

 



215 

 

DER Penetration Level Minimisation  

When DER penetration level is formulated as a minimisation objective, it is possible to find 

the minimum DER penetration level required to achieve a certain value in other planning 

attributes. Or expressing this trade-off analysis from another perspective: the optimal 

attainment level of other planning attributes for each level of DER penetration is determined. 

The discussion is illustrated in Figure 5-13, with a DER penetration level minimisation and 

loss-minimisation optimisation example. The calculation of annual power losses is explained 

in later section. 

 

Figure 5-13 DER Penetration Level Minimisation Example 

 

DER Penetration Level Maximisation  

If DER penetration level is maximised, and objectives are contradictory, the analysis 

determines the maximum DER penetration level that can be installed without degrading the 

system technical, environmental or economic performance, reflected in the other objectives. 

The analysis is illustrated in Figure 5-14; in this case, DER penetration level is maximised. 

Line losses are still being minimised subject to network constraints. Hence, it is possible to 

determine the maximum amount of DER that the system can absorb with a determined 

amount of losses. 
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Figure 5-14 DER Penetration Level Maximisation Example 

If there is no contradiction between DER penetration maximisation and other objectives (e.g. 

maximisation of energy exports and minimisation of CO2 emissions, when only renewable 

DER is considered), the problem is no longer multi-objective. In that case, only a single 

optimal solution exists: to install as much generation as the system can technically accept. 

Single-objective problems or problems with non-conflicting objectives are not considered in 

this thesis or in the case studies of the next chapter. 

 

5.6.1.2. Aggregated Energy Attributes 

Aggregated energy attributes are calculated by means of a stochastic simulation of the power 

system. The stochastic simulation consists of a repetition of n deterministic power flows, 

referred as samples. The samples are averaged and by means of conversion factors, the 

planning attributes over a simulated period (e.g. a year) are estimated.  

 

Line Losses 

The minimisation of active line losses is one of the chief objectives of DER planning, as 

already discussed in Chapter 3 (section 3.3.2.1). Active line losses depend on the magnitude 
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of the current and the line resistance. At every simulation event t, the total line losses in the 

system are calculated as: 

2
3

t
Losses = ×lineI R  (5-15) 

|Iline| is a horizontal vector of line current magnitudes; R is a vertical vector of line 

resistances, calculated as the real part of the diagonal of the impedance matrix Z. The system 

is assumed to be 3-phase balanced; so, a factor of 3 is added to compute the system losses. If 

the network is single phase (phase and neutral) a factor of 2 must be used instead [5.16]. 

The yearly losses are calculated by aggregating the losses determined for each event: 

8760 n

t

t

YearLosses Losses
n

= ∑  
(5-16) 

where n is the number of simulations. 8760 is the conversion factor (hours/year) used to 

translate average power losses (W) to annual energy losses (Wh/year).  

Losses caused by the current and impedance of the lines are known as variable line losses or 

“cooper losses” [5.16]. From these, only active energy losses are computed, as these are the 

ones of most interest for DSOs. Reactive line losses (the product of the current magnitude 

and the reactance X) are not analysed. Iron losses, also known as fixed losses, caused by the 

magnetisation currents in the transformers and reactors, are not computed. 

 

Imported and Exported Energy 

When a radial distribution system is analysed, the active power flow in the network 

connection at any instant t can be calculated as: 

( )*

t grid grid
GridPower = 3Re V (I )  (5-17) 

where Igrid is the current flowing through the network connection and Vgrid is the fixed 

voltage of the network connection (phase voltage).  
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Igrid can be calculated as the sum of all the elements of the vector of node currents Inode : 

grid

node

I =∑ nodeI  (5-18) 

Inode is computed by the BFS algorithm. A positive element in Inode represents current 

flowing to the node (load); while a negative element represents current flowing from the 

node (DER). Thus, if the net sum Igrid is positive, active power is being imported from the 

grid connection and vice versa.  

The energy flow through the grid connection GridPower is calculated for every simulation 

event t. Then, it is possible to aggregate imported and exported energy over the simulated 

period:  

8760
0

n

t t

t

ImportedEnergy GridPower GridPower
n

= ∀ >∑  
(5-19a) 

8760
0

n

t t

t

ExportedEnergy GridPower GridPower
n

−
= ∀ <∑  

(5-19b) 

Imported and exported energy are always positive values. Imported energy is formulated as a 

minimisation objective to maximise the use of local resources. Exported energy can be 

formulated either as a minimisation or maximisation objective, depending on the perspective 

of the study. If the exploitation of local renewable energy resources is encouraged, exported 

energy is formulated as a maximisation objective (e.g. [5.26]). In contrast, if the objective is 

to achieve the best energy balance between local DER production and demand, exported 

energy and imported energy should both be minimised. Consequently, a further objective of 

“grid dependency” minimisation can be formulated by minimising the sum of imported and 

exported energy:  

8760 n

t

t

GridDependancy ImportedEnergy ExportedEnergy GridPower
n

= + = ∑  
 (5-20) 

This attribute quantifies the degree of independence of the studied grid by measuring the 

total amount of energy interchanged with the main system.  
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Dispatched and Curtailed Energy 

Whenever an OPF is successfully performed, a vector of optimal power curtailment Pcurt and 

a vector of optimal power dispatch Pdisp are produced. The aggregation of the sum of these 

vectors’ elements over the simulation determines the yearly curtailed and dispatched energy 

in the network, respectively: 

8760 n

t

t node

CurtailedEnergy
n

= ∑∑ curtP  
(5-21a) 

8760 n

t

t node

DispatchedEnergy
n

= ∑∑ dispP  
(5-21b) 

Both objectives are formulated as minimisation in the multi-objective planning framework. 

The minimisation of curtailed energy aims at maximising renewable energy production. The 

minimisation of dispatched energy aims at minimising the additional use of fossil fuels. Note 

that these objectives are technical and formulated in terms of energy. Cost objectives are 

discussed in a later section. 

 

Energy Balance 

The energy balance requires that at any moment in time, and hence over any time period, the 

energy generated within and imported to the system (IN) must be equal to the energy 

consumed within the system plus energy exports and losses (OUT), as illustrated in Figure 

5-15. Hence, the following equality must always be satisfied: 

TotalE DispatchedEnergy CurtailedEnergy ImportedEnergy

ExportedEnergy TotalLoad YearLosses

+ − + =

+ +
 

(5-22) 

Where TotalLoad is the annual energy demand, calculated as 8760× ×LF LP , and the rest 

of the variables have been explained previously. This condition was used to verify the 

correct implementation of the stochastic evaluation. Moreover, the energy balance is used 

later to determine the emission factors. 
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Figure 5-15 System Energy Balance 

 

5.6.1.3. Voltage Impacts and Thermal Loading Attributes 

DER optimally located and sized can reduce node voltages and power flows, as long as DER 

production is coincident with demand. In contrast, DER suboptimally located or sized, or 

whose production is not coincident with demand, increases voltages and power flows. The 

second group of technical attributes measure these benefits and impacts of DER installation. 

Deterministic and probabilistic measures of voltage profile improvement and power flow 

reduction are proposed as attributes, as explained next. 

 

Maximum Voltage Deviations and Maximum Thermal Loading 

As a deterministic measure of DER impact, the network maximum voltage deviation and the 

maximum line loadings over the whole simulated events are recorded: 

max

max

max max 100

max max 100
I

reference

t node

reference

t line

max

V
VDeviation

V

TLoading

  −
  = ×

  
  

  
  = ×
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node
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V

I
 

 

(5-23a) 

 

(5-23b) 
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Both variables are expressed as percentages. Voltage deviations are measured from a 

reference voltage, Vreference, usually one per unit. The thermal loading of each line Iline is 

compared with the maximum current carrying capacity of the conductors Imax. The attributes 

proposed can be used either as planning objectives to provide a measure of DER impacts, or 

as deterministic planning constraints to restrict DER sizes using the technical limits of the 

network.  

These attributes are not exactly the same as performing a worst-case scenario analysis. A 

worst-case scenario analysis consists in two power flow calculations: minimum 

generation/maximum load and maximum generation/minimum load. It provides a measure of 

the worst possible event, which can have a very low probability of occurrence. In contrast, 

the attributes proposed provide a measure of the worst likely event, given the number of 

samples simulated and the period of the analysis. The values provided by the proposed 

attributes are a less extreme measure than a worst-case scenario analysis.  

 

Probabilistic Attributes of Voltage and Thermal Violation  

The attributes proposed in the previous section measure an extreme occurrence in a single 

node or line, without indicating what the probability of this occurrence is. Consequently, a 

set of probabilistic attributes is proposed in this section to quantify the probability of 

constraint violations. These attributes are formulated as minimisation objectives, as an 

increment in the network quality is looked for. The probability of voltage constraint violation 

is calculated as the ratio of the number of simulation events in which any node had a voltage 

violation over the number of total simulated events n.  

( ) ( )( )
t tde max de min

100

( (
1

0

t

t
prob

t

Vbreak

VDeviation
n

if any V or any V

Vbreak

otherwise

= ×

 > <


= 



∑

no noV V  

(5-24a) 

 

 

(5-24b) 
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Similarly, the probability of thermal limit violations is calculated as the ratio of the number 

of simulation events where any line was outside limits over the total number of simulation 

events n: 

( )max

100

1 ( )

0

t

t

t
prob

t

Ibreak

TLoading
n

if any I
Ibreak

otherwise

= ×

 >
= 


∑

lineI
 

(5-25a) 

 

 

(5-25b) 

 

These attributes measure the probability of any node/line in the system being out of bounds. 

The probability of a particular node/line being out of bounds is equal or lower to the 

probability of the system being out of bounds. Thus, the attributes proposed provide a 

measure of the worst performance of a node/line in the system. If a particular set of 

nodes/lines are the interest of the study, the probability of them being out of bounds can be 

formulated as a separate attribute, using a similar approach. Likewise, in large systems it is 

possible to divide the network into zones, and calculate separate probabilistic attributes for 

each zone. 

These attributes can be used as planning objectives or planning constraints, as mentioned in 

the previous chapter. As objectives, they provide a more comprehensive measure of DER 

technical performance than the deterministic attributes proposed in the previous section or 

than a worst-case scenario analysis. As constraints, the probabilistic attributes allow the 

study of probabilistic limits, such as the ones proposed by the EN 50160 regulation, already 

discussed in the previous chapter. These constraints avoid restricting DER penetration based 

on extreme situations with low probability of occurrence, such as a worst-case scenario 

analysis.  

 

5.6.2. Environmental Attributes 

One of the main drivers behind DER installation is the possibility of minimising the 

environmental impacts of energy production. Hence, two attributes are proposed to measure 

these environmental benefits: a total CO2 emission factor (TotalCO2) and a load CO2 emission 

factor (LoadCO2).  
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Table 5-4 Environmental Attributes 

Attributes Units 

CO2 emissions factor (load) gCO2/kWh 

CO2 emissions factor (total) gCO2/kWh 

 

TotalCO2 quantifies an equivalent emission factor for the total energy flow in the system (in 

or out). In contrast, LoadCO2 quantifies the emission factor attributable only to the energy 

consumed within the system. The calculation procedure of each attributed and the key 

differences between them are explained next. 

  

 

Figure 5-16 System CO2 Emissions Balance 

The attributes are calculated based on the energy balance of the system, previously 

illustrated in Figure 5-16. The energy imported from the grid to the system can be allocated 

direct CO2 emissions, based on the ‘carbon intensity’ of the grid energy (gridCO2). Similarly, 

the energy generated by DER can be attributed an average carbon emissions factor (DERCO2). 

The grid carbon intensity depends on the central system energy mix and the system losses. In 

the UK, this factor is expressed as a yearly average value of grams of CO2 per unit of energy, 

currently set as 430 gCO2/kWh [5.27] (long-term marginal emissions factor). This factor is 

assumed constant and not affected by DER penetration. Nonetheless, if large penetration of 

DER will reduce the dispatch of central units, the grid carbon intensity should be modified 

accordingly [5.28].  
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The energy generated by DER has an average emission factor 2CODER , calculated as the 

ratio of the total CO2 emissions of DER over the total energy generated and dispatched:   

2

8760 ( )T

CHP
CO

Total

DispatchedEnergy EF
DER

E DispatchedEnergy CurtailedEnergy

⋅ × ⋅ + ×
=

+ −

EF CF CP
 

 

(5-26) 

 

CF and CP have already been introduced. EF is a horizontal vector of the emission factor of 

each type of DER, provided in the input file. The DER emissions factor of each DER unit 

installed depends on the technology and fuel used. Renewable units are assumed to be 

carbon-free [5.28] ( 0renewableEF = ). So, in this case the emissions are only attributed to the 

CHP units. In the case of CHP units, the analysis is more complex, as the emissions 

apportioned to the electrical energy generated depend also on the heat production, and on the 

alternative energy supplies. Pout et al. [5.29] studied extensively different conventions used 

for apportioning carbon emissions from CHP systems. This study concluded that the only 

valid convention is that carbon intensities of electricity and heat production should be 

proportional to those of the alternative supplies. For example, if the total CHP emissions are 

67% of the combined emissions of alternative sources, the CHP intensities for electricity and 

heat should be 67% of the respective emission factors of the alternative sources. [5.29]. The 

emission factors of the CHP units considered in the case studies of next chapter are 

EFCHP=300 gCO2/kWh, and EFCHP=326 gCO2/kWh. Details of the CHP units are provided in 

the next chapter. 

 

5.6.2.1. Total Energy Emission Factor 

An equivalent emission factor for the total energy flow can be calculated by dividing all the 

carbon emissions (imported and generated by DER) by the total energy flow (input or output, 

as these are equal):  

2 2
2

CO CO
CO

ImportedEnergy grid TotalDEREnergy DER
Total

ExportedEnergy TotalLoad YearLosses

× + ×
=

+ +
 

(5-27) 
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The imported energy is calculated using equations (5-16a). TotalDEREnergy is the 

denominator of equation (5-26), which accounts for the energy generated by DER plus the 

energy dispatched minus the energy curtailed. All carbon emissions imported and generated 

are accounted in the numerator of equation (5-27), while the denominator includes all the 

energy in the system (in this case, consumed and exported). So, TotalCO2 calculates an 

equivalent emissions factor for the total energy flow. This emissions factor does not 

represent the load emission factor (explained next) or the exported energy emissions factor, 

as only DER energy is exported, as seen in Figure 5-16.  

 

5.6.2.2. Load Emissions Factor 

The CO2 emissions attributed to the load and the losses (LoadCO2) depend on the total energy 

imported from the grid and the fraction of the DER energy that was not exported. Hence, the 

load emissions factor is: 

2 2
2

( )
CO CO

CO

ImportedEnergy grid TotalDEREnergy ExportedEnergy DER
Load

TotalLoad yearLosses

× + − ×
=

+
 (5-28) 

 

All the terms of the equation have been already explained. This attribute is only an 

approximation, as it could occur that only some types of DER are exported. Nonetheless, it is 

sufficient for the purposes of the planning framework. 

There is a key difference between TotalCO2 and LoadCO2. LoadCO2 provides an indication of 

the carbon intensity of the energy consumed within the system. This attribute does not 

consider energy exports. Hence, its minimisation looks for the best energy mix to provide a 

low-carbon supply for the load of the studied system only. The optimal energy mix will be 

highly dependent on the coincidence of low-carbon DER production and demand. In 

contrast, TotalCO2 considers energy exports. It assumes that all energy is consumed not only 

in the system but also elsewhere. Hence, the minimisation of TotalCO2 results in the 

installation of as much low-carbon DER as possible, subject to the system constraints. The 

use of either attribute depends on the objectives of the analysis.  

Both attributes (TotalCO2 and LoadCO2) provide an indication of the total carbon reduction, 

and can be expressed as a percentage of the initial grid carbon intensity. Moreover, the total 
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carbon emissions (in tonnes per year) could also be used as a planning attribute. Only direct 

CO2 emissions are taken into account in the attributes proposed. Direct CO2 emissions are 

the ones produced when generating energy. In contrast, life cycle analysis (LCA) emissions 

include the total CO2 emitted during the manufacturing, transport, installation and disposal 

of the DER units (a “cradle to grave” analysis [5.30]). The calculation of lifecycle emissions 

of different distributed generation technologies and DER has gained attention recently and it 

is still ongoing research. LCA emissions could be included as a planning attribute once 

information is available for the DER technologies analysed.   

 

5.6.3. Economic Attributes 

In an analysis of DER integration, it is essential to compare the technical and environmental 

benefits of DER with the cost of obtaining them and with the negative impacts of DER. In a 

multi-objective analysis, technical and environmental benefits can be explicitly formulated in 

their natural units, as demonstrated throughout in this chapter. Hence, it is possible to 

explicitly visualise the trade-offs between DER costs and these technical and environmental 

benefits. Similarly, the technical impacts of DER integration can be compared against the 

technical or economic benefits that could be obtained when integrating DER.  

Economic benefits and costs of DER can be analysed from several perspectives, depending 

on which costs/benefits are included in the analysis, how these are aggregated and which 

point of view is included in the analysis (e.g. DSO, DER developer). In this thesis, three 

economic attributes have been chosen as a representative sample. These are presented in 

Table 5-5. The first two attributes analyse the costs of DER integration, using two different 

approaches. No assumption is made about who incurs in the costs. The third attribute 

provides a measure of net economic DER benefits, from a DER developer perspective.  

Table 5-5 Economic Attributes 

Attributes Units 

Annualised cost of DER £/year 

Levelised cost per kWh of DER £/kWh 

Annualised DER net benefits £/year 

 

The calculation of attributes in Table 5-5 includes the capital cost of DER installations plus 

future operation and maintenance costs. In addition, future benefits are considered in the 

third attribute. Installations costs are assumed to happen at the beginning of the evaluation 
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period (or year zero) while other costs and benefits occur at different times in the future 

(Figure 5-17). To accurately compare these costs and benefits, it is necessary to translate 

them to comparable values. Two methods are commonly used. The first is to convert all cash 

flows into present values. In the second method, used in this thesis, all investments and cash 

flows are converted into annuities (i.e. equal annual values). Both methods are based on the 

concept of the time value of money (TVM). A succinct introduction to TVM is provided in 

Appendix A. 

 

 

Figure 5-17 Costs and Benefits of a DER Installation 

 

5.6.3.1. Annualised Cost of DER 

Cost is “the total sacrifice that must be expended or traded in order to gain some desired 

product or end result” [5.19]. The first economic attribute (CostDER ) provides a measure of 

the spending required by the DER configuration to gain the technical and environmental 

benefits provided by DER. CostDER includes the installation costs of DER plus all future 

operation, maintenance and fuel costs. The costs of all DER installations are aggregated into 

a single attribute; hence, a high-level perspective on the total DER cost is provided without 

making any assumption of who incurs in the costs. All costs are expressed as annual values:  

&( )DER Inst O MCost Annuity Cost Cost= +  (5-29) 
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Installation costs (CostInst), include the cost of all the DER equipments plus costs of 

installing each DER system (e.g. infrastructure, connection, land). Commonly, installation 

costs are expressed per unit of capacity (i.e. £/kW). Therefore, the total installation costs can 

be determined by multiplying the total installed DER (per type) CP by the installation cost 

per kW of each DER type IC:   

InstCost = ×IC CP  (5-30) 

 

IC is a horizontal vector of unit cost of capacity of each DER type, which is provided in the 

input file. This calculation assumes a similar installation cost per capacity unit for all units of 

the same type, regardless of size. Nonetheless, economies of scale can be included by 

separating the rows of the vector CP according to capacity size ranges for which different 

unit prices are defined. Then, the expanded vector CP is multiplied by the respective 

installation costs per unit IC to obtain the total installation cost. 

All installations are assumed to happen at year zero. Installation costs are translated to 

annuities using the annuity conversion factor described in Appendix A. The useful life of 

DER is assumed as 20 years; a discount rate of 7% was chosen to calculate the annuities 

[5.31]. Representative installation costs for different DER types are presented in the next 

chapter. 

Operation and maintenance costs (CostO&M), include the non-fuel operation and maintenance 

costs of DER installations, such as: plant labour, inspection, replacement and repair of 

system components and consumables. Also, in the case of fossil-fuelled DER, fuel costs are 

included. Operation and maintenance costs are commonly expressed per unit of energy 

produced (£/kWh) or as a percentage of capital costs (%) [5.32]. Therefore, this attribute is 

calculated using the values obtained in equation (5-21) or equation (5-29), depending in 

which way unit O&M costs are expressed. Although in practice these costs vary from year to 

year, they are normally considered constant for every year.  

 

Curtailment and Dispatch Costs 

In Figure 5-18 the bulk costs and revenues of energy provision and dispatch/curtailment are 

illustrated. The energy supply costs are incurred to deliver energy to the system, as seen in 
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the bottom centre of Figure 5-18. In addition, if the active management of DER to manage 

voltage and thermal constraints is considered, extra costs are incurred to provide these 

ancillary services, as seen in the top of the same figure. If DER units are assumed 

controllable, the cost of the installation of the DER management scheme has to be added to 

the installation costs. This cost includes voltage measurement schemes, communication links 

between DER and DSO control and communication between DSO control and substation. 

These costs have been estimated at £10,000 per DER unit for rural systems, and £100,000 

per substation for urban grids [5.31].  

Moreover, the dispatch of generators to overcome under-voltage and overflow situations 

requires the generation of an extra amount of energy. The generation of this energy has a 

higher cost per unit than the energy produced in normal operation, as the wear-off of 

equipment due to the cycling of the units must be considered [5.33] on top of the normal fuel 

and O&M costs.  
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Figure 5-18 Energy, Costs and Revenues 

 

On the other hand, the curtailment of energy to reduce over-voltages and excessive power 

flows requires a reduction in the energy produced, as seen on the top-left corner of Figure 
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5-18. If the generator has firm access to the network, i.e. “the generator has the right to 

export its energy onto the grid in all reasonable conditions” [5.34], the curtailment of energy 

represents a loss of benefit to the DER owner, because this energy will not be traded. In this 

case, the benefit lost is considered as a cost that must be compensated. Normally, the “cost of 

curtailment” equals the different between the market price and the generation cost multiplied 

by the volume of energy curtailed [5.34].  

In contrast, if the generator owner has non-firm access and an output greater than the firm 

amount at which it is allowed to operate, the revenue lost is not compensated [5.35]. Hence, 

in this case, the energy curtailment is not included as a cost. In this work, and given that the 

analysis of controllable DER units is proposed, it is assumed that all generators have non-

firm access. Hence, curtailment costs are not included in the annual cost terms. The 

implications of firm and non-firm access in the costs per unit delivered are discussed in the 

next section. 

 

5.6.3.2. Levelised cost of DER 

The annualised cost of DER (CostDER), already explained, provides a measure of the 

spending required in absolute terms. Hence, this attribute, when minimised, favours the 

solutions with the least overall spending. Nonetheless, the attribute does not measure the cost 

efficiency of solutions, and can be misleading when comparing solutions of different scale 

[5.36]. Therefore, a cost-benefit attribute is proposed. In this case, the attribute calculates the 

levelised cost of DER energy [5.36]: 

DER
kWh

Cost
Cost

TotalDEREnergy
=  

(5-31) 

 

Annualised costs required for the production of energy, explained in the previous section, are 

compared with benefits, measured in terms of energy delivered. Total DER energy is the 

denominator of equation (5-26). So, it accounts for all the energy generated and dispatched 

minus the energy curtailed. The minimisation of this attribute favours alternatives that 

provide cost-effective solutions, i.e. less spending for each kWh delivered. Consequently, if 

energy is curtailed (i.e. the amount of energy delivered is reduced) the cost per unit delivered 

is higher than the no-curtailment case.  
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In this work, non-firm access for DER is assumed. Hence, the revenue lost for curtailment is 

not included as a cost. Nonetheless, if firm access was considered, and the revenue lost was 

added as a yearly cost of DER, revenues must cover not only the production (and dispatch) 

cost, but also the revenue that the DER owner lost. Hence, each energy unit delivered will 

have two cost components: one that represents the cost of production of energy, and a second 

one that accounts for the cost of lost revenue. Therefore, when curtailment costs are 

considered, the unit costs of energy are higher than when these costs are not considered. 

