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Abstract

In engineering design, nature has often been the source of inspiration. It is easy to point
out solutions in nature that are optimal in some sense. One example is the roughness of
the surface of a shark’s skin. This is designed by nature to minimize the resistance when
the shark swims in the water. Another example is the shape of an egg shell. This is an
optimal load carrying structure which often is found in engineering design applications.
An even more fascinating question is how nature has found these optimal solutions? The
answer to this question is evolution.

Instead of just analyzing and copying optimal structures invented by nature it seems
reasonable to mimic the process how nature has came up with these solutions. Research
on how these ideas can be interpreted and used in engineering design started in the early
seventies and has now become a large field known as Evolutionary Algorithms (EAs).
During the past decade these methods have emerged as potent tools for engineering
design optimization. Some of these methods are especially suited for problems which
involve multiple objectives such as almost all real engineering design problems.

Just until recently, these methods have seldom been used in the area of
rotordynamical design. This thesis deals with the question how these methods can be
adapted and applied in order to improve the design and design process of large rotor-
bearing system. A hypothesis for this work is that EAs are suitable to use in the late design
process of these systems. The aim of this work is to evaluate this hypothesis by studying
real applications found in industry.

This thesis comprises an introductory part and five appended papers. The introductory
part is divided into four different chapters. In the second chapter the concept of
engineering design optimization is introduced. In the third chapter Genetic Algorithms
(GAs) is presented. Finally, the analysis and design of rotor-bearing systems are introduced
and discussed. The purpose with the introductory part is to introduce and prepare the
reader to the concepts presented in the papers. The introductory part may serve as a start
point for newcomers interested in these areas.

The appended papers deal with different rotor-bearing system optimization problems
and how these can be formulated and solved with GAs. Paper A introduces a constraint
handling technique based on concepts found in multiobjective GAs. In Paper B the
multiobjective optimization of a generator is presented and discussed. In Paper C and
Paper D the constraint handling technique introduced in Paper A is used for two different
rotor-bearing system where the actual bearing geometry parameters are used as design
variables in the optimizations. In Paper E the feasibility of site balancing rewinded turbo
generators is investigated by the use of a multiobjective GA.

Keywords
Rotordynamics, Optimization, Genetic Algorithms, Turbo Generators, Balancing,
Journal Bearings
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1 Introduction

The body of this thesis is an introduction to the subject of the research. This first chapter
gives a background and defines the research. In the following chapter, the matter of
engineering design optimization is introduced and discussed from a practical point of
view. The third chapter gives a more detailed description of Genetic Algorithms (GAs)
which is on class of Evolutionary Algorithms (EAs). Difterent types of real coded GAs
have been used extensively during the work. Then, the dynamical design and analysis of
large rotor-bearing systems are dealt with. In this thesis, large turbo systems or large
rotor-bearing systems means gas turbines, turbo generators, etc, which usually are
supported by hydrodynamic journal bearings. Finally, the appended papers are
summarized, discussed and concluded.

The author’s aim with the outline of this thesis is that each chapter can be read
independently depending of the reader’s interest and prior knowledge. A reader with no
prior knowledge in the area of rotordynamics and GAs is encouraged to read all the
chapters. The purpose of the introductory part of the thesis is to give the reader enough
understanding in order to follow the concepts in the appended papers.

1.1 Background

The design of high speed rotating machines started in the late 19" century by for example
the cream separator by De Laval. In the early 20" century the development of the steam
turbine started. During the 2™ world war the development of the turbo jet engine
accelerated. Today there is no striking difference between a modern gas turbine for
power production and a turbo jet engine from the 1950s. Most of today’s high speed
rotating machines are based on concepts invented decades ago. This means that most of
the development in design of these machines will be small improvements of existing
machines. Still this is important since even small improvements in performance of several
MW machines may yield substantially increased profit. Perhaps even more important
factors in the design of these machines are to reduce costs and increase reliability. The
design process of large rotor-bearing systems of today is often an iterative refinement of
known concepts. The detailed design process is definitely an iterative procedure or as
Rajan et al. in [51] state “The design of a rotor-bearing system is an iterative process in which the
parameters that influence the design are modified until the desired design objectives are achieved” .

Apparently there is a potential to make use of optimization methods in the design
process of rotor-bearing systems. Work with optimization has been done for rotor systems
with magnetic bearings. See for example [59], [58] and [57] for further references. A rotor
system with ball bearings was studied and optimized by Lee and Choi in [38]. In [45]
Montusiewicz and Osyczka optimized a spindle supported by hydrostatic bearings. The
eigenvalues of the system are often used as constraints or objectives in the optimization of
rotor-bearing systems, [21] and [20]. An optimization with complex eigenvalue
constraints and the mathematical model based on the state vector approach is discussed by
Chen and Wang in [7]. In [56] Shiau and Chang studied a rotor-bearing problem with
multiple objectives.

Various optimization methods have been known for decades. Still the use of
optimization techniques in the practical design of rotor-bearing system is limited at
industrial companies. An interesting question to pose is: Why is not optimization techniques
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used more frequently in industry? An obvious answer to this question is that it is seldom
straight-forward to formulate optimization problems for real-world design problems
where several objectives and constraints exist. It may even be difficult to distinguish the
objectives and the constraints. Another possible answer to the question is that most
traditional optimization methods are not suitable for real-world problems with several
non-linear objective functions and constraints that are difficult to satisty.

In the late 1960s ideas of search and optimization methods based on mechanisms
found in natural evolution began to pop up. The natural evolution is slow, and so are
most of these methods compared to many other optimization techniques. In the
beginning, these methods did not receive much attention. However, due to the rapid
development of computers it is now practically possible to apply these methods on many
different problem areas. The research about these methods has now become a large field
itself. The main cause of this recovery is that many difficult problems can be solved by
these methods. In the next two chapters, the background and use of EAs and GAs is
described in more detail.

The ideas to use EAs or GAs in the field of rotordynamics are not new. An early
application was [29] by Genta and Bassani. Later work with a variant of a GA was done
by Choi and Yang, [9] and [10]. In [8] Choi and Yang studied the optimum placement of
two eigenvalues for a rotor supported by hydrodynamic journal bearings with a GA. The
bearing design parameters were not used as design variables. In [11] Choi et al. optimized
several objectives for a low pressure steam turbine with a weighted sum and a variant of a
GA. The turbine was supported by hydrodynamic journal bearings and the bearing width
and clearance was used as design variables but nothing was said about the actual bearing
model.

In most of the previously cited references, the mathematical models of the rotor-
bearing systems are too simple to reflect the dynamical properties of large flexible rotor
systems. This implies that the formulations of the optimization problems are easy and
straight-forward. For a designer working with more advanced models, several problems
arise which have not yet been properly addressed. There will for example exist more
objectives and constraints. In this work, analysis models are used with an industrial degree
of complexity. The purpose 1s to evaluate and explore the possibilities to use GAs as
search methods on this kind of problems. It should be clear that validation and
verification of the analysis models are important in order to get reliable results. Validation
and verification is however not the purpose for this work. In fact one may instead argue
that the accuracy of the models affects how some of the constraints are set. Still the
engineer is left with a problem to push the model to the limiting conditions.

Rotor-bearing system optimization problems are, as almost all real-world optimization
problems, constrained. GAs have been criticized for the lack of robust and general
constraint handling methods. This is also an area that this thesis should contribute to.

1.2 Research question

This research relates to the field of rotordynamics and optimization by EAs and
particulary GAs. The focus of the research as well as the research question have changed
and evolved during the work. However, the research question that best represents the
work is formulated as:
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- How can evolutionary optimization techniques be adapted and applied to improve the design and
design process of large rotor-bearing systems?

1.3 Scope and research approach

This work spans two very different research areas (rotordynamics and GAs). A hypothesis
for this work is that GAs are suitable to apply in the late design process of large rotor-
bearing systems and that the use of GAs will lead to better performance and more cost
effective machines. The aim is therefore to evaluate this hypothesis by studying problems
gathered from industry. The work should indicate the potential and limitations of using
these modern optimization methods in the late rotordynamic design of large rotor-
bearing systems.

1.4 Motivation and relevance

Much of the traditional research within the rotordynamic community is applied and
focused on how to model and describe difterent physical phenomena found in industrial
problems. As the knowledge on how to develop models increases, an efficient use of
these models becomes more important. At industrial companies working with large rotor-
bearing systems the knowledge level is high on how to create models for analysis. On the
other hand there is usually a lack of awareness on how to efficiently make use of the
models in the product development process. In the best case, some parametric studies are
performed. As the number of parameters and objectives increases, it becomes a difficult
task for an engineer to optimally design the system. It may even be difficult to define
what an optimal system means.

Hopefully, this work leads to an increased knowledge in industry on how to
formulate optimization problems and efficiently make use of some modern optimization
methods. An increased knowledge in this domain may not only have effect on the
detailed design stage but also on other stages in the design process.
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2 Engineering design optimization

In this chapter the concept of engineering design optimization is introduced. The stand
point is more from practical use of search and optimization methods than discussion of
theorems and rigorous mathematical proofs. First some concepts are defined and the
mathematical definitions of some important engineering design optimization problems are
given. Finally practical aspects of engineering design optimization are highlighted and
some methods suitable to use in many real-world applications are discussed.

2.1 The optimization problem

In this section the mathematical definitions of two important optimization problems are
stated. The constrained single objective problem is defined. Then the multiobjective
problem and Pareto optimality are defined. But first, some other required concepts are
described.

2.1.1  Definitions

Except for the definition of the feasible region or feasible space in section 2.1.2 the
definitions follow [50].

An objective function is a function that describes some value of the design. The objective
function/functions should be minimized or maximized. Constraints are restrictions
imposed on the design.

Design parameters are data that define the design. Design variables are the design
parameters that are subject to change during the optimization process. Design variables
may be continuous or discrete. A discrete design variable can only take predefined values and
the problem is said to be of combinatorial type. Two types of discrete design variables are
integer type or categorical type. Between categorical design variables there is no defined
regular order. A typical categorical design variable is bearing type for example. Bearing
width can for example be a continuous design variable if it can take any real value. If the
bearing width is chosen from a standard catalogue it may however be an integer design
variable.

The search space or design space, denoted S, is the set of designs that is spanned by the
design variables. For continuous design variables this is usually defined by upper and
lower bounds for the design variables called side constraints.

2.1.2  The constrained single objective problem

An optimization problem can be formulated as a constrained single objective problem.
This means that one single objective is chosen. If there exist other objectives these may
be formulated as constraints. This is also called the non-linear programming problem
(NLP). With k inequality constraints and m equality constraints it is formulated as

Minimize f(x)

subject to 1)
g, x)<0 i=1L..k

h(x)=0 i=1,..,m,
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where f{x) is the objective function, gi(x) < 0 the i inequality constraint and A,(x) = 0
the " equality constraint. Hereinafter minimization is assumed which is no lack of
generality since maximization is achieved if the objective is multiplied by -1. x = [x,
X2,..., Xp] 18 the vector of the n design variables. For continuous design variables
xe S cR". The search space S is usually defined as an n-dimensional rectangle by the

side constraints, x/ <x, <x" i=1..n. The feasible region (or feasible space) is here defined

as the region of § for which the inequality and equality constraints are satisfied. Hence,
F c §'. The optimal solution is denoted X . A constraint is said to be active at the point

X if g(x") = 0. By default all equality constraints are active at all points of the feasible
space.

In Paper A a new ranking scheme for GAs to handle the constraints in (1) is
introduced. The formulation (1) is also used in Paper C and Paper D.

2.1.3  The multiobjective problem

In many cases when several design objectives exists it is not possible to formulate the
problem as a constrained single objective problem. Another way to pose the problem can
be to formulate it as a multiobjective optimization problem. An unconstrained
multiobjective problem with k objectives is formulated as

Minimize  F(x) = [£,(), £s(X), .., f, (¥)]
subject to @

xe S

where S is the search space defined as an n-dimensional rectangle if the design variables
are continuous. Of course the multiobjective optimization problem also can be
constrained and defined by discrete design variables.

The problem now is to search for solutions which minimize all the objectives fi(X).
The ideal solution which minimizes all the objectives simultaneously is called the utopian
solution. In the general case when some objectives are in conflict with each other it is
however not possible to find the utopian solution. The solution that is searched for
should in this case be a member of the non-dominated set of solutions. According to [1] a
solution X is said to dominate a solution y if the following holds:

Vie{l.2,.k}: f,(x)< £i(y) and Fje{l2,..k}: f,(x)< f,(y)- 3)

What Equation (3) says is that a solution dominates another solution if it is better in at
least one objective and not worse in the other objectives. With the terminology used here
and the definition according to Deb [17] the non-dominated set of solutions is defined as:
Among a set of solutions S, the non-dominated set of solutions P are those that are not dominated
by any member of the set S. This set is also called the Pareto optimal set of solutions and
illustrated in Figure 2.1.

A short discussion of possible techniques to solve (3) will be done in section 3.4. Let’s
just mention that there exist methods that try to find the whole Pareto optimal set in one
single optimization run. A multiobjective GA, which is one such method, will be
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discussed later. Paper B and Paper E presents rotor-bearing optimization problems of type
).
A

S(x)

Utopian solution

>
S(x)

Figure 2.1 Search space S, Pareto optimal set P and the utopian solution (assuming
minimization) illustrated in the objective space for a problem with two objectives.

2.2 Practical aspects of engineering design optimization

In order to achieve a successful final design, a good conceptual design is of course
required. Since most products actually are based on re-design and modifications of
existing concepts, optimization in the late design stage may be motivated. Optimized
products are especially important for high performance, large and expensive or high
volume products. An important aspect is that there are always some overhead costs related
to performing optimizations in the design process. Before one starts with any
optimization one should therefore always pose the question: Does the potential gain in
product performance, cost, etc motivate the use of optimization methods in this particular case? If the
answer is yes or probably one might proceed and start formulating and solving the
problem. Worth to note is that the use of optimization techniques is not only restricted to
the late design stage. A requirement is however that a mathematical model that describes
the value exists.

Most books on engineering design optimization go directly into the details of the
algorithms. An engineer working with design optimization is usually more interested to
solve the problem than in details of the algorithm. Therefore stable and robust algorithms
that work for a large number of problems are motivated. Before even thinking about how
to solve it, the engineer is faced with the important challenge to formulate the problem.
A few questions and aspects that affect the problem formulation are:

Which design variables should be chosen?
What is the objective and what are the constraints?
Often a mix of design variables exists (continuous, discrete, categorical).

Almost always several objectives exist. How should these be handled?
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In practice, the choice of design variables is often given by the fact that all design
parameters are not possible to change. The chosen design variables should be as
independent as possible and have effect on the response of the system. Design parameters
that only have minor effect on the system response could probably be excluded as design
variables.

In reality it is often difficult to decide what are the objectives and what are the
constraints? If several objectives exist, the formulation might be a multiobjective
optimization problem (2). If some of the objectives can be formulated as constraints, this
might be preferable since the problem will in general become easier to solve.

An optimization problem with only discrete design variables is a combinatorial
problem with a finite set of solutions. If some design variables are of continuous type, the
search space is a set of infinitely many solutions. Many real-world design problems
involve mixed types of design variables, for example, such as design of rotor-bearing
systems when different bearing types are considered.

Before the formulation of the problem is done it is always important to get as much
information as possible about the system. The strategy used by the author in the papers of
this thesis is summarized as follows.

Chose design variables
Perform a numerical experiment
Formulate the optimization problem

Optimize

M AN

Post-optimal analysis

The purpose of the initial numerical experiment is to get an understanding of the design
variables effect and to get an overview of what possibly can be achieved in the
optimization. It may for example also show that some design variables are not relevant
and therefore can be excluded. Design of experiments (DOE) is a large field, see
Montgomery [44]. In Paper B, Paper C and Paper D a simple but informative method is
used. Solutions are simply generated randomly in the search space. Even though more
advanced methods exist this method should not be neglected since it may serve its
purpose for large and complex problems with many constraints and possibly several
objectives.

‘When an optimal solution is found it is of interest to know how robust the solution is.
This is investigated in the post-optimal analysis phase. A robust solution is a solution that
gives only small effects in response for perturbations in the design parameters. In the case
of a multiobjective problem, robustness may well be the base for the final decision of
which solution to choose from the Pareto optimal set.

2.3 General purpose optimization methods

The purpose for this section is to present a short review of some of the most important
methods that can be an alternative to EAs in practical engineering design optimization. It
should be clear that a comprehensive survey of all existing optimization methods is far
beyond the scope for this section. The interested reader is therefore encouraged to read
the introductory book by Onwubiko [50] or the more comprehensive book by Rao [52].
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Traditionally there has been a large focus on methods that use gradient information in
the search process, i.e. gradient based methods. Gradient based methods are efficient for
convex objective functions and if the number of design variables is not too high. A
drawback that frequently appears for objective functions with multiple local optima is that
the result is dependent on an initial start guess. Engineering design problems often
involves non-convex objective functions or even disjointed search spaces if discrete
design variables are involved. The focus in this section is therefore towards methods that
are better suited for this kind of problems. Still one should not reject the use of gradient
based methods on problem with continuous design variables and convex objective
functions.

A subject closely connected to engineering design optimization is DOE, Montgomery
[44]. Before an optimization is conducted it is necessary to have some knowledge of the
behavior of the system. This is where DOE come in. DOE may also be used in the post
optimal analysis phase. Methods related to DOE and robustness of the system is response
surface methods (RSM) [62]. In these methods an initial experiment is set up and
conducted. The objective function is then usually approximated by a second order
polynomial response surface. The experiment may be repeated to obtain a more accurate
response surface. These methods are suitable if the number of design variables is low.
Another more advanced approximation technique for problems with costly and noisy
objective functions is to train neural networks [34] to simulate the behavior of the system.

There are different ways to classify search and optimization methods. In [33] Hajela
reviews some non-gradient based search and optimization methods. He also distinguishes
between zero-order methods for local search and methods for global search. A selected set
of these methods is listed in Table 1.

Table 1. Non-gradient based search and optimization methods classified according to
Hajela [33].

Zero-order methods for Methods for global search
local search

Deterministic | Hookes-Jeeves [50] Sequential quadratic programming [50]
Nelder-Mead simplex [50] | -

Complex [5] -
Stochastic Random walk [33] Simulated Annealing (SA) [37]
- Evolutionary Algorithms (EAs)

Zero-order methods use only the objective function value and no gradient information.
The progress in the optimization process for the deterministic methods is based on
predefined rules. In the stochastic methods, a certain amount of randomization is used in
the search process. These methods are computationally expensive in terms of the many
required objective function evaluations but they are also robust. During the past decade
stochastic global search methods has become more and more important as tools in
engineering design optimization problems. In [33] Hajela says that “These methods have
emerged as potent tools for locating optimal designs in problems that are generally regarded as
difficult.”  Simulated Annealing (SA) is based on ideas from statistical mechanics and
thermodynamics. If a metal piece is slowly cooled from an initially high temperature it
takes the state which minimizes the potential energy. This is completely analogous to the
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working principles of SA. EAs are based on principles found in natural evolution. The
background of these methods is described in some more detail in the next section.

It is worth to note that there exists no “best method” for all cases. Even in a single
case, a best method may not exist. In the general case, probably the best choice is a hybrid
method that starts with a global search method to locate the interesting region of the
search space followed by a fast local search method.

2.4 Evolutionary Algorithms

EAs is a class of global search algorithms inspired by natural evolution. Several different
types of EAs exist. Genetic Algorithms (GAs), Evolution Strategies (ES), Evolutionary
Programming (EP) and Genetic Programming (GP) are some of the most known. In this
thesis, real coded GAs (explained in section 3.1) have been used extensively. Real coded
GAs are in many aspects similar to ES. Therefore a short review of the history for GAs
and ES is given in the next section.

2.4.1  Historical perspective

During the early 1970s Holland [36] and his students presented the first work in the field
of GAs. At almost the same time, Rechenberg [53] and colleagues worked with ES. ES
and GAs are quite similar but have important differences. ES work with real design
variables while GAs work with a binary coding of the design variables, see section 3.1.
Furthermore, the search operator in ES is a mutation operator. In a GA this is a secondary
operator since the primary search operator is a crossover operation. During the 1980s real
coded GAs began to pop up. At this point it becomes difficult to distinguish between ES
and GAs. In chapter 3 the background and principles of GAs are given in more detail.

2.4.2  Why and when to use EAs?

The natural evolution is a slow process. Hence, EAs are also quite slow compared to
many other optimization algorithms, i.e. on continuous and convex functions. But it is
also important that they are robust algorithms. EAs are a good choice for multimodal and
noisy objective functions. It is also shown that EAs are suitable on many combinatorial
problems with large search spaces. If the number of design variables is high, EAs may be
one possible choice. EAs may also be the choice if there is a mix of different types of
design variables. EAs should not be used if local search efficiency is of importance, nor
should they be used when the objective function evaluations are computationally
expensive.
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3 Genetic Algorithms

The purpose of this chapter is to introduce the reader into the basics of GAs. Since GAs is
a huge field itself; it should be clear that what will be presented here are only selected
parts which the author finds most necessary.

GAs 1s one type of EAs which originates from the work by Holland [36] in the early
1970s. Two other good text books on the subject are [31] by Goldberg and [16] by
Davis. Traditionally GAs works with binary coding of the problem. This will be
explained in the next section. Nowadays there exist GAs that work on data structures
which are more similar to the specific problem, for example real numbers. The book by
Gen and Cheng [27] gives some introduction to this subject. Two more recent
comprehensive books that may serve as references of the fundamentals of GAs and
especially multiobjective GAs are [14] by Coello Coello et al. and [17] by Deb.

3.1 Coding of design variables

Coding of the problem is the first central step to understand how GAs work. Let’s now
consider a possible vector of design variables to an optimization problem with two
continuous design variables, x = [10,6,11_5]. These two real numbers can be described
(coded) as a string of binary digits. The chosen length of this string and range for the
design variables (side constraints) determines the precision of the decoded values. If a
string length of a single design variable is 6 and the side constraints are 9.0 < x, <13.0 the

binary coding of the considered vector of design variables becomes like in Figure 3.1. See
for example [17] for how to binary code real valued design variables.

Phenotype space Genotype space
Coding
10.6 |11.5 > 011011 | 100111
Decoding #
Chromosome
Gene

Figure 3.1 An example of binary coding of two real design variables.

The string of binary digits is called a chromosome. Sometimes it is also called genome.
Each single binary digit in the chromosome is a gene. All the operations in a GA are
performed on the genotype representation of the design variables. There exist GAs which
operate on the design variables in the phenotype space directly, hence genotype =
phenotype. For real valued design variables these are said to be real-number encoded,
[27]. However, in this case actually no coding and decoding is performed at all.
Evaluation of the objective functions and constraints is done for the phenotype
representation of the design variables.

10
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If the underlying problem easily is described by real valued design variables, the real-
number encoding is preferable. This since a binary encoding in this case gives severe
drawbacks with Hamming cliffs, [27]. In most cases it is preferable to choose a coding
that gives a genotype representation which is as similar as possible to the phenotype
representation.

3.2 The population

One of the most important things about GAs, in contrast to many other optimization
methods, is that they work with a set of solutions to the problem (a set of chromosomes).
Later it hopefully will become apparent why it may be an advantage to work with several
solutions to the problem simultaneously. The set of solutions is called the population.
Each chromosome in the population is an individual. Before the evolution of the
population can start, a population must be initiated. Most often this is done by random
generation of individuals. Hence, no guess of a single start point is necessary. If a real-
number encoding is assumed, a possible population for the hypotethical problem
described by two real design variables is illustrated in Figure 3.2.

