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Abstract 

Most optimization problems often involve multiple objectives to be considered 

simultaneously under some constraints. Unlike single objective problems, the resolution 

of this kind of problems gives rise to a set of trade-off solutions, called the Pareto front, 

rather than a single global optimum. During the two last decades, evolutionary 

algorithms have demonstrated a great success in approximating the whole Pareto front. 

Recently, researchers have remarked that providing the human decision maker with 

some hundreds or thousands of optimal solutions makes the decision making task very 

difficult especially when the number of objectives increases. In reality, since objective 

functions are not equally important from the decision maker’s viewpoint, this latter is 

not interested in discovering the whole Pareto front rather than finding only the portion 

of the front that satisfies his/her preferences which is called the region of interest. For 

this reason, researchers have mentioned the necessity to hybridize optimization with 

decision making. The problematic of our PhD thesis is to articulate decision maker’s 

preferences within multi-objective evolutionary algorithms in order to guide the search 

towards the region of interest; therefore not only facilitating the decision making task 

but also saving the computational cost required to explore the remainder of the Pareto 

frontier. In this research work, we categorise preferences into two main classes. The 

first class concerns explicit preferences which are expressed in a straightforward 

manner via one of the available preference modelling tools. The second class concerns 

implicit preferences which correspond to the desire of exploring special points from the 

Pareto front in the absence of explicit preferences, i.e., knee regions corresponding to 

the worthiest regions in terms of trade-offs between the objectives and the nadir point 

corresponding to the vector composed with the worst objective values at the Pareto 

optimality stage. Additionally, we consider, in this thesis, the case where there exists 

more than one decision maker each having his/her own preferences. All the proposed 

contributions are assessed through experimental studies including comparative 

experiments against the most prominent recent works by utilizing academic benchmark 

problems commonly used by the community in addition to a practical instance of the 

portfolio selection problem. 

Keywords: Multi-objective optimization, evolutionary algorithms, decision making, explicit/implicit 

decision maker’s preferences, region of interest, group preference aggregation/negotiation. 
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Chapter 1  

Introduction and Overview 

1.1 Problematic and motivations 

Most real world optimization problems encountered in practice often involve multiple 

objectives to be minimized or maximized simultaneously with respect to a set of 

constraints (Deb 2001; Coello et al. 2007). These objectives are often conflicting and 

incommensurable. The decision on a cell phone purchase, for instance, among other 

examples, can be influenced by several criteria such as the price, the battery life, the 

weight, the performance and so fourth. Usually, there is no single solution that is 

optimal with respect to all these objectives at the same time, but rather many different 

designs exist which are incomparable. Consequently, contrary to Single-objective 

Optimization Problems (SOPs) where we look for the solution presenting the best 

performance, the resolution of a Multi-objective Optimization Problem (MOP) gives 

rise to a set of compromise solutions presenting the optimal trade-offs between the 

different objectives. When plotted in the objective space, the set of compromise 

solutions is called the Pareto front. The main goal in multi-objective optimization is to 

find a well-converged and well-distributed approximation of the Pareto front from 

which the Decision Maker (DM) will subsequently select his/her preferred alternative 

to realize. Several methods were proposed in the specialized literature in order to 

approximate the Pareto front for the discrete case and the continuous one. Mimicking 

the principles of biological evolution, Evolutionary Algorithms (EAs) have earned 

popularity in solving MOPs during the two last decades and beyond thanks to two 

reasons: (1) EAs are able to provide a set of compromise solutions as output on a single 

run and (2) EAs are insensitive to the shape of the objective functions such as non-

convexity, discontinuity, multimodality, non-uniformity of the search space, etc (Deb 

2001). As a consequence of the success of Multi-objective Optimization EAs (MOEAs) 

in handling MOPs, a new branch in the optimization research field has appeared which 

is called Evolutionary Multi-objective Optimization (EMO). The final goal of MOEAs 

is to assist the DM to select the final solution which matches at most his/her 

preferences. Since MOEAs supply the DM with a huge number of solutions, it seems to 
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be a difficult task to choose the final preferred alternative (Fonseca 2007). In order to 

facilitate the decision making task, the DM would like to incorporate his/her 

preferences into the search process. These preferences are used to guide the search 

towards the preferred part of the Pareto front, i.e., the Region Of Interest (ROI). The 

ROI is defined as the preferred part of the Pareto optimal region from the DM’s 

perspective (Adra et al. 2007). Our research works focus on the incorporation of DM’s 

preference information in MOEAs in order to direct the search towards the ROI; 

thereby facilitating the task of selecting the solution to realize.   

