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ABSTRACT 

This thesis is a result of a motivation to advance the computational tools, which are used to 

support designers during the conceptual design stage of a multi-objective engineering design 

problem. The thesis involves contributions concerning four major topics including: a. 

simultaneous concept-based evolution of concepts towards and along a Pareto front, b. 

interactive concept-based evolution towards optimal solutions of preferred concepts, c. 

assessment of concepts in the multi-objective space, and d. supporting decision making with 

uncertainties due to delayed decisions. It should be noted that, with respect to the first 

contribution, the problem of simultaneous mechanics and control design, at the conceptual 

design level, is of a particular motivation to this study. Together the contributions of this thesis 

advance the state-of-the-art of methods to search, compare and select solution concepts in 

multi-objective problems.     

In this thesis the concept-based multi-objective optimization problem is studied and its 

distinction from the traditional multi-objective problem is discussed. The concept-based 

problem involves concepts that are represented by particular designs (solution sets) which are 

associated with the concepts. The main assumption is that these concepts have reached a stage 

in which models are available for their evaluation. As a part of the presented study, novel 

evolutionary algorithms are developed, using a simultaneous search approach, to solve the 

concept-based multi-objective optimization problem. In particular, the suggested algorithms 

address the issue of resource sharing among concepts, and within each concept, while 

simultaneously evolving concepts towards a Pareto front by way of their representing sets. The 

introduced algorithms are compared with a sequential one from two major aspects: the 

computational time and the quality of the front's representation.   

Next, the concept-based multi-objective optimization problem is extended to include 

interactivity, which is the main motivation to the development of the simultaneous algorithms. 

The interactive concept-based problem involves both model-based optimality and the 

subjectivity of the designers. A novel interactive concept-based multi-objective algorithm is 

presented. The articulation of designers' preferences towards concepts and sub-concepts, as 

suggested in this thesis, establishes a new approach to the integration of preferences within 

evolutionary based algorithms.  

The results of both of the above suggested approaches are associated with the representation 

of the concepts solutions' performances within a multi-objective space. Selection between 

concepts based on these representations is the next step. In this thesis a new approach to 

support such a selection is introduced. Both aspects of optimality and variability, which are 

associated with concept selection, are taken into account. Furthermore, the uncertainty towards 



the preferences of objectives, which is inherent to multi-objectives problems, is also considered 

by the new approach.  

In addition, this thesis deals with an uncertainty involving delayed decisions. Such a situation 

could result from a temporary lack of information during a conceptual design. Here, for the 

first time, the delayed decision problem is introduced in the context of a MOP. Moreover, a 

computational tool to support concept selection with the presence of such uncertainty is 

suggested. To attend this problem, the proposed new selection approach is adapted to allow the 

assessment of the relative performance of concepts, which involves robustness to delayed 

decisions.   

The described concept-based techniques set the stage for a general approach to conceptual 

engineering design, for cases, with available models. Academic examples as well as 

engineering examples are used to study and demonstrate the suggested techniques including 

examples from structural mechanics and from mechatronics. The latter also serves to 

demonstrate the aptitude of the suggested techniques to deal with simultaneous mechanics and 

control design at the conceptual design stage. 
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NOMENCLATURE 
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Chapter 1                                                                                                                Introduction - 1 -

CHAPTER 1 

           INTRODUCTION   

Engineering conceptual design is perhaps the most crucial task in product development cycle 

(Bullinger et al., 1998). The significance of correctly choosing a concept has been reflected in 

an increasing effort to develop methodologies and computational tools to support concept 

selection. In particular, computer-supported methods are required to help designers during the 

conceptual design stage of Multi-Objective Problems (MOPs), which are common in 

engineering design (Mattson and Messac, 2005).  

MOPs exist in a vast number of engineering and scientific applications (Coello, 2005). 

Solving such problems, which involve multiple and often conflicting objectives, is generally 

considered as a difficult problem. Evolutionary Algorithms (EAs) in general and Evolutionary 

Multi-Objective (EMO) algorithms specifically, possess several characteristics, which make 

them suitable for solving this type of problems (Zitzler et. al., 2003,). The main motivations for 

using an evolutionary approach to solve MOPs are: a. the possibility of EAs to simultaneously 

deal with a set of possible solutions, b. their ability to cope with hard problems involving 

many, mixed discrete/analogues design parameters, and c. EAs are less susceptible to the shape 

or continuity of the Pareto front (which are hard problems for mathematical programming 

approaches).  

This thesis deals with a special type of MOPs, which are hereby termed Concept-based 

MOPs (C-MOPs). The concept-based approach is motivated by the way humans, such as 

engineers solve a problem (e.g., Mattson and Messac, 2005). According to this approach, a 

concept is an idea that reached a point where a model is available to calculate the performances 

of a family of solution alternatives, which represent the concept. In other words, a concept has 

multiple representations in the decision variable space, and consequently, it involves a set of 

associated points in the objective space. For example, consider two conceptual solutions to the 

problem of moving an object from one location to another. The first conceptual solution is a 

conveyor and the second one is a manipulator. The Decision Makers (DMs) may select a 

particular solution from either the first or the second concept.  

Traditionally designers select a concept and only then search for a particular solution of the 

selected concept. If none of the preliminary solutions of the selected concept meets the design 

requirements, a new concept has to be chosen and the procedure is re-started. This iterative 

serial procedure is schematically represented in figure 1.1a. In figure 1.1a it is implicitly 

suggested that the evaluation of preliminary solutions is commonly done with the aid of 

computers whereas the selection of the concept is primarily done by humans. A major 
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drawback of this tradition is the early exploitation of a successful concept that may hinder 

better concepts. Moreover this serial approach does not fit a Pareto-based approach to MOPs. 

The Pareto approach aims at representing a set of solutions to the DM for selection while the 

traditional approach guides the search towards a single solution.  

 

 
    Figure 1.1a: The traditional approach to                            Figure 1.1b: Proposed approach to 

conceptual design                                                        conceptual design
 

In this thesis, and similar works that deal with C-MOPs, such as Mattson and Messac (2003), 

a change of this traditional serial approach is assumed. According to the approach, which is 

adopted in this thesis, the selection of the final (particular) solution is supported by 

simultaneously comparing the performances of all the concepts by way of their associated 

particular solutions in the objective space. This simultaneous procedure, which is schematically 

depicted in figure 1.1b, ensures that the designers perform a multi-objective comparison of 

concepts and apply a search using a pressure towards a Pareto front with potentially obtaining 

several 'optimal' concepts (see definition in 3.2.1.2).   

Classical algorithms of Evolutionary Multi-objective Optimization (EMO), such as the multi-

objective genetic algorithm (Fonseca and Fleming, 1993), deal with problems in which each 

solution is treated as the basic member of the entire feasible set of solutions. In contrast, in the 

concept-based EMO (C-EMO), which is addressed here, the feasible set of solutions is divided 

into sub-sets of solutions (two in the above conveyor-manipulator example). Each such sub-set, 

which may belong to a different design space, represents a conceptual solution to the problem, 

or in short a 'concept.' Solving a C-MOP means finding all the 'optimal' concepts, where each 
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such concept has at least one member of its sub-set being a non-dominated solution with 

respect to the entire feasible set of solutions. 

 Figure 1.2 depicts (left side) three sets of solutions belonging each to a different concept. Let 

these sets constitute the entire design space. Different symbols, including circle, triangle and 

square, are used to designate the three concepts (concept 1, concept 2 and concept 3 

respectively). For each of the solutions, the corresponding performances within a bi-objective 

space, are depicted in figure 1.2 (right side), marked by their concept-related symbols. 

Assuming a min-min problem, concepts 1 and 3 possess solution/solutions with performances, 

which are non-dominated with respect to the entire feasible set of solutions. Therefore, concept 

1 and concept 3 are 'optimal' concepts. Concept 2 is not associated with any solution, which is 

non-dominate and therefore it is a 'non-optimal' concept. 

 

 
Figure 1.2: Optimal and non-optimal concept sets and their performances 

 

In a C-MOP the assessment of concepts is done just by considering their computed 

performances. However, in ‘real-life’ design, models to assess the performances of conceptual 

solutions are not always available. Moreover the computation of merits might only partially 

reflect all issues that are involved in selecting a concept. Difficulties in realizing solutions 

associated with a particular concept, might not be modeled (e.g., difficulties of manufacturing 

and design problems). Therefore, humans rely on their experiences and preferences in choosing 

a conceptual solution, which is later realized by choosing a particular solution out of the 

concept's solutions.  

In an interactive human-computer search, the advantages of the computer as a computational 

tool and the ability of humans to assess un-modeled ideas should be utilized. Commonly, the 

motivation for interactivity within MOPs is either to assign weights to objectives to aggregate 

them into a single function (e.g., Van Veldhuizen, 1999), or to direct the search towards 
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preferred regions of the Pareto front (e.g., Cvetkovic', 2000). A systematic approach to direct 

the search towards preferred solutions has also been recently suggested by Deb and Chaudhuri, 

(2005). These interactivity approaches reduce the search space and by that efficiently use the 

available resources to direct the search to preferred regions. In this thesis a new type of 

interactivity is suggested as detailed in the methodology.    

The problem in the concept-based search is not restricted to choosing a solution out of a set 

as in common MOPs, but moreover, is to initially choose the set (concept) itself. According to 

recent surveys (e.g., this thesis survey, Matson and Messac, 2005), there are just a few 

approaches, which are measure-based, to compare between sets of performances. The measures 

are primarily used to compare how well different optimization approaches generate Pareto sets 

(e.g., Van Veldhuizen, 1998).  

When dealing with concepts selection, it is important to take into consideration the affects of 

uncertainties associated with the concept and with its particular solutions. Such uncertainties 

may be associated with the models of the concepts and the ability to realize their solutions by 

the available machinery and equipment (e.g., Mattson and Messac, 2002, Andersson, 2002). 

The conceptual design stage may be further associated with some unique uncertainties such as 

the delayed decision uncertainty. This uncertainty is associated with a need to postpone 

decisions within the conceptual design stage. Such a need is well known (e.g., Sobek and 

Ward, 1996). It could result from a lack of information to make an intelligent decision at that 

stage (e.g., availability of a particular manufacturing resource). When delaying a decision on 

certain parts of the involved concepts, the designers attempt to make a progress on other parts 

of the concepts. To elucidate the delayed decision problem, the following example is given. 

Suppose that the design concerns a manipulator to move an object from one location to the 

other. It involves conceptual decisions on the manipulator links and their control. Suggested 

concepts may include 'two-aluminum links controlled by a fuzzy controller' or 'one-steel-link 

controlled by a PID controller.' A delayed decision situation may occur if the designers are not 

certain about the availability of a proper hardware for implementing the fuzzy controller. 

However, they need to continue with conceptual decisions on the rest of the design of the links 

to ensure meeting the design deadline, e.g., ordering materials and preparing production 

infrastructure.  

This thesis aims at advancing the existing computational methods that support searching, 

comparing, and selecting of concepts, which are represented by sets of particular solutions, in 

MOPs. The advances are associated with a. simultaneous development of concepts towards 

optimal concepts' solutions, b. interactivity towards concepts and sub-concepts, c. selection of 
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concepts while taking into consideration different objectives of the conceptual design, and d. 

supporting decisions with the presence of uncertainties, resulting from delayed decisions. 

 The thesis is ordered as follows: Chapter 2 provides a general background to the main issues 

that this thesis is concerned with, such as conceptual design and MOPs. It also describes the 

State-Of-The-Art (SOTA) of the relevant particular topics and states the objectives of the thesis 

base on the SOTA shortages. Chapter 3 is concerned with the methodology, while chapter 4 

includes case studies to demonstrate and study the methodology and algorithms. These include 

academic as well as engineering examples. Chapter 5 summarizes the thesis work, discusses its 

contributions with respect to the motivations, and suggests some directions for future research. 
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CHAPTER 2 

LITERATURE SURVEY AND THESIS OBJECTIVES 

This survey starts with section 2.1, which gives a general background on some issues that are 

important for understanding the SOTA and the contributions of this thesis. These issues 

include: engineering and mechatronic design, conceptual design, multi-objective problems 

and design space decomposition. The next section, 2.2, gives a background on evolutionary 

search and its applications in engineering design. This section includes brief reviews on 

genetic algorithms and their use for multi-objective optimization. In addition it includes a 

SOTA concerning resource sharing in single and in multiple objective problems. Moreover, 

section 2.2 outlines the use of evolutionary approaches for engineering designs. Section 2.3 

reviews the search and selection approaches for three different notions, which are associated 

with concepts, including set-based concept, single-solution's performances-based concept and 

the notion of a family of designs. Section 2.4 reviews different methods for the articulation of 

preferences in evolutionary-based search including a-priori, progressive and a-posteriori 

methods. Section 2.5 surveys the treatment of robustness with respect to the three different 

notions of concepts that are described in section 2.3. The last section, 2.6, highlights the 

apparent shortages of the existing SOTA and consequently states the thesis objectives. Table 

2.1 is provided to support focused reading and to highlight the relations between the issues of 

this thesis, the SOTA, the methodology, and the examples. 

  

Table 2.1: SOTA and thesis aspects 

Main issues SOTA Methodology Examples 

Simultaneous evolution  2.1.2; 2.1.3;  
2.2.1- 2.2.4, 2.3 

3.1; 3.2 4.1 

Interactive concept- based 
evolution  

2.1.2-2.1.4; 2.2.2-
2.2.4; 2.4  

3.1; 3.3 
 

4.2 

Supporting concept selection 2.1.2- 2.1.4; 2.2.2; 
2.3; 2.5 

3.4 4.3 

Supporting decision making with 
delayed decisions uncertainties  

2.1.2- 2.1.4; 2.2.2; 
2.3; 2.5 

3.5 
 

4.4 

Engineering applications 2.1.1-2.1.3; 2.2.2;
2.2.5;  

- 4.1 - 4.5 

 
In the table, the first column lists the main issues of this thesis. In the following three columns 

including literature survey, methodology and examples, each block indicates the associated 

(relevant) sections' numbers.  
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2.1 General Background  

2.1.1 Engineering and mechatronic design  
Engineering design is a major research field. This is reflected by its numerous books and 

research studies (e.g., Ullman, 1992; Pahl and Beitz, 1996; Ulrich and Eppinger, 2000). In this 

section just a few issues of relevance are shortly surveyed and discussed, as seems necessary 

for the completeness and clarity of this thesis. 

 As briefly explained in the introduction, a design process commonly begins with conceptual 

design, followed by preliminary and detailed designs. In such a procedure designers select a 

concept and only then search for a particular solution of the selected concept. If none of the 

preliminary solutions of the selected concept meets the design requirements, a new concept has 

to be chosen and the procedure is re-started. When a suitable preliminary design is found a 

detailed design stage commences, as depicted in figure 1a of the introduction chapter.  

  Mechatronics, which is related to the motivation for this thesis, is a relatively new engineering 

field that synergistically integrates mechanical engineering, electrical engineering, and software 

engineering. It is beyond the scope of this thesis to provide a literature review on mechatronics. 

The interested reader is referred to a comprehensive survey on mechatronics, including 

simulation packages, which was done by Diaz-Calderon (2000), as well as to existing journals 

such as Robotics and Mechatronics, The ASME/IEEE Transactions on Mechatronics, and 

related conferences. See also on-line: 

http://www.eng.morgan.edu/~salimian/courses/mechatronics/resources.html, and similar 

websites. The main engineering areas, which are associated with the design of a mechatronic 

artifact, are mechanics and control. Traditionally such a mechatronic design follows a 

sequential iterative procedure, which is schematically shown in figure 2.1.  

 
Figure 2.1: Traditional iterative mechanical-control design procedure 
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The first iterative procedure concerns mechanical design at the conceptual-preliminary levels. 

When a satisfying preliminary design is found the control has to be considered. Initially a 

control strategy has to be selected, followed by the controller design. The suggested controller 

has to be tested against the dynamic and steady state requirements. Moreover the robustness of 

the controller to the various uncertainties has to be checked (see section 2.5 for more details). If 

the controller does not meet these requirements a new controller or even a new strategy should 

be tested. If no adequate controller is found, it is possible that the iterative procedure would 

lead to reconsidering the mechanical concept.  

The approach taken in this thesis aims, among other targets, at supporting designers in 

choosing a mechatronic concept, which is a combination of both a mechanical concept and a 

control strategy. This is done by allowing a simultaneous assessment of mechatronic concepts 

by way of their related preliminary designs. Such a preliminary design is a realization of the 

mechatronic concept by choosing a specific mechanical design and a specific controller. Such a 

simultaneous consideration may illuminate the possible iterations between the stages of the 

mechanical and control design. Other works, which deal with such a simultaneous 

consideration by applying EC, are surveyed in section 2.2.3. Examples of the application of the 

proposed methodology to engineering conceptual design and in particular to mechatronic 

design are given in chapter 4. Approaches to conceptual design may be found in the following 

section. 

    

2.1.2 Conceptual design  

According to Pahl and Beitz, (1996): ‘conceptual design' is that part of the design process in 

which, by the identification of the essential problems through abstraction, the basic solution 

path is laid down through the elaboration of a solution principle.’  An abstract concept 

description is a description that can be represented by a verbal description (e.g., Borgida and 

Brachman, 2002), a sketch (e.g., Lipson and Shpitalni, 2000), or a parametric model (e.g., AL-

Salka et al., 1998). This early stage of the design process is dominated by the generation of 

ideas, which are then evaluated against a set of requirements. Conceptual design is perhaps the 

most crucial task in a product development cycle (Bullinger et al., 1998).  

It is a common knowledge that a large portion of the product cost results from decisions made 

during the conceptual design stage (e.g., Lotter, 1986, Ishii, 1995, AL-Salka et al., 1998). 

Furthermore changing from one concept to another, during the lifetime of a company, 

commonly requires large resources, and may involve a change of machines, manufacturing 

lines, and employees. Modern manufacturing companies are facing an ever-increasing demand 
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for customized products to be manufactured and delivered within ever shorter lead times. 

Choosing an incorrect concept lengthen the production by increasing the number of iterations 

and re-planning needed to complete the design. It could also lead to the re-initialization of the 

conceptual design due to the impossibility to compensate for the poor design within the 

preliminary stage (e.g., Hsu and Liu, 2000). 

The significance of correctly choosing a concept has been reflected in an increasing effort to 

develop methodologies and computational tools to support concept selection. According to 

Mattson and Messac, (2005) the various concept selection methods found in the literature can 

be divided into two groups; (a) non-numerical approaches, and (b) numerical approaches. 

According to Pugh, (1996), mathematics is of little assistance early in the design process and in 

fact, hinders decision-making. This conviction is the main reason for the development of the 

non-numerical concept selection approaches. Among such methods are selection methods 

based directly on decision makers and voting (Ulrich and Eppinger, 2000), selection methods 

based on methodical/structured preference such as feasibility judgment/intuition (e.g., Otto, 

1995; Ullman, 1992) and selection methods based on decision matrices such as concept 

screening (Ulrich and Eppinger, 2000) and the Pugh concept selection method (Pugh, 1996).  

The work of Ziv Av and Reich, (2005), where subjective human preferences are incorporated 

into a conceptual design is yet another example of non-numerical methods. In contrast, 

numerical concept selection is based directly on numerical computations and includes, among 

others, the following methods: Axiomatic Design (Suh, 1990), Decision Matrices (e.g., Pahl 

and Beitz, 1996; Ullman, 1992; Ulrich and Eppinger, 2000), Fuzzy Approaches (Wang, 2001), 

Knowledge Based Systems (e.g., Dieter, 1991; Chin and Wong, 1996), Utility Function 

Method, and Quality Function Deployment (Otto, 1995; Magrab, 1997).  

It should be noted that there could be different interpretation to the notion of a design 

concept, and consequently it may affect the selection procedure. Three notions, as related to 

conceptual design, are of interest within the scope of this thesis. These notions are: Set-Based 

Concept (SBC), Single-Performance-Vector-Based Concept (SPVBC), and product family. The 

first is a concept, which is represented by a model that spans the performances of multiple 

solutions (e.g., a parametric model in AL-Salka et al., 1998), and therefore is regarded in this 

thesis as a set-based concept (SBC). It is reminded here that a representation by a model is one 

of the possible abstract concept descriptions (see the beginning of this section; 2.1.2).  More 

background regarding the set based concept is given in section 2.3.1. The second notion is 

associated with a concept, which is represented by one of its design alternatives' performances. 

Such a concept is regarded here as Single-Performance-Vector-Based Concept (SPVBC). This 

view appears to be more common than that of the set-based. This is not surprising, since when 
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new conceptual ideas are mentally generated by the DMs, it is hardly expected that the DMs 

would have a multiple representations for each of the generated ideas. In other words new ideas 

are likely to be interpreted by the second notion of a concept. Presenting new ideas may be 

associated with the notions of Creativity and Innovation. Bentley and Corne, (2002), defined 

creative evolutionary systems as systems possessing one or more of the following features: a) 

support human creativity b) independently solve problems that only creative people can solve. 

These features are discussed in the following.  

The first feature ('a') may be related to Interactive Evolutionary Computation (IEC) methods, 

which are reviewed in section 2.4.2. The second feature ('b',) is related to systems that can 

automatically generate creative results. Systems that can automatically generate creative results 

have been proposed including: relaxing constraints, changing objectives and the boundaries of 

the design variables (e.g., Parmee, 1999). Gero and Kazakov, (2000), introduced a crossover 

mechanism that allows the enlargement of the design space, thus promoting the chance of new 

design alternatives (concepts according to this view). Additional examples for the automatic 

evolutionary search for creative designs may be found in: Bentley and Wakefield, (1997), Gero 

and Kazakov, (1996), Bentley (1999). Bentley and Corne, (2002), have investigated an 

approach where the parameters do not represent the solution itself, but the components from 

which the solution is constructed. Rules for constructing a solution have been evolved and 

mapped to a solution through 'embryogency' (Bentley, 1999). Embryogency refers to 'growing 

instructions' for the genotype. Such a rule-based mapping from genotype to phenotype, which 

may not be predicted by the designers, could be considered as creative. The resulting 

phenotype is then evaluated for fitness either by human guidance or automatically by a 

calculated fitness function. Creativity in evolutionary design can also be analyzed from a 

broader perspective, namely based on the theory of inventive problem solving (TRIZ) 

introduced by Altshuller (see Savransky, 2000). Altshuller discovered, through a study of 

patents databases, that the evolution of engineering systems is not a random process, but it is 

governed by a class of paradigms. These paradigms can be subsequently used to develop a 

system considering its technical evolution, i.e. by determining and implementing creativity. 

Altshuller introduced five levels of innovation in the context of an engineering design problem. 

All five, are associated with concepts viewed and evaluated as single solutions and not sets.   

Innovative solutions are those extracted from the possible combinations that are pre-defined 

by the design space representation (Boden, 1992). Koza (1992) suggested a block diagram 

representation of elements of the solution. According to his approach, catalog elements are 

selected by a GA to be placed as blocks of the diagram. A population of structures of the block 

diagrams is evolved using special genetic operators. A more elaborative approach is the mixed 
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discrete/continuous evolutionary GA search (e.g., Bäck and Schütz,, 1995) used by Parmee 

(1996a), where the search is conducted across design hierarchies of discrete design 

configurations further described by depended continuous variable sets. Some other examples of 

innovation-based searches can be related to using GAs for whole system design/optimization 

(Hillermeier et al., 2000, Emmerich et al., 2000). 

 The confusion between studies that view a concept as a SPVBC and those who view a 

concept as a set-based one is reflected in several studies and their terminology. According to Li 

and Azarm, (2000), Crossley et. al. (2001), and to Mattson and Messac, (2003), a design 

alternative, in contrast to a concept, is a specific design, resulting from unique values used in 

the parametric model of a concept. This may be interpreted such that a concept may be 

represented by the set of all possible design alternatives (preliminary designs) that are its 

realization. While the use of the term design alternative, in the above context, certainly 

distinguishes between design alternative and a concept, a design alternative is regarded in many 

other cases in the literature as a concept (e.g., Bentley and Wakefield, 1997, Cvetcovic, 2000).  

The third notion is that of a product family, which might be related to the term concept as 

discussed below. A product family is a group of related products that share common 

components and/or subsystems – yet satisfy a variety of market niches (Simpson and D’Souza, 

2004). The level in the product hierarchy at which commonality is pursued varies; it can be 

focused on common components (e.g., Fisher et al. 1999), on modules (e.g., Chakravarty and 

Balakrishnan, 2001), on product platforms (e.g., Gonzalez-Zugasti et al., 2000) or on 

production processes (e.g., Siddique, 1998). The lines between these levels are often blurred 

(Fixon, 2004). As may be comprehended from these studies, a family of designs is actually a set 

of concepts that possesses some sort of commonality (see above).  

Concepts that are represented by a set of solutions might be viewed as related to family of 

designs. An interpretation to this relation is depicted in Figure 2.2. 

  

 
Figure 2.2: Concepts and a family of designs 
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This figure shows two concepts as two sets of alternative designs (encircled). It is noted that 

just several design alternatives are depicted for each concept. Assuming the existence of a 

commonality between the products (see above), then the products are considered as belonging 

to a family. 

Search and selection of concepts, as related to the three concept-related notions are surveyed 

and discussed in section 2.3. The focus of this thesis is on the view of concepts as SBCs. 

Nonetheless, the other notions are further surveyed for their related search and selection 

approaches (see section 2.3) and especially as related to MOPs, which are discussed in the 

following.  

 

2.1.3 Multi-objective problems 

Multi-objective search is an important research topic. It concerns the search for solutions to 

many real world problems which are Multi-Objective Problems (MOPs). According to Mattson 

and Messac, (2005), successful engineering design generally requires the resolution of various 

conflicting design objectives. In case of contradicting objectives there is no universally 

accepted definition of an 'optimum' as in a single-objective optimization (Van Veldhuizen and 

Lamont, 2000). In such a case, there is no single global solution and it is often useful to 

determine a set of solutions that fits a predetermined definition for an optimum and let a DMs 

choose between them. The predominant concept in defining such a set point is that of Pareto 

optimality (Pareto 1896, 1906). By definition, Pareto solutions, which belong to the Pareto 

optimality set, are considered optimal because there are no other designs that are superior in all 

objectives (e.g., Steuer, 1986, Miettinen, 1999). The search for optimal solutions for a MOP is 

commonly termed Multi Objective Optimization (MOO). 

 Often, algorithms provide solutions that may not be Pareto optimal, but may satisfy other 

criteria, making them significant for practical applications. In such a case solving a MOP 

problem is not equivalent to solving the MOO of the problem. For example Parmee (1996b), 

introduced Cluster Oriented Genetic Algorithm (COGA), where the result of the MOP search is 

a set of solutions that are related to 'interesting regions'. Another approach is the goal 

attainment approach (Gembicki, 1974) that focuses on finding a solution (s) around a target 

(goal) in the objective space. A comprehensive survey and comparison between most multi-

objective optimization techniques and algorithms can be found in Marler and Arora, (2004).  
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2.1.4 Design space representation 

Representing the design space to support its search could be done in different ways. The 

hierarchical representation is of a special interest due to its potential in reducing the complexity 

of the search (Jacome, 1993). In the following, three approaches to hierarchically represent the 

design space are given. These include the use of abstraction spaces, the whole system 

hierarchical representation and the system and sub-systems hierarchical decomposition. These 

are discussed below; 

Hierarchy of abstraction spaces: According to Bergmann and Wilke, (1995), "Abstraction is 

one of the most challenging and also promising approaches to improve complex problem 

solving and it is inspired by the way humans seem to solve problems." Abstraction is a 

mechanism for representing things in a simplified manner, hopefully capturing their essence 

(Giunchiglia, 2003). The main reason for using abstraction for the representation of the design 

space is the possibility of concentrating, within a very large space, only on what is really 

crucial to the matter under consideration. Abstraction has many important applications in areas 

such as: natural language understanding, problem solving and planning, explanation, and 

reasoning by analogy (see Giunchiglia and Walsh, 1992, for a detailed discussion). At first, 

minimal abstract description of a solution to a given problem is considered. Then, step by step, 

more details are added (to the solution description) by taking an increasingly more detailed 

look at the problem and its solution. According to Armano et al. (2003), building an ordered set 

of abstractions for controlling the search has been proven to be an effective approach for 

dealing with the complexity of planning tasks. For each of the hierarchies there is a knowledge 

that allows assessing the plan (Jacome, 1993). The planning is followed by progressing from 

the highest to the lowest level of abstraction.  Commonly, abstraction is performed by dropping 

sentences from the detailed description of the solution (e.g., Sacerdoti 1974, Tenenberg 1998, 

Knoblock, 1994). Giunchigilia and Walsh, (1992), and also Jacome (1993), have presented a 

comprehensive formal framework for abstraction and a comparison of the different abstraction 

approaches.  

 Whole system design: In engineering design a hierarchical descriptions of the entire design 

space has been used for the purpose of reducing the searched design space. This approach is 

commonly termed whole system design /optimization (e.g., Parmee 1998, Hillermeir, et al., 

2000, Emmererich et. al., 2000). This approach searches the space for the optimal combination 

of sub-systems and their parameters. According to this approach the design space is constructed 

into a hierarchical 'OR' tree, where the nodes involve discrete design options, and the leaves are 

associated with continuous design sets.  
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System and sub-systems hierarchical decomposition: This hierarchical scheme deals with 

complex systems by decomposing the original problem into independent sub-problems. The 

sub-problems are solved separately and then they are coordinated in such a way that an optimal 

solution for the complete problem is achieved (e.g., Haimes et al., 1990). In engineering 

conceptual design, a DM may decompose a required function into sub-functions, which is the 

so-called functional decomposition (e.g., Kitamura et. al., 2002). A solution approach to a 

multi-objective problem that produces Pareto optimal solutions using the hierarchical scheme 

of systems and sub-systems can be found in several studies (e.g., Caballero et al., 2002). 