~

12.5]10.8 > Population size

. . D
Figure 3.2 A population with size 5 for a problem described by two real design variables.

The uniqueness of each individual in the population in Figure 3.2 is here illustrated by
the fact that each individual has a unique color. The size of the population, i.e. the
number of individuals in the population, is an important parameter in a GA. A large
population size gives a more robust search in terms of finding the global optimum.
However, a large population size also slow down the convergence rate. A good choice of
population size is dependent of the problem in order to achieve a well behaving GA. It
should also be mentioned that the performance of a GA depends on the choice of other
operators. So the choice of population size is also coupled to the choice of these
operators.

3.3 Evolution of the population

Now when the concept population is defined it is time to explain the evolutionary
process. The individuals in a population will undergo different operations inspired by the
natural evolution. Let's call the population generation t at one instant in time. After the
evolutionary operations have been performed a new population has been created. This
new population is generation t+1. In the new generation there exist new individuals that

11
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have been produced based on the information from its parents in the previous generation.
If an elitist strategy is used, the new generation can also contain individuals that have
survived from the previous generation. The overall working principles of a GA are shown
in Figure 3.3 and Figure 3.4.

Generation t+1 . .
Evolutionary operations

Generation ¢

Objective function
evaluation and
fitness assignment

Initialization of

s Convergence
population

satisfactory?

Stop!

Figure 3.3 Flowchart for the working principles in a GA.

First the population is initiated, usually by random generation of individuals. The next
step 1s to evaluate the objective function/functions and possibly constraint violations. The
objective function is of course evaluated for the phenotype representation of the
individuals. Then each individual is assigned a fitness value. This is a measure of how
good the individuals are, the higher fitness the better individual. Observe that the fitness
value is not necessarily the same as the objective function value. Then a convergence
criterion is evaluated. This can be a predefined number of generations, a predefined
minimum difference to a goal value or something similar. For the work in this thesis, the
GAs are always run for a predefined number of generations. If convergence is not
satisfactory, the evolutionary operations are repeated. By the term “evolutionary
operations” 1s here meant selection, crossover, mutation and reinsertion. A more detailed
illustration of the evolutionary operations is shown in Figure 3.4.

Population in generation ¢ Population in generation ¢+1
) Possible elitism )
[ — ]’ >
[ [E—
[ ] Crossover [T 7] I
| Selection 1 and mutation 1 Reinsertion I —
1 1 M [ |
1 /T I I I
| => 0 = —— = [
| 1 [ — T 1
| I . [
1) (I [ [
Mating pool

Figure 3.4 Operations performed in the evolutionary process in a GA.
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Figure 3.4 shows the performed operations on a population in order to create the next
generation. Each colored rectangle represents a unique individual in the population. At
this point it does not matter if a real coding or a binary coding is used.

After fitness has been assigned to each individual in generation f, a portion of these
individuals are selected by some method for mating. This new intermediate set of
individuals is called the mating pool. There exist many different selection operators of
which some are explained in section 3.3.2. The selection operator should prefer “good*
individuals rather than “bad® individuals. In the multiobjective case or constrained single
objective case, it is not straight forward to define what a “good” or “bad“ individual
actually is. This question is dealt with in Paper A for the constrained single objective
optimization problem (1).

The genes from pair-wise chosen individuals in the mating pool (the parents) are then
mixed in what is called the crossover operation. Two new individuals (the offsprings or
children) are now created. The probability for crossover to occur is usually high (around
0.9). The crossover operation is illustrated by the mixing of colors in Figure 3.4.

At low probability the genes are then mutated. This is illustrated by the red color in
Figure 3.4. Now a portion of the population in generation f is replaced by the new
offsprings and generation ¢+1 is created. The elitism showed in Figure 3.4 is simply to
copy some of the best individuals in generation ¢ into the next generation. In the
appended papers the term “generation gap” occurs. This is the ratio of the population
that is replaced in each generation, i.e. the size of the mating pool. Elitism can also be
introduced via the reinsertion scheme. It should be mentioned that there are large
differences how the crossover operator and mutation operator works depending on how
the design variables are coded (binary or real). In the next sub sections these different
operations will be described in some more detail.

3.3.1  Fitness assignment and ranking

In this sub section it is assumed that the unconstrained single objective problem is
considered. This implies that the term “good individual” is obvious. The fitness of an
individual is a measure of how good an individual is, the higher fitness, the better
individual. Fitness can be assigned proportionally to the objective value but usually the
fitness is determined by the ranking of the current population, i.e. rank-based fitness
assignment. In rank-based fitness assignment the population is first sorted according the
objective value. Then fitness is assigned according to some scheme (linear or non-linear).
Rank-based fitness assignment is in general more robust since no scaling problem with
the objective value occurs, [6]. A frequent problem with proportional fitness assignment is
that good individuals receive too high fitness which may lead to premature convergence
in the population. This can be avoided with rank-based fitness assignment. Figure 3.5
shows the fitness for each individual in a ranked population with five individuals.
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Fitness

) .
0

1 2 3 4 5
Individual

Figure 3.5 Linear fitness (selective pressure 2.0) for a ranked population with 5
individuals.

In Figure 3.5 a linear fitness assignment with selective pressure 2.0 is used. This means
that the fitness is assigned according to a linear distribution. The best individual (No. 1 in
Figure 3.5) gets a fitness value of 2.0 and the worst individual gets 0. Selective pressure
2.0 means that the best individual should have twice as high probability to be selected for
mating compared to the average individual.

3.3.2  Selection

When fitness is assigned to each individual, some of these should be selected to be a
member of the mating pool. The selection criteria should preferably be based on the
fitness values in some way. There exist many different selection procedures, tournament
selection [32], stochastic universal sampling [3], roulette wheel selection, etc. In the work
of this thesis the roulette wheel selection method is most frequently used and is therefore
briefly explained here.

Let’s first imagine a roulette wheel that has as many slots as there are individuals in the
population. The size of each slot should be proportional the corresponding fitness. Such a
wheel is shown in Figure 3.6.

Individ 4

Individ 1 Individ 3

Individ 2

Figure 3.6 Roulette wheel with slot sizes proportionate to the assigned fitness.
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Now the ball is thrown. The individual on which the ball hits 1s chosen for mating. This
procedure is repeated until the whole mating pool is full. Observe that there is more
likely to find multiple copies of individuals with high fitness rather than individuals with
low fitness in the mating pool. The fifth individual gets no chance to reproduce since its
fitness value was zero.

3.3.3 Crossover

Crossover is the operation that mixes the genetic information from parents in the mating
pool in order to create offsprings. The term “crossover” originates from the early binary
coded GAs and is therefore straight-forward to understand for binary coded design
variables. In the case of real coded design variables, crossover is a more awkward concept.
In this case it is better to refer to blending operations of the design variables rather than
crossover. Still the term crossover is used for real coded design variables in many text
books, so also in this thesis.

First, a crossover operation (single point) for binary coded design variables is
explained. A pair of individuals (the parents) is picked from the mating pool. Then the
chromosomes of the parents are divided at a randomly generated crossover position. Now
the first part of the chromosome from parent 1 goes to offspring 1, the second part goes
to offspring 2. For parent 2 the reverse holds. This is illustrated in Figure 3.7.

Parents Offsprings
f—% f—/%
011011140111 011011101011
00111011]1011 001110110111

\'

Crossover position

Figure 3.7 Single point crossover for binary coded design variables.

Crossover operators used for real coded design variables tries to create one or more
offsprings in the neighborhood of its two parents. In contrast to the single point crossover
operator, most of these operators work with a single gene (a design variable in this case) at
a time rather than the whole chromosome. What mainly differ different crossover
operators for real coded design variables is the probability distribution for creation of the
offsprings. For example the simulated binary crossover (SBX) by Deb and Agrawal [18]
will at high probability create an offspring with design variables close to similar to one of
its parents. The SBX crossover operator is used in Paper E. In Paper A, Paper C and
Paper D the BLX-a crossover operator is used, [22]. For this operator the offsprings are
created with uniform probability within a hyper cube slightly larger than the hyper cube
spanned by the two parents. This is illustrated for two design variables (x; and x,) in
Figure 3.8. a is a constant that defines the size of the hypercube for possible offsprings.
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e Two possible
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Area of possible
offsprings
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-

Figure 3.8 The BLX-a crossover for two a real valued design variables.

Again it should be mentioned that what is presented here is only a few of all existing
crossover operators. In a GA selection and crossover are the main search operators. In
order to increase the robustness of a GA (in terms of chance to find the global optimum),
mutation is introduced. This is the subject for the next sub section.

3.3.4 Mutation

When the offsprings have been created, these may at low probability be mutated.
Mutation in this case means a random change of the genes in the offsprings
chromosomes. In the case of binary coded design variables this simply is to flip O to 1 or
vice versa as shown in Figure 3.9.

Offspring Mutated offspring

011011101011 | ——="> | ot101110fo11

Figure 3.9 Binary mutation of a gene in an offspring’s chromosome.

Also when it comes to mutation of real coded design variables there exist a large number
of different mutation operators. Most of them work in such way that the variable that will
be mutated is changed to a new value in the neighborhood of its original value. One such
mutation operator could be to add a zero-mean Gaussian probability value to the original
value as in Equation (4).

ximutated — xiold + N(O, O-l-) (4)
In Paper A to Paper D the mutation operator by Miihlenbein and Schlierkamp-Voosen
[46] is used. This works in a similar way as Equation (4) but with a different probability
distribution. It also generates the mutated variable in a closed predefined range. Different
papers report results for optimal mutation probability. In [46] Miihlenbein and
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Schlierkamp-Voosen used the mutation probability 1/n, where 7 is the number of design
variables, so this seems to be a good value for a variety of problems. For an overview of
many crossover and mutation operators for real coded GAs, see Herrara et al. [35].

3.3.5  Reinsertion

The last step before a new generation is created is to insert the offsprings into the
population and replace some of the parents. This may be done in many different ways.
The most obvious one is to replace parents that have low fitness (fitness based
reinsertion). This is the reinsertion scheme used for the GAs in Paper A to Paper D.
Another scheme may be to replace a parent in the neighborhood of the offspring that is
to be inserted (local reinsertion). Depending on how the reinsertion is done, the GA may
behave very differently. But as always, the behavior of the GA is dependent on all the
performed operations.

3.4 Multiobjective GAs

It has already been mentioned that a constrained problem and a multiobjective problem
may be two different formulations of the same underlying problem. Hence, multiple
objectives and several constraints are somehow related. In Paper A an alternative
constraint handling method based on concepts found in multiobjective GAs is presented.
In Paper B and Paper E multiobjective generator rotor-bearing problems are studied and
solved with different multiobjective GAs. Therefore a brief introduction to non-
dominated multiobjective GAs is given in this section.

There exist several different methods [1] to handle the multiobjective problem (2).
Probably the most widespread approach is the weighted sum where each objective is
assigned a weight and added together into a single objective function. In this way the
preferences of the different objectives are set before the optimization is started. The
searched solution is most likely a single solution of the Pareto optimal set. Another
method is the e-constraint approach where objectives are directly treated as constraints. If
there is no preference between the objectives, each solution in the Pareto optimal set is
equally good as all other members of the Pareto optimal set. Hence, all solutions in the
Pareto optimal set are searched for. It is possible to find this set with a weighted sum or
an e-constraint method but the optimization must be run several times with different
weights or constraint levels. This is where GAs has an advantage.

Since the search is done with a set of solutions (the population) it is possible to evolve
the whole Pareto optimal set in a single optimization run. During past 10-15 years the
research about multiobjective GAs has considerably increased. For a complete
background into the subject of multiobjective GAs the books by Coello Coello et al. [14]
and Deb [17] are recommended.

The most central operation in a multiobjective GA is the ranking of the individuals.
Often this is done by some sort of non-dominated ranking. Figure 3.10 shows the non-
dominated ranking by Goldberg [31] for a hypothetical population of solutions to a
problem with two objectives. In Goldberg’s ranking scheme, the non-dominated
individuals in the current population are identified. These individuals receive rank 1 and
are removed from the population. The non-dominated individuals in the remaining
population are then assigned rank 2. This scheme is repeated until all individuals have
been assigned a ranking. Goldberg’s ranking is one ranking scheme based on non-
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domination. Another similar ranking scheme for multiple objectives is the one by Fonseca
and Fleming used in the MOGA, [25]. Preferably the information from non-dominated
individuals should not get lost. Therefore a considerable degree of elitism is used in many
multiobjective GAs.

A

S(x)

>
Si(x)

Figure 3.10 Goldberg’s non-dominated ranking for a set of hypothetical solutions (a
population) to a problem with two objectives (minimization is assumed).

Non-dominated ranking is not the only key for a successful multiobjective GA. If the
final generation should be more or less evenly spread near the Pareto set, a diversity
preserving operator must be used. In [25] Fonseca and Fleming used a sharing method
(found in [27]) in order to obtain spread solutions. This simply means that the fitness for
clustered solutions is degraded so that diverse solutions are more likely to be preferred.
The same sharing method is applied in the muliobjective GA used in Paper B. The
NSGA-II by Deb et al. [19] uses non-dominated ranking and a special crowded
tournament selection operation for diversity preservation. The NSGA-II is used in Paper
E.

3.5 Constraint handling

In an unconstrained single objective problem the ranking of individuals is trivial. When
constraints are introduced this task becomes trickier. For example: An individual that not
satisfies the constraints may still have a good objective value and contain important
genetic information. Should this individual then just be low ranked and probably rejected
for mating? Paper A presents an alternative ranking scheme where this question is
adressed. The method is shortly explained later in this section but first another widespread
method is presented.

A comprehensive survey is given by Coello Coello in [13] of the wide variety of
existing constraint handling methods for EAs. Probably the most popular technique is to
use penalty functions. In a penalty method a term is added to the objective function if a
constraint is not satisfied. One such method for problem (1) is described by
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where the penalty functions can be
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The parameters 7, ¢;, f and y are all parameters that should be set. Penalty methods are
generic but a major drawback is that many parameters need to be given good values in
order to achieve a well performing GA. Some guidelines for penalty methods are given
by Richardson et al. in [54]. The penalty method described by Equation (5) to Equation
(7) is one of many different variants. There are for example other methods with dynamic
penalty parameters and different penalty functions. In [40] several different penalty
methods for GAs are compared.

In [12], [41] and [26] it is indicated that the constrained optimization problem may be
handled as a multiobjective optimization problem. Since many multiobjective GAs have
been quite successful during the last decade this seems to be a promising idea. To treat
constraints as objectives via (6) and (7) and directly apply a multiobjective GA based on
non-domination would however not be efficient. This since compromise solutions of
constraint satisfaction and minimum objective values are then searched for. Instead, the
solution that minimizes the objective and satisfies the constraint is the solution that should
be searched for.

In Paper A an alternative generic constraint handling method is introduced. First the
constraints are formulated as objectives, similar to Equation (6) and (7). Then these new
objectives are ranked according to Goldberg’s non-domination ranking (Figure 3.10) and
the function defined ramk,(X;) returns this ranking for the i" individual in the current
generation. A function defined rank;(x;) gives the ranking according to the original
objective. Fitness is then assigned in a regular manner according to the new objective
function

P-N

o(x;) = gmnk1 (x;)+ rank,(X;) (8)

where P is the population size and N is the number of feasible individuals in the current
population. Observe that if no feasible individual is present (N = 0), only the ranking
according to the constraints is active. If all individuals are feasible (N = P), the population
is ranked only according to the objective. This gives a dynamic behavior of the GA. If the
feasible region is found, the population can oscillate and explore the boundary of the
teasible region if the global optimum is located outside the feasible region.

So, why propose another constraint handling method? One strong argument is that
the method does not require any tunable parameters. Furthermore, in Paper A it is shown
that this method is more robust than many other penalty based methods. It is also used in
Paper C and Paper D with good experiences.
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3.6 Some remarks on GAs

So far an introduction of how GAs work has been given. Nothing is however yet said
about why they work. Goldberg has in [31] explained why binary coded GAs works with
the discussion about schemata. Yet there exist no solid proofs for convergence for real
coded GAs. Still it is empirically shown by all successful applications that GAs are
interesting methods for difficult real-world problems. Much of the current research about
GAs (for example Paper A) is experimental.

As mentioned earlier, one of the most important features of a GA is that the search is
done with a set of solutions. This also gives some interesting possibilities where one is that
it is possible to evolve an approximation to the Pareto optimal set of solutions in a
multiobjective problem. Another is that it is possible to locate several local optima if
niching is introduced in a single objective multi modal problem. The knowledge of
several local optima is important if the robustness of the solutions is considered. It may be
better to choose a locally optimal solution than the global optimal solution if the former is
more robust. Another interesting thing about GAs and robustness of solutions is that it is
possible to evolve only robust solutions and reject solutions from narrow optimum. This
can be done by disturbing the design variables or other parameters during the
evolutionary process [1]. The population based model also implies that GAs are inherently
parallel. This since the objective functions to be evaluated for one single generation may
be evaluated in parallel. The GA used in Paper D is parallelized and run on a Linux
cluster of standard PCs.
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4 Rotor-bearing system analysis and design

The purpose of this chapter is to present some methods to analyze flexible rotor bearing
systems. In Paper E the balancing of turbo generator rotors is considered, therefore an
introduction to balancing of flexible rotors will also be given in this chapter. Finally the
design process and analysis of large rotor-bearing systems is introduced and discussed.

4.1 Rotordynamic analysis

This thesis deals with the optimization of turbo generator and gas turbine rotor-bearing
systems. The rotors in these systems are long compared to their diameters. This implies
that they must be handled as slender and flexible rotors. Since the geometry of these
rotors is too complex in order to be handled by continuous models, approximate
discretized models need to be used. This section deals with the analysis of multi DOF
(degree of freedom) models. For a deeper insight into the fundamentals of rotordynamics
the reader is referred to the books by Genta [28], Vance [61] and Yamamoto and Ishida
[60].

4.1.1  Discretized rotor-bearing systems models (nulti DOF models)

An example of a rotor-bearing system that must be analyzed using a discretized model is
shown in Figure 4.1.

Figure 4.1 Gas turbine rotor with intermediate shaft, pinion and bearings.

In a discretized model, the rotor is divided into a discrete number of elements where each
node usually is described by two translational and two rotational degrees of freedoms. The
equations of motion of a single element may be obtained by for example the law for
conservation of momentum or Lagrange’s equation. The transfer matrix method (found
in [28]) has traditionally been frequently used in rotordynamics, for example to calculate
the critical speeds. The advantage of this method is that it is fast since large matrix
operations are not required. The involved matrix has the same size as the matrices at the
element level.

Another popular method to discretize and handle differential equations for continuous
systems is the finite element method (FEM). FEM formulations and application to the
dynamics of mechanical systems is found in [39] and [15]. A formulation for
rotordynamics that also handles the gyroscopic effect is given by Nelson and McVaugh in
[47]. In FEM the displacement field is approximated by certain shape functions within
each element. Then the element matrices are formulated using an energy approach.
Finally, the system matrices are assembled from the element matrices. The size of the
system matrices is the same as the number of degrees of freedoms.
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A third approach is the so called lumped parameter method. In this approach the
continuous system 1is approximated by rigid bodies (the nodes) coupled by springs and
dampers. In fact the transfer matrix method is a sort of lumped parameter method. In a
lumped parameter method it is straight-forward to obtain the inertia matrix (mass matrix)
but the stiffness matrix may be more difficult to find. A possibility 1s also to mix the
lumped parameter approach and FEM. This is usually done in FEM and modal analysis in
order to obtain the stiffness matrix and a diagonal inertia matrix.

It should be mentioned that the rotordynamical analysis in the appended papers is
done with an in-house code based on the transfer matrix method. However, hereinafter
in the thesis it is assumed that either a FEM approach or a lumped parameter method is
used to obtain the system matrices.

Assume now that q is a displacement column vector in real coordinates that defines
the position of each node (two translational DOFs and two rotational DOFs per node)
with respect to a fixed reference frame. Then the assembled matrix equation of motion
for a discretized rotor system is formulated as

Mg + (QG +C)q + Kq =£(t). ©)

The rotational frequency is Q and the inertia matrix M. If a lumped approach is used, this
matrix is diagonal and if a consistent approach is used it is a banded matrix. C is the
damping matrix and G is the skew-symmetric gyroscopic matrix. The stiffness matrix for
the shaft and the supports is K. The right hand side of Equation (9) describe the forces
acting on the system.

If the rotor is supported by journal bearings the stiffness matrix can be non-symmetric
which implies that instability can occur. This will be discussed later. The exciting force
considered in the appended Paper D and Paper E is mass unbalance. Furthermore, the
only contribution to the damping matrix C in the appended papers comes from damping
in the bearings and supports. In Figure 4.1 the supports are illustrated by springs and
dampers but it should be mentioned that Equation (9) is not restricted to these support
models. More advanced modeling of the stator structure is possible. If a FEM approach is
used, the question is how to discretize the stator or support structure, choose element
formulation and how to assemble the matrices. If the number of degrees of freedoms
becomes too high, one possibility is to use a reduction technique to reduce the
computational effort in the analyses of Equation (9), Genta [28].

4.1.2  Analysis by the state vector approach

There are different ways to analyze Equation (9). Here the state vector approach is used.
The state vector approach is often used in control of dynamical systems or numerical
simulations. It is also an interesting method for analysis of problems of type (9) since the
presence of damping and the gyroscopic matrix are easily handled. The state vector
approach is general since it gives the most general form of eigenvalue problem for
mechanical systems. Furthermore, it does not require any particular shape of the matrices
as long as the mass matrix 1s invertible. The mass matrix can for example be lumped or
consistent.

Let’s first assume that the number of degrees of freedom is N. Hence, the size of the

matrices in (9) is NXN. Now a new coordinate vector x’ ={qT,qT} is created. Then
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Equation (9) can be expanded to a set of 2N differential equations of first order illustrated
by the matrix equation

X=Ax+b (10)

where

A= 0 1 and p = 0 . (11)
-M'K -M(QG+C) M'f(z)

The total solution to the differential Equation (10) is the sum of the homogeneous
solution and the particular solution. First the homogeneous solution is considered, i.e. the
solution to Equation (10) if b =0.

If a homogeneous solution on the form x,(f) = ze™ is assumed and inserted into

Equation (10) the eigenvalue problem Az = Az,z # 0 arise. The eigenvalues are 4; and

the corresponding eigenvectors are z;. Since A is non-symmetric the eigenvalues and
eigenvectors appears in complex conjugate pairs as

M=o+ B X=a, -

and (12)

according to Inman [24]. It should be mentioned that i=+/—1. The complex
eigenvectors are also referred to as complex mode shapes. Sometimes these are referred to
only as modes in this thesis. The homogeneous solution to Equation (10) is then

N *
x, ()= Z(cjzjeﬂ’t + c;zjeﬂ’t)- (13)
Jj=1

The solution to Equation (13) is real. The complex conjugate constants c; and c; are

determined by initial conditions.