1.2 Research goals and main contributions 

Our research goals are essentially the following: 

1) Incorporating explicit DM’s preferences in EMO: This goal is achieved by 

proposing a new dominance relation based on DM’s preferences expressed in an 

explicit manner (i.e., aspiration levels). This new dominance relation is then 

incorporated in a MOEA. The resulting preference-based MOEA has demonstrated 

its ability in providing the Pareto optimal ROI. Subsequently, the DM could select 

the solution to realize from this preferred region. Additionally, the proposed 

approach has been shown to outperform several recent works in this research area.          

2) Incorporating implicit DM’s preferences in EMO:  DM’s preferences could be 

expressed in an explicit manner (e.g., weights, aspiration levels, trade-off between 

objectives, and so on (Coello 2000)) or in an implicit manner (i.e., knee regions 

(Branke et al. 2004) or nadir point (Deb and Miettinen 2008)). Knee regions are 

potential parts of the Pareto representing the maximal trade-offs between objectives. 

Such characteristic renders knee regions almost always of particular interest to the 

DM in practical context (Rachmawati and Srinivasan 2009). Nadir point is the 

vector composed with the worst objective values over the Pareto optimal front. 

Hence, a particular DM could be interested only in discovering nadir objective 

values (Deb et al. 2006b); thereby the nadir point could be seen as another form of 

implicit DM’s preferences. The integration of implicit preference information in 

EMO is achieved by proposing two preference-based MOEAs: (1) the first one 

allows the discovery of knee regions and (2) the second one permits the estimation 

of the nadir point. Comparative experiments show the outperformance of the two 

proposed algorithms over several recent approaches.    

3) Handling DM group preferences: There are several decision making situations 

where there exist more than one DM. The DMs have usually different attitudes and 

behaviors. Consequently, their preferences are often conflicting. For this reason, we 
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propose a Negotiation Support System for Group Preference Aggregation (called 

NSS-GPA) based on software agent paradigm (Wooldridge and Jennings 1994). The 

designed agent-based system  allows  the  DMs  to  communicate  with  each  others  

and  to  adjust  their preferences through a number of discussion rounds. The output 

of the system is a set of social explicit preferences which will be injected 

subsequently into the MOEA in order to guide the search towards a social ROI. A 

solution picked from this social region is considered to be a satisfying solution for 

all group members.  

All proposed preference-based EMO methods in addition to NSS-GPA are validated 

through several experimental studies involving academic test problems commonly used 

by the EMO community and valorized by a case study based on a practical instance of 

the portfolio selection problem (Markowitz 1952; Deb et al. 2011). This latter is 

described and handled in the last contribution chapter.  
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1.3 Document organization  

This document is structured as follows (cf. figure 1.1). Chapter 2 gives a review of 

MOEAs. Chapter 3 presents a survey of explicit preference-based MOEAs where the 

algorithms are classified based on the way the preference are expressed and designed. 

Additionally, this chapter gives a brief review of DM group preference handling. 

Chapter 4 presents a brief survey of implicit preference-based MOEAs. Chapter 5 is 

dedicated to present our new preference-based dominance relation in addition to the 

resulting preference-based MOEA. Chapter 6 focuses on incorporating implicit DM’s 

preferences in EMO and is subdivided into two main parts. The first one is devoted to 

approximating knee regions. The second one is dedicated to nadir point estimation. 

Chapter 7 describes the NSS-GPA system. Finally, chapter 8 concludes this thesis and 

gives some avenues for future research.          
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Chapter 2  

Evolutionary Multi-objective Optimization 

2.1 Introduction 

This chapter is devoted to survey evolutionary methods to handle MOPs. In order to 

solve a MOP, there are three goals to pursue: (1) convergence, (2) diversity and         

(3) solution distribution uniformity. In fact, the obtained non-dominated solutions 

should be as close as possible to the Pareto optimal front of the optimization problem. 