Moreover, in this case, the higher the curtailment level, the higher the cost of each unit of 

energy delivered.  

 

5.6.3.3. DER Benefits 

Finally, an attribute that estimates the annual net benefits of DER installations is proposed. 

This attribute take account of benefits from the perspective of a DER owner. Nonetheless, it 

provides only a high-level analysis of the net economic benefits of DER, as all the DER 

installations benefits are aggregated into a single attribute. A complete financial evaluation 

of a DER investment project requires a detailed analysis of the benefits and costs over the 

whole life of the project.  

Net benefits are calculated by deducting the annual costs from the annual revenues that are 

obtained from DER installations. Two sources of revenue are considered, as illustrated in the 

bottom-right corner of Figure 5-18. These are the revenues from the direct sale of energy 

(i.e. energy revenues) and the incentives received from producing renewable energy (i.e. 

Renewable Obligation Certificates, ROC revenues). Hence, benefits are calculated as:  

DER

DER

Benefits

Cost

=

−

type type

type type

Price ×TotalDEREnergy

+ROC ×TotalDEREnergy
 

(5-32) 

 

TotalDEREnergytype is a vertical vector that accounts the annual energy generation per DER 

type (Etype), plus energy dispatch minus curtailment reductions. Pricetype and ROCtype are 

horizontal vectors of energy prices and ROC revenues obtained by each type of energy. 

Although in practice these benefits vary from year to year, they are considered constant for 
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every year. In the case of self-generation (e.g. micro-generation), the avoided costs of energy 

purchase should be included as the benefits of DER installations [5.30]. 

Dispatched energy is remunerated, as it is included in the total energy computation. Two 

possible analyses are possible. In the first, a net benefit is not generated by dispatch because 

the revenue received for energy dispatch is intended to cover only the extra costs of dispatch. 

In the second, dispatched energy receives an extra remuneration as an ancillary service for 

the DSO. If the revenue lost by curtailment was included in the analysis (i.e. firm access 

contract), this is received only to cover exactly the amount of revenue lost, that is the income 

for energy sales and the ROCs that would have been received.  

 

5.7. Stochastic Simulation 

So far in this chapter, the implementation of the SPEA2 algorithm for the DER planning 

problem was described. Also, the power-flow calculations and the valuation of attributes 

were discussed. It was shown that some of these attributes are calculated by means of a 

stochastic simulation, embedded in the objective function of the SPEA2 algorithm. The 

structure of the stochastic simulation has been described and illustrated in the previous 

chapter. In this section, some aspects of its practical implementation are examined. First, the 

sampling of events in the simulation is explained. Next, the effect of different sampling 

techniques in the accuracy of the attributes is illustrated and the effect of random sampling in 

the SPEA2 algorithm discussed. This discussion identifies appropriate sampling techniques 

for the analysis of controllable and non-controllable DER units. 

 

5.7.1. Sampling of DER and Demand Profiles 

The stochastic simulation consists of the repeated evaluation of events, as explained in 

section 4.5.2.2 of the previous chapter. Yearly DER and demand profiles corresponding to 

each DER and load type are provided in input files. For every event simulated, a vector SP is 

sampled from the production profile of each DER type, as illustrated in Figure 5-19. Each 

element of SP is a value between 0 and 1 that indicates the proportion of active power 

generated by each unit in terms of its installed capacity in the node. If the power factor of 
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DER units is different than one, each element of SP is corrected by (1+j.γtype), where γtype is 

the ratio of reactive to active power of the DER units (Q/P).  

Then, the CDER matrix (equation 5-1) is left-multiplied by the vector SP to obtain the 

horizontal vectors of DER active and reactive power injections per node (PDER, QDER): 

1 1 2 2[(1 ) (1 ) (1 ) ]Type Typej j sp j sp j spγ γ γ+ = + + + ×DER DERP Q CDER  (5-33) 

 

The same procedure is used to determine node loads (Pload, Qload); that is, for every simulated 

event the load profile of each load type is sampled and multiplied by the load capacity 

installed LP. The vectors (PDER, QDER) and (Pload, Qload) are used in the power flow 

algorithm to calculate the nodal power vectors, as seen in equation (5-3).  
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Figure 5-19Sampling Procedure for DER 
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DER Production and Demand Correlation in Small Networks 

 In a small area, the output of stochastic generation of the same type shows similar 

fluctuations, as these generators depend on the same prime mover (i.e. the wind, solar 

radiation). As a result, a complete linear correlation between the power generated by units of 

the same type can be assumed [5.37]. The same analysis applies to system loads of the same 

type; similar load types “show similar stochastic behaviour” [5.37]. Hence, a perfect positive 

correlation is a valid assumption when considering load-load relationships [5.38]. 

Papaefthymiou et al. [5.37] concludes that this methodology can provide a realistic approach 

in physically small systems. In contrast, assuming total independence between the 

production of DER of the same is regarded as a “non-realistic” assumption for small areas 

[5.37]. 

Therefore, when the system is small it is assumed that the same production profile can be 

used for all DER units of the same type, and the same demand profile applies for loads of the 

same type. This assumption implies that the wind profile that drives wind turbines affects all 

installations at unison. Similarly, the solar radiation that powers PV installations has a 

correlated effect in all installations. CHP generation is based on heat demand. Hence, it is 

assumed that the heat demand on a small region is correlated for the heat loads of the same 

type. The micro-CHP profiles used in the next chapter were created using ESP-r building 

simulation tool [5.39]. The production profile of each CHP unit in each node was modified 

adding a +/- 30 min variation, as explained by Kelly et al. [5.40], to account for different 

occupancy characteristics and add realism to the analysis. 

In order to account for the interdependence between the production of different DER types 

and between DER production and load, all profiles are sampled at the same event t for every 

simulation event [5.41]; all profiles are assumed to be synchronised. 

 

DER Production and Demand Correlation in Large Networks 

In larger systems the behaviour of DER production of the same type vary across different 

zones of the network, and it is more complex to model. Complete positive correlation 

between DER production profiles for the same DER type cannot be assumed. Likewise, it is 

not possible to assume total independence between the DER production in different zones, as 

some interdependence exists between DER production in adjacent regions and nodes. These 
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correlations are hard to model for some stochastic generators, such as wind [5.42]. 

Nonetheless, this situation can be dealt with by dividing the network in different zones, as 

proposed by Ochoa et al. [5.43].  Following this approach, the system is divided in different 

areas taking into account geographical characteristics, the topology and the size of the 

system under analysis and the availability of information (e.g. historical production profiles, 

weather measurements). Then, appropriate profiles for each DER type in every zone are 

determined, either based on historical records; or alternatively, produced using weather data 

and models and DER production models, as in [5.42]. The same approach can be followed to 

model similar load types in different zones of the network, if there are significant differences 

between their behaviours.  

 

5.7.2. Sampling Technique: Accuracy and Performance 

In the stochastic simulation, the events are sampled either sequentially or randomly. The 

sampling technique and the number of events simulated have an effect both in the accuracy 

of the attribute evaluations and in the time required for the whole analysis. Therefore, the 

relationship between the evaluation speed and the accuracy of the attributes was quantified 

for the framework implementation. The study was based on large penetrations of three types 

of DER and it estimated the upper limit for the evaluation time of controllable and non-

controllable DER units. Moreover, it provided some general guidelines to choose the best 

sampling technique to use. Also, some of the limitations of the framework implemented were 

recognised. No previous studies of sampling techniques for the analysis of DER were found 

in the literature. Hence, the analysis presented next is a contribution to this research area. 

 

5.7.2.1. Non-Controllable DER 

In this analysis, groups of Wind, PV and CHP generators with sizes ranging from 10kW to 

500kW were randomly located in the 355-node UKGDS network [5.1]. The penetration level 

of each technology was limited to the range 0 to 50%. The configurations were evaluated 

using sequential and random sampling; the UKGDS profiles were used in these analyses 

[5.1]. The relative uncertainty (R) of all the technical attributes discussed in section 5.6.1.2 

and 5.6.1.3 was computed using equation (4-6) of the previous chapter. The average time 

needed for each chromosome evaluation was recorded. As measure of MOEA performance, 
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the number of days to evaluate 300 generations of a population of 300 chromosomes was 

calculated.  

 

Sequential Sampling  

A thousand different topologies with non-controllable DER were simulated. The complete 

profiles (17520 samples) were sampled sequentially. Three distinctive levels of relative 

uncertainty can be recognised in the attributes of all the chromosomes evaluated, as shown in 

Table 5-6. The maximum measures of voltage and thermal loading have very low relative 

uncertainty, and converge very fast. Aggregated energy such as line losses and imported 

energy also converge very fast and achieve a very low relative uncertainty after a few 

hundred samples (<1000). In contrast, exported power and the probability of voltage 

violations have a slower convergence and higher relative uncertainty. A similar order 

between the attributes’ relative uncertainties was observed throughout all the simulations 

explained in the following sections. Figure 5-20 illustrates a typical convergence of the 

attributes in the sequential simulation. 

Table 5-6 Relative Uncertainty – Sequential Sampling - 17520 samples 

R Range Attribute 

Very Low 0.0002 – 0.0020 Maximum Voltage Violation, Maximum Thermal Loading 

Low 0.0004 – 0.0100 Imported Energy, Line Losses 

Medium 0.0230 – 0.0990 Exported Energy, Probability of Voltage Violation 

 

The high relative uncertainty of annual exported power, and its slow convergence, is 

explained by the fact that exported power occurs only at some instances of the year in the 

topologies analysed. In some chromosomes, the probability of voltage violations has a 

similar behaviour. Only a few events per year have voltage violations (p=1) and a large 

number of the observations are zero. The standard deviation of the observations of these 

attributes is very high compared with their mean; and consequently the relative uncertainty 

of the measurements is high. The relative uncertainty decreases with the square root of the 

number of samples, hence, the number of samples must be quadrupled to halve the relative 

uncertainty (assuming that the standard deviation and the mean remain constant). 

Consequently, an extremely large number of samples would be needed to reduce further the 

relative uncertainty in these variables, as seen in Figure 5-20. A comparable effect occurs 

with dispatch and curtailment, when controllable units are analysed. 
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Figure 5-20 Typical Convergence – Sequential Sampling Example 

 

The relative uncertainty obtained in the attributes is adequate for the high-level analysis of 

the planning framework. However, this accuracy is obtained to the detriment of speed. The 

evaluation of 17520 samples takes 40 seconds per chromosome on average. If a population 

of 300 chromosomes is analysed over 300 generations, 6 weeks are necessary. Shorter 

evaluation times are required. When controllable units are analysed, the evaluation times are 

much larger, as discussed later. 

 

Sequential Sampling – Time Step 

The stopping condition of sequential sampling is defined by the number of samples to 

evaluate. Hence, faster evaluations can be achieved by analysing a smaller number of 

samples. It is crucial that the stochastic evaluation considers the characteristics of seasonal, 

weekly and daily production and demand patterns. So, a larger time step (∆t) between 

samples is used to sample the whole profiles. Time steps equal to integer fractions of the 

number of samples per day minus one were used. In the profiles used, there are 48 samples 

per day; hence, the time steps studied were 2, 3, 5, 11, 23 and 47. The use of these time steps 

prevents the sampling procedure from continuously sampling only the same half hours every 
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day (e.g. a time step of 12 samples would only sample the same 4 half hours of every day). It 

also ensures that at least one half hour is sampled from every day. As a result, daily, weekly 

and seasonal variations are still considered. Another possibility to reduce the number of 

samples is to analyse characteristics days for each month or season.  

Results of different sampling steps are presented in Table 5-7. The attribute with the highest 

relative uncertainty (R) for each chromosome is presented, as it determines the minimum 

number of evaluations required. The average value of the highest R over the whole 

population is provided. Also, the maximum value over the whole population of 

chromosomes is provided to give an idea of the whole population performance. The 

estimated time to evaluate a 300-chromosome population over 300 generations is presented. 

Table 5-7 Sequential Sampling – Non-controllable DER 

Relative Uncertainty Time 

step 

# Samples 

Attribute Average Highest 

Days to evaluate 

(300x300) 

1 17520 Exported Energy  0.0368 0.0998 41.7 

2 8760 Exported Energy 0.0522 0.1403 17.2 

3 5840 Exported Energy 0.0637 0.1753 11.0 

5 3504 Exported Energy 0.0819 0.2118 6.3 

7 2502 Exported Energy 0.0912 0.2390 4.7 

11 1592 Exported Energy 0.1246 0.3406 2.8 

23 761 Exported Energy 0.1735 0.4389 1.4 

47 372 Exported Energy 0.2348 0.6431 0.7 

 

In Figure 5-21 the average highest relative uncertainty over the simulations is compared with 

the number of samples. Also, in the secondary axis, the number of days to evaluate 300 

chromosomes over 300 generations is illustrated. The average highest relative uncertainty 

has an exponential behaviour. It decreases fast up to 3000 samples. Then, only small 

decrements are obtained with considerably larger number of samples, as already mentioned.   

From Figure 5-21 it is clear that the choice of sampling step (or number of samples) depends 

on two contrasting factors. If a short evaluation time is required, some attributes such as 

exported power have a high value for R. In contrast, if low relative uncertainty is required in 

all of the attributes, the whole optimisation process lasts several days. In this case, a time 

step of 7 (i.e. 2502 samples) is a good compromise. With a time step of 7 samples, the 

average highest relative uncertainty in the attributes is still reasonably low (R<0.10), while 

realistic evaluation times (<5 days) are obtained. 
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Figure 5-21 Sequential Sampling: Relative Uncertainty Vs. Number of Samples  

 

It must be emphasised that only the attribute with the highest relative uncertainty is 

illustrated. Hence, the time estimation of Figure 5-21 is an upper limit. The rest of the 

attributes have faster convergence and much lower relative uncertainties, as illustrated in 

Figure 5-20. So, if the analysis focuses only on attributes such as line losses, or maximum 

voltages, the accuracy and speed of the planning framework is higher.  

 

Random Sampling 

A thousand random topologies with non-controllable DER were evaluated using random 

sampling. A minimum relative uncertainty was set as a stopping criterion. Three different 

values were used for this limit: 0.05, 0.10, and 0.20. The minimum, average and maximum 

number of samples that each evaluation required to achieve this relative uncertainty was 

recorded. Results are presented in Table 5-8. As in sequential sampling, the attributes with 

higher relative uncertainty were exported energy and the probability of voltage violations. 

Hence, these attributes determined the number of samples in each evaluation. The rest of the 

attributes had lower relative uncertainty, following the trend explained before (Table 5-6).  
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Table 5-8 Random Sampling - Non-controllable DER 

Samples Required Stopping 

Criteria Min. Avg. Max. 

Days to evaluate 

(300x300) 

R<0.05 3380 7376 17393 18.1 

R<0.10 762 2094 16561 4.9 

R<0.20 221 707 9955 1.4 

 

In Figure 5-22 the relative uncertainty is compared with the average number of samples 

(primary axis) and the estimated time to compute 300 generations (secondary axis). It can be 

observed that to decrease the uncertainty by half, the average evaluation time increases 

between 3 and 3.5 times. Results for random sampling are similar to the ones obtained using 

sequential sampling for non-controllable units. For instance, to obtain solutions with a worst 

relative uncertainty of R<0.10, 2094 samples per evaluation were required on average. 

Moreover, the evaluation of 300 generations of 300 chromosomes would also take 

approximately 5 days. 
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Figure 5-22 Random Sampling – Non-controllable DER 

 

There is a key difference between random sampling and sequential sampling. The random 

sampling procedure ensures that all attributes have a maximum relative uncertainty. In 

contrast, in sequential sampling the stopping condition only depends on the number of 

samples, in the implemented framework. The average accuracy of attributes can only be 
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estimated and eventually a complex topology will have higher relative uncertainty in some 

attributes, as seen in Table 5-7. Hence, random sampling is preferred for the analysis of non-

controllable units. 

When random sampling is applied, the value of each specific attribute of a chromosome 

could vary between consecutive evaluations. This variation is regarded as a “noisy” objective 

evaluation [5.13]. SPEA2 is based on the comparison of the objectives of potential solutions. 

Hence, accurate attribute evaluations ensure that comparisons between solutions over 

consecutive evaluations are consistent. This in turn ensures the convergence of the 

optimisation towards accurate and diverse Pareto front. Buche et al. [5.44] mentions that 

MOEA are “inherently robust to small amounts of noise” .Similarly,  Bui et al. [5.13] and 

Goh et al. [5.45] show that SPEA2 is robust to small levels of variation in the objectives 

(R<0.10), but that with larger amounts of noise (R>0.10) the quality of the solutions is 

diminished. Therefore, when random sampling is used a maximum relative uncertainty of 

(R<0.10) is essential, as already mentioned in the previous chapter. Figure 5-22 shows that in 

the studied cases this level of accuracy can be achieved in realistic evaluation times (5 days).  

 

5.7.2.2. Controllable DER 

A similar analysis was repeated assuming all DER units to be controllable. Renewable 

generators were assumed curtailable while CHP units are dispatchable. In this case, the 

analysis included only 250 random topologies, as the evaluation time is much longer. Results 

are discussed next.  

 

Sequential Sampling 

Results from different time steps for sequential sampling are shown in Table 5-9. The 

attribute with the highest relative uncertainty is presented and the average highest relative 

uncertainty over the population listed.  Also, the highest and lowest relative uncertainty of 

this attribute over all the chromosomes is presented, to illustrate the spread of solutions. 

The attributes with the highest relative uncertainty in this case are dispatched and curtailed 

energy. Dispatch and curtailment only happen at some sampled events; specifically when a 

problem exists in the network and when DER can solve it. Hence, in some chromosomes 
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there are only a few observations of dispatch/curtailment throughout the simulation. This 

results in a high standard deviation in relation to the mean, and a high relative uncertainty. 

Moreover, because of this variable characteristic, the relative uncertainty can only be 

reduced up to a point, even with an extremely large number of simulated events. For 

example, the lowest relative uncertainty that was obtained with 17520 samples for 

dispatched energy was 0.0234, compared with relative uncertainties on the range 0.0004- 

0.0100 for line losses.  

Dispatch and curtailment are caused by localised problems, specific to each chromosome. 

Hence, the spread between different solutions’ relative uncertainty is wide. This is can be 

evidenced in Table 5-9 and it is illustrated in Figure 5-23 by examining the histogram of the 

highest relative uncertainty for 17520 samples. In this histogram, it is possible to observe 

that the majority of relative uncertainties of attributes are spread in the range 0.0-0.6. Most 

solutions reach relative uncertainties lower than or equal to 0.3. In those cases, the 

convergence of curtailed energy and dispatched energy is similar to the one of exported 

energy presented in Figure 5-20. In particular cases, there is no convergence in the attributes, 

and the relative uncertainty equals 1. A relative uncertainty of 1 corresponds to a case where 

only one event different than zero was observed in the whole simulation. In this case, the 

solutions that didn’t converge are only 2% of all the topologies 

 

Table 5-9 Sequential Sampling – Controllable DER 

Relative Uncertainty Time 

step 

# 

Samples 
Attribute Avg. Highest Lowest 

Number of Days to 

evaluate (300x300) 

1 17520 Dispatched Energy 0.2808 1.0000 0.0234 100.1 

2 8760 Dispatched Energy 0.3777 1.0000 0.0331 45.5 

3 5840 Dispatched Energy 0.3882 1.0000 0.0394 31.7 

5 3504 Dispatched Energy 0.5156 1.0000 0.0523 19.2 

7 2502 Dispatched Energy 0.4499 1.0000 0.0599 14.3 

11 1592 Dispatched Energy 0.5489 1.0000 0.0722 10.3 

23 761 Curtailed/Dispatch 

Energy 

0.5216 1.0000 0.1122 6.7 

47 372 Curtailed/Dispatch 

Energy 

0.5860 1.0000 0.1456 4.3 

. 
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Figure 5-23Histogram – Sequential Sampling – Controllable DER 

  

The histogram also demonstrates that because of the variable nature of dispatch and 

curtailment, these attributes do not achieve very low values for R, even with the evaluation 

of 17520 samples. Considering this characteristic is essential while choosing a realistic 

stopping criteria or sampling step for controllable units. In the studied cases, realistic 

evaluation times for large penetrations of controllable units were only obtained when 

considering a small number of samples per chromosome (<1500). This number of samples 

results in an average highest uncertainty of around 0.55. 

When controllable units are analysed, the resolution of each OPF takes considerably more 

time than a power flow calculation. For example, a single power flow takes around 2-3 

milliseconds, while an OPF resolution takes 400 milliseconds. When a large number of 

samples are evaluated, more instances of constraint violations must be solved, and the 

negative effect of lengthy OPF evaluations in the overall speed is multiplied. For instance, 

the evaluation of one chromosome with 17520 samples can take up to 250 seconds (100 

seconds on average), even if only some events have OPF evaluations; compared with the 40 

seconds used to evaluate a non-controllable DER topology. Since the SPEA2 evolutionary 

process involves thousands of chromosome evaluations (e.g. 90,000 evaluations for a 300 

chromosome population over 300 generations), the overall estimated time is considerably 

large. 

The estimated times of Table 5-9 and Table 5-10 (presented next) should be understood as an 

upper limit, or worst-case estimation. The chromosomes evaluated include large numbers of 
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controllable DER units of three different types (10-100 units per type). Complex situations 

of over-voltage, under-voltage and overflow in lines were created. The OPF in each iteration 

included up to 300 optimisation variables and more than 900 constraints. Moreover, some of 

the OPF problems were unfeasible, such as overload problems caused by CHP units that are 

not curtailable. This presented a complex and large search space, and resulted in lengthy 

OPF evaluations. A simpler analysis, for example the placement of a handful of curtailable 

generators, results in faster OPF evaluations, as the linear programming variables are 

considerably reduced and all OPF problems are feasible. This is illustrated in the next 

section. 

 

Random Sampling 

Table 5-10 show the results from the evaluation of the same 250 chromosomes using random 

sampling. Again, it was observed that some solutions did not converge, and 17520 samples 

were evaluated without reaching the specified relative uncertainty in all attributes. Even so, 

random sampling showed to be faster than sequential sampling. When random sampling is 

used, the evaluation stops once all the attributes have reached a satisfactory relative 

uncertainty. Hence, the number of OPF evaluations is reduced, and the overall speed of the 

analysis is increased. 

Table 5-10 Random Sampling – Controllable DER 

Samples Relative 

Uncertainty Min. Avg. Max. 

Number of 

Days to 
evaluate 

(300x300 

R<0.10 930 14343 17520 84.6 

R<0.20 268 9147 17520 52.8 

R<0.30 201 5391 17520 31.7 

R<0.40 201 2739 17520 8.5 

 

The estimated time to obtain solutions with high accuracy (R<0.10) is still unrealistic as can 

be seen in Figure 5-24 (full line). Only R<0.40 represents a realistic stopping criteria in 

terms of evaluation time.  