The homogeneous solution is seldom of interest in the analysis and design of large
rotor bearing systems. More interesting is however the complex eigenvalues and the
physical interpretation of these. In the underdamped case, f; in (12) is the damped natural
frequency for the j® mode according to Inman, [24]. The corresponding undamped

natural frequency and modal damping ratio associated with the j* mode are

—O.
w; = ’0!/2. +,B,2 and é’j - i . (14)
Ve +B;

A negative damping ratio (o; is positive) implies that the mode is unstable and the
amplitude of vibration grows exponentially in time. In the next section the interpretation
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of the concepts complex eigenvalues and complex modeshapes are discussed in some
more detail.

In Paper B to Paper E the complex eigenvalues of the rotor-bearing systems are
considered. In these papers the term complex eigenvalues is sometimes mixed with the
natural frequencies and damping ratios. However, from Equation (12) and (14) it should
be clear how these concepts are related for the underdamped case (which is almost always
the case for large rotor bearing systems).

In Paper E the term root locus plot is used. The root locus plot is a plot of the complex
eigenvalues in the complex plane or a plot of the damping ratios vs. natural frequencies.
The root locus plot is usually used to study how the stability and natural frequencies
changes as a parameter is varied.

Now when the homogeneous solution is given the particular solution (or steady-state
solution) is discussed. The force acting on the system is here assumed to be the mass
unbalance force. This is the only force considered in the appended papers. The particular
solution to Equation (9) or (10) then describes the motion of the rotor if it is run at
constant speed for a long time so that the transient has died out (it is assumed that all
modes are stable). The mass unbalance force can be described as

f(£) =1, cos(Qt)+f, sin(Qr) (15)
which implies that a particular solution of the form

x,, (1) = ccos(Qr)+ssin(Qx) (16)
can be assumed. Combining Eq. 15 and Eq. 16 with Eq. 10 and Eq. 11 gives the solution

-1
c=— Qr+LA2 {lAbC +bY} and szi{Ac+bc} (17)
Q Q ‘ Q

b = 0 and p = 0 . (18)
C ML, M,

The motion of a point on the rotor is an elliptical whirling orbit described by Eq. 16.
Figure 4.2 shows an example of the whirling orbit due to a mass unbalance for a rotor
studied in Paper E.

where
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Figure 4.2 Whirling orbit at 3000 rpm due to a mass unbalance for a rotor studied in
Paper E. Forward whirl is denoted by + and backward whirl by A.

Often the most interesting result is the major axis of the elliptical whirling motions, i.e.
the maximum amplitude of vibration. If this analysis is repeated for a range of rotational
speeds the analysis is usually referred to as an unbalance response analysis. Figure 4.3 shows
an example from Paper E of the unbalance response (i.e. the major axis of relative
vibrations in two bearings) for the same rotor with two different mass unbalance
distributions.
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Solution 2 - bearing 1 Solution 2 - bearing 2

Figure 4.3 Unbalance response (relative amplitude for major axis) in two bearings for
two different unbalance mass distribution.

To conclude, the state vector approach gives a straight-forward way to explain and
define the concepts of complex eigenvalues and stability. However, it must not
necessarily be used to solve the unbalance response problem. The drawback with the state
vector approach is the required computational effort since it involves the matrix A which
is of twice the size as the matrices in (9). It can also be difficult to use approximate
methods to solve the eigenvalue problem since the structure of the matrix A is not
banded. Still it should be clear that with the computational tools of today it is an
interesting method for medium sized problems. As information, the time required to
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solve the eigenvalue problem for a rotor with 800 degrees of freedoms using standard
routines in MATLAB is in the order of seconds on a standard laptop from year 2001.

4.1.3  Gyroscopic effect and critical speeds

In this section a discussion about how the rotational speed affects the eigenvalues and
eigenvectors is given. From Equation (9) and (11) it is easy to realize that the rotational
speed Q affects the eigenvalues and the eigenvectors. The gyroscopic effect introduced by
the matrix G gives a stiffening effect that leads to an increase of the natural frequencies
that correspond to forward whirl modes as the rotational speed increases. This 1s usually
illustrated in a so-called Campbell diagram where the natural frequencies are plotted vs.
the rotational speed. To illustrate this for a simple rotor, Figure 4.4 is first considered.

M

Q
i /\ e(px

Figure 4.4 A 4-DOF overhang disk rotor.

This rotor can be modeled as a 4-DOF model indicated by the coordinates in the figure.
Since this rotor has four degrees of freedoms is should have four natural frequencies. An
example of a Campbell diagram for this type of rotor is shown in Figure 4.5.
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Figure 4.5 A typical Campbell diagram for a 4-DOF disk rotor.
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The line for @ = Q is marked in Figure 4.5. The speeds at which the curves for the
natural frequencies intersect this line are called the critical speeds (with respect to the
unbalance response). Observe that the critical speeds do not only depend on the natural
frequencies but also on the type of excitation. There also exist other types of excitation
forces which gives other critical speeds, see Genta [28].

From Figure 4.5 it can be seen that two of the natural frequencies are negative. Here
this means that these frequencies correspond to backward whirl modes. In other words,
they correspond to modes that whirl in opposite direction to the rotational direction
indicated by Q in Figure 4.4. It is a common practice to plot the Campbell diagram with
the negative values for the backward whirl modes for simpler rotor systems, see Genta
[28]. However, from Equation (14) it is not clear that the natural frequencies can become
negative. In fact, the information whether a complex mode whirls forward or backward is
in the eigenvector.

In the case of a continuous rotor approximated by a discrete model, the meaning of a
forward or a backward mode is sometimes lost. In some cases forward and backward
whirl can coexist for a single mode of such a rotors. Therefore the Campbell diagram is
often plotted only with positive values of the natural frequencies as in Figure 4.6.
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Figure 4.6 Campbell diagram for a gas turbine rotor with stator structure.

Figure 4.6 shows the Campbell diagram for a long and slender rotor. This rotor is
supercritical since the operational speed is larger than 6000 rpm and there are several
critical speeds below.

The complex eigenvalue analysis is done at discrete values of the operational speed.
Therefore it is a problem to evaluate how the eigenvalues should be connected in the
diagram. This may be of interest if the critical speeds have to be calculated by
interpolation of several natural frequencies. It is not trivial to do since one cannot easily
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define the shape of each mode and identify the same mode at another rotational speed
since each mode shape changes as the rotational speed changes. Even if one could identify
the same mode for two different rotational speeds, the result could become completely
wrong. An example is the two forward modes for the 4-DOF rotor shown in Figure 4.4.
Although the curves for the natural frequencies in the Campbell diagram are continuous
(Figure 4.5), the modes shapes are almost the same for first forward mode at Q = 0" and
second forward mode as £ — oo.

An example of a complex mode for a gas turbine rotor-bearing system that shows
both forward whirl and backward whirl motion is shown in Figure 4.7. Usually these
modes are referred to as mixed modes.

Mode no 5 Forward whirl

n= 5286
f= 2554
&= 3.0

v= 0.827

1/min

Backward whirl

Figure 4.7 A complex mixed mode for a gas turbine. Forward whirl is denoted by + and
backward whirl by A.

It should also be mentioned that it is not only the gyroscopic effect that affects the
Campbell diagram shown in Figure 4.6. Also the bearings are involved since the bearing’s
stiffness and damping depend on the rotational speed. The eftect of journal bearings is the
topic for the next section.

4.1.4  Effects of journal bearings

The rotor systems considered in this thesis are supported by fluid film hydrodynamic
journal bearings or hereinafter referred to as journal bearings. Hydrodynamic means that
the pressure in the oil film is built up by the relative motion between the journal and the
bearing shell caused by the rotation of the shaft. The main reason for using this type of
bearings in these applications is that they have high load carrying capacity and damping
compared to for example rolling element bearings. An important aspect in the design of
these bearings is that they may become unstable above a threshold speed. This instability
is usually referred to as oil whip characterized by subsynchronous whirling according to
Vance [61]. The concept of oil whip should not be mixed up with oil whirl. Oil whirl is a
whirling motion of the rotor that occurs with about half the rotational frequency. This
whirling motion is stable and does not generally cause any problems. The cause of oil
whirl cannot be predicted by linear theory. Before the origin of instability in journal
bearings is discussed, a brief introduction to the governing equation for fluid film bearings
is given. First Figure 4.8 is considered.
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Figure 4.8 Exaggerated schematic sketch of a cylindrical journal bearing.

Figure 4.8 shows an exaggerated sketch of the shaft, oil film and journal housing for a
cylindrical bearing. The position of the shaft center is defined by the distance € and angle
y. Often the non-dimensional eccentricity € = ¢/AR where AR is the radial clearance is
used instead of e. Figure 4.8 shows a probable position of the shaft if the conditions are
stationary, i.e. 0e/0t = 0y/0t = 0, and the shaft is loaded by gravity in the negative y-
direction. From system dynamic point of view, the pressure that acts on the shaft is the
most interesting quantity. The governing equation for the pressure in the thin oil film is
Reynolds equation. Reynolds equation in cylindrical coordinates can be written as

3 3
11 d(hdp)| ofh dpl|_o0h ,0h (19)
6| R o0\ o)\ na)| a0

according to Genta [28] where R is the radial of the journal, h the film thickness, p the
viscosity and p the pressure. There exist analytical solutions to Equation (19) for long or
short bearing assumptions. However, for many practical bearing geometries Equation (19)
(or equations similar to Equation (19)) has to be solved by approximate numerical
methods, for example a finite difference method. Clearly the dynamics of a rotor
supported by journal bearings is a coupled elastohydrodynamical problem.

From the rotordynamic point of view, the stiffness and damping in the bearing is of
interest. This can be interpreted as the partial derivatives of the forces from the oil film
that acts on the shaft (integrated pressure distribution) with respect to the coordinates x
and y and the velocities X and yp . An assumption that often is used in rotordynamics (so

also for the analyses in the appended papers of this thesis) is to assume that the bearing
works under stationary conditions. Hence, due to some preload the rotor whirls around a
fixed point defined by € and y. Since the stiffness and damping is highly non-linear with
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respect to €, this assumption is only valid for small whirl amplitudes around the stationary
point. Under this assumption the forces from the oil film that acts on the shaft in the x
and y-direction is described by the linear model

e S R
F y cyx cyy y kyx ky_v y

which is similar to the model in [49]. The stiftness and damping matrices in Equation (20)
are assembled into the systems stiffness and damping matrices (K and C) in Equation (9).
According to [49] ¢,, = ¢y so the damping matrix is symmetric. However, in most cases
the stiffness matrix in Equation (20) is non-symmetric or even worse, the coefficients &y,
and k,, can have different signs. This means that the system can become unstable since
energy from the rotation of the shaft can be transferred into the lateral vibrations of the
shaft. Observe that if the damping in the bearing is large enough, positive damping for all
eigenvalues may still be achieved even if the bearing stiffness matrix is non-symmetric.

It should also be mentioned that there exists other types of bearings with different
dynamical properties than the cylindrical bearing. Offset halves, elliptical (or sometimes
called lemon bore) or tilting pad bearings are a few types just to mention. The difterence
compared to the cylindrical bearing is the bearing shell geometry. Tilting pad bearings are
interesting since these do not have any (or at least very small) destabilizing cross coupling
stiffness coefficients. The damping is however low for these bearings and the load
carrying capacity not as high as for cylindrical bearings. When it comes to bearing design,
other aspects than dynamical properties are also important objectives. These can be cost,
power loss and load capacity, etc. A frequently used trick to increase the damping in the
systems is to use a squeeze film damper. This is in principle a cylindrical bearing where
the rotational relative motion is constrained so that the “shaft” only can translate in the
viscous fluid. This damper is placed outside the actual bearing. Since no squeeze film
damper is used in the studied systems in the appended papers no further discussion about
this topic is therefore done.

For the bearing analyses in the appended papers C, D and E, a solver based on ALP3T
[43] is used. This can handle diftferent types of bearing geometries. It should also be
mentioned that Reynolds equation (19) is not the whole truth since a temperature
dependent viscosity model and cavitation conditions are implemented in the code.
Typical output is the stationary point (¢ and y), bearing stiffness and damping coefficients,
power losses and bearing temperatures. An example of how the bearing stiffness
coeficients vary with bearing width (B) and radial clearance (AR) for a preloaded
cylindrical bearing is shown in Figure 4.9.
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Figure 4.9 Stiffness coefficients as functions of bearing width and radial clearance for a
cylindrical bearing.

Three things are worth to note from Figure 4.9. The first is that the bearing clearly is
much stiffer in the vertical direction (y-dir) than in the horizontal direction (x-dir) due to
the preload in the negative y-direction. Secondly, the cross coupling coefficients (k,, and
kyy) are in the same order of magnitude as the horizontal stiffness (k). Thirdly, the cross
coupling coefficients have different signs so that the bearing stiffness matrix is non-
symmetric. Hence, this bearing may introduce instability if the damping is not high
enough.

4.2 Balancing of flexible rotors

Since all real rotors have imperfections in form of mass unbalance vibrations will occur.
Balancing means here to minimize the vibrations caused by the mass unbalance. Balancing
plane means an axial position on the rotor where a compensation weight (balancing
weight) can be applied as illustrated in Figure 4.10. Paper E deals with the feasibility of
on-site balancing rewinded turbo generator rotors. Therefore an introduction to the
balancing of flexible rotors is here given.

31



Angantyr, A Rotordynamic Optimization of Large Turbo Systems using Genetic Algorithms

Balancing planes

Measured vibrations

Figure 4.10 Example of a rotor with two balancing planes and two positions for
vibration measurements. The vectors u#; and u, represents the balancing correction
weights. The vectors v; and v, represents the amplitude and phase of the vibrations in
some fix direction, usually in horizontal or vertical direction.

A complete review of balancing methods is given in [23]. Most of the proposed
balancing methods are variants of two different methods the modal balancing method [4] and
the influence coefficient method [30] (also well described in [48]).

The principles of modal balancing method will shortly be mentioned. In this method
each mode in the interesting speed range is balanced separately and it is assumed that the
modes are orthogonal. Hence, the distribution of the first applied compensation mass
(balancing weights) is such that it only affects the first mode. The distribution of the
second applied balancing weights only aftects the second mode and so on. Although the
modal balancing method has limited practical interest the knowledge of the mode shapes
is essential when rotor design and balancing plane design is considered. In N-plane
balancing the modal eccentricity up to the N* mode is diminished and if (N+2)-plane
balancing is used also the forces transmitted to the bearings (in the case of two bearings)
can be diminished according to [60].

The influence coefficient method is based on the assumption that there is a linear
relationship between the applied balancing weight and vibrations such that

v " hy - Ky e || Uy Vlo

v, o T o Iy Ty || U, V;)
verevor || [ @1)

vi| | T o | |V

Vol T T o T T |, ve

The complex components (v;) of the vector v represent the vibration in some direction
(amplitude and phase relative to a fix point on the rotor) at a certain position and
rotational speed. The balancing weight at position j is described by the complex quantity
u; (mass times radius and phase angle). The generally unknown matrix r with complex
components is called the influence coefficient matrix. The vibrations are described by the
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vector V" if no balancing weights are applied. Observe that m describes at how many
positions and rotational speeds the vibrations are measured. Generally the bearings are
measured at speeds near the critical speeds and the operational speed. The number of
balancing planes is n.

The influence coefficient matrix is determined such that first the vibrations are
measured without any balancing weights, i.e. v’ for u = 0. Then a test weight is applied

in the first balancing plane such that u' = {ull 0 .. 0 . O}T and the vibrations are

measured again (now called v'). It should then be clear that v' =ru'+v°’. Now the
influence coefficients for the first column of r are determined by

I"ﬂ = l—ll . (22)
u

The procedure to apply a test weight and measure the vibrations is then repeated for each
balancing plane and the influence coefficient matrix is thus determined.

If m = n, that is the vibrations are measured at as many positions and speeds as there
are balancing planes, the vibrations can theoretically be zero (at the defined speeds and
positions) by applying the balancing compensation weights u=-r"'v’. However, in
most practical applications m > n which means that Equation 21 is an overdetermined
system. The best balancing compensation weight setup is then usually determined by a
least square method such that

Vi

2 2
2 m 0 n m 0 n 23
=D 2| =D vl = 2 @3)
=1 Jj=1 =

viv=>"
i=1 i j i=1 J=1

is minimized where /1 means Hermitian transpose (transpose and conjugate). According

to [42] (Equation 3.1 and Equation 3.2) the value of u that minimizes Equation 23 is

given by

u =—(rHr)_]rHV°. (24)

‘What Equation (23) actually describes is a weighted sum (with weights equal to 1) of the
vibration magnitudes at all defined measuring positions and rotational speeds. From
Equation (23) it is easy to realize that balancing of flexible rotors over a speed range is in
general a multiobjective optimization problem.

Although Paper E is not based on the influence coefficient method it presents an
alternative formulation to Equation (23). The balancing of a turbo generator rotor
problem is formulated as a multiobjective optimization problem with two intuitively
objectives (non-linear) and solved by a Pareto based GA. This approach could also be
used for balancing of flexible rotors with the influence coefficient method.
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4.3 Design of rotor-bearing systems

Until now the analysis and balancing of rotor-bearing systems has been dealt with. In this
section the practical design of these systems is discussed from rotordynamical point of
view.

In general, every manufacturer has categorical machines in different segments of the
market. It is unusual that a customer asks a manufacturer for an offer of an entirely new
type of machine. Still almost every machine has some unique features since most
customers have different demands. This implies that most of the activities spent in the
design process of these systems are re-design of already known concepts. Hence, almost
every machine has to be re-designed to some extent. When it comes to the
rotordynamical aspects these are considered late in the re-design process. Often the rotor
geometry is already constrained for other reasons. This could for example be that the
active magnetic length in a turbo generator is specified or the number of compressor
stages in a gas turbine is fixed. The degrees of freedom for an engineer that tries to
optimize the dynamics of the machine are therefore quite limited. Often only slight
modifications of the bearings or some intermediate shaft are possible at this stage of the
process.

Figure 4.11 gives a rough picture of how the rotordynamical analyses are performed
for these types of systems. It should be mentioned that Figure 4.11 covers only the
analyses that concerns the lateral dynamics of these machines. Torsional vibrations are for
example also affected by the rotor geometries in the systems but these are not considered
here.

Input Response
Stator Rotor-bearing system analysis Complex
geometry eigenvalues
| Stator analysis | Modal properties of stator Unbalance
Rotor ; response
geometry | 4 Dynamical analyses: amplitudes
Static analysis |- Preload - Complex eigenvalue >
- Unbalance response
Bearing
geometry ; f
p| Bearing analyses [ ]gc;il;f;g/ Power losses
Temperatures
Stresses
>

Figure 4.11 Overview of the rotordynamical analyses of rotor-bearing systems in
practical design.

Figure 4.11 shows a scheme for how the rotordynamical analyses of the systems are
related and performed. The figure is valid for a system without a squeeze film damper.
First a static analysis of the rotor deflection is performed. This gives the preload in the
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bearings. Thereafter the bearing analyses are done. These give the linearized stiffness and
damping coefficients that are required for the dynamical analyses (complex eigenvalue and
unbalance response). The stator analysis is often a modal analysis that gives the modal
properties of the stator. These are also required input to the dynamical analyses of the
rotor-bearing systems. The inputs to the analyses are the different geometries, material
properties, etc. The results for the analyses are listed as responses in Figure 4.11.

By looking at Figure 4.11 it should be clear that the rotordynamical design is about
finding the optimal settings for some parameters subject to several objectives or
constraints.
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5 Summary of appended papers

In this chapter short summaries of the appended papers are presented and finally the
contribution from the author in each paper is given.

5.1 Paper A

Almost all practical design optimization problems are constrained for different reasons. A
possible criticism of GAs is the lack of efficient and robust generic methods to handle
constraints. The most widespread approach for constrained search problems is to use
penalty methods. These methods often require that some extra penalty parameters have to
be specified. The settings of these parameters are problem dependent and if the penalty
functions are not designed properly, false optima may be introduced.

During the last decade GAs have received increased interest in the field of
multiobjective optimization. A constrained optimization problem or an unconstrained
multiobjective problem may in principle be two different ways to pose the same
underlying problem. Therefore it seems natural to glance at multiobjective GAs when
algorithms for constrained optimization are designed. In this paper a new ranking scheme
is introduced. The method is a variant of a multiobjective real coded GA inspired by the
penalty approach but no extra penalty parameter is to be set. It is evaluated on six
different constrained single objective problems found in the literature. The result is
compared to the result for other constraint handling techniques for GAs. The results show
that the proposed method performs well in terms of efficiency, and that it is robust for a
majority of the test problems.

The contribution to the scientific and engineering community of this paper is a new
and generic constraint handling method that can be used in many types of GAs.

5.2 Paper B

This paper presents an approach on how a real coded GAs can be used in the design
process of rotor-bearing systems in order to search for feasible positions of the systems
complex eigenvalues. The studied application is a turbo generator rotor-bearing system.

The detailed design of a turbo generator rotor system is highly constrained by feasible
regions for the complex eigenvalues of the system. A major problem for the designer is to
find solutions that fulfill the design criterion for the complex eigenvalues (i.e. damping
and natural frequencies). The bearing properties and geometrical parameters of the rotor
are often used as the design parameters subjected to variations in order to search for
feasible designs. This paper presents an alternative approach to be used at the late stage of
the design process.

First the design criteria for several complex eigenvalues are reformulated in a scalar
valued function that describes the degree of feasibility for a particular design. Then the
search for feasible designs is formulated as an optimization problem and solved with a GA.
Finally the problem is also extended to include another objective (i.e. multiobjective
optimization) to show the potential of using the optimization formulation and a Pareto
based GA in this rotordynamic application. The results show that the presented approach
is promising as an engineering design tool.
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The most important scientific contribution of this paper is how the complex
eigenvalue criteria are mapped on a scalar function that easily can be used to compare
different designs.

5.3 Paper C

This paper is a continuation of the work done in Paper B and the constraint handling
technique developed in Paper A is used.

In the design of large rotor-bearing systems such as steam turbines, gas turbines or
generators, the whole rotor system should be optimal in some sense and simultaneously
fulfill the design constraints. The bearing design has a crucial impact on the rotor system
characteristics such as complex eigenvalues for example. In system optimizations it is
therefore important to consider the bearing design. Until now the actual bearing
geometry has seldom been used as design variables in system optimizations. In Paper B
the uncoupled linearized bearing stiffness and damping coefficients where used as design
variables. In this paper a bearing analysis code is included and the actual bearing geometry
parameters are used as design variables.

First, the generic constraint handling technique for GAs developed in Paper A is
briefly explained. Then the optimization problem of a generator rotor-bearing system is
formulated and solved by a real coded GA and the proposed method to handle the
constraints. The objective is to minimize power loss subject to design specifications for
bearing temperatures and complex eigenvalue constraints for the system.

The result shows that a reduction of the power loss in the bearings may be achieved
without violating the system design constraints. The result also shows how the design
problem for a large rotor-bearing system can be handled. This is also the main scientific
contribution in combination with the evaluation of the search method’s performance on a
highly constrained real-world design problem. To conclude, the paper shows a successful
application of the presented search algorithm on an industrial rotor-bearing optimization
problem.

5.4 Paper D

This paper presents the optimization of the tilting pad bearings design in a gas turbine
rotor-bearing system. The effects taken into account are power loss and limiting
temperatures in the bearings. The dynamics at the system level, 1. e. stability and
unbalances responses, are also considered. The design variables are the bearing widths and
radial clearances. A real coded GA and the constraint handling technique developed in
Paper A is used. The problem formulation is specific for this particular design case but the
used search method and outcome from the optimization is of general interest.