This goal is similar to the demand of convergence to the global optimum in single-

objective optimization. Often, there exist an infinite number of Pareto optimal 

solutions. Naturally, only a finite number of solutions can be generated during an 

optimization process. Furthermore, the number of generated solutions must be limited 

otherwise the computational cost would become too large. Nevertheless, the largest 

possible freedom of choice should be offered to the DM. Therefore, a well-distributed 

approximation set is demanded which is a goal that consists itself of two requirements: 

(1) an extent that is as large as possible and (2) a distribution that is as evenly spaced as 

possible. Pareto optimal fronts may be disconnected, so in that case an exactly uniform 

distribution of solutions is not possible. Nevertheless, the non-dominated solutions 

should cover all regions of the Pareto-optimal front and reproduce the curvature of the 

underlying Pareto optimal front as correctly as possible. These demands do not have a 

counterpart in single-objective optimization since in that case only one solution is 

generated. This chapter is structured as follows. Section 2.2 gives some background 

definitions related to the multi-objective optimization research field. Section 2.3 

provides a classification and a discussion of the different proposed methods to tackle 

MOPs. Section 2.4 discusses the issue of performance assessment by presenting well-

cited benchmarks and some selected quality indicators used for MOEA evaluation.   

2.2 Multi-objective optimization basic definitions 

A MOP consists in minimizing or maximizing an objective function vector under some 

constraints. The general form of a MOP is as follows (Deb 2001):  
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where M is the number of objective functions, P is the number of inequality constraints, 

Q is the number of equality constraints, L
ix  and U

ix  correspond respectively to the 

lower and upper bounds of the variable ix  (This notation is assumed throughout the 

overall document). A solution ix  satisfying the (P+Q) constraints is said feasible and 

the set of all feasible solutions defines the feasible search space denoted by Ω. In this 

formulation, we consider a minimization MOP since maximization can be easily turned 

to minimization based on the duality principle by multiplying each objective function 

by -1 and transforming constraints based on the duality rules. 

The resolution of a MOP yields a set of trade-off solutions, called Pareto optimal 

solutions or non-dominated solutions, and the image of this set in the objective space is 

called the Pareto front. Hence, the resolution of a MOP consists in approximating the 

whole Pareto front. In the following, we give some background definitions related to 

multi-objective optimization: 

Definition 2.1: Pareto optimality 

A solution Ω∈*x  is Pareto optimal if Ω∈∀ x  and { }MI ,...,1=  either    Im∈∀  we 

have )()( *xfxf mm =  or there is at least one Im∈  such that )()( *xfxf mm > . 

The definition of Pareto optimality states that *x  is Pareto optimal if no feasible vector 

x  exists which would improve some objectives without causing a simultaneous 

worsening in at least another one.  

Definition 2.2: Pareto dominance 

A solution ),...,,( 21 nuuuu =  is said to dominate another solution ),...,,( 21 nvvvv =  

(denoted by )(  )( vfuf p ) if and only if )(uf  is partially less than )(vf . In other 

words, { }Mm ,...,1  ∈∀  we have  )()( vfuf mm ≤  and { }Mm ,...,1   ∈∃  where 

)()( vfuf mm < . 

Definition 2.3: Pareto optimal set 

For a given MOP )(xf , the Pareto optimal set is { })(  )'( ,'   * xfxfxxP pΩ∈¬∃Ω∈= . 

Definition 2.4: Pareto optimal front 
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For a given MOP )(xf  and its Pareto optimal set *P , the Pareto front is 

{ }*PxxfPF ∈=  ),( * .    

Definition 2.5: Ideal point  

The ideal point ),...,( 1
I
M

II zzz =  is the vector composed by the best objective values 

over the search space Ω. Analytically, the ideal objective vector is expressed by: 

{ }MmxfMinz mx
I

m ,...,1),( ∈= Ω∈                                             (2.2) 

Definition 2.6: Nadir point  

The nadir point ),...,( 1
N
M

NN zzz =  is the vector composed by the worst objective values 

over the Pareto optimal set. Analytically, the nadir objective vector is expressed by:  

{ }MmxfMaxz mPx

N
m ,...,1),(* ∈= ∈                                                  (2.3) 

Definition 2.7: ε-dominance 

A solution u  is said to epsilon-dominate a solution v  ( vu +εp ) if and only if 

{ } ε+≤∈∀ mm vuMm :,...,1  for a given ,0>ε where mm vu /  is the mth objective value 

of solution vu / . 