Though, Figure 5-25 also shows results obtained by analysing the integration of 10 

curtailable DER units in the same network and using the same profiles (dashed line). The 

analysis included 250 chromosomes with random DER topologies with penetration levels 

varying from 0 to 50%. Results demonstrate that as the problem becomes simpler, the speed 
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of the evaluations increases; or, equally, attributes with lower relative uncertainty can be 

obtained in the same evaluation time. In this case the evaluation time for attributes with 

relative uncertainty of R<0.10 is more realistic, although still considerably large. 
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Figure 5-24 Random Sampling – Controllable DER 

 

It was already discussed that attributes that vary a lot between consecutive evaluations 

(R>0.10) would have a negative effect on the SPEA2 optimisation process [5.44]. Hence, 

when accurate solutions cannot be obtained by random sampling in realistic time, the use of 

sequential sampling is mandatory. In sequential sampling, the same sequence of events is 

sampled in every evaluation. The attributes of a chromosome are constant from one 

evaluation to the next; and comparisons between chromosomes objectives are consistent over 

all the generations. Hence, by using sequential sampling, the assumptions in which SPEA2 is 

based are respected and the SPEA2 optimisation process is not affected. Though, the 

accuracy and quality of the solutions still depends on the number of samples used; some 

solutions will have low accuracy in some of their attributes (e.g. dispatched energy, curtailed 

energy) because these have high variance in the samples, while the rest of the attributes will 

be more accurate. 
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5.7.2.3. Sampling Techniques: Summary of Results 

Figure 5-25 summarises the evaluation time required to achieve different levels of accuracy 

for controllable and non-controllable units. In the case of sequential sampling, the average 

highest relative uncertainty is plotted. For non-controllable units, random and sequential 

sampling gave similar results. Though, random sampling is preferred because it ensures the 

accuracy of all attributes in all chromosomes. In this case, relative uncertainties of R<0.10 

can be achieved in realistic times. Moreover, it must be highlighted that this time estimation 

is based on the least accurate attribute (i.e. is an upper limit) and that with this stopping 

condition the rest of the attributes will have relative uncertainties lower or much lower than 

0.10. 
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Figure 5-25 Sampling Techniques – Accuracy vs. Evaluation Time 

 

When controllable units are analysed, random sampling is found to be a better choice in 

terms of evaluation speed. In terms of the estimated time to obtain given levels of accuracy, 

the analysis of a few controllable units resembles the study of non-controllable units. As the 

number of controllable units studied increases, OPF evaluations become longer; and more 

time is required to achieve accurate attributes. Consequently, in the case of controllable 
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units, a realistic evaluation time is the limiting factor for the accuracy of attributes such as 

dispatched energy and curtailed energy. In problems that involve a large number of 

controllable units, attributes cannot achieve relative uncertainties lower than 0.10 in realistic 

time. Then, only sequential sampling is an option. In this case, the number of samples to 

evaluate would also be limited by realistic evaluation time. 

The analysis of large numbers of controllable units presents a challenge in terms of the 

required evaluation time for two reasons. First, the attributes of dispatched energy and 

curtailed energy have a high variance. Consequently, a large number of samples are required 

to achieve accurate estimates. Second, the OPF resolution takes much more time than a 

normal power flow calculation. Hence, in this case the analysis of large penetrations of 

controllable DER can only achieved with a compromise; some chromosomes will have 

quantifications of curtailed energy and dispatched energy with high relative uncertainty, in a 

limited evaluation time. Note that the rest of the attributes will be more accurate, as already 

discussed in the previous section.  

The parallel implementation of the SPEA2 algorithm over multiple processors [5.46] will 

considerably reduce the evaluation time of both controllable and non-controllable units. 

Hence, it is a valuable further work. The OPF resolution time (400 ms for a 355-node 

network) is comparable with the computational burden of other OPF formulations found in 

the literature [5.47]. Nonetheless, the OPF optimisation could be enhanced further by linking 

the linear OPF formulation with specialised optimisation packages (e.g. GAMS, Tomlab). 

 

5.8. Summary 

In this chapter, the implementation of a multi-objective tool for the analysis of DER 

integration is presented. This tool is based on the framework discussed extensively in the 

previous chapter, and it makes use of the SPEA2 algorithm, described in Chapter 2 and the 

stochastic simulation procedure illustrated in the previous chapter.  

In the first part of the chapter, the use of the SPEA2 algorithm for the DER planning 

problem is described, and the implementation of each one of the steps of SPEA2 explained. 

Moreover, the reasons behind the choice of each one of the parameters of SPEA2 are 

discussed. One of the requirements identified for the planning framework is that it must be 

able to analyse different types of problems of DER integration. Hence, a flexible encoding 
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system for SPEA2 is proposed. This encoding handles different types of problems with 

minimum changes to the rest of the optimisation algorithm. Similarly, the implementation of 

specific crossover and mutation operator for each type of problem is described.   

The calculation of the attributes is based on a stochastic simulation, which makes extensive 

use of power flow calculation. Consequently, in the second part of this chapter, the power 

flow algorithm implemented is described. The algorithm used is specific to the type of 

networks analysed in the next chapter, and it provides a fast and reliable power flow 

calculation. Other power flow calculations can be integrated without difficulty, when the 

analysis of different types of networks is required. In the previous chapter, the use of an 

optimal power flow (OPF) for the analysis of controllable DER was proposed. In the third 

part of this chapter, the implementation of the OPF calculation is detailed. In this case, a 

linear OPF formulation is proposed. The derivation of the linear equations is described 

extensively in Appendix C. The OPF provides an approximation of curtailed and dispatched 

power, and can be extended for the analysis of controllable load.  

In the fourth part of the chapter, each one of the planning attributes of the planning 

framework is described. The attributes are based on the outputs of the stochastic simulation. 

Hence, in the last part of the chapter, the practical implementation of the stochastic 

simulation is described. More importantly, the speed and accuracy of the tool implemented is 

quantified. The planning tool can provide highly accurate attributes when analysing non-

controllable DER. In contrast, the analysis of controllable units is more challenging. The 

SPEA2 algorithm requires thousands of evaluations. Hence, the speed of the OPF was 

identified as a key factor for the analysis of controllable units.  Further work is proposed to 

increase the speed of the planning framework.  

In the next chapter, the planning framework is illustrated with a set of case studies. For 

brevity, not all the attributes presented in this chapter are used. Nonetheless, in each example 

some of the key features of the planning framework proposed in this thesis are demonstrated. 

Moreover, some conclusions obtained from the case studies are also discussed.  
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Chapter 6 

6. Case Studies in Optimal DER Planning 

6.1. Introduction 

In the previous two chapters the design and implementation of a planning framework for 

DER integration analysis has been extensively discussed. The planning framework evaluates 

diverse technical, economic and environmental benefits and impacts of DER integration. 

Each of these attributes can be used as a planning objective and/or as a planning constraint. 

Moreover, the optimisation of DER type, location and/or size is supported by a flexible 

encoding system. Hence, the range of studies of DER integration that can be carried out by 

the planning framework is very large. In this chapter, the planning framework is 

demonstrated with two relevant case studies. These case studies have been chosen because 

they represent current examples of DER integration in the UK.  

In the first case study, the optimal integration of micro-generation in an urban low-voltage 

distribution system is examined. This case study illustrates the concepts of multi-objective 

optimisation and demonstrates the application and value of the multi-objective visualisation 

and analysis techniques discussed in Chapter 4. Moreover, results from this case study 

demonstrate that the impacts and benefits of DER are technology specific. The second case 

study explores the optimal integration of wind turbines in a rural medium-voltage 

distribution network. The first part of this case study illustrates the use of probabilistic 

objectives and constraints. The second part of the study demonstrates the planning of 

controllable DER. The results expand the knowledge of integration of stochastic DER in 

distribution systems, and illustrate the effects of enabling the curtailment of wind energy on 

the DER owner and the DSO across objectives of interest to them.  

For brevity, not all attributes available in the analytical tool are presented in the case study. 

Those attributes presented are chosen to illustrate relevant economic, technical and 

environmental perspectives of DER integration and the important trade-offs across these 

diverse objectives. 
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6.2. Case Study 1: Integration of Micro-generation in an Urban 

Distribution Network 

Micro-generation is defined as distributed generation with a capacity below 100kW [6.1]. 

The UK government’s Micro-generation Strategy, presented in 2006, recognised these 

technologies to have the potential to contribute to achieve the UK’s objectives of tackling 

climate change and at the same time ensure a reliable and affordable energy supply [6.2]. 

Renewable micro-generators (e.g. PV panels) and the combined production of heat and 

power (e.g. micro CHP) can increase the efficiency of energy production and help reduce 

CO2 emissions. In addition, the local generation of energy could reduce losses in the 

distribution and transmission systems [6.1].  

Some of the impacts of large numbers of micro-generators on the distribution system have 

already been studied [6.3], [6.4], [6.5], though, these investigations focused only on the 

study of a limited number of predefined DER configurations. In contrast, the first case study 

analyses the integration of micro-generation in an urban low-voltage network using the 

multi-objective planning approach proposed in this thesis. A set of optimal solutions is 

determined using three planning objectives. Also, several attributes of interest are analysed 

and compared. 

 

6.2.1. Network and Demand Data 

The network is a generic low-voltage network (0.4 kV, 3-phase, balanced), created by means 

of a statistical network design tool [6.6]. It has 83 nodes, covering an area of 0.25 km
2
. It is 

connected to the medium-voltage network by means of a 1.2 MVA 11/0.4 kV transformer. 

Fifty nodes have connected loads. On average nine properties are connected to each load 

node. Figure 6-1 illustrates the network structure and the nodes that have connected loads. 

Four customer types exist in the network: Domestic Unrestricted, Domestic Economy 7, 

Non-Domestic Unrestricted and Non-Domestic Economy 7. Eighty percent of the load-nodes 

have peak loads lower than 30 kW; all of these are Domestic Unrestricted. The biggest loads 

are non-domestic (90-261 kW) and are installed in the nodes illustrated as squares in Figure 

6-1. The total installed load in the network is 1902.5 kW; the coincident peak load is 986.4 

kW. Loads are assumed to have a power factor of 0.85 lagging. The annual demand of the 
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network is 3789.6 MWh/year (including losses). Detailed data of the network and the loads 

is provided in Appendix D.  

 

 

Figure 6-1 LV Network – Case Study 1 

 

To provide a realistic analysis of a small-scale low-voltage network, each load node has a 

specific demand profile. Daily demand profiles with 5-minute intervals were derived from 

scaled England and Wales hourly year round demand profiles [6.7], [6.8]. To obtain demand 

profiles with five minute intervals, a normal variation with µ=0 and σ=5% was added to each 

hourly value. This variability is characteristic of measured residential load profiles [6.8]. 

Profiles for three characteristic seasons (winter, summer and transition) were created. The 

total demand for the winter season is illustrated in Figure 6-2. 
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Figure 6-2 Case Study 1- Total Demand Winter 

 

Table 6-1 shows the results from the evaluation of the base case using the 6048 samples 

(three characteristic weeks), without any DER installed. The highest voltage drop is 

experienced in node 63, affecting all nodes in the area (61, 62, 63, and 64). The highest 

thermal loading occurs in the transformer connected between nodes 1 and 2. The transformer 

is very close to its thermal limit. The line losses in the network represent about 2.1% of the 

imported energy.  

Table 6-1Case Study 1 – Base Case 

Attribute Units Value 

Line Losses  MWh/year 81.10 

Imported Energy  MWh/year 3789.60 

Emissions Factor  gCO2/kWh 430.00 

Maximum Voltage Deviation  % 5.74 

Over-voltage Probability  % 0 

Maximum Thermal Loading  % 99.12 

Overload Probability  % 0 

 

6.2.2. Micro-generators Data 

The integration of three types of micro-generators currently available in the UK market is 

analysed. The micro-generators considered are a Stirling engine micro-CHP [6.9], an internal 

combustion engine (ICE) micro-CHP [6.10] and a solar photovoltaic (PV) system [6.11]. 

The technical characteristics of these generators are listed in Table 6-2.  
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Table 6-2Micro-generators Data 

Micro-generator Capacity 

(kW) 

Capacity Factor 

(%)* 

CO2 emissions 

factor 

(gCO2/kWh)** 

Heat to Power 

Ratio 

Stirling micro-CHP 1 30.3 326 8:1 

ICE micro-CHP 5.5 24.1 300 2.3:1 

Solar PV System 1.2 11.2 0 ---------- 

* from the production profiles used in the study 

** from Pout et al. [6.12], assumes 90% efficiency, electricity and gas as alternative sources  

 

Table 6-3Micro-generators Costs 

Micro-generator Inst. Cost 

(£/kW) 

O&M Cost Assumptions Cost of 

Electricity 

(p/kWh) 

Stirling micro-CHP 3,500 [6.13] • Fuel cost of  2.7p/kWh [6.13] 

• £110/year for maintenance [6.13] 
4.5 

ICE micro-CHP 2,080 [6.14] • Fuel cost 2.7p/kWh [6.13] 

• £550/year for maintenance [6.13] 
7.0 

Solar PV System 5,000 [6.14] • £60/year  for a basic check and 

cleaning every year [6.14] 
53.2 

 

The costs of each micro-generation technology are summarised in Table 6-3. The installation 

and maintenance costs of the micro-CHP units are distributed proportionally between 

thermal and electrical energy generation, to provide a truthful measure of the cost of the 

electricity generated. The calculation of the unit costs is detailed in Appendix D. The Stirling 

micro-CHP units are the most cost-effective technology in terms of energy delivered. The 

most expensive technology in terms of energy delivered is PV generation.  

 

6.2.2.1. DER Production Profiles 

Time series of production for each micro-generator are available for three characteristic 

weeks of the year. The profiles have a resolution of 5 min, i.e. 6048 samples per profile. 

They were created by means of the ESP-r building simulation tool [6.15], which integrates a 

detailed thermal model of buildings and the energy generation systems, with end-user 

behaviours and real dynamic climate data [6.3]. In the case of micro-CHP four possible 

combinations of dwelling type (detached/semi-detached) and occupancy 

(intermittent/continuous) were considered [6.3]. A variation of +/-30 min was applied to 

each micro-CHP profile of the same type, to simulate differences in occupancy patterns 



259 

 

[6.3]. In the case of PV systems, five different roof orientations were modelled (East, 

Southeast, South, Southwest, West), assuming a panel inclination of 40 degrees. So, five PV 

generation profiles were created for each characteristic week [6.3]. Detailed data of each 

profile is presented in Appendix D.  

Each load node of the network was assigned a house type (dwelling type, occupancy, 

orientation). The house type determines the profile applied to the micro-generators in the 

node. Installations are restricted only to load nodes. The micro-generators studied are 

assumed modular, i.e. a number of them can be installed in each node and the same 

production profile applied (Analysis 2, in Table 5-2 of the previous chapter). Some of the 

micro-generators are single-phase (e.g. Stirling engine, small PV installations); though, it is 

assumed that connections in each node are balanced over the three phases, and that voltage 

unbalance is not higher than the no-generation case [6.16]. Studies have shown that voltage 

rise and reverse power flows are the main impacts of these generators and that “voltage 

unbalance is unlikely to cause a problem” [6.1].   All generators are assumed to work at unity 

power factor. Micro-generation units are assumed uncontrollable and no dispatch or 

curtailment is considered. 

 

6.2.3. Planning Objectives and Constraints 

The planning objectives target a low-cost solution which minimises the carbon emissions 

attributed to the load and supplies local loads with local energy resources. Consequently, 

three planning objectives are defined:  

1. Minimise the total annualised cost of DER (Equation 5-29) 

2. Minimise the load equivalent emission factor (Equation 5-28) 

3. Minimise the yearly energy imported from the grid (Equation 5-19a) 

 

The planning objectives reflect economic, environmental and technical aspects of micro-

generation integration that would be of interest to a regulator. The third planning objective is 

also of interest for the DSO, as the reduction in energy imports from the MV/LV could 

alleviate the use of the medium-voltage network and reduce network losses. Reducing 

energy imports could also defer network investments, although this depends on the reduction 

of peak loads, as examined later. Other objectives could be added to the analysis, for 



260 

 

example to maximise benefits obtained by DER owners, to minimise line losses or to 

minimise grid dependency. Though, keeping the problem simple avoids “information 

pollution” and helps to demonstrate better the planning framework.  

Voltage and thermal constraints in the network are considered deterministic, and limited to 

+/- 10% of the nominal voltage (400V). Thermal constraints are limited to a maximum of 

100%. A limit is set to the maximum number of DER units that can be installed in each 

node. This limit considers the number of properties connected to each node. So, the search 

space is limited to a maximum of 10 Stirling engines (10 kW), 3 ICE generators (16.5 kW) 

and 10 PV installations (12 kW, ~90m
2
) per node. 

 

6.2.4. Case Study 1: Results and Discussion 

The parameters used for the SPEA2 optimisation are shown in Table 6-4. Three 

characteristic weeks (6048 samples) and sequential sampling were used for the evaluation. 

All planning objectives have high accuracy (R<0.013). Each chromosome evaluation took an 

average of 6 seconds, and the total evaluation time was 100 hours. 

Table 6-4 Parameters for SPEA2 Optimisation 

Population Size 200 

Archive Size 150 

Generations 300 

Crossover type Uniform 

Crossover rate 0.9 

Mutation rate 0.004 

 

The bi-objective plot from the optimal solutions is shown in Figure 6-3. The Pareto front is a 

plane in the three-dimensional objective space. Hence, each one of the plots corresponds to 

the projection of the plane on a bi-dimensional axis. Four optimal solutions are highlighted 

in the figure to facilitate the description of the Pareto Front (A, B, C and D). In addition, the 

cases of maximum penetration of each DER type are illustrated (S, ICE and PV) to show the 

area of the search space, and highlight the effect of each technology. Solution S is part of the 

Pareto front. In contrast, solutions PV and ICE are dominated solutions. The objectives and 

the penetration level of each DER type of these optimal solutions are presented in Table 6-5 

and Table 6-6, respectively. 
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Figure 6-3 Optimal Solutions – Case Study 1 

 

Table 6-5 Optimal Solutions – Case Study 1 

Attribute A B C D S ICE PV 

Annualised cost 
(k£/year) 

- 105.72 323.06 450.8 70.32 119.49 260.98 

Emissions Factor 

(gCO2/kWh) 
430 379.88 335.75 324.89 390.42 379.91 373.65 

O
b

je
ct

iv
es

 

Imported Energy 

(MWh/year) 
3,789.6 2,070.8 1,897.6 1,301.9 2,332.1 2,315.6 3,283.9 

Exported Energy 

(MWh/year) 
- 262.0 89.4 1,201.2 84.3 200.2 9.3 

DER Energy Exported 

(%) 
- 13.40 4.59 32.70 5.56 12.13 1.85 

Cost per kWh (£/kWh) - 0.05 0.17 0.12 0.05 0.07 0.52 

Maximum Voltage 
(%) 

5.7 6.6 5.8 8.7 5.6 6.5 5.7 

Maximum Loading 

(%) 
99.1 88.5 89.9 90.1 90.8 97.9 98.2 

O
th

er
 A

tt
ri

b
u

te
s 

Line Losses 
(MWh/year) 

81.1 56.1 49.2 65.5 56.5 58.4 70.6 
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Table 6-6 Optimal Penetration Levels – Case Study 1 

Penetration Level 

(%) 
A B C D S ICE PV 

Stirling Engine - 39.7 24.6 40.9 40.9 - - 

ICE - 12.9 15.2 44.5 - 44.5 - 

PV Systems  - 0.2 12.7 13.6 - - 13.6 

Total DER - 52.7 52.6 99.0 40.9 44.5 13.6 

 

The Principal Component Analysis (PCA) of the objectives is illustrated in the top-right 

corner of Figure 6-3. Annualised cost minimisation conflicts with the other two planning 

objectives (first PCA component is opposed). Particularly, the linear correlation between 

annualised cost and carbon emissions reduction is very strong (correlation coefficient of -

0.97). A complete linear correlation (correlation coefficient of 1 or-1) indicates that the 

trade-offs between all solutions are constant. In contrast, the shape of the front annualised 

cost vs. imported energy (top-left plot) determines a less pronounced linear correlation 

(correlation coefficient of -0.85). This indicates that the trade-offs between solutions have a 

wide range of variation, as demonstrated later. CO2 emissions minimisation and energy 

imports minimisation are not conflicting, the first PCA component has the same direction, 

and they show high positive correlation (correlation coefficient of 0.92).  

The two extremes of the Pareto front can be easily recognised. They correspond to the “do-

nothing” case (solution A), and the installation of the entire permitted DER in the network 

(solution D). Solution D has an annual cost of £450,000. A reduction of 25% on the load 

CO2 emissions factor can be achieved. This means a reduction of around 400 tonnes of CO2 

per year. Generalising the emission reduction of the case study to UK domestic electricity 

demand (115 TWh [6.17]]), would result in a reduction of 12 MtCO2/year or 2.2% of the 

total UK emissions (554 Mt CO2 in [6.1]), though, the penetration levels of DER required for 

achieving these emission reductions are unlikely to be reached in the short or medium term. 

For instance, to generate 20% of the domestic demand by micro-generation requires 22 

million PV systems of 1.2 kW or 9 million Stirling engines of 1kW. Hence, to achieve the 

UK CO2 reduction targets (26% by 2020 and 80% by 2050 [6.18]), energy-efficiency 

measures, large-scale wind energy, nuclear power plants and/or Carbon Capture and Storage 

would be required, in addition to the use of micro-generation.  

In solution D, imported energy can be reduced to a third of the initial value, with a DER 

penetration of almost 100%. Though, almost a third of the energy generated is exported to 

the MV grid, as can be seen in Table 6-5. The aggregated reverse flows (exports) of many 

domestic networks might cause overload problems in MV distributions systems, with such 

extreme penetration levels of DER. 
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Figure 6-4 Optimal Penetration Level - Case Study 1 

 

Figure 6-4 compares the optimal penetration level of each DER type with the planning 

objectives of each solution. This figure demonstrates that the proposed approach determines 

the optimal DER mix for each planning objective. Each point illustrates the penetration level 

of each technology (SE, ICE, PV), and the total penetration level of DER. Two different 

regions of the Pareto front can be characterised. The first region (A-S) corresponds to a 

group of solutions based mainly on increasing penetrations of Stirling engine micro-CHP 

(SE), with the annualised cost ranging from 0 to 100k£/year. Stirling engine micro-CHPs 

provide the most cost-efficient reduction in energy imports due to their low unit cost and 

higher capacity factor. Similarly, they provide cost-effective carbon reductions when the grid 

emission factor is high. These two aspects are examined in detail later.  

In solution S the maximum penetration of Stirling engine micro-CHP is reached (40.9%). 

Hence, the second group of solutions have increasing penetrations of ICE micro-CHP and 

PV systems, with the penetration of Stirling engine micro-CHP ranging from 20-40%. These 

solutions correspond to the triangle-shaped region (BCD) of the Pareto front (Figure 6-3) and 

this is the second main region of interest. Three distinctive boundaries of this region can be 

identified (BC, BD and CD).  

The solutions between B and C in the Pareto front (Figure 6-3) have an annual cost ranging 

from 100 to 300 k£/year. After solution S, these are the solutions that provide the most cost-
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effective carbon emission reductions, from 380 to 330 gCO2/kWh. The energy imports 

corresponding to the front BC is ~2000 MWh. The second plot of Figure 6-4 shows that 

these configurations are based on mixes of Stirling engine micro-CHPs (20-40%), ICE 

micro-CHP (10-25%) and increasing penetrations of PV systems (0<10%), with total DER 

penetration ranging between 40-60%.  

The front between B and D provides the most cost-effective reduction in energy imports 

from 2000 to 1300 MWh/year. The centre plot of Figure 6-4 shows that these solutions are 

based on mixes with large penetration of Stirling engines and ICE micro-CHPs.  The 

maximum penetration of PV systems is included in the optimal DER mixes only when 

Stirling engines and ICE micro-CHP have almost reached their maximum penetration levels. 