The result is compared to the result of a nominal design. The result shows that it is
most likely impossible to find a design that fulfills all the constraints for the system design.
Still it is possible to find a design that gives a 10.5% reduced power loss and does not
violate any of the constraints more than the nominal design. The contribution to industry
from this paper is that it gives a hint on how much slight modification of the bearings
may improve performance of a gas turbine that is regarded as well developed and a
matured design. The scientific contribution is another reference of the performance of the
constraint handling method proposed in Paper A.
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5.5 Paper E

The aim of this paper is to show how the balancing of flexible rotors in a reduced
number of balancing planes can be formulated as a multiobjective optimization problem
and to determine a criterion for feasibility of site balancing rewinded 2-pole turbo
generator rotors.

When a 2-pole turbo generator is rewinded (the winding is replaced) an unbalance is
introduced and the rotor must be balanced before taken into operation. Balancing can be
performed on site in a limited number of balancing planes. However, conflicting
objectives arise. Depending on the rotor geometry it may be difficult to balance the rotor
at the critical speeds and operational speed simultaneously.

This paper presents estimates of the expected unbalance introduced by rewinding.
These estimates are based on historical data for rewinded and balanced rotors. Then the
balancing on site is formulated as a multiobjective optimization problem and a
rotordynamical model is used to determine a criterion for feasibility of balancing different
rotors. A multiobjective GA 1is used to search for the Pareto optimal solutions. The result
shows that there is a trade-oft to balance even short super critical rotors. The results
indicate that rotors with active diameter 800-1020 mm and active length less than 3000
mm are candidates for site balancing after rewind.

The scientific contribution of this paper is how the balancing problem is formulated
and solved. This formulation could directly be used in softwares for balancing flexible
rotors. The industrial relevance of the paper are the values of the unbalance that should
be expected by rewinding and the guidelines regarding feasibility of site balancing
rewinded rotors.

5.6 The author’s contribution

In all appended papers a main part of the work has been carried out by the author of this
thesis. The second and third authors have given some guidance during the work and been
more involved during the writing phase of the papers. The estimated ratio of working
time spent by the authors on each paper is given in Table 2.

Table 2. Estimation of each authors time contribution to the appended papers.

First author Second author | Third author
Paper A 85 % 10 % 5%
Paper B 85 % 15 % -
Paper C 85 % 15 % -
Paper D 90 % 10 % -
Paper E 100 % - -
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6 Discussion and conclusions

In this chapter the research question is responded, conclusions and experiences of this
work are summarized and an outlook for future work is given.

6.1 Respond to research question

Clearly there is no unique answer to the research question. The appended papers are
however attempts to give some answers to the research question. A description of how
the papers are related to the research question is therefore done.

Paper A is an adaptation of a multiobjective GA to solve the constrained single
objective optimization problem. The formulation of the complex eigen value constraints
in Paper B is an example of how the late rotor bearing design process can be improved.
Paper C and D show the magnitude of improvements that can be achieve for real rotor
bearing design cases. Paper E shows how a multiobjectve GA can be used in a balancing
application with conflicting objectives.

6.2 Conclusions

The constraint handling method for GAs introduced in Paper A is more robust (i.e. less
spread in best found feasible solution) on a majority of the test problem compared to the
other constraint handling techniques in the study. This feature may well be as important
as efficiency in practical design optimization situations.

In Paper B it is shown that the complex eigenvalue criteria formulated as a scalar
function and the used search method can be an efficient tool for an engineer working
with similar kind of problems.

In Paper C the actual bearing geometry was introduced for the first time in an
optimization that consider the dynamics on the system level, i.e. complex eigenvalues for
the rotor-bearing system. By using the search algorithm presented in Paper A, the results
show that a reduced power loss in the bearings of 19% was possible to achieve compared
to the nominal design on this highly constrained problem.

In Paper D the detailed tilting pad bearing design of an existing gas turbine system is
formulated as an optimization problem. A reduced power loss of 10.5% was possible to
achieve compared to the existing matured design.

By using the multiobjective formulation and the GA in Paper E it is shown that there
is a trade-off to balance rotors with the 2" critical speed above the operational speed as
well as longer rotors with the 3™ critical speed close to the operational speed. The result
shows furthermore that rotors with diameters 800-1020 mm and active length less than
3000 mm are candidates for site balancing after rewind.

6.3 Experiences

The experience from this work is that the interpretation of the design task and
formulation of the optimization problem is the overriding activity looking at the total
time spent. To achieve a good problem formulation, knowledge in the domain of search
algorithms and the studied systems are required. This is more seldom the case in industry
and the problem formulation will probably become more or less poor. The computational
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time is definitely of secondary importance when optimization of rotor-bearing systems are
concerned.

Since the main objective for an engineer working with design of rotor-bearing system
probably is to find fairly good robust solutions within a decent time, robust global search
methods are motivated.

6.4 Outlook

Optima where the solution is sensitive to perturbations are not desirable. The post-
optimal process has not been given priority in this thesis and is therefore an area of further
work. Population based methods such as GAs has here an interesting feature since the
design variables or other design parameters may be perturbed in the evolutionary process
so that less robust solutions are rejected. Thereby optimal and robust solutions are
searched for.

A possible area in rotordynamical design where search and optimization methods can
contribute is also in inverse modeling (or parameter identification). A typical situation is
that the modal properties of the stator are not well known. Inverse modeling is when
some unknown parameters in a model are fit so that the model as closely as possible
represents a real system. Uniqueness of solutions is however a problem that frequently
appears in inverse modeling. Niched GAs may be an approach to avoid these problems
since niched GAs can search several local (or global) optima simultaneously in one single
search.

Another approach for further research is mixed variable problems. These arise in the
design of rotor-bearing problems if different bearing types and other geometrical
parameters are chosen as design variables. Binary design choices such as the possibility of a
squeeze film damper or not is also imaginable. EAs are some of the more interesting
methods for these types of problems since most other optimization techniques cannot
handle mixed types of variables.

It should also be stressed that the complex eigenvalues (or root locus plot) is a very
interesting target when optimization of rotor bearing systems is concerned. The reason is
that the complex eigenvalues holds much information about the system and its
performance.

A field of rotor-bearing system design where the search and optimization methods are
readily applicable is in service and retrofit applications. In these contexts the design
problems are quite easily formulated and the number of possible design variables is
limited, for example bearing geometry parameters. Still it is of importance to find an
optimal design or Pareto optimal designs.
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Abstract - A criticism of Evolutionary Algorithms
(EAs) might be the lack of efficient and robust generic
methods to handle constraints. The most widespread
approach for constrained search problems is to use
penalty methods. EAs have received increased interest
during the last decade due to the ease of handling
multiple objectives. A constrained optimization
problem or an unconstrained multiobjective problem
may in principle be two different ways to pose the same
underlying problem. In this paper an alternative
approach for the constrained optimization problem is
presented. The method is a variant of a multiobjective
real coded Genetic Algorithm (GA) inspired by the
penalty approach. It is evaluated on six different
constrained single objective problems found in the
literature. The results show that the proposed method
performs well in terms of efficiency, and that it is
robust for a majority of the test problems.

1 Introduction

During the last decades Evolutionary Algorithms (EAs)
have proved to become an important tool for difficult
search and optimization problems. Most real-world
problems are however constrained and a possible criticism
of EAs has been the lack of efficient and generic constraint
handling techniques. A comprehensive survey of existing
constraint handling methods for EAs is done by Coello
Coello in [1]. The frequently most used methods are based
on various penalty functions for which some guidelines are
given in [2]. Penalty methods are generic but may however
distort the cost surface and introduce false optima. Most
penalty methods also require additional parameters, which
are problem-dependent and increase the complexity of the
problem.

The constrained optimization problem may be handled
as a multiobjective optimization problem as indicated by
Coello Coello in [3], Michalewicz in [4] and Fonseca and
Fleming in [5]. Furthermore, EAs based on non-dominated
sorting for multiobjective problems have received
increased interest during the past decade. Therefore it
seems natural to look upon the constrained optimization
problem as a multiobjective problem. Multiobjective
approaches of constrained problems based on Shaffers
VEGA [6] is found in [7] and [8]. Another interesting
constraint handling method based on non-domination is
presented by Deb et al. in [9]. To directly apply a
multiobjective EA based on non-domination on a
constrained optimization problem leads to a search of the
best compromises of the objective value and constraint
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satisfaction. This whole set of solutions is usually not
interesting since it is the optimal and feasible solution that
is searched. Therefore it will not be efficient to directly
apply a multiobjective EA on a constrained problem. Still
the idea to handle the constrained problem with some
variant of a multiobjective EA is interesting.

One of the most crucial steps in a multiobjective EA is
how to rank individuals. In this paper an alternative
ranking scheme for the constrained single objective
problem is introduced. This ranking scheme is generic and
no new parameters are introduced. The ideas of the
ranking scheme are borrowed from the non-domination
ranking for multiple objectives by Goldberg in [10] and
penalty based methods for constrained problems.

The paper first defines the constrained optimization
problem, and thereafter the proposed method is presented
in more detail. Then the performance for a real coded
Genetic Algorithm with the proposed ranking scheme
implemented is tested on six different test problems used
by Michalewicz in [11] and Deb in [12]. Finally, the result
for this proposed method is compared to the result for
other methods evaluated in [11] and [12].

2 The constrained optimization problem

In this section the constrained optimization problem and
its terminology is defined. The constrained optimization
problem or non-linear programming problem (NLP) with &
inequality constraints and m equality constraints is
formulated as

Minimize  f(x)

subject to (1)
g,(x)<0 i=1..,k,

B(xX)=0 i=1l..m.

X = [Xy, Xp,..., X,] 18 @ vector of the # design variables such

that x e § < R". The search space S is here defined as an
n-dimensional rectangle by the upper and lower bounds for
the design variables, x/ <x, <x' i=1..n. The feasible
region F' § is the region of S for which the inequality
and equality constraints are satisfied. The optimal solution
is denoted x". A constraint is said to be active at the point
X if g(x’) = 0. By default all equality constraints are
active at all points of the feasible space. Equality
constraints may be transformed to inequality constraints
[1] via



h(x)]-£<0 @

where ¢ is a small tolerance. Since the algorithm that will
be discussed does not use gradient information it does not
matter if (2) is non-differentiable.
3 The proposed EA for

constrained optimization

approach

In this section the proposed ranking scheme is introduced.
The non-dominated ranking by Goldberg [10] is used in a
new way to formulate a scalar valued function that is used
to rank individuals in the current population. Then
selection, crossover, mutation and reinsertion are used in a
standard manner for a real coded GA in this paper. This is
described later since the focus for this section is to define
the ranking scheme.

It is first assumed that all equality constraints are
transformed by (2) so the problem is now

Minimize  f(X)
subject to
2(<0

3)

i=l..,p
where p =k + m.

Now, the objective function is given index 1, fi(x) = Ax).
Then the constraints gy(x) are reformulated into new
objectives fi.(x). These objectives are defined as

.fl+,(x) = max(O, &i (X))’ i=1,.., p (4)

A natural approach would be to apply a Pareto based
multiobjective GA to solve the problem. This might not be
the best idea since the Pareto optimal set with respect to
the new objectives f(x) to *fx}ﬂ(x) is generally not the same
as the optimal solution x . The idea here is to treat the
objective fi(x) and the objectives f3(x) to f,+(x) separately.
The approach is based on the following criteria

e If no feasible individual exists in the current
population, the search should be directed towards the
feasible region.

o If a majority of the individuals in the current population
are feasible, the search should be directed towards the
unconstrained optimum.

e A feasible individual closer to the optimum is always
better than a feasible individual further from the
optimum.

e An infeasible individual might be a better individual
than a feasible individual if the number of feasible
individuals is high.

From the above statements it is clear that the search
direction should be dependent upon the number of feasible
individuals in the current population. The reason for the
fourth statement is that an infeasible individual with a
good objective value (fi(x)) should not be rejected as it
might guide the search towards the true optimum by
improving the diversity of the population.

Now P is defined to be the population size and N the
number of feasible solutions in the current population. x; is
the j™ individual in the current population. Then, rank,(X;)
is defined as the ranking according to the first objective
fi(x). The best individual gets rank, = 1.

rank(x;) is defined to be the non-dominated ranking
with respect to f(X) to f,+(x) as defined by Goldberg [10].
In the ranking the first non-dominated individuals in the
population receive rank, = 1. Then these individuals are
removed from the population and the ranking is repeated
for the remaining individuals, but now the non-dominated
individuals get rank, = 2. This is repeated until all
individuals in the current population have received a value
for rank,. In [9] Deb shows a method with computational
complexity O((p+1)P?) to perform the non-dominated
ranking.

Now a new objective function #(x,) is formulated as

¢(x/):§mnk,(x])+P;Nmnk:(x/.)- (6]

Each individual is then ranked according to its value for
Equation 5 and fitness is assigned in a regular manner.
Note that if no feasible solution is present in the
population (N = 0), the ranking according to the objective
(rank,) becomes inactive and the population is ranked
according to the constraints (rank;), i.e. the search is
guided towards the feasible region. On the other hand, if
all individuals are feasible (N = P), the population is
ranked according to the objective (rank;), and the search is
directed towards the unconstrained optimum. Among two
feasible individuals, the most fit is the one with lower
value for rank; (the objective) since all feasible individuals
receive rank, = 1. All these observations are consistent
with the previously listed criteria.

An interesting feature for the new ranking is that the
search direction depends on the number of feasible
solutions. If many feasible solutions exist, the search is
directed towards the unconstrained optimal solution. If
now it is assumed that the unconstrained optimum is
located outside the feasible region, the population may
tend to oscillate over the boundary to the feasible region.
This variation of the search direction gives a positive
effect of the diversity in the population.

Equation 5 has a similar structure as a penalty based
approach but it should be pointed out that no parameter
that requires problem dependent fine-tuning is introduced.
The “weights” for the two objectives in Equation 5 only
depend on the population size and the number of feasible
individuals in the current population.

The new ranking procedure for a NLP problem is
summarized below

1. Reformulate the problem according to Equation 3 and
Equation 4

2. Rank the population with respect to the objective (f,(x))
and assign it to rank,

3. Rank the population with respect to the constraints
(f2(x) to f,+1(x)) based on non-dominance according to
Goldberg [10] and assign it to rank,

4. Calculate the objective (¢(x) ) according to Equation 5



5. Rank the population according to the single objective

$(x)

Until now, only the ranking has been described. This
ranking scheme may be used with any type of GA. In the
rest of this paper a real coded GA with the proposed
ranking scheme is used. All the GA operations and
parameters are chosen as simple as possible. Therefore a
more advanced algorithm, such as an adaptive GA for
example, might improve the results presented in this paper.
Linear fitness assignment according to the ranking for the
new objective (Equation 5) is used. The selective pressure
is set to 1.9. The selection method is the roulette wheel
selection. The number of selected individuals are defined
by the generation gap that is set to 95%. Thus 95% of the
population is selected for mating and the worst parents are
replaced by all the offspring. Hence, an elitist GA is used.
Blend crossover, BLX, see [13], is used with a probability
equal to 1. The mutation operator by Miihlenbein and
Schlierkamp-Voosen [14] which produces a small
mutation step with high probability and a large step with
small probability is used. The mutation probability is set to
I/n where n is the number of design variables. The
maximum mutation step is defined in the result section.

4 An illustrative example

In this section the ranking based on Equation 5 is
discussed for a simple NLP problem. It should be clear
that the purpose of this section is to show the important
effects of the ranking and not to solve the simple NLP
problem. First the result of an actual search is presented.
Then the imposed search direction is discussed with the
help of two hypothetical populations.

The problem is as follows. A quadratic function is to be
minimized and the feasible solutions are constrained by
three circles. The problem is stated as

Minimize f(x) = xlz +x7

subject to

() =2 +(x, —3)} <1.5%, (6
2,(X) =(x, =17 +(x, -1)? <1.5%,

g,(x)=(x, +1)7 +(x, -1)* <1.57,

=5<x <5,

-3<x,<7.

For the unconstrained problem the optimal solution is X =
[0, 0]. For the constrained problem (6) the optimal solution
is x = [0, 1.5]. The first constraint is active at the optimal
solution. The population size is set to 10, the maximum
number of generations is 50 and the maximum mutation
step is set to 0.1 of the range for the design variables. The
mutation probability is set to 0.2 in this case.

The initial and the final generation are shown in Figure 1.
The rank of the initial generation according to Equation 5
is also given in the figure.
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Figure 1: Initial generation (the smaller rings) and final
generation (the “dot” near the optimum) shown in design variable
space. The numbers indicate the rank according to Equation (5).

The best individual in the initial generation correspond to
ranking 1. Figure 1 shows clearly that the search direction
is towards the feasible region in the initial generation.

Figure 2 shows the ratio of feasible solutions, the mean
normalized Euclidian distance and the ratio between the
true optimum and the best-found feasible objective value.
To avoid premature convergence it is crucial to have
sufficient diversity in the population. An indication of the
diversity in the population is given by the distance
between the members of the population. The distance
between two individuals is calculated using the normalized
Euclidian distance. The mean Euclidian distance is
obtained by calculating the mean distance between all
individuals in the population, and hence is a measure of
the diversity in the population.
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+ Ratio of feasible solutions
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Figure 2: Search results for problem (6).

The first feasible solution is found in generation 4. In the
early generations (~ 5 to 10) the number of feasible
individuals increases rapidly. In generations 13 to 24 all
individuals are feasible and the improvement in the



objective function is very small since the population has
converged too fast. In generation 25 an infeasible
individual is created by a mutation. This individual is
better than all the feasible individuals in terms of the
objective value, f{x). Due to the “weights” in Equation 5
this infeasible individual becomes the best individual. The
search is then directed out of the feasible region towards
the unconstrained optimum and as a result better feasible
solutions are found. To make this variation of the search
direction more clear two populations with different ratio of
feasible individuals are studied in Figure 3 and Figure 4.
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Figure 3. Rank according to Equation 5 for a population with
60% feasible individuals.

2.2 T T T T T T T T T T T

2
o
L6 T 1 "
~__ o —
— [
3
5 o 4
141 o o 1
6
o
7 8
12 o o 4
9
o

L L
-05 -04 -03 -02 -0.1 0 01 02 03 04 05

Figure 4. Rank according to Equation 5 for a population with
20% feasible individuals.

When the number of feasible individuals is high, the
search is directed towards the unconstrained optimum as
shown in Figure 3. In the later stage, when more infeasible

individuals occur in the population the search is directed
back to the feasible region again. This explains the
oscillating behaviour of the ratio of feasible individuals for
generation 26 to 50 in Figure 1.

This example shows the dynamic behaviour of the
search direction. The oscillation of the search direction
only occurs when at least one constraint is active at the
optimum. The variation of the search direction has a
positive effect for the population diversity. Thus, if
mutation is used no special operation to preserve the
diversity in the population is required for most cases. In
the next section the method is evaluated using a set of
selected test problems gathered from the literature.

5 Constrained single objective test problems

In [15], Michalewicz et al. present a test case generator to
use in tests of algorithms for constrained optimization
problems. This test case generator will probably be used in
future research on constrained optimization problems. The
results for different constraint handling methods are yet
quite limited for this test case generator. Therefore a set of
test problems for which there exists results for many
different algorithms is here chosen instead.

It is always difficult to make fair comparisons between
different EAs. Two different strategies may well have
different optimal settings for the optimization algorithm
parameters on the same problem. Another difficulty is to
determine how to compare different algorithms. A naive
but obvious way to compare algorithms is to compare the
best solution found in the same number of function
evaluations. A measure of the robustness of the algorithms
is indicated by the spread of the best solutions found if the
optimization is run several times independently. Here it is
chosen to compare the results for the proposed ranking
scheme with previously reported results for other EAs by
other authors on a set of problems. Six test problems are
selected. Problem #2 to #6 are found in [11] and problem
#1 to #6 in [12]. A short summary of the test problems is
given in Table 1. The size of the feasible region is
estimated by the ratio (p) of feasible solutions found in a
random sampling of 10° solutions in the search space'. The
six test problems are described in detail in the next
subsections.

Table 1: Summary of test problems. C corresponds to the number
of constraints, A to the number of active constraints at the
optimum and n is the number of design variables.

Problem n Type of £ P C | A
#1 5 | quadratic 52.03% | 6 | 2
#2 13 | quadratic 0.0111% | 9 | 6
#3 8 | linear 0.0010% | 6 | 6
#4 7 | polynomial 0.5121% | 4 | 2
#5 5 | nonlinear 0.0000% | 3 3
#6 10 | quadratic 0.0003% | 8 6

In [11], Michalewicz compares the performance of six
different methods on the five problems #2 to #6. Most of
the methods are based on penalty functions, The result
here is compared to the result for the best method found in
[11]. In [12], Deb proposes a special penalty based method

! The ratio for problem #2 to problem #6 is presented in [11].



for which the following criteria are always enforced if a
tournament selection operator is used:

1. Any feasible solution is preferred to any infeasible
solution.

2. Among two feasible solutions, the one having better
objective function value is preferred.

3. Among two infeasible solutions, the one having smaller
constraint violation is preferred.

Deb tested his method on nine different problems of which
test problem #1 to test problem #6 are a subset. The results
obtained by the proposed method in this paper are
compared to the results obtained by Deb on all these six
test problems. Furthermore, Deb stated that “In all cases,
the proposed approach has been able to repeatedly find
solutions closer to the true optimum solution than that
reported earlier”. Therefore a fair comparison to the
results reported in [12] should give good indication of the
performance of the method presented in this paper.

It is worth to notice that the effect of the ranking
scheme introduced in this paper is similar to the above
listed criteria only if there exist few feasible individuals in
the current population. On the contrary, if there exist many
feasible individuals, a good (in terms of the objective
value) infeasible individual may well be preferred to a
feasible individual if this is worse in terms of the objective
value.

5.1  Test problem 1

This problem was first presented by Himmelblau in [16]. It
has later been used by Coello Coello [1] and Deb [12] to
evaluate the performance of various GAs for constrained
optimization. The problem is stated as

Minimize ~ f(x) = 5.3578547x2 +0.8356891x,x, +37.293239x, —40792.141
subject to

2,(x) =85.334407 +0.0056858x,.x +0.0006262x, x, —0.0022053x,x, > 0,
2,(x) =85.334407 + 0.0056858x, x; +0.0006262x, x, —0.0022053x,x; <92,
2,(x) =80.51249 +0.0071317x,x; +0.0029955x,x, +0.0021813x7 > 90,
2,(x) =80.51249 +0.0071317x,x; +0.0029955x, x, +0.0021813x? <110,
25(%) =9.300961 +0.0047026x,x; +0.0012547x,x, +0.0019085x,x, > 20,
2(X) =9.300961+ 0.00470262x,x, +0.0012547x,x, +0.0019085x,x, < 25,
78 <x, <102,
33<x, <45,
27<x, <45, i=345.

The best-known solution to this problem [16] is X~ = [78,
33, 29.995, 45, 36.776] which gives /* = -30665.5. At this
solution the constraints g, and gs are active [12].