2.3 Resolution methods 

2.3.1 Aggregative methods 

Traditional multi-objective optimization methods aggregate the different objective 

functions into a single one. In order to generate a representative approximation of the 

whole Pareto front, the user must perform several runs with different parameter 

settings. Some representatives of this class of methods are the weighted sum method 

(Cahon 1978), the ε-constraint method (Cahon 1978), the goal programming (Charnes 

et al. 1955), the reference point method (Wierzbicki 1980), the reference direction 

method (Korhonen and Laakso 1986a) and the light beam search method (Jaszkiewicz 

and Slowinski 1999) which are briefly discussed in this subsection. 

♦ The weighted sum method  

This method converts the MOP to a SOP by forming a linear aggregation of the 

objectives as follows: 





Ω∈

+++=

x

xfwxfwxfwxfMin MM )(...)()()( 2211
                  (2.4) 
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where wm corresponds to the weighting coefficient of the mth objective such that 

11 =∑ =
M
m mw  and 0≥mw  { }Mm ,...,1∈∀ . Solving (2.4) with different weighting 

coefficients sets yields a set of solutions. Under the condition that an exact optimization 

algorithm is used and all weighting coefficients are positive, it is easy to show that this 

method will only generate Pareto optimal solutions. Assuming that a feasible decision 

vector u minimizes f  for a given weight combination and is not Pareto optimal, then 

there is a solution v which dominates u, i.e., { }Mm ,...,1  ∈∀  we have  )()( ufvf mm ≤  

and { }Mm ,...,1   ∈∃  where )()( ufvf mm < . Therefore, )()( ufvf < , which is a 

contradiction to the assumption that )(uf  is minimum.  

The main disadvantage of this technique is that it cannot generate all Pareto optimal 

solutions with non-convex trade-off surfaces. This is illustrated in figure 2.1(a). For 

fixed weights w1 and w2, solution x is sought to minimize )()( 2211 xfwxfwy += . This 

equation can be formulated as ( ) ( )21212 )()( wyxfwwxf +−= , which defines the line 

L (solid line in figure 2.1(a)) with a slope of ( )21 ww−  and an intercept of ( )2wy  in 

the objective space. Graphically, the optimization process corresponds to moving this 

solid line downwards until no feasible objective vector is above it and at least one 

feasible objective vector (here A and D) is on it. However, the points B and C will never 

minimize y. In fact, if the slope is increased (upper dashed line), D achieves a lesser 

value of y than B and C. Besides, if the slope is decreased (lower dashed line), A has a 

lesser y value than B and C. 

 

Figure 2.1 Graphical interpretation of: (a) the weighted sum method 

and (b) the ε-constraint method (inspired by (Zitzler 1999)). 
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♦ The ε-constraint method 

This method converts the MOP into a SOP by optimizing individually a selected 

objective while keeping the remaining (M-1) objectives’ values less than or equal to 

some user-specified thresholds as follows: 

{ }
{ }









Ω∈
≠∈≤

∈=

x

hmMmxf

MhxfxfMin

mm

h

;,,...,1                      )(

,...,1           )(  )(  

ε                       (2.5) 

The upper bounds mε  are the parameters to be varied in each run in order to obtain 

multiple Pareto optimal solutions. As depicted in figure 2.1(b), the ε-constraint method 

is able to find solutions associated with non-convex parts of the Pareto front. Setting 

h=1 and r=2ε  (solid line in figure 2.1(b)) makes solution D infeasible while solution 

C minimizes f1. Figure 2.1(b) also shows a problem with this technique. In fact, if the 

lower bounds are not chosen appropriately ),'( 2 r=ε  the obtained feasible set may be 

empty, i.e., there is no solution to the obtained SOP. In order to avoid this problem, a 

suitable range of values for the mε  quantities has to be known beforehand. 

♦ The goal-programming method 

For each objective function, the user provides a goal iG  to be achieved. The goal-

programming method transforms the MOP into a SOP by minimizing individually the 

weighted sum of deviations from goals as follows: 









Ω∈

−= ∑
=

x

GxfwxfMin
M

m
mmm

1

)()(
                                            (2.6) 

  where wm corresponds to the weighting coefficient of the mth objective such that 

1
1

=∑
=

M

m
mw  and 0≥mw  { }Mm ,...,1∈∀ . 