Decomposing a large problem into several smaller ones, and its natural inspiration has been 

discussed by Goldberg (1992), in conjunction with EC.  

 

2.2 EC-based search and its applications to engineering design 

This section begins with a brief introduction to genetic algorithms and to Multi-Objective 

Evolutionary Algorithms (MOEAs) (sub-sections 2.2.1 and 2.2.2 respectively). Thereafter, sub-

section 2.2.3 surveys the use of such algorithms to search solutions for engineering design 

problems. The last two sub-sections (2.2.4, 2.2.5) bring the state of the art as related to resource 

sharing in single and multi-objective optimization problems. 

 

2.2.1 Genetic algorithms 

Genetic Algorithms (GAs) are considered to be a part of Evolutionary Computation (EC) 

methods. They belong to a class of non-gradient methods that has grown in popularity 

following the original publication of Rechenberg (1973), and later Holland (1975). Goldberg, 

(1989) expanded the idea and helped its’ popularization. GAs are stochastic search methods 

that mimic the natural biological evolution. GAs operate on populations of potential solutions 

applying the principle of ‘survival of the fittest’ to produce better and better solutions. A GA 

uses a population of individuals (solutions) instead of a single solution to perform a parallel 

search in the problem space. At each generation, a new set of approximations is created by a 

nature-inspired process. The natural processes, which are commonly mimicked by GAs are 

selection, breeding, mutation, migration, and survival of the fittest. The type of coding used, 

size of population, and other factors are much dependent on the problem treated (Goldberg, 

1989). Usually some rules of thumb are used for their determination. Some attempts have been 

made to get an insight of GAs by modeling mathematically their dynamic behavior (e.g., Benet 
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and Rogers, 1997). The success of GAs is highly influenced by a balance between the ability of 

the algorithms to explore the design space and their potential to exploit and find the optimum.  

 

2.2.2 EMO algorithms and their evaluation 

Searching a multi-objective design space, for optimal solutions, by EC approaches (such as 

GA) is commonly referred to as Evolutionary Multi-objective Optimization, (EMO). Multi-

Objective Evolutionary Algorithm (MOEA) is an EMO algorithm, which searches for a 

solution in a multi-criteria space using some inspiration from evolutionary theories. Most 

MOEAs are using GAs for the evolutionary search.  

Research on MOEA has grown considerably in the last few years (see: Coello's web site 

http://www.lania.mx/~ccoello/EMO/EMObib.html). A number of algorithms, such as the 

Multiple Objective Genetic Algorithm (MOGA) of Fonseca and Fleming, (1993) and the Non-

dominance Sorting Genetic Algorithm (NSGA), introduced by Srinivas and Deb, (1994), are 

known to advance the use of EMO to solve MOPs. These algorithms use the non-dominance 

notation (Goldberg, 1989) to direct the search towards a Pareto front. They use niching to allow 

the spreading of solutions along the front. According to Coello (2005), the later generation of 

Pareto-based algorithms, such as SPEA2, (Zitzler et al., 2001), and NSGA-II, (Deb et. al., 

2000, 2002), involve three major elements. The first element concerns the creation of a search 

pressure towards the Pareto set. This is commonly achieved by one of the known Pareto-based 

fitness assignment (dominance-based) techniques. The second element is set to avoid 

convergence to a single solution, and preserve diversity. The third element is elitism, which 

helps to prevent losing non-dominated solutions, which are diversified. Detailed descriptions of 

multi-objective evolutionary techniques could be found in Deb (2001), and a comparison 

between the various MOEAs is available in Tan et al. (2002).  

According to a recent review by Coello (2005), EMO has reached a mature stage, and its 

development has consistently been followed by applications in engineering, product 

development, management, and science. In his survey paper, Coello defines some future 

research directions, which to his view are promising. These are: a) Incorporation of 

preferences in MOEAs, b) Dynamic test functions, c) Highly-constrained search spaces, d) 

Parallelism, e) Theoretical foundations. With respect to 'a', Coello states that "the 

incorporation of preferences within MOEA has not been fully investigated, although it is most 

important to do so, as such incorporation may focus the search towards a part of the front." In 

this thesis, this suggestion is embraced with an alternation. Instead of focusing the search 

towards solutions based just on optimality, here the interactivity directs the search towards 
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optimal solutions, which belong to preferred concepts. With respect to 'd', Coello declares that: 

"Currently, there is a noticeable lack of research in this area and is therefore open to new 

ideas". This thesis also adopts this view and uses parallelism, but with a somewhat different 

interpretation. The parallelism here is referred to the introduction of simultaneity into the 

search of concepts and their solutions.  

As a part of EMO development a number of test functions have been suggested. Van 

Veldhuizen and Lamount (1998) reviewed test functions, which were employed in MOEA 

research, and proposed three test functions as well as several combinatorial optimization 

problems. Deb (1999) identified and studied the MOEA common difficulties. Based on his 

findings he developed hard test problems for EMO. His suggested method, to construct such 

test functions, is based on transferring single objective problems into multi-objective ones. The 

method requires the choice of three auxiliary functions to control the aspects of difficulties. 

One function tests the ability to handle difficulties along the front, the second one tests such 

abilities with respect to lateral difficulties, and the third tests the ability to handle problems that 

arise due to the shape of the Pareto-optimal region. Using this approach a systematic study has 

been conducted to compare common MOEA (Zitzler et al., 2000). Jensen’s study (Jensen, 

2003) concentrates on computational complexity issues of MOEAs.  

The approximation and diversity of the numerically obtained set are the main issues to be 

considered with respect to EMO algorithm performances. Laumanns et al., (2002) discussed 

the important issue of convergence versus diversity of the solutions as attained by an EMO 

algorithm, and introduced the epsilon measure to improve MOEAs with respect to the above 

two goals. To analyze and compare MOEAs with respect to these goals, performance metrics 

and measures have been also suggested by others (e.g., Zitzler, 1999, Van Veldhuizen, 1999, 

and Bosman and Thierend, 2003). The applications of MOEAs with respect to engineering 

design, is surveyed in the following. 

 

2.2.3 Applying GA/MOEA in engineering 

GAs are being applied to many areas of engineering design including mechanical, electrical, 

aerospace, and civil engineering. A survey on the use of GAs in engineering design can be 

found in Renner and Ekárt, 2002. The following concentrates on the use of GA/MOEA for 

mechanical design, control design and mixed mechanical-control design.  

Exploring mechanical design space by GAs has been treated extensively. Among such works 

are: Structural optimization of trusses including arrangement of bars (e.g., Steven et al., 2000), 

area and material selection (e.g., Coello and Christiansen, 1998), and shape of bars (e.g., 
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Erbatur et al., 2000). Others dealt with optimization of topology for beams and for products’ 

shape involving finite element analysis (e.g., Cerrolaza and Annicchiarico, 1999). A modular 

robot has been designed with GA choosing 24 continuous and discrete parameters (Bi and 

Zhang, 2001). An extensive SOTA on mechanical design using EC may be found in Kicinger 

et al. (2005). 

The application of GA for control can be broadly classified into two main areas: off-line 

control design and analysis, and on-line adaptive control. Although issues in adaptive control 

are related to control design, it is beyond the scope of this thesis. An updated survey on GA 

applications to control was done by Fleming and Purshouse, (2002). According to their review 

GAs were used to find control parameters in almost all famous control schemas. Typically PID 

and PI schemes were studied (e.g., Vlachos et al., 1999). Other used GA to tune H-infinity 

controller, (e.g., Chen and Cheng, 1998). The scheme of the controller has been also selected 

using GAs (e.g., Chipperfield and Fleming, 1996). GAs have been used in attempts to optimize 

various aspects of intelligent controllers. In Fuzzy control, it has been used to generate the 

fuzzy rule-base and to tune the associated membership functions parameters (e.g., Gurocak, 

1999). In neural controllers, GAs can serve as an aid for weight learning and optimizing the 

topology of the net (Chung et al., 2000). GAs were also used for other control-related topology 

optimization (e.g., actuator/sensor placement by Brett and Edward, 1999). Han (1999), found 

the placement of piezoelectric sensors and actuators for vibration control, using GAs. Referring 

to control at large, Fleming and Purshouse, (2002) claim that:  "The potential of Evolutionary 

Algorithms is only starting to be realized in this area".  

The need for iterations between the design disciplines, in a mechatronic design process (see 

section 2.1.1), led to the motivation of simultaneously designing the mechanical structure and 

the controller. According to Hosam et al., (2001), 'the simultaneous strategy furnishes better 

systems than the sequential approach.' Such an approach has been adopted in several 

engineering related studies, such as for mechatronics (see Youcef-Toumi, 1996). Using EC, 

Sims initiated an approach (1994a, 1994b), to evolve body shapes and controllers 

simultaneously. Other researches followed this approach. Among these works are, Lund et al. 

(1997), who evolved robot's control programs with morphology parameters such as sensor 

number, body structure etc, Dellaert and Beer, (1996), studied the development of morphology 

and controllers for simple agents in discrete, two dimensional grid worlds. Lipson and Pollack, 

(2000), used energy minimization for the design of both the control and the structure of real 

robots from evolved virtual crawlers. Liu et al. (1998), and independently Begg (2000), used a 

GA to optimize the layout and actuator placement of smart structures. Zhu et al. (2001) 

integrated structure-control design of two-link flexible robot arm. They used a multi-objective 
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utility function to determine 6 structural parameters (length and area of links), and 5 control 

parameters (a sliding mode controller). The results showed faster regulation and reduced arms’ 

weight. Zhu et al. (2003) further introduced a simultaneous structural-control optimization of a 

coupled structural-acoustic enclosure. They have shown through a numerical example that the 

system performance has improved significantly by the simultaneous optimization.  

  

2.2.4 Resource sharing and sub-populations in single objective problems  

In biology the term species refers to the most basic biological classification. It is comprised of 

individuals that are able to breed with each other but not with others. In nature, a niche can be 

viewed as a subspace in the environment with finite resources that must be shared among the 

population of that niche, while competing to survive. In evolutionary algorithms (EAs) the term 

speciation (or 'niching') commonly refers to an automatic technique to overcome the tendency 

of the population to cluster around one optimal solution in a multi-modal function optimization. 

Speciation techniques help maintaining diversity to prevent premature convergence, while 

dealing with multi-modality. Yet, speciation has been employed for other purposes. For 

example, Darwen and Xin, (1997), have used speciation for automatic categorical 

modularization, where speciation is a way to avoid population near-identical strategies. 

Speciation, in its original sense, could be viewed as an automatic process, or an operator, that 

gradually divides the population into sub-populations (species). Each of these sub-populations 

deals with a separate part of the problem (niche of the search space). Commonly 'niche' refers 

to an optimum of the domain and the fitness represents the resources of that niche. The 

common process of speciation is also a niching process as it finds the niches, while dividing the 

population into the niches.  

The sharing method, which was originally suggested by Holland (1975), is probably the most 

popular niching technique. Sharing is analogous to a situation in nature where the resources of 

a niche have to be shared. In mathematical terms this method penalizes solutions that are 

similar, by the division of the fitness of the niche among them. The sharing method possesses 

certain flaws; the most important of them is the need to set the dissimilarity threshold (Sareni 

and Krahenbuhl, 1998). A possible solution to this problem was proposed by Goldberg and 

Wang (1997), involving a combination of coevolution and sharing technique, and the implicit 

sharing technique by Smith et al. (1992). 

Coevolution (e.g., Hillis 1990) is an important concept, which is often linked with sharing 

and sub-populations. The recent review on coevolution, done by Cartlidge, (Cartlidge, 2004), 

highlights the problem of defining what coevolution is, and suggests a new definition. 
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Coevolution, at least according to a restricted definition, involves species that are either 

competing or cooperating. Competitive coevolution, which is of a particular interest here, has 

been employed with single as well as with multi-populations. In contrast to niching, where 

species are automatically formatted, in coevolution of competing species, the species are 

commonly predefined (although their populations' relative size may be subject to automatic 

changes). This situation resembles that of a C-EMO, in which the association of sets of 

particular solutions with concepts is predefined. Moreover, finding the concept-based Pareto 

set, as suggested in this thesis, amounts to a competition among the concepts, or more precisely 

among the sub-populations that represent concepts. Competitive coevolution is usually 

employed when dealing with games. Different strategies are competing, and their success 

depends on the opponent strategies. A common approach to modeling games is by the use of a 

host-parasite analogy, where two sub-populations exist (e.g., Hillis, 1990). Several 

investigators have extended fitness sharing to coevolution including: competitive fitness 

sharing, (Rosin and Belew, 1995), implicit sharing (Darwen and Xin, 1997, Smith et al., 1992), 

and resource sharing (Juill'e and Pollack, 1998). A particularly interesting application of 

coevolution concerns the idea of evolving modules that are evaluated separately based on their 

ability to contribute to a larger whole. This results in dependencies between modules and 

complete individuals. Such setups are thus forms of coevolution, and many examples of this are 

available (e.g., Moriarty and Miikkulainen, 1999; DeJong, 2003). 

Yet, another approach to sharing within EMO is taken within genetic programming (Koza, 

1992). Genetic Programming (GP) searches a solution within a design space, which is 

represented by a tree or a graph. Within this representation niching is used to maintain diversity 

of tree structures. Several works introduced variants of diversity objective (e.g., DeJong et al., 

2001). For example, Hu et al. (2002) introduced Structure Fitness Sharing (SFS) where the 

sharing maintained different tree structures by penalizing niches of tree structures according to 

a distance measure between the nodes of the trees. SFS aims to balance the search for a tree 

structure and its parameters by applying fitness sharing to each unique structure in a 

population. McKey (2000) used implicit fitness sharing in GP. Instead of calculating the 

distance between the structures of GP trees, the fitness is shared based on the number of 

individuals with similar behaviors, capabilities or functions.  

Multi-populations exist also in parallel GA, which deals with the use of parallel hardware for 

evolutionary computations (Cantú-Paz, 1995). The division of the population, in parallel GA, is 

with respect to the hardware distribution. A popular model used in parallel implementation is 

the regional population model, which is often referred to as migration model, coarse-grained 

model, or island model (Cantú-Paz, 1995). In fact this population model is useful also in a 
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serial implementation (Pohlheim, 2001). The island model involves a division of the whole 

population into subpopulations. An exchange of information (exchange of individuals) between 

the subpopulations, which is termed migration, takes place from time to time. Pohlheim (2001) 

developed a logical extension of the regional population model with the application of different 

strategies using the principle of competing subpopulations. When using competing 

subpopulations the size of a subpopulation is varying based on the success of its strategy. As 

noted by Pohlheim, this is in fact a division of resources. Schlierkamp-Voosen and 

Mühlenbein, (1996), suggested an adaptation technique, which varies the entire population size 

in addition to a change of the sizes of competing sub-populations. They have noted the relation 

of this extension to the Lotka-Volterra equation, which describes the development of 

competing species.  

In summary, resource sharing among individuals and among sub-populations is a well know 

concept in EC, which has analogies to nature. It should be noted that the idea of resource 

sharing is also an essential part of EMO, as highlighted in the following. 

 

2.2.5 Resource sharing and sub-populations in EMO 

In EMO the algorithms should find all the trade-offs among the conflicting objectives. 

Therefore, ensuring diversity along the front, which depicts these trade-offs, is a must for any 

successful MOEA. The recent review by Zitzler et al. (2004), classifies existing methods for 

diversity preservation according to the three categories of statistical density estimation 

including: kernel methods, nearest neighbor, and histogram techniques. Fitness sharing, which 

is a popular technique for diversity preservation in MOEA, falls into the first category (e.g., 

Van Veldhuizen and Lamont, 1998). MOEAs commonly use sharing as a mean to equally 

distribute the vectors, which approximate the Pareto front. Nonetheless, the importance of 

preserving diversity within the design space has also been treated (e.g., Van Veldhuizen and 

Lamont, 2000, Chan and Ray, 2005). Different variants of preserving diversity have been 

employed, as reviewed in Van Veldhuizen and Lamont, (2000), with both genotypic and 

phenotypic distance measures. The later allows estimating the key sharing parameter, assuming 

known phenotypic extremes.  

Models of sub-populations exist in parallel EA. The development of parallel MOEA is 

relatively new; only sporadic studies are available, and no accepted test suite exists (Deb, 

1999). In general, research on parallel MOEA focuses on distributing the population as related 

to hardware considerations, such as communication. 
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Another resource sharing, which is treated within the framework of an EC search, is 

associated with Pareto-Coevolution (e.g., Ficici and Pollack, 2000, Watson and Pollack, 2000). 

In Pareto-Coevolution approach the search for optimal solution is directed by testing the 

individuals whose performances are optimized (called learners) by a testing set (called testers). 

To achieve the best progress towards optimality, a solution strategy should be chosen. An 

example of a solution strategy would be the learner that solves the largest number of tests. 

However, there may well be learners that solve tests not solved by such a learner, and may 

therefore be valuable. A solution concept that employs all information about learners provided 

by tests is given by the Pareto-Coevolution. Tests are treated as objectives in the sense of 

evolutionary multi-objective optimization. The resulting solution concept is the Pareto-front, 

containing all learners that are non-dominated as determined by their test outcomes. Sharing 

resources between learners and tests can be found in Werfel et al. (2000). In their work, the 

motivation behind resource sharing is to promote diversity, by rewarding strategies that can 

solve test cases that few other strategies are also able to solve. In this way, strategies receive 

less payoff for pursuing approaches that put them into 'niches' already heavily occupied. In 

other words, resource sharing is intended to preserve diversity, to prevent mediocre solutions 

from taking over the population, and to make more likely the emergence of exceptional new 

strategies through recombination of dissimilar, previously discovered, strategies. It is noted that 

the final goal of the approach is not to find different strategies but rather to make the search for 

optimal solution more efficient.  

 

 
2.3 Search and selection of concepts in MOPs  

In this section research efforts concerning the search of optimal concepts in the context of 

MOP are surveyed. The three concept-related notions, which were discussed in section 2.1.2, 

are considered here. These include: SBCs, SPVBCs and family of designs. It is noted that this 

thesis treats concepts according to the first view (set-based) and the review on the other two 

approaches is given for the sake of completeness and positioning the current thesis with respect 

to other approaches. In MOPs, the numerical-based assessments of designs, as related to the 

three notions of concept are associated with the solutions' performances within the objective 

space. Figure 2.3, depicts the thesis view of what is the relation between solutions and their 

performances representation as related to these three notions. A bi-objective problem is used in 

the figure for the sake of simplicity. 
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          Figure 2.3a: SBC                        b: SPVBC                       c: Family of designs 

 
In the SBC (figure 2.3a) each concept has its set of solutions, generally within its own design 

space. Each of the concepts is associated with a set of performances in the objective space 

(represented by a single point within that space). It is noted that the same performances might 

be associated with solutions from different concepts. The performances of solutions in the 

objective space are distinguished by different symbols according to their relation to a concept. 

The axes of the objective space are (as depicted in the figure) the design objectives, which are 

common to all concepts and their particular solutions. In the SPVBC (figure 2.3b), the design 

space is common to all solutions and each is associated with its related performances in the 

objective space. In this case the performances of the designs are also represented in a space 

which is directly associated with the design objectives. In the case of a family of designs 

(figure 2.3c) different designs of a product (concepts) have performances in the objective 

space. But in contrast to the former two approaches, the family of design approach focuses on 

points of the objective space where commonality exists. These points might not be a part of any 

of the concepts' fronts.  In the following sections the search and selection of the three concept-

related notions are surveyed. It is noted again that the focus of this thesis is the SBC. 

Nonetheless, the other two notions are also included in the survey here due to the above 

highlighted conflict and to their close relation with the SBC. 

 

2.3.1 Set-based concepts 

Multiobjective optimization has been used by some researchers to perform concept selection by 

posing the design as an optimization problem and choosing the designs that satisfy the 
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optimization conditions. Pareto-based methods, which use SBCs, may be found in the literature 

e.g., Li et al. (1998), Das (1999), Balling (2000), Tappeta et al. (2000), Kasprzak and Lewis 

(2000), Crossley et al. (2001). In these works the focus is on the generation of the Pareto fronts 

and then on the support of a selection of a particular solution out of the set. Such works utilize 

different search techniques such as the Weighted Sum Normal Boundary Intersection method 

(Das and Dennis, 1998), the Physical Programming method (Messac and Mattson, 2002), and 

the Normal Constraint method (Messac et al., 2003). The main advantage of last three methods 

is their ability to generate even distributions of solutions of the concepts' fronts. According to 

Mattson and Messac, (2003) "Although Pareto optimality has played a significant role in the 

advancement of methods for multi-objective optimization, its use as a tool for conceptual 

design has not yet been fully explored." In a more recent paper they stated (Mattson and 

Messac, 2005) that "only a few concept selection methods use computational optimization 

techniques to evaluate concepts." These that do use such methods are surveyed in the 

following.  

 Mattson and Messac, (2003) introduced the s-Pareto notion, as the solution of a C-MOP, 

involving a combined front of such sets of concepts. They have accompanied their solution 

method with a 'goodness' measure to compare concepts along the front (Mattson and Messac, 

2005). The goodness of each concept is quantified by determining the intersection of each 

concept’s Pareto front with the s-Pareto front. The assessment of a concept has been practiced 

within boundaries in the objective space which they have termed 'region of interest'. Exploring 

various regions of interest, the designer may collect information about the design space (i.e., 

which concepts occupy which parts of the design space); this information can be used to 

identify the most attractive design. In contrast to Mattson and Messac, who have used a normal 

constraint method to generate the front, Andersson (2001) used a MOEA approach to display 

and compare concept related fronts in a sequential approach. Each set of solutions that 

represents a concept is evolved separately and then introduced on a mutual graph to compare 

the concepts' fronts and to select a concept and eventually a particular solution.  

The general motivation to develop an EMO approach to finding the s-Pareto is rooted in the 

general benefits of using EAs to solve MOPs (see introduction). A more specific motivation for 

using an EMO approach, which is brought within this thesis, is associated with the 

incorporation of preferences towards concepts (see methodology section 3.2). It seems that the 

incorporation of such interactivity is suitable for EMO. Examining the SOTA of computational 

tools, which incorporate human preferences towards designs (e.g., IEC) within a design space, 

it appears that the use of EC is by far more common than other approaches. This is especially 

true if EC is compared with the mathematical programming related methods. The sequential 
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EMO approach, such as used by Andersson (2001), has some deficiencies as discussed in 

section 4.1.2, and it is used here for the sake of comparison with the simultaneous approach, 

which is introduced in this thesis as an alternative search approach.  

 

2.3.2   Single-Performance-Vector-Based Concepts     

An EMO search approach to concepts that are SPVBCs has been suggested by Cvetkovic 

(Cvetkovic, 2000). He assumed that different performances are associated with different 

concepts. In his work, the number of solutions, which are presented to the DM, is limited by the 

use of ranking. The result of this procedure is a diluted well-spread Pareto front. It is noted that 

several other approaches exist for presenting just several solutions on the Pareto front (e.g., the 

clustering approach, Zitzler, 1999). A similar assumption that different locations within the 

objective space are of interest to the DM has been taken by Parmee (Parmee, 1996b). Parmee 

suggested that rather than identifying Pareto-optimal solutions, information that supports a 

better understanding of the multi-criterion aspects of the problem should be introduced to the 

DM. According to his approach, high performance regions are identified by the use of Cluster 

Oriented Genetic Algorithm (COGA). The work of Deb (2003) may also be related to such a 

clustering approach. Deb used a resulting Pareto front to identify, distinct and representing 

solutions along an evolved front.  

 

2.3.3 Family of designs  

Searching for family of designs by using EC may be found in several citations.  The approaches 

to evolve the families are either sequential or simultaneous. In both approaches a Pareto front is 

developed. For example, Rai and Allada, (2003), introduced a sequential approach to tackle the 

modular product family design problem. The first step performs a multi-objective optimization 

using a multi-agent framework to determine the Pareto-design solutions for a given module set 

(SBC). The second step performs post-optimization analysis to determine the optimal platform 

level for a related set of product families and their variants. An example for the simultaneous 

approach is a MOEA approach, which has been taken by Simpson and D’Souza, (2004). They 

used NSGA-II to facilitate a structured GA (Dasgupta and McGregor, 1994), with a 

commonalty as a part of a one-stage optimization algorithm. The objectives of the problem in 

Simpson and D’Souza (2004) are the variation in design variables and a deviation function from 

a given goal. It is noted that in their approach the purpose of the optimization is different from 

that of this thesis, namely their focus is on commonality. As a result of the different motivation, 
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the algorithm is different from those introduced in this thesis. A through SOTA of EC and non-

EC approaches to search for family of designs may be found in Simpson (2003). 

 

2.4 Handling preferences using MOEA 

The main reason of preference articulation in the common MOEA literature is to limit the 

search space and direct the search towards preferred sub-spaces of the objective space. It is 

possible to classify MOEA techniques according to the approaches by which the DM is 

articulating the preferences (Van Veldhuizen and Lamont, 2000). These can be classified as: a-

priori, progressive and a-posteriori.  

   

2.4.1 A-priori methods 

A-priori approaches are associated with the articulation of the DM preferences a-priori to the 

initialization of the evolution.  One approach that belongs to this category is to transform a 

MOP into a single objective problem by specifying a utility function over all different 

objectives. A-priori preference articulation combines the objectives into a scalar cost function 

which is referred to as the fitness function. The approach is to predefine weights or their change 

interval. The weights reflect the importance of each objective in the fitness function, thus 

directing the search to a restricted region. Among such algorithms are the Weighted-Sum 

(Jakob et al., 1992), goal programming (Coello, 1996) and guidance (Branke et al., 2001). 

Another method is the Lexicographic approach (Fourman, 1985) where each goal is attended at 

a time. A comprehensive survey and explanations on all mentioned approaches and others can 

be found in Coello (1999, 2000, and 2005). 

2.4.2 Progressive methods  

The core of the progressive methods is interactivity between a DM (human) and a computer 

during the evolution. When applying such methods in conjunction with MOEA they are 

commonly referred to as Interactive Evolutionary Computation (IEC). IEC approaches might be 

categorized by the level of explicitness of the human intervention in the evolutionary process 

(Parmee and Abraham, 2004). Located on the implicit end of the spectrum are the automatic, 

model-based algorithms (no progressive articulation of preferences), and on the other (explicit) 

end are algorithms, where the evolution is solely driven by human evaluations. The explicit 

category corresponds to what has been referred to as the narrow sense of IEC (Takagi, 2001). In 
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that end of the spectrum the DM is directly changing the fitness of the individuals for the sake 

of one evolutionary step at a time. IGA is suitable for systems that are ill-defined, or hard to 

program, and the fitness function is in doubt, or un-presentable (e.g., artistic design). The more 

implicit part of the spectrum holds methods where humans do not directly set the fitness, but 

rather influence the fitness indirectly.  

An extensive survey of the use of IEC can be found both in Takagi's review of IEC (Takagi, 

2001) and in Parmee (2001c). IGAs have been used for a wide range of applications such as 

fashion design (e.g., Sung-Bau 2002, Eckert, et al., 1999), engineering design (e.g., Banzhaf 

1997, Takagi, 1998), music (e.g., Biles, 1999), and for many more.  Inoue et al. (1999) applied 

IEC to nurse scheduling support system. The head nurse interactively enters new constraints. 

This causes a change of the fitness function, and thus influencing the evolution. Parmee (2001a) 

and Cvetkovic (2000) allowed the DM to articulate fuzzy preferences towards the design 

objectives that change the fitness function weights. Furthermore in their works, an interactive 

tool was suggested allowing the DM to dynamically add constraints or goals. This was done by 

the introduction of scenarios. Moreover, Parmee used IEC for assisting the DMs in exploring 

the multi-objective design space (e.g., Parmee, 1996b). As a part of this approach the use of a 

Cluster Oriented GA (COGA) has been introduced, which allows the identification of high 

performance regions that are influenced by the DMs’ objectives’ preferences. Fonseca and 

Fleming, (1993), incorporated the goal attainment method, to their Multi-Objective Genetic 

Algorithm (MOGA). At each run the DM supplies goals, thus reducing the size of the search 

and allowing the learning of the trade-offs between the objectives. An interesting IEC work, 

which utilizes hierarchies of abstract descriptions (see section 2.1.4) for engineering design 

solutions is found in the work of Chan et al. (2000). In their work a shape of a wine glass is 

manipulated by articulation of preferences at different levels of abstraction. The fitness of the 

design is directly affected by the designers. 

 

2.4.3 A-Posteriori and hybrid methods  

 In a-posteriori preference articulation the optimal solutions are presented to the DMs by the 

computer for a final manual selection of the preferred solution. For a related and extensive 

discussion on selection between alternative solutions, based on their performances, see section 

2.3.  

In the concept-based MOP, the a-posteriori selection of a solution is associated with two 

selections. Before selecting a particular solution, a concept has to be selected and only then a 

particular solution belonging to the chosen concept may be selected. In this thesis a new 
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approach to support the selection of a concept is presented. It advances the SOTA of selecting 

concepts based on a comparison between concepts solutions' performances as detailed in 

section 3.4). The SOTA of a -posteriori selection of concepts may be found in section 2.3.    

Hybrids between a-priori and a-posteriori approaches may be found in the literature (e.g., 

Branke et al., 2001, Deb, 2005). In the hybrid approach, which is referred in Deb (2005) as I-

EMO, the DM specifies the preferences as good as possible and provides imprecise goals. 