5.2 Test problem 2

The problem is stated as follows

Minimize  f(x)= Six, - Sixf - ix,
i=l i=1 i=5

subject to

g,(x) =2x, +2x, + X, +x;, <10,

g,(x) =2x +2x, + X, +x, <10,

g, (x) =2x, +2x; +x,, +x, <10,

€4(X) =-8x, +x, <0,

85(x)=8x, +x, <0,

gs(x)=-8x, +x, <0,

&7 (%) =-2x, —x5+x, <0,

gs(x)=-2x, —x, +x, <0,

,(X) =23, —x, +x,, <0,

0<x <1, i=1..9,
0<x, <100, i=10,11,12,
0<x, <1

The optimal objective value for this problem is /* = -15 for
x*=01,1,1,1,1, 1,1, 1, 1, 3, 3, 3, 1]. At this solution all
constraints except g, gs and g are active.

5.3  Test problem 3

The third test problem is

Minimize f(X) =X, +x, +x;

subject to

g,(x) =1-0.0025(x, + x5) 2 0,

2,(x) =1-0.0025(x; + x;, —x,) 20,
2,(x)=1-0.01(x, —x5) >0,

g,(x) = x,x, —833.33252x, —100x, +83333.333 >0,
g5(x) = x,x, —1250x; — x,x, +1250x, > 0,

(%) = Xy, — x,x5 + 2500x, —1250000 > 0,

100 < x, 10000,
1000 < x, 10000,
10 < x; <1000,

i=23,
i=4,.,8.

The optimum solution is x* = [579.3167, 1359.943,
5110.071, 182.0174, 295.5985, 217.9799, 286.4162,
395.5979] which gives f = 7049.330923. All six
constraints are active at the optimal solution.

5.4  Test problem 4

This problem is stated as
Minimize  f(x)=(x, =10)* +5(x, =12)* +x{ +
3(x, —11)* +10x$ +7x7 + x5 —4x,x,
—10x, —8x,
subject to
g,(x) =127 - 2x7 —3x) —x, —4x] —5x; >0,
2,(x)=282—7x, =3x, —10x] —x, +x, >0,
5(x) =196 -23x, —x2 —6x; +8x, >0,
g.,(x)= —4xlz - x22 +3x,x, — fo =5x,+11x, 20,
—10<x, 10, i=1,.,7.
The optimal solution is X = [2.330499, 1951372, -
0.4775414, 4.365726, -0.6244870, 1.038131, 1.594227]

which gives /* = 680.6300573. The constraints g; and g4
are active at the optimal solution.



5.5  Test problem 5
The fifth test problem is stated as

Minimize  f(x) = """

subjectto
5

h(x)=Y x7 =10,
i=1

hy(X) = x,x; —5x,x,=0,
hy(x) = x} +x3 =1,
-23<x,<23, i=12,
-32<x,<32, i=345.

The optimal solution is x = [-1.717143, 1.595709,
1.827247, -0.7636413, -0.7636450]. This gives f =
0.053950. Since all constraints are equality type, all
constraints are active at the optimal solution. The equality
constraints are transformed into inequality constraints by
Equation 2 and the tolerance is set to € = 0.001 for the
results presented in this paper.

5.6  Test problem 6

The last test problem is

Minimize  f(x)=x] +x; +x.x, —14x, —=16x, + (x; —10)* + 4(x, = 5)" + (x; - 3)*
+2(x, = 1)* +5x7 + 7(xg — 11)* +2(x, —=10)* + (x,, = 7)* + 45

subject to

2,(x)=105—4x, —5x, +3x, = 9x, 20,

2,(x)=-10x, +8x, +17x, —2x, 20,

2,(x)=8x, — 2x, = 5x, +2x,, +1220,

2,(x)=-3(x, —2)> —4(x, —3)* = 2x7 + 7x, +120>0,

2(x)=-5x7 —8x, — (x, —6)* +2x, +40>0,

ge(X) =—x7 —2(x, —2)" + 2x,x, — 14x, + 6x, >0,

2,(x)=-0.5(x, —8)° —2(x, —4)> = 3x] +x, +30=0,

ge(x)=3x, —6x, —12(x, —8)> +7x,, 20,

-10<x,<10, i=1,..,10.

The optimal solution is x* = [2.171996, 2.363683,
8.773926, 5.095984, 0.9906548, 1.430574, 1.321644,
9.828726, 8.280092, 8.375927] which gives f =
24.3062091. All constraints except g; and gg are active at
the optimal solution.

6 Results

First some typical search results for the first three
problems are presented in Figure 5 to Figure 7. These
figures show the ratio of feasible solutions, the mean
normalized Euclidian distance and the ratio between the
optimal solution and the best-found feasible solution. The
GA parameters used in this study is presented in Table 3
for each problem. Then the result for this algorithm is
compared to the best result reported in [11] and the result
reported in [12].
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Figure 5: Typical result for problem #1.

T T T T T T T T

++ Ratio of feasible solutions

L ~ - Mean normalized Euclidian distance
12 a

—_ Ratiof

best found

0.8

0.6

0.4

0.2

A FeR SIS

0

0 100 200 300 400 500 600 700 800 900 1000
Generation

Figure 6: Typical result for problem #2.
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Figure 7: Typical result for problem #3.

Clearly the easiest problem is the first test problem. Near
optimal solutions are found in early generations.
Surprisingly the most difficult problem of these three
problems for this method is test problem #2. In [11] it was
reported that this was one of the easiest problem and only
a few of the methods studied had any difficulties on this
problem.



The results for this algorithm are now compared to the
best results for all tested methods in [11] and summarized
in Table 2. The population size is 70 and the maximum
number of generations is 5000, both in this study and for
all algorithms tested in [11]. For this algorithm the
maximum mutation step is set to 0.1 of the range for the
design variables. The result from [11] presented in Table 2
are the results for the method that found the best feasible
solution. It should be mentioned that all the results in the
coming tables correspond to feasible solutions.

Table 2: Result for this algorithm compared to best result in [11].
The number of independent runs is 10.

Problem Study Best Median Worst
#2 This study -14.680 -14.570 -12.419
Bestin [11] -15.000 -15.000 -15.000
#3 This study 7079.5 7107.0 7187.8
Best in [11] 7378.0 8206.2 9653.0
#4 This study 680.636 680.640 680.646
Best in [11] 680.642 680.718 680.955
#5 This study 0.313 0.534 0.602
Best in [11] 0.054 0.064 0.577
#6 This study 24.519 24.600 24.735
Best in [11] 25.486 26.905 42.358

As can be seen from Table 2 this algorithm finds better
results in problem #3, problem #4 and problem #6 than all
methods tested in [11]. The variation is also much less on
these problems.

In Table 4 the result for this algorithm is compared to
the results by Deb in [12]. Table 3 shows the GA
parameters used for the results in Table 4.

Table 3: GA parameters used for the results presented in Table 4.

Problem Study Pop size Max gen Max

mutation step

#1 This study 50 1000 0.1
[12] 50 5000 -

#2 This study 130 2000 0.1
[12] 130 N/A -

#3 This study 80 4000 0.1
[12] 80 4000 -

#4 This study 70 5000 0.02
[12] 70 5000 -

#5 This study 50 7000 0.1
[12] 50 7000 -

#6 This study 100 3500 0.02
[12] 100 3500 -

Table 4: Result for this algorithm compared to best result in [12].
The independent number of runs is 50.

Problem Study Best Median Worst
#1 This study -30665.5 | -30665.5 | -30665.4
[12] -30665.5 | -30665.5 | -29846.7
#2 This study -14.276 -13.224 -11.963
[12] -15.000 -15.000 -13.000
#3 This study 7072.4 7100.2 7256.4
[12] 7060.2 7220.0 10230.8
#4 This study 680.632 680.636 680.645
[12] 680.634 680.642 680.651
#5 This study 0.44678 0.56967 0.83732
[12] 0.05395 0.24129 0.50776
#6 This study 24.375 24.426 24.512
[12] 24.372 24.409 25.075

The best found result of the 50 independent runs for this
method is almost similar to the result reported by Deb for
problem #1, problem #3, problem #4 and problem #6. For

these problems the variation in the best results found is
less for the proposed method than that reported in [12].
For problem #2 and problem #5 the method presented by
Deb performs better, both in terms of best-found solution
and variation of the best-found solution.

It should be mentioned however, that the results
presented by Deb are based on tournament selection with a
niching method that required two extra parameters.
Furthermore, the maximum number of generations for the
results of test problem #2 in [12] is not known. Hence it is
difficult to make a fair comparison of the results on this
problem.

7 Conclusions

A general ranking scheme without problem specific extra
parameters for constrained optimization problem has been
presented. The performance for an algorithm with this
ranking scheme has also been compared to the result of
other algorithms on six problems previously used by other
authors. The results encourage further research since the
method performs better than many other algorithms for the
tested constrained single objective problems. It is also
shown that the robustness in terms of minimum spread in
best found solutions, is better than one of the best methods
on a majority of the six tested problems. It was only in the
problem containing equality constraints (problem #5) that
this method did not perform well. It could not match up to
the results for the other algorithms on problem #2 either.
The cause of this is an open question for further research.
It should also be mentioned that no effort has been made
to study the optimal parameter settings such as population
size, generation gap, mutation probability, etc. The
performance of this ranking scheme may well be better in
a more advanced GA, for example an adaptive GA.

An obvious extension to the presented ranking scheme
is to address constrained multiobjective problems as well.
By redefining rank, as the Pareto ranking presented by
Fonseca and Fleming in [17], the presented ranking
scheme could handle problems with multiple objectives.
This is an area of ongoing research and the preliminary
results are encouraging.
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Rotor System Design

The detailed design of a turbo generator rotor system is highly constrained by feasible
regions for the damped natural frequencies of the system. A major problem for the de-
signer is to find a solution that fulfills the design criterion for the damped natural fre-
quencies. The bearings and some geometrical variables of the rotor are used as the
primary design variables in order to achieve a feasible design. This paper presents an

alternative approach to search for feasible designs. The design problem is formulated as
an optimization problem and a genetic algorithm (GA) is used to search for feasible
designs. Then, the problem is extended to include another objective (i.e., multiobjective
optimization) to show the potential of using the optimization formulation and a Pareto-
based GA in this rotordynamic application. The results show that the presented approach
is promising as an engineering design tool. [DOI: 10.1115/1.1760529]

Introduction

The detailed design stage of aturbo generator rotor system isan
iterative process involving several conflicting objectives and con-
straints. One attractive approach is to look upon this design pro-
cess as a multiobjective optimization problem, [1]. The generator
rotor system design is highly constrained by feasible regions for
the damped natural frequencies (complex eigenvalues). Therefore
one of the most important tasks for the designer is to find designs
that fulfill these constraints. Previous works in rotordynamic op-
timization applications with eigenvalue constraints are done by
Chen and Wang [2] and Lee and Choi [3]. Multiple objectives
with eigenvalue constraints have been studied by Shiau and
Chang [4] and Shiau, Kuo, and Hwang [5]. In [2-5] other opti-
mization methods than a genetic algorithm (GA) were used. In [6]
Choi and Yang use a GA to lower the first natural frequency in a
rotor-bearing system and in [7] they discuss the immune-genetic
agorithm (IGA) for multiobjective rotor-bearing problems. In [8]
Choi and Yang apply this to a problem with two bearings. In
[2—7] constraints for maximum three eigenvalues were used and
the damping of the modes were not taken into account.

The objective functions involved in the detailed rotor system
design are expected to have complex shapes. Depending on the
chosen design variables, the objective functions may even be dis-
continuous. During the past two decades GAs have successfully
been used for optimization of difficult problems. The interest of
application of GAs in the area of rotordynamics has recently
started, [6—8]. GAs are, however, yet only applicable on problems
with computationally cheap objective function evaluations. Foun-
dations of GA are found in Goldberg [9] and a comprehensive
survey with engineering applications is given by Gen and Cheng
[10]. In [11] Andersson gives a survey of different methods for
multiobjective problems. GAs are well suited for multiobjective
problems since the search is done from a set of solutions. A com-
mon goa for multiobjective GAs is to evolve the Pareto optimal
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tradeoff surface for the objectives, [1]. To achieve a robust algo-
rithm a Pareto-based ranking scheme is preferable since it is in-
sensitive to the shape of the Pareto optimal front, [12].

A drawback of GAs has been the lack of robust methods to
incorporate constraints in the search algorithms. A frequently used
approach is to add a penalty term to the objective value, [13,14].
Another interesting way to handle a constrained problem is to
transform the constraints into objectives. The problem is then a
multiobjective unconstrained problem. This approach is addressed
as one method by Coello in [15], Michalewicz in [16], and Fon-
seca and Fleming in [17].

In this paper this approach is applied to the damped natural
frequency constraints. The constraints are mapped on a scalar
function and formulated as a design objective. Not only the fre-
quencies, but also the damping ratio for each mode is taken into
account. Furthermore, there is no restriction in the number of
modes involved in the search. First a real-number encoded GA is
applied to search for a feasible solution. Once a feasible solution
is found, a second objective is included and a Pareto-based GA,
[12], is applied to extend the search, i.e. multiobjective optimiza-
tion. A Pareto-based GA has not been used earlier in optimization
of rotor-bearing systems. The used rotordynamic system model is
kept relatively simple in this study. The bearings are here de-
scribed by linear, isotropic coefficients without cross coupling ef-
fects. In ared situation, a more complex model of the rotor sys-
tem is needed.

In the first section a description of the design problem is given.
Factorial experiments are then conducted in section two in order
to get some knowledge of the behavior of the damped natural
frequencies. In section three a single objective optimization is
performed for the new function describing the degree of feasibil-
ity with respect to the damped natural frequency constraints. The
optimization is also extended to include minimum rotor length as
a design objective in the last section. The length of the rotor is
related to costs and may, as well as the dynamical objectives,
be an important objective a the system level in generator
applications.
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Fig. 1 Schematic sketch of rotor-bearing model

Generator Rotor System Design

The first stage in the generator design process is a basic design
where the overall dimensions are specified with respect to electri-
ca, thermal, and mechanical considerations. The next step is the
detailed design of the rotor system and the stator. These activities
are carried out in parallel. The detailed design of the rotor system
also includes choice of bearing types, bearing designs and support
structure (pedestal) designs. In [18] Rajan et al. state that ““ The
design of a rotor-bearing system is an iterative process in which
the parameters that influence the design are modified until the
desired design objectives are achieved.”” The detailed design pro-
cess of a turbo generator rotor system is no exception from this
statement. The cause of these iterations is that several blurred
objectives and constraints exist for the design. One of the most
important among these is the design criterion for the damped natu-
ral frequency constraints. A damped natural frequency analysis of
the rotor-bearing system is today a computationally cheap analysis
which gives much information about the system. Fundamentals of
stability and damped critical speeds are given by Lund in [19].

The model of the rotor-bearing system is a discrete model
implemented in ARDAS. ARDAS is an in-house code specially
developed for rotordynamic analyses based on the transfer matrix
method and a substructure method. The complexity of the model
is chosen such that it should capture the most important effects
found in a real system. A schematic sketch of the model with
geometry and bearing parameters is found in Fig. 1. Nomina
values of the design parameters are given in Table 1.

The bearings are for simplicity assumed to be isotropic and
described by linearized coefficients for stiffness and damping. The
retaining rings in Sections 4 and 6 are modeled as ring masses

(m, and mg) ridgidly attached to the rotor. An additional mass
(ms) is uniformly applied to Section 5 to model the weak copper
conductors. The exciter at the end of Section 10 is also modeled as
aring mass (my) rigidly attached to the rotor.

In this case, the damped natural frequency constraints are com-
posed by three infeasible regions.

1. A stability margin, 21 is required for the lower modes
which are passed during acceleration to the operational
speed.

2. No modes are allowed within arange around the operational
speed, ng, . If there exist modes in this range they should be
highly damped, £,.

3. The third region is similar to the second but the range is
around the double rotational speed. The required damping
for modes in this region is 3.

The cause of the third infeasible region is that modes close to
the double rotational speed will be excited by gravity since the
rea rotor have anisotropic bending stiffness. The infeasible re-
gions for the damped natural frequencies are indicated by the
colored rectangular areas in Fig. 2.

Generally there are two different possibilities to handle infea-
sible damped natural frequencies. The first is to make design
changes which shifts the frequencies into feasible regions. The
second method is to increase the damping for the infeasible
damped natural frequencies. A serious problem is, however, to see
the effect of design changes on all the damped natural frequencies
simultaneously.

The chosen numerical values of the damped natural frequency

Table 1 Nominal values of design parameters. The length of the section i is L;. D; is outer diameter and d; is inner diameter for

section /.

Bearing Parameters
k

1 €1 ky C2 k3 C3
2.0-10° N/m 8.0-10° Nm 2.0-10° N/m 8.0-10° Nm 1.8-10° N/m 9.0-10° Nm
Geometrical parameters

Section i L; D; d; Additional mass

1 490 mm 425 mm 0

2 540 mm 340 mm 0

3 310 mm 425 mm 0

4 1800 mm 590 mm 0 m,=1670kg, r,=445mm, |,=300 mm

5 4300 mm 890 mm 0 ms=1.11 kg/mm, rs=500 mm

6 2100 mm 590 mm 110 mm me=1670Kkg, re=445mm, |=300 mm

7 310 mm 425 mm 110 mm

8 540 mm 340 mm 110 mm

9 350 mm 425 mm 110 mm

10 490 mm 245 mm 110 mm my==825Kg, rip=225mm
1 1200 mm 245 mm 110 mm
12 190 mm 180 mm 110 mm

620 / Vol. 126, JULY 2004

Transactions of the ASME



Damping

» - Complex eigenvalues (n,,G;)

gty
Fuavy
5
e
3 pr oot
v
b.

) Frequency

L) L X
ng 2ng N,

Fig. 2 Damped natural frequency constraints for a generator
rotor system. The colored regions are infeasible regions for the
damped natural frequencies.

constraints for a 50 Hz generator (operating speed 3000 rpm) used
in this paper are based on experience and given in Table 2.

The resulting damped natural frequencies (marked *“ X") with
frequency less than 7500 rpm and damping less than 20% for the
nominal design are plotted in Fig. 3. The corresponding eigen-
modes are given in Fig. 4.

With this design, the task for the designer would be to increase
the damping for the first two modes and change the frequency for
mode 3 and 4.

Factorial Experiments

Factorial experiments are performed in order to study the pa-
rameters effect on the damped natural frequencies. Since no single
response variable exist it is not possible to perform a factor effect
estimation. The purpose with the factorial experiments rather is to
attain some knowledge of the objective space for the damped
natural frequencies. The parameters that possibly can be changed
at this stage of the design process are chosen as factors. The
factors with corresponding levels are given in Table 3.

The high and low levels of the bearing factors are set to the
vertical and horizontal properties of two existing cylindrical jour-
nal bearings. The low level of the geometrical factors are set to
their nominal values and the high levels are set with respect to
practical limitations.

Since the computational cost is not of major concern full fac-
torial experiments are performed. In the first experiment the bear-
ing factors effect on the damped natural frequencies are studied.
The geometrical factors are kept at their nominal levels (low). An
intermediate level is also introduced only to get a more dense
distribution of the damped natural frequencies in the frequency-
damping plane. The results for the 3° full factorial experiment are
found in Fig. 5. The effect of changesin all factors is tested in a
second 2! experiment and the result is found in Fig. 6.

From Fig. 5 it is clear that changes in the bearings mainly
affects the damping ratio, when the geometry factors are constant.
Figure 6 indicates that a single damped natural frequency can be
placed in a feasible region. However, no design is found which
simultaneously fulfills the design criterion for all the damped
natural frequencies. The design indicated by rings in Fig. 5 and

201

15
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X

X
0 2000

4000 6000

Frequency (rpm)

Fig. 3 Damped natural frequencies for nominal rotor-bearing
system design. The design criterion is marked by the lines.

Fig. 6 isthe best design found with respect to a function defined in
the next section about optimization. Still remains the important
question whether feasible designs exit if al the factors are chosen
as design variables. This is the main issue for the next section.

Optimization

The damped natural frequency constraints may be expressed by
a number of inequality constraints for the modal damping. The
number of constraints as well as the damping level for each con-
straint is, however, dependent on the problem. A function (D (X))
is then formulated to describe the degree of feasibility of the
damped natura frequency constraints. The basic idea behind this
function is that it should decrease if the infeasible damped natural
frequencies are moved in the directions indicated by the arrows in
Fig. 7. With al damped natura frequencies outside the shaded
region, which corresponds to a feasible design, the function is
zero. Hence, D(X)=0. The function is explained in the Appendix.
The function is basically a sum of terms where each term de-
scribes an infeasible damped natural frequency. No weights are
used since no preference between the damped natural frequencies
is done. Each term can take a value within the range [0,1] depend-
ing on the actua position within the infeasible area. The damped
natural frequency constraints are fulfilled for adesign that satisfies
D(X)=0. The search for feasible designs with respect to the
damped natural frequency constraints is now the problem of mini-
mizing D(X).

A first  search with the design variables X
=[ky,cq,K»,C5,k3,C3] is performed to find what possibly can be
achieved if only changes in the bearings are allowed. The next
search is performed with X=[k;,c;,ky,C5,k3,C3,L3,
L;,Lg,L1g,L11] @s design variables. The additional geometry
variables are chosen since these are the only geometry variables
that may be changed at the current stage of the design process.

Table 2 Numerical values of damped natural frequency constraints

& & & M

Nar nz N3 Ny

2.0% 15.0% 10.0% 2250 rpm

3000 rpm

3750 rpm 5400 rpm 6600 rpm
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Fig. 4 Eigenmodes for nominal rotor-bearing system design

Due to the electrical requirements the other geometry variables
are fixed. The side constraints for each design variable are set to
the low and high factor levels found in Table 3.

The chosen search algorithm is a GA with real-number encod-
ing. The GA parameters are set to values that should result in a
stable algorithm for the global search. Fine-tuning of all param-
eters is necessary in order to achieve an efficient algorithm. For
definition of GA parameters and methods see Gen and Cheng
[10]. Roulette-wheel selection is used with linear ranking and the
selection pressure 1.9. Extended intermediate crossover is used to
produce new offsprings, [20]. The mutation probability is the
same in every generation and selected such that on average one
variable per individual is mutated. The used mutation operator is
explained in [20]. This operator produces a small mutation step
with high probability and large mutation step with low probability.
The maximum mutation step size is 10% of the range given by the
side constraints for the actual design variable. 90% of the popu-
lation is replaced in each generation. Hence the reinsertion
scheme is of elitist type. The code used is the GEATbx 3.30,
which is a toolbox for MATLAB written by Hartmut Pohlheim
[21].

Table 3 Factor levels

Bearing Factors

Factor Low level High level
Ky 1.0-10° N/m 3.0-10° N/m
Cy 2.0-10° Ns/m 14.0-10° Ns/m
ka 1.0-10° N/m 3.0-10°N/m
C2 2.0-10° Ns/m 14.0-10° Ns/m
K3 1.2-10° N/m 2.4-10° N/m
C3 4.0-10° Ns/m 14.0-10° Ns/m

Geometrical Factors

Factor Low level High level
Ls 310 mm 910 mm
L, 310 mm 910 mm
Lo 350 mm 650 mm
Lo 490 mm 790 mm
Ly 1200 mm 1500 mm

622 / Vol. 126, JULY 2004

The search result is found in Fig. 8 and Fig. 9. The population
is run for a predefined number of generations hence no conver-
gence criterion is used.