As discussed by (Miettinen 1999), if the optimal objective function value of the goal 

programming method equals zero, then some caution is in order since the obtained 

solution may not be Pareto optimal. In fact, if all settled goals are feasible, then the 

value zero for all the deviational variables gives the minimal value (zero) for the goal 

programming objective function. Hence, the solution is equal to the reference point (the 

vector composed with all user-specified goals) and normally there exist many feasible 

solutions that are non Pareto optimal. If the solutions are intended to be Pareto optimal 
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independently of the selection of goals, then if the goals are feasible, the function f  is 

to be maximized; else if the goals are infeasible the function f  is to be minimized. 

♦ The reference point method 

The classical Reference Point Method (RPM) was proposed by (Wierzbicki 1980). A 

reference point g for a particular MOP consists of an aspiration level vector. Aspiration 

levels represent the DM’s desired values for each objective. This method projects the 

reference point onto the Pareto optimal region via the minimization of an Achievement 

Scalarizing Function (ASF). Among the most commonly known forms of an ASF is the 

following:  

( )[ ]mmm
Mm

gxfwMaxgxfsMin −=
=

)()),((  
,...,1

                             (2.7) 

where gm is the mth component of the reference point and wm is the weight associated 

with the mth objective.  

As shown in figure 2.2, the reference point could be feasible belonging to the Pareto 

front (A), feasible not belonging to the Pareto front (B) or infeasible (C). For a chosen 

reference point, the RPM tries to find the closest Pareto optimal solution. The main 

drawback of this method is that it provides only one solution in a single run. Hence, if 

the DM is dissatisfied with the obtained solution and/or he/she would like to obtain a 

 

Figure 2.2 The reference point method. 
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small sample of Pareto optimal solutions near each reference point then he/she must 

perform several runs of the algorithm. It should be noted that the DM could obtain a 

sample of near reference point solutions by perturbing the reference point and/or the 

weights and performing several runs of this method. Besides, in order to make this 

method interactive, Wierzbicki (1980) suggested a procedure to update the reference 

point automatically which facilitates the DM’s task. When using the reference point 

approach in practice, the DM is asked to supply a reference point and a weight vector at 

a time. The reference point guides the search towards the desired region while the 

weight vector provides more detailed information about which Pareto optimal point to 

converge to.   

♦ The reference direction method 

Korhonen and Laakso (1986a) suggested a reference direction-based approach for 

multi-criterion optimization using the principle of solving ASFs repeatedly. This 

method is described as follows: 

� Step 1: Choose an initial arbitrary point q0 in the objective space and let k ← 1;  

 

Figure 2.3 The reference direction method (from (Deb and Kumar 2007a)). 
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� Step 2: Specify another vector gk and determine the reference direction                   

dk =gk – qk-1; 

� Step 3: Determine a set Qk of efficient solutions q which solves the following ASF: 
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where t is an integer parameter increased from zero to infinity, w is a weighting 

vector and rm (t) is the mth component of r (t);  

� Step 4: Find the most preferred solution qk in Qk using a particular utility function 

or by other mean;   

� Step 5: If qk-1 
≠ qk, set k ← k + 1 and go to step 2. Otherwise, check for optimality 

conditions (Kuhn-Tucker conditions (Miettinen 1999) or other optimality 

conditions (Korhonen and Laasko 1986a)) of the solution qk. If qk is optimal then 

terminate the optimization run. Otherwise, increment k, determine a new reference 

direction and go to Step 3.   

Figure 2.3 shows a sketch of Step 3 of the above optimization procedure. For each 

point (say point C) marked on the reference direction (from q0 towards g1), a Pareto 

optimal solution (point A) is found by solving the ASF given in equation (2.8). Step 3 

of the above procedure involves multiple application of a single-objective optimization 

for different values of t, thereby finding a range of efficient solutions (A till E). The 

idea of finding an efficient solution corresponding to a point on a reference direction is 

similar to the reference point approach of Wierzbicki (1980). Although the original 

study of the reference direction approach and subsequent studies of Korhonen and his 

co-authors (Korhonen and Laasko 1986b; Korhonen and Yu 1997) concentrated on 

parametric solutions for multiple points on the reference direction, the principle can be 

used by forming multiple ASFs and solving them by a single-objective optimizer 

independently. An analytical hierarchy process was also used to determine the 

reference direction (Korhonen 1987). Interestingly, the reference direction approach 