These are then used in a MOEA to bias, or guide the search towards the solutions that have 

been classified as 'interesting' by the DM. According to Deb (2005), "this procedure, in 

addition to providing the ideal and nadir points of the problem, will also paint a good picture 

in the mind of the DM about the shape of the Pareto-optimal frontier which will help the DM 

later to concentrate on a particular region on the front." 

 

2.5 Robustness considerations  

The survey on robustness is conducted with respect to the three concept-related notions (see 

section 2.1). These include: SBCs, SPVBCs and family of designs. It is noted that in the 

SOTA, the combination between a search for optimal and for robust SPVBC, which are 

declared as concepts, is scarcely found. Therefore, the common robustness considerations as 

related to particular solutions are alternatively surveyed (in the context of SPVBC). This is 

done in section 2.5.1. Section 2.5.2 focuses on the robustness of concepts that are represented 

by sets of designs (as the approach of this thesis) and finally section 2.5.3 surveys robustness as 

related to family of designs.       

 

2.5.1 Robust design for particular solutions  

Robust performance design tries to ensure that performance requirements are met and 

constraints are not violated due to system’s uncertainties and variations (e.g., Mattson and 

Messac, 2005). Fundamentally, robust design is concerned with minimizing the effect of such 

variations without eliminating the source of the uncertainty or variation (Phadke, 1989). 

   Taguchi, (e.g., Taguchi et. al., 1999) has contributed tremendously to the development of this 

field of interest by introducing several approaches (e.g., Loss Function, Orthogonal Arrays and 

Linear Graphs). It is well known that optimality and robustness might be contradicting 

demands (e.g., Andersson, 2001). The importance of arriving at a robust design is well known 

and the interest at that field is reflected by the vast number of works, which are partially 

surveyed in the following. 
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Treating robustness by non-evolutionary approaches may be found in many related studies. A 

typical approach for handling uncertainties is to use safety factors. Although popular, the 

safety-factor approach generally results in overly conservative designs (Koch, 2002). Other 

robust design approaches focus on the probability of design failure, where failure is to occur 

when design constraints are violated. To minimize the likelihood of design failure, such 

approaches seek to reduce the area under the Probability Density Function (PDF) that lies 

outside the constraint boundaries.  The area under the PDF that lies outside the constraint 

boundaries is reduced by optimizing the mean performance and minimizing its variation. 

Feasibility is maintained with probabilistic constraints. 

 Performing uncertainty analyses generally involves obtaining the variations in the response 

given variations in the input variables. Various approaches are typically used to obtain this 

output variation. Among others, these methods include Monte Carlo simulations, and 

sensitivity-based estimations (Koch, 2002). The Monte Carlo simulation is known to 

appropriately represent the behavior of the response variable when an adequately large number 

of samples are used. For computationally expensive problems, the number of samples needed 

to obtain the output variation may render the Monte Carlo approach prohibitive. In such a case, 

other reduced-sampling methods exist that can provide an adequate representation of the 

response function variation. These methods include Latin Hyper-cube sampling, Taguchi’s 

orthogonal arrays, and importance sampling (see Du and Chen, 2000). 

Robust performance approaches, involve situations in which either the design variables 

and/or the environmental parameters are subject to perturbations or changes. There are many 

possible ways to treat robustness by using EC, and a few possible heuristics have been 

suggested in Branke (2001b). The existing research work is commonly concerned with 

robustness as related to single objective problems, and the optimization of the expected fitness, 

given a probability distribution of the disturbance. Since it is usually not possible to calculate 

the expected fitness analytically, it has to be estimated. This, in turn, raises the question on how 

to estimate an expected fitness efficiently, and how to optimize based on such estimates. 

Evolutionary algorithms have been shown to be quite robust with respect to uncertainty in the 

fitness values, (e.g., Arnold and Beyer, 2003). Common evolutionary-based approaches to 

search for robust solutions include the following: a. explicit averaging over multiple samples 

(e.g., Thompson 1998, Wiesmann et al., 1998). b. evaluating important individuals more often 

(e.g., Branke et al., 1998b, Branke, 2001c)  c. using other individuals in the neighborhood (e.g., 

Branke, 1998) d. meta-models (Andersson, 2001). An EMO approach to deal with robustness 

to a single objective problem has been taken by several researches (e.g., Das, (2000), Jin and 

Sendhoff, 2003). According to their approach performance and robustness were treated as 
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separate objectives. The Pareto front contained a set of solutions with different relations 

between performance and optimality.   

Dealing with robustness within MOPs is scarcely found. Just recently Deb and Gupta (2004, 

2005) introduced a formulation for the different aspects of robustness and suggested an 

approach to evolve a robust front based on the mean of an effective fitness function. Luo et al. 

(2005) used an EMO approach to evolve robust fronts which are a result of taking into 

consideration possible market changes. In their work it has been assumed that, given a design 

space, the designer typically can specify a target point in terms of aimed design objective 

values. This target becomes the basis for determining the worst-case objective values and the 

best-case objective values under the variations in uncontrollable design parameters. 

EC-based approaches are also used to treat other kinds of uncertainties including noisy fitness 

function, and dynamic fitness function. In the former approach noise in fitness evaluations may 

come from many different sources such as sensory measurement errors or numerical 

instabilities in the simulation. Examples of GAs that treat such uncertainties are: Sano and Kita, 

(2002), Branke (1998a) and Stagge (1998). In the later method a dynamic fitness function is 

considered. In such a case, it should be possible to continuously track the corresponding 

dynamic optimum rather than to repeatedly re-start the optimization process. Examples of GAs 

that consider dynamic fitness function are: Gobb and Grefenstette, (1993), and Naoki and Kita, 

(2000).  

 

2.5.2 Set based Concepts' robustness 

Studies on robustness concerning SBCs are scarce. Mattson and Messac, (2003) consider both 

uncertainties caused by stochastic design parameters and those associated with the design 

model. They have used a non-evolutionary method to produce separate Pareto fronts of 

concepts, and then combine them to a mutual front by the s-Pareto approach (see section 2.3.1). 

These fronts are then shifted according to non-deterministic approach to take into account 

uncertainties in design parameters and model structure (Mattson and Messac, 2002).    

Andersson (2002) has also addressed robustness of concepts. In his work, conceptual fronts are 

separately evolved by a MOEA, and then plotted on the same graph to obtain a final front. The 

sensitivity of different points on those fronts to different parameters combinations is evaluated. 

These evaluations serve the DMs for better insight and increase their capability to select good 

concepts. A similar approach has been taken by Olvander (2005). He presented a method where 

a multi-objective genetic algorithm is combined with response surface methods in order to 

assess the robustness of the identified optimal solutions. In his work, two different concepts of 
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hydraulic actuation systems have been considered. The outcome from the optimization is a set 

of Pareto-optimal solutions that elucidate the trade-off between energy consumption and 

control error for each system. Based on these Pareto fronts, promising regions could be 

identified for each concept. In these regions, sensitivity analysis has been preformed to 

determine how the parameters affect the system at different optimal solutions.  

Although optimality is the main focus of SBCs assessment, it is most important that DMs 

will choose a concept that might cope with market variability and uncertainty by the delivery of 

a large numbers of product variants (Tiihonen et al., 1998). With respect to this view, it could 

be claimed that commonly the performance of a chosen design can be optimal in the Pareto 

sense, but considering the phenomenon of contradicting objectives, it might not be robust to 

objective variability and uncertainty. In contrast, concepts, which span a sub-space of 

preliminary designs, may possess such robustness.  

 

2.5.3 Family of designs related robustness  

When families of designs are concerned (see section 2.1.2), apart from the above issues, some 

new aspects of robustness may be considered. Product Family Based Robust Design (PFBRD) 

may accommodate for changes in the market, changes in customer needs/requirements, change 

in government/legislation (http://mail. chiangmai.ac.th/ ~apichat /Intro.htm in 'research 

objectives' 2004). 

Gonzalez-Zugasti et al. (2000, 2001) assess the net value of a product family using real 

options to model the risks associated with factors, such as uncertainty, in funding levels and 

technology readiness. Blackenfelt (2000) uses robust design techniques to maximize profit and 

to balance the commonality and variety within a product family; he demonstrates the approach 

by using it to design a family of lift tables. Jiang and Allada, (2001) use a similar approach to 

design a family of vacuum cleaners that is robust to current and future market trends.  

The SOTA as reviewed in sections 2.1-2.5, possesses some shortages as summarized in the 

following. This is followed by the statement of the objectives of this thesis.  

  

2.6 Shortcomings of the existing SOTA and thesis objectives  

Examining the SOTA as surveyed above, the following observations are made: 

a. The surveyed studies, which deal with SBCs, do not incorporate interactivity with 

respect to the concepts. 
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b. The surveyed studies, which utilize EMO, do not combine model-based performances 

with human preferences of concepts and sub-concepts.  

c. The surveyed approaches do not utilize preferences of designers towards abstract 

descriptions within a hierarchical representation of SBCs. 

d. None of the existing EMO approaches to search for the s-Pareto are simultaneous. 

e. The few studies, which support SBC selection, suggest utility based measures, which 

may hide valuable information concerning the tradeoffs between the different aspects 

of the conceptual design. 

f. The delayed decision problem has not been introduced in the context of a MOP. 

g. The solution to the delayed decision problem has not been supported by a 

computational tool. 

h. The surveyed studies, which deal with SBCs, do not convey mechatronic examples to 

demonstrate the applicability of the approaches to a combined control-structure 

design. 

 

The above list of limitations of the existing SOTA points at some needs in advancing 

computational methods to support conceptual design, and in particular with respect to multi-

objective problems and their solution by evolutionary methods. The objectives of this thesis 

address the above shortages and are associated with the following four main issues: 1. 

simultaneous evolution of concepts' solutions towards and along a Pareto front (with respect to 

points 'd' and 'h'); 2. interactive evolution of concepts' solutions towards optimal solutions of 

preferred concepts (with respect to points 'a-d' and 'h'); 3. assessment and comparison of 

concepts in the multi-objective space (with respect to point 'e' and 'h'); 4. supporting decision 

making with uncertainties due to delayed decisions (with respect to points 'f-g' and 'h'). The 

following provides some details about the operative objectives of this thesis.  

  

A. Develop a simultaneous approach to evolve an s-Pareto. This should be done by 

developing a MOEA to simultaneously search for concepts by way of evolving their 

particular solutions. Such an approach requires special considerations in terms of the 

utilization of the resources, to provide a good approximation to the associated Pareto 

front. The references given in sections 2.2.4, 2.2.5 do not compare easily with this 

requirement, which involves an inherent division of the population to sub-

populations. During evolution, mating between sub-population should be avoided for 

reasons related to the nature of different concepts, leading to a need to consider the 

resource sharing between and within the sub-populations. The simultaneity objective 
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imposes a need to treat the evolution in a new manner. The common use of 

phenotypic and genotypic niching, as surveyed above, is not applicable. The 

phenotypic niching may not be applied due to the possible existence of solutions from 

different concepts in the same location in the objective space. The latter can not be 

applied because the solutions of the different concepts may be from different design 

spaces, and/or have different number/boundaries of design variables (see section). 

Therefore, a distance between such solutions may not be rationally formulated. 

It is noted that the main motivation for the simultaneous approach is the 

interactivity, as explained in the methodology chapter. Nonetheless, the apparent 

inefficient use of resources, which is involved with a sequential approach, serves as a 

further motivation for its development.  

B. Develop an interactive concept-based algorithm to evolve solutions, which are 

influenced by both model-based performances and by DMs preferences of the 

solutions' concepts. This means that the search should be conducted towards optimal 

concepts' solutions, taking into consideration the preferences of the DMs towards the 

concepts themselves (either directly or by way of sub-concepts). With this respect, it 

is noted that a concept might be represented by a hierarchy of sub-concepts. The 

interactive concept-based evolution should therefore utilize the available 

computational resources to restrict the search towards the optimal solutions of 

preferred concepts and sub-concepts, while taking into consideration the hierarchical 

representation of the design space.  

C. Develop a method to compare concepts by highlighting the tradeoffs between 

different possible objectives of the conceptual design. The method should 

incorporate measures that will allow a comparison between the concepts, thus 

supporting taking a decision on a concept. To highlight the tradeoffs, a utility function 

of the conceptual design's objectives should be avoided, as it merges these objectives 

into a scalar value, hiding the tradeoffs.  

D. State the delayed decision problem within the context of MOPs. 

Many engineering problems are MOPs and the need to postpone decisions in 

conceptual design is recognized. Therefore, the delayed decision within the context of 

MOPs should be introduced.   

E. Suggest a computational-based method to support decision making within the 

conceptual design stage in the presence of delayed decisions uncertainties. Such a 

method may support decisions in the conceptual design stage, by supporting the 
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decision on the basis of computations and not just based on human subjective 

evaluations.    

F. Demonstrate the applicability of the proposed approaches to mechatronic 

conceptual design.  

 

The scope of this thesis is wide and generic. It introduces new ideas, approaches, notions and 

algorithms as introduced in the following chapter. The contributions and their significances are 

highlighted and discussed in chapter 5. 
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CHAPTER 3 

 
METHODOLOGY 

 

In ‘real-life’ situations humans rely on their experiences and preferences in choosing a 

conceptual solution, and eventually they translate the chosen concept into a chosen 

preliminary/detailed design. This is usually done with or without the ability to explicitly 

evaluate the merits of the chosen solution. The aim of this work is to suggest a method to 

support DMs, by performing a concept-based multi-objective search, and by suggesting an 

approach for concept selection. The proposed search concerns conceptual solutions that can be 

represented by sub-sets of the set of particular solutions. In this thesis, which deals with 

applications to engineering design, these particular solutions are preliminary designs. 

Nevertheless, it is claimed here that the introduced approach is not limited to engineering 

design and therefore the notion of ‘particular solution’ is also used. It is further assumed that 

the performances of each preliminary design are computable via models (e.g., tables, 

parametric models). Each conceptual solution, and its associated particular solutions, may be 

characterized by different models, different design variables, and/or range of variables. 

The following sections describe the suggested methodology. Section 3.1, describes the way 

concepts are represented in this thesis. Some tailored definitions linking between the design 

space and its representation are given. Based on this representation different types of concepts, 

which might be extracted out of the representation, are introduced. Section 3.2, describes the 

notion of a C-MOP. It also includes the formulation and introduction of several types of 

concept-related fronts as well as a suggestion for concept-based indicators that allow the 

assessment of concept-based algorithms. Furthermore two simultaneous EMO algorithms are 

introduced. These algorithms are utilized to evolve the s-Pareto front. The algorithms involve 

some new features that are introduced and explained within this section. Section 3.3, describes 

the interactive search of the design space for conceptual solutions, which are influenced by 

both solutions performances as well as by human preferences of the solutions' concepts. The 

interactive search problem is defined as well as the resulting fronts. An interactive MOEA and 

measures to assess its success in consistently evolving the front are introduced. In section 3.4 

the selection of concepts for solving a MOP is treated. A new approach to compare between 

concepts, for supporting concept selection, is suggested. In section 3.5, the delayed decision 

problem is explained and restated as a MOP. Thereafter, the approach, which is introduced in 
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section 3.4, is adapted to support conceptual decision making in the presence of such an 

uncertainty. Testing the methodology, which is presented in this chapter, is left for chapter 4. 

3.1 Design space representation 

In this thesis the design space is represented by an 'AND/OR' tree (a tree with nodes that are 

either of the type ‘AND’ or of the type ‘OR’). Such a representation is not new (see literature 

survey, chapter 2). Nevertheless some new relations between the tree and engineering 

conceptual design are introduced. These relations allow the introduction of new interactivities, 

between the DMs and the computers, during the conceptual design stage, as explained in this 

thesis. The description of the 'AND/OR' tree representation, in section 3.1.2, is followed by a 

discussion on the types of concepts that may be extracted from such a tree. The tree 

representation and its associated models allow the interrogation of the design space by the 

proposed methodology. It should be noted that in this thesis the focus is not on the construction 

of the design space representation, but rather on the search process itself, within the space 

representation. Therefore, issues concerning the space representation, such as: constraints, 

uniqueness, and extraction of sub-trees, are not discussed here. It is further noted that the 

suggested technique does not deal with the innovation stage of design, thus it is restricted to a 

search within a given representation of the design space (see section 2.1.2). This means that the 

generation of the concepts is not treated within the thesis.  

 

3.1.1 The 'AND/OR' tree representation 

This thesis deals with concepts that have computable models. To clarify the use of terms the 

following definition is given, with a subsequent example. 

 

Definition # 1 
A Complete Concept (CC) is a concept that has a computable parametric model, which allows 
the evaluation of the performances of its associated particular solutions. 
 

The term CC designates a concept, which has a model, from concepts that do not. For 

example, an aircraft is a concept (idea) that could serve to solve an engineering problem of 

transporting goods and people from one continent to the other. The idea of an aircraft is not a 

CC, as it does not have a computable model to calculate its performance. In order to become a 

CC more details on the particular plane type should be provided (e.g., the type and shape of the 

wings). At a certain level of details, which depends on the particular design, a model can be 

obtained. Once a concept has all the necessary abstract descriptions of its details to obtain a 
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parametric model it becomes a CC. Each CC is represented by an 'AND' tree, hereby termed 

CC Tree. The nodes of the CC tree represent Sub Concepts (SCs), which are defined below.  

 
Definition # 2 

A Sub Concept (SC) is an abstract description of one of the following types: 1. an abstract 

description of a part of a concept/CC, 2. a feature of a concept/CC, or 3. a concept that is 

insufficient to be a CC. 

The following example is given to demonstrate the meaning of the three types of SCs. A 

wing is an example of the 1st type, as it is a description of a part of the concept 'plane.' Stiffness 

of the plane structure is an example of the 2nd type, and a 'plane' is an example of the 3rd type, 

due to its insufficiency for modeling (see example of a CC above). The SCs, of each branch of 

a CC tree, are descending as a result of the level of the abstraction of the details. Thus the SCs 

are ordered in a hierarchy of abstract descriptions. For example, a SC of 'PI controller' is a 

more detailed, yet abstract description of a 'controller' SC. Therefore the former is the son of 

the latter, or in other words it is located in a lower hierarchy with respect to the latter. The root 

node is the 1st hierarchy followed by increasing index of hierarchy till the leaves, which are in 

the lowest hierarchy (highest index). 

 

Definition # 3 

A design space tree is an ‘AND/OR’ tree which holds all the CC trees of the design problem.  

 

The design space tree represents the conceptual design space. The CC trees, which are 'AND' 

trees, can be extracted from the design space ‘AND/OR’ tree. Selecting a particular CC 

(extracting it from the ‘AND/OR’ tree) involves decisions associated with the ‘OR’ nodes. The 

‘OR’ nodes are designated by 'On' . The ‘AND’ nodes are nodes representing SCs that are 

made of a combination of other SCs (represented by the child nodes). Such nodes are 

designated by 'An'.   Figure 3.1 depicts a design space tree with some nodes designated by their 

type (an 'On' or an 'An'). 

Figure 3.2, in conjunction with table 3.1, depicts an example of a part of such a design space 

tree. This space corresponds to the engineering problem of designing an artifact for the purpose 

of moving a given load from location 1 to location 2. 
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    Figure 3.1: A design space tree 

The ‘A’ node (not included in the table) is the root node (decision node) designating the ‘OR’ 

decision between ‘B’ and ‘C’ and is the 1st level of the hierarchy.  

 
Figure 3.2:  Example of a part of a design space tree 

 
Table 3.1: Details of figure 3.2 

  
   

 

 

 

 

 

 

 

It should be noted that the SC ‘B’ of 'one arm manipulator' spans different CCs, which can be 

extracted out of the tree. A representation of one such a CC, which is extracted from the tree of 

figure 3.2, is given in figure 3.3. Its verbal description is: use a one-arm manipulator, with a 

constant I-cross-section steel arm, with a PID controller. 

 

SC Description of SC L SC  Description of SC L 
B One arm manipulator 2 M Rectangular cross sec. 5 
C Conveyor 2 N I- cross section 5 
D Arm's Shape 3 O Circular cross section 5 
E Arm's Material 3 P Tube cross section  5 
F Arm's Control 3 Q PID controller 5 
G Variable cross section 4 R PI controller 5 
H Constant cross section 4 S Fuzzy controller 5 
I Aluminum-based link 4 T NN controller 5 
J Steel-based link 4 U Triangle membership fn. 6 
K Linear control 4 V Trapezoid membership fn. 6 
L Non-linear control 4 W Gaussian membership fn. 6 
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Figure 3.3: Tree representation of an extracted CC 

 

A SC may have more than one detailed abstract description. For example, a PID and PI 

controllers are both more detailed descriptions of the same SC- 'linear control' (see node 'K' of 

fig 3.2). These additional details are represented by an 'OR' operation, as it makes two different 

abstract alternatives under the SC of a 'linear control'. SCs may also have 'AND' operator. For 

example the 'AND' operator between the sons of the SC located at node B of figure 3.2. It is 

noted that a SC may appear in several nodes (e.g., SC ‘N’ in figure 3.2). This is a result of the 

predefined structure of the tree representation that may include the same SCs in different 

branches of the tree.  

A pruned 'AND' tree of a CC may still represent a concept. Yet, it is a more abstract 

description than the CC and it lacks a model. 

 

Definition # 4 

A Higher-Level Concept (HLC) is a concept which results from pruning the tree representation 

of a CC.  

 

It is noted that the same HLC might be pruned from several different CC trees. In such a case 

the CCs that are associated with the same pruned tree are termed associated CCs. 

 

Definition # 5  

An Associated CC (ACC) of an HLC is a CC, which contains that HLC. 

 

An HLC is a more abstract description than its ACC/ACCs. Figure 3.4 depicts an HLC (middle 

graph), and two ACCs (right and left graphs) of the design space. The linear control (‘K’ SC) 

may be implemented by either a PID controller (‘Q’ SC) or by a P controller (‘R’ SC).  
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Figure 3.4: An HLC and its ACCs 

 

The verbal description of the depicted HLC is a one-arm manipulator with a constant I-cross-

section steel arm and a linear controller (less detailed description of the controller with respect 

to both ACCs). The different notions used in this section are summarized in table 3.2.  

                                                    Table 3.2: Summary of notions 

Definition # Notion Abbreviation Tree representation 

1 Design space  'AND/OR' tree 

2 Sub-Concept SC Node 

3 Complete Concept CC 'AND' tree 

4 Higher Level Concept HLC Pruned 'AND' tree 

5 Associated Complete Concept ACC 'AND' tree 

                                                       

3.1.2 Concept types and the 'AND/OR' tree  

In this thesis, it is assumed, that when a description of a concept, by way of its SCs, becomes 

sufficiently detailed, it may be related to a model, involving some variables. Here, a model is a 

vector of objective functions (see section 3.2.1.2 for details). Solving the model by using values 

for the functions’ variables allows the computation of a concept’s solution performances. 

Therefore for each of the ‘AND’ trees that are extracted from the ‘AND/OR’ tree there is such 

a model.  

   In this thesis it is assumed that no other concepts other than the CCs have computational 

models. In other words, in contrast to CCs, HLCs  are assumed not to have a unique model, due 

to their insufficient descriptions. Nevertheless an HLC might be related to one or more CCs, 

depending on the pruned branches. Multiple models, that are multiple vectors of objective 

functions, are associated with an HLC whenever an ‘OR’ operation exists in the original 
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‘AND/OR’ tree under the pruning location. For example, a fuzzy controller, ('S' SC of figure 

3.2) may be implemented by either triangular membership functions ('U' SC of figure 3.2) or by 

Gaussian membership functions ('W' SC of figure 3.2). These different SCs that are related to a 

fuzzy controller are associated with different models. Therefore a possible description of such 

an HLC is: use a one-arm manipulator, with a constant I-cross-section steel arm, with a fuzzy 

controller. 

Definition # 6 

Multi-Model Concept (MMC) is an HLC that is associated with more than one ACC 

 

Each MMC has a set of CCs’ models to compute its performances. This means that for an 

MMC there is more than one vector of objective functions to compute its performances.  

MMCs are used in this thesis in conjunction with the delayed decision uncertainty (see section 

3.5). There, the uncertainty dictates a need to take conceptual decisions while considering the 

performances of all the MMCs' ACCs,    

    

3.2 Concept-based search and optimization   

Commonly the search of 'optimal' solutions within a multi-objective space is referred to as 

Multi-Objective Optimization (MOO). Usually, the optimization purpose is to find the Pareto 

front (see section 2.1.3). In the concept-based problem, the front may be associated with 

solutions from more than one concept. Therefore the search has to consider not just optimality 

but also the relation of the solutions of the optimal set, to concepts, which are in this section; 

CCs (see definition #1 in section 3.1.1). In the following, a formal representation of a C-MOP 

is given. This formalization is equivalent to the one in Mattson and Messac, (2005) and is given 

here for the sake of clarity and completeness. Thereafter, this formulation is discussed with 

respect to both a simultaneous and a sequential approach. Next, two new algorithms, which are 

hereby termed C1-NSGA-II and C2-NSGA-II are presented and tested. They involve a new 

approach to the resource-sharing problem between and within concepts, while evolving 

towards and along a Pareto front. It is important to note that, in contrast to any former concept-

based work, here mating among concepts is avoided, which leads to a possible comparison 

between concepts and species. Such a comparison is suggested in recent papers (Moshaiov 

2006a, b).   
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3.2.1 Problem definition and solution approach  

In this section the distinction between a C-MOP and the classical MOP is highlighted.  

Furthermore, two alternatives for generating the concept optimality related front (s-Pareto) are 

discussed including: a sequential and a simultaneous approach. It is noted that the current 

investigation is based on the second approach.  

 

3.2.1.1 Classical MOPs 

In the classical multi-objective search problem, such as dealt with in Coello (2005), the set of 

Pareto optimal solutions is sought from the set of all possible particular solutions. Any 

particular solution is characterized by specific values of the problem decision variables 

representing a point in the problem decision space. The set of Pareto optimal solutions is found 

by comparing the performances of all particular solutions in the objective space for non-

dominance. The representation, in the objective space, of the set of non-dominated solutions is 

known as the Pareto front. A classical MOP is commonly formalized as follows:  

)x(Fmin  

s. t.      nRSXx ⊆⊆∈  

(3.1) 

where x is the vector of decision variables. In general x might be subjected to equality and/or 

inequality constraints, which commonly include some bounds on the decision variables. A 

solution nRSXx ⊆⊆∈ , which satisfies all the constraints, is called a feasible solution. The 

set X, of all feasible solutions, is called the feasible region in the search space S.  A MOP deals 

with minimizing of F(x), which is the vector of K objective functions where,                      

T
K21 )]x(f),....,x(f),x(f[)x(F =      2K ≥  (3.2) 

It can be shown that problems involving maximization, or a mixture of both min and max 

with respect to different objectives, may be easily transformed into the above problem. 

Furthermore, it should be noted that usually, due to contradicting objectives, there is no single 

solution to the above problem. In the classical MOP the focus is therefore on the trade-offs 

with respect to the objectives. The well-known concept of Pareto dominance supports 

exploring such trade-offs. The development of an optimality-based Pareto front in the objective 

space is based on a comparison between solutions using the idea of vector domination. Under 

minimization a vector )u,...,u(u N1= is said to dominate )v,...,v(v N1= , denoted by vup , iff u is 

partially less than v, i.e., jjjj vu:}N,...,1{jvu},N,...,1{j <∈∃∧≤∈∀ . If u dominates v in the 
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objective space then the corresponding solution of u is considered a better solution than the one 

corresponding to v (with respect to the minimization problem).  

The Pareto optimal set, ∗P , is the set of optimal solutions to the classical MOP such that:     

)}x(F)x(F:Xx|Xx{:P *''* p∈∃¬⊆=∗  (3.3) 

 As declared above, the performances of the optimal solutions constitute a set of points within 

the objective space, which is termed Pareto front. The Pareto front set ∗PF is defined as: 

}Px:)x(FyYy{:PF **** ∗∗ ∈=∈=  (3.4) 

A solution that its performances are included in the Pareto front set is a Pareto optimality 

solution. 

3.2.1.2 Concept-based MOPs  

In a C-MOP, which is equivalent to the s-Pareto definition of Mattson and Messac 2003, the 

interest is not on the performances of particular solutions, as done in the classical MOP. The 

focus here is rather on obtaining the set of performances of each of the conceptual solutions 

that are distributed along the Pareto-front, or at least a representative set for each such concept.   

The notion of a conceptual solution, as understood in engineering design, (e.g., Mattson and 

Messac 2003, Andersson 2001), is associated with abstract ideas, which are generated by 

humans, describing a generic solution to a problem. Due to its inherent lack of details it is 

difficult, and often impossible, to evaluate a conceptual solution in the regular sense of 

performances. In fact the selection of a conceptual solution is commonly done based on human 

experience and preferences, without the use of computational means. Traditionally, during a 

conceptual planning or design stage, no particular solution is explored. In comparison with 

conceptual solutions, particular solutions are sufficiently detailed such that each has a one-to-

one relationship with a point in the objective space (as in the classical MOP). In such problems, 

the association of multiple particular solutions with a concept, together with the association of 

each particular solution with a point in the objective space, constitutes a one-to-many 

relationship between a conceptual solution and the objective space. In such a case, a C-MOP 

can be defined, in which the distribution of solutions that represents concepts along a Pareto 

front is sought.  