Figure 8 shows that the best design found results in D(X)
=0.593. This is found in generation 169. Figure 9 shows that a
feasible design (D (X) =0) is found in the 65th generation for the
used design variables and side constraints.

It is now known that at least one feasible design exists for X
=[ky,c1,ks,C5,ks,C3,L3,L7,Lg,L19,L11]. An important ques-
tion to raise at this point is therefore if other feasible designs exist.
A natural continuation of the study would be to tune the search
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Fig. 5 Damped natural frequency results for 3° full factorial
experiment for bearing factors. The geometrical factors are
kept at their nominal values.
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Fig. 6 Damped natural frequency results for 2** full factorial
experiment for all factors

algorithm so that the population evolves the whole set of feasible
designs. All feasible designs may, however, not be of interests
since other objectives aso exist. One interesting objective is the
increase of rotor length which is necessary in order to achieve a
feasible design. The increase of rotor length from the nominal
value is formulated as

L(X)=Ls=Lanom*L7=L7nom+Lo—Lonom+L1o—Lionom® L1z

- Lll,nom- (1)

The nominal values for the lengths are indicated by “nom” as
extension of the index in Eq. (1). These nominal values are the
same as the low levels of the factorsin Table 3. Since an increased
rotor length is associated with additional costs, it is of interests to
keep the increase at aminimum. The search for interesting designs
is now the problem of minimizing D(X) and L(X).

The most interesting design in this case is clearly a design that
satisfies D(X)=0 and minimizes L(X). Infeasible designs may
till contain important information and it is of interest to see the
tradeoff (Pareto optimal) curve for these objectives. Thiswould be

Damping

. o Frequency
S

Fig. 7 Directions for movements of infeasible damped natural
frequencies that results in a better design with respect to the
damped natural frequency constraints
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Best objective values
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Fig. 8 Search result for min(D(X)) as objective and X
=[ky,c1,ky,C5,k3,C3] as design variables. The population size
is 30.

especially important if economic objectives are included and other
types of design variables are used. This could for example be
bearing types, i.e., categorical variables.

A search for the Pareto optimal front between the both objec-
tives with X=[ky,c;,k5,¢5,k3,C3,L3,L7,Lg,L10,L11] &S design
variables is done. The used population size is 200 and 20% of the
population is replaced in each generation. The algorithm is there-
fore more of steady-state type. For definition of a steady state GA
see p. 108 in [22]. The high €litism is used since no valuable
genetic information about the Pareto optimal front should get lost.
The ranking scheme by Fleming and Fonseca [12] is used but
solutions with exactly the same values in one objective are ranked
equally if they are not dominated by other solutions. This makes it
possible to evolve severa feasible designs. The sharing method
described by Gen and Cheng at p. 111 in [10] is used. The sharing

Best objective values
0.8 T T v .

0.7

0.6

0.5

objective value
o
D

0.3

0.2

0.1F

0 20 40 60 80 100 120

generation
Fig. 9 Search result for min(D(X)) as objective and X

=[ky,c1,kz,C5,ks5,C3,L3,L7,Lg,L19,L1;] as design variables.
The population size is 60.
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Fig. 10 The initial and 400th generation in the objective space

is based on the distance between designs in the phenotype space
(design variable space). All the design variables are linearly scaled
on the range [0,1]. The sharing parameters are set to the GEATbx
default values. In this particular case they become o g4e=1.02
and a=1. It is however shown that it can be better to base the
sharing on the distance between pair wise designs in the objective
space, [23]. Sharing on the objective space attempts to achieve a
more uniform distribution of solutions at the global Pareto optimal
front. For more information on Pareto based GAs, see [1,12].

The initial and 400th generation are given in Fig. 10. The pre-
viously best found design and feasible design for the single ob-
jective optimization problem min(D(X)) are aso found in Fig. 10.
Twelve feasible designs (D(X)=0) are found in the 400th gen-
eration. The best found feasible design with respect to min(L(X))
results in L(X)=918mm which is better than the previously
found feasible design that resulted in L(X)=1171mm. The mul-
tiobjective approach results in a better design than the single ob-
jective approach.

Results and Conclusions

A new approach to search for feasible designs in a turbo gen-
erator rotor system has been shown. In this case a feasible design
is when the damped natural frequencies satisfies a design criterion
according to Fig. 2. In Table 4 the results from the two factorial
experiments and three optimizations are summarized. Each opti-
mization is evaluated against the objective function D(X) where
D(X)=0 corresponds to a feasible design. Two sets of factors or
design variables are evaluated namely; bearing properties
(kq,Cq1,ky,C5,k3,c3) and bearing properties together with some
lengths of the rotor (ky,cq,k,,C5,Ks,C3,L3,L7,Lg,L19,L15). IN
the table, L(X) is the increased length of the rotor with respect to
the original design. It is normally an advantage if changes are only
made in the bearings since changes in the rotor geometry will
imply higher cost.

Table 4 shows that no feasible design was found in the factorial
experiment. However, if al design variables are included a fea-

Table 4 Summary of best designs with respect to min (D(X)) found in factorial experiments and single objective search. For the
multiobjective search the best design found is defined by D(X)=0 and min (L(X)). Factors or design variables within parentheses

are held constant in the actual experiment or optimization.

Factorial Experiments Optimization
Single Single
Full 3% with objective with objective with Multiobjective
bearing Full 2% with bearing design al design with all design
factors all factors variables variables variables

k1/109 (N/m) 1.0 1.0 1.0 14 1.0
¢,/10° (Ns/m) 20 14.0 24 8.9 38
k2/109 (N/m) 1.0 1.0 1.0 1.0 1.0
¢,/10° (Ng/m) 8.0 14.0 44 11.0 12.0
k4/10° (N/m) 12 12 12 17 24
c3/105 (Ns/m) 4.0 14.0 55 13.0 13.0

L3 (mm (310 910 (310) 727 770

L7 (mm) (310) 910 (310) 841 762

Lo (mm) (350) 350 (350) 371 351

L 10 (mm) (490) 490 (490) 500 492

L (mm) (1200) 1200 (1200) 1392 1203

(X) 0.686 0.0724 0.593 0 0
L(X) (mm) (0) 1200 (0) 171 918
Objective 729 2048 4566 3516 16,200
function
evaluations

624 / Vol. 126, JULY 2004

Transactions of the ASME



sible design could be achieved in the single objective optimiza-
tion. By including the min(L(X)) objective another feasible de-
sign with shorter rotor length was found.

The results show that the method of using a Pareto-based GA
and multiobjective optimization with the damped natural fre-
guency constraints as one objective is interesting in this rotordy-
namic application. Normally the design of a turbo generator is
based on simple linear dynamica analyses. A serious problem for
the designer is, however, how to handle multiple conflicting ob-
jectives. With the knowledge of the Pareto optimal tradeoff sur-
face, for the objectives, the designer is better equipped to make a
rational choice for the final design.

The presented way to handle the damped natural frequency
constraints may also be applicable in other rotordynamic systems.
It is also shown that the search easily can be extended to include
more objectives. The computational effort will however increase
if the dimension of the objective space is increased. Mating re-
strictions may be needed in order to zoom in on the most impor-
tant ranges of the objectives. In this paper a linear and isotropic
bearing model is used without cross coupling effects. Therefore, a
better bearing-pedestal model is required in order to achieve re-
sults of more practical interests. The direction for the author’s
further research is therefore to investigate the possibility to in-
clude a bearing code in the search algorithm.
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Appendix
The function, D(X), describing the degree of feasibility with
respect to the damped natural frequency constraints is shown by
these rows of coding.
D(X)=0
fori=1toN o
if 0<ny=<n, and {;<{y .
D(X)=D(X)+(&L— )/
esaf n;<nj=ng and {;<{, o
D(X)=D(X)+(({2=£) (ni=Nn))/({2(Ngr = N1))
elseif ng,<nj<n, and {;<{, o
D(X)=D(X)+ ((£2~ £)(Nz= 1))/ (L2(N2~ M)
elseif ng<n;=2ng, and {;<{; B
D(X)=D(X) +((£3~ {)(ni—ng))/(£3(2ngr —Nn3))
elseif 2ng,<n;<n, and {;<{3 B
D(X)=D(X)+((£3= i) (na= 1))/ (£3(Na—2ng))
end
end
N is the number of damped natural frequencies with frequency
less than n,, see Fig. 2 for definition of the other variables. Only
infeasible damped natural frequencies will give a contribution to
D(X). The magnitude of an infeasible eigenvalues contribution to
D(X) depends on its location within the infeasible region.
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ABSTRACT

In the design of large rotor-bearing systems such as
steam turbines, gas turbines or generators, the whole
rotor system should be optimal in some sense and
simultaneously fulfill the design constraints. The bearing
design has a crucial impact on the rotor system
characteristics such as complex eigenvalues for example.
In system optimizations it is therefore important to
consider the bearing design. Until now the actual bearing
geometry has seldom been used as design variables in
system optimizations.

In this paper the optimization of a rotor-bearing
system is discussed. Then, a generic search algorithm
suitable to apply in many rotor-bearing design cases is
presented. The algorithm is based on an Evolutionary
Algorithm. Finally, the optimization of a generator rotor-
bearing system with the presented method is shown. The
chosen design variables are bearing geometry parameters.
The objective is to minimize power loss subject to design
specifications for bearing temperatures and complex
eigenvalue constraints for the system.

The result shows that a reduction of the power loss in
the bearings may be achieved without violation of the
system design constraints. The result also shows how the
design problem for a specific rotor-bearing system can be
handled. The search method is however general and
therefore it may be of interests in other similar
applications. To conclude, the paper shows a successful
application of the presented search algorithm on an
industrial rotor-bearing optimization problem.

INTRODUCTION

In Rajan et al. (1987) it is stated that “The design of a
rotor-bearing system is an iterative process in which the
parameters that influence the design are modified until
the desired design objectives are achieved”. The detailed
design stage of large rotor-bearing systems is clearly an
iterative process involving several conflicting objectives
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and constraints. Therefore it is natural to formulate the
design of rotor-bearing systems as optimization problems.

Optimization of journal bearing design has recently
been performed by for example Hashimoto (2001). The
design variables were some geometrical parameters and
two of the objectives were minimum friction loss and
minimization of maximum oil film temperature rise. At
system level several other objectives that are affected by
the bearing design are also important. The complex
eigenvalues of a rotor-bearing system holds information
of stability and damped natural frequencies, Lund (1974).
Hence the complex eigenvalues are important objectives.
Rotordynamic optimizations with eigenvalue constraints
have been performed by Chen and Wang (1993) and Lee
and Choi (2000). Multiple objectives with eigenvalue
constraints have been studied by Shiau and Chang (1993)
and Shiau et al. (1994). Choi and Yang (2000) used a
Genetic Algorithm (GA) to lower the first natural
frequency in a rotor bearing system. In Choi and Yang
(2001 a) they discuss the Immune-Genetic Algorithm
(IGA) for multiobjective rotor-bearing problems. In Choi
and Yang (2001 b) bearing parameters are included as
design variables and the IGA is applied to a rotor-bearing
problem with two journal bearings. Bearing geometry
parameters were also used in an optimization with
another GA by Choi et al. (2002). Nevertheless, nothing
was said about the bearing model in Choi and Yang
(2001 b) and Choi et al. (2002). In all cited references
constraints for maximum three eigenvalues were used and
the damping of the modes were not taken into account.
Furthermore, the actual bearing geometry parameters
were not uses as design variables yet than in Choi and
Yang (2001 b) and Choi et al. (2002).

The current trend to use Evolutionary Algorithms
(EAs) in these kinds of optimizations is natural since EAs
can be applied to a wide range of problems and difficult
objective functions may be handled. EAs are based on
evolution and propagation of good information from
parents to offsprings in every generation. The drawback



is the high computational cost required in terms of many
objective function evaluations. The fundamental
principles of GAs, which is one class of EAs, are given
by Goldberg (1989). A good survey with engineering
applications is given by Gen and Cheng (2000).

The objective for this paper is to discuss and show
how rotor-bearing system optimizations can be performed
with the actual bearing geometry parameters as design
variables. First, the detailed design of journal bearings
and the analysis of a rotor-bearing system are discussed
in general. Special emphasis is put on the impact on the
systems complex eigenvalues. In the next section a search
algorithm, based on a GA, which can handle constrained
problems is presented. Finally, the detailed design of the
bearings in a generator rotor-bearing system is
formulated as an optimization problem. The presented
search method is used as the optimization algorithm. The
design variables are width and radial clearance for the
cylindrical journal bearings. The objective is to minimize
the total power loss in the bearings. The constraints are
maximum allowed bearing temperatures and a design
criterion for the complex eigenvalues of the system.

NOMENCLATURE

2, - i™ complex eigenvalue

a, - real part of j" complex eigenvalue
w, - imaginary part of jth complex eigenvalue
¢ - damping ratio of j™ mode

k - number of inequality constraints
m - number of equality constraints

X - vector of design variables

n - number of design variables

x| - lower bound of design variable i
x! - upper bound of design variable i
S - search space

F - feasible region

P - number of individuals

N - number of feasible individuals
w - bearing width

AR - bearing clearance

L; - length of rotor section i

D; - outer diameter of rotor section i
d; - inner diameter of rotor section i
m; - additional mass to rotor section i
I - radius to additional mass

I - distance to additional mass

¢ - damping ratio constraint i

7, - frequency constraint i

i, - rotational frequency

M - number of complex eigenvalues

ROTOR-BEARING SYSTEM ANALYSIS

The analysis and detailed design of a rotor-bearing
system with several hydrodynamic journal bearings is
briefly discussed in this section. The design of the rotor
has a strong impact on the system characteristics. The
rotor design is often constrained by other factors in the
late design stage. The bearing design is however easy to

change even in the late design stage. Therefore the
discussion in this section is limited to consider only the
bearing design since this is an important industrial design
problem.

In this paper the steady state bearing analyses are
performed with a solver based on ALP3T, Mittwollen
and Glienicke (1990). The solver handles a temperature
dependent viscosity model. Hence, Reynolds equation
and the energy equation are nonlinearly coupled. The
results from a bearing analysis are e.g. linearized stiffness
and damping coefficients, eccentricity, altitude angle,
temperature distribution, power loss, etc.

It is well known that different types of bearings have
different dynamical properties. Tilting pad bearings have
zero cross coupling stiffness coefficients for example,
Vance (1988). Cylindrical bearings may carry higher load
but may also cause instability due to asymmetry of the
stiffness coefficients. When several bearings are put into
a system with a flexible rotor it becomes quite difficult to
predict how changes in the bearing geometries affects the
system characteristics. This motivates the use of search
and optimization methods in this area.

The system dynamic characteristics may be unbalance
response, complex eigenvalues, etc. The resulting
unbalance response is difficult to predict accurately since
the unbalance mass distribution along the rotor is
generally not known. The complex eigenvalues are
however easily computed and gives much information
about the system. The complex eigenvalues appears as
conjugate pairs

A =a,tio; - )
w; is the damped natural frequency for the J™ eigenvalue.
a; is the growth factor and «; > 0 implies an unstable
mode. Stability may also be expressed, Choi and Yang
(2001 b), by the damping ratio for the /™ mode as

¢ - % . )

2 2
a; +o;

In the rest of this paper the damping ratio (2) is used
instead of the growth factor. The damped natural
frequencies are also given in rpm. The complex
eigenvalue analyses are in this paper done with an in-
house code specially developed for rotordynamic
analyses. This is based on the transfer matrix method and
a substructure method.

If the bearing analyses and rotordynamic analyses are
run in series within an optimization loop some difficulties
will occur. For some bearing conditions the bearing
analyses will not converge. Then the analyses have to be
restarted with other initial guesses for some parameters,
for example eccentricity and altitude angle. For this
reason it will become quite complicated to perform
bearing analyses automatically within an optimization
loop. Therefore a bearing database is first created for all
the conditions spanned by the chosen design variables.
Interpolated values of the stiffness and damping from the



bearing database are then used in the rotordynamic
analyses of the system.

One may argue whether geometrical bearing design
variables are continuous or discrete variables. In most
cases the bearings are chosen from standard dimensions.
If this is the case and no other continuous design
variables exists, the optimization problem is a pure
combinatorial problem. If there is a possibility to affect
the bearing design, the geometrical bearing design
variables will be of continuous type. In this case the
bearing design variables are therefore said to be of
continuous type. It is also a common practice to map
discrete variables onto corresponding continuous
variables if some gradient-based optimization method is
used.

It has been indicated that the bearing design has a
large impact on the systems complex eigenvalues.
Nothing has yet been said about other objectives or
constraints. In fact an optimization problem has actually
not been formulated yet. This will not be done in this
section since the formulation of an optimization problem
strongly depends of the particular design case. In the last
section an optimization problem for a generator is
formulated on the basis of the discussion in this section.
The purpose with this case is that is should serve as an
example of how these types of problems may be posed.
In the next section a generic search algorithm that can
handle constrained optimization problems is presented.

SEARCH ALGORITHM

The purpose of this section is to give the reader a brief
introduction to the search algorithm used in the generator
optimization application in the next section. The used
constraint handling technique will be described in more
detail. The generality of the search algorithm makes it
interesting for other similar rotor-bearing applications.
Before the search algorithm is explained, a definition of
the optimization problem is done.

In most rotor-bearing applications several objectives
exist. In many cases the objectives may be formulated as
constraints. Then the problem is the general nonlinear
programming problem (NLP). The NLP-problem with &
inequality constraints and m equality constraints is
formulated as

Minimize  f(x)

subject to 3)
g,(x)<0 i=1l,..,k,

h(x)=0 i=1..,m.

X = [Xj, X2,..., X,] 18 @ vector of the » design variables
such that x e § < R". The search space S is here defined
as an n-dimensional rectangle by the upper (x!) and
lower (x!) bounds for the real valued design variables
(x,), x! <x,<x' i=1..n. The feasible region Fc S is
the region of S for which the inequality and equality
constraints are satisfied. Many engineering design

problems may be formulated as problem 3. The generator
application problem in the next section is of this type.

It has already been indicated that a GA is used. GA
research is a large field itself. Therefore only a brief
introduction can be done here. The basic operations in the
algorithm are shown in Figure 1.

Initialize
population

Evaluate objective
function and constraint

Convergence

tisfastory? Stop evolution!
satisfactory?

Select individuals
for mating

¥

Apply crossover to
create offsprings

!

Mutate offsprings

¥

Insert offsprings
into population

]

Figure 1. Schematic sketch of the search algorithm.

First, a set of solutions is randomly initialized. No
single starting point is required. This set of solutions is
called the initial population. Hence, each individual in the
population corresponds to a solution of the problem.
Parents are selected for mating based on their fitness.
Crossover is applied to create new offsprings. These are
possibly mutated and inserted into the population again.

If a constrained problem is to be solved (3), a crucial
step in a GA is how to rank and select individuals for
mating. A drawback of GAs has been the lack of robust
and generic methods to handle constraints. Often
constraints are formulated as penalty functions that are
added to the objective function. Some guidelines for
penalty functions are given by Richardson et al. (1989).
The success in the use of penalty functions is however
often determined of some problem dependent penalty
parameters. Angantyr et al. (2003) proposed and
evaluated an alternative generic constraint handling
technique. Equality constraints are first transformed into
inequality constraints as ‘hi(x)‘ — g <0 where ¢ is a small

tolerance. Then, new objectives are defined as

£i(x)=max(0,g,(x)), i=1,...p “
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Figure 2. Rotor geometry.

where p = k + m. Now, rank; is defined to be the non-
dominated ranking with respect to the objectives (4) as
defined by Goldberg (1989). rank, is defined as the
ranking according to the original objective f(x) in (3).
Each individual is then ranked according to the
equation

¢(x/.):%rankl(xj)+P;Nrankz(x/.)~ (6]

#(x,) is the new objective value for the /" individual in

the current population. P is the number of individuals in
the population and N is the number of feasible
individuals in the current population.

This ranking scheme may be used with any type of
GA. In the generator application in the next section a
real coded GA is used. Linear fitness assignment
according to the ranking for the new objective (5) is
used. The selective pressure is set to 1.9. The selection
method is the roulette wheel selection. See Gen and
Cheng (2000) for the just mentioned GA terminology.
The number of selected individuals is defined by the
generation gap that is set to 95%. Thus 95% of the
population is selected for mating and the worst parents
are replaced by all the offspring. Hence, an elitist GA is
used. Blend crossover, BLX, Eshelman and Schaffer
(1993), is used with a probability equal to 1. The
mutation operator by Miihlenbein and Schlierkamp-
Voosen (1993) which produces a small mutation step
with high probability and a large step with small
probability is used. The mutation probability is set to
I/n where n is the number of design variables. The
maximum mutation step is set to 10% of the range for
the actual design variable. In the next section this
search algorithm is applied to a constrained generator
rotor-bearing problem.

A GENERATOR APPLICATION

In this section an optimization of the bearing
geometry for a generator is presented. The objective is
to minimize the total power loss in the bearings at
operational speed (3000 rpm). The bearing surface
temperature should not exceed a specified limit and a
design criterion for the complex eigenvalues should be
fulfilled. This criterion is discussed later in this section.
The easiest bearing geometry variables to change are
the bearing width (W) and radial clearance (AR).
Therefore these variables are chosen as design variables
in this case.

Model
The rotor geometry is constant and described in
Figure 2. The used values are listed in Table 1.

Table 1. Rotor geometry dimensions. L; is the length of
section i. D; is the outer diameter and d; is the inner
diameter of section i.

Section L D; d; Additional mass

1 490 mm 425 mm 0| -

2 540 mm 340 mm 0| -

3 770 mm 425 mm 0] -

4 1800 mm 590 mm 0 | my=1670 kg,
147~445 mm,
1,=300 mm

5 4300 mm 890 mm 0 | ms=1.11kg/mm,
15=500 mm

6 2100 mm 590 mm 110 mm | me=1670 kg,
=445 mm,
1,=300 mm

7 770 mm 425 mm 110mm | -

8 540 mm 340 mm 110mm | -

9 350 mm 425 mm 110 mm | -

10 490 mm 245 mm 110 mm | m=825 kg,
110=225 mm

11 1200 mm 245 mm 110mm | -

12 190 mm 180 mm 110mm | -

The additional masses in Table 1 are added to model
various rotor details that do not affect the lateral
stiffness of the rotor. The retaining rings in sections 4
and 6 are modeled as ring masses (my and mg) rigidly
attached to the rotor. An additional mass (ms) is
uniformly applied to section 5 to model the weak
copper conductors. The exciter at the end of section 10
is also modeled as a ring mass (my) rigidly attached to
the rotor. The rotor is discretized into 200 cylindrical
beam elements. The rotor material is steel.

The bearings are of cylindrical type with diameter
340 mm for the main bearings and 180 mm for the
exciter bearing. The bearing width and radial clearance
are given in Table 2.

Table 2. Nominal values and limits for bearing

geometry design variables.

Bearing 1 and 2 Bearing 3
Min Nom Max Min Nom Max
W |140mm [300mm [340mm | 70 mm | 90 mm | 180 mm

AR | 190 pm 310 mm | 340 pm | 100 pm | 150 pm | 180 um

The exciter bearing is displaced vertically such that
equal static bearing load due to gravity is achieved for
the main bearings. The static bearing load is in this case
204 kN for the main bearings and 4.37 kN for the



exciter bearing. The bearing characteristics are
calculated for an ISO VG 32 oil. It should also be
mentioned that the pedestals (bearing supports) are
assumed rigid in this case. Before an optimization is
performed, the complex eigenvalues of the system are
discussed.