This demonstrates that PV systems are the least cost-effective technology among the three 

studied (given the planning objectives). This is a reflection of high installation costs, low 

capacity factor and little coincidence with demand for the energy provided by PV systems, in 

the network studied. 

 

6.2.4.1. Trade-off Analysis 

Energy Imports and Annualised Cost 

Figure 6-5 compares the levelised cost per kWh of each optimal solution according to the 

penetration level. It can be observed that the unit cost of the energy delivered of the optimal 

solutions is in the range 0.04-0.17 £/kWh. The costs for selected solutions are listed in Table 

6-5. Up to 40% of DER penetration level, the cost of energy delivered is competitive with 

the grid energy, which costs 0.05 -0.08 £/kWh [6.1], and slightly higher than the unit cost of 

energy generated by large fossil-fuelled power plants, which costs 0.02-0.03 £/kWh [6.19]. 

After solution S, the increased penetration of PV systems raises the cost of the energy 

delivered. Solutions that provide large carbon savings with high penetrations of PV systems 

(e.g. solution C) have the highest cost per unit of energy. 

Other studies have found that incentives of 0.40£/kWh for PV systems and 0.05£/kWh for 

micro-CHP would be necessary to stimulate a significant uptake of these technologies [6.1]. 

Currently “buy back” tariffs of between 0.05 £/KWh and 0.10 £/KWh are offered for micro-

generation (PV systems, micro-CHP and wind) [6.20]. These tariffs reflect the production 

cost of the micro-CHP units included in this case study. 
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Figure 6-5 DER Penetration Level vs. Levelised Cost – Case Study 1 

 

Micro-CHP units have a lower cost per kWh delivered. Consequently, solutions that are non-

dominated in the objectives of imported energy and annualised cost (S, B and D) include 

higher penetrations of micro-CHP, as already illustrated. Though, the cost to reduce energy 

imports depends not only on the cost of the energy delivered but also on the coincidence 

between generation and demand, as discussed next. 

Micro-CHP units have a high coincidence with domestic demand in winter, while PV system 

generation is prevalent in the summer when micro-CHP units have no output. As a result, 

after solution S, the installation of PV systems is required to obtain further reduction in 

energy imports (i.e. reducing summer demand), and ICE micro-CHP units are necessary to 

further reduce winter demand. Moreover, as the penetration of micro-generation increases, 

the energy imports reduced by every extra micro-generation unit installed decreases, i.e. the 

system saturates and more energy is exported. Consequently, further reductions in imported 

energy are more expensive, both because of the need for PV systems and because more units 

must be installed to obtain the same reduction in energy imports. 

The cost efficiency of reducing energy imports can be determined from the trade-off between 

these two objectives. For example, solution S requires an annual spending of £70,320 to 

reduce 1,457 MWh/year of energy imports from solution A. This cost represents £48.2 for 

every MWh of energy imports reduced.  Note that this cost is higher than the cost of energy 
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delivered by Stirling engines (£45/MWh), as it reflects not only the unit cost of energy, but 

also the coincidence of DER production and demand in the grid, i.e. how much of the energy 

produced is used locally. If DER and demand were completely correlated in the grid, all the 

energy delivered by the DER units would be locally consumed, and the cost of reducing a 

unit of energy imported would be the same as the cost of producing it. Though, because a 

portion of the energy is exported, the cost of reducing every unit of energy imports is higher 

than the actual cost of production. 

 

Figure 6-6 Trade Off – Annualised Cost vs. Imported Energy 

 

Table 6-7shows the trade-offs between the optimal solutions in these two objectives (Figure 

6-6). The results show that as the penetration level of DER increases, the cost of reducing 

energy imports grows exponentially.  For instance, the trade-off between B and D is more 

than nine times larger than that of A and S, due to the reasons already discussed, i.e. the use 

of more expensive PV systems, and the requirement for more DER units to achieve the same 

reductions on energy imports.  

Table 6-7 Trade Off – Annualised Cost vs. Imported Energy 

Trade-off Cost per MWh of 

Imports Reduced 

(£/MWh) 

A-S 48.2 

S-B 135.5 

B-D 448.8 

A-D 181.2 
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The incremental trade-offs show that self-sufficiency in this network cannot be achieved at a 

reasonable cost. Up to 40% of local load can be supplied cost-efficiently with the use of 

Stirling engines, or other types of micro-CHPs (e.g. the trade-off between A and ICE is 

£81.1/MWh), though this penetration level (40%) is unrealistic in the short and medium 

term. For example, solution S assumes that ~1 Stirling engine is owned by every property in 

the network. Furthermore, the main grid still has a major role in the provision of energy in a 

future with large penetration of DER. Even with 100% of DER penetration (solution D), a 

third of the annual energy demand must be imported from the grid, and a similar amount is 

exported back to the main system. Hence, the thermal loading of the equipment is not 

reduced drastically, as illustrated later in this section. 

This analysis compared the costs of DER with the reduction in energy imports. In this case, 

the penetration of micro-generation was limited to provide a realistic picture of the 

integration of these technologies on a low-voltage/domestic power network. The results help 

to understand the importance of DER/demand coincidence. Moreover, the results 

demonstrate that the optimisation of varied types and numbers of DER is possible with the 

proposed approach. Consequently, the developed tool can be used to compare the impact of 

different technologies or to develop incentives to promote the uptake of some technologies 

(e.g. PV systems). Further analyses are promising, for example, it is possible to study the 

maximisation of the benefits obtained by DER owners (e.g. avoided purchases of energy, 

energy exports remuneration), and minimise the impacts in the networks, such as line loss 

minimisation. Moreover, the use of energy storage units, or load following micro-CHPs, 

which modify the trade-offs between costs, CO2 emissions and imported energy, can be 

integrated within the planning framework. 

 

Load Emission Factor and Annualised Cost 

The cost of reducing carbon emissions by micro-generation depends on three factors: the 

carbon intensity of the DER unit, the cost per unit of energy produced and the capacity 

factor. An analysis of the trade-off between annualised cost and the carbon emission factor 

shows that Stirling engine micro-CHP provides a more cost-effective solution to reduce 

carbon emissions. For instance, solution S requires an annual expenditure of £ 1,776 for 

every gCO2/kWh reduced in the load emissions factor. This is equal to £479 for every tonne 
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of CO2 reduced, as the annual load demand in the network is 3708.5 MWh/year. ICE micro-

CHP is the second most cost-effective technology; the cost for every tonne of CO2 reduced 

in solution ICE is £643/tonCO2. PV systems are a zero-carbon technology; though, their 

higher installation cost and low capacity factor determine a high cost for carbon offsetting, 

which is £1248/tonCO2. 

 

Figure 6-7 Trade Off – Annualised Cost vs. Carbon Emission Reduction 

 

The trade-offs between the different segments of the Pareto front illustrated in Figure 6-7 are 

compared in Table 6-8. Note that in this case the load emission factor was used. The total 

emission factor, discussed in the previous chapter is up to 2% lower, as the energy exports 

are also carbon intensive. 

 

Table 6-8 Trade Off – Annualised Cost vs. Carbon Emission Reduction 

Trade-off Cost per tonne of 

CO2 

(£/tonneCO2) 

A-S 479 

S-B 906 

B-C 1,328 

B-D 1,692 

C-D 3,172 
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Table 6-8 shows that as the penetration level increases, the reduction in the load emissions 

becomes more expensive. On one hand, less cost-efficient technologies are used, while on 

the other hand more energy is exported.  

A further key aspect must be considered: micro-CHPs provide environmental benefits only 

when the grid energy is very carbon-intensive (coal/gas based). Hence, micro-CHP 

generation reduce carbon emissions only up to a point (~320 gCO2/kWh), after which only 

PV systems (or other zero carbon technologies) provide further environmental benefits. 

Hence, with larger penetrations of DER, or on a grid with a lower emissions factor, PV 

systems are the most cost efficient technology to reduce carbon emissions, among the three 

analysed.  

The cost of offsetting carbon with micro-generation (PV systems or micro-CHP) is not 

competitive with large-scale zero-carbon technologies (i.e. hydro, nuclear, wind) that have a 

larger capacity factor and a lower cost per unit of energy. For instance, a 1MW Wind 

turbine, with a cost of £0.90M and a capacity factor of 27%, reduces approximately 1000 

tonnes of CO2/year, at a cost of £101/tonCO2, assuming 430gCO2/kWh avoided, a 20-year 

analysis, O&M costs of £18,000/year and a discount rate of 7%. 

In this analysis, the micro-CHP emissions attributed only to electricity generation were 

accounted for, in order to compare them with the costs of generating electricity. An analysis 

of the thermal energy supply is not included in the case study. The installation of micro-CHP 

and CHP units is a multifaceted problem which includes impacts and costs of other types of 

energy demand and energy carriers (e.g. domestic heat provision and gas networks). The 

planning framework presented in this thesis supports the integration of other models and 

objectives. Hence, a comprehensive energy planning approach that considers thermal 

demand, gas and heating networks planning is a worthwhile further work and is described in 

more detail in the conclusions. 

 

6.2.4.2. Other Planning Attributes 

Selected attributes of the optimal configurations are plotted for all solutions in Figure 6-8. 

This figure shows that as DER penetration level increases, the imported energy is reduced, as 

was already discussed. The reduction of imported energy causes a decline of 12% in the 

maximum thermal loading in the network. Consequently, some upgrade investments can be 
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postponed (e.g. transformer). Other studies found that PV systems alone would not reduce 

peak loadings, due to the lack of coincidence between production and demand [6.4]. In this 

case, the reduction of thermal loadings can be attributed to the optimal mixes of micro-CHP 

units, which reduce energy imports in peak times. Energy imports are highly correlated with 

thermal loadings in this network (linear correlation coefficient of 0.82).  

From the point of view of the DSO an optimal penetration level of DER is 50-60%, where 

the benefits for the network operation are maximised (i.e. loss minimisation, thermal loading 

reduction), and the impacts are minimised. Line losses are reduced only up to 60% of DER 

penetration, after which they start to increase again. The maximum loss reduction is 40%. 

The increase in line losses beyond 60% DER penetration is caused by the increment of the 

reverse power flows, evidenced in the increment of exported energy. Energy is exported 

back to the MV grid with penetrations higher than 50%. With larger penetrations, the 

aggregated reverse flows can cause operational problems in the MV grid. Note that in this 

case line loss minimisation was not one of the planning objectives. It is possible that 

different DER configurations would provide a higher reduction in losses. 

 

Figure 6-8 Planning Attributes – Case Study 1 
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None of the technical planning constraints was limiting for the development of DER, 

because in this case the DER penetrations were limited to provide a realistic analysis of 

micro-generation integration on an urban domestic network. Larger penetrations of DER 

were tested in the network, and it was found that a maximum penetration level of 110% 

could be reached without breaking technical constraints, provided that an optimal mix of 

DER technologies is integrated. Both voltage rise and reverse power flows in the main 

connection transformer were the limiting factor for further installations of DER in those 

cases. Nonetheless, it is unlikely that high levels of penetration (>10%) will be achieved with 

domestic micro-generation in the medium-term, unless a sharp drop in the cost of these 

technologies occurs, or adequate incentives are provided [6.1]. 

Micro-generation investments are decided by individual buyer initiative, and it is unlikely 

that the locations and sizes of these will be centrally planned. Moreover, in many cases, the 

installation of micro-CHP units is dictated by the thermal demand, and electricity is 

considered just a by-product. Nonetheless, an optimal use of the energy resources is essential 

to obtain a cost-effective and clean energy supply. The planning framework proposed in this 

thesis can be used to analyse the impacts of several types of micro-generation integration, 

and it can support the development of policies and incentives to encourage the adequate 

deployment of micro-generation.  

 

6.3. Case Study 2: Integration of Renewable Distributed Energy 

Resources in a Rural Distribution Network 

The use of renewable energy resources is recognised as a fundamental part of the UK 

government strategy to reduce CO2 emissions. For instance, the UK government has set the 

target that 10% of electricity should come from renewable sources by 2010 and 20% by 2020 

[6.20]. Currently, about 5% of UK’s energy comes from renewable sources; mostly wind 

energy (3.7%) and hydro electricity (1.3%) [6.22]. Therefore, to achieve the government’s 

target a substantial integration of renewable energy is required. A significant part of these 

renewable generators are going to be connected to the distribution system, due to their small 

capacity [6.23] and the existence of renewable energy resources in remote locations [6.24]. 

Distribution networks are usually not designed to accommodate large amounts of generators. 

Hence, the optimal location and sizing of DER is essential to guarantee an efficient use of 
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resources, i.e. avoid unnecessary network reinforcements and prevent network sterilisation 

[6.24].  

Network access for DER has been traditionally allocated on a firm access, namely a “worst-

case scenario” analysis of maximum generation and minimum load. Some optimisation 

methods that maximise the connection of DER under firm access are reviewed in section 

3.3.2.1 of this thesis (e.g. [6.24]). Nonetheless, some stochastic renewable generators, such 

as wind turbines, provide their maximum output only at very shorts periods of time [6.23], 

and as a result the use of a probabilistic analysis of DER integration provides a more 

objective evaluation of DER impacts and benefits [6.25]. Also, recent studies have shown 

that a non-firm integration of DER permits larger renewable energy production [6.26]. When 

non-firm access is considered, active management of the DER (i.e. DER curtailment) is 

essential to minimise the network impacts of DER and avoid expensive network 

reinforcements [6.25], [6.27]. Hence, the optimal integration of DER must consider not only 

the optimal number, size and location of DER units, but also the optimal operation of 

stochastic DER. 

This case study analyses the optimal integration of wind turbines in a medium-voltage rural 

distribution network. The case study is divided into two parts. In the first part, the use of 

probabilistic objectives and constraints is demonstrated. The multi-objective approach 

illustrates the limitation of DER integration under a firm-access philosophy. In the second 

part, the possibility of curtailing renewable generation to increase the uptake of DER is 

included in the analysis, and the non-firm integration of wind turbines is optimised. The 

analysis exemplifies the conflict between the impacts of DER on the distribution network 

and the objectives of the DER developer. Also, the case study demonstrates that the multi-

objective approach adopted in this work provides a deep insight into the DER integration 

problem, and that the frameworks proposed in this thesis include the current drivers of DER 

integration.  

 

6.3.1. Network and Demand Data 

The network studied is a 53-node medium-voltage rural network. It was derived from one 

feeder of the UKGDS generic rural overhead network 1 (HV OHa) [6.28]. The United 

Kingdom Generic Distribution Systems (UKGDS) provide resources for the study of the 

impacts of DG on distribution networks, including generic distribution networks, load and 
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DG profiles. UKGDS networks are based on statistical analysis of real networks. The generic 

parameters of these circuits are averaged values [6.29] that have been tuned to avoid 

overloads and voltage constraints breaches [6.30]. Therefore, the feeder was modified to 

provide a more realistic analysis of a rural network where voltage rise is often the 

constraining factor for DER integration [6.31]: the length of the conductors was doubled, the 

load was multiplied by a factor of 2.2 and the capacity of conductors was doubled. 

The network studied is radial, and has long overhead lines (40 km in total) with high R/X 

ratios (in the range 1.4-2.7). Also, the network has a low customer density (0.20 MW/Km
2
). 

The network is illustrated in Figure 6-9. Nodes were re-numbered from the UKGDS network 

to facilitate the description of optimal DER locations. Nodes 1 to 5 represent the main 

feeder, nodes 6 to 20 are the main branches and the rest of nodes are the secondary branches. 

Details of the network are provided in Appendix E. 

 

Figure 6-9 MV Network – Case Study 2 

 

Four customer types are included in the network (Domestic Unrestricted, Domestic 

Economy, Industrial and Commercial). For each customer type, a yearly profile with half 

hour resolution is available from UKGDS [6.28]. All loads have a power factor of 0.98 

lagging. The customer type and installed load of each node is detailed in Appendix E. The 

peak load of the feeder is 3.3 MVA; the minimum load is 0.34 MVA. Table 6-9 shows the 

results of the base case. The highest voltage drop is experience in node 53. The line losses 

represent 2.5% of the network load. 
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Table 6-9Case Study 2 – Base Case 

Attribute Units Value 

Line Losses  MWh/year 348.90 

Imported Energy  MWh/year 14238.00 

Maximum Voltage Deviation  % 5.99 

Maximum Thermal Loading  % 29.85 

Annual Load  MWh/year 13889.10 

 

6.3.2. DER Data 

The analysis will determine the optimal number of wind turbines to connect to the network 

and the optimal location of each one of them, given the multiple planning objectives, which 

are discussed next. It is assumed that a turbine with one MW can be connected to each node 

of the network. It has been concluded elsewhere that MV rural networks are not likely to 

support more than one to three MW of renewable generation [6.32]. Turbines are assumed to 

work at a power factor of 0.98 lagging. Installations are constrained in node 1. 

Production profiles for a year with half hour samples are available from UKGDS [6.28]. 

These profiles are based on measured data and generation output models. The wind 

production profile has a capacity factor of 27.12% with the highest production achieved on 

March (42.07% capacity factor) and the lowest in January (16.14% capacity factor), as 

illustrated in Figure 6-10. 

 

 

Figure 6-10 Monthly Capacity Factor - UKGDS Wind Profile 
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According to the UK Meteorological Office (Met Office) [6.33], January is the month when 

wind gales (>62 m/s) are more frequent in the UK. Extreme wind speeds are not used for 

producing energy as they can be damaging for the blades and structure of the wind turbine, 

and the cut out speed of wind turbines on the 1 MW range is around 25 m/s [6.34]. 

Therefore, the low production of January is due to wind speeds being too high. 

The costs assumed for the wind turbine are listed in Table 6-10. These include the capital 

costs for installation and connection, and the costs for operation and maintenance. The costs 

of the active management scheme are included in the second part of the case study, when 

controllable units are analysed. The annuities of the capital costs are calculated using a 20-

year period and a 7% discount rate. The combined benefits for energy revenues and 

Renewable Obligation Certificates are considered as £50/MWh [6.27]. The effect of varying 

this revenue is discussed in the case study. 

 

Table 6-10Wind Turbine Costs 

Installation* 

 
 

(£/MW) 

Connection* 

 
 

(£/MW) 

Active 

Management 
Scheme* 

(£/MW) 

O&M Costs** 

 
 

(%) 

750,000 150,000 £20,000 2% of Capital cost 

  *from [6.27] 

**from [6.35] 

 

The optimisation of the number of DER units and their locations is a combinatorial problem 

with an extremely large search space (2
52

 = 4.5x10
15

). Some methods have been proposed to 

optimise the locations and sizes for DER to maximise the penetration of DER and these were 

reviewed in Chapter 3. These methods have a drawback because the number of DER units 

must be predefined beforehand, and the study must be repeated to identify the optimal 

locations/sizes for different number of DER units. In contrast, the approach proposed in this 

thesis determines the optimal number of DER units, and their optimal location and size, in a 

single study, as demonstrated later in this chapter. The size of wind turbines is considered 

fixed; though, this also could be optimised if required, as the encoding system described in 

the previous chapter supports this decision variable. 
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6.3.3. Planning Objectives and Constraints 

In the first part of the case study, referred as case 2a, the wind turbines are assumed 

uncontrollable. The planning objectives aim to maximise the economic benefits of DER 

integration, from a DER owner perspective, and to minimise the effect of DER in the 

network. Hence, the planning objectives are: 

1. Maximise the benefits from a DER owner perspective (Equation 5-32) 

2. Minimise the yearly line losses in the network (Equation 5-15) 

3. Minimise the probability of voltage violation in the network (Equation 5-24a) 

 

A fourth objective is added to determine the minimum penetration level required to achieve 

the best value in the three planning attributes, as discussed in section 5.6.1.1 of the previous 

chapter:  

4. Minimise the DER penetration level (Equation 5-13) 

 

By using this fourth planning objective, the framework will determine the optimal number of 

DER units for each level of DER benefits, losses and probability of voltage violation, as 

demonstrated later. 

In the second part of the study (case 2b), the wind turbines are assumed to be controllable 

and OPF is performed when there is a voltage or thermal violation. Curtailment problems 

always have a mathematically feasible solution. Hence, the probability of voltage violation is 

zero for all optimal solutions in this case and the third objective is replaced with the 

minimisation of the curtailed energy, to optimise the operation of wind turbines. Hence, the 

planning objectives for case 2b are: 

1. Maximise the benefits from a DER owner perspective (Equation 5-32) 

2. Minimise the yearly line losses in the network (Equation 5-15) 

3. Minimise the energy curtailed in the year (Equation 5-21a) 

4. Minimise the DER penetration level (Equation 5-13) 

 



277 

 

The SPEA2 analysis includes both probabilistic and deterministic constraints. The 

probability of voltage violations is constrained to a maximum of 5% over the year. The 

voltage limits are set to +/-6% of the nominal voltage.  Thermal constraints are assumed 

deterministic and set to a maximum of 100% of loading in all lines.  

The OPF analysis considers deterministic voltage (+/-6%) and thermal constraints (100%). 

The curtailment problem is formulated in terms of energy [6.36], as under a non-firm 

analysis the revenue lost by energy curtailment is not included as a cost (see previous 

chapter). 

 

6.3.4. Case 2a: Results and Discussion  

The parameters used for the SPEA2 optimisation are shown in Table 6-11. Each 

chromosome evaluation took an average of 2.5 seconds to evaluate, and the total evaluation 

time was 34 hours. Sequential sampling was used to permit an unbiased comparison with the 

results of case study 2b. All planning objectives have high accuracy (R<0.05). 

Table 6-11 Parameters for SPEA2 Optimisation 

Population Size 100 

Archive Size 50 

Generations 500 

Crossover type Uniform 

Crossover rate 0.9 

Mutation rate 0.02 

Sampling Sequential 

Stopping Criteria 3504 samples (Time step =5) 

 

The objectives of the optimal solutions are illustrated in Figure 6-11. The base case scenario 

is identified (solution 0), together with four solutions which are labelled according to the 

number of wind turbines installed (3, 5, 6 and 8). The objectives for these solutions are 

detailed in Table 6-12. 

The characteristic U-shape between line losses and DER penetration level is observed in the 

second row of plots. In this network, the losses are minimised to 60% of the initial value 

with 3 wind turbines installed in key locations. Optimal DER locations are discussed later. 

The optimal number of generators from a DSO point of view is between 2 and 6, as more 

installations increase the line losses in the system, and also the maximum voltages. With 8 

turbines, the line losses are almost 140% of the base case. 
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Table 6-12 Planning Attributes – Optimal Solutions Case 2a 

Attribute Base Case 3WT 5WT 6 WT 8WT 

Annual DER Benefits (£/year) 0 47,366 78,944 94,732 126,310 

Line Losses (MWh/year) 349 201 244 298 482 

Prob. of Voltage Violation (%) 0 0 0 0.06 3.99 

Maximum Voltage Violation (%) 5.99 5.94 5.941 6.45 8.55 

Maximum Thermal Loading (%) 29.85 29.25 36.80 44.6 60.6 

 

Figure 6-11 Optimal Solutions - Case Study 2a 

 

The optimal siting of 5 wind turbines keeps the network within deterministic voltage limits. 

The 6
th
 turbine, even when optimally located, causes a voltage rise outside the deterministic 

limits. Though, the maximum voltages with 6 turbines installed are only slightly above the 

deterministic constraints. These voltages are between 1.0645 p.u. and 1.0731 p.u. 