The concept-based search concerns conceptual solutions that can be represented by sub sets 

of the set of particular solutions of the problem. It is assumed that the performances of each 

particular solution are computable. Each conceptual solution, and its associated particular 

solutions, may be characterized by different models and/or range of variables. It is noted that 
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the models, either identical or not, map the concepts solutions' performances to an objective 

space, which is mutual to all concepts. It is recalled that such a concept has been termed a CC 

(see definition # 2 in section 3.1.1). For example, the problem of storing some powder is 

considered. Two possible concepts are examined. The first is of cylindrical containers and the 

second is of prismatic containers, with rectangular base. The decision variables of the first 

concept are: the radius of the base, and the cylinder height. The second concept involves the 

width and the breadth of the rectangular base as well as the height of the prismatic container. 

Obviously, these concepts are not represented in the same decision variable space, yet they are 

examined with respect to the same objectives, hence they share the same objective space. For 

example, consider the MOP, which involves the maximization of the volume, while 

minimizing the weight of the empty containers. It is clear that the models to calculate the 

performances differ from one concept to the other. Another way of posing a C-MOP is to 

consider two concepts for the above MOP, which may share the same decision variable space 

and models. One may define two different concepts, both involving prismatic containers. The 

first is of large base and short height and the second is of small base and medium height. It 

should be noted that the first MOP example might be reformulated as a constrained problem 

within the 'same' variable space. In other words, a circle equation could serve as a constraint for 

the base variables of the cylindrical container, within a Cartesian coordinate system. Yet, this is 

not the general case as concepts to solve a MOP may be as remote as a plane and a car; both 

are valid concepts to solve a traveling problem between two cities.  

Here, nc sets of decision variables are used; one set for each CC. The m-th set for the m-th 

CC, of all its feasible solutions, is denoted Xm, where mn
mm RSX ⊆⊆ , and mS is the search 

space of the m-th CC. mX  contains the decision variable vectors, xm, of the m-th CC, as 

follows:  

        m
m Xx ∈    m = 1,….,nc           (3.5) 

where the dimension nm of the vectors, xm,  is in general concept dependent. The set X is the 

union of these nc sets, i.e., 

U
cn

1m
mXX

=

=    
(3.6) 

The vector of objective functions YX:F →  is given as follows  

c
mm n,.....,1m,xxfor),x(F)x(F ===      (3.7) 
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where YX:)]x(f),....,x(f),x(f[)x(F m
Tmm

K
mm

2
mmmm

1
→=  , for m = 1,..., nc , is the 

mapping, into the objective space, of the particular solutions that are associated with the m-th 

concept and 

   { }KRyYy ∈∈      (3.8) 

The mapping of the m-th concept is done by using a set of concept related objective functions 

with )x(f mm
k (or in short m

kf ) as the k-th objective function. The above exposition allows 

defining a C-MOP similarly to the classical problem. A C-MOP is defined as the problem 

stated in (3.1), with the minimization of F(x) as defined in (3.7) and (3.8), subject to (3.5) and 

(3.6).  C-MOPs involve finding the Pareto-optimal concepts, where a Pareto-optimal concept is 

defined as a CC with at least one member of its sub-set being a non-dominated solution with 

respect to the entire feasible set of solutions. The solution to a C-MOP is termed the concept-

based Pareto set, and is designated as ∗
CP . Similarly, the associated front is termed the Concept-

based Pareto Front (CBF), and is designated as ∗
CPF . These are defined as follows:   

        
}Px:)x(Fy|Yy{:PF

}n,...,1iand}n,...,1{m),x(F)x(F:Xx|Xx{:P

C
*
m

*
m

m**
C

cc
*
m

m
i

i
ii

*
mC

∗∗

∗

∈=∈=
=∈′∈′∃¬∈= p     

(3.9) 

These definitions coincide with that of the s-Pareto (Mattson and Messac 2005), and are given 

here for the sake of completeness and clarity.   

A C-MOP differs from the classical MOP in several aspects, as indicated in the example of 

the containers given above. First, a C-MOP involves the possibility of several decision variable 

spaces of different dimensions, whereas the classical problem is commonly defined with one 

such space. Second, even under a restricted case of one decision space the search is inherently 

divided into different regions to explore the behavior of concepts rather than just specific 

solutions. Finally, the end result, which is a Pareto set and its associated front, should provide 

an understanding of the distribution of CCs' representatives on the front, rather than just 

specific solutions. The resulting fronts could be categorized as suggested in the following 

section. The introduced categorization is important when considering resource sharing within 

EMO (see section 3.2.2.2).    

 

3.2.1.3 Types of Concept Based Fronts  

CBFs could be categorized into two different types of fronts.  In the first type any point of the 

front is associated with a solution or solutions of one CC only: **
m

*
m

** yx|xyx ''
m

→¬∃→∀  for 
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all mm ′≠ . This type of front is hereby termed:  'non-intersecting front.'  In the second type, 

there exists at least one point of the front, which represents the performances of solutions that 

are related to more than one CC: **
m

** yx|yx '
m

→∃→∃  for all mm ′≠  . This front is hereby 

termed 'intersecting front.' The two types of fronts are depicted in figure 3.5 for a bi-objective 

space, where performances of different CCs are designated by different colors (black and gray). 

 

Figure.3.5: a. Non-intersecting front    b. Intersecting front: case 1    c. Intersecting front: case 2 

 

A primitive case of the non-intersecting front is the uni-concept front in which there is only one 

optimal CC. Two approaches to obtain CBFs are discussed below.  

It is noted that in the C-MOP, it is important to find all 'optimal' CCs even that some may cover 

a smaller sub-space of the front than others (such as the case in figure 3.5.c). This is due to the 

fact that the DMs may prefer any of the 'optimal' CCs based on un-modeled hazards or as a 

result of subjective preferences.  The reader is referred to section 3.2.2.2 for explanations on 

how the proposed algorithms apply a search pressure towards the representation of all of the 

'optimal' CCs on the CBF.  

 

3.2.1.4 The sequential approach 

The sequential approach to solve a C-MOP consists of auxiliary problems. According to this 

approach the problem is reformulated into two stages. In the first stage each CC is considered 

independently, in a fashion similar to the classical MOP. In other words, for each of the m-th 

CCs (m=1,…., nc), the MOP is solved to independently minimize )x(F mm . This results in nc 

Pareto sets and associated fronts.  The Pareto set of the m-th CC, ∗
mP  , and its associated Pareto 

front, ∗
mPF , are defined below:                                                    

   
}Px:)x(Fy|Yy{:PF

)}x(F)x(F:Xx|Xx{:P

m
*
m

*
m

m**
m

m
m'

m
m

m
'

mm
*
mm

∗∗

∗

∈=∈=
∈∃¬∈= p

         
(3.10) 
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Finding ∗
mP  for each of the CCs is an auxiliary stage in solving a C-MOP sequentially. In the 

second stage the union of the CCs Pareto sets U
cn

1m

*
muc PP

=

∗ = is obtained. Thereafter, the Fronts 

Union (FU) set, is found by U
cn

1m

*
mPFFU

=

=  and dominance sorting among the members of FU is 

performed to finally obtain the combined Pareto set, ∗
CCP  and the related combined front, ∗

CCPF . 

These are formulized as follows:  

}Px:)x(Fy|Yy{:PF
}n,...,1iand}n,...,1{m),x(F)x(F:Px|Px{:P

CC
*
m

*
m

m**
CC

cc
*
m

m'
i

i*
uc

'
i

*
uc

*
mCC

∗∗

∗

∈=∈=
=∈∈∃¬∈= p

    
(3.11) 

Given the nature of the sequential approach, which is based on auxiliary problems, it has to be 

proven that the solution (3.11) is equal to the solution (3.9) of a C-MOP. In other words it has 

to be proven that the CBF is identical to the combined front. The equality of the sets is 

intuitively true, as the 'order of the sorting' should not affect the results. In fact (3.9) does not 

suggest any particular order and therefore the order of sorting, which is inherent to the 

definition of (3.11), is not in any contradiction with the definition of (3.9). The sequential 

approach has a primitive form, which is suitable for problems with graphical representations 

(objective space up to 3-D). In this case only the auxiliary problems are computed and the 

resulting fronts are graphically combined (e.g., Andersson 2001).  

Figure 3.6 depicts the independent fronts of three CCs, CC1, CC2, CC3, and their 

CBF/combined front in a bi-objective space for a min-min problem.  

 

Figure 3.6: CCs' fronts and a CBF/combined front 

The Pareto front of CC1, is designated by the black color while the Pareto fronts of CC2 and 

CC3, are designated by light gray and dark gray, respectively. The CBF/combined front is 
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distinguished from the CCs' fronts by thicker curves. It is constructed from parts of the fronts 

of CC2 and CC3. Using the sequential approach, for the problem of figure 3.6, seems to involve 

a waste of resources. This is due to the fact that the sought front, namely the combined front, 

does not involve any parts of the front of CC1, and large sections of the obtained fronts of CC2 

and CC3 are excluded as well. 

3.2.1.5 The simultaneous approach 

The purpose of the simultaneous concept-based approach is to reach, by a simultaneous 

evolution of the concepts, the Pareto-optimal set or at least its approximation, with adequate 

representation of the concepts. The term 'simultaneous' indicates that all investigated concepts 

are participating during the same evolution process. The simultaneous approach aims at 

reaching the sets defined in (3.9) without reaching first those of (3.10). A major advantage of 

the simultaneous approach is that it avoids the development of fronts of ‘non-optimal 

concepts’. The term 'non-optimal concept' refers to CCs that have no representatives on the 

CBF, whereas 'optimal concept' refers to a CC with at least one such representative. It should 

be noted that the simultaneous approach should not be considered just as an alternative to the 

sequential approach, but mainly as an approach that supports progressive interactivity. In 

section 3.2.2 the simultaneous C-EMO is dealt with, and two algorithms are presented. 

 

3.2.2 Simultaneous concept-based MOEA  

In this section two algorithms, C1-NSGA-II and C2-NSGA-II, for the simultaneous approach to 

the solution of a C-MOP are introduced and explained. In additions, comparison measures to 

compare the proposed algorithms, and that of the sequential approach, are introduced. The aim 

of the concept-based search is to find a front as defined in equation 3.9. In implementing a 

MOEA approach care should be given such that the algorithm will search for a proper 

representation of the optimal concepts and their spread on the CBF. Section 3.2.2.1 provides an 

outline of the requirements that aim at reaching an adequate approximation to the problem 

solution. In section 3.2.2.2 the basic algorithm C1-NSGA-II is presented, and subsequently 

modified in section 3.2.2.3 to C2-NSGA-II, for the purpose of saving computational time.  

 

3.2.2.1 Requirements 

While searching simultaneously for the CBF, attention should be given to the following 

requirements: 
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1. Maintaining a search pressure towards optimal solutions  

2. Ensuring representation of all optimal concepts on the CBF in both potential types of 

fronts (see section 3.2.1.3).  

3. Ensuring diversity of solutions within each CC on the front 

4. Maintaining a transverse search pressure to ensure a balanced representation of CCs 

(see explanation in section 3.2.2.2) 

5. Minimize computational efforts. 

 

These requirements are addressed by the proposed algorithms, and are detailed and explained 

in sections 3.2.2.2 and 3.2.2.3. 

The following discussion explains the ability of the suggested algorithms to allow the 

simultaneous evolution of CCs and presents the way by which the above requirements are met.  

 

3.2.2.2 The basic algorithm – C1-NSGA-II  

The suggested algorithm, which is termed C1-NSGA-II, is a modification of NSGA-II, (Deb et 

al., 2002) that allows the simultaneous evolution of CCs. The pseudo code of the algorithm and 

its explanation by steps are given below: 

C1-NSGA-II 

a. Initialize populations tP with cn equal sub-populations, each per CC, 
and set the population size as n= |Pt|. Also, create Qt = tP  

b. Combine parent and offspring populations and create ttt QPR U= . 
c. Decode all individuals to obtain a population of solutions tX and 

compute their performances tY , using their concept-related objective 
functions, tt YX → . 

d. Perform a non-dominated sorting for tY and find fronts, iFr , i=1,…,nr  
where nr is the number of fronts in a generation. 

e. Initialize a new parent population ∅=+1tP . Set a non-dominance level 
counter i=1. While nFrP i1t ≤++ , include the i-th front in the new 
parent population: i1t1t FrPP += ++  and set i=i+1. 

f. Perform the 'Concept-based Crowding Sort' procedure (as outlined 
below), and complete the filling of 1tP + with the most widely spread 

1tPn +−  solutions using the 'Concept-based Crowding Distance' (as 
outlined below). 

g. Create offspring population *
1tQ + from 1tP + by a 'Concept-based  

Tournament Selection.'  
h. Perform 'In-concept Crossover' (as outlined below) to obtain **

1tQ +  
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from *
1tQ + . 

i. Perform 'Two Regimes Mutation' (as outlined below) to obtain 1tQ +  

from **
1tQ + . 

j. Go to b. 
 

The following provides an explanation to the algorithm steps.  

Step ‘a’: In the simultaneous approach the initial generation should contain individuals 

from all the CCs. An initial population, tP is generated in step ‘a’. The population is 

constructed out of cn  sub-populations ( cn  is the number of CCs of the problem). In the initial 

populations, the size of each of the sub-populations is the same. Each of the sub-populations 

has its CC's individuals. The values of the CC parameters are encoded within the individuals of 

the CC's sub-population. Another initial population tQ is created by duplicating tP .     

Step 'b': The two populations, tt QandP  are combined into one population, tR . Due to 

the fact that the cross-over is done within each sub-population, the population, Qt, holds the 

same number of solutions from each sub-population as Pt. Therefore tR has a size which is 

twice the size of the population of tt QorP and its sub-populations are twice the size of those 

of tt QorP . 

Step ‘c’: At this step the individuals of tR  are decoded into a set of solutions, tX , and their 

performances, are computed in accordance with their CC, and memorized in tY . It is noted that 

(see section 3.2.1.2) a CC may differ from the other CCs by the models that are used for the 

calculations of the performances in accordance with the problem’s objectives.  

Step ‘d’ and ‘e’: In step ‘d’ the combined population tR is sorted into levels of non-

dominance , with a front iFr  for the i-th level. In step ‘e’ an elitist population, of size n, is 

constructed out of the ordered non-dominance levels. This sorting and elitism causes a pressure 

towards optimal solutions. This supports the fulfillment of requirement 1.  

Step ‘f’: In this step the Concept-based Crowding-sort is implemented. For this purpose 

two crowding distances, m,i
k,j1D and m,i

k,j2D  are defined. These are defined for each objective k, for 

each front, iFr , for each of the CCs, and for each non-boundary individual j (where 

1nj2 i
m −<< , and i

mn  is the number of solutions of the m-th CC  in the i-th front) as follows:  
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(3.12) 

where m,i
kfmax and m,i

kfmin are the max and min performances respectively, over all the 

individuals of the m-th CC in the k-th objective of the i-th front. In addition, i
kfmax and 

i
kfmin are the max and min performances respectively, in the k-th objective of of the i-th front 

over all CCs. The terms of the numerators, in the above equation, are the performances of the 

individuals that are located in the sorted lists m,i
kI , which are obtained by the procedure of the 

concept-based crowding-sort. This procedure and its explanation are given below:  

 

Concept-based Crowding Sort 

1.  Set i
mn = m

iFr . 

2.  For each j-th individual, of the m-th surviving sub-population in the i-th 

rank, initially assign an objective-based distance in the k-th objective, 

0CD m,i
k,j = . 

3.  For each objective k=1,2,..K, sort the set of solutions, in the i-th front, 

in each of the m-th surviving CC (sub-population) m=1,2…ms,i, by m
kf : 

),f(sortI m,i
k

m,i
k >= . 

4.  Find the Concept-based Crowding Distance as follows: 

 
 a For each objective k, in each of the m-th CC of each front, iFr , 

assign a large distance to the boundary solutions, 

∞== m,i
k,n

m,i
k,1 i

m
CDCD , and for all other solutions of the m-th CC, 

j=2 to ( 1ni
m − ), compute two distances, m,i

k,j1D and m,i
k,j2D , using 

equation 12. 

 b. Assign at each generation, t, all solutions with 1nj2 i
m −<< , of the 

m-th CC of the i-th front, with the following concept-based 

crowding distance, m,i
jCD : 

 

∑η−+∑η=
==

K

1k

m,i
k,j

K

1k

m,i
k,j

m,i
j 2D)1(1DCD  (3.13) 
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and      == m,i
k,1

m,i
1 CDCD  ∞== m,i

k,n
m,i

n i
m

i
m

CDCD   

where )
n

t(
gen

=η  , ]1,0[∈η , is a generation-based tuning factor and genn  is the total number of 

generations in the evolutionary run.  

In step 'f' of the pseudo-code of C1-NSGA-II, above, the requirements 2, 3, and 4 are all 

addressed as explained in the following. The concept-based crowding distance is influenced by 

two terms that involveη . Both compute distances between a solution neighbors in the objective 

space, yet the normalization is different. While η   is small (at the beginning of the evolution) 

the normalization is based on the boundaries of the performances of the CC. While η  grows 

the computation of the distance is becoming increasingly dependent on a normalization that is 

based on the boundaries of performances of the entire front. The effect and role of these 

generation dependent terms is explained below, using figures 3.7a, 3.7b and 3.7c. 

 

 

 

 

 

    

               

Figure 3.7: Crowding in the concept-based multi-objective evolution 

     a: CCs’ in a front                        b: Over-crowded CC           c: Similarly-crowded CCs 
 

Figure 3.7a depicts performances of solutions, belonging to two CCs (designated by squares 

and triangles). The CCs representatives are located at the same level of non-dominance. It is 

noted that the squares have a much wider spread of solutions than that of the triangles. In other 

words the difference between the i
kfmax and the i

kfmin  is larger for the 'square' CC. 

Considering two particular representatives, marked by a gray color, the following observations 

are made. First, the gray square has two close neighboring squares, and similarly the gray 

triangle has two triangle neighboring points. Second, the Manhattan distances between the 

neighbors of the gray square are similar to those of the neighbors of the gray triangle. 

Nevertheless, the gray triangle representative will have a larger concept-based crowding 

distance at the beginning of the evolution (η<<1). This effect, by the first term of equation 

3.12, is due to the normalization that is based on the boundaries of the CC, which are closer for 
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the 'triangle' CC than those of the 'square' CC. In such a case the normalization has two effects. 

The first effect is that niched solutions of a CC, which occupies a small section of the front, 

will not be penalized as much as those of a CC that occupies a larger section of the front. This 

prevents hindrance of the development of the former CC and helps meeting requirement 2. The 

second effect of that normalization is the increased number of the representatives of the CC 

that occupies the smaller section in the next generation. This helps the search of solutions, 

which are related to that CC. Such an increase of the number of representatives supports the 

fulfillment of requirement 4 by increasing the CC resources, hence allowing expansion as 

needed by the CC boundaries. Furthermore, the different crowding of the individuals of the 

same CC will enhance their spread within the CC section on the front (see requirement 3). In 

other words, the first crowding distance, of equation 3.12, ensures a pressure towards the 

sharing of the fronts by several CCs and the spread of CCs solutions on the front. Yet, referring 

to figure 3.7b, in the case where the 'triangle' CC occupies a smaller part of the CBF than that 

of the 'square' CC, an over-crowding of representatives from the 'triangle' CC may be caused. 

Therefore as generations progress a better share of resources should take place. This is 

achieved by the second expression of the crowding distance of equation 3.12, which depends 

on the normalization by the front boundaries. It supports a balanced spread of solutions on the 

front in accordance with their CC true part on the front. The desired result is depicted in figure 

3.7c, where similar density of representation is achieved for both concepts. 

It is noted that step 'f' for the calculation of the concept-based crowding distance is based on 

the distance between neighboring individuals within the same CC. In other words, no 

penalization is taken place due to neighboring solutions from different CCs. Hence, 

requirement 2 is fulfilled not only in non-intersecting fronts but also in cases in which 

optimality involves intersecting CCs.  

It is noted that steps 'e' and 'f' guarantee the survival of low ranked solutions, which are less 

crowded with respect to other solutions of the same ranks. It is most likely that in later 

generations the entire population involves solutions, which are all in the lowest level of non-

dominance. In such a case step 'e' is avoided (automatically) and step 'f,' allows the elitist 

population to include just the most uncrowned solutions. It is further noted that in the current 

work, which uses NSGA-II with less as possible alternations, the crowding in the objective 

space is considered, while crowding within the design space is ignored and left for future work 

(see chapter 5).  

Step ‘g’: At this step a concept-based tournament selection (finding *
1tQ + from 1tP + ) is 

performed as follows: 
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Concept-based Tournament Selection 

Choose randomly two solutions from 1tP + and compare them by tournament as follows: 

1. If their non-dominance levels are different the solution with the lower non-

dominance level is the winner and is placed in *
1tQ + . 

2. If their non-dominance levels are equal the solution with the larger concept-

based crowding distance is the winner and is placed in *
1tQ + . 

Step ‘h’: Individuals, which belong to different CCs, might have differences that are 

outlined in section 3.2.1.2, as well as in the explanation of steps ‘a’ and 'b' of C1-NSGA-II. 

Therefore, mating between individuals is restricted to individuals belonging to the same CC. 

This intra-sub-population mating, which is performed in the current step, is termed in-concept 

crossover.  

Step ‘i’: Following the in-concept crossover, mutation is implemented. The mutation rate, 

used here, is altered during the evolution. Initially a high mutation rate is implemented, and 

after a predefined percentage of the generations a smaller mutation rate is used. The initial 

mutation regime ensures a diverse search of the space to prevent a premature convergence to 

CCs that have initial representatives at lower levels of non-dominance on the expense of 

‘optimal concepts’ that might have initial representatives at higher levels of non-dominance. 

This premature convergence, which might hinder the evolution of ‘optimal concepts,’ is 

avoided by the proposed mutation regimes and thus supports requirement 2.   

C1-NSGA-II addresses requirements 1-4. Addressing requirement 5 needs a special 

consideration and a modification of the algorithm as detailed below. 

 

3.2.2.3 Saving computational resources – C2-NSGA-II 

The computational complexity that influences the search run-time, using a traditional MOEA, 

depends primarily on the number of generations, and the size of the population (e.g., Jensen 

2003). In such a traditional case, it is assumed that there is no substantial difference in the 

computational time of the performances from individual to individual. In the simultaneous C-

EMO the run-time is influenced by the possible differences, from CC to CC, among the 

computational efforts that are associated with calculating their solutions performances. In C1-

NSGA-II the total number of individuals, which are divided among all CCs in the initial 

population, is likely to be unequally redistributed among the CCs during the run and in the final 

population. This means that the number of individuals of an 'optimal concept' may increase 

with generations. In such a case the representation of that 'optimal concept' would be denser 
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than its representation by the sequential approach (see section 3.2.3), when taken with the same 

initial population size, per CC, as in the simultaneous case.  This may be viewed as an 

advantage however, there is no free lunch!! There is an associated computational cost to this 

'advantage.' Assuming that there is no need for a CC representation by more individuals than in 

the initial sub-population, the extra individuals should be viewed as a waste of resources. A 

possible solution is to limit the growth of the sub-populations of the CCs to include no more 

individuals than the number of the initial sub-population. Such a modification is given in the 

following pseudo-code: 

C2-NSGA-II 

a.  
 
 

Initialize populations tP with cn equal sub-populations, each per CC, 
and set the population size as n= |Pt| . Also, create Qt = tP and Set nmax 
= n/nc as the maximal CC population. 

b.  Combine parent and offspring populations and create ttt QPR U= . 
c.  Decode all individuals to obtain a population of solutions tX and 

compute their performances tY , using their concept-related objective 
functions, tt YX → . 

d.  Perform a non-dominated sorting for tY and find fronts, iFr , i=1,…,nr  
where nr is the number of fronts in a generation. 

e.  Initialize a new parent population ∅=+1tP . Set a non-dominance level 
counter i=1. While nFrP i1t ≤++ , include the i-th front in the new 
parent population: i1t1t FrPP += ++  and set i=i+1. 

f.  Initialize a new parent population ∅=+1tP . For each of the m-th CC 
initialize a counter Cm =0. 

g.  While 0Pn 1t >− +  or all individuals are removed from tR . For each 
non-dominance front iFr  , (i=1,…., nr): 

 1. Include the most widely spread solution, m,i
jsol , in the new parent 

population: m,i
j1t1t solPP += ++ if its CC counter maxm nC ≤ , else go to 

3. 
 2. Update the CC counter, 1CC mm += , of the individual j. 
 3. Remove the individual from tR   
 4. Continue to the other individuals of the front. 
h.  Update the size of the population for the next generation: ∑=

=

cn

1m
m |C|n  

i.  Create offspring population *
1tQ + from 1tP + by a 'Concept-based   

Tournament Selection,' (as outlined in section 3.2.2.2). 
j.  Perform 'In-concept Crossover' (as outlined in section 3.2.2.2) to 

obtain **
1tQ + . 

k.  Perform 'Two Regimes Mutation' (as outlined in section 3.2.2.2) to 
obtain 1tQ + . 

l.  Go to b. 
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The following provides an explanation to the steps of the C2-NSGA-II algorithm. 

Step ‘a’ –‘d’: These steps are similar to the C1-NSGA-II algorithm, except from setting the 

maximal size of a CC sub-population, at step 'a'. 

Step ‘e’:  In contrast to steps 'e' and 'f' of C1-NSGA-II, this step includes only the 'Concept-

based Crowding Sort.' In other words, here while nFrP i1t ≤++  the individuals of the fronts, in 

the modified algorithm, are not added automatically. The number of individuals from each CC, 

which are allowed to continue through the evolution, is limited by their initial number in the 

population. 

Step ‘f’: Apart from preparing a new null population (as done in C1-NSGA-II), in the 

current step counters are initialized for each CC. These counters allow limiting the growth of 

the sub-populations to their initial size (upper limit).    

Step ‘g’: At this step individuals are added one by one to the new population (the elitist 

population). The inclusion starts with the lower non-dominance level based on the order of 

crowding.  Less crowded individuals are added first, with a consideration to the limit of the 

allowed maximal amount of individuals per CC, as achieved by the CC counter. The procedure 

in step ‘g’ guaranties that a solution, which is relatively un-crowded, survives the evolution and 

passes to the next generation provided its CC does not have too many representatives in the 

population. By this modification, in comparison with C1-NSGA-II, requirement 5 on 

computational efforts is addressed. 

Step ‘h’:  At this step, the number of individuals for the new population is counted. This 

number might be either the same or less than the size of the initial population.  

  Step ‘i’, to ’l’: These steps are similar to steps ‘g’ to ‘j’ of the C1-NSGA-II algorithm.   

 

3.2.2.4 Performance indicators for concept-based representations 

Comparing between different MOEAs is commonly done using performance indicators, (e.g., 

Bosman and Thierens, 2003).  These indicators involve values that represent the success of an 

algorithm to find the Pareto front. Proximity and diversity are the main issues concerning this 

representation. Here we modify known indicators to fit the special nature of the concept-based 

search. The indicators that are used in the current investigation are: 

1. Number of representatives of a CC on the first non-dominance level (front), 1Fr
mn . This 

indicator is a modification of the 'front occupation indicator' of Bosman and Thierend, 

(2003). When using such an indicator it is assumed that a better result is associated with 
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more alternatives. For each of the m-th CC, the indicator CFOm, which is the Concept 

Front Occupation indicator, is computed as:                     

      m
m 1

FrCFO =                (3.14) 

A high CFO is preferable. 

2. The front spread indicator (Van Veldhuizen, 1999) is adapted to the concept-based 

approach.  The Euclidian distance between the most distant representatives of each CC, 

mD , is measured on the front, in the objective space. It serves as an indicator to the 

ability of the algorithm to find the bounds of the CCs.  A large mD  is preferable. 

To better understand the results, shear numerical results for the second indicator is avoided, and 

the indicator is normalized into Dm
*, which is termed the CC spread indicator. The indicator is 

computed by: 

max
m

m*
m D

DD =  
(3.15) 

where max
mD  is the maximum distance between solutions of the m-th CC on the CBF, which is 

computed analytically. A higher Dm
* means that the algorithm better succeeds to find the 

analytical front and hence is a better representation.  

 

3.2.2.5 Computational time  

The total computational time, Tc, includes both the time to compute the performances and the 

time to run all the rest of the algorithm steps. Often, in real life situations, evaluating the 

performances is the most significant computational time effort. Moreover, as discussed in 

section 3.2.2.3, the computational time of the C-EMO is influenced by the differences between 

the computational efforts that are associated with calculating the solution performances of 

different CCs. In such a case this time might strongly vary from CC to CC depending on the 

complexities of their models. Therefore a comparison of the computational time of the three 

presented algorithms should take it into account. The reader is referred to the indicative 

situations, which are presented in the study case section (see section 3.2.4.3), for a further 

discussion on the comparison.   

The comparison of the computational time is based on the following measure. Let Tsq be the 

time to conclude the development of a CBF by the sequential approach (see section 3.2.3). 

Also, let Tsm-1 be the time to find that front using C1-NSGA-II and Tsm-2 be the time needed to 
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evolve the front by C2-NSGA-II. To compare the results a time ratio, τ , is computed for each 

of the algorithms by: 

     
)T,T,Tmin(

T

2sm1smsq

c

−−

=τ      
(3.16) 

where )T,T,Tmin( 2sm1smsq −−  is the shortest computational time among all algorithms for the 

same problem. The simultaneous approach is compared to a sequential one which uses the 

following algorithm. 

It is noted that intuitively it seems that a simultaneous approach should outperform the 

sequential approach especially as related to the computational time. Nonetheless as investigated 

and demonstrated in section 4.1.3, this is not as straightforward.  