Complex eigenvalue constraints

Obviously, it is not desirable to have modes with
damped natural frequencies close to the rotational
frequency. Modes with the double rotational frequency
are excited by gravity due to the anisotropy of the
bending stiffness for the real rotor. These modes should
therefore also be avoided. Furthermore, all modes
should have some margin to the stability limit. The
infeasible regions for the complex eigenvalues are
schematically shown in Figure 3.

Damping
o - Complex eigenvalues (n,)

- .
G2 -
[ °

.
_ .
z, ° ° ° Frequency

] : : Il

T
Ny Nar n, Ny 2ng N,

Figure 3. Complex eigenvalue constraints. The colored
regions are infeasible regions.

The chosen numerical values of the damped natural
frequency constraints for the 50 Hz generator
(operating speed 3000 rpm) used in this paper are based
on experience and given in Table 3.

Table 3. Numerical values for the complex eigenvalue
constraints.
Cl QZ Cz n; Ngr ny n; n4
0.1 15.0 10.0 2250 3000 3750 5400 6600
% % % pm rpm rpm rpm rpm

The complex eigenvalue constraints are here
described with a scalar function D(x). If M is the
number of complex eigenvalues with damped natural
frequency less than n,, D(x) is best described by the
rows of pseudo code in (6).

The function is a sum of terms where each term in
principle describes the normalized distance to the
nearest boundary of the feasible region. The value of
the function decreases as the infeasible complex
eigenvalues approach the nearest boundary of
feasibility. A feasible solution with respect to D(x)
satisfies D(x) =0

D(x)=0
fori=1to M
if0<n, <7 and ¢, <&,
D(x)=D(X)+(,-¢)/ &,
elseif m, <n, <n, and ¢, <,
D(x) = D(X)+((§, =&, —m N NS, (7, —7,))
elseif n, <n, <m, and ¢, <,
D(x) = D(x)+ (£, =& )1, —n ) (S, (7, —72,)
elseif iy, <n, <27, and ¢, <,
D(x) = D(x)+ (&5 =&, —1,) (&5 (2m,, —71,))
elseif 27, <n, <i, and ¢, <L,
D(x) = D(x)+ (&5 =), —n ) NS5 (7, —27,,)
end
end. (6)

Optimization

Now it is time to formulate the optimization
problem. The chosen design variables are the bearing
variables width and radial clearance for each bearing.
Hence, x = [W,, AR, W,, AR,, W3, AR;]. The side
constraints for the design variables are given by the
minimum and maximum limits in Table 2. The total
power loss in the bearings, which should be minimized,
iS Pjy(x). The maximum temperatures of the journal
surface in each bearing are 73(x), 7>(x) and 75(x). The
temperature should not exceed Ti.. The optimization
problem is formulated as

Minimize B, (X)
subject to
HOES . M

L) < T

L <T,
D(x)<0.

ax >

The maximum allowed bearing surface temperature is
set to Tiax = 100°C. The optimization result it given in
the next sub section.

Results

First, the complex eigenmodes for the nominal
design are shown in Figure 4. The corresponding
damped natural frequencies and damping ratios are also
shown in Figure 4. As can be seen from Figure 4, the
first mode is unstable for the nominal rotor-bearing
design.

In order to get a hint of how the bearing widths and
lengths affect the complex eigenvalues, a numerical
experiment was set up. 10* randomly chosen designs
within the limits given in Table 2 were evaluated. The
results for all the evaluated designs are plotted in terms
of their damped natural frequencies and damping ratios
in Figure 5. The chosen design constraints (Table 3) are
also shown in Figure 5 with the line.
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Figure 5. Complex eigenvalues for 10* randomly
generated designs.

Possible infeasible modes found in the experiment
are the first two modes, the mode around 2200 rpm and
the mode around 5700 rpm. The best-found feasible
design in the numerical experiment, with respect to (7),
was X = [216 mm, 327 um, 278 mm, 331 pm, 78 mm,
154 pm].

The optimization was done with a population size of
60 individuals. The search was run for 50 generations
and the result is shown in Figure 6.

Figure 6 shows the objective value for the best-
found feasible solution, the ratio of feasible solutions in
the population and the mean normalized Euclidian
distance. The mean normalized Euclidian distance is a
measure of how diverse the population is. The first
feasible solution is found in generation 3. The best-

found feasible design is x* = [213 mm, 320 pm, 219
mm, 286 pum, 71 mm, 115 pm]. This is found in
generation 45. The damping of the two lowest complex
eigenmodes for this design is 0.2% and 0.1%.
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Figure 6. Search history. The left axis corresponds to
the power loss for the best-found feasible solution. The
right axis corresponds to the ratio of feasible solutions
and the mean normalized Euclidian distance between
the solutions in the population.

DISCUSSION AND CONCLUSIONS

Some important aspects in the optimization of the
journal bearings in a rotor-bearing system have been
discussed. A generic search algorithm suitable to apply
for example in constrained rotor-bearing problems was
also presented. Since this is based on a GA it is only
applicable to problems with reasonably short objective
and constraint evaluation times. The success of using
the proposed constraint handling method depends (as
with other methods) on how the optimization problem is
formulated in each specific case.

The presented generator application was a highly
constrained problem since the ratio of feasible
solutions, i.e. solutions that fulfill the constraints in (7),
found in the numerical experiment was only 0.17 %.
Still feasible and near optimum designs are found quite
early in the search as one can see from Figure 6.
Feasible designs with Pj,.(x) < 93 kW was found in
generation 12 (after less than 700 objective function
evaluations).

A comparison between the nominal design, the best
found feasible in the numerical experiment and the best
found feasible in the optimization is done in Table 4.

Table 4. Comparison of different designs.

Design Pioss(X) Ti(x) Th(x) T3(x)  ID(x)
Nominal 113.9kW | 89.4°C | 89.4°C | 65.5°C | 4.0
Best in 10* 101.3kW | 99.2°C | 91.1°C | 66.9°C 0
random trials
Best-found 92.1kW | 99.9°C | 99.9°C | 75.2°C 0
in
optimization

The obtained power loss in the bearings for the optimal
design was 19% lower than compared to the nominal
design. Furthermore, the found optimal solution does



not violate any of the design constraints. It should also
be mentioned that the optimization have been
performed several times. Solutions close to the
presented optimum were found in every optimization.

To conclude, an important industrial rotor-bearing
system design problem has been formulated as an
optimization problem and successfully solved by a
constrained Evolutionary Algorithm.
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Abstract

This paper presents the constrained optimization of the tilting pad bearing
design on a gas turbine rotor system. A real coded Genetic Algorithm with a
robust constraint handling technique is used as the optimization method. The
objective is to develop a formulation of the optimization problem for the late
bearing design of a complex rotor-bearing system. Furthermore, the usefulness
of the search method is evaluated on a difficult problem. The effects considered
are power loss and limiting temperatures in the bearings as well as the dynamics
at the system level, i. e. stability and unbalance responses. The design variables
are the bearing widths and radial clearances.

A nominal design is the basis for comparison of the optimal solution found.
An initial numerical experiment shows that it is likely impossible of finding a
solution that fulfills all the constraints for the system design. Still, the
optimization shows the possibility to find a solution resulting in a reduced power
loss while not violating any of the constraints more than the nominal design.
Furthermore, the result also shows that the used search method and constraint
handling technique works on this difficult problem.



1 Introduction

During a late design stage, much of the dynamics of a rotor-bearing system are
already determined by earlier design decisions. At this point it may, for
example, be difficult to change the rotor geometry since this affects the function
of the machine. However, the bearing design is easily changed even at a late
stage. The bearing design has an important impact on the system dynamics, €. g.
stability. Its design is often an iterative process and opens the possibilities for
efficient use of optimization methods.

Optimizations of a single bearing design have been performed in many
papers, see for example [1]. Optimizations of the dynamics of rotor-bearing
systems with rotor dimension parameters and bearing stiffness coefficients as
design variables have also been studied, e. g. [2] and [3]. The authors of this
paper believe that optimizing bearing design and system dynamics separately
will not result in optimal system performance. This is due to the fact that the
dynamics of the whole system is closely coupled to the bearing design. Recent
studies with bearing design parameters as design variables and system dynamics
as the target have been done in [4-6]. In [4,5], the optimization was performed
on a single rotor supported on two bearings (two lobe type), with no information
being provided on the bearing model. The rotor weight, natural frequency and
damping of a single mode were considered. In [6] a generator with three
bearings was studied. A bearing database was used and several modes were
considered.

This paper presents the optimization of four titling pad bearings in a rotor
system, including gas turbine, intermediate shaft and gear. The objective is to
minimize power loss with constraints on bearing temperatures and stability. The
amplitudes for several unbalance response cases are also introduced as
constraints. The bearing widths and radial clearances are chosen as design
variables since these may be subject to changes in the late stage of the design.
Non-linear bearing analyses are performed within the optimization loop. This is
a highly constrained problem where nothing is known about the shape of the
objective function or the constraints. The global optimum is of interest and local
search efficiency is of secondary importance. Therefore, a real coded Genetic
Algorithm (GA) [7] with the constraint handling method proposed by Angantyr
et al. [8] is used. In [4-6,9,10], GAs were used in the design of simpler rotor-
bearing systems. The main objective of this paper is to develop an optimization
problem formulation for a case with an industrial degree of complexity. The
second objective is to evaluate usefulness of the search method.

A well-developed and mature nominal design of the rotor-bearing system
exists. However, the nominal design is not feasible since some of the constraints
are unfulfilled. By definition, a feasible design is a design that satisfies all
constraints. If a feasible design cannot be found, the paper should answer



whether a better design than the nominal at least exists. The problem is generally
speaking, to be regarded as difficult. The problem formulation is specific for this
particular case. However, it might inspire others working on similar problems.
The used search method and constraint handling technique are generally and
widely applicable and should therefore be of interest to a broad audience.

Bearing and system dynamics analyses are presented in the next section. The
objectives and constraints for the system design are defined in section 3. An
initial numerical experiment is explained in section 4. The purpose of this
experiment is to gain a better insight of the parameters possible effect on the
system. The actual optimization problem is formulated in section 5 and the
results of the numerical experiment and optimization are given in section 6.
Finally, some concluding remarks are given.

2 Model and analysis approach

This section describes the dynamical analyses and models. A schematic sketch
of the 43 MW gas turbine rotor-bearing system is found in Fig. 1. The
compressor shaft is coupled via an intermediate shaft to the pinion wheel in the
gear (left side in Fig. 1). The total weight of the rotor is 8800 kg and the total
polar inertia is 778 kgm®. The gas turbine normally operates at 6608 rpm.

Turbine

Compressor
Pinion Intermediate shaft

Bearing 1 Bearing 2 Bearing 3 Bearing 4

0 1 2 3 4 5 6 7 8 8.78 m
Figure 1. Schematic sketch of rotor.

The bearing stiffness and damping properties are nonlinear, but a linear bearing
model is used in the dynamical analyses of the rotor-bearing system. Hence, the
bearings are described by eight stiffness and damping coefficients [11]. The
rotor is discretized into 366 elements. For the dynamical analyses an in-house
code based on the transfer matrix method, Genta [12], and a sub-structuring
method is used. The bearing supports 1 and 2 are described by simple mass-
spring models. The gas turbine stator is described by its modal properties
resulting from an FEM modal analysis of the complete stator. Hence, there is a
coupling between bearing supports 3 and 4 in the dynamical analysis model. A
modal damping ratio of 3% is assumed for the stator modes. Complex
eigenvalue analyses (stability) and steady-state unbalance response analyses are
performed in the optimization.



The bearings are hydrodynamical journal bearings of the tilting pad type. The
bearings are analyzed under stationary conditions. For this purpose, a code
based on ALP3T [13] is used. Typical output from the bearing analyses are
eccentricity and attitude angle that define the center of the shaft. Other results
are the linear stiffness and damping coefficients, power loss, maximum pad
surface temperature, etc. In these analyses a temperature dependent viscosity
model is used with similar fluid properties to an ISO VG32 oil. Figure 2 defines
the bearing geometry.

¢,

Figure 2. Tilting pad bearing geometry.

The rotational direction is indicated by Q. R defines the radius of each lobe; r
defines the radius of the shaft. The preset distance for each lobe is t. Hence, the
radial clearance is defined as AR = R — r — t. The width of the bearing is B. The
geometry of the lobes is defined by the angles ¢, ¢, and ¢3. The applied static
load is F and 6 defines the direction of the force. For gravitational load only, the
angle 0 is zero. Observe that this is not the case if the gas turbine transfers a
torque load. The contact forces in the gear then give rise to static loads in other
directions. The geometry for the nominal design of the five bearings is given in
Table 1.

Table 1. Bearing geometry for nominal design.

Bearing | r[mm] | B [mm] | AR [um] |t[pm] | @i[’] | @[] | @3[°]
1 and 2 125 250 233 150 20| 27 60
3 125 140 291 22| 36| 24 60
4 110 154 255 23] 36| 24 60




The dynamical analyses of the system are linear but the bearing analyses are
non-linear. The computational time required at the present date on a standard PC
for the linear dynamical analyses is a few seconds, whereas the time required for
a single bearing analysis is tens of seconds.

3 Design objectives and constraints

The objectives and constraints for the design of the rotor-bearing system are
defined in this section. Clearly there exist several objectives for the system
design that will not be considered here. The focus for this work is the
optimization of the bearing designs. Therefore, only the objectives and
constraints affected by the bearing designs will be defined.

3.1 Bearing design

A target for the overall design of the gas turbine is to achieve a high efficiency.
The bearings should obviously be designed for minimal power losses. This will
be the objective of the problem formulation in section 5.

It is important that the white metal on the pad surfaces in the bearings does
not become too warm. Therefore the bearing designs are constrained by the
maximum allowed pad surface temperature. A function describing the feasibility
with respect to the bearing surface temperature constraints is formulated as

T -T*
T(x) = imax{o,p—/} (1)
p=l Tp

T, is the maximum bearing surface temperature for bearing No. p at normal
operating conditions. T pL is the maximum allowed bearing surface temperature

for bearing No. p. Equation (1) gives a zero value for a design x having all
temperatures below the specified limits. The vector of design variables x and

maximum allowed bearing temperature T pL are defined later.

3.2 Stability

A necessary condition is for the system to be stable. Tilting pad bearings are
known to have good stabilizing properties due to the small cross-coupling
coefficients in the bearing stiffness matrix. Hence, stability should probably not
be difficult to achieve. Still, this important criterion must be checked since an
unstable system will certainly lead to failure and possibly severely damage the
rotor-bearing system. Stability is determined by the complex eigenvalues of the
system. These appear as conjugate pairs



A =a tio, . ()
w; is the damped natural frequency for the J™ eigenvalue. a; is the growth factor
and a; > 0 implies an unstable mode. Stability may also be expressed [4] by the
damping ratio for the /" mode as

.

{ = 3)
' Vo + o]

For a stable operation, the theoretical criterion is now ¢ > 0 V. This must be
ensured for all operating conditions. Therefore, the complex eigenvalues of the
system must be stable for running up and normal operation. Since it is
practically impossible to check stability conditions for the whole range up to
normal speed, discrete cases k are defined and summarized in Table 2.

Table 2. Definition of the different stability cases.

Case Operating conditions
(k)
1 40 % speed and no torque load
60 % speed and no torque load
80 % speed and no torque load
100 % speed and no torque load
100 % speed and full torque load
(normal operating conditions)

DN [W|N

For 100% torque load, F = 154 kN and 6 = -160° for bearing 1 and F = 148 kN
and 0 = -157° for bearing 2. The bearings at the gear are therefore subject to high
load during normal operation.

For the real rotor there may exist destabilizing effects such as internal
damping and fluid induced forces, though these effects are not considered in the
analysis. Therefore a minimum required damping ratio is preferable. This is set
to {*. A function describing the feasibility regarding the operating case k is
formulated as

C,(x) = imax(O,%} )

J=1

The number of complex eigenvalues in the frequency range of interest is V. The
modal damping for the mode j and case k is {. With this formulation a feasible
design x regarding the case k satisfies Ci(x) = 0. For an infeasible design Cy(x) >
0 holds.



3.3 Unbalance response

For practical design purposes the unbalance response analysis of a distributed
real rotor system can be problematic due to the actual unbalance mass
distribution along the rotor being generally unknown. The system should still be
designed to have the unbalance response below standard values. In [14] an
interesting approach based on singular value decomposition is proposed. This
overcomes the problem with the unknown unbalance mass distribution and
defines a general and conservative criterion that could be used for design
purposes.

Another approach is to study the modal unbalance sensitivity [15]. When
doing so, the interaction between modes is neglected. In this paper a third
approach is used. A set of different point mass unbalance cases is defined, as
schematically shown in Fig. 3.

Case m,
(m)
2 =
A=
m/2  m/2 . i
) fip M=
A =L}~
m /2
: e
e Pl
em/2 o
. il uwn%%ﬁ%
.
p

Unbalance 5 ¢ 7 8 9
position ()

—_
S

Figure 3. Unbalance cases.

The rotor mass between two consecutive bearings is the unbalance mass m,.
This is 790 kg in case 1, 1050 kg in cases 2 and 3 and 6820 kg in cases 4 and 5.
The radius to the unbalance mass is p and defined to fulfill the balancing grade
(G2.5 according to ISO 1904/1. In case 3 and 5 the unbalance masses are shifted



180° in phase. The unbalance response is calculated for excitation frequencies
from 85% to 120% of the operating speed. The bearings are analyzed for seven
different speeds in this range and linear interpolation of the bearing coefficients
is done for intermediate excitation frequencies.

The maximum amplitudes are checked at the bearing positions (1 to 4) and
unbalance mass positions (5 to 10). Clearly this approach would generate 50
constraints, i.e. 5 x (4+6). To get a more manageable problem constraint
functions based on a weighted sum approach are formulated for each unbalance
case.

Now let 4,,, be the vibration amplitude (major axis of elliptical whirling
orbit) for the unbalance case m and position defined by ». The bearing positions
correspond to #n = 1 to 4. The unbalance positions indicated in Fig. 3 correspond
ton =51to0 10. For n =1 to 4, 4, is the maximum relative amplitude between
the shaft and the bearing journals. Also let the maximum allowed vibration
amplitude for unbalance m case and position n be A,,,-. The function that
describes the degree of feasibility with respect to the unbalance case m is then
formulated as

& A, — A
U,x)= Z ma){O, %j . Q)
n=l1 mn

If U,(x) > 0 the unbalance case m is violated for the design x. A feasible design
x satisfies U,,(x) = 0.

3.4 Constraint limits

The limits for the constraints are defined in this secion. The maximum allowed
temperature in bearings 1 and 2 is 110°C and 100°C for bearings 3 and 4, i. e.

Vpe{l2}: T/ =110°C and Vpe {3,4}:T) =100°C in Eq. (1). The
minimum allowed damping ratio for the complex eigenmodes is ¢* = 2 %. For
the unbalance response, the relative amplitude in the bearings should not exceed
22 um, ie. Vme {l,...5}and ne {l,..,4}: 4> =22 pm. The amplitude at the
unbalance positions should not exceed 33 pum, ie.
Vme{l,.5}and ne {5,.,10}: 45 =33 um.

The temperature and unbalance constraint are the most difficult to satisfy.
The nominal design does not fulfill the constraints Eq. (1) and Eq. (5) with the

above given limits. However, if the constraint limits are set to the values as in
Table 3, the nominal design becomes feasible.



Table 3. Limits required for feasibility of the nominal design.

L L L L L L L
T pep | T2 ey | s gum) | 42 fum) | 4 fum) | s (um] | 49 [um)
115 111 41.4 58.6 353 43.2 41.2

4 Numerical experiment

To gain some insight about the parameters effect on the studied rotor-bearing
system, an initial numerical experiment is performed. Although there are a wide
variety of methods on how to design experiments, Montgomery [16], a simple
but informative method is chosen. Solutions are generated randomly with
uniform distribution within the limits specified in Eq. (6). The chosen factors for
variation are the bearing widths and radial clearances. The ranges for the
variation in the factors are

100mm<B,,B,,B; <250 mm,
88 mm< B, <220 mm,

138 um < AR, AR, <250 um,
138 um < AR; <310 pum,
121pym < AR, <270 pm.

(6)

The indices correspond to the bearing position. The choice of factors for the
numerical experiment is based on the fact that these are the only possible factors
to change at a late design stage. Furthermore, it is known from experience that
these factors (at various amounts) affect the objectives and constraints discussed
in the previous section. The result of this experiment is discussed in section 6.

5 Optimization problem

The subject of optimization is the design of the bearings. Since these are parts of
the system, each bearing cannot be optimized separately. The objectives and
constraints for the whole system design must be considered. One possibility may
be to divide the overall problem into a top-down hierarchy of sub problems. The
Target Cascading method [17] is an example of how to formulate and solve
problems with this approach. In this case, the sub-problems (bearing designs)
are tightly coupled via numerous implicit constraints. Although the objectives
for the sub-system level are quite obvious, they would be difficult to achieve.
Therefore, a classical formulation of the optimization problem is used here. The
optimization problem is stated as



Minimize P(X)

subject to

T(x)=0, (7)
C,(x)=0 fork=1t05,

U,x)=0 form=1to5.

P(x) is the total power loss in the bearings under operating conditions. The
functions in the constraints are defined by Eq. (1), Eq. (4) and Eq. (5). The
design variables are the same as the factors in the initial numerical experiment.
Hence, the vector of design variables is x = [B;, ARy, By, AR, B;, AR;, B4, AR4].
The side constraints of the design variables (upper and lower limits) are given in
Eq. (6).

Nothing is known about the shapes of the objective and constraint functions.
Since the global optimum is of interest, a robust global search method is a
preferable optimization algorithm. Therefore, a real-coded GA is chosen. A
good introduction to real coded GAs is the book by Gen and Cheng [7]. A
frequently used method to handle constraints is by penalty functions [18]. A
drawback of these methods is often that problem dependent penalty coefficients
have to be specified. In [8], Angantyr et al. proposed a robust and generic
constraint handling method requiring no extra parameters to be set, i. e. penalty
coefficients. This method is used to handle the constraints. Table 4 shows the
other GA parameter settings.

Table 4. GA parameter settings.

Representation real number
Population size 80
Crossover operator BLX-a [19] (o= 0.25)
Crossover probability 1

Mutation operator [20]
Mutation probability 0.13
Generation gap 95 %

The generation gap is the ratio of individuals replaced in each generation. Since
this is set to 95% an elitist GA is used. In addition to elitism the population size
and mutation probability are the most important parameters for the convergence
of the GA. There is always a contradiction between computational effort and the
risk of premature convergence when using a GA. The population size is here
chosen to be 10x8 since the dimensionality of the optimization problem is 8.
The mutation probability is set to 1/8. These values should give a reasonable
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trade-off between convergence and computational time. It should also be
mentioned that a linear ranking scheme is used with selective pressure 1.6.

The computational time required for a single evaluation of the objective
function and the constraints is approximately 5 min. This rather long time
depends on the 44 required non-linear bearing analyses (i.e. 4 bearings and 4
cases at 0% load and 7 cases at 100% load). Since a considerable amount of
evaluations is necessary in the GA, a parallel implementation is used. The
computations are done on a cluster of standard PCs running under Linux with
four nodes in the cluster being used in the computations. The results from the
optimization are summarized in the next section.