Consequently, the probability of constraint violation for the optimal solutions with 6 turbines 

is very small, between 0.06% and 0.4% of the year (4 - 35 hours). In contrast, if a suboptimal 
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integration is followed, voltage constraint violations occur even with 3 turbines, as illustrated 

in Figure 6-12. As the number of turbines installed increases, their optimal placement 

becomes critical, because the impacts of the turbines on the voltage rise are aggregated. For 

instance, 8 turbines wrongly located can determine probabilities of voltage violation as high 

as 20%.  

 

Figure 6-12 Probability of Voltage Violation with Optimal and Sub-optimal Integration 

 

In a deterministic analysis even the smallest voltage violation is unacceptable, even if it 

happens just at a single instance or for a brief period of time. Hence, if deterministic 

constraints are applied (i.e. the probability of constraint violations must be zero), the DER 

owner net benefits are limited to around £ 79,000 per year, assuming an optimal location for 

5 turbines. In contrast, using a probabilistic analysis and limiting the probability of voltage 

violation to 5%, up to 8 turbines can be installed. With 8 turbines, the net economic benefits 

increase to £126,000 per year, 60% more than in the best deterministic case. With 9 turbines 

installed, the probability of voltage violation exceeds 5%. 

The increment in the DER owner benefits by installing 8 turbines is in conflict with the DSO 

objectives because line losses and maximum voltages would increase, as already discussed. 

However, an interesting compromise solution exists with the installation of 6 turbines. In that 

case, with 6 turbines the line losses are reduced from the base case, the probability of voltage 

violation is very small, the maximum voltages are not extreme and the benefits for the DER 

owner are 20% higher than when the deterministic constraints are used. This analysis 
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demonstrates that a multi-objective approach is able to illustrate different perspectives of the 

DER integration problem. 

Figure 6-13 shows the optimal locations for wind turbines for the selected optimal solutions 

listed in Table 6-12. In the case of 3 wind turbines, turbines are located strategically in the 

middle of the main branches. In these sites, the turbines can supply energy to the loads when 

production is coincident with demand, or export their surplus without increasing losses 

excessively when production exceeds demand. A simpler analysis that disregards the time-

variability of DER would determine erroneous optimal locations, as losses are also time-

variant, and would not be able to provide a probabilistic assessment of DER integration.  

 

Figure 6-13 Optimal DER Locations - Case Study 2a 

 

The case of 5 turbines shows most turbines located near the grid supply point, as other 

locations would lead to higher voltage rises and constrain the integration of DER. Two other 

turbines are located strategically in the main branches (nodes 14 and 17) to reduce the line 

losses. A similar distribution pattern is also observed when 6 or 8 turbines are installed: most 

of the optimal turbines are located near the grid supply point, and the rest of the turbines are 

strategically located between the grid supply point and the loads, to reduce the losses. For 

instance, turbines are installed in nodes 10 and 17 in the case of 6 turbines, and in nodes 5, 

10 and 14 in the case of 8 turbines. The optimal locations achieve the two technical 



281 

 

objectives chosen (minimise line losses, minimise probability of voltage violation), as the 

economic objectives are the same regardless of the location. 

 

Figure 6-14 Optimal Solutions Chromosome – Case Study 2a 

 

Additional information can be obtained by analysing the “chromosomes” of the fifty optimal 

solutions, illustrated in Figure 6-14. Solutions have been sorted from top to bottom according 

to the number of turbines installed. A black square indicates a turbine installed in the node. 

The optimal locations for DER turbines are predominantly in the main feeder (nodes 1-5) 

and in the primary branches (nodes 6-20). Strategic nodes can be identified; for instance, 

nodes 2, 7, 10 and 14 have a turbine installed in more than 50% of the solutions. Though, 

these nodes are not optimal locations when a single-turbine is optimised. These locations are 

optimal only when four or more turbines are installed, as they minimise the losses and the 

voltage rise problems. This is valuable information for a DSO, as it identifies key nodes to 

obtain the most benefits of DER installations. The information can be used to promote an 

optimal DER integration in the long-term.  

The results presented in this study demonstrate that the approach proposed is able to find the 

optimal locations for different numbers of DER units in a single analysis. Moreover, it 

demonstrates that a multi-objective analysis of DER integration is able to illustrate different 

perspectives on the problem (e.g. DSO, DER owner). Also, by analysing each objective 

explicitly, the impacts constraining the development of DER can be identified, and locations 

that provide beneficial DER installations, for different penetration levels, are exposed. 
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6.3.5. Case 2b: Results and Discussion  

The previous section showed that the deterministic analysis of DER integration restricts the 

integration of wind turbines. It illustrated that constraint violations of some solutions are 

very small and occur only for a very short period of time, and that a larger number of 

turbines can be installed if probabilistic constraints are used. In the second part of the case 

study, a different perspective is used. The possibility to curtail wind production to keep the 

system within deterministic constraints is analysed using a multi-objective approach.  

The SPEA2 parameters used for the previous study were also used in this case (Table 6-11). 

The average evaluation time per chromosome was 5 seconds, and the total evaluation time 

was 69 hours. Curtailed energy is the least accurate attribute: 66% of the solutions have 

relative uncertainty lower than 0.10, and 86% of the solutions have a relative uncertainty 

lower than 0.2. The highest relative uncertainties correspond to the solutions with the lowest 

curtailment. The rest of the planning objectives have relative uncertainty lower than 0.05. 

The OPF voltage constraints were checked only in key nodes of the network, illustrated in 

Figure 6-15, to speed up the OPF optimisation.  

 

Figure 6-15 Nodes Used to Check OPF Voltage Constraints 

 

Results are illustrated in Figure 6-16. Several solutions have been identified to facilitate the 

discussion of results. The labels of these solutions indicate the number of turbines connected 

(0, 3, 6, 7 and 8). The objectives of some of these solutions are detailed in Table 6-13. 
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The results confirm that the curtailment of the wind turbines is not necessary when there are 

no voltage constraint violations. Therefore, solutions with up to 5 turbines installed are 

similar to those in case study 2a. When the 6
th
 turbine is installed, in an optimal location, a 

small amount of curtailment is necessary to keep the system within limits (1.7 MWh/year). 

In the previous case study it was observed that voltage violations with 6 turbines occur for a 

very small amount of time (0.06%); hence, the curtailment with 6 turbines is negligible 

(0.01% of the energy generated).  

 

Figure 6-16 Optimal Solutions - Case Study 2b 

The curtailment of energy to comply with network constraints increases considerably when 

more turbines are installed, as observed in the third row of plots of Figure 6-16. The amount 

of energy curtailed for 8 turbines is between 0.98% (8a) and 1.47% (8b) of the total energy 

available. The energy curtailed produces a reduction in the net benefit of 7.4% and 11.1% for 

solutions 8a and 8b, respectively, from the net benefits that would have been hypothetically 

obtained without curtailment with 8 turbines. The difference in the order of magnitude is 

because a large proportion of the revenues are used to cover the capital and operation costs. 

Hence, a relatively small amount of curtailed energy has a larger impact on the DER owner 

net economic benefits.  
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Though this “reduction” must be put in perspective; if deterministic constraints are used and 

curtailment is not applied, only 5 turbines can actually be installed and the benefits to the 

DER owner are restricted to £79,000/year, as discussed in the previous section. Hence, in 

reality the curtailment of energy permits an the increase in the net benefits to the DER owner 

by more than £20,000/year, an increase of 25%, and the renewable energy delivered 

increases by 58% (solution 8a compared with solution 5). 

Table 6-13 Planning Attributes – Optimal Solutions Case 2b 

Attribute Base 

Case 
7a 7b 8a 8b 

Annual DER Benefits 

(£/year) 
0 96,480 84,566 101,880 97,153 

Line Losses (MWh/year) 349 405.9 366.0 500.8 453.8 

Curtailed Energy 
(MWh/year) 

0 16.53 254.81 186.52 281.07 

Curtailed Energy (%) 0 0.10 1.53 0.98 1.48 

 

The maximum amount of energy that can be curtailed before making the net benefits zero 

can be calculated using break-even economics, as proposed by Currie et al. [6.27]. For 8 

MW (i.e. 8 turbines installed) and assuming a benefit per unit of energy of £50/MWh and the 

costs of Table 6-10, the maximum amount of energy that can be curtailed before incurring 

financial losses is 2167 MWh/year, or 11.4% of the total energy. Following a similar 

analysis, it can be determined that a maximum of 294 MWh/year (1.5% of the total energy) 

can be curtailed from the energy produced by the 8 turbines before the net benefits become 

£96,500/year, which is the revenue provided by solution 7a. Hence, if 8 turbines are installed 

and curtailment is larger than 294 MWh/year, it is economically more efficient to install 7 

turbines, which cost less, avoid more energy curtailment, produce fewer line losses and 

provide the same or more net-benefits. This is confirmed by analysing the solutions; for 

instance, solution 8b has 281 MWh/year curtailed, and slightly higher net benefits than 

solution 7a.  

Curtailment has contrasting effects on the planning objectives. For a given number of 

turbines installed, curtailment of energy reduces the DER benefits, which are to be 

maximised, as already demonstrated. Similarly, curtailment reduces the line losses, which 

are to be minimised, as less energy flows in the network. Consequently, a Pareto front can be 

distinguished for each bi-objective plot for each number of installed turbines. These fronts 

are 7a-7b and 8a-8b, for 7 and 8 turbines installed, respectively. Two of the bi-objective 

plots are illustrated in Figure 6-17. Solutions 7a and 8a have the least amount of curtailment, 
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for 7 and 8 turbines respectively, and the higher losses and economic benefits. In contrast, 

solutions 7b and 8b have the higher curtailment, and lower losses and economic benefits. 

 

Figure 6-17 Bi-objective plots – Case Study 2b 

 

 

Figure 6-18 Optimal DER Locations - Case Study 2b 

 

The optimal locations for turbines in solutions 7a, 7b, 8a and 8b are illustrated in Figure 

6-18. Two trends can be recognised. Solutions ‘a’ (low curtailment, high benefits, high 

losses) have most generating units located close to the grid supply point. In this way, voltage 

rise effects, and consequently curtailment, are minimised. Additionally, some generators are 

located in the main or secondary branches to reduce some of the line losses. In contrast, in 
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solutions ‘b’ (high curtailment, low benefits, and low losses) the generators are evenly 

distributed in the network, to minimise losses. In this case, more energy is curtailed due to 

the higher voltage rise. The analysis illustrates that in this network the locations that benefit 

the DER owner are not optimal for the DSO operator, and vice versa. 

The importance of the optimal location of the turbines cannot be underestimated. Figure 6-19 

compares the benefits obtained with optimal DER locations with the benefits obtained by 

sub-optimal configurations, for different numbers of turbines. As the number of turbines 

increases (>6) and when turbines are sub-optimally located a larger proportion of energy is 

curtailed to keep the system within constraints. Consequently, the amount of energy exported 

and the economic benefits received are reduced. With 9 or more turbines wrongly situated, it 

is possible that the benefits received will not be enough to cover the installation and 

operation costs (i.e. break-even point). With 12 or more turbines, it is not possible to obtain a 

solution that provides financial benefits, as the amount of energy curtailed reduces the 

revenue beyond the break-even point. 

 

Figure 6-19 Annual DER Benefits with Optimal and Sub-optimal Integration 

 

The additional benefits obtained with every extra turbine installed decrease (i.e. diminishing 

marginal benefits). In this network, and given the revenue defined (£50/MWh), the optimal 

number of turbines to maximise benefits is 8. When the 9
th
 turbine is optimally located, net 

benefits are still positive; however, the installation of 9 turbines is a dominated solution. The 
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optimal installation of 8 turbines has larger net benefits, less curtailment and less line losses. 

Consequently, if all turbines belong to a single DER developer, i.e. using a centralised 

planning perspective, 8 turbines should be installed. In contrast, if each turbine/farm is 

developed separately up to 11 turbines can be installed profitably. Though, the benefits 

obtained by every installation are reduced, even if optimal locations are used, until no more 

turbines can be installed profitably in the network. This analysis highlights the importance of 

a comprehensive assessment for the network development of an efficient system, and for 

setting in place policy frameworks that will steer the outcome towards the most 

economically beneficial overall.  

 

6.3.5.1. Scenario Analysis 

The revenue received for every unit of energy sold is the factor that determines the optimal 

number of installations and the maximum economic benefits that can be achieved. For 

example, when the revenue is assumed £50/MWh, the optimal number of turbines to install 

to maximise benefits is 8, as already demonstrated (solution 8a). Nonetheless, in a liberalised 

energy market uncertainty exists in the price at which energy and accompanying renewable 

certificates can be sold. Hence, the analysis was repeated considering four additional 

scenarios for the revenue per unit of energy, from £45/MWh to £65MWh. In each scenario, 

the optimal solution that maximises the benefits was determined. The optimal solutions are 

listed in Table 6-14. The curtailment of energy increases with more turbines installed, 

though, the higher revenue received for the energy traded compensates for this curtailment. 

Hence, as the revenue per unit of energy increases, the optimal number of turbines to install 

also increases. 

 

Table 6-14 Optimal Solutions in Diverse Scenarios - Case Study 2b 

Optimal Solution Scenario 

# of Turbines Annual Benefits (£/year) Energy curtailed (MWh/year) 

£65/MWh 10 407,5004 1368 

£60/MWh 9 301,790 628 

£55/MWh 9 197,770 628 

£50/MWh 8 101,880 187 

£45/MWh 7 13,268 13 

 

The performance of each of the four optimal solutions was analysed in all the scenarios. The 

annual benefits obtained in each case are listed in Table 6-15 and illustrated in Figure 6-20. 
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Results illustrate the effect of uncertainty in the optimal solutions. For example, the optimal 

installation of 10 turbines maximises benefits when the revenue per unit of energy is 

£65/MWh. Though, if the benefit per unit sold drops to £45/MWh, the installation of 10 

turbines results in a net financial loss. Similarly, installing 7 turbines guarantees some gain 

when the price of energy is low, but is not the optimal solution when the price of energy 

rises. 
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Figure 6-20 Scenario Analysis 

Figure 6-20 and Table 6-15 show that there is no solution that is optimal in all scenarios. If 

the future price of energy was certain, or could be accurately predicted, the choice of an 

optimal solution would be straightforward. Nonetheless, this is not always the case and 

uncertainty is present in this and other parameters. The choice of a single solution is not the 

main objective of the planning framework presented in this thesis. Though, for completeness 

of this case study it is demonstrated next. 

Table 6-15 Scenario Analysis - Case Study 2b 

Annual Benefits (£/year) Scenario 

10 Turbines 9 Turbines 8 Turbines 7 Turbines 

£65/MWh 407,500 405,940 384,290 346,583 

£60/MWh 295,118 301,790 289,903 263,254 

£55/MWh 182,890 197,770 195,640 179,925 

£50/MWh 70,593 93,687 101,880 94,566 

£45/MWh - 41,765 -10,451 6,944 13,268 
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The choice of one solution over the others requires a Scenario Analysis. Two techniques are 

commonly used. The first, referred as to Probabilistic Choice, consist of maximising the 

weighted-sum of the benefits, given the probability of each scenario occurring [6.37]. 

Following this method and assuming a similar probability of occurrence of all scenarios 

(0.20), the optimal solution is the installation of 9 turbines, as this solution maximises the 

sum of the benefits over all scenarios, as seen in Table 6-16. 

Table 6-16 Probabilistic Choice – Case Study 2b 

Optimal Solution 10 Turbines 9 Turbines 8 Turbines 7 Turbines 

Average Benefits (£/year) 182,867 197,747 195,731 179,519 

 

However, probabilistic choice has been criticised, as it provides the optimal solution for an 

average future, which is unlikely to occur, and as a result it provides “riskier” solutions 

[6.38]. The second method, known as Risk Analysis, proposes a ‘mini-max’ approach where 

the maximum regret is minimised. Regret is the cost suffered for having chosen a different 

alternative than the optimal one for a future that really occurred [6.37]. Regrets for each one 

of the solutions in each one of the scenarios are shown in Table 6-17. In this case, the 

installation of 8 turbines minimises the maximum regret (i.e. risk).  

Table 6-17 Risk analysis – Case Study 2b 

Regret (£/MWh) 
Scenario 

10 Turbines 9 Turbines 8 Turbines 7 Turbines 

£65/MWh 0 1,560 23,210 60,917 

£60/MWh 6,672 0 11,887 38,536 

£55/MWh 14,880 0 2,130 17,845 

£50/MWh 31,287 8,193 0 7,314 

£45/MWh 55,033 23,719 6,324 0 

Maximum Regret 55,033 23,719 23,210 60,917 

 

This analysis demonstrates that the multi-objective planning framework is also a useful tool 

for single-objective problems. The multi-objective approach provides the advantage that it 

can include other objectives explicitly, and hence, reflect other perspectives of the problem. 
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6.4. Summary 

This thesis proposes the use of multi-objective optimisation to analyse DER integration. The 

development of a multi-objective planning framework has been presented in previous 

chapters. This chapter presented the application of the multi-objective planning framework 

to the analysis of two case studies of DER integration. These cases were selected to reflect 

current issues of DER integration in the UK. Moreover, the analyses presented are 

completely different, and illustrate the flexibility of the planning framework developed in 

this thesis. 

The first case study analyses the integration of three types of micro-generators in an urban 

low-voltage network. Three planning objectives reflect technical, environmental and 

economic aspects of the problem. This case study demonstrated that the planning framework 

is able to optimise several types of stochastic DER simultaneously. Furthermore, the analysis 

illustrated that the impacts of DER are technology specific, and that different DER mixes 

have contrasting impacts on the distribution network and on the cost of DER integration. 

Moreover, the case study showed that large reductions in carbon emissions will be hard to 

achieve with micro-generation in the short or medium term, as the cost efficiency of using 

micro-generators to reduce carbon-emissions is not comparable with larger technologies. The 

analysis of diverse planning attributes showed that the main constraint for the integration of 

micro-generators is not technical, but economic.  

The second case study focused on the integration of wind turbines in a medium-voltage 

network. The case study demonstrated that the multi-objective planning framework includes 

current challenges for the integration of wind turbines, such as probabilistic constraints, non-

firm access and the analysis of generation curtailment. The limitations of firm access 

principles for the development of further wind turbine integration were examined under a 

multi-objective perspective. The results showed that the planning framework can also be a 

useful tool for single-objective planning. The multi-objective planning approach provides the 

advantage that other objectives can be explicitly included in the analysis, and different 

perspectives analysed.    

In the next chapter, the conclusions of this thesis are presented. Also, the contributions to 

knowledge of this work are identified. Finally, further work that arises from this thesis is 

discussed. 
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Chapter 7 

7. Conclusions, Contributions and Future Work 

7.1. Conclusions 

This chapter presents the conclusions of this thesis. These have been divided into three 

groups: conclusions from the problem formulation, conclusions from the specification and 

development of the planning framework and conclusions from the case studies. This chapter 

also summarises the contributions of this thesis, and proposes further work for the 

improvement and development of the planning framework presented in this thesis. 

 

7.1.1. Conclusions from the Problem Formulation 

The comprehensive review of DER planning techniques presented in Chapter 3, and the 

detailed analysis of the DER planning problem of Chapter 4 showed that the concepts of 

DER planning have evolved in recent years. Some aspects of this evolution were discussed 

in Alarcon-Rodriguez et al. [7.1], and are summarised next: 

• Traditionally, the integration of DER in distribution networks was considered as a 

single-objective problem, where the main concerns were the minimisation of cost subject 

to the technical constraints of the network or the minimisation of line losses. However, 

DER integration has a wide range of technical and economic objectives. These 

objectives include for example: to maximise the generation of renewable energy, to 

minimise voltage rise in the network, to maximise the net economic benefits or to 

minimise the thermal loading of equipments. Some economic objectives can be 

formulated from several perspectives, as diverse stakeholders participate in DER 

research, development, management and operation (e.g. the DER developer, the 

DNO, the regulator, the customer). Also, there is an evident need to include 

environmental objectives in the analysis of DER integration, i.e. carbon emissions 

minimisation, because DER is recognised as a possible solution to reduce the 

environmental impacts of energy generation. Most of these planning objectives can also 

be formulated as planning constraints, depending on the analysis. Consequently, the 

DER planning problem is in essence a multi-objective problem where every impact 
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and benefit of DER integration can be formulated as a planning objective or a 

planning constraint.  

• Until recently, most DER planning techniques considered DER as constant and 

uncontrollable power sources. These techniques regarded a single-snapshot analysis of 

the system as sufficient for the evaluation of DER impacts. Nonetheless, most DER 

technologies are stochastic in nature. In addition, the active management of DER 

and the network is recognised as one of the new paradigms for the integration of 

larger penetrations of DER in the distribution systems. In a low-carbon future, several 

types of uncontrollable and controllable DER will interact simultaneously with an active 

power network. The analysis of this interaction cannot be oversimplified. In contrast, a 

stochastic and probabilistic assessment of controllable and uncontrollable DER is 

necessary to provide an adequate evaluation of DER impacts and benefits. 

• Most traditional DER planning methods handle only one or two decision variables: DER 

size and/or DER location. Nonetheless, the optimal integration of DER often has a 

combination of decision variables, which, besides the optimal DER locations and sizes, 

includes the optimal number of units and the best DER types to install in the network. A 

method that can simultaneously optimise some or all of these decision variables will 

become a valuable tool for the analysis of DER integration. 

 

So, appropriate methods are required to analyse the multiple impacts and benefits of DER. 

These methods must consider the new paradigms in DER operation and technology and 

analyse the stochastic interaction of DER and load. A flexible method is required to permit 

the analysis of diverse planning objectives and constraints, and to optimise varied decision 

variables of DER integration. This thesis presents an approach with these characteristics, as 

demonstrated in the previous chapters, and discussed next. 

 

7.1.2. Conclusions from the Specification and Development of the 

Planning Framework 

This thesis proposes a flexible multi-objective planning framework to analyse the benefits 

and impacts of the optimal integration of DER in the distribution networks. A novel aspect 
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of this thesis is that the framework provides a flexible analytical platform that is able to 

optimise simultaneously controllable and stochastic DER, for the first time, and that 

includes technical, environmental and economic planning objectives and constraints. 

Also, the framework is able to provide a probabilistic analysis of DER integration in an 

optimisation environment.  

The planning framework uses three primary techniques: a multi-objective evolutionary 

algorithm (MOEA), a stochastic simulation algorithm and an Optimal Power Flow 

(OPF) algorithm for the analysis of controllable units. Analogous techniques have already 

been used individually by other researchers of the field. Nonetheless, the strength of this 

present work is that it integrates them all into a single framework. Results from two case 

studies included in the thesis and from an additional case study published in a journal paper 

[7.2] show that the framework is able to answer the two questions proposed at the start of 

this thesis (section 1.2), and that it is a valuable tool to analyse the optimal integration of 

DER, for the reasons discussed next: 

• MOEA are an effective method to solve an optimisation problem such as DER planning, 

which is multi-objective, with integer and discrete variables, and nonlinear objectives 

and constraints. MOEA do not require linear functions, analytical expressions, 

derivatives or continuous functions to perform the optimisation. This aspect is 

important because the optimisation objectives and constraints are not limited by the 

optimisation technique. As a result, any impact, or number of impacts, of DER 

integration can be formulated as planning objective(s) or planning constraint(s). Also, 

MOEA are able to optimise different types of decision variables of DER 

integration, such as DER size, location, number and type, without major changes to 

the framework structure. These two features provide flexibility in terms of the types of 

analyses of DER integration that can be carried out, because any number of objectives 

and constraints of any mathematical nature can be chosen as planning goals, and 

diverse decision variables optimised. This flexibility was demonstrated with the two 

case studies of the previous chapter and the case study published in [7.2]: the objectives, 

constraints and decision variables of each case study are completely different. 