 

3.2.3 A Sequential MOEA 

In this thesis the sequential search, which is used for a comparison purpose, is achieved by the 

following algorithm: 

                                      The sequential algorithm (based on NSGA-II) 

a. For each of the m-th CCs of the problem run NSGA-II to find the 
concept’s fronts *

mPF  m=1,…, nc. 
b. Combine all solutions performances of the CCs' fronts to 

find U
cn

1m

*
mPFFU

=

= . 

c. Perform a non-dominated sorting to FU and find the first level of 

non-dominance, ∗
CCP which is the CBF. 

 

The sequential approach algorithm is used to perform comparisons with the simultaneous 

algorithms (see section 4.1). This is done based on the measures, which are presented in section 

3.2.2.4.  

 

3.3 Interactive concept-based search and optimization   

In this thesis human interactivity is associated with the articulation of preferences towards CCs 

and SCs. Such preferences influence the survival of CCs together with the model-based 

performances. In the following, a formal presentation of the Interactive C-MOP (IC-MOP), is 

provided. The solution to the IC-MOP is addressed with a consideration to both a simultaneous 
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and a sequential approach. Next, human interactivity with respect to conceptual ideas is 

explained and the concept weight, which represents the DMs' preferences, is introduced. The 

calculation of the concept weight is explained for two design space decompositions including a 

hierarchical and non-hierarchical representation. This is followed by the presentation of, a new 

algorithm, which is hereby termed IC-NSGA-II. It is based on the C1-NSGA-II algorithm that 

is modified to incorporate the DMs' preferences by using the concept's weight. This 

incorporation allows a search that is based on both, performance calculations and DMs 

preferences articulations. Inherent to the interactive case is the lack of an analytical solution. In 

such a case validation of the results could be done by checking if different runs result in similar 

representations. Performance indicators for such testing are presented in section 3.2.2.4. 

 

3.3.1 Problem definition and solution approach 

In this section the distinction between the IC-MOP and the classical interactivity, while solving 

a MOP, is highlighted. The solution to the IC-MOP is presented and discussed.   

 

3.3.1.1 Classical interactive MOP  

As surveyed in the literature review (see section 2.4), interactivity is used in conjunction with 

MOPs for several reasons, commonly driving the evolution to focus the search to sub-spaces of 

the entire search space. When optimality is considered, the resulting optimal set obtained by 

the interactive search, is expected to include a sub-set of solutions from the optimal set (from 

the Pareto-set). In contrast to classical interactive MOPs, the main interactivity element in this 

thesis concerns directly CCs and SCs as discussed in the next sub-section (see also section 

3.3.2 for extra details).  

   

3.3.1.2 Interactive concept-based MOP 
In contrast to a C-MOP, IC-MOP takes into account not just computed performances, which 

are calculated (objectively) by the computer, but also DMs' preferences that are subjective in 

nature. The concept-related interactivity aims at an efficient utilization of resources to search 

regions that are not just associated with optimality, as done in the common approaches, but 

rather with both human preferences towards concepts and optimality. To elucidate the 

interactive concept-based approach, the following simple C-MOP is discussed. Suppose that 

the design concerns a manipulator to move an object from one location to the other. It involves 

conceptual decisions on the manipulator links and their control. For example both an aluminum 
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and steel links are considered as well as using PID or fuzzy controllers. One possible concept 

that might be selected by the DMs is the use of an aluminum link controlled by a PID 

controller. Other such combinations may also be feasible concepts. If no preferences are 

articulated and just optimality is concerned, then the Pareto optimality set should be found 

considering the entire concepts' sets of solutions. But in another scenario, the DMs might not 

be interested in using an aluminum link, as they might be worried about its time of supply that 

could influence meeting the production deadline. As a result it seems that it is reasonable to 

allocate the available search resources towards conceptual solutions that are associated with 

steel links. In spite of this preference towards using steel, the concepts that are associated with 

aluminum links should not be neglected as they might be profoundly superior in the overall 

comparison with steel links. The suggested interactive concept-based approach, which is 

described in section 3.3.1.2, aims at directing the search using both model-based optimality and 

the DMs preferences. This means that the search should focus on optimal concepts' solutions, 

taking into consideration the preferences of the DMs towards the concepts themselves (either 

directly or by way of sub-concepts). In the following the IC-MOP is defined and its solution, 

which is associated with optimality and subjectivity, is given.  

An IC-MOP is defined, as follows: 
 

)x(max Ψ  

                                                  s. t.      nRSXx ⊆⊆∈        

(3.17) 

where X is defend in equation 3.6 and  
 

        ))x(H),x(Rank(f)x( =Ψ   and H (x)= Hm  for mXx∈  (3.18) 

The function Ψ  is actually a utility function of both human preferences and optimality of 

solutions. The Rank(x) is a rank assigned to a solution x according to its level of non-

dominance within the set X (see equation 3.6) sorted based on F (see equation 3.7), following a 

procedure of non-dominance sorting (e.g., Deb et. al., 2002). Hm is the m-th CC weight 

representing the DMs' preferences towards the CC (see section 3.3.2.4 for explanations). It is 

noted that the function f, should be selected such that it increases with decreasing Rank(x) and 

increasing H(x). 

 

3.3.1.3 Objective-subjective fronts  

Interactivity should, in an IC-MOP, direct the search according to the DM preferences. The 

interactivity suggested in this section is based on the preferences of a DM towards the concepts' 
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SCs (see section 3.1). The interactivity promotes the survival of some CCs while hindering 

others based on the articulation of the DMs' preferences. The front, which is obtained using 

such interactivity, may include sections of the CBF of the non-interactive problem, or none at 

all! This constitutes a major difference from the common MOP, and moreover from a C-MOP 

that has been dealt with in section 3.2. 

The solutions resulting from the interactive concept-based search belongs to the 'objective-

subjective set' ∗
osP  and its representation in the objective space is termed the 'Objective-

Subjective Front' (OSF), ∗
osFP  , which are both defined as follows: 
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(3.19) 

where ∗
ucP has been defined in section 3.2.1.4. In equation 3.19 the non-dominance sign, which 

has been used till now to define fronts, is substituted by an inequality sign. This is due to the 

fact that the optimality does not depend solely on the non-dominance of the non-interactive 

problem, but also on the scalar function of equation 3.18, which is a result of the DMs 

preferences.  

Alternatively the objective-subjective set and the OSF may be defined as follows:  
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(3.20) 

The difference between the definitions is the replacement of ∗
ucP  in equation 3.19 by Xm as 

seen in equation 3.20. These are related to two approaches to attain the OSF as discussed in the 

following section.  

 

3.3.1.4 OSF Development  

According to the definition of the OSF in equation 3.19, the set ∗
ucP  has to be initially found. 

Finding ∗
ucP  is possible by sequentially developing all the CCs' Pareto fronts. Thereafter the 

CCs' weights are incorporated. On the other hand equation 3.20 defines the same front, with no 

demand for a predevelopment of the CCs' fronts. Therefore, a direct approach to obtain the 

solution to the IC-MOP is to simultaneously sort solutions without creating the fronts of the 

CCs sequentially. The simultaneous approach aims at reaching the front defined in 3.20 

without reaching first those that are defined in equation 3.10. A major advantage of the 
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simultaneous approach is that it applies a search pressure towards the OSF, avoiding the need 

to initially develop all CCs' fronts.  It is noted that a comparison between the simultaneous and 

the sequential approaches is avoided with respect to this section on IC-MOP (in contrast to 

what is done in the section on C-MOP) and the focus here is just on the presentation of the 

approaches. It should be noted, however, that one of the measures, which is introduced in 

section 3.3.3.3, is aimed at demonstrating that the resulting solutions actually belong to ∗
ucP .   

To elucidate the idea of the OSF, a hand calculation example is used. Refer to figure 3.8a, 

where three CCs' fronts are depicted in a bi-objective space. These are a result of the non-

interactive problem. The CCs are designated by different symbols (circle, triangle, and square for 

CC1, CC2, and CC3 respectively). 

                  
Figure 3.8a: Three ranks of CCs' solutions        Figure 3.8b: First rank after Ψ  computation 

 

In figure 3.8a the first rank is designated by diagonal lines and the performances of solutions 

that belong to the second rank are designated by gray filling of the symbols, and in the third 

rank, there is just one solution (designated by a blank triangle.) Let the CC-weights (see 

section 3.3.2.4) assigned by the designers be: H1=0.5, H2=1, H3=0.2 for the three CCs 

respectively. Now suppose that, for the sake of this explanation, the function Ψ  of equation 

3.18, is given by mH
rank
10

⋅=Ψ . Using the weights and the ranks (as depicted from figure 

3.8a) the values for Ψ  are:  

Ψ  for the circles of the 1st rank is : 5 

Ψ  for the circle of the 2nd  rank is : 2.5 

Ψ  for the squares of the 1st rank is : 2 
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Ψ  for the triangles of the 2nd rank is : 5 

Ψ  for the triangle of the 3rd  rank is : 3.33   

According to equation 3.19, the OSF is the one that is associated with the maximal values of 

the function Ψ . In this example it is associated with the circles of the first rank as well as with 

the triangles of the 2nd rank, as they both have a value of 5 (which is the maximal value). The 

OSF is depicted in figure 3.8b designated by filled black symbols. It is noted that the obtained 

OSF holds solutions that are optimal based on equation 3.19, nevertheless some of them are 

non-optimal, based on equations 3.9. In fact an OSF may overlap a CBF, may contain a part of 

it or be totally different from it. Figure 3.9a depicts CCs' fronts designated by black, gray and 

dashed curves. For these fronts, figure 3.9b depicts the CBF (designated by a bold black curve). 

Figures 3.9c, d show two possible OSFs designated by bold black curves, whereas the CCs' 

Pareto parts, which are not a part of the OSFs are designated by gray.   

 

                                         Figure 3.9: Different concept related fronts  

a: CCs' fronts        b: CBF (also a  possible OSF)      c: Possible OSF         d: Possible OSF  
                                                                                                    case 1                         case 2          
  

It is noted that during a simultaneous evolution, issues of resource sharing between CCs and 

among the CCs' solutions has to be considered and the procedure of finding Ψ  is not as 

straightforward as in the above example, as further explained in 3.3.3.2. 

 

3.3.2 Human interactivity – preferring SCs and concepts 

Human-machine interaction has been acknowledged to be important for product development 

(see literature survey in chapter 2.4.2). Interaction between humans and computers during 

conceptual design has also been surveyed (see sections 2.3.1, 2.4.2). In this section some new 

interactivities, within the conceptual design stage, are presented.  
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3.3.2.1 Articulation of preferences towards SCs  

In many problems the availability of models allows the computation of merits, which might 

only partially reflect all issues that are involved in selecting a concept. For example, difficulties 

in realizing solutions, associated with a particular concept, might not be modeled (e.g., 

difficulties of manufacturing the design solutions, un-modeled hazards associated with 

contracts, employees and so on). Further difficulties to model a concept are associated with the 

early stages of the design, were DMs rely on their cognitive 'models' of the concepts. At these 

stages, human experience and intuition has a major influence on the development of concepts. 

In this thesis the human attitude towards SCs may support or hinder the development of CCs. 

The facilitation of these attitudes allows the development of concepts that are not just 

influenced by shear computations but also by human preferences. This is explained below.    

 

3.3.2.2 Hierarchy of SCs and human preferences 

The human cognitive process, which concerns conceptual design, commonly involves decisions 

in a hierarchical fashion. The DMs' attitude towards the SCs influences the search process. This 

is subjected to the hierarchical nature of the decisions. Referring to the design space 

representation of section 3.1, preferences of SCs are not to be considered whenever preferences 

exist at ancestors’ nodes. For example the DMs might strongly reject using non-uniform cross-

section area for a robotic arm (see figure 3.2). This means that all preferences towards the 

alternatives under node 'G' of figure 3.2 are not to be accounted for as they become irrelevant. 

It is emphasized that a SC may be related to more than one CC. Therefore preferring such a SC 

is equivalent to a preference towards more than one CC. This multi-CCs' preference by a SC's 

preference is accounted for by the proposed algorithm (see section 3.3.3), that enhances an 

accelerated (or decayed) development of several CCs that are related to the preferred (or 

opposed) SC.  

 

3.3.2.3 Weighting DMs’ preferences 

In this thesis the attitude towards the SCs is facilitated through weights. DMs’ preferences 

towards SCs are inherently fuzzy. In the early stage of design, team members may be quite 

uncertain about their weighting. This is not just because they are unconfident if the SC is good 

or not, but also due to the difficulty to relate their view to precise weights. Moreover, assuming 

each DM has a strong personal opinion about the discussed SCs, the team is likely to have a 

considerable variability of opinions. It is assumed here that a discussion may take place leading 
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to a resolution of the differences of opinion. In other words, precise weights of the SCs are 

determined. The team of DMs may assign weights to some SCs of the problem, with values in 

the interval [-1, 1], where -1 designates pure dislike, and 1 stands for highest preference. SCs, 

with no preference, are automatically assigned with zero weights. The weights assigned to the 

SCs are accumulated to a CC-weight. Alternatively the CC-weight may be assigned directly to 

the CC. In the context of an evolutionary search the weights affect the development of the CCs 

fronts by changing the probability of their reproduction.  

 

3.3.2.4 Articulation of preferences – the CC-weight  

Taking into account all SCs’ preferences, as related to a CC, results in the CC-weight, which 

represents the CC preference. A suggested procedure of attaining the CC-weight is explained in 

the following. The DMs may assign weights to some SCs of the problem, with values in the 

interval [-1, 1], where -1 designates pure dislike, and 1 stands for highest preference. For each 

‘AND’ tree, the nodes, which represent weighted SCs, are assigned with the respective 

weights. Branches, below any of the nodes, which represent SCs with assigned preferences, are 

pruned. The SCs of the pruned tree, which have no preference, are automatically assigned with 

zero weights. The weights, of the resulting pruned tree, are used to obtain the m-th CC-weight, 

Hm, representing the CC preference. Starting from the leaves of the pruned tree, the weight, 

w(pr), of each parent node, is calculated by averaging the weights of its children, w(ch). The 

weight of a parent node is: 

   )ch(w
n
1)pr(w

Ln

1nL
∑
=

=    

        and  )root(wH m =       

(3.21) 

 

where nL is the number of the node’s children. The calculation of the weight of the m-th 

CC, )root(wH m = , is obtained by calculating the weights of the ancestors up to the root node 

of the ‘AND’ tree of the m-th CC. Finally, each j-th individual of the m-th CC is assigned with 

Hj = Hm. The following example illustrates the procedure. Figure 3.10a depicts a CC tree, with 

some of its nodes assigned with weights (the numbers by the nodes). Figure 3.10b shows the 

pruned tree. The weight of the CC is obtained as follows: Hm = ((0.6 + 0.0 + 0.0)/3 +0.3)/2 = 

0.25.  
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                    Figure 3.10a: CC tree                             Figure 3.10b: The pruned tree 

 

It is noted that the DMs may assign directly the CC-weight by assigning it to the root node of 

the CC tree. The CC-weight is used to evolve the objective-subjective front (see section 

3.3.3.2).  

 

3.3.3 Interactive concept-based MOEA  

The preferences of the DMs towards SCs, which results in CCs-weights (see section 3.3.2.4), 

should influence the resulting front in accordance with the IC-MOP definition (equations 3.17-

3.18). The MOEA that is introduced in the following enhances the development of the OSF, 

which is a result of both the solutions performances as well as their related CCs' preferences.    

Commonly in EC (not IEC), the fitness is directly influenced by the performances of the 

designs within the objective space. The fitness, which is based on model-based performances, 

is hereby termed Machine-Based Fitness. This fitness is associated with the rank to which the 

individual belongs, but it is also influenced by the nature of the EC search, which involves 

differences in the crowding among the individuals. Therefore it is different from the rank as 

was the case in section 3.1.2. A fitness that is influenced just by the preferences of humans, 

which is common in IEC approaches, is hereby termed Human Based Fitness (HBF). This 

fitness is set to be the concept preference weight Hm (see section 3.3.2). The fitness, which 

results from considering both influences, is hereby termed Human Machine Fitness (HMF),  

        HMF = f (MBF, HBF)          (3.22) 

The HMF is a version of Ψ  (see equation 3.18) where MBF is associated with the rank and the 

crowding of solutions, while and HBF is the influence of the human preferences on the fitness. 

Figure 3.11 provides a schematic description of the interactive concept-based MOEA. The 

process begins with the initialization of a population, with representatives for each of the 

concepts. The genetic codes of these individuals are decoded to produce particular solutions 

which are related to the CCs. The performances of these solutions are assessed by 
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computations to produce their MBF based on rank and crowding. The human (DM) articulate 

his preferences through the HBF. Such an articulation of preferences is practiced at the 

beginning of an evolutionary run and the preferences stay constant as until the run stops and the 

program shows the front.. A change of the preference initializes a new run. The MBF and the 

HBF are combined to compute the HMF. The solutions' HMFs are used for the evolutionary 

cycle, which includes reproduction cross-over and mutation.  

 
Figure 3.11: Interactive concept-based approach 

 

The un-darkened blocks of figure 3.11 constitute an inner loop, which represents the 

evolutionary run. When a stopping criterion is reached the objective-subjective front is 

presented to the DMs. A discussion of the results may lead to reassigning new preferences, 

followed by a reexamination of their effect on the front. The darkened blocks, in figure 3.11, 

belong to the outer loop, which activates a new evolutionary run with new preferences.  

  

3.3.3.1 MOEA requirements 

In designing the algorithm for the search of an OSF, the following requirements are considered: 

1. Maintaining a pressure towards the 'objective-subjective' solutions based on the 

problem definition in equation 3.17  

2. Maintaining a pressure towards the representation of all CCs on the OSF  

3. Ensuring diversity of solutions within each CC on the front 

4.   Maintaining a transverse search pressure to ensure a balanced representation of CCs on 

the OSF. 
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These requirements are addressed by the proposed algorithm. Requirement 1 is treated by using 

non-dominance sorting and assigning optimal solutions with lower ranks (lower level of 

dominance). Thereafter the CC weights are incorporated to calculateΨ .  Requirements 2, 3 and 

4 are addressed in the same manner as in the C1-NSGA-II (see section 3.2.2.2). In the following 

section a presentation of the IC-NSGA-II is given, accompanied by a detailed explanation. 

 

3.3.3.2 MOEA algorithm for the evolution of OSFs 

A presentation of the IC-NSGA-II is given, followed by a detailed explanation. 

 

IC-NSGA-II 

a.  
 
 

Initialize populations tP with cn equal sub-populations, each per CC, 
and set the population size as n= |Pt| . Also, create Qt = tP  

b.  Combine parent and offspring populations and create ttt QPR U= . 
c.  Decode all individuals to obtain a population of solutions tX and 

compute their performances using their CC-related objective functions, 
tt YX → . 

d.  Perform a non-dominated sorting to tY and find fronts iFr , i=1, 2,…, nr. 

e.  Perform the 'Interactive Concept-based Crowding Sort' procedure (see 
below). 

f.  Compute each of the individual's HMF by using the 'HMF procedure' 
(see bellow) 

g.  Initialize a new parent population ∅=+1tP .  Sort the solutions 

according to their HMFs ),HMF(sortI jHMF >=  . 

      While 0Pn 1t >− +  
 1. Include the first n solutions of HMFI , in the new parent  

population: HMF
j1t1t solPP += ++ ,  where HMF

HMF
j Isol ∈  

h.  Create offspring population *
1tQ + from 1tP + by an 'Interactive Concept-

based Tournament Selection,' (see below). 
i.  Perform 'In-concept Crossover' (as outlined in step 'h' of C1-NSGA-II) 

to obtain **
1tQ +  

j.  Perform 'Two Mutation Regimes' (as outlined in step 'i' of C1-NSGA-
II) to obtain 1tQ + .  

k.  Go to b. 

 

The following provides an explanation to the algorithm steps.  

Step ‘a’ to ‘d’: these steps are similar to those of the C1-NSGA-II. 

Step ‘e': in this step the Interactive concept-based crowding is implemented as explained in 
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the following: 

Interactive Concept-based Crowding Sort 
1. Set, the number of solutions in the i-th front, iFr  that belong to the m-th concept as 

i
mn = m

iFr . For each j-th individual, of the m-th surviving sub-population and objective k, 

initially assign 0CDm
k,j =  

2. For each of the nr fronts compute an upper level and lower level of fitness according to 

the 'limits assignment procedure' : 

 
 

Limits assignment procedure 

Computed, the following upper (U) and lower (L) bounds for each rank according to:  

                        )1(nfit r
i
U ε+= ,          for   i =1          1<<ε  

             ε−−=+ 1fitfit i
U

1i
U ,        for i =1,…., nr -1 

(3.23)  

         1fitfit 1i
U

i
L −= + ,          for   i=1,…, nr             (3.24)  

where ε  is a constant that separates between adjacent ranks. As a result, each rank has an 

available fitness span of 1. Figure 3.12, depicts the ranked based fitness assignment and the 

notions of equations 3.23, 3.24. The available span is reserved for distributing the fitness of the 

individuals, of the rank, according to their Interactive concept-based crowding (see bellow) 

 
Figure 3.12: The non-dominance ranking 

The procedure continues as follows: 

1. For each objective k=1,2,..K, sort the set of solutions of each surviving concept 
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(sub-population) m=1,2…ms,i, of the i-th front, by m,i
kf : ),f(sortI m

k
m,i

k >=  . 

2. Find the Concept-based Crowding Distance as follows: 

 For each objective k, in each m of each front, iFr , assign the upper fitness value 

of the front to the boundary solutions of all concepts in the front, 

1CDCD m,i
n

m,i
1 i

m
== , and for all other solutions, j=2 to ( 1ni

m − ), compute distance, 

m,i
jCD  by: using equation 3.12 and 3.13. 

                                          

Step 'f': in this step the human machine fitness is computed according to the following 

procedure: 

 
HMF procedure 

 
The MBF (Machine based Fitness) of all individuals of each rank is calculated. The MBF of 

the j-th individual of the i-th non-dominance level belonging to the m-th CC is calculated as 

follows:  

     i
L

i
U

imin,
m,i

ji
L

m
i,j fitfit

CDCD
fitMBF

−
−

+=          
(3.25) 

where imin,CD is the minimal crowding distance over all m,i
jCD (for all m and j of the i-th rank) 

in the i-th rank. According to equation 3.25, the most crowded solution will be assigned with 

an MBF, which is the lowest fitness of the rank. On the other hand the most un-crowded 

solutions (boundary solutions of the m-th CC in the i-th rank) are assigned with an MBF, which 

at its limit is equal to the maximal fitness of the rank. Equation 3.25, transforms the sorted list 

( m
kI ) into a set of fitness values that represent both the level of non-dominance and the 

crowding of the individuals. The boundaries of the concepts representatives within a front are 

assigned with the upper limit of the fitness of the rank while the other individuals are assigned 

fitness between the lower and the upper limits of the rank’s fitness according to their crowding 

distance. Next, the weights of all CCs are utilized to compute the HMFs for all individuals. The 

HMF of the j-th individual of the i-th non-dominance level belonging to the m-th CC is 

calculated by  

=m
i,jHMF  

                               )1H(MBF m
m
i,j +⋅                                           0H1for m ≤≤−             

       1H0for)H()MBFMBF(MBF mm
mmax,

max
m
i,j ≤<⋅−+        

(3.26) 

where MBFmax is the maximal machine fitness over all individuals within the generation, and 
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mmax,MBF  is the maximal fitness of an individual belonging to the m-th CC of the generation.  

Thus, the fitness of an individual is scaled according to the team preferences. The 

implementation of equation 3.26 is depicted in figure 3.13, for Hm=1.8. It is noted that equation 

3.26 is an example for a possible HMF. This means that other expressions for Ψ may be used. 

For example, the use of an exponential expression instead of a linear one may be considered. 

   

 
Figure 3.13: HMF assignment based on MBF and HPM 

 

In the example of figure 3.13 the fitness of the solutions related to the m-th CC is up-scaled. 

The up-scaling is determined based on the best individual of the concept solutions. It is noted 

that both unchanged as well as degraded fitness may result from the proposed transformation 

(depending on Hm). It is further noted that when such shifts of fitness, which are associated 

with parts of the population, occur, a shuffling of the ranks of figure 3.12 may take place. This 

means that an individual belonging to the second rank may have, after an HMF related up-

scaling, a fitness that is within the boundaries of the first rank. The modified set, belonging to 

the first rank, is introduced to the DMs as the OSF.  

 

Step ‘g’: In this step the elitist solutions are preserved. In the interactive concept-based 

algorithm an elite solution is not necessarily associated with a low non-dominance level. This 

is due to a possible shift of the levels of non-dominance as a result of the interactivity, which is 

implemented by equation 3.26. Therefore the elite solutions are those with the higher HMFs, 

which are not necessarily the solutions with low level of non-dominance. This establishes a 

variant to the traditional approach to EMO.   
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Step ‘h’: In this step a tournament selection is implemented using the 'Interactive Concept-

based Tournament Selection,' as follows: 

 

Interactive Concept-based Tournament Selection 

Choose randomly two solutions from 1tP + and compare them by tournament as follows: 

a. If their fitness is different the solution with the higher fitness is the winner and is 

placed in *
1tQ + .  

 

Step ‘i’ to ‘k’: These steps are similar to the steps in C1-NSGA-II (see section 3.2.2.2) 

 

3.3.3.3 Assessing the validity of the resulting OSF 

The assessment of the resulting OSF has to be considered based on the requirements from the 

algorithm. The resulting front might not be a CBF and thus the measures introduced in section 

3.2.2.1, are not applicable to the current general case. Therefore an adequate set of measures 

are introduced below to allow the assessment of the OSF validity. The measures are:  

 
1. Optimality Measure – All solutions of the OSF should be a part of the fronts 

union FU (see section 3.3.1.3).  For each CC which has representatives on the 

OSF, a non-dominance test is conducted between these representatives and the 

CC front, *
mP  . A measure of optimality, mno , is the number of solutions of the 

m-th CC that belong to the OSF that are dominated by *
mP , averaged over a 

fixed number of runs, 

2. Repeatability Measures – Because the OSF results from a utility function of both 

human preferences and optimality of solutions its repeatability is investigated. 

This is done by finding: 

a. The average number of solutions, m
OSn , of each concept on the OSF over 

predefined number of runs, and the standard deviation of this number, 
m
OSSDn . 

b. The Euclidian distance between the most distant representatives of each CC 

on the OSF, m
OSD  and its standard deviation, m

OSSDD , over predefined 

number of runs.  
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The first measure guarantees the fulfillment of the optimality demand, while the others are 

associated with the validity. 

 

3.4 Assessing concepts in MOPs 

MOPs are commonly associated with an inherent uncertainty of the DMs' preferences towards 

the relative importance of the objectives. In such a case no exact preferences are assigned and a 

decision on a preferred solution is taken posterior to the search. This is usually done by 

inspecting the performances of the resulting Pareto-optimal solutions. Avoiding a pronounced 

preference to objectives may also be associated with uncertainty of market demands (e.g., 

Avigad et al., 2005c). As discussed in section 3.1, in this thesis a CC is associated with a set of 

solutions and therefore with a cluster of performances in the objective space. In contrast to a 

particular solution, a CC is commonly associated with a sub-space of the objective space and 

hence may fit a variety of preferences. Therefore a decision on a CC should take into account 

not just the performances associated with the CCs but also their coverage of the objective 

space, or more precisely a pre-defined region of it. For this purpose a Window Of Interest 

(WOI) is assumed to be chosen by the DMs, which is a subspace, YWOI ⊆  , of the objective 

space. It limits the search to a limited region of the objective space based on the DMs' interest 

and therefore defines a region where satisfying solutions are sought. Solutions, located outside 

of this subspace are of no interest to the DMs. It is noted that the term WOI, which has been 

originally used in Avigad et al., (2005c), possess a similarity to the 'region of interest' 

introduced independently by Mattson and Messac (2005). The difference is that the WOI is a 

bounded region whereas the 'region of interest' is not. In this section, the WOI is adjusted to 

allow the assessment of the CCs performances. The upper boundaries of the WOI are assigned 

by the DMs (the same as in the case of the 'region of interest'). The lower bounds are 

determined either by the rationality of the problem objectives (it is impossible to aim at a 

negative cost or fuel consumption), or automatically set for all k = 1,…K as: 

)FUmin()WOImin( kk =  where )FUmin( k , is the minimal value of the fronts union in the k-th 

objective. 

In this thesis both the variability and the values of the CCs' performances within a WOI are 

used to assess the 'goodness' of a CC. Here, a high 'goodness' is associated with both the 

optimality of the CCs' solutions, as well as their ability to cover the WOI. In the following, an 

approach to assess the performances of CCs, with respect to a WOI, is presented. It presents the 

problem of selecting a CC as an auxiliary MOP (section 3.4.2).   
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3.4.1 Optimality vs. variability 

The importance of both optimality and variability of concepts in MOPs is reflected in the 

review given in section 2.3. It is possible to consider measures for either optimality or 

variability, and also to consider measures, such as the 'goodness' measure of Mattson and 

Messac, (2005), which merge both issues. Here the problematic nature of the latter type of 

measure is demonstrated by the use of two examples. The examples, 1 and 2, are depicted in 

figures 3.14a and 3.14b respectively. 