6 Results

The nominal design, given in Table 5 and indicated by the stars in Fig. 4 and
Fig. 5, gives a total power loss of 523 kW in the bearings. As can be seen from
Fig. 4, the temperature constraints for bearings 1 and 2 are not satisfied by the
nominal design. The temperatures for bearings 3 and 4 are below the constraint
limits. Furthermore, the unbalance constraint cases 2 and 4 (Eq. (5)) are not
satisfied by the nominal design. The weak intermediate shaft gives rise to the
high unbalance responses in these cases. The nominal design satisfies all the
constraints (Eq. (4)) for the different stability cases.

The result from the numerical experiment is shown as dots in Fig. 4 and Fig.
5. The dots show the result for 600 randomly generated designs (due to the
dense spacing the result almost appears as solid lines in Fig. 4 and Fig. 5).

Max bearing surface temp
150

140

120

degC

10 — — — — B

100 - - -

90

80

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Figure 4. Bearing temperature for randomly generated designs (dots),
nominal design (star) and optimal design (square).
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Power loss
200
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160
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2 100

80
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20

Bearing 1 Bearing 2 Bearing 3 Bearing 4

Figure 5. Power loss for randomly generated designs (dots), nominal design
(star) and optimal design (square).

Figure 4 shows that it seems unlikely that the bearing temperature constraint is
possible to satisfy. Furthermore, none of the 600 randomly generated designs
fulfilled the limits for the second and fourth unbalance cases. Hence, finding a
feasible solution for the constraints given in Eq. (7) seems very unlikely. Still it
is interesting to know if there exist better designs than the nominal. Therefore
the constraint limits that were violated by the nominal design are reformulated
and set to the values as in Table 3. Thereby the existence of at least one feasible
design for the reformulated constraints is known. Now it is possible to search for
a design with a lower power loss that is not worse in the violated constraints
than the nominal design. The search result from the optimization with the
reformulated constraint limits is shown in Fig. 6.

12
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Figure 6. Search history in optimization.

Figure 6 shows the mean normalized Euclidian distance in the design variable
space between the individuals in the population (right axis). This can be seen as
a measure of the convergence in the population. Figure 6 also shows the ratio of
feasible solutions (right axis) in the population. This is zero until generation 27
when the first feasible individual appears. The best design (optimal), given in
Table 5, is found in generation 96. The power loss for this design is 468 kW. To
facilitate comparison, the nominal design is also shown in Table 5. The optimal
design is indicated by the squares in Fig. 4 and Fig. 5.

Table 5. Nominal and optimal design.

Design B1 ARl B2 ARZ B3 AR3 B4 AR4
[mm] | [um] | [mm] | [pm] | [mm] | [pm] | [mm] | [um]
Nominal 250 233 250 233 140 291 154 255
Optimal 239 243 241 248 101 256 124 266

The widths of the bearings for the optimal design are smaller than for the
nominal design. Furthermore, all the radial clearances except for the third
bearing are larger for the optimal design than the nominal design. The radial
clearances for the first, second and fourth bearing are the only design variables
for the optimal design that are close to the side constraints Eq. (6).
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7 Conclusions

In this paper a GA-optimization is performed on a gas turbine rotor system with
four tilting pad bearings. A real design situation has been formulated as an
optimization problem. Non-linear bearing analyses and several load cases are
included. According to the numerical experiment, it is likely impossible to find a
solution that satisfies the bearing temperature and unbalance response
constraints. Still the optimization shows that it is possible with minor
modifications of the bearings to find a better design than the nominal design.
This design does not violate any of the constraints more than the nominal design
and gives 10.5 % reduced power loss. Hence, a significant improvement was
possible to achieve on a rotor bearing system that is regarded in the industry as
well developed. Practically, it would be difficult to find this solution without the
use of a search method.

Another conclusion of the work is that the constraint handling method [8] is
able to locate the feasible region even for this highly constrained problem.
Hence, it seems to be robust and work well. In this case only a single
optimization run is performed which shows the strength of the used constraint
handling method. It works in the first shot since no problem dependent
parameters must be specified.

Finally, an important aspect that not yet has been addressed is the robustness
of the found optimal solution. This is however the matter for further research.
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ABSTRACT

At power plants with large distances to workshops and balancing
facilities the outage time for rewinding of a generator rotor may
be considerably reduced if the work can be carried out on site.
However a problem arises when balancing is concerned. If the
rotor is balanced on site, i.e. in the stator and driven by the
turbine, the balancing weights at the rotor body are not
accessible. This constraint and the critical speeds of the rotor
determine the feasibility to achieve an acceptable balancing
state.

This paper first presents estimates of the expected unbalance
introduced by rewinding based on the balancing weight
distribution for a set of rewinded rotors. These estimates are then
applied to a rotordynamical model and a search algorithm is
used to see what can be achieved by balancing in the accessible
balancing planes. Several numerical examples are studied.
Finally, some guidelines for feasibility of site balancing
rewinded turbo generator rotors are defined based on the
numerical results.

INTRODUCTION

Balancing of flexible rotors is a field of rotordynamics that is of
extraordinary importance for the power industry. In normal
circumstances field balancing or balancing in a balancing pit is
routine work today. The two most important balancing methods
are the influence coefficient method [1] and the modal balancing
method [2]. In practice the influence coefficient method is the

dominating one. The current research trend within this field is
towards methods that do not need too many time consuming trial
runs, see for example [3-5]. A review of different rotor
balancing methods is given in [6].

Regardless which balancing method is chosen the possibility to
achieve a well balanced rotor depends on the number of critical
speeds, near or in the speed range for the rotor, as well as the
positions for the balancing planes. In some situations only a
limited number of balancing planes are accessible for practical
reasons, such as site balancing of turbo generators when the
balancing planes at the rotor body cannot be accessed with the
rotor positioned in the stator.

If the rotor is rigid (i.e. the 1* bending mode is well above the
operational speed), clearly a 2-plane balancing is enough.
However if the rotor is super critical and influenced by the 3"
bending mode at the operational speed, it is probably not
possible to balance the rotor in only two balancing planes. The
question for this paper therefore is: Where is the limit for
feasibility of site balancing rewinded rotors to an acceptable
degree if only two non-optimal balancing planes are accessible?
It should be noted that a rotor should be balanced to an
acceptable state, not necessarily a perfect balancing state.

This paper therefore first presents estimate values of the
introduced unbalance by rewinding. These estimates are based
on known balancing data (i.e. balancing weight distribution) for
a set of rewinded and balanced 2-pole turbo generator rotors.

Copyright © 2006 by ASME



Then a formulation useful when judging whether a rewinded
rotor can be balanced to a satisfactory level or not is presented.
The expected introduced unbalance by rewinding is applied to a
rotordynamical model and a search algorithm is used to see what
can be achieved by balancing in the accessible non-optimal
balancing planes.

A set of numerical examples is therefore studied with the
presented search method. Finally, some guidelines of the
feasibility for site balancing rewinded 2-pole turbo generators
are presented based on the results from the numerical examples.

UNBALANCE INTRODUCED BY REWINDING

The unbalance introduced by rewinding is estimated based on
the difference in balancing state for rotors that have been
rewinded and balanced in balancing pits. Air-cooled rotors in the
range 20-200 MVA are studied. An overview of these rotors is
given in Table 1.

Table 1. Summary of studied rotors.

Hence we let the found differences in the each balancing plane
define the vectors u;, u, and w;. An estimate of the modal
unbalance for the first mode then is

Uy =W TU, +U, M

which is reasonable since the curvature of the first mode is small
along the rotor body.

The balancing plane in the middle of the rotor does not affect the
second mode. Therefore an estimate of the modal unbalance for
the second mode is

Upoger = U3 — U+ @

The estimated introduced modal unbalances due to rewinding
are calculated according to Eq. (1) and Eq. (2) and the resulting
magnitudes (normalized to the rotor mass) are given in Table 2.
Table 2. Estimated and normalized modal unbal
rewinding for the rotors given in Table 1.

introduced by

The ranges for the critical speeds given in Table 1 are calculated
for the conditions on site. By 1* mode means the first bending
mode and by 2" mode means the second bending mode. Due to
anisotropy in the bearing and pedestal stiffness there exists often
vertical and horizontal bending modes.

Now we consider a typical generator rotor with three balancing
planes at the rotor body indicated by the vectors u;, u, and u; in
Fig. 1. The approximate mode shapes of the first two modes are

also shown in Fig. 1. u

u ’f‘ """""""

~
P

& ~ AN

- ~

3
Figure 1. Typical generator rotor with three rotor body balancing
planes.

Now we assume that the introduced unbalance due to rewinding
is the difference in balancing state before and after rewinding.

_ Rotor u ‘u
Speed [Power Active | Active Rotor Critical speeds mode 1 mode 2
Rotor length |diameter | weight [rpm]
[rpm] |[MVA]| [mm] | [mm] [ton] [T mode 127 mode [pm] [um]
1 3.1 4.7
1400- 3400- 2 18.4 433
1 3000 150 3783 1025 36.3
1450 3700 3 52 194
1350- 2900- 4 22.5 30.8
2-4 3600 126 2900 1020 28 1700 2000 3 353 13
1000- | 2700- 6 22.2 10.0
5 3600 200 5000 1020 45 1100 2900 7 313 2.8
6 3000 | 96.5 2650 1020 254 ~1800 ~5000 8 0 0
9 26.6 11.0
950- 2300-
7 3600 140 4450 890 27 1100 2800
1400 3900 The mean values for the modal unbalances are 21 pum for the 1%
_ - - nd o, 1
8-9 | 3000 | 22 | 2040 | 788 11 1500 | 4400 mode and 15 um for the 2™ mode. The 95% confidence interval
for the estimated mean 1% modal unbalance is
— d
7-9/1m<‘umm1c| <332um and 645/1m<‘ | <233um for the 2

modal unbalance. This means that with 95% confidence the
expected mean value for the modal unbalances of all similar
rewinded rotors are within the given ranges.

A rotor influenced by the 1% and the 2™ mode should according
to ISO 11342 have an equivalent modal residual unbalance for
the 1 and 2" mode less than 60% of the residual unbalance for
an equivalent rigid rotor in ISO 1940/1 based upon the highest
service speed. For turbo generators balancing grade G2.5
applies. This means that the residual modal unbalance
(normalized to the rotor mass) should not exceed 4.8 um for a 50
Hz 2-pole generator and 4.0 pm for a 60 Hz 2-pole generator.
Hence, it should be expected that the introduced unbalance by
rewinding is larger than allowed according to ISO 11342 and
ISO 1940/1.

ROTORDYNAMICAL MODEL

The estimated modal unbalances by rewinding are applied on
different rotordynamic models and unbalance response analyses
are performed. It is studied how balancing in the retaining ring
balancing planes affects the unbalance response. (The reason for
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choosing these balancing planes is that they are accessible on
site.) To search for the optimums solutions a search algorithm is
used. This is described in the next section. In this section the
rotordynamical model is described.

Figure 2 shows a schematic sketch of the rotordynamical model
with the most important dimensions active length (L) and active
diameter (D) defined.

0.5 Unmode2

Umodel

Bearing 1

¢ 0.5 Wpoge2

Figure 2. Schematic sketch of rotordynamical model.

For the rotordynamical analyses, the rotor is discretized into
beam elements and a special purpose code is used which can
handle non-symmetric matrices. Gyroscopic effect is included.
The bearing stiffness matrix (k) and damping matrix (c¢) are
included in the rotordynamical model but the pedestals are
assumed rigid.

The bearings are analyzed for stationary conditions. For this
purpose, a code based on ALP3T [7] is used. Offset halves
bearings with static load of 2 MPa and width to diameter ratio
w/d = 0.6 are assumed. The bearing relative clearance is
assumed to 1.7%o of the lobe radius. The lobe pre-set ratio is
assumed to be 0.35. In the numerical examples, the bearings are
analyzed for different static bearing loads and speeds. Hence, the
bearing stiffness (k) and damping (c) is a function of static load
(i.e. rotor weight) and speed.

Complex eigenvalue and unbalance response analyses are
performed and the result is given in the result section. In the
unbalance response analyses the modal unbalances are applied
according to Fig. 2 with the masses for the 2" modal unbalance
applied 180° out of phase. The magnitudes of the applied modal
unbalance corresponds to the upper limit of the 95% confidence
interval for the mean modal unbalances given in the previous
section. The vectors e; and e, represents the correction weights
in the retaining rings.

The numerical study is done for a set of 50 Hz rotors with
different active diameters and different active lengths. The
studied range of rotors is indicted with gray color in Table 3.

Table 3. Summary of numerical examples studied (D and L in mm).

L
1500 | 2000 | 2500 | 3000 | 3500 | 4000 | 4500 | 5000

900 - - -

1020 - -

The range of rotors given in Table 3 should cover most air-
cooled rotors in the range 20-200 MVA that is the focus for this
work.

OPTIMIZATION FORMULATION AND SEARCH
ALGORITHM

Generally, the balancing of flexible rotors is a challenge with
several objectives if the rotor should perform well over the
whole speed range. The fundamental idea behind this
formulation is that vibrations during passage of critical speeds
and vibrations at operational speed should be minimized
simultaneously.

First we define 4,(w) and 4,(w) to be the relative amplitude of
vibration (for major semi axis in this case) at bearing 1 and
bearing 2. (Since we use a stiff pedestal assumption, there is no
difference between the absolute or relative vibrations in this
case.) For the rotational speed it is assumed that e l(), ‘UapJ'

Hence, the upper limit is the operational speed, denoted .
Now two objective functions are formulated as

£,(x) = max[max(4, (@)), max(4, (@))] (©)
and
£2(x) = max|4,(@,,), 4,(@,,)] “

The first objective function describes the maximum vibration
amplitude for both bearings during run down. The second
objective is the maximum amplitude of vibration for both
bearings at the operational speed. The optimization problem is
now formulated as

Minimize F(x) = [£;(x), f,(x)]
subject to ’ ©)

xe S

The vector of design variables is defined as x = [e;, e,]. The
search space S is defined assuming that maximum balancing
weight is 2 kg in each balancing plane. The objective to
minimize is the vector F. Hence, a multi-objective optimization
problem with two objectives is formulated.

Probably the most common approach to handle this kind of
problem is to formulate a weighted sum and minimize it. This
means that one have to decide the preference of the goals.
Another approach used here is to search for the whole Pareto
optimal set of solutions. This set is dependent on the number of
critical speeds passed during running up.

The search for the Pareto optimal set can be done with
population based Evolutionary Algorithms. Here the NSGA-II
[8] with search parameters according to Table 4 is used. It
should be mentioned that there today exist a vast number of
multi-objective evolutionary algorithms [10] of which the
NSGA-II is one of the more cited.

Table 4. Search parameters for the NSGA-II.

Population size 50
Max generations 100
Crossover probability 0.9
SBX-crossover [9] with 10
distribution index

Mutation probability 0.1
Mutation distribution index n
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RESULTS

This section summarizes the numerical results. First results from
the complex eigenvalue and unbalance response analyses are
given then the search results from the optimizations are
presented. All the results are then discussed in the next section.

Complex eigenvalues and unbalance response

The complex eigenvalues are calculated for the rotational speed
3000 rpm. The damping vs. the natural frequencies for all
eigenvalues (i.e. root locus) are plotted for the different cases in
Fig. 3 to Fig. 5. The corresponding mode shapes are given for
the case D = 900 mm in Fig. 9.

20
n
= 15
F] ]
£ 10
5 5 .
[=]
=1 u
o M s F. — 8 :
0 3000 6000 9000 12000 15000 18000

Natural frequency [rpm]

B 1500 mm W2000 mm 2500 mm 3000 mm H3500 mm

Figure 3. Root locus plot for cases with D = 800 mm.

20
|

g 15
o
£ 10 | [ |
£
a 5 ﬁ* m EE —

0 , — 8 L

0 3000 6000 9000 12000 15000 18000

Natural frequency [rpm]

‘IZOOO mm HW2500 mm 3000 mm 3500 mm HW4000 mm

Figure 4. Root locus plot for cases with D =900 mm.
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2500 mm - Bearing 1
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3000 mm - Bearing 2

——3500 mm - Bearing 1 —— 3500 mm - Bearing 2
Figure 6. Calculated unbal resp for the case with D
mm.
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Figure 7. Calculated unbal resp for the case with D
mm.
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Figure 5. Root locus plot for cases with D = 1020 mm.

The calculated unbalance response (0-p, major axis at the
bearing positions) for the case without correction weights in the
retaining rings is given for the different cases in Fig. 6 to Fig. 8.

2500 mm - Bearing 1 2500 mm - Bearing 2
3000 mm - Bearing 1 3000 mm - Bearing 2
3500 mm - Bearing 1 3500 mm - Bearing 2
4000 mm - Bearing 1 4000 mm - Bearing 2
4500 mm - Bearing 1 4500 mm - Bearing 2
5000 mm - Bearing 1 5000 mm - Bearing 2

=800

=900

Figure 8. Calculated unbalance response for the case with D = 1020

mm.
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Figure 9. Root locus plot with corresponding complex mode shapes for the case with D = 900 mm and different active lengths.

Optimization results

The final generations are plotted in the objective space for the
different cases in Fig. 10 to Fig. 12. The final generation is an
estimate of the Pareto optimal set of solution for the two

The unbalance response for the two extreme Pareto optimal
solutions indicated in Fig. 12 is shown in Fig. 13. The
vibrational shapes for these two solutions are given in Fig. 14

L . . . and Fig. 15.
objectives, i.e. the optimal trade-off solutions. Observe that &
the scale is different in Fig. 10 to Fig. 12.
40
35
25 W
[ I | 30
20 1 T 25
220
£ 15 4 <15
2 10 10
5
5 - [ o 0 : : : :
o S 100 150 200 250 300
0 5 10 15 20 25 30 J1() [um]
1) [um] 2000 mm M2500 mm 3000 mm 3500 mm W4000 mm
B 1500 mm W2000 mm = 2500 mm 3000 mm H3500 mm
Figure 11. Final generations for the cases with D = 900 mm.

Figure 10. Final generations for the cases with D = 800 mm.
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Figure 12. Final generations for the cases with D = 1020 mm.
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Figure 13. Unbalance response in the bearings for the two
extreme Pareto optimal solutions indicated in Fig. 12.

Figure 14. Vibrational shape at 3000 rpm for solution 1
indicated in Fig. 12 (max amplitude is 119 pm).

Figure 15. Vibrational shape at 3000 rpm for solution 2
indicated in Fig. 12 (max amplitude is 101 pm).

DISCUSSION

The root locus plots Fig. 3 to Fig. 5 and Fig. 9 show how the
eigenvalues change as rotor active length is varied. Figure 9
also shows how the modes shapes change when the active
length is changed. It can be seen that several modes that not
are pure rigid body modes nor pure flexible bending modes
are important for the response.

The smallest rotor in the study with D = 800 mm and L =
1500 mm has the 3 bending mode above 16000 rpm. Hence,
it should not be significantly affected by the 3™ bending mode
at the operational speed 3000 rpm. Nevertheless Fig. 10
shows that there is a contradiction to minimize the response
during rundown and at operational speed simultaneously. The
reasonable explanation for this is that there are actually four
modes of importance for the response at the operational speed
and during rundown. Two of these are similar to (but not
pure) the 1¥ bending mode. The other two are similar to (but
not pure) the 2™ bending mode.

For the longest rotor in the study with D = 1020 mm and L =
5000 mm it can be seen from Fig. 12 that there is a clear
trade-off between the objectives. This rotor has a mode
similar to the 3" bending mode at 7500 rpm that influence the
response at the operational speed and above. This can be seen
for solution 1 in Fig. 13.

According to ISO 7919-2 the maximum relative bearing
vibration is 80 pum (p-p) at the operational speed for a newly
commissioned 50 Hz machine. During rundown the
corresponding limit is 390 um (p-p). If a safety factor of 2 is
assumed this gives 20 um (0-p) at the operational speed and
98 pum during rundown. If these limits are adopted Fig. 10 to
Fig. 12 show that rotors with active diameters 800-1020 mm
and an active length less than 3000 mm should be possible to
balance in only the retaining ring balancing planes after
rewind.

CONCLUSIONS

By 95% confidence the expected mean modal unbalance
introduced by rewinding for the 1% mode is
<233um for the 2™

<332pm and 6.57m <|

mode. This is larger than allowed according to ISO 11342
and ISO 1940/1, G2.5.

79um < ‘u

model ‘mode2

The numerical result shows that there is a trade-off to balance
also short rotors with the 3™ bending mode well above the
operational speed in only the retaining ring balancing planes.
The reason is that the anisotropic bearings give several modes
with shapes similar to the 1 and 2™ bending modes and rigid
body modes.

The feasibility of site balancing a rewinded rotor depends on
its geometry and to what degree it should be balanced. If
vibration limits according to ISO 7919-2 (zone A/B) and a
safety margin of 2 is assumed, the numerical results show that
50 Hz rotors with active diameters 800-1020 mm and active
lengths less than 3000 mm are candidates for site balancing
after rewind.

Copyright © 2006 by ASME



ACKNOWLEDGEMENTS
ALSTOM Power Sweden AB is gratefully acknowledged for
the funding of this work.

REFERENCES

(1

(2]

B3]

(4]

(3]

(6]

71

(8]

]

[10]

Goodman, T. P., 1964, “A Least-Squares Method for
Computing  Balance Corrections”, Journal of
Engineering for Industry, ASME, 86(3), pp. 273-279.

Bishop, R. E. D. and Parkinson, A. G., 1963, “On the
Isolation of Modes in the Balancing of Flexible
Shafts”, Proceedings of ImechE, 177, pp. 407-423.

El-Shafei, A., El-Kabbany, A. S. and Younan, A. A.,
2002, “Rotor Balancing without Trial Weights”,
Proceedings of ASME Turbo Expo 2002, 4B, pp.
1117-1124.

Xu, B., Qu, L. and Sun, R., 2000, “The Optimization
Technique-Based Balancing of Flexible Rotors
without Test Runs”, Journal of Sound and Vibration,
238(5), pp. 877-892.

El-Shafei, A., El-Kabbany, A. S. and Younan, A. A.,
2004, “Rotor Balancing Without Trial Weights”,
ASME J. of Eng. for Gas Turbines and Power, 126,
pp. 604-609.

Foiles, W.C., Allaire, P.E. and Gunter, E.J., 1998,
“Review: Rotor Balancing”, Shock and Vibration, 5,
pp. 325-336.

Mittwollen, N. and Glienicke, J., 1990, “Operating
Conditions of Multi-Lobe Journal Bearings Under
High Thermal Loads”, ASME Journal of Tribology,
112, pp. 330-340.

Deb, K., Pratap, A., Agrawal, S. and Meyarivan, T.,
2000, “A Fast Elitist Multi-Objective Genetic
Algorithm: NSGA-II”, KanGAL Report No. 200001,
Kanpur Genetic Algorithm Laboratory, Kanpur.

Deb, K. and Agrawal, R. B., 1995, “Simulated Binary
Crossover for Continuous Search Space”, Complex
Systems, 9(2), pp. 115-148.

Deb, K., 2002, Multi-Objective Optimization using
Evolutionary Algorithms, John Whiley and Sons, New
York.

Copyright © 2006 by ASME