Nevertheless, they can be analysed effectively using the same framework.  

• The objective evaluation of MOEA supports any type of objective evaluation, as 

aforementioned. Hence, a stochastic simulation algorithm for the evaluation of DER is 

integrated within the planning framework. Stochastic simulation provides a more 

accurate evaluation of the interaction of stochastic DER and load, than a single 
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snapshot analysis of the system. For instance, the first case study of the previous 

chapter showed that the planning framework is able to optimise the integration of three 

types of stochastic DER in a low-voltage network with fifty different load profiles. This 

analysis would not be possible with a simplified approach. Moreover, the stochastic 

simulation supports the probabilistic analysis of DER integration. Probabilistic 

measures permit a more objective evaluation of the impacts that limit the integration of 

DER, such as voltage rise. For example, the second case study demonstrated that in 

some cases the overvoltage problems that would limit the installation of wind turbines 

occur for a negligible amount of time. In addition, the use of stochastic simulation has 

an advantage in that it can evaluate planning objectives that analytical expressions, 

or simplified approaches, cannot. As a result, it is possible to incorporate an inner 

optimisation algorithm in the objective evaluation stage of MOEA. The inner 

optimisation algorithm is discussed in the next paragraph. 

• The framework includes a linear Optimal Power Flow for the analysis of 

controllable DER (inner optimisation algorithm). OPF is one of the most used 

optimisation tools in power systems; it is applied to problems such as the economical 

dispatch of large-scale generation, the minimisation of transmission losses and the 

planning of the optimal development of generation. In this work, the OPF is used to 

evaluate the optimal operation of controllable DER. The OPF is applied repeatedly in 

the stochastic simulation, to optimise the curtailment of the output of renewable DER 

and the dispatch of controllable DER, in order to keep the system within operational 

constraints. The linear formulation of the OPF restricts its applicability only to radial 

networks with high R/X ratios and mostly active power flows. Nonetheless, the modular 

structure of the planning framework, discussed later, permits the replacement of this 

OPF with other inner optimisation algorithms. Therefore, the analysis of storage units, 

responsive loads or active network management in meshed networks is possible 

within the planning framework. The extension of the planning framework for the 

analysis of other DER and energy systems is discussed later as further work. 

• The framework is able to optimise both controllable DER and uncontrollable DER 

simultaneously, as aforementioned. DER is recognised as one of the alternatives for a 

low-carbon future, and the active management of networks and DER is proposed as one 

of the new paradigms for the operation and planning of power systems. In such a 

scenario, tools that are able to analyse the benefits and impacts of the integration of 

many types of DER interacting simultaneously will be highly valued. Therefore, a 
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framework that supports the optimisation of type, size, location and number of 

stochastic and controllable DER simultaneously is a timely and novel contribution. 

• Flexibility and modularity are recognised as two keys aspects to produce a useful tool 

that can be adapted to diverse environments (research, industry, regulatory). The 

framework is flexible, as already discussed. Also, the framework was developed based 

on a modular structure, as described in Chapter 5. In this structure other impact 

evaluations, stochastic assessments and inner optimisations can be incorporated. 

Therefore, the evaluation of other planning attributes (e.g. fault levels, reliability), DER 

types (e.g. storage) or network models (e.g. meshed networks) can be easily integrated 

within the planning framework. For instance, the second case study of Chapter 6 shows 

the optimisation of stochastic DER at first (case 2a), and later the analysis is expanded to 

optimise controllable DER (case 2b). Each one of these analyses uses a different module 

of the planning framework. Likewise, the sequential and random sampling evaluations 

discussed extensively in Chapter 5 are based on different analytical modules.  

• The planning framework uses the Strength Pareto Evolutionary Algorithm 2 (SPEA2) 

fitness assignment and truncation procedures. The SPEA2 algorithm is one of the state-

of-the-art MOEA techniques, as discussed in Chapter 2. Nonetheless, the framework 

is based on a generic MOEA structure. Each one of the MOEA steps is a module 

within the planning framework, as illustrated in Chapter 5. Hence, the framework is able 

to incorporate other MOEA fitness assignment or truncation procedures for the 

optimisation, if required. This flexibility is important, as the research area of MOEA is 

very active, and novel MOEA techniques that outperform SPEA2 are likely to be 

proposed in coming years. Moreover, the modular structure supports the research of 

different crossover, first population and mutation procedures, without major changes to 

the framework structure. Hence, tailored MOEA operators for the DER planning 

problem can be developed and implemented.  

• MOEA deal explicitly with multiple objectives instead of aggregating all objectives into 

a single objective, as traditional multi-objective optimisation methods do. This aspect is 

important because diverse stakeholders are involved in DER development and operation, 

as aforementioned. Commonly, the objectives of one stakeholder are in conflict with the 

objectives of the other. Similarly, the impacts and benefits of DER are frequently 

conflicting. For example, the second case study of the previous chapter showed that 

increasing the DER owner’s economic benefits would be to the detriment of the DSO 
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objectives as line losses will increase and the voltage in the network will be outside 

operational limits. A true multi-objective approach permits compromise solutions to be 

found; in contrast, a single measure of performance obscures the analysis. 

Consequently, the multi-objective approach provides a useful analysis in a market 

environment where many players are involved, where benefits and impacts must be 

explicitly visualised, and compromise solutions identified. 

 

The main impact of this thesis is that the structure of the framework proposed is 

generic and it can be applied to analyse diverse problems of power systems or energy 

systems planning. For instance, distribution network planning can benefit from this 

approach, as currently there is a requirement to analyse several perspectives of the problem 

explicitly (e.g. environmental, technical and economic planning attributes) and the active 

management of distribution networks is gaining widespread attention in the research 

community. As a first step, the framework proposed in this thesis has already been extended 

to include network reinforcements as one of the planning options [7.3]. It is expected that 

the tool developed as part of this research will be extended to include other impacts and 

objectives of DER integration used for further research. 

In addition, it is hoped that this thesis will serve as a base to develop analytical tools that 

can be used in diverse environments. For example, the multi-objective approach can be a 

valuable tool for regulators to analyse the integration of different types of DER and micro-

generation and develop appropriate incentives for their uptake. Similarly, the multi-objective 

approach can be used by DSO to evaluate the impacts of DER integration in a more 

comprehensive manner, or to find compromise solutions that maximise DSO and DER 

developer objectives simultaneously, as illustrated in the second case study. Moreover, 

single-objective problems are a subset of multi-objective problems. As a result, the 

multi-objective planning framework is able to provide an insight into more traditional single-

objective problems, such as cost minimisation, line loss minimisation, or economic benefits 

maximisation, as illustrated in the second case study of the previous chapter. Additional 

dimensions of the problem, for example technical constraints, can be analysed explicitly, 

providing a deeper insight into the single-objective problem.  

Also, it is envisaged that in the future, the generation, transport and use of energy 

(gas/heat/electricity) will be handled in a more comprehensive manner, to minimise the 

overall environmental impacts of energy generation. A comprehensive view of the problem 
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of energy provision using a multi-objective approach could enlighten some of the 

possible infrastructure solutions for a clean, diverse, and sustainable energy supply for 

economic development. Therefore, tools that are able to analyse the different perspectives 

of the problem explicitly, and that can evaluate the complex interaction of stochastic energy 

systems that include controllable DER, loads and networks, will be very helpful. The 

flexible and modular structure of the framework proposed in this thesis can be applied 

to develop such tools. This possibility is discussed later in this chapter as further work.  

 

The main limitation of the proposed approach is that it is inherently computationally 

expensive. Each analysis is time consuming for three reasons:  

• MOEA are based on the evaluation of hundreds of chromosomes over hundreds of 

generations; hence, tens of thousands of evaluations are performed to get good quality 

results. The accuracy of MOEA increase with the number of generations evaluated. 

• When highly variable attributes are used as planning objectives (e.g. exported power, 

dispatched power, curtailed power) the stochastic simulations require hundreds or 

thousands of evaluations to get accurate results for every single chromosome.  

• The OPF requires a long time to solve large optimisation problems, compared with the 

evaluation time for uncontrollable units.  

 

Most evaluation times are realistic; for instance, an analysis can be completed within a 

couple of days. This evaluation time must be put in perspective. First, planning is not an 

“online” task, and the optimisation can be performed at the same time as other studies and 

duties. Second, it is possible to get results that otherwise would never have been obtained. 

Though, in some specific cases the multi-objective planning framework requires extremely 

long and unrealistic evaluation times to get accurate results. These cases occur when the 

integration of a large number of controllable DER in a large network is analysed, as 

demonstrated in Chapter 5. OPF problems that have large numbers of variables or OPF 

problems that are mathematically unfeasible (i.e. some instances of DER dispatch) require 

long evaluation times. Moreover, the integration of DER in a large network has a large 

number of decision variables; hence, a large MOEA population is required. Nonetheless, the 

MOEA and the stochastic evaluation have an ideal structure to be implemented in 
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parallel. The use of parallel processing can speed up the analysis considerably; therefore, it 

is suggested as further work, discussed later.   

 

7.1.3. Conclusions from the Case Studies 

The results from the case studies are discussed in the previous chapter. Although the results 

from the case studies are related to the specific DER technologies and network analysed, 

some general conclusions were identified. These are discussed next. The first case study 

discussed the integration of three types of stochastic micro-generation in a low-voltage urban 

network. The conclusions of this case study are: 

• It is not possible to analyse the effects of micro-generation with simplified 

approaches that do not consider the stochastic nature of DER and load, or that 

consider only a single DER type in each analysis. There is a complex interaction 

between the stochastic generators and the stochastic loads. The impacts of micro-

generation are technology specific and different mixes of micro-generators in the 

network provide different benefits.  

• Extremely large penetrations of micro-generation will be required to obtain 

significant carbon reductions from electricity consumption. Moreover, carbon 

reductions provided by micro-generation are expensive compared with carbon reductions 

provided by larger technologies, which have a larger capacity factor and a lower cost per 

unit of energy. Hence, large-scale generators with zero or low-carbon emissions will be 

required to achieve large reductions of carbon emissions in the short or medium term at 

low cost.  

• Optimal mixes of micro-generation can provide some deferment of network 

investments, as some reduction in the thermal loading of equipment is made possible. 

However, the reduction in thermal loading obtained is small (~10%) compared with the 

penetration levels of micro-generation required (>40%).   

• With large penetration of micro-generators, the role of the medium-voltage grid is 

not diminished. With a 100% penetration of DER, almost a third of the energy 

generated by DER is exported back to the grid, and a third of the demand still must be 

imported.  
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• A limitation of this case study is that it does not analyse the emissions and costs of 

the heat generated by micro-CHPs. The case study only included the emissions 

savings and the costs attributed to the electricity generated by micro-CHPs. Nonetheless, 

the installation of micro-CHP units will provide larger emissions reductions, as it also 

offsets the emissions of gas boilers or other less efficient forms of heat generation. 

Hence, the comprehensive analysis of micro-CHP emissions and costs is suggested as 

further work.  

 

The second case study examined the integration of wind turbines in a medium-voltage 

network. First, the use of probabilistic constraints was studied. Next, the curtailment of wind 

generation was compared with the benefits obtained under a multi-objective perspective. The 

conclusions from the case study are: 

• A multi-objective analysis provides an insightful and comprehensive examination of 

the problem of the integration of wind turbines in distribution networks. On one 

hand, it is possible to compare the impacts and benefits of wind integration explicitly, on 

the other hand, different perspectives of the problem (DER developer, DSO) can be 

visualised. The DER developer objectives and the DSO objectives are in conflict but the 

multi-objective approach is able to identify solutions that benefit both stakeholders, i.e. a 

compromise solution. 

• The framework proposed is a useful tool to analyse the integration of wind 

turbines, because it is able to include probabilistic constraints and to analyse the 

curtailment of wind turbines. Moreover, the framework is able to optimise the number of 

turbines to install, and their locations and sizes, in a single analysis.   

• The case study showed that there are diminishing marginal benefits with every 

extra turbine installed. Hence, there are an optimal number of turbines to install to 

maximise the economic benefits. Beyond this optimal capacity, every extra installation 

decreases the total net benefits obtained by all the installations. The case study shows 

that the optimal number of turbines to install depends on the revenues that are received 

for every unit of energy traded. A scenario analysis, exemplified in the case study, could 

be used to choose the best solution. 
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• The optimal location of wind turbines (already highlighted by the researchers in the 

field) cannot be underestimated. Results showed that wrongly located turbines under a 

firm connection greatly increase the probability of voltage violations. Hence, a sub-

optimal integration would considerably limit the penetration of wind energy. Moreover, 

turbines sub-optimally located under a non-firm connection would result in excessive 

curtailment that could convert a financially feasible project into an unfeasible one. 

Although a “centralised” planning philosophy is unlikely to be applied in a liberalised 

market such as the UK, results showed that a comprehensive analysis while planning the 

development of wind farms will increase the benefits that can be obtained, both for the 

DER developers (i.e. larger economic benefits) and for the environment (i.e. greater 

renewable energy production).  

• The multi-objective analysis confirmed that the curtailment of wind energy can 

foster a considerably larger integration of renewable energy without the need for 

network upgrades, when the turbines are optimally placed. For instance, in the 

network studied a firm access connection would limit the penetration of wind turbines to 

5 MW. In contrast, the curtailment of energy permitted the increment of the penetration 

of wind turbines in 60%, to 8 MW. Although some energy is curtailed, the benefits for 

the DER owner are increased. In the case study, an increment in the DER owner benefits 

of 25% was obtained with turbines optimally located, compared with the benefits 

obtained with a firm access connection. Larger penetrations (>8MW) could be integrated 

in the network studied with an active management, though, they would be sub-optimal 

from an economic point of view, because of the diminishing marginal benefits, discussed 

in a previous paragraph.  

• When wind turbines are actively managed, the optimal locations that benefit the 

DSO are not the same as the optimal locations that benefit the DER owner. The 

DER owner wants to minimise curtailment, hence wind turbines must be located near the 

grid supply point. In contrast, the DSO wants to minimise the line losses, and to achieve 

this objective the wind turbines must be located strategically in the network between the 

grid supply point and the loads. 

• A limitation of this case study is that a complete correlation between the wind 

productions in the entire network was assumed. However, the network analysed is 

small so the assumption can be considered valid. Moreover, the complete positive 

correlation provides the higher risk scenario. Nonetheless, a more detailed study should 
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divide the network and apply different wind profiles to each area, as discussed in 

Chapter 5  

 

7.2. Contributions to Knowledge 

The following contributions of this thesis have been identified: 

1. It provides a comprehensive review of DER planning techniques (Chapter 3). The 

review of Chapter 3 analysed new trends in the DER planning research area, identifying 

the evolution of DER planning techniques and the increased use of multi-objective 

approaches. Moreover, it recognised some of the shortcomings of current planning 

techniques in relation to the challenges of DER integration and identified potential area 

for this research. The author is not aware of a similar review of the research area. 

2. It presents a deep examination of the DER planning problem and the specification 

for a flexible multi-objective planning framework for DER integration analysis 

(Chapter 4). This study highlights the complexity of the DER planning problem and 

discusses the techniques that can be applied to tackle it. It also defines the specifications 

for a tool for DER integration analysis. This specification considers current drivers of 

DER integration and the required characteristic for modern planning techniques. These 

specifications are a contribution for the development of DER planning tools. 

3. It presents the development of an analytical tool for stochastic and controllable 

DER (Chapter 5). Chapter 4 enumerates and discusses a set of requirements for the 

development of a DER planning tool. Chapter 5 discusses the choice of each one of the 

techniques used to address these requirements, and demonstrates in detail the practical 

implementation of the planning framework into an analytical tool. This chapter discussed 

in detail the use of each planning attributed. The detailed development process and the 

practical details provided in Chapter 5 are a contribution for future researchers that 

might face similar challenges. Moreover, the tool implemented during the development 

of this thesis is also a contribution, as it can be used for further research.  

4. It provides a comprehensive description of the concepts of multi-objective 

evolutionary algorithms applied to the DER problem (Chapters 2 and 5). Chapter 2 

presents a comprehensive review of multi-objective optimisation, with particular 
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emphasis on the recent developments in area of multi-objective evolutionary algorithms. 

Chapter 5 presents the application of a MOEA to the DER planning problem, discussing 

in detail the use of each one of the MOEA procedures for the DER planning problem, 

and contributing to the future use of these techniques in DER planning.    

5. It expands the knowledge about the impacts and benefits of DER integration 

(Chapters 5 and 6). Chapter 5 discusses the calculation of each of the technical, 

economic and environmental planning attributes included in the planning framework, 

and its use in DER planning. Hence, it facilitates the further implementation of these 

attributes in other DER planning approaches. Chapter 6 exposes findings of optimal 

DER plans with two specific case studies. The use of the multi-objective approach to 

illustrate the results and the discussion provided in this chapter helps to understand better 

the complex relationship between DER impacts and benefits.  For instance, the first case 

study illustrated the technical impacts of the integration of micro-generation in the 

distribution network. Hence, it was possible to identified optimal penetrations that would 

benefit the DSO, and provide environmental benefits. In the second study, the 

contrasting objectives of the DSO and the DER developer were illustrated. The multi-

objective approach permitted the identification of compromise solutions, and the 

analysis identified locations for wind turbines that would benefit both the DER 

developer and the DSO. 

 

7.3. Future Work 

Further work for the improvement and extension of the planning framework developed in 

this thesis has been identified. Two main avenues of research are suggested. One is related to 

the development and application of the planning framework for the analysis of other DER, 

power systems and energy systems. The other path proposes a strategy to overcome the main 

limitation identified in this research, which is a long computational time.  

 

7.3.1. Further Development of the Planning Framework 

A generic structure for a multi-objective DER planning framework has been specified. The 

planning framework has been implemented to analyse only radial distribution networks. A 
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first step towards the implementation of a comprehensive planning framework for DER is to 

include the analysis of meshed networks, which would require a different power flow 

algorithm, and a different OPF algorithm (nonlinear). Moreover, impacts of DER in meshed 

networks must be included in the analysis, such as reliability and fault level calculations. The 

modular structure of the planning framework permits the integration of the analysis of 

meshed systems without major changes to the MOEA algorithm or the stochastic simulation.  

The second step towards a more comprehensive DER planning framework is the inclusion of 

other DER types, including energy storage and responsive loads. The OPF supports the 

analysis of responsive loads, as has already been mentioned in Chapter 5. In the case of 

energy storage a different optimisation algorithm, which considers the dynamic nature of the 

energy storage optimisation, needs to be implemented. This development could be carried 

forward as a power engineering Master’s thesis. 

 

Figure 7-1Suggested Further Work 

 

The analysis of decentralised electrical systems and DER is only one of the possible ways in 

which the planning framework can be implemented. As a result, the extension of the 

framework for the analysis of other power systems and energy systems problems is 

proposed, as illustrated in Figure 7-1. The first possibility is to focus on decentralised energy 

systems. In this case, it is necessary to consider the planning of gas networks, heat networks 



308 

 

and include thermal demands in the analysis. The resulting tool would provide a 

comprehensive assessment of impacts in the provision of energy as a whole, on a 

decentralised level. It is worth noting that the study of decentralised energy systems in the 

UK has been recently awarded a research grant [7.4], proving the interest in this specific 

research area. 

On a different path, the multi-objective approach can also be applied to the analysis of 

centralised electrical systems, such as transmission planning or centralised generation 

planning. The network, demand and generation models required for this purpose are 

different, and require different power flow algorithms, but the concepts of multi-objective 

planning and stochastic simulation are still useful. Ultimately, the framework can be 

implemented to analyse centralised energy provision. This refers to the analysis of the 

energy supply chain on a large scale (i.e. national, regional) including energy flows of 

diverse forms, such as gas networks, roads (for transport of biomass), electricity networks 

and generation and demand for electricity and heat on a large scale.  

The development of the framework in these directions requires research in terms of adequate 

models for the energy systems, energy flow algorithms and inner optimisation algorithms, 

and each one could be carried out as a doctoral or postdoctoral study. 

 

7.3.2. Improvement of the Planning Framework 

One of the main limitations of the proposed approach is the large computational time. The 

use of a number of processors in parallel, known as parallel computing, offers a solution to 

this problem. The objective evaluation can be implemented in parallel in two different ways. 

The first is to code the chromosome evaluation procedure in parallel. Following this 

approach, the population of chromosomes is divided in n different groups (where n is the 

number of processors available), and each group is evaluated in parallel using a single 

processor. Once all objectives have been evaluated, the stages of selection, crossover and 

mutation, which are not time consuming, are performed on a single processor. The second 

possibility, which is slightly different, is to implement the stochastic evaluation in parallel. 

In this approach, a batch of simulation events is evaluated in parallel in each single 

processor; hence, the number of events simulated on a given period of time is multiplied by 

n. The attribute values of the chromosome are computed afterwards. In both cases, parallel 

computing will speed up the total evaluation time approximately by a factor of n. This study 
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could be carried out as a Master’s thesis on the area of electrical engineering or 

computational sciences.  

 

7.4. Thesis conclusion 

This thesis proposes the use of multi-objective planning for the analysis of the optimal 

integration of DER in distribution networks. It presents the research, specification, 

development and demonstration of a multi-objective planning framework that is based on 

three different analysis and optimisation techniques. Results demonstrate that the framework 

is a valuable tool for DER integration analysis. The work presented in this thesis can be used 

to develop planning tools for the analysis of decentralised electrical systems and integrated 

energy systems. 
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Appendix A: The Time Value of Money 

A succinct introduction to the concept of the Time Value of Money is presented in this 

appendix. A more comprehensive explanation can be found in the references provided at the 

end of this section.  

 

A.1 Present Value of a Future Sum of Money 

The key concept of TVM is that “a pound today is more valuable than a pound in the future” 

[A.1]. A pound today can be invested at an annual interest rate (i). After one year, the pound 

will be equivalent to (1+i) pounds.  After two years, and assuming compound interest, the 

pound will be worth (1+i)
2
, and after n years, (1+i)

n
 pounds (Figure A-1).  

0 1 2 n

PV(1+i)

PV(1+i)2

PV(1+i)n

PV

 
Figure A-1 Future Value of a Present Sum 

Hence, the future value FV of a present sum PV is: 

(1 )n
FV i PV= +  (A-1) 

 

Similarly, any future sum FV must be “discounted” to be translated into a present value PV: 

(1 )n

FV
PV

i
=

+
 

(A-2) 
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The term 
1

(1 )ni+
 is referred as the present worth factor and, in this case, i is referred as the 

“discount rate”. The discount rate is the perceived rate of reduction of value from one year to 

next [A.2]. Using equation (A-2), all costs and benefits can be translated to present value and 

alternatives can be compared on a similar basis using the net present value (NPV). 

Alternatively, a cost-benefit ratio of net present benefits over net present costs can be used. If 

benefits are expressed in terms of energy, energy flows must be discounted, as failing to do 

so will result in a erroneous evaluation [A.1] [A.2].  

In this investment analysis, the discount rate i must indicate the opportunity cost of capital, 

or rate of return [A.1]. That is: the return that the sum of money would have gained if 

invested elsewhere; for example, in other DER development. Discount rates also include 

other factors such as financial risk or the utilities’ earning targets [A.2]. Low discount rates 

favour alternatives with low capital costs (and high operation and maintenance costs). 

Conversely, high discount rates favour alternatives with low operation and maintenance 

costs, but high investment [A.3]. In the case studies of Chapter 7 a discount rate of 7% was 

used. A full analysis of the choice of discount rates is beyond the scope of this work. Some 

discussion is available in [A.1] and [A.2].  

 

A.2 Annuities of a Present Value 

If a series of equal annuities (costs or benefits) is assumed to happen at the end of each 

period (e.g. every year), for n consecutive periods, the concept of present value permits to 

add them together into a present value PV (Figure A-2):  

1 2
....