 
Figure 3.14a: Example 1                                 Figure 3.14b: Example 2 

 

In figure 3.14a, three CCs' fronts are depicted within a WOI. These are designated by circles 

(CC1), squares (CC2) and triangles (CC3). Solutions from two CCs constitute the CBF (CC1 and 

CC2). The use of the 'goodness' measure (see section 2.3.1) introduced in Mattson and Messac, 

(2005), would yield approximately a value of 0.65 for CC1 and a value of 0.35 for CC2. Due to 

the fact that the 'goodness' measure is calculated based on the s-Pareto solutions only, no value 

is assigned to CC3. Nonetheless, CC3 has the highest variability of solutions within the region 

and therefore should also be considered for selection. In figure 3.14b two 'optimal' CCs 

representatives are depicted in a bi-objective space. The CCs representatives are designated by 

different symbols; circles and squares for CC1 and CC2 respectively. The solutions' 

representatives, which constitute the CBF, are encircled. Using the 'goodness' measure of 

Mattson and Messac, (2005), would result in values of approximately 0.5 for each of the CCs. 

Based on these values both CCs are equally good.  Nonetheless, observing the CC fronts, it can 

be seen that CC2 has a higher variability within the WOI as it spans a higher range of the 

objectives.  

Following the problematic observations from both examples a new approach is suggested. In 

the proposed approach, Optimality & Variability (O&V) are calculated separately for each CC. 
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The selection of a CC can be posed as an auxiliary max-max MOP in the O&V bi-objective 

space, in which the m-th CC is represented by a single point (Vm, Om).  For example figure 

3.15 shows four such point representations for four CCs designated by a circle, a squares, a 

triangle, and a plus. The objectives of the auxiliary MOP are to maximize optimality and to 

maximize the variability. The decision space of the auxiliary problem concerns the selection of 

the CCs based on their performance in the bi-objective space. 

 
Figure 3.15: Representatives of CCs in the Auxiliary MOP 

 
The optimality of the m-th CC (Om) is calculated by utilizing the CCs' fronts and 

implementing the following pseudo code: 

 

Pseudo code for the CCs' optimality measure - Om 

Sort all solutions of ∗
ucP (see section 3.2.1.4), within the WOI, to obtain each solution 

non-dominance level, which is also its rank. 

For all CCs with no representatives within the WOI assign Om=0 

Initialize a rank counter by setting rc=1; 

While not all CCs are assigned with rank 

 For each of the un-assigned CCs which have at least one representative within 

the WOI and with a rank equal to rc  

       Assign the m-th CC with 
c

m r
1O =  

       Remove all solutions belonging to the assigned CC 

       rc = rc+1 

                   End While  

The higher the value of optimality mO the more optimal the m-th CC is.   
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The variability, Vm of the m-th CC, is calculated by utilizing the CCs fronts and implementing 

the following pseudo code: 

                                                           

                           Pseudo code for the CCs' Variability measure - Vm 

Divide each of the K objective axes into np divisions, where np is equal to the highest number 

of representatives any CC possesses on its front within the WOI.  

Set to zero a Boolean variable z,k
mC for each of the CCs, with respect to 

each of the npK ⋅ divisions (m=1,.., nc  and z=1,.., np,  k=1,…., K). 

               For all m=1,.., nc   
                  For all k=1,…., K objectives  

                    For all 
*
mj Px ∈  

                       For z=1,…, np 
                        If   WOI)x(f}npz)fmin()x(fnp)1z()WOI{min( jk

WOI
kjkk ∈∧⋅+≤<−+  

                                1C z,k
m =  

  Compute for each of the m-th CC the variability measure 
npK

C
V

K

1k

np

1z

z,k
m

m ⋅

∑∑
= = =  

Here, )fmin( WOI
k  is the lower bound of the WOI with respect to the k-th objective. The above 

procedure checks the performances of each solution in the population. It adds a count to a CC 

for each objective and for the relevant division in which the solution performance resides. The 

Boolean variable is equal 1 when at least one representative of the CC has a trajectory on the 

division. It is noted that the suggested procedure is not applicable to an infinite set of 

representatives. Yet, given that EMO is an inherently discrete approach, this limitation is not 

significant here. It is further noted that CCs, which their entire front is outside the WOI, are 

assigned by the above procedures by 0 for both measures.  

The O&V measure, which has been introduced in this section, might be used not just for 

comparing between the CCs' fronts that are obtained separately. They can be directly used to 

compare CCs, which are a part of a CBF or an OSF.This may be achieved by changing the 

algorithm of the variability from using *
mj Px ∈  to *

Cj Px ∈  and  *
OSj Px ∈  respectively. The 

O&V is adapted in the following section, to support decision making under uncertainties which 

are associated with delayed decisions.  

The final selection of a CC, could be based on its representation in the auxiliary MOP 

objective space, is left for the DMs. It is suggested that the choice of a CC will be made out of 

CCs, which possess representatives on the Pareto front of the auxiliary MOP. Referring to 

figure 3.15 the CC that should be considered for selection are CC1, CC2, and CC4 as they are 

located on the auxiliary MOP front.  
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3.5 Supporting conceptual decisions under delayed decisions 

In this section the delayed decision problem is introduced. As a part of the introduction, the 

relation between the new types of concepts, which are introduced in section 3.1, and the 

delayed decision problem is clarified (section 3.5.1). This is followed by the problem statement 

as a MOP. Next, the problem is re-stated (section 3.5.2) as a sequence of sub-problems. A 

possible approach to solve the re-stated problem is suggested based on the O&V measures (see 

section 3.4).   

   

3.5.1 Introduction to the delayed decisions problem 

 
The delayed decision problem is a known problem, which has been investigated by others. 

Here the problem is restated in the context of the conceptual design space representation of this 

thesis (see section 3.1). To highlight the problem as related to the tree representation of the 

design space the following example is used. Figure 3.16 depicts an 'AND/OR' tree of a 

conceptual design space for a one-link manipulator. Node 'a' is a SC 'the link', and node 'b' is  a 

SC 'controller'. 

 

Figure 3.16: Conceptual design space tree 

The link (node 'a') is associated with either 'I-shaped link made of aluminum' (node 'c') or 

'Square-shaped link made of steel' (node ’d’). The decision on a controller (node 'b') is 

associated with a decision on either a 'PD controller' (node 'e') or a 'fuzzy controller' (node 'e'). 

There are four CCs in the space represented by the above tree. An 'I-shaped aluminum link 

with a PD controller' is an example of such a CC that can be extracted from the tree. 

Now suppose that the DMs wish to postpone the decision on the control (the SC of node 'b'). 

Nevertheless, it is considered essential to continue with the decisions on the link to allow 

material ordering on time. As a result the search is limited to just two concepts including 'I-

shaped aluminum link with unspecified controller,' and 'Square-shaped steel link with 

unspecified controller.' The pruned trees describing these concepts are depicted in figure 3.17. 
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Figure 3.17: HLCs pruned trees 

It is noted that both of these concepts are not associated with models as their description is not 

complete (unspecified controller). As defined in section 3.1.2, such concepts are HLCs (see 

definition # 4). It is also recalled that the same HLC might be pruned from several different CC 

trees. In such a case the CCs that are associated with the same pruned tree have been termed 

associated concepts, ACCs, (see definition # 5 in section 3.1.2) and the HLC has been termed 

MMC (see definition # 5 in section 3.1.2). 

The delayed decision problem calls for a comparison between these MMCs. For the 

comparison the multi-models can be used. Such a comparison may support the selection of an 

MMC. In the context of the above example, this will allow the order of either an 'I-shaped 

aluminum link' or a 'square-shaped steel link,' resolving the delayed decision problem. In using 

the multi-models for comparing the MMCs, it is assumed that if an MMC is selected, anyone 

of its ACCs might be later selected. The ACC selection is assumed to be based on uncertain 

external restrictions, and that this choice can not be controlled. The underlining assumption is 

that the design has to continue with the given delayed decisions before the external 

uncertainties are resolved (see the above manipulator example).  Therefore, when a decision is 

delayed, choosing an MMC should ensure that no matter which of the ACCs of the MMC are 

later chosen, there exists a satisfactory solution from that ACC to be selected by the DMs. A 

satisfactory solution is a solution with performances within the problem WOI. If more than one 

MMC is associated with such satisfying solutions a comparison between the MMCs should be 

conducted to choose the best one. To support MMCs' comparison and selection, the delayed 

decision problem is restated as a sequence of sub-problems, which are described in the 

following section. 

 

3.5.2 The delayed decision problem  

The delayed decision problem is to select an MMC in a MOP, under the uncertainties of which 

ACC will be eventually selected. This problem statement is in the context of the design space 

representation of section 3.1. This problem can be restated as a sequence of sub-problems, 

which are listed in the following. 
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a.  Given X (as in section 3.2.1.2) find ∗
mP  m=1,..,nc  using the sequential algorithm (see 

section 3.2.3). 

b. Given ∗
mP  m=1,..,nc find (Vm, Om) for m=1,.., nc in the O&V space by using  the 

pseudo codes for the CCs' optimality and variability measures ( see  section 3.4.1). 

c. Given (Vm, Om) for m=1,.., nc , find worst
aVO for all MMCa a=1,…, MMCn , using the 

worst-case sorting procedure, which is introduced in the following. 

d. Given all worst sets, worst
aVO  a=1,…, MMCn and all the (Vm, Om) for CCs that are not 

ACCs present  these sets in the auxiliary MOP objective space for selection. 

e. Select one of the robust MMCs/CCs using the presentation from the above sub-

problem based on the robustness definition (see definition # 7 below).  

 

Worst-case sorting procedure 

a. For each MMCa a=1,…, MMCn  use )O,V(VO a
m

a
m

a
m =  m=1,… a

ACCn  to find     

U
a
ACn

1m

a
m

aa VOVOthatsuch,VO
=

==  

b. For a= 1,…, MMCn  MMCs, sort their ACCs' sets a
mACC  m= 1,…, a

ACCn , to find each 

of the MMCs' worst set worst
aVO , in the O&V space by using equation 3.27 

        a
m

a
m

aa
m

worst
a

a
m

*
AC

a
ACC

VVO|VOVO|VOVO
mmand}n,...,1{mand}n,...,1{mallfor

p′′ ∈¬∃∈

′≠∈′∈
    

(3.27) 

where the domination in equation 3.27 is for finding the min – min front for the m-th MMC. In 

other words, the auxiliary O&V problem, which involves the maximization of both O&V, is 

reversed to find the worst case. The worst case has to be considered as it might be the 

performances of the MMC after the related ACC has been selected. It is noted that in MOPs, 

'worst' in the same manner of 'best,' may be associated with a set of performances (front). Using 

the worst cases representing the MMCs the concepts (MMCs and CCs) should be compared 

based on their robustness to the delayed decisions uncertainty.  

 

Definition # 7 

Robust concept to delayed decisions is: 
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1.  An MMC for which )0,0(VOVOVO a
m

worst
a

a
m =¬∃∈∀ where a is the index of the MMC and m 

is the index for its ACCs, 

2.   A CC for which its (V, O) ≠  (0, 0). 

 

Figure 3.18a, depicts three MMCs, each associated with three ACCs. The MMCs are 

designated by different symbols: MMC1 (circles), MMC2 (squares) and MMC3 (triangles).  The 

ACCs of the MMCs are designated by black filling, grey filling and blank symbols.  

 

      Figure 3.18a: MMCs' ACCs' performances          Figure 3.18b: The MMCs representatives 

Figure 3.18b, depicts the MMCs representatives sorted according to equation 3.27. The 

resulting set holds one representative from MMC1 and one from MMC2, while MMC3 has three 

representatives. In this example, based on definition # 7, all MMCs are robust to the delayed 

decisions MOP as each holds worst set representatives in the auxiliary MOP, which are not at 

the origin.  Based on these worst cases a decision on an MMC should be taken. Observing the 

results, which are depicted in figure 3.18b, it may be wise to select MMC2 as it is associated 

with the most optimal performances in the worst case within the auxiliary MOP. Nonetheless 

not all representations in the auxiliary MOP may lead to such a conclusive decision. For 

example consider the worst sets of four MMCs, which are depicted in figure 3.19. 
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Figure 3.19: Worst sets of four MMCs in the V&O space 

 

Although all MMCs are robust to the delayed decision uncertainty, choosing an MMC out of 

the circle, triangle and square MMCs, is not trivial, whereas the plus related MMC is clearly 

not as good as they are. In such a case set-based non-dominance sorting should be considered 

(left for future work). 
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CHAPTER 4 

 
CASE STUDIES AND EXAMPLES   

 

In this chapter the methodology presented in chapter 3 is examined through the use of 

examples. Section 4.1 contains examples for the methodology, which has been presented in 

section 3.2 on concept-based search and optimization. Section 4.2 contains examples for the 

methodology, which has been presented in section 3.3 on interactive concept-based search and 

optimization. Section 4.3 contains examples for the selection methodology, which has been 

presented in section 3.4 on assessing concepts in MOPs. Section 4.4 contains examples for the 

methodology, which has been presented in section 3.5 on supporting conceptual decisions 

under delayed decisions. Section 4.5 contains, a compound example, demonstrating the 

applicability of the methodology to mechatronic conceptual design.  

4.1 Case studies for a C-MOP 

The following section is divided into four sections. The first section, 4.1.1, demonstrates the 

importance of the main features of the C1-NSGA-II algorithm (e.g., the two mutation regimes 

and the two expressions of the crowding distance). The second section 4.1.2 provides examples 

that are used to compare the introduced simultaneous approach with the sequential approach. 

The comparison employs the concept-based indicators (see section 3.2.2.4). The third section, 

4.1.3, compares the computational times of the two introduced algorithms and that of a 

sequential algorithm. In sections 4.1.1 to 4.1.3 academic examples are used. It is noted that the 

CCs in the academic examples are not explicit. Only their reflection in the models for the 

evaluation of the objectives and the search within different search spaces are used. In examples 

4.1.1-A, 4.1.2-A -4.1.2-D, only different models of the objectives are used to distinguish 

between CCs, while the search space is identical. In the other academic examples, both the 

models and the search space are distinct to each CC. Please refer to section 4.1.4 provides a 

real-life example on structural design.  Finally, section 4.1.5 provides a mechatronic 

engineering example.  

In all of the following test cases an 8 bit binary code is used to code all design parameters.  A 

two point crossover with probability of 50% is used over the entire population. Also employed, 

over the entire population, are mutation rates of 5% and 1% for the first and second mutation 

regimes respectively, unless otherwise specified. It is noted that the tuning, of the two regimes 

mutation probability, has been based on the results obtained with the suggested binary 
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encoding. A different approach may be needed when real encoding is used (see section 5 for 

future work with respect to the encoding approach). All the results that are presented in the 

tables of this section are an outcome of averaging 10 runs. In all the examples a min-min bi-

objective problem is considered. In examples 4.1.1A-4.1.1.C, 4.1.4 a sub-population size is 25 

(nc=25). In example 4.1.2-D it is 15. In examples 4.1.2A- 4.1.2C, and 4.1.3 nc=50. It is noted 

that in all of the examples the same objectives are used for all the CCs, and the apparent 

differences in the objectives' expressions are due to the different models to compute the 

performances of solutions for different CCs.  

4.1.1 Main features of C1-NSGA-II 

Example 4.1.1-A 

This first example demonstrates the ability of the C1-NSGA-II algorithm to evolve a CBF. The 

design space is related to solutions from two CCs that differ in their objective functions. The 

two vector functions, both suggested in Deb 2001, which are related to the two CCs are: 

 

    CC1:          
)xsin(2.0xy1f

xf
2

2

1

π−−+=

=
                 2x2 ≤≤− and 2y2 ≤≤− .     

                              

    CC2:          )x3sin(1.0xy75.0f

xf
2

2

1

π−−+=

=
      2x2 ≤≤− and 2y2 ≤≤− . 

 

Solving the min-min MOP just for CC1 results in a convex front, while solving the MOP of 

CC1, results in a concave front. The initial population contains representatives from the two 

sub-populations as depicted in figure 4.1a. The CCs are designated, in both figures 4.1a, and 

4.1b by pluses and circles for CC1 and CC2 respectively. The result of the simultaneous 

evolution, using C1-NSGA-II, is depicted in figure 4.1b. For a reference, the analytical fronts 

are shown by curves in figure 4.1b. It can be observed that the evolution by the C1-NSGA-II 

algorithm has developed a CBF with some distinct parts. The upper part of the front, which is 

involved with lower values for objective f1 and higher values for objective f2, holds solutions 

from both CCs. The middle part of the front contains just solutions of CC1. The lower part 

(bottom-right of the front) holds solutions just from CC2. It should be noted that, referring to 

the lower part of the front, even though the front of CC1 is very close to the front of CC2, the 

evolution finds the optimal one (CC2). Several other aspects of the results are considered in the 

subsequent examples.  
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                Figure 4.1a: Initial population                   Figure 4.1b: The resulting CBF 
                         CC1 is designated by circles and CC2 is designated by pluses 
 

Example 4.1.1-B 

This example demonstrates the importance of the two mutation regimes that are introduced in 

section 3.2.2.2. Initially the C1-NSGA-II is used with equal mutation rate of 1% throughout the 

evolution. In this example the CCs’ objective functions are:  
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 In the following figures (4.1- 4.7), CC1 is designated by circles and CC2 is designated by 

pluses. The two CCs differ from one another by both the second objective and by the number 

of decision variables. Figure 4.2 depicts the initial population with 25 representatives from 

each sub-population. The final front of this example is designated by a curve in the figure. It is 

noted that the initial sub-population, which is related to CC1, occupies parts of the final CBF. 

On the other hand, as seen in figure 4.2, no initial solution of CC2 is positioned on the front. It 

is noted that the CBF of this problem contains both CCs. Nevertheless, as depicted in figure 

4.3a, no solutions of CC2 appear on the front at the end of the evolution, which was obtained by 

using C1-NSGA-II with just 1% mutation rate throughout the entire run.  
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Figure 4.2: Initial population of Example 4.4.1-B 

 

Figure 4.4 depicts the change of the number of solutions on the first level of non-dominance 

(shown once every 10 generations) as related to each CC. The number of solutions of CC1 

increases rapidly, and dominates the entire population, while the number of solutions of CC2 

stays zero.  

          
      Figure 4.3a: The resulting front                       Figure 4.3b: Number of front solutions 

                              (no mutation regimes)                                                   vs. generation 
    

The reason for the appearance of just one CC on the front has been discussed in section 3.2.2.2. It 

is noted that the observed problem occasionally happens once in several runs. When the two 

regimes approach is used, the evolution using C1-NSGA-II results in the front, which is depicted 

in figure 4.4a. The front shows a mix of solutions from both CCs (circles and pluses are 

mingled). 
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                Figure 4.4a: The resulting front                Figure 4.4b: Number of front solutions 

                             (two mutation regimes)                                                      vs. generation 

 

The front, which results using the two mutation regimes, is occupied by both CCs. Figure 4.4b 

shows the change in the number of solutions, once every 10 generations, for each CC, on the 

first level of non-dominance. It is noted that when using the low mutation rate, of 1%, 

throughout the evolution either the front of figure 4.3a or the front of 4.4a could result. Using 

the two regimes approach, in all runs that were tested, the resulting front is as depicted in 4.4a.      
  

Example 4.1.1-C 

This example demonstrates the importance of each of the expressions of the concept-based 

crowding (see equation 3.13). The CCs, used here, differ in both the objective functions and in 

the number of the decision variables. It is noted that the decision variable, x, is mutual to both 

CCs, but it is searched within different boundaries for each CC. In this example nc=50. 
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The C1-NSGA-II is employed, for the above C-MOP, with three variations of the value of 

η  in equation 3.13. In the first case the calculation of the crowding distance is based solely on 

the second expression of the equation (setting 0=η ). The resulting front is depicted in figure 

4.5a. It is noted that the part of the front where CC2 (pluses) is the 'optimal concept' is not fully 
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developed. The reason is explained in section 3.2.2.2. It is related to the unwanted 

disappearance of CC’s solutions due to their being niched in a small part of the CBF. The 

change in the number of the CCs' solutions, which are a part of the evolving front, is depicted 

in figure 4.5b where the circles and the pluses are designating CC1 and CC2 respectively. 

          

 

Figure 4.5a: The resulting front 0=η                 Figure 4.5b: Number of front solutions  
                                                                                                              vs. generation 

 

The second run is executed with 1=η . This means that the concept-based crowding is 

influenced just by the first expression of equation 3.13.  The resulting front is depicted in figure 

4.6a. 

 

 
        Figure 4.6a: The resulting front with               Figure 4.6b: Number of front solutions   

                                             1=η                                                             vs. generation 
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In this case the entire CBF has evolved but the part that is associated with CC2 is more crowded 

than that of CC1. This is due to the normalization, which is done on the basis of the boundaries 

within each CC (see equation 3.13). This is also reflected in figure 4.6b, where the number of 

solutions on the final front is equally split between the sub-populations (note that CC1 occupies 

a much smaller section of the front). It is noted that such an equal division is only an example 

and 40% to 60% is common. The phenomenon, which is demonstrated here, is not desired 

since that CC2 has too many representatives when considering its relative part in the entire 

CBF.  

  The third run is executed using both expressions of equation 3.13 for the calculation of the 

concept-base crowding. This means that genN/gen=η . In other words η  is changing from 0 to 

1 as the evolution progresses.  

The result of the evolution is depicted in figure 4.7a. It is observed that the density of the front 

is similar along its parts (in contrast to figure 4.6a). 

 

 
Figure 4.7a: The resulting front with                  Figure 4.7b: Number of front solutions 

                                         genN/gen=η                                                          vs. generation 

 

This is a result of the shift of the normalization of the concept sharing from in-concept 

boundaries to the entire front boundaries. The change of the distribution of the CCs' solutions 

on the front is depicted in figure 4.7b. It shows a better division in comparison with that of 

figure 4.6b. 
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4.1.2 Simultaneous vs. sequential EMO 

In this section a comparison between the simultaneous and the sequential approaches is 

carried out using C1-NSGA-II. The comparison is performed using the concept-based 

indicators (see section 3.2.2.4). In the examples below the total number of individuals summed 

over all CCs (sequences) of the sequential approach equals the population size used in the 

simultaneous evolution with C1-NSGA-II. It is noted that an equal number of generations is 

used for both approaches.  In the current section 4.1.2 two performance indicators are 

considered, whereas the third indicator is used in the subsequent section 4.1.3.  

  

Example 4.1.2-A 

In the first example the CBF involves two CCs such that each CC shares about half of the 

CBF.  The bi-objective problem is used with the following objective functions: 
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CC1 is associated with a convex front while CC2 is associated with a concave front. Figure 4.8 

depicts the analytically obtained fronts of CC1 by a dashed curve and that of CC2 by a 

continues curve.  

 

                                           
Figure 4.8: Analytically obtained CCs' fronts for Example 4.1.2-A 
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The results of running the simultaneous and the sequential algorithms are depicted in figures 

4.9a and 4.9b respectively. 

 
      Figure 4.9a: Results of C1-NSGA-II         Figure 4.9b: Results of the sequential algorithm 
       

The comparisons between the results of the simultaneous and the sequential approaches, based 

on the indicators, are depicted in table 4.1. 

 

 Table 4.1: Comparing results of example 4.1.2-A 
 

           Simultaneous              Sequential 

Indicator      CC1         CC2       CC1      CC2 

   mCFO     110          90        42         38     

   *
mD       0.99      0.997      0.87      0.998 

 

The results that are shown in table 4.1 indicate that for this example:  

1. The simultaneous approach introduces much more solutions, from each CC, on 

the CBF. 

2. The distance between the most apart solutions found for CC1 by the C1-NSGA-

II is greater than the one that is found by the sequential approach. For CC2 the 

resulting distances are similar. This is a result of the ability of C1-NSGA-II to 

apply a pressure towards the boundaries of each CC on the front and not just 

towards the front boundaries.   
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The results obtained in section 4.1.2, demonstrate that the C1-NSGA-II commonly finds more 

CC-related solutions on the CBF than those found by the sequential approach. This may be 

better understood by examining figure 4.10 where the CCs’ fronts, which have been evolved 

separately, are depicted.  

 

        
Figure 4.10: Separately evolved concepts’ fronts of example 4.1.2-A 

 

Figure 4.10 shows that about half of the initial population of each CC is 'wasted' on solutions 

that are not located on the CBF. On the other hand, in the simultaneous algorithm the 

individuals’ resource is better utilized to search solutions on the front.   

 

Example 4.1.2-B 

In this example the objectives are slightly changed from those of 4.1.2-A as follows: 
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The employed change of f2 of CC2 shifts its front to the right and by that changes the ratio 

between the relative sizes of the parts of the CCs on the front. Now CC2 occupies a larger part 

of the CBF. The results of the C1-NSGA-II and the sequential algorithm are depicted in figures 

4.11a and 4.11b respectively.  
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          Figure 4.11a: Results of C1-NSGA-II                  Figure 4.11b:  Results of the sequential 
                                                                                                                              algorithm      

   

The comparison between the fronts is achieved by the concept-based indicators and is 

summarized in table 4.2.  

  

Table 4.2 - Comparing results of example 4.1.2-B 
  

       Simultaneous        Sequential 

Indicator      CC1      CC2       CC1      CC2 

  mCFO     130        70        80        38     

   *
mD        0.99      0.98      0.84      0.99 

 

The results of this example are consistent with the results of example 4.1.2-A and the 

advantages of the C1-NSGA-II are well observed again.      

 

Example 4.1.2-C 

   In this example one CC occupies the entire CBF, while the other one shares a part which is 

rather small relatively to the entire front. Here two CCs are used, with the following objective 

functions:  
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The CCs fronts are shown in figure 4.12a. The front of CC1 is marked by a continues curve, 

whereas the front of CC2 with a dashed curve.  

 
            Figure4.12a: The concepts fronts                Figure 4.12b: Results of C1-NSGA-II 

 

Figure 4.12b, depicts the C1-NSGA-II resulting front, with a zoomed frame designating the 

region where the intersection takes place. The zooming depicts that the intersecting part of the 

front is well covered by both CCs. In contrast, when observing the results of the sequential 

algorithm, as shown in figure 4.13, the intersecting part contains just a few solutions that are 

related to CC1 (marked by arrows.) It is noted that once in several runs no representatives of 

CC1 appear on the CBF at all! This phenomenon is profound when the size of the populations 

is decreased.          

  
                Figure 4.13: The results of the sequential algorithm 

 

The comparison between the fronts is done using the concept-based indicators and is 

summarized in table 4.3  



Chapter 4                                                            93                            Test Cases & Examples 

 

  

Table 4.3 - Comparing results of example 4.1.2-C  
 

           Simultaneous              Sequential 

Indicator      CC1      CC2     CC1    CC2 

mCFO     170     30       96        4      

   *
mD       0.90      0.995      0.2     0.996 

 

The results that are shown in table 4.3 indicate the following:  

1. The simultaneous approach introduces much more solutions, for each CC, on the 

CBF. This is extremely evident for CC1. 

2. The distance between the most apart solutions, as found for CC1 by C1-NSGA-II, 

is greater than that found by the sequential approach. It is noted again that there 

are runs where the sequential approach produces no solutions for CC1. The 

superiority of C1-NSGA-II is evident for such examples. For CC2 the results are 

similar. 

 

Example 4.1.2-D 

All of the above examples involve two CCs. Here a case of eight CCs is used to further 

compare the simultaneous vs. the sequential approach. The objectives in the current example 

are:  
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The function 'fn', used here, is either sin or cosine. This function together with the parameters 

'a' and 'b,' dictate different models for calculating the performances of the different CCs.  The 

different parameters' values the related concepts and their legends are summarized in table 4.4. 
 

                             Table 4.4 Summary of CCs for Example 4.1.2-D 
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Figure 14a shows a representative part of an initial population. The initial population contains 

15 individuals per each CC. The eight CCs are distributed in the objective space according to 

their performances. Figure 4.14b depicts the resulting CBF, as evolved using C1-NSGA-II, and 

the analytical fronts of the 'optimal concepts' (CC3, CC6 and CC8). 

 

 

         Figure 4.14a: Part of initial population                         Figure 4.14b: The CBF 

 

Evolving sequentially the eight populations, of 15 individuals each, results in the CBF depicted 
in figure 4.15. 
 

 
Figure 4.15: Sequential based front 

 

Table 4.5 provides a comparison between the results as obtained by the simultaneous and the 

sequential approach for the three 'optimal concepts.' 

 



Chapter 4                                                            95                            Test Cases & Examples 

 

Table 4.5: Simultaneous vs. Sequential Approach for example 4.1.2-D 

           Simultaneous              Sequential 

Indicator     CC3     CC6    CC8     CC3    CC6   CC8 

mCFO      65     12   28      7      3       4 

   *
mD     0.98   0.96  0.97    0.88  0.92  0.74 

 

The obtained results are in accordance with those obtained in the other examples of this 

section. It is noted that using the sequential approach the obtained particular solution of CC3 

(squares) with the minimal f1 value, as shown in figure 4.15, is not optimal. This is due to the 

lack of particular solutions from CC8 in that vicinity that would have dominated those of CC3. 

The results, which have been obtained by the simultaneous approach, do not involve the above 

disadvantage. This is a reflection of the better use of the available resources (individuals) in the 

simultaneous approach.      

The above phenomenon of the inclusion of non-optimal solutions in the obtained CBF, which 

occurs in the sequential approach, is less evident with increasing size of the CCs populations 

(not shown here). While increasing the size of populations improves the expected resolution 

and the values of the performance indicators for the concept-based representation, it is 

associated with a larger computational time.  