(1 ) (1 ) (1 )n

A A A
PV

i i i
= + + +

+ + +
 

(A-3) 

This equation can be rearranged as: 

1
1

(1 )n

A
PV

i i

 
= − 

+ 
 

(A-4) 
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Figure A-2 Present Value (PV) of Equal Annuities (A) over n Periods. 

Hence, it is also possible to translate a present value PV into a series of equal annuities A: 

(1 )

(1 ) 1

n

n

i i
A PV

i

+
=

+ −
 

(A-5) 

This formula is used to transform capital investments, assumed to happen in year zero, into a 

series of equal annual payments. This capital amortisation is added with the yearly costs and 

benefits of each alternative. Therefore, in this case it is possible to compare investment 

alternatives on a similar basis using annualised values.  
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Appendix B: Backward/Forward Sweep (BFS) Power Flow 

Algorithm 

In this appendix the implementation of a backward-forward sweep power-flow calculation is 

presented. The algorithm is based on [5.17]. Assumptions in which the network, loads and 

generators have been modelled are mentioned. 

 

B.1 Network Representation 

The backward/forward sweep (BFS) algorithm uses three matrices to represent the network 

structure: a node-to-branch incidence matrix L, a line current summation (or topology) 

matrix T and an impedance matrix Z. These matrices are constructed using the network 

structure and line impedances data. 

Consider the radial network illustrated in Figure B-1. Nodes are numbered sequentially, 

starting from the root node (0), in ascending order. Any path from the root node to a terminal 

node should encounter ascending numbers. 

 

Figure B-1Radial Network Example (source [B.1]) 
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From the network structure, the node-to-branch incidence matrix L is determined. Each row 

represents a branch, where 1 is assigned to the sending nodes, -1 to the receiving nodes and 0 

otherwise. Columns represent the nodes and indicate the branches connected to each one. 

Note that the root node (0) is not included in the matrix. The node numbering procedure, 

explained lines above, produces a lower triangular matrix: 

11

11

11

11

11

11

11

11

1

−

−

−

−

−

−

−

−

−

=L  

 

From the node-to-branch matrix L, a line current summation matrix T is determined as: 

1−=T L  (B-1) 

 

The matrix T is also lower triangular:  
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1 1 1
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1 1 1

1 1 1

1 1 1 1

1 1 1 1

−

− −

− −
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The rows with non-zero elements of the j
th
 column of T represent the nodes belonging to the 

branches derived from the j
th
 node.  

A diagonal matrix Z is used to represent network impedances. The radial distribution circuits 

are modelled as a series impedance z=r+j*x. Capacitance effects are ignored. This model is 

adequate for most radial distribution systems, except in the cases of long lines where a π 

model is required [B.2]. Each diagonal element zii corresponds to the complex impedance of 

the i
th
 branch: 

ii ii iiz r j x= + ⋅  (B-2) 

 

The analysis is single phase; all node voltages are phase voltages. It is assumed that the grid 

voltage (node 0) is constant:  

Grid voltage:   Vgrid  

 

The electrical variables at every node and branches are represented by the vectors: 

Node voltages:    Vnode=[V1, V2,…,Vi,…Vn]
T
 

Line currents:   Iline=[Iline1, Iline2,...,Ilinei,....,Ilinen]
T
 

Node currents:   Inode=[Inode1, Inode2,…,Inodei,…,Inoden]
T 

Complex node power:  Snode=[Snode1, Snode2,…,Snodei,…,Snoden]
T
 

 

B.2 Backward and Forward Sweeps  

The algorithm consists of the initialisation and two steps, a backward sweep and a forward 

sweep, illustrated in Figure B-2. Each step is explained next. 
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Figure B-2Backward/Forward Sweep algorithm 

B.2.1 Initialisation 

At the first step, all node voltages Vnode are assigned the grid voltage Vgrid, by multiplying the 

value by a vector of ones 1: 
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1gridV=nodeV  (B-3) 

B.2.2 Backward Sweep 

In the backward sweep the node currents Inode and line current Iline are calculated based on 

the voltages Vnode of the previous forward stage. Node currents depend on the power 

withdrawn at each node. This relationship is modelled according to the characteristic of the 

devices connected, usually a combination of resistive, inductive and constant power loads. In 

this work, all loads are modelled using the constant power model, as mentioned in Chapter 5. 

In the constant load model, the load power doesn’t vary with the voltage magnitude 

(Snode=Po+jQo=const.). Thus, when voltage drops more current is withdrawn, and vice versa: 

*

j +
=  
 

node node
node

node

P Q
I

V
 

 

(B-4) 

 

If more detailed information about each load type (or mix of types) of each node is available, 

specific models for each load could be used, such as: constant impedance, constant current, 

exponential or polynomial load models, which can be found in [B.3] and [B.4]. 

Similarly, the current injected by each DER will vary with the voltage. The relation between 

injected current and terminal voltage depends on the type of generator. In this work all DER 

are assumed to work at a constant power factor and are modelled using a constant power 

model (B-4), as explained in Chapter 5. This model simplifies the inclusion of DER power in 

the calculation and allows the formulation of a linear OPF for active power control, 

explained later in this chapter. 

The vectors of power withdrawn at each node Pnode and Qnode is the difference between the 

load power (PLoad, QLoad) and the total power injected by DER units (PDER, QDER):  

 

= −node Load DERP P P  (B-5a) 
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= −node Load DERQ Q Q  (B-5b) 

The BFS is a deterministic calculation for a single snapshot of the system. Therefore, the 

load power and the DER injected power of each node (equations B-5) are a sample of the 

load profile of each node load type and of the DER profile of the installed DER in each node, 

as discussed in chapters 4 and 5. The elements of the load power vectors (PLoad, QLoad) are 

obtained by sampling the load profiles of each node’s load type, and multiplying by each 

node’s peak load. The calculation of the DER injected power per node (PDER, QDER) was 

already explained in Chapter 5.  

Knowing the power injected at each node, Inode is calculated using the constant power model 

(B-4). Then, the vector of line currents Iline is calculated using the current summation matrix: 

 

=line nodeI TI  (B-6) 

 

B.2.3 Forward sweep 

In the forward sweep, the vector of node voltages Vnode is calculated using the line current 

Iline determined in the previous backward sweep. Node voltages depend on the network 

topology matrix T, the impedance matrix Z and the vector of line currents Iline:  

1gridV= −node lineV TZI  (B-7) 

B.2.4 Convergence 

The backward and forward stages are continued until a convergence criterion is met. This 

criterion in usually based on the convergence of the complex voltage [B.1] or the complex 

power [B.5]. In this work the voltage convergence criterion is used.  Bombard et al. [5.17] 

demonstrated that for normal operation conditions, the BFS method provides “fast and 

reliable” convergence for any load model. Test cases conducted in this research showed that 

the power flow converged after 6 or 7 iterations in normal operation conditions. Nonetheless, 

in the extreme cases, when feeders are excessively loaded, convergence is never reached. 

Hence, a maximum limit of iterations is set equal to a thousand iterations. After this limit, 
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extreme values will be assigned to the voltage (Vnode=0) and the current (Inode=Iline=Inf) to 

penalise the performance of the solution that did not converge. 
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Appendix C: Optimal Power Flow (OPF) Formulation 

In this appendix the formulation of a linear optimal power flow of is explained. The 

equations are based on the backward/forward power flow algorithm described in Appendix 

B. The use of an inner linear optimisation for controllable DER units was proposed by 

Edwin Haesen from KU Leuven University, and integrated into the planning framework as 

described in Alarcon-Rodriguez and Haesen et al. [C.1]. 

 

C.1 Symbols 

The symbols used in this appendix are: 

Icurt:  Current curtailed in each DER (vector) 

Idisp:  Current dispatched in DER (vector) 

Iline  Line currents (vector) 

Iload:  Load current per node (vector) 

Imax:  Maximum current limit in each line (vector) 

Inode:  Node currents (vector) 

Pcurt  Active power curtailed in each node (vector) 

Pdisp:  Active power dispatched in each node (vector)  

Sdisp:  Complex power dispatched in each node (vector) 

T:  Topology Matrix 

V:  Voltage 

Vgrid:  Grid connection Voltage (constant) 

Vmax:  Maximum voltage limit in each node (vector) 

Vnode:  Node voltages (vector) 

Z:  Impedance Matrix 

α:  Maximum voltage correction factor  

β:  Maximum current correction factor 

γdisp:  Dispatched DER power factor (Q/P) 

 

The superscripts r and i are used throughout this Appendix to represent real and imaginary 

part of complex phasors, vectors and matrices. 
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C.2 Linear Voltage Constraints 

To linearise the voltage constraints in the OPF, the absolute value of each node voltage V is 

approximated by its real part:  

r i rV V jV V= + ≈  
(C-1) 

 

From the BFS algorithm (Appendix B) the node voltages can be calculated as: 

1grid nodeV= −nodeV TZTI  (C-2) 

 

Taking the real and imaginary part of the vector Inode and the matrix Z, the vector Vnode can 

be expressed as: 

1 ( ) ( )
r r

grid nodej V j T j= + = − + +r i i i

node nodeV V V T Z Z I I  (C-3) 

 

If TZrT is replaced by RT and TZiT by XT respectively, the real elements of the vector of 

node voltages Vnode are:  

1gridV= − +r r i

T node T nodeV R I X I  (C-4) 

 

The real and imaginary parts of the node current vector Inode can be expressed as the sum of 

the vectors of current injections of load, dispatch, and curtailment Iload, Idisp and Icurt, 

respectively. Replacing these vectors in equation (C-4), the real elements of the voltage 

vector are:  

1 ( ) ( )gridV= − − + + − +r r r r i i i

T load disp curt T load disp curtV R I I I X I I I  (C-5) 
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Using the constant power model, the current injections Idisp due to CHP dispatch can be 

formulated in terms of CHP active power dispatch Pdisp as: 

*

*

(1 )

( )

dispjγ  −
= = ⋅  
 

disp node
disp disp

node node node

S V
I P

V V V
 

 

(C-6) 

 

where γdisp is the ratio of reactive to active power of the CHP units (Q/P), assumed constant 

and similar for all generators, and Sdisp is the apparent dispatched power.  

Replacing the vector Vnode in the numerator by its real and imaginary elements vectors Vr
 

and Vi
, the real and imaginary expressions for the current Idisp can be formulated in terms of 

Pdisp: 

2

2

disp

disp

γ

γ

+
=

−
=

r i

r

disp disp

node

i r

i

disp disp

node

V V
I P

V

V V
I P

V

 

 

 

(C-7a) 

 

(C-7b) 

 

Similar expressions are obtained for Icurt and Pcurt. Also, if load curtailment is analysed, a 

further vector of decision variables Pcurt,load can be formulated using the same analysis.  

Replacing the equations (C-7) in equation (C-5) and rearranging the expression, all voltages 

can be expressed as a function of the decision variables Pdisp and Pcurt: 
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2 2

2 2

1
disp disp

grid

curt curt

V
γ γ

γ γ

    + −
    = − + + −

    
    

    + −
    + − +

    
    

r i i r

r r i

T load T load T T disp

node node

r i i r

T T curt

node node

V V V V
V R I X I R X P

V V

V V V V
R X P

V V

 

 

(C-8) 

 

The values of Iload, Vnode, V
i
 and Vr

 in the right-hand side of equation (C-8) are based on the 

currents and voltages before the optimisation. These values are considered constants. Hence, 

the voltage magnitudes approximated by Vr
 are a linear function of only the dispatched and 

curtailed power Pdisp and Pcurt. Hence, the voltage constraint is linear. If the power factor of 

all dispatched and curtailed generators is assumed similar (γdisp= γcurt= γ), the expression can 

be simplified further and the coefficients AV, bVmax and bVmin can be determined: 

 

2 2

( )1

( )1

V

V

V

γ γ    + −
    = −

    
    

= − + −

= − − +

r i i r

T T

node node

r i

max max grid T load T load

r i

min grid min T load T load

V V V V
A R X

V V

b V V R I X I

b V V R I X I

 

(C-9a) 

 

 

(C-9b) 

(C-9c) 

 

Such that voltage constraints can be expressed as:  

V V V

V V V

− ≤

− + ≤

disp curt max

disp curt min

A P A P b

A P A P b
 

(C-10a) 

(C-10b) 

  

The matrix AV quantifies the sensitivity of node voltages to power injections (Pdisp) and 

power curtailment (Pcurt). Each row x of the matrix AV corresponds to the sensitivity of the 

voltage in the x
th
 node to power injections in the y

th
 node, where y is a column of matrix AV. 

The approximation of the magnitude of the voltages by their real part produces an 

underestimation of voltages. This underestimation of the voltage can be partially corrected 

by applying a correction factor α to the maximum voltage constraint: 
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=
r

node

V
α

V
 

(C-11) 

 

Such that the maximum voltage constraint Vmax in equation (5-9b) is reduced accordingly: 

≤r

maxV αV  (C-12) 

 

C.3 Linear Thermal Constraints 

The line power flow constraint is expressed as: 

                                      ≤line maxI I            
(C-13) 

 

From the BFS Algorithm, the line current vector Iline can be expressed in terms of node 

currents Inode:  

                                      node
=lineI TI            

(C-14) 

 

The real part of the node current vector Inode can be expressed as the sum of the real parts of 

the vectors of current injections of load, dispatch, and curtailment Iload, Idisp and Icurt. 

Therefore, the current flow constraint becomes:  

( )− ≤ ≤r r r

max load disp curt maxI T I - I + I I  (C-15) 

 

r

loadI is the real part of the node current vector before the optimisation. Using equation (C-

7a), Ir
disp and Ir

curt are expressed in terms of voltages and power; hence equation (C-15) 

becomes: 
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2 2

disp curt
γ γ    + +

 ≤ −  +   ≤ −
    
    

r i r i
r r

max load disp curt max load

node node

V V V V
-I - TI T P P I TI

V V
 

 

(C-16) 

 

If the power factor of all dispatched and curtailed generators is assumed similar (γdisp= γcurt= 

γ), the expression can be simplified further and the coefficients AI, bImax and bImin can be 

determined: 

2

γ +
=  

 
 

= −

= +

r i

I

node

r

Imin max load

r

Imax max load

V V
A T

V

b I TI

b I TI

 

(C-17a) 

 

(C-17b) 

(C-17c) 

 

Where the voltages and current values before the optimisation are considered constants, such 

that the maximum current constraints are expressed in standard form as: 

 

( )

( )

− + ≤

− ≤

I disp I curt Imin

I disp I curt Imax

A P A P b

A P A P b
 

(C-18a) 

(C-18b) 

 

AI determines the sensitivity of line currents to power dispatch and curtailment.  

The approximation of the magnitude of the line currents by their real part produces an 

underestimation of the absolute current values. In this case, the underestimation is reduced 

by applying a correction factor β to the current constraint: 

=

r

line

I
β

I
 

(C-19) 
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Such that the maximum voltage constraint Imax in equation (C-13) is reduced to make the 

constraint more binding: 

≤r

maxI βI  (C-20) 

 

Once the optimal DER adjustments are found, power flows and bus voltages are recalculated 

using the BFS power flow, as aforementioned.  

 

C.4 References for Appendix C 

[C.1] Alarcón-Rodríguez, A.D., Haesen, E. Ault, G.W., Driesen, J., Belmans, R., “Multi-

objective Planning Framework for Stochastic and Controllable Distributed Energy 

Resources”, IET Renew. Power Gener., 2009, Vol. 3, Iss. 2, pp. 227–238  
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Appendix D: Supplementary Data for Case Study 1 

D.1 Network Data 

Sbase = 100kVA 

Vbase=0.42 kV 

Table D-1 Network data 

Sending  

end 

Receiveing 

end 

R 

(p.u.) 

X 

(p.u.) 

Capacity 

(kVA) 

Capacity 

(A) 

length 

(m) 

1 2 0.00118 0.00461 1200            1,650 5 

2 3 0.00083 0.00056 550               756 44.04 

2 79 0.00077 0.00052 550               756 27.26 

3 4 0.00098 0.00065 80               110 2 

3 5 0.00024 0.00016 550               756 12.92 

5 6 0.00164 0.0011 550               756 86.67 

6 7 0.00497 0.00207 233               320 53.49 

6 13 0.00114 0.00077 550               756 40.24 

7 8 0.00414 0.00275 80               110 8.42 

7 9 0.00477 0.00199 233               320 51.36 

9 10 0.00406 0.0027 80               110 8.26 

9 11 0.00711 0.00153 160               220 39.19 

11 12 0.00766 0.00165 160               220 42.21 

13 14 0.00861 0.00185 160               220 47.44 

13 16 0.00014 0.00009 550               756 4.84 

14 15 0.00599 0.00129 160               220 33.03 

14 82 0.00753 0.00162 160               220 41.53 

16 17 0.00101 0.00068 550               756 35.56 

17 18 0.00531 0.00114 160               220 29.28 

17 19 0.00063 0.00042 550               756 22.1 

19 20 0.00078 0.00032 419               576 16.87 

19 22 0.00463 0.00312 306               421 81.65 

20 21 0.00385 0.00082 160               220 21.2 

2 23 0.00059 0.00039 1222            1,680 51.78 

23 24 0.00069 0.00046 1222            1,680 61.26 

24 25 0.00071 0.00048 550               756 37.63 

25 26 0.00391 0.00084 160               220 21.54 

25 27 0.00092 0.00061 550               756 32.37 

27 28 0.00192 0.00129 550               756 67.8 

28 29 0.00172 0.00114 80               110 3.5 

28 30 0.00127 0.00085 550               756 44.68 

30 31 0.00047 0.00031 550               756 16.44 

31 32 0.01769 0.00381 160               220 97.53 

31 36 0.00103 0.00069 550               756 36.31 

32 33 0.00897 0.00193 160               220 49.45 

32 34 0.00189 0.0004 160               220 10.39 

34 35 0.00388 0.00083 160               220 21.4 

36 37 0.0036 0.00238 80               110 7.31 
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Sending  

end 

Receiveing 

end 

R 

(p.u.) 

X 

(p.u.) 

Capacity 

(kVA) 

Capacity 

(A) 

length 

(m) 

36 38 0.00177 0.00073 419               576 38 

38 39 0.00625 0.00415 80               110 12.7 

38 40 0.00158 0.00066 419               576 34.03 

40 41 0.00037 0.00015 419               576 7.99 

40 44 0.00068 0.00028 233               320 7.34 

41 42 0.00043 0.00029 306               421 7.61 

41 43 0.00851 0.00565 80               110 17.29 

44 45 0.00415 0.00275 80               110 8.44 

44 46 0.00292 0.00063 160               220 16.11 

46 47 0.00958 0.00636 80               110 19.48 

46 81 0.00631 0.00419 80               110 12.82 

24 48 0.00066 0.00044 550               756 34.82 

48 83 0.00251 0.00166 80               110 5.09 

48 49 0.00004 0.00002 550               756 2 

49 50 0.00623 0.00134 160               220 34.35 

49 51 0.00008 0.00005 550               756 4.15 

51 52 0.00098 0.00065 80               110 2 

51 53 0.00056 0.00038 550               756 29.92 

53 54 0.00294 0.00123 419               576 63.34 

54 55 0.01015 0.00218 160               220 55.93 

54 56 0.00249 0.00104 419               576 53.6 

56 57 0.00774 0.00166 160               220 42.66 

56 58 0.00063 0.00026 419               576 13.48 

58 59 0.01136 0.00244 160               220 62.6 

58 60 0.0052 0.00217 419               576 111.83 

60 61 0.00279 0.00116 419               576 59.94 

61 62 0.0038 0.00256 306               421 67.06 

62 63 0.00045 0.0003 306               421 7.99 

62 64 0.00371 0.00246 80               110 7.53 

53 65 0.00045 0.00018 419               576 9.75 

65 76 0.01103 0.00237 160               220 60.83 

65 66 0.00354 0.00147 419               576 76.18 

66 67 0.00256 0.0017 80               110 5.21 

66 68 0.00146 0.00061 419               576 31.43 

68 69 0.00488 0.00105 160               220 26.92 

68 70 0.00298 0.00124 419               576 64.07 

70 71 0.01193 0.00257 160               220 65.76 

70 72 0.00194 0.0013 306               421 34.18 

72 73 0.01682 0.00362 160               220 92.73 

72 74 0.00201 0.00136 306               421 35.54 

74 75 0.0052 0.00112 160               220 28.67 

76 77 0.0039 0.00084 160               220 21.51 

76 78 0.00935 0.00201 160               220 51.57 

79 80 0.00063 0.00042 550               756 22.15 
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D.2 Load Data 

Load density is 2.77 MW/km
2
. The customers can be classified into 4 types as follows. 

 

Table D-2 Customer category 

Type no. Type of consumers Total number Peak load (kW) 

1 Domestic Unrestricted  40 11 

2 Domestic Economy 7 4 30 

3 Non-Domestic Unrestricted 4 52 

4 Non-Domestic Economy 7 2 86 

 

The type of customers in each node can be seen from the table below. 

 

Table D-3 Profile Type of customers 

Bus no Type Bus no Type Bus no Type Bus no Type Bus no Type 

4 1 20 3 35 1 57 1 73 1 

5 1 21 2 37 1 59 1 74 3 

8 1 22 3 39 1 60 1 75 1 

10 1 23 1 42 4 61 1 77 1 

11 1 26 1 43 1 63 3 78 1 

12 2 27 1 45 1 64 1 79 2 

15 1 29 1 47 2 67 1 80 4 

16 1 30 1 50 1 69 1 81 1 

18 1 33 1 52 1 70 1 82 1 

19 1 34 1 55 1 71 1 83 1 

 

In each node it is assumed that the house types are similar. The house type of each node is 

listed in Table D-4. 

Table D-4 House Type of customers 
Orientation  Occupancy House Type Load Bus Number 

 S=1,E=2, W=3,SE=4, SW=5 
 

Continuous =1 
Intermittent=2 

Semi-detached=1  
Detached=2 

4 1 2 1 

5 1 2 1 

8 2 1 1 

9 1 2 1 

10 4 1 1 

11 2 2 2 

12 2 2 1 

15 1 2 1 
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Orientation  Occupancy House Type Load Bus Number 

 S=1,E=2, W=3,SE=4, SW=5 

 

Continuous =1 

Intermittent=2 

Semi-detached=1  

Detached=2 

16 4 2 1 

19 4 1 2 

20 1 1 1 

21 1 2 1 

22 3 2 2 

23 5 1 1 

26 1 1 1 

27 4 1 1 

29 2 2 2 

30 3 2 1 

33 2 1 1 

34 5 2 1 

35 5 1 1 

37 4 2 1 

39 3 2 1 

42 2 1 1 

43 5 1 1 

45 1 1 1 

47 3 1 1 

50 3 2 2 

52 3 2 2 

55 5 2 2 

57 4 2 1 

59 1 2 2 

60 2 2 1 

61 3 2 1 

63 1 2 2 

64 3 1 1 

67 5 1 1 

69 3 1 1 

70 2 1 2 

71 3 1 2 

73 4 1 2 

74 2 1 2 

75 1 2 1 

77 4 2 1 

78 4 1 2 

79 2 2 1 

80 1 1 1 

81 4 2 1 

82 5 2 1 

83 3 1 1 
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D.3. Load Profiles 

Power factor is assumed to be 0.85 p.f. lagging. 