 

Example 4.1.2-E 

This example demonstrates an evolution of a non-intersecting front and in particular the 

evolution of a uni-concept front. In this case the bi-objective MOP, (slightly changed from the 

'KUR' test problem, see Deb 2001) is to find the CBF for the following objectives: 
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The CCs differ from one another both by the models of the objective functions and by the 

number of decision variables. The resulting CBFs achieved by C1-NSGA-II and by the 

sequential algorithm are depicted in figures 4.16a and 4.16b respectively. A summary of the 
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results for comparing between the simultaneous and the sequential approach are depicted in 

table 4.6.  

 

        Figure 4.16a: Results of C1-NSGA-II        Figure 4.16b: Results of the sequential approach 

 

Table 4.6: Comparing results of example 4.1.2-E 
  

 Simultaneous    Sequential 

Indicator          CC1         CC2 

mCFO         190         95

   *
mD          0.99         0.93 

 

The results that are shown in table 4.6 indicate the following: 

1. The simultaneous approach introduces much more solutions, belonging to the 

surviving CC on the front.  

2. The distance between the most apart solutions found, for the surviving CC, by C1-

NSGA-II is greater than the one found by the sequential approach.  

 

C1-NSGA-II produces more solutions on the front (in case of the uni-concept front it doubles). 

In addition it has a better chance of finding the edges of a front with discontinuous regions. 

This can be realized by comparing figure 4.16a with 4.15b. 

 

4.1.3 Comparing computational time 

This section provides a comparison of the simultaneous and sequential approaches using the 

third indicator (computational time). To demonstrate such a comparison the objective functions 

of each of the CCs are accompanied with a delay function that simulates the assumed 
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computation time needed to conclude the computation of their performances (see section   

3.2.2.5).  

Four basic states are considered as follows: 

1. Both CCs equally share the front.  

2. Both CCs share the front but one CC occupies a much larger part. 

3. One CC survives on the front and the front of the non-optimal CC is far from the 

'optimal concept’s front. Here the front of the non-optimal concept is considered 

'far' if its sub-population disappears within 5% of the generations for both running 

by C1-NSGA-II and C2-NSGA-II (see remark below).  

4. One CC survives on the front and the front of the non-optimal concept is close to 

the 'optimal concept’s front. Here we refer to 'close' if the sub-population of the 

non-optimal concept disappears after at least 80% of the generations for both 

running by C1-NSGA-II and C2-NSGA-II (see remark below).  

 

Remark - It should be noted that although the last two states (3 and 4) are related to distance in 

the objective space, a generational-based disappearance measure is used. In the following 

examples this generational measure correlates well with the location. Nevertheless, such a 

relation is not always true and care in using the generational measure should be taken.         

An example for the four basic states is depicted in figure 4.17a-d. 

 

     Figure 4.17 a: State 1            b: State 2                c: State 3                      d: State 4 

These four states are combined with the delay, which is explained above, to introduce the 

following investigated 7 situations: 

 

A. State 1 with no delay. 

B. State 2 with no delay. 

C. State 3 with no delay. 

D. State 4 with no delay. 
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E. State 2 with a delay to the CC occupying the larger section of the front. 

F. State 2 with a delay to the CC occupying the smaller section of the front. 

G. State 3 with a delay to the 'optimal concept'. 

H. State 3 with a delay to the non-optimal concept.  

I. State 4 with a delay to the 'optimal concept'. 

J. State 4 with a delay to the non-optimal concept.  
 

The following results correspond to the four problems, which represent the four states. The 

problem representing state 1 is the problem of example 4.1.2-A. The problem representing state 

2 is the problem of example 4.1.2-A using 0.72 instead of 0.87 in the second objective of CC2. 

The problem representing state 3 is problem 4.1.2-E. The problem representing state 4 is the 

problem of example 4.1.2-A using 0.68 instead of 0.87 in the second objective of CC2.   

The parameters for the evolutionary computations were kept as described in the beginning of 

section 4.1. Table 4.7 summarizes the results as obtained for the above A-J situations. For each 

algorithm three columns are given including the time ratio, and the number of the CC 

representatives for each CC (CC1 and CC2) on the obtained front. The later two columns 

contain the values as obtained by the first performance indicator (see section 3.2.2.4). The use 

of the second performance indicator, which is not shown here, does not change the conclusions. 

Fifty individuals were initially used for each sub-population in the simultaneous algorithms, as 

well as per CC population in the sequential approach.   

 

                  Table 4.7: Comparing Simultaneous approaches vs. sequential approach 
Situation          C1-NSGA-II      C2-NSGA-II      Sequential 

τ  CC1 CC2 τ CC1 CC2 τ CC1 CC2 

A 2.4 47 48 2.2 46 45 1.0 25 35 

B 2.35 85 15 1.4 49 20 1.0 40 10 

C 3.8 97 0 1.0 49 0 1.7 49 0 

D 2.3 97 0 1.8 47 0 1.0 48 0 

E 4.2 85 15 3.6 49 20 1.0 40 10 

F 4.0 85 15 1.0 49 20 1.2 40 10 

G 4.5 97 0 1.3 48 0 1.0 49 0 

H 3.8 97 0 1.0 49 0 4.2 49 0 

I 4.0 98 0 1.2 47 0 1.0 47 0 

J 4.0 97 0 1.8 47 0 1.0 48 0 
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The following can be observed from table 4.7. 

 

a. C2-NSGA-II involves less computational time than C1-NSGA-II. 

b. Comparing the computational time of C2-NSGA-II vs. the sequential 

approach reveals that it depends on the situation. There are situations (C, F, 

and H) where the time of using C2-NSGA-II is shorter than that of the 

sequential approach. This is most evident in case 'H'. This is a result of the 

non-optimality of the CC which has the delay. In this case the sequential 

approach has a wasting time of producing a non-optimal front. 

c. Comparing the computational time of C1-NSGA-II vs. the sequential 

approach it is noted that only in situation H, for similar reason as above, the 

simultaneous approach is shorter. Moreover, in this situation the 

representation (as indicated in the CC1 columns) obtained by the 

simultaneous approach is better, based on the representation performance 

indicator.   

d. When considering the first performance indicator alone, C1-NSGA-II 

generally outperforms the other two alternatives. This is in agreement with 

the results of section 4.1.2. 

e. Also, for the first performance indicator alone, C2-NSGA-II is at least as 

good as the sequential approach. 

 

Table 4.7 appears to show the generic behavior of the algorithms. This includes the following 

major observations: 

1. C1-NSGA-II produces better representation performance at the cost of higher 

computational time.  

2. C2-NSGA-II involves shorter computational time than C1-NSGA-II at the cost of lower 

representation performance. 

3. The results of comparing the computational time of the sequential approach vs. the 

simultaneous approaches depend on the nature of the problem. 

 

4.1.4 Structural mechanics example 

The following example demonstrates the applicability of the suggested approach to real-life 

applications. For this purpose the concepts used by Mattson and Messac 2005 are adopted, with 

a modification of the unit system and loadings. The conceptual design space includes three 
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different CCs that are depicted in figure 4.18. 

 

 
                                                   Figure 4.18: Three CCs truss problem 

 

The bi-objective problem involves the minimization of both the total volume of the truss and 

the deflection of junction P. The design variables of this problem are the cross section of the 

bars, ,AB  and the width variable, b, within the following design constraints: 
2

B
2 cm17Acm3 ≤≤  and m27bm9 ≤≤ . The length parameter is kept constant at L= 18m. The 

design CCs differ by the number of design variables and by a difference in the models for the 

objective functions. In the following figures CC1, CC2 and CC3 are designated by squares, 

triangles and circles respectively.   

Using C1-NSGA-II with 20 individuals for each sub-population of the initial population, and 

the loads F1=1N and F2=10N, results in the CBF as depicted in figure 4.19. The resulting CBF 

contains representatives from CC1 and CC3. A good qualitative correlation between the optimal 

concepts obtained here and those of Mattson and Messac, (2005) is achieved. Yet, it is beyond 

the scope of this thesis to compare the methods here with theirs, and this is left for future work.  
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                                                Figure 4.19: CBF with F1=1N, F2=10N 

  

Changing the loads to F1=10N, F2=15N results in a new CBF, as depicted in figure 4.20. 

                                         
                                                Figure 4.20: CBF with F1=10N, F2=15N 

 

The load changing results in a substantial change of the fronts including a change of the front 

location, the number of 'optimal concept's and the front type (see section 3.2.1.3). Comparing 

figures 4.19 and 4.20, the latter involves the three rather than two CCs, with an intersection of 

C2 and C3 at the middle part of the front. 
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4.1.5 Effects of MOEA parameters 

In addition to the study on the effect of mutation, which is discussed in section 4.1.2, the 

following changes were made to assess the sensitivity of the proposed algorithms to such 

changes: 

a. The examples of sections 4.1.2 and 4.1.3 were run with 20 bit encoding instead of 8 bit 

encoding. Excluding the expected increase of computational time, there was no 

reportable difference from the results of sections 4.1.2 and 4.1.3 (with 8 bits).  

b. In the examples of section 4.1.2A- 4.1.2C the sub-population size was changed from 50 

to 25 and also to 75. Results obtained when increasing the sub-populations size to 75 

appeared consistent with those of section 4.1.2. When using 25 individuals within a 

sub-population the results of the simultaneous approach became even more superior 

with respect to both performances measures. This is in accordance with the results 

obtained in example 4.1.3. 

 
4.2 Case studies for the IC- MOP  

The methodology introduced in sections 3.3.1-3.3.3 on interactivity is investigated here by the 

use of several academic examples. In section 4.2.1 non-hierarchical problem decomposition is 

used to demonstrate the working of the interactive concept-based evolution algorithm. In 

section 4.2.2 a hierarchical 'AND/OR' tree description is utilized to demonstrate the influence 

of the interactivity towards SCs on the resulting OSF. In section 4.2.3, an engineering problem 

is used to demonstrate the applicability of the proposed algorithms to engineering conceptual 

design. In all of the following examples the evolutionary parameters are kept as detailed in 

section 4.1 unless stated otherwise.  

4.2.1 Interactivity with no hierarchies 

For this case, with no hierarchies, the weights assigned are the CCs' preferences. Therefore, no 

weight calculations are needed and the assigned weights are directly employed. 

  

Example 4.2.1-A: Uni-front and interactivity  

In this example the concepts' objectives and the parameter search limits are:  

 

                                 
b)2x(f

bxf
2

2

2
1

+−

+=
         5x5 ≤≤−                                          
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Two SCs are used, one corresponds to b=0 and the other to b=5. This means that there are two 

CCs, CC1 and CC2, differing one from each other by the models of the objective functions. The 

interactive concept-based MOEA  (see section 3.3) uses a population of 20 individuals for each 

sub-population while other parameters (mutation rate etc.) are kept as in section 4.1. The effect 

of human preferences towards the CCs is examined in the following. When there are no SCs’ 

preferences, then H1= H2 = 1 for both CCs (see section 3.3.2.3). In such a case no upgrading of 

the MBF occurs. The resultant Pareto front, corresponding to the winning CC, CC1 (b=0), 

designated by squares, is shown in figure 4.21. This front is in fact the CBF.  

 

 

Figure 4.21: CBF of Example 4.2.1-A (no preferences) 

 

Increasing the preference of the disappearing CC, CC2 (b=5), by assigning it with a preference 

weight of 0.4, while assigning no preference to CC1, leads to the OSF depicted in figures 

4.22a. It is depicted that along the initial front, there are several representatives from CC2 

designated by triangles. Increasing further the preference weight of CC2, to 0.7, results in the 

OSF depicted in figure 4.22b. It can be observed from figures 4.22a and 4.22b that as the 

preference weight of CC2 is increased more of its front is reviled. It is noted that as the 

preference towards CC2 raise, more of the resource of individuals is transferred towards a 

search of solutions belonging to CC2. Assessing the results of figure 4.22a and 4.22b is done 

here based on the measures, which have been introduced in section 3.3.3.3. The results are 

summarized in table 4.8a and 4.8b respectively. 
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Figure 4.22a: OSF with W1 = 0, W2 = 0.4    Figure 4.22b: OSF with W1 = 0, W2 = 0.7 

 

Table 4.8a: Measures of successes for example 4.2.1-A with W1 = 0, W2 = 0.4 

Measure    CC1    CC2 

mno      0     0 
m
OSn     25     5 

m
OSSDn    1.78   0.88 

m
OSD    5.62    5.5 

m
OSSDD    0.03   0.08 

                                                                                    

From the table it can be concluded: 

1. All the CCs representatives are optimal within each CC.  

2. The OSF is consistent and similar fronts result in all runs (as observed from the 

low values of the two standard deviations measures ( m
OSSDn ,

m
OSSDD ). 

 

Table 4.8b: Measures of successes for example 4.2.1-A with W1 = 0, W2 = 0.7 

Measure    CC1    CC2 

mno      0     0 
m
OSn     22     8 

m
OSSDn     1.3    0.9 

m
OSD    5.62   6.01 

m
OSSDD    0.02   0.05 
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From the table it can be concluded: 

1. All the CCs representatives are optimal within each CC.  

2. The OSF is consistent and similar fronts result in all runs (as observed from the 

low values of the two standard deviations measures ( m
OSSDn ,

m
OSSDD ). 

 

It is noted that using a weight of 0.35, causes un-decisive results. This means that 

representatives of CC2 may or may not survive. Therefore the front may be the same as the 

CBF or as an OSF. This should not be considered as a disadvantage of the approach as the DM 

dilemma stated in undeceive preference is reflected in the results.  

When the preference towards CC2 is evident and is expressed by assigning W1 = -0.5, W2 = 

0.9 the resulting concepts weights are: H1 = -0.5 and H2 = -1.9. The evolution based on this 

assignment results in the OSF depicted in figure 4.23 (for reference the CBF is shown by a 

continuous curve). It is observed that most of the computational resources turned towards the 

preferred CC, with no CC's solutions on the CBF.    

 

      Figure 4.23: OSF with W1 = -0.5, W2 = 1.9 

 

Example 4.2.1-B:  Intersecting front and interactivity  

The objectives, used in this academic example, are: 
 

                   x)1b(c)4x(f

10b5xf
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The space consists of four CCs. The CCs are composed of four SCs, which are characterized 

by: c=-3, c= -4, b=+ 2 and b=+3. Table 4.9 summarizes the CCs and their related SCs as well 

as the CCs designating legends which are used in the following figures.   
 

                        Table 4.9:  Summary of CCs and their legend for example 4.2.1-B  
CC # c values b values Legend  

1 - 3 +2 circle 

2 - 4 +2 star 

3 - 4 +3 rhombus 

4 - 3 +3 plus 

 

In the first simulation, which provided the results shown in figure 4.24, there are no human 

preferences assigned to the SCs. It can be seen that CC4 (plus) did not survive at all, while the 

others share the resulting front with intersecting section at the top part of the front. Descending 

along the front, it contains only one dominating CC (CC2), and then again, at the lower part, it 

contains another CC (CC3).  

  

 

Figure 4.24: The CBF 

 

To demonstrate the effect of human preferences the following situation is examined. The 

weight of the SC characterized by c= -3 is assigned with a value of 1.0 (the highest preference 

possible), and the weight for c= -4 is chosen as -0.6. These preferences cause the CCs, 

associated with c=-3 (CC1 and CC4), to be preferred over those associated with c=-4 (CC2 and 

CC3). The results of the evolution are shown in figure 4.25.  
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Figure 4.25: The OSF 

 

Comparing figure 4.24 with figure 4.25, it can be seen that the winning CCs are not all the 

same. This is due to the influence of the subjective preference articulation. Moreover the front 

is no longer an intersecting front and it is a shared one. Table 4.10 summarizes the numerical 

values of the performance measures of this example.  

 

Table 4.10: Measures of successes for example 4.2.1-B 

Measure    CC1    CC2 

mno      0     0 
m
OSn     25    13 

m
OSSDn     1.1    0.9 

m
OSD    61.7   27.3 

m
OSSDD    0.06   0.11 

 

The validity of the OSF as calculated by the proposed measures of validity is high as further 

reflected by the low values of the standard deviation measures. It is also notes that the relation 

between the m
OSD of both CCs is 2.26. The relation between the m

OSn of the CCs is 1.92. The 

resemblance between these values implies on the transverse pressure towards a balanced 

representation of the CCs on the OSF. 
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4.2.2 The hierarchical case 

The purpose of the following bi-objective academic example is to demonstrate the affect of the 

hierarchical preferences on the resulting front. The bi-objectives minimization problem used 

here is similar to the one used in example 4.1.2-D. 

     
)xb(fn1.0xyaf

xf
2

2

1

π−−+=

=
         2x2 ≤≤− and 2y2 ≤≤− .                   

 

This time the CCs are extracted out of a hierarchical AND/OR tree representation. Eight SCs 

associated with the parameters, 'a' and 'b,' and with a trigonometric function, 'fn,' are used to 

describe the conceptual design space. The SCs, within the hierarchal arrangement of the 

‘AND/OR’ tree, are depicted in figure 4.26. Each of the 8 CCs can be represented by an ‘AND’ 

tree that is extracted from the ‘AND/OR’ tree. Table 4.11 provides a list of CCs and their 

associated symbols (legend) as used in the following figures. 

  

Figure 4.26: The 'AND/OR' tree representation 
 

Table 4.11: The hierarchical case - summary of CCs and their legend 

 

The parameters a, b, and the trigonometric function, sinus or cosine, which are associated with 

the S-Cs, dictate different models for the objective functions, (as related to equation 5), for the 

various CCs. It should be noted that SC1 to SC8 are related to a=1.0, a=0.8, sin, cosine, b=1, 

b=3, b=1, b=3 respectively. It is also noted that the equal values of b=1.0 for SC5 and SC7 as 

well as the equal values of b=3.0 for SC6 and SC8 mean that these SCs are actually the same, 

and the different indices is a result of the representation. The decision on the trigonometric 



Chapter 4                                                            109                            Test Cases & Examples 

 

function and the decision on the value of the parameter 'a' characterize the highest SCs of the 

hierarchy and the decision on the value of the parameter 'b' is associated with the SCs of the 

lower hierarchy. Deciding on the branch at each 'An,' leads to an ‘AND’ tree of SCs, which 

corresponds to a CC.  

Figure 4.27a shows a part of the initial population, which is associated with eight sub-

populations of 15 individuals each. The eight CCs are distributed in the objective space 

according to their performances. Figure 4.27b depicts the resulting CBF, which is the same as 

in figure 4.14 (re-shown here for ease of reading).  The surviving front, including CC3, CC6 and 

CC8, is the CBF that is achieved by an evolution, which is influenced by the MBF alone. 

  

       

             Figure 4.27a: The initial population                        Figure 4.27b: The CBF 

 

It is noted that all three optimal CCs are associated with SC2 (for which a=0.8), which is 

associated with the highest level of the hierarchy. Now suppose that a preference weight of 0.6 

is assigned to that SC. The resulting OSF is depicted in figure 4.28a. It is seen, that apart from 

the CBF there is 'another' front. It is the front of CC4. This added front is not a part of the 

problem CBF, but it survived due to the preference of a high located SC of the CC. Now 

suppose that the same SC is assigned with a lower weight of 0.5. The resulting front is depicted 

in figure 4.28b, where less representatives of CC4 has survived due to its lower preference. In 

other words, a reduced search pressure towards CC4 is taking place. A similar OSF to the one 

depicted in 4.28b is achieved if SC2 has no weight assignment and SC4 and SC8 are each 

assigned with a weight of 0.25, which is half the weight that was assigned initially to SC2. This 

is due to the lower location of the preferred SCs within the hierarchy. It is noted that the last 
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assignment did not result in a survival of solutions of CC2 or CC7 although they are associated 

with those preferred SCs.   

    

         Figure 4.28a: OSF for W2 =0.8        Figure 4.28b: OSF for W4 = W8 = 0.5 

 

This is due to the insufficient upgrade of their fitness. Now let the DMs' discussion result in 

assigning W2 = - 0.8, and W1 = 0.9. Running the interactive concept-based evolutionary 

algorithm with this assignment results in the OSF depicted in figure 4.29.   

 

          Figure 4.29:  OSF for: W2 = - 0.8, and W1 = 0.9 
 

The resulting OSF is a shared front, containing representatives of CC1 and CC5. It does not 

include any representatives of the CBF, which is depicted in the figure by continues curve. 

Table 4.12 summarizes the measures (see) for this example. 
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                       Table 4.12: Measures of successes for the hierarchical case 

Measure    CC1    CC5 

mno      0     0 
m
OSn     60    50 

m
OSSDn      6     5 

m
OSD    0.85   1.08 

m
OSSDD    0.04   0.09 

  

The measures values as summarized in table 4.12 leads to the same conclusions expressed 

following tables, 4.8a, b and table 4.10.  

To enhance a search of solutions belonging to a specific CC the preferences assigned should 

guarantee its solo evolution. For example, the following assignment is attempted with W4 = W5 

= W7 = W8 = -0.5, W2 = -0.8, W3 = W6 = 0.7. The resulting OSF is depicted in figure 4.30. The 

only surviving representatives are those of CC5.  

                           

                                                Figure 4.30: Concept elevation 

 

4.2.3 Structural mechanics example 

 

To demonstrate the effect of interactivity in an engineering setting, the example described in 

section 4.1.4, with loads of F1=10N and F2=15N is considered. The CBF for this case is 

depicted in figure 4.20. It is an intersecting front that holds representatives of all CCs. Now 

suppose that the DMs prefer the use of two bars truss over the use of a three bar truss. Such a 

preference may be expressed by assigning W1 = -0.5 and W4=0.8. The resulting OSF using the 
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interactive concept based evolution is depicted in figure 4.31.    

 

                                             
                                                       Figure 4.31: OSF for W1=-0.5 W4=0.8 

 

It is observed that the resulting OSF is still an intersecting front but now it holds just 

representatives from CC2 and CC3. The representatives of CC1 did not survive due to the low 

preference assigned to it and the high preference assigned to the other CCs through their 

highest level in the hierarchy. 

 

From the examples of section 4.2, the following may be concluded:  

1. The OSF representation is mostly consistent as concluded from the results, which are 

summarized in tables 4.8a, b, 4.10 and 4.12. 

2. There may be certain values of weights that may cause boundary preference that may 

cause the front not to be consistent. This means that the values for the standard deviations 

measures cross the 0.1 value and even reach the value of 0.5! Such perturbations in the 

representation are therefore associated with boundary preferences where the subjectivity 

dictates uncertainty. 

 

4.3 Case studies for the conceptual selection support approach 

In this section, hand calculation examples are given to demonstrate and to further explain the 

O&V approach for the support of concept selection. 
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The problems of figure 3.14a and 3.14b are further used here, with an added CC, CC4 (pluses), 

to demonstrate the proposed method. The WOIs of examples 1 and 2 are divided as depicted in 

figures 4.32a and 4.32b respectively. The division of each axis in these examples is 6. This is in 

accordance with the maximal number of representatives any CC has in each problem.  

 
           Figure 4.32 a: Axes partitioning for ex. 1           4.32b: Axes partitioning for ex. 2 

 

The O&V values for the CCs of the examples are summarized in table 4.13. 

 

Table 4.13: O&V values 

Measure Example 1 Example 2

V1 0.5 0.66 

O1        1 1 

V2 0.33 0.83 

O2 1 1 

V3 0.91 --- 

O3 0.5 --- 

V4 0.166 --- 

O4 0.33 --- 

 

The plots of these results, in the bi-objective space of the auxiliary MOP, are depicted in figure 

4.33a and 4.33b.      
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 Figure 4.33:      a: O&V for example 1                                    b: O&V for example 2 

 

In contrast to the 'goodness' measure, the results of the O&V approach are more adequate in 

the sense that they highlights the trade-offs between the O&V objectives. In example 1, which 

is associated with the auxiliary MOP representation of figure 4.33a, there are two out of the 

four CCs which have O&V values on the auxiliary MOP front (circles and triangles). 

Considering Pareto-optimality of the auxiliary MOP, each one of these two CCs may be 

selected. These results show the importance of considering CCs, which are not a part of the 

CBF (the triangles in this example), as they might be 'optimal' in the O&V sense. In the second 

example the superiority of CC2 over CC1, which is associated with variability, is highlighted by 

the O&V approach. This demonstrates the other aspect of the auxiliary MOP, which is not 

considered by the 'goodness' measure, as explained in section 3.4.1. 

 

4.4 Case studies for the delayed decision problem 

The procedure introduced in section 3.5 is demonstrated here for two cases. The first is an 

academic example, while the second is associated with an engineering conceptual design 

problem.  

 

4.4.1. Academic example 

The academic example is depicted in figure 4.34. 
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Figure 4.34: Demonstration for the delayed decision problem 

 

In Figure 4.34, two MMCs are shown. MMC1 involves the circles designating its ACCs (ACC1 

and ACC2) by the blank and filled circles respectively (this is kept throughout the figures 

below).  Similarly the other MMC, MMC2 involves ACC3 and ACC4, which are designated by 

blank and filled squares respectively. In addition a CC which is not an ACC, and is not affected 

by the delayed decision, is designated by triangles.  

For the above example the axes divisions (4 for each axis) are also depicted in figure 4.34.  

The numerical results for the O&V are given in table 4.14. The table also includes the 

numerical values of the worst cases.  

Table 4.14: O&V worst case results 

Concept Optimality Variability Worst  case/s 

   Opt.          Var. 

ACC1 1 4/8 1 

0.5 

4/8 

4/8 ACC2 0.5 5/8 

ACC3 1 6/8  

1/3 

 

3/8 ACC4 1/3 3/8 

CC 0.5 3/8 0.5       3/8 

 

The MMCs and the CC representatives in the auxiliary bi-objective space are depicted in figure 

4.35a. Following the worst-case sorting procedure (see section 3.5.2), figure 4.35b, depicts the 

obtained MMCs sets for both cases.   
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             Figure 4.35a: The CCs representatives         Figure 4.35b: MMCs' representatives  

 

 It is noted that although MMC2 is associated with the CC, which has the highest O&V measure 

(ACC3), it has poor performances when robustness to delayed decisions is considered. 

According to the results, which are depicted in figure 4.35b, MMC1 has the best of the worst 

performances in the auxiliary MOP and should be preferred over the other MMCs.  

 

4.4.2 Structural mechanics example  

 

The truss arrangement (see section 4.1.4) is reused here. A NSGA-II algorithm with 50% 

crossover, 1% mutation, tournament selection and a population of 50 individuals is run for each 

of the truss' models. The resulting CCs fronts are depicted in figure 4.36, designated as in 

section 4.1.4, by squares, triangles and circles for CC1, CC2 and CC3 respectively.   

                                  
                                                       Figure 4.36: The CCs fronts  
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In this example it is assumed that the decision on the exact configuration of the two bar truss is 

delayed. Figure 4.37 depicts the tree representation of the conceptual design space of the 

current problem, which is an OR tree. It is noted that in this example SC0 and CC1 are the 

same, 212 SCSCCC ∧= , and 313 SCSCCC ∧= . 

 

                                               
                                  Figure 4.37: Design space tree with the pruning location 

 

Now suppose that a decision on whether to continue with a three bar truss or a two bar truss 

should be taken (e.g., to decide between ordering two or three hanging devices).  In addition, 

suppose that the architect of the structure approved the three truss arrangement but is unsure 

about which of the two two-bars truss arrangements she would approve. This means that a 

decision under this uncertainty should be taken, and the decision on the exact two bar 

arrangement is delayed. The effect of delaying the decision is shown as the pruning below SC1. 

This pruning results in one CC (CC1) and one MMC with its ACCs (CC2, CC3). The DMs are 

interested in solutions with a WOI defined by the entire boundaries of the figure.  

Following the procedure outlined in sections 3.4 and 3.5, the bi-objective O&V selection space 

is depicted in figure.4.38. 

                                            
                                                    Figure 4.38: O&V selection space 
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In this case both ACCs (circles and triangles) are the worst cases of the MMC. Both are robust 

concepts. Considering optimality within the auxiliary MOP and in the Pareto sense the two bar 

MMC is better.  In any case the decision on a final bars arrangement may be postponed.  

 

4.5 Mechatronic design example 

 

In this section a simple mechatronic example is used to demonstrate the applicability of the 

approaches, introduced in the thesis, to mechatronic design. The conceptual decisions that have 

to be made in this example belong to both mechanical and control disciplines. Namely, a 

concept for both the structure and the control of a one-arm manipulator is to be found. The arm 

is shown in figure 4.39 (side view). 
  

  

      Figure 4.39: One arm manipulator (side view)  

 

A load of mass ML is to be raised to a location B at a height x above an initial location A. An 

arm of length L, and mass mA, is used for the lifting. The arm is manipulated by a torque M at 

its base determined by a controller. The bi-objective problem involves the minimization of: 
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gain, reset time, and derivative gain, respectively. The weight of the arm is calculated by: 

gLmA ρ= where g is the gravity and
EI2
gLm

EI8
gLmf

3
L

3
A +=Δ , where 3bhI = . 

The following SCs are used: 'use a long arm with a large cross section' (SC1), 'use a short arm 

with a small cross section '(SC2), 'use a PD controller' (SC3), 'use a PID controller' (SC4). It is 

noted that SC1 and SC2 might be a result of a requirement to use in-stock arms. The design 

space tree is depicted in figure 4.40.    

  

 
Figure 4.40: Conceptual design space tree – mechatronic example 

 

SC1 differs from SC2 by the bar cross section, the material, and the search space limits at which 

the values for the arm length are searched for. SC3 differs from SC4 both by the model to 

compute the controller force and by the number of the design parameters. Tables 4.15 and 4.16 

summarize the SCs parameters and constants. 