Table D-5 Load for 24 hour 

 kW load at hour 1 - 24 

Bus no 1 2 3 4 5 6 7 8 9 10 11 12

4 0 0 2.81 0 0 0 4.04 12.95 6.4 5.43 2.38 0

5 3.72 5.12 0.56 4.56 4.09 5.07 9.3 2.62 8.59 11.48 5.28 9.59

8 0 3.67 0 6.7 0 0.24 5.81 17.69 1.1 5.81 8.25 0

10 5.25 1 0 0.97 2.13 3.67 0 13.56 15.73 7.86 2.14 1.16

11 8.49 3.97 3.99 0.11 1.22 6.67 4.25 5.98 3.93 14.58 4.15 9.31

12 38.55 1.02 49.77 50.6 59.39 8.67 26.76 30.33 7.5 0 17.9 2.12

15 0 0 2.17 0 5.81 5.98 4 9.91 1.77 4.17 0 5.5

16 1.9 0 1.83 3.73 4.71 8.83 0 3.06 0.02 0.82 5.26 8.31

18 0 0.69 1.52 0.72 2.35 3.21 0 1.07 9.99 2.92 8.93 0

19 0 0 0 0 6.65 0 5.1 10.88 2.42 5.42 5.18 0

20 11.16 30.09 0 30.02 24.64 0 0 0 0 123.38 92.5 155.22

21 20.53 22.66 40.81 30.14 0 0 40.7 33.06 17.92 0.57 3.07 3.84

22 15.74 0.7 0 23.02 0 25.56 34.83 23.59 65.99 0 31.76 76.53

23 4.16 4.17 5.34 1.88 2.77 4.47 0.63 0 6.92 3.73 2.81 5.78

26 1.06 0.06 0 4.12 0.49 4.45 0 0.1 9.37 0 0 4.92

27 4.55 0 2.95 3.81 0.3 7.04 7.56 9.55 12.23 4.09 8.53 11.66

29 4.49 0 0 2.84 2.99 2.85 6.8 12.85 10.01 4.09 4.52 5.36

30 5.46 0 3.22 1.02 3.37 0 7.3 8.44 2.56 3.03 0 6.77

33 6.14 3.26 2.81 0.77 1.05 0.32 11.79 7.56 2.71 0 1.82 17.81

34 1.46 0.27 1.68 0.82 3.85 0.96 2 0 9.23 6.28 12.23 2.81

35 7.29 0.77 1.53 3.66 0 5.98 0 1.72 6.75 0 5.53 7.62

37 9.13 0 5.92 1.65 0.59 2.36 0 7 3.72 9.94 5.5 5.51

39 2.06 2.94 3.91 0 0 4.92 3.75 20.32 7.71 0 4.4 1.98

42 63.69 38.32 129.42 0 0 0 0 22.8 90.82 78.78 137.45 47.85

43 6.23 1.63 3.97 4.22 3.61 0 1.71 8.58 8.36 5.48 0 9.32

45 0.04 0 0 4.44 2.85 1.22 0 8.11 2.52 8.51 4.14 1.82

47 37.94 0 0 54.78 0 40.45 25.92 5.93 17.49 3.22 6.49 7.86

50 6.96 3.11 6.5 0.24 7 0 1.06 10.11 9.56 0 13.18 5.78

52 0.27 2.03 0.84 6.85 2.99 0 6.1 13.21 14.41 6.65 2.47 2.72

55 0 0.73 0.23 3.64 0.99 0 6.23 15.79 0.87 2.16 0 6.9

57 2.87 5.45 8.04 1.59 0.92 3.88 2.35 5.41 6.01 0 9.12 5.14

59 7.08 9.46 0 2.21 0.81 0 0 0 8.07 10.15 18.95 8.36

60 2.89 3.86 0 2.01 3.43 0 1.8 4.48 0 7.28 3.87 8.16

61 3.83 1.26 3.74 0.83 0 6.47 2.3 16.89 0 0 9.43 1.69

63 22.96 2.52 0 33.12 20.13 0 5.43 0 17.76 80.86 96.3 153.2

64 0 9 2 3.84 5.34 7.43 0 10.83 5.7 0.56 0 2.41

67 0 0 1.67 0 5.13 1.31 0 3.35 5.08 8.04 5.49 14.1

69 6.23 4.66 0.5 5.34 0 3 5.38 5.47 0.91 10.59 2.61 0

70 4.08 0 0 4.21 3.75 1.87 3.03 8.8 0 13.6 0 14.73

71 6.07 2.2 3.13 0 2.22 1.52 2.11 0 6.79 0.3 10.45 4.5

73 0 0 0 2.58 0 0 1.46 10.17 0 0 8.44 6.6

74 9.37 26.05 0.34 0 11.66 0 24.77 27.19 50.63 0 17.46 56.25

75 0.86 0 0 0 0 3.32 4.12 9.29 12.37 10.37 11.32 11.74

77 2.07 1.52 2.6 5.73 0 0 5 9.46 11.05 4.79 0 5.69

78 0.94 0.72 0 6.94 7.55 1.13 1.07 4.76 0 3.32 5.63 7.13

79 47.41 14.95 8.7 0 0.76 29.35 37.67 0 15.18 4.02 9.12 7.12
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 kW load at hour 1 - 24 

Bus no 1 2 3 4 5 6 7 8 9 10 11 12

80 237.44 183.56 31.39 58.68 10.76 124.55 191.79 42.1 0 49.13 116.97 73.16

81 0 2.28 1.05 3.08 2.46 1.95 0 15.27 20.78 4.23 0 10.61

82 5.31 4.4 1.13 2.11 3.36 5.98 2.82 11.82 17.5 3.43 3.18 13.58

83 1.2 3.95 6.75 5.78 0 4.74 4.83 3.41 9.42 8.12 5.39 2.33

Total 626.90 402.03 342.84 383.35 222.13 339.42 511.59 505.44 543.83 537.15 729.60 830.51

 

 kW load at hour 1 - 24 

Bus no 13 14 15 16 17 18 19 20 21 22 23 24

4 3.66 2.21 8.77 3.45 15.85 0.00 14.98 11.53 6.35 8.66 5.39 2.46

5 14.89 8.78 3.12 0.00 15.38 20.58 21.53 17.81 14.66 0.00 8.25 2.42

8 5.65 6.25 10.88 7.99 13.95 0.00 11.36 0.00 9.98 19.88 6.73 11.38

10 12.84 1.46 0.00 3.29 9.54 3.13 9.04 9.39 12.22 8.65 11.90 0.79

11 1.06 0.00 0.65 2.49 14.12 6.86 12.84 10.42 8.77 15.06 9.73 0.00

12 11.62 0.29 11.33 12.32 6.50 17.18 9.96 5.35 6.42 5.23 9.82 15.98

15 4.01 0.41 0.54 6.52 1.54 9.07 12.77 7.95 9.88 13.84 13.88 0.96

16 0.00 0.00 10.26 0.46 0.00 5.79 8.44 3.11 2.94 0.76 1.63 14.06

18 3.57 0.00 13.30 3.01 9.43 3.85 18.03 8.00 14.90 0.00 2.50 3.84

19 2.28 0.60 8.84 0.00 13.67 0.28 5.33 11.80 8.74 6.78 4.14 6.45

20 9.45 1.57 11.02 13.59 2.40 10.56 15.16 10.19 6.80 1.80 3.20 7.53

21 3.40 12.45 12.24 3.18 0.85 12.49 10.75 23.42 2.80 15.57 11.41 7.17

22 10.83 11.26 6.50 4.16 11.92 7.05 18.90 6.40 11.48 15.87 5.97 1.97

23 10.61 1.11 4.44 5.88 8.68 14.74 9.75 1.31 7.13 13.02 7.49 2.57

26 5.19 8.64 13.29 3.21 14.39 9.63 20.21 10.27 6.71 4.00 7.01 6.98

27 4.30 11.11 10.82 13.61 4.34 5.42 5.44 8.19 2.09 10.91 0.00 7.24

29 1.18 6.64 2.65 12.16 13.52 4.12 1.79 12.82 8.51 11.34 10.11 9.04

30 9.06 1.68 2.70 11.53 4.15 9.73 5.06 8.22 8.41 0.00 6.65 0.00

33 1.99 5.92 3.25 9.49 7.01 10.06 17.30 17.59 9.14 4.11 7.60 7.31

34 3.96 2.40 2.89 0.05 7.34 12.16 7.02 14.90 8.38 16.86 3.95 12.51

35 5.93 5.56 4.39 11.87 20.77 1.13 14.99 14.48 1.46 10.69 6.11 0.54

37 0.94 12.88 4.42 0.00 1.25 4.25 8.99 5.62 0.00 15.74 8.62 1.84

39 1.29 6.57 14.07 4.82 0.00 9.80 6.70 15.14 5.00 1.86 9.29 4.83

42 4.94 8.85 7.67 12.04 2.34 16.05 24.99 1.78 2.17 11.34 9.67 0.00

43 1.64 4.97 5.71 9.09 7.10 21.73 4.27 10.24 15.76 7.93 0.20 3.23

45 10.66 9.72 7.51 0.30 1.75 20.75 6.30 18.63 9.47 6.58 1.06 4.31

47 0.00 5.05 11.78 0.00 11.10 15.72 16.70 14.39 9.71 19.46 2.53 0.67

50 9.78 1.65 1.05 3.20 9.52 14.80 17.07 9.55 13.53 13.10 8.42 2.58

52 8.81 15.26 2.99 1.50 7.01 0.00 7.84 9.10 13.56 10.10 5.75 5.20

55 9.75 7.79 3.91 14.86 12.65 3.06 15.37 15.13 9.31 3.77 0.00 0.28

57 12.33 6.79 4.36 0.00 3.54 9.60 15.27 13.52 6.12 5.16 8.78 6.60

59 14.87 9.26 0.77 0.00 3.43 7.44 7.93 13.23 18.89 0.00 18.47 5.72

60 3.59 8.81 1.44 13.76 0.06 10.72 7.88 8.80 5.25 1.13 10.94 9.23

61 6.84 0.00 0.00 0.00 7.65 5.50 7.51 6.69 4.67 2.40 8.56 0.00

63 5.16 2.98 0.00 18.51 0.33 20.23 3.81 8.54 13.88 12.23 15.27 1.94

64 5.71 0.00 1.32 4.37 12.89 11.17 12.17 10.60 4.40 14.55 12.08 3.49

67 2.66 11.24 1.83 10.67 0.06 16.16 12.65 0.00 11.81 6.71 15.60 9.89

69 2.11 7.16 0.00 9.51 0.00 18.83 12.83 7.62 7.52 6.61 4.52 3.18

70 0.00 3.97 3.94 5.35 13.63 7.34 12.57 14.16 5.28 7.74 4.15 11.75

71 6.84 3.55 2.72 9.16 16.05 2.58 19.21 0.00 2.26 8.80 15.21 0.00

73 2.85 3.93 1.52 10.65 0.00 24.73 16.33 2.87 18.79 5.14 13.78 0.00

74 12.11 6.20 7.05 5.81 19.81 11.32 15.82 9.59 4.29 13.21 17.55 16.16

75 1.61 1.63 12.96 0.00 0.00 10.71 11.75 14.34 6.27 8.15 9.18 5.53
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 kW load at hour 1 - 24 

Bus no 13 14 15 16 17 18 19 20 21 22 23 24

77 5.44 9.70 8.46 2.29 0.00 15.44 11.60 8.90 21.44 10.17 6.56 12.61

78 41.63 14.29 12.24 76.49 88.22 50.65 26.69 13.37 10.26 15.08 15.90 12.55

79 75.21 46.34 9.46 98.42 31.87 0.00 17.91 15.55 19.36 8.54 17.68 0.00

80 88.59 4.98 0.00 94.02 23.44 24.24 12.22 21.03 15.25 13.44 19.07 7.38

81 86.52 5.60 0.00 79.02 23.59 64.21 21.35 52.52 16.82 13.47 16.16 2.36

82 46.98 16.05 0.00 35.84 57.51 65.30 9.26 30.06 35.66 40.12 12.94 44.57

83 66.01 79.25 205.56 216.90 4.05 77.62 21.74 39.16 13.75 0.00 17.58 49.32

Total 660.35 402.81 474.63 864.81 554.19 723.79 635.39 603.28 488.24 465.56 449.02 346.37

 

D.4 DER Profiles 

Detailed data of each profile capacity factor are presented in tables D-5 to D-7. More 

information about the tool used to create the profiles can be found in the references provided 

in Chapter 6. It was considered unpractical to reproduce the 13 DER profiles, as each one 

has 6084 samples. 

Table D-6 PV System Capacity Factor (%) 

Orientation 
Season 

Duration 

(days) E SE S SW W 
Average 

Winter  90 1.39 1.91 2.09 1.78 1.25 1.68 

Transition 185 9.91 12.99 14.48 13.45 10.55 12.28 

Summer 90 16.55 20.07 21.12 21.96 19.11 19.76 

Year 

Average 
365 9.45 12.00 13.06 12.67 10.37 11.51 

 

Table D-7 Stirling Engine micro-CHP Capacity Factor (%) 

Detached House Semidetached House 

Season 
Duration 

(days) 
Continuous 

Occupancy 

Intermittent 

Occupancy 

Continuous 

Occupancy 

Intermittent 

Occupancy 

Average 

Winter  90 63.89 39.58 50.74 39.58 48.45 

Transition 185 43.45 35.86 34.72 30.70 36.18 

Summer 90 0 0 0 0 0 

Year 

Average 
365 37.78 27.94 30.11 25.32 30.28 

 

Table D-8 Internal Combustion Engine micro-CHP Capacity Factor (%) 

Detached House Semidetached House 

Season 
Duration 

(days) 
Continuous 

Occupancy 

Intermittent 

Occupancy 

Continuous 

Occupancy 

Intermittent 

Occupancy 

Average 

Winter  90 49.36 39.29 38.29 33.33 40.07 

Transition 185 32.69 28.92 27.13 23.26 28 

Summer 90 0 0 0 0 0 

Year 

Average 
365 28.74 24.35 23.19 20.01 24.07 
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D.5 Calculation of DER Costs per kWh 

In the Table D-9 the calculation of the unit cost per kWh for the micro-generators is detailed. 

Installation and maintenance costs are proportionally distributed between electricity and heat 

generation.  

Table D-9 Cost per kWh – Costs proportionally distributed 

# Costs Proportionally Distributed Stirling Engine ICE micro-CHP PV Systems 

A Capacity (kW) 1.00 5.50 1.20 

B Heat to Power Ratio 8.00 2.30 - 

C Capacity Factor 0.30 0.24 0.11 

D Electrical Energy (kWh/year) 

D=8760*A*B 
2,654.28 11,611.38 1,177.34 

E Total Installation Cost (£) 3,500.00 11,440.00 6,000.00 

F Installation Cost Attributed to 

Electricity   

F=E/(B+1) 

388.89 3,466.67 6,000.00 

G Annuity of Installation Cost (£/year)  

G=F/10.594 
36.71 327.23 566.36 

H Maintenance Cost (£/year) 110.00 550.00 60.00 

I Maintenance Cost Attributed to 

Electricity 

I=H/(B+1) 

12.22 166.67 60.00 

J Fuel Cost Electricity (£/year)  

J=D*0.027 
71.67 313.51 - 

K Total Annual Cost (£/year) = 

K=G+I+J 
120.60 807.40 626.36 

L Cost per unit of electricity (p/kWh) 

L=K/D 
4.54 6.95 53.20 

 

D.6 Selected Optimal Solutions 

Table D-10 presents the selected optimal solutions for Case Study 1. Only solutions B and C 

are presented. Solution A has no generators installed. Solution D has the maximum 

penetration in all load nodes (see Table D-5). Solutions S, ICE and PV have the maximum 

penetration of Stirling engines, ICE micro-CHP and PV systems in all load nodes, 

respectively. The numbers indicate the number of units installed in each node.  
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Table D-10 Selected Optimal Solutions for Case Study 1 

 Solution B Solution C 

Node Stirling Engine ICE 

Micro-CHP 

PV systems Stirling Engine ICE 

Micro-CHP 

PV systems 

4 10   10  10 

5 10     10 

6   6    

8 10 2  10  10 

10 10   10  10 

11 10   10  10 

12 10 2  10 1 10 

15 10     10 

16 10   10  10 

18 10   7 3 10 

19 10     10 

20 10     10 

21 10     10 

22 10 3     

23 10 3  10  10 

26 10 3  10  10 

27 10   10  10 

29 10   10  10 

30 10   10 3 10 

33 10 3  10  10 

34 10     10 

35 10     10 

37 10   10 3 10 

39 5    3 10 

42 10   10  1 

43 10   10 3 10 

45 10   10 3 10 

47 10   10  10 

50 10    3 10 

52 10    3 10 

55 10   10  10 

57 10   10  10 

59 10     10 

60 10 3    10 

61 10 3    10 

63 10   10 3 10 

64 10   10  10 

67 10 2   3 10 

69 10 3  10 3 10 

70 10 3   3 10 

71 10   10 3 10 

73 10 3  10  10 

74 10   10   

75 10     10 

77 10 3    10 

78 10    3 10 

79 10 3  10   

80 10 2  2 2 10 

81 10   10 2 10 

82 10   10  10 

83  2  10 3 10 
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Appendix E: Supplementary Data for Case Study 2 

E.1 Network Data 

The network HV-OHa is a generic medium-voltage rural network (355 nodes, 11kV, 3-

phase, balanced). The feeder was modified to provide a more realistic analysis of a rural 

network where voltage rise is the major impact of DER, as already explained in Chapter 6:  

• The length of the conductors has been doubled. 

• The load has been multiplied by a factor of 2.2 

• The capacity of conductors has been doubled. 

• The line between 1100 and 1101 has been replaced with a transformer. 

 

Details of the studied feeder are provided in Table E-1. 

 

Sbase = 100MVA 

Vbase=11 kV 

 

Table E-1Network Details – Case Study 2 

Sending 

end 

Receiving 

end 

R 

(p.u.) 

X 

(p.u.) 

Capacity 

(MVA) 

Length 

(Km) 

1100 1101 0.835 1.179 12 -

1101 1102 0.2508 0.1698 8.92 1.104

1102 1103 0.2508 0.1698 8.92 1.104

1103 1104 0.2508 0.1698 8.92 1.104

1101 1105 0.248 0.178 6.66 1.104

1105 1106 0.248 0.178 6.66 1.104

1106 1107 0.248 0.178 6.66 1.104

1102 1108 0.186 0.1335 6.66 0.828

1108 1109 0.186 0.1335 6.66 0.828

1109 1110 0.186 0.1335 6.66 0.828

1110 1111 0.186 0.1335 6.66 0.828

1103 1112 0.186 0.1335 6.66 0.828

1112 1113 0.186 0.1335 6.66 0.828

1113 1114 0.186 0.1335 6.66 0.828
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Sending 
end 

Receiving 
end 

R 
(p.u.) 

X 
(p.u.) 

Capacity 
(MVA) 

Length 
(Km) 

1114 1115 0.186 0.1335 6.66 0.828

1104 1116 0.186 0.1335 6.66 0.828

1116 1117 0.186 0.1335 6.66 0.828

1117 1118 0.186 0.1335 6.66 0.828

1118 1119 0.186 0.1335 6.66 0.828

1105 1120 0.3556 0.1331 4.5 0.792

1120 1121 0.3556 0.1331 4.5 0.792

1106 1122 0.3556 0.1331 4.5 0.792

1122 1123 0.3556 0.1331 4.5 0.792

1107 1124 0.3556 0.1331 4.5 0.792

1124 1125 0.3556 0.1331 4.5 0.792

1108 1126 0.3556 0.1331 4.5 0.792

1126 1127 0.3556 0.1331 4.5 0.792

1109 1128 0.3556 0.1331 4.5 0.792

1128 1129 0.3556 0.1331 4.5 0.792

1110 1130 0.3556 0.1331 4.5 0.792

1130 1131 0.3556 0.1331 4.5 0.792

1111 1132 0.3556 0.1331 4.5 0.792

1132 1133 0.3556 0.1331 4.5 0.792

1112 1134 0.3556 0.1331 4.5 0.792

1134 1135 0.3556 0.1331 4.5 0.792

1113 1136 0.3556 0.1331 4.5 0.792

1136 1137 0.3556 0.1331 4.5 0.792

1114 1138 0.3556 0.1331 4.5 0.792

1138 1139 0.3556 0.1331 4.5 0.792

1115 1140 0.3556 0.1331 4.5 0.792

1140 1141 0.3556 0.1331 4.5 0.792

1116 1142 0.3556 0.1331 4.5 0.792

1142 1143 0.3556 0.1331 4.5 0.792

1117 1144 0.2371 0.0887 4.5 0.528

1144 1145 0.2371 0.0887 4.5 0.528

1145 1146 0.2371 0.0887 4.5 0.528

1118 1147 0.2371 0.0887 4.5 0.528

1147 1148 0.2371 0.0887 4.5 0.528

1148 1149 0.2371 0.0887 4.5 0.528

1119 1150 0.2371 0.0887 4.5 0.528

1150 1151 0.2371 0.0887 4.5 0.528

1151 1152 0.2371 0.0887 4.5 0.528
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E.2 Load Data 

The peak load installed in each node, and the customer types are detailed in Table E-2. The 

following changes have been performed from the original UKGDS network: 

• The customer types have been diversified. 

• The load has been multiplied by a factor of 2.2. 

 

Table E-2 Load Data 

 

Node  Node 

(UKGDS) 

Active 

Load 

(MW) 

Reactive 

Load 

(MVAR) 

Load 

Type 

1 1100 0 0 0 

2 1101 0.033 0.0066 1 

3 1102 0.033 0.0066 1 

4 1103 0.044 0.0088 1 

5 1104 0.044 0.0088 1 

6 1105 0.022 0.0044 2 

7 1106 0.022 0.0044 2 

8 1107 0.033 0.0066 1 

9 1108 0.033 0.0066 1 

10 1109 0.033 0.0066 1 

11 1110 0.033 0.0066 1 

12 1111 0.033 0.0066 1 

13 1112 0.033 0.0066 1 

14 1113 0.033 0.0066 1 

15 1114 0.033 0.0066 1 

16 1115 0.033 0.0066 1 

17 1116 0.033 0.0066 1 

18 1117 0.033 0.0066 1 

19 1118 0.033 0.0066 1 

20 1119 0.033 0.0066 1 

21 1120 0.077 0.0154 4 

22 1121 0.077 0.0154 4 

23 1122 0.077 0.0154 4 

24 1123 0.077 0.0154 4 

25 1124 0.077 0.0154 4 

26 1125 0.077 0.0154 4 

27 1126 0.077 0.0154 4 

28 1127 0.077 0.0154 4 

29 1128 0.077 0.0154 4 

30 1129 0.077 0.0154 4 

31 1130 0.077 0.0154 4 

32 1131 0.077 0.0154 4 
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Node  Node 

(UKGDS) 

Active 

Load 

(MW) 

Reactive 

Load 

(MVAR) 

Load 
Type 

33 1132 0.077 0.0154 4 

34 1133 0.077 0.0154 4 

35 1134 0.077 0.0154 4 

36 1135 0.077 0.0154 4 

37 1136 0.077 0.0154 4 

38 1137 0.077 0.0154 4 

39 1138 0.077 0.0154 4 

40 1139 0.077 0.0154 4 

41 1140 0.077 0.0154 4 

42 1141 0.077 0.0154 4 

43 1142 0.077 0.0154 4 

44 1143 0.077 0.0154 4 

45 1144 0.077 0.0154 4 

46 1145 0.077 0.0154 4 

47 1146 0.077 0.0154 4 

48 1147 0.088 0.0176 3 

49 1148 0.088 0.0176 3 

50 1149 0.088 0.0176 3 

51 1150 0.088 0.0176 3 

52 1151 0.088 0.0176 3 

53 1152 0.088 0.0176 3 

 
 