 

Table 4.15: SC1 and SC2 related parameters and constants 

SC # Density 
ρ  

Module of 
elasticity, E 

Cross 
section, hb ⋅  

      Length 
L 

1 2700 kg/cm3 70000 MPa   5cm x 10cm m3Lm1 ≤≤  

2 2700 kg/cm3 70000 MPa 10cm x 10cm m3.1Lm8.0 ≤≤  

        

Table 4.16: SC3 and SC4 related parameters and constants 

SC # P I D 

3 300K1 C ≤≤  100K1 I ≤≤  

4 300K1 C ≤≤ 100K1 I ≤≤ 3001 D≤τ≤  

 

Four CCs may be extracted from the conceptual design space. Table 4.18 summarizes the CCs 

their related SCs, their description, and their designating legends.  
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Table 4.17: Summary of SCs, CCs and their legends 

CC # SCs # Description Legend 
1 1,3 long arm with large cross section 

                 PD control 
star 

2 1,4 long arm with large cross section 
                 PID control 

plus 

3 2,3 short arm with small cross section 
                 PD control 

triangle  

4 2,4 short arm with small cross section 
                 PID control 

square 

 

A load of 0.8kg is used in the following simulations. The distance, x is chosen to be 1.5m, 

which is rather large in comparison with the maximal length of the bar. This is selected to 

examine the control away from liner conditions.  

 

4.5.1 Mechatronic example – CBF 

The MOEA used here is the C1-NSGA-II algorithm (see section 3.2.2.2). Each sub-population 

of the CCs is initialized with 25 individuals. The algorithm parameters are kept as in section 

4.1. A part of the initial population is depicted in figure 4.41a. The CBF location is marked by 

black points. The change of the angle θwith time for several solutions, belonging to the initial 

population, is depicted in figure 4.41b. It is noted that the initial population does not contain 

optimal solutions (in the concept-based sense). This is not general as such solutions may 

occasionally appear in the initial population. It is further noted that longer arms are associated 

with a smaller absolute value of the initial angleθ  (see the mathematical model for 

explanation). 

.     

        Figure 4.41a: Initial population          Figure 4.41b:  Representing time responses 
                             performances                                         of the initial population  
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In the first simulation, no preferences are assigned to the SCs. The result of using C1-NSGA-II 

is depicted in figure 4.42a. It is noted that, as expected, the resulting front is similar, when 

alternatively using the interactive concept-based MOEA with no assignment of preferences. 

 

 
                        Figure 4.42a: The CBF                    Figure 4.42b: Time responses of the  

                                                                                                            boundary solutions  

 

The figure depicts the CBF, which is an intersecting one. It holds along all its length, solutions 

belonging to CC2 and in its lower part it holds also solutions from CC1. Both CCs are 

associated with the larger cross section of the arm. Figure 4.42b depicts the time responses of 

the boundary solutions of the front. The minimal ISE with maximal deflection is associated 

with a PID controller that uses the larger cross section and long arm (2.7m). The time response 

for that solution is depicted in figure 4.45b, designated by grey. It is noted that the use of a long 

arm results in a shorter movement (less angle to travel). A shorter travel means a smaller 

change in the angle theta. A linear controller may fit better to such smaller changes of theta as 

the model is associated with nonlinearity. On the other end of the front, there are solutions that 

belong to the intersecting concepts. Both solutions use the CCs shortest possible arms of the 

longer arms (1m). The use of a shorter arm (with larger cross section) allows a fast response 

with low deflection for both the PID and the PD controllers. The time response of CC1 is 

designated in figure 4.42b by the black response curve. Table 4.18 summarizes the results of 

comparing the results using C1-NSGA-II and a sequential algorithm (see section 3.2.2.2) based 

on the first concept-based indicator (see section 3.2.2.4). Results for the second concept-based 

indicator can not be found since that an analytical front is not available.  

 



Chapter 4                                                            122                            Test Cases & Examples 

 

Table 4.18: Comparing simultaneous vs. sequential approach 

 Simultaneous   Sequential 

Indicator   CC1   CC4 
  

 CC1  CC4 
  

mCFO     30    65 
  

    6   23   
    

 

The results shown in the table are consistent with the results of the academic example (see 

section 4.1.2). 

 

4.5.2 Mechatronic example – Interactivity 

 

The interactive EC algorithm is examined by using the problem of section 3.2.4.4. The 

preferences towards the SCs are changed. Now the DMs assign the preference weights of W3= 

0.4 and W4= -0.6. These weight assignments express that the DMs prefer a PD controller over a 

PID controller. The resulting OSF is depicted in figure 4.43a. It holds just the solutions of CC1. 

Now suppose that the DMs' preference is increased towards the PD controller by assigning the 

preferences weights as: W3= 0.8 and W4= -0.8. The resulting OSF is depicted in figure 4.43b. It 

now holds two CCs fronts (CC1 and CC3), which are both associated with the preferred SC of 

the PD controller.   

         
                             Figure 4.43a: OSF for                                 Figure 4.43b: OSF for  

          W3= 0.4 and W4= -0.6                                 W3= 0.8 and W4= -0.8 
 

It is noted that the obtained values for the measures introduced in section  3.6.2.2, which are 

not shown here, do not indicate a change from the  results shown in tables 4.8a, b, 4.10, and 

4.12.  
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4.5.3 Mechatronic example – Supporting decisions  

To demonstrate the applicability of the algorithms introduced in section 3.4 and 3.5, to the 

mechatronic example, two different delayed decisions are considered. The first case involves a 

delayed decision on the mechanical SCs. This means that the decision is postponed on using a 

larger or a smaller cross section for the arm. In the second case the decision on the controller is 

delayed. This means that the decision on using a PD or a PID is postponed. The pruned trees, 

which are depicted in figures 4.44a and 4.44b, are for the first and second case respectively.  

            
Figure 4.44a: Delaying structure decision      Figure 4.44b: Delaying control decision 

 
For both cases there are two MMCs, which are associated with two ACCs each. Table 4.19 

summarizes the MMCs and the ACCs for the two cases.  

                                                Table 4.19: MMCs and their ACCs 

 Case 1 ACCs Case 2 ACCs 

MMC1   CC1 and CC3 CC1 and CC2 

MMC2   CC2 and CC4 CC3 and CC4 

 

Running NSGA-II for each of the CCs result in the CCs fronts depicted in figure 4.45.  
        

 
                                       Figure 4.45: Four mechatronic CCs' fronts  
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For the ACCs of the problem the representations in the auxiliary MOP objective space, is 

depicted in figure 4.46. 

 
Figure 4.46: Auxiliary objective space for the mechatronic example 

 

Considering the two cases (case 1 and case 2) of table 4.19, the worst set for each MMC and 

for each case are depicted in figure 4.47a and 4.47b respectively.   

 
             Figure 4.47a: Auxiliary objective space           Figure 4.47b: Auxiliary objective space  
                                          for case1                                                                   for case2   
                                                  
 

It is observed from the results that in case 1, both MMCs are robust. However, their O&V 

values are similar hence are quite as good for selection. In contrast, in the second case although 

both MMCs are robust, MMC1 is 'optimal' in the auxiliary objective space.  

In another scenario a different WOI may be considered by the DMs. Suppose that in the new 

scenario the designers set the WOI to be bounded by a deflection of 70 mm and an ISE of 0.11 
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rad2. The lower bounds are determined as (0, 0). For this scenario the auxiliary MOP would 

result in the two MMCs sets at the origin for case 1. This is due to the fact that both CC3 and 

CC4 have their entire fronts located outside the WOI. In case 2, the representative of MMC2 has 

values for O&V that are (0.54, 1), and (0, 0) for MMC1. Therefore the decision on the structure 

may not be postponed, whereas postponing the control is possible. This means that MMC2 is 

the only robust concept. In this case (case 2) the long arm with large cross section structure 

may be chosen (including order of material and adequate manufacturing related items). 
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CHAPTER 5  
 

  SUMMARY CONCULUSIONS and FUTURE WORK 
 

The main goal of this thesis is to advance the development of methodologies and computational 

tools, which support conceptual design, and in particular with respect to multi-objective 

problems. This study encompasses four main issues including: a. simultaneous evolution of 

concepts' solutions towards and along a Pareto front, b. interactive evolution of concepts' 

solutions towards optimal solutions of preferred concepts, c. assessment and comparison of 

concepts in the multi-objective space and d. supporting decision making with uncertainties due 

to delayed decisions.  

The development of the simultaneous approach for the evolution of concepts (handling the 

first issue) serves as a base towards handling of the second issue - interactivity. Yet, the 

simultaneous approach has some merits on its own, when compared with the sequential 

approach that has been used by others.  The proposed simultaneous evolution of solutions from 

different concepts towards a Pareto front (CBF), involves several computational issues, 

including the management of resources among sub-populations and within each sub-

population. To enhance such an evolution, a basic and a modified algorithm are suggested. The 

basic algorithm, C1-NSGA-II, performs a simultaneous evolution of CCs, while sharing the 

computational resources in accordance with the CCs' optimality. This has been achieved by 

introducing concept-based crowding sort and concept-based tournament. The need to balance 

between the concept resources is highly desired not only from the need to reach all optimal 

concepts, but also from the need to balance their representations on the front. Furthermore, in 

contrast to the case of a traditional MOP, a simultaneous evolution of concepts requires 

considering potential situations in which the time to compute the fitness of a solution may 

strongly differ from one CC to the other. 

 To improve the time performance of the simultaneous approach a modification of C1-NSGA-

II has been introduced, namely the C2-NSGA-II. In the modified algorithm, the transfer of 

computational resources is restricted by limiting the CCs' subpopulations to no more than their 

initial size. To compare the introduced algorithms with the existing sequential approach, some 

performance measures have been adapted from EMO studies to the C-EMO needs. Moreover, a 

measure for comparing between the simultaneous approach and the sequential one, on the base 

of computational time, has been introduced. Academic as well as engineering examples are 

used to demonstrate the simultaneous approach and its applicability to conceptual engineering 

design. 
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 The proposed simultaneous C-EMO has been proven to be a good foundation to deal with 

interactivity within MOPs , which has been the initial motivation for the simultaneous 

approach. As mentioned above, the simultaneous approach became a significant approach on 

its own. This is evidence from the enclosed comparison with a sequential approach. The 

comparison also includes an interrogation of the two proposed simultaneous evolution 

algorithms. It shows that: a. C1-NSGA-II produces better representation performance than the 

C2-NSGA-II, or the sequential approach, with a cost of computational time; b. C2-NSGA-II 

involves shorter computational time than C1-NSGA-II at the cost of representation 

performance; c. The results of comparing the computational time of the sequential approach vs. 

the simultaneous approaches depend on the nature of the problem.  

The search of the conceptual design space for promising concepts usually involves situations 

in which the designers should take into account not only the optimality of the concepts' 

solutions, as based on available models, but also the influence of their subjective preferences 

towards the concepts. To incorporate such situations, this thesis includes the formulation and a 

solution approach to the interactive concept-based MOP (IC-MOP). This formulation involves 

the introduction of the objective-subjective front (OSF). The OSF is an optimality-based front. 

It includes just solutions that belong to the CCs' fronts, which are based on their available 

models. Due to the incorporation of subjectivity, it may coincide fully or partially with the 

CBF, or be totally different from it.  

To deal with interactive problems, the conceptual design space may be represented by either 

a non-hierarchical or a hierarchical representation, depending on the problem decomposition. 

In both cases the DMs' preferences are expressed towards the SCs, or alternatively towards the 

CCs, by assigning weights. A measure, which accumulates the SCs weights in the hierarchical 

case into a concept-weight, has been suggested. An interactive concept-based simultaneous EC 

search algorithm has been introduced to allow solving the IC-MOP. In the interactive algorithm 

the evolution of an individual solution is influenced both by the rank of the solution 

performances based on a model, and by its preference in accordance with its concept 

association. The simultaneous nature of the interactive evolution means that resource sharing 

within a rank and within each CC has to be considered. For this purpose C1–NSGA-II 

algorithm has been modified into the IC-NSGA-II algorithm. The evolutionary search is aimed 

at finding a set of solutions such that their performances constitute the OSF. Assessing the 

validity of the resulting OSF is done by introducing validity measures. Academic examples as 

well as engineering examples demonstrated the use and the applicability of the interactive 

approach. It is evident from the examples that the interactivity, as related to SCs, concentrates 
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the computational resources towards a search of optimal solutions that are related to the 

preferred SCs. 

 It is apparent that choosing an EMO approach, to serve as the foundation for the IC-MOP, 

has been a good decision.   

 Obtaining the CBF or the OSF in a concept-based problem is just a step towards the 

selection of a concept, and subsequently the selection of a particular solution. The CBF and the 

OSF are valuable representations, yet they lack some important information concerning the 

variability of the concepts' performances. It has been shown in this thesis that a CC, which is 

not a part of a CBF (or an OSF) might still be considered for selection when the variability is 

also considered. This thesis suggests a method to support the selection of a concept by 

comparing between the concepts, using an auxiliary multi-objective problem with optimality 

and variability (O&V) as the objectives. It is noted that the introduced approach is not limited 

to presentations that include all CCs' fronts within a WOI. They may be also used to compare 

CCs based on a CBF or on an OSF representation. 

Conceptual design is characterized with the presence of a variety of uncertainties, which may 

influence the selection of a concept. In this thesis one type of uncertainty is treated. It involves 

an uncertainty that is associated with delayed decisions. In this thesis the delayed decision 

problem has been stated with respect to a MOP. It has been shown that delaying a decision may 

be involved with a concept that is associated with more than one CC (ACC). Such a concept 

has been termed an MMC (multi-model concept). As such, it is associated with more than one 

model, and therefore, with more than one Pareto front. This means that in the case of 

contradicting objectives the location of the Pareto front is uncertain, as either of the ACCs of 

the representation may be later selected. In this thesis an O&V approach to select an MMC, 

based on its multi fronts representations has been suggested. The O&V method is adapted by 

sorting the CCs representatives for non-dominance in a reversed auxiliary MOP. In this case 

the MMC is represented by its worst ACC performances in the auxiliary MOP objective space. 

It has been shown that the proposed approach may allow the continuation of a design, under 

delayed decisions, while ensuring the selected concept robustness to later decisions.  

In this thesis the support of DMs' conceptual decisions is concerned with engineering related 

problems. The engineering examples, and in-particular the mechatronic one, demonstrate the 

applicability of the introduced approaches and algorithms to engineering design. The 

mechatronic design example highlights the applicability of the proposed techniques to a 

simultaneous search for mechanical-concepts and control-strategies. 

Based on the conducted study, the contributions of this thesis with respect to former 

investigations and approaches, as related to the four main issues, are summarized below. The 
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reader is also referred again to table 2.1 to link the topics of contribution to the proper sections 

of the thesis. 

 

A. Simultaneous concept-based search 

 1. Simultaneous concept-based evolution  

  The proposed simultaneous evolution is novel. There are cited studies that employs 

existing MOEAs to deal with concept-based MOPs (see section 2.3.1). Yet, none of 

the available studies deals with a simultaneous concept-based evolution of concepts 

towards and along a Pareto front as suggested in this thesis. Observing the SOTA, as 

presented in section 2.2, it is concluded that the proposed simultaneous evolution is 

not only new, but also involves a substantially different algorithm from what has been 

used in past studies. 

 2. Managing resources while striving for optimality 

  The simultaneous approach requires special considerations with respect to the 

utilization of resources such that a good approximation of the Pareto front. Here, 

during the evolution mating between the sub-population is avoided, and an inherent 

division of the population into sub-populations exists. This leads to a need to consider 

resource sharing between and within the sub-populations. The sharing between design 

sets, which is associated with design concepts, while striving for a multi-objective 

optimality (Pareto front) as done in this thesis, is unique. Observing the SOTA, as 

presented in section 2.2, it is concluded that this is the first time that such a concept-

based evolution mechanism is introduced. Neither genotypic niching nor a-posteriori 

learning of concepts or clustering are equivalent to it. This is due to the fact that here 

concepts are pre-defined, may belong to different design spaces and may possess 

solutions at the same location of the CBF. 

 3. Comparing the simultaneous approach with a sequential approach 

  The simultaneous approach, which is introduced in this thesis, calls for a comparison 

with a sequential approach. The comparison which is carried out in this thesis is based 

on measures that are adopted to assess the success of the algorithms to find a set that 

well represent concepts' optimality and to compare between their computational 

efforts. Observing the SOTA presented in sections 2.2, 2.3, it is concluded that a 

comparison between the approaches, which is based on measures is novel to this 

thesis. It has been shown that the simultaneous approach, although motivated by its 

support of interactivity, possesses by itself some major advantages over the former 
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sequential evolutionary approach. 

 4. Developing and comparing different simultaneous approaches 

  The simultaneous approach highlights the difference between the times to compute the 

solutions within the different concepts. Highlighting this issue is important, as it has 

an important influence on the assessment of the different C-EMO algorithms. No 

study has treated this issue before. Observing the SOTA as presented in sections 2.2, 

2.3, it is concluded that the comparison between different simultaneous approaches is 

done here for the first time. Moreover the consideration of concept-related 

computational time within an EMO approach is novel to this thesis. 

B. Interactive concept-based evolution 

 1. Introduction of the IC-MOP and its solution 

  The interactive concept-based approach is novel. No former works (EC or non EC 

introduced such a problem or its solution. This is true for both the goal attainment 

(see Avigad et. al., 2004) or for the development of the Objective subjective front. 

 2. Introduction of the IC-NSGA-II 

  A novel EMO algorithm has been introduced to solve the IC-MOP problem. Neither 

IEC, nor other interactivity related EMO studies are to be confused with these thesis 

suggestions. This is due to the fact that here the interactivity is expressed towards 

concepts and not towards specific solutions/objectives. In the suggested approach not 

all the solutions are always a part of the non-dominant set of the entire objective 

space. 

 3. Hierarchical influence of preferences within a human-computer concept-based search- 

Utilizing preferences of designers towards SCs within a hierarchical representation 

has been found in a few works (see section 2.4.2). However, the use of such a 

hierarchical representation for the purpose of developing SBC related fronts, which 

are effected by both preferences and performances, is unique to the approach taken in 

this thesis. 

C. Supporting selection of concepts 

 1. The introduced approach poses the decision on a concept as an auxiliary MOP, which 

opens the way to the establishment of a new paradigm for concept selection. Here, the 

selection support approach allows a selection of concepts, while taking into 

consideration the contradicting aspects of optimality and variability. Such an approach 

has not been introduced before. 

 2. An extension to the SOTA as related to the selection of SBCs is introduced. In 
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contrast to Mattson and Messac (2005), this thesis proposes a measure to select 

concepts within a window of interest, which allows a comparison between concepts 

that do not necessarily belong to the s-Pareto frontier. Therefore, it establishes a more 

general measure that may support designers in taking a conceptual decision. 

D.  Selection of concepts under uncertainty 

 1. The introduction of the delayed decision problem as a MOP is novel to this thesis. 

The use of EMO to support conceptual decisions with the presence of delayed 

decisions uncertainties has not been done before. The treatment of this sort of 

uncertainty is performed by the representation of the design space as a hierarchical 

tree, and the extraction of some unique concepts. This treatment expands the use of 

computational tools and specifically EMO to treat conceptual design related 

uncertainties. 

 2. Computer-based approach to support conceptual decisions with delayed decision 

  None of the existing publications has suggested a computer-based support for taking 

conceptual decisions with the delayed decision uncertainty. 

 3. A new design space tree representation is proposed, which is fundamental to the 

treatment of the delayed decision problem by computers. 

 4. Robust worst case sorting 

  This sorting is a new approach to treat robustness by considering a set of worst cases.  

E. Conducting a SBC search approach to mechatronic design 

 1. The proposed application of the simultaneous evolution for mechatronic concepts and 

the associated approach for selecting an optimal and robust mechatronic concept are 

original to this thesis. Although others have noted and studied the importance of 

simultaneous evolution of morphologies (mechanics) and behavior (control). Only a 

few previous studies have incorporated it as a MOP. Moreover, no other study 

involves a selection framework, which is similar to what is proposed here. As such, 

this thesis includes an important example of simultaneity in mechatronic design. 

 

It is clear that the study conducted within this thesis has reached the objectives set by the 

motivation to expand computational methods for supporting conceptual design. Yet, there is 

still a lot to investigate with respect to all the issues of this thesis, as discussed in the following.  

 

Simultaneous C-EMO- Future work:  

a. At this stage no accepted test functions for C-EMO are available. Such hard case functions 

should be constructed to allow future comparisons of different concept-based MOEAs, and 
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for comparing them with other methods, such as those used by Mattson and Messac (2005). 

It is noted that a comparison between this thesis approach with that of Mattson and Messac 

(2005), should be practice on the basis of agreed test functions and problems. 

b. The C-EMO algorithms should be further investigated and modified. These should include: 

1. Adapting the algorithms to cases where a concept may be hindered due to 

computational factors. Such factors may include the existence of a local Pareto or bad 

initial population. One way to tackle the problem is to amalgamate the current 

algorithms with the algorithm, which was suggested in Avigad et. al., (2005a). Such an 

algorithm allows the reappearance of concepts by way of mutation of their code. 

Another approach may be to save, during the evolution process, fronts of all concepts, 

and to always keep them within the population. This may allow concepts to improve by 

way of evolution of the kept concepts' solutions. 

2. Apart from saving representatives from 'non-optimal' concepts, near optimal solutions 

should be also considered. With this respect, Moshaiov and Avigad, 2007, have 

introduced a modified version of the CBF to include such near optimal solutions.  

3. A major influence on the balanced representation of concepts on the CBF is associated 

with the linear function, which involves η  (see equation 3.13). With this respect other 

functions should be tested. Alternatively automatic tuning mechanism should be 

investigated. For example a mechanism that changes the resources according to the size 

of the different levels of non-dominance' hyper surfaces. 

c. Although the C-EMO algorithms and the performance measures are all designed to allow 

their use within MOPs involving more than two objectives, examples of many objectives 

should be studied, and improvement of the algorithms to incorporate high dimensionality 

should be investigated. In-particular, the effect of the need to take larger populations in 

many objectives problems (when using NSGA-II) on the computational time should be 

investigated. It is noted that a major problem, in selecting a concept in many objectives 

problems, is the visualization problem. Nonetheless the approach of posing the problem as 

optimality versus variability may substantially assist in such situations. This should be 

demonstrated. It is further noted that some algorithmic issues should be further 

investigated, such as using a different encoding system (e.g., real encoding) and using a 

different MOEA as the base for the approach (e.g., SPEA2). 

d. Another important issue that should be also investigated is the robustness within the 

framework of the C-MOP. In this thesis just robustness to delayed decisions has been 

treated. As stated in appendix, several other investigations concerning the robustness of 

concepts have been carried out (Avigad et al., 2005c, Moshaiov and Avigad, 2006). 
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Nonetheless the effects of uncertainty of the concepts models as well as towards the design 

parameters have not been treated. Treating robustness in EMO is scarcely found and 

existing studies concerning robustness within the framework of C-MOP are seldom (as 

surveyed in sections 2.5.2, 2.5.2). The author of this thesis is currently working on several 

approaches to amalgamate uncertainties within the framework of C-EMO. It is clear that 

considering robustness within C-MOP is a crucial task and should be explored.  

e. As stated several times, this thesis does not deal with the generation of concepts. In the 

future a way to insert creativity) should be searched for. Such approaches could be related 

embryonics (e.g., Bentley 1999). Moreover the search may be linked to a search within the 

internet. Such modifications should allow a much wider search for concepts.   

f. In this thesis only academic examples as well as simple engineering examples are given. In 

the future more compound and sophisticated real life engineering problems should be 

utilized to demonstrate the benefits of the approach to industry.    

g. The simultaneous C-EMO seems to possess a generic nature and might be applicable to 

fields other than engineering design (e.g., economics).  This has been demonstrated by the 

employment of some of the ideas of this thesis to a robotic path planning problem 

(Moshaiov and Avigad, 2004). Moreover, the possible relation between the simultaneous 

evolution of concepts and the simultaneous evolution of species is an attractive idea that 

should be investigated, as recently suggested by Moshaiov (2006a, b). Such further studies 

are needed to strengthen any claim on the generic nature of the methods that are introduced 

in this thesis. 

 

Future work on Interactive C-EMO:: 

With relation to the interactivity issue, future work may involve a comparison of the 

simultaneous and the sequential approach, for IC-MOPs, based on the measures of section 3.2. 

This might lead to a necessity to develop an interactive EMO algorithm that is based on C2-

NSGA-II rather than on C1-NSGA-II. Moreover, a comparison with the evolution of OSF that 

has been initially investigated (e.g., Avigad et al., 2005a) is needed. This comparison may be 

based on computational complexity, as well as on the quality of the OSF representation. 
 

Future work on Selection of Concepts: 

The O&V approach should be further investigated for different auxiliary spaces, and/or with 

more than two auxiliary objectives. For example, adding to the O&V space the dimension of 

commonality measure for family of designs. Further work may concentrate on improving the 

efficiency of the search algorithm. Such algorithms may adopt a simultaneous rather than a 
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sequential approach by aiming at developing the CCs' fronts directly to be bounded by the 

WOI, or developing CCs that are optimal in the sense of the auxiliary MOP. 

With this respect it is important to note that optimality in the sense of the CBF is different 

than that of optimality as related to the auxiliary MOP. Moreover these two different optimality 

aspects might rely on different representations of the concepts. Therefore, as suggested in point 

‘b’ of C-EMO future work, saving fronts from all concepts during the evolution could be 

useful. This will allow a comparison between concepts based on the two aforementioned 

optimality aspects. 

The delayed decision uncertainty, which has been treated in this thesis, is just one uncertainty 

typical to the conceptual design stage. Other uncertainties should also be incorporated within 

an EMO concept-based search. 

 

The potential of EMO approaches to support designers within the conceptual stage is not yet 

fully explored; further investigations and development work should be conducted as discussed 

above. This might lead to the establishment of a practical concept-based EMO framework and 

tools, which will be used to actually support DMs in taking conceptual decisions. As a part of 

such studies, a comparison of the evolutionary approach with the solution approach taken by 

Mattson and Messac (2003, 2005), and other potential solution approaches, should be done. It 

is noted that regardless of the attractively of using bio-inspired methods, what really counts in 

computer-supported engineering work is the applicability and optimality of the chosen method. 

As many engineering problems involve time consuming evaluations of solutions, optimizing 

the computational efforts with respect to available hardware should be a major concern when 

comparing such methods. 

 

The scope of this thesis is wide. It introduces new approaches and algorithms. The ideas 

introduced in the thesis seem to possess a generic nature and as such might be applicable not 

just for engineering conceptual design.  
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Appendix  
 

The following outlines the articles which have been published as a part of the work towards 

this thesis. A simultaneous evolution of solutions, which are associated with SBCs, has been 

initially introduced in Avigad et al. (2003). In that work the concepts involved both mechanical 

SCs as well as control SCs. The search for concepts has been performed to find concepts for 

solutions with performances around a target goal. This approach has been extended in Avigad 

et al. (2004), to include interactivity. In the latter study a progressive concept-based goal 

attainment approach has been taken. The introduced interactivity includes two types. The first 

is the movement of the target goal from one location to another, and the second, which is the 

major one, is the incorporation of preferences towards conceptual ideas. These preferences that 

have been represented by weights, allow a simultaneous search for solutions of preferred 

concepts around a goal. 

In both studies of Avigad et al. (2003, 2004), the concepts were evolved simultaneously, by 

way of their sets of solutions. In the simultaneous evolution of concepts, which has been 

introduced for the first time in these works, all concepts and preliminary designs have been 

encoded using a structured individual, which has been termed 'Compound Individual' (CI). 

Decoding such a CI results in a decoded pointer, which points to a concept and to its design 

variables as well as to its related model (objective functions).  A CI may be decoded to any 

solution of the concepts' design spaces. In addition to the use of CIs, 'concept-sharing' has been 

introduced. Concept sharing enhances a pressure towards the representation of all concepts 

(which have feasible solutions around the goal).  This is done by sharing the computational 

resource of the entire population between successful concepts based on their solutions' 

optimality. The CI allows searching the design space innovatively by searching not just 

preliminary designs but also concepts by way of their SCs.  

In a later study by Avigad et al. (2005a), a simultaneous Pareto-directed, rather than a 

progressive goal approach has been introduced. Ensuring the simultaneous survival of 

successful concepts and the spread of their solutions on the front has been achieved by using 

in-front concept sharing and in-concept front niching, respectively. In addition, a unique robust 

sorting has been introduced. It involves the incorporation of worst case sorting within an EC 

algorithm.  

Additional investigations, which are related to this thesis, have widened the use of 

interactivity to treat other issues of the conceptual design stage within MOPs, including 

delayed decisions (Avigad et. al., 2005b) and uncertainty and variability of market demands 
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(Avigad et. al., 2005c). In these latter works some unique EC approaches were introduced 

including worst case sorting, robustness-based evolution and a simultaneous evolution of 

concepts based on concepts' sets trajectories on the objective axis. 

It is important to note that in all the above studies, the population is not separated into distinct 

sub-populations as done in this thesis.  In the cited studies, concepts are formed or disappeared, 

during the evolution, based on a code, which codes the concepts. 

The approaches presented in the above studies, and in this thesis, possess a generic nature and 

they might be applied to other fields of interest. For example, in Moshaiov and Avigad (2004, 

2006), the applicability of the ideas to path planning has been demonstrated. A further 

extension of their work, to include near Pareto solutions, may be found in Moshaiov and 

Avigad, 2007. Finally, it is noted that following this thesis the author has published additional 

studies, which are not directly associated with the theme of the thesis. These studies include: 

Avigad 2007a, Avigad 2007b, Avigad and Deb 2007.   

 

 

 