corresponds to the process of projecting the reference direction on the Pareto optimal 

frontier.�

♦ The light beam search method 

The Light Beam Search (LBS), as described in (Jaszkiewicz and Slowinski 1999), 

combines the reference point idea and tools of Multi-Attribute Decision Analysis 

(MADA). It enables an interactive analysis of MOPs thanks to the presentation of 

samples of a large set of non-dominated points to the DM in each iteration. An 

aspiration point and a reservation one should be supplied by the DM. These two points 
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define the direction of the search in a particular iteration. If these two points are not 

suggested, the ideal point and the nadir point (or a worse point than the nadir one) can 

be assumed as aspiration and reservation points respectively. Initially a non-dominated 

middle point is determined by projecting the aspiration point on to the non-dominated 

front by using an augmented version of Wierzbicki’s ASF. Thereafter, a local 

preference model in the form of an outranking relation S is used to obtain neighboring 

solutions of the current non-dominated point, or the middle point. It is said that a 

outranks b (or a S b), if a is considered to be at least as good as b. To define an 

outranking relation, the DM has to specify three preference thresholds for each 

objective: (1) indifference threshold, (2) preference threshold and (3) veto threshold. In 

the LBS procedure, they are considered to provide only local information, thus they are 

assumed to be constants. The extreme points or characteristic neighbors are found one 

for each objective by considering the maximum allowed improvement in a particular 

objective in relation to the middle point. The DM can control the search by either 

modifying the aspiration and/or reservation points, or by shifting the middle point to 

selected better point from its neighborhood or by modifying the preference threshold 

values. Figure 2.4 illustrates the LBS method mechanism. The LBS procedure is as 

follows: 

 

Figure 2.4 The light beam search method. 
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� Step 1: Ask the DM to specify starting aspiration and reservation points; 

� Step 2: Compute the starting middle point on the Pareto optimal front; 

� Step 3: Ask DM to specify the local preferential information used to build an 

outranking relation; 

� Step 4: Present the middle point to the DM; 

� Step 5: Calculate the characteristic neighbors of the middle point and present them 

to the DM; 

� Step 6: If DM is satisfied, terminate the procedure; else ask the DM to: (1) choose 

one of the neighboring points to be the new middle point, (2) update the preferential 

information or (3) define a new aspiration point and/or a new reservation point. The 

algorithm proceeds by moving to Step 5 for the case (1) and to Step 4 otherwise. 

2.3.2 Evolutionary methods  

♦ Non Pareto-based evolutionary methods 

• VEGA: Vector Evaluated Genetic Algorithm  

Schaffer (1985) proposed one of the first alternatives to adapt EAs to handle MOPs 

called VEGA. The basic idea is to divide the population into M subpopulations of equal 

sizes. Then, in each one of them, the selection operates by taking into account only the 

unique corresponding objective. Once the selection mechanism was performed, the 

population is mixed to apply the rest of the evolutionary operators. All this process is 

repeated in each generation. An evident VEGA problem is that it does not promote the 

survival of good trade-off solutions, but it prefers the best solutions of each objective 

separately. This problem is known as speciation (by its analogy in genetics). This 

problem was identified and attacked by Schaffer, using mating restrictions (i.e., not 

allowing recombination between individuals of the same subpopulation) as well as 

other heuristic rules applied during the selection mechanism. In another work 

(Richardson et al. 1989), it was also demonstrated that, if proportional selection is used, 

VEGA’s scheme is equivalent to a linear combination of objective functions which 

means that it has limitations regarding non-convex Pareto fronts. 

• VOES: Vector Optimized Evolutionary Strategy 

Few years after the VEGA studies, Kursawe (1991) proposed the Vector Optimized 

Evolutionary Strategy for multi-objective optimization (VOES). The VOES fitness 

assignment mechanism is similar to VEGA one, but Kursawe used other genetic aspects 

from nature. In VOES, a solution is represented by a diploid chromosome, each having 

a dominant string and recessive one. Two different solution vectors (each with a 

decision variable x and the corresponding strategy vector σ) are used as an individual in 

a population. Hence, a solution x is evaluated by calculating: (1) df  based on the 
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dominant genotype and (2) rf  based on the recessive genotype. In the following, we 

present the evaluation and the selection mechanisms. The selection process is 

performed in M steps. For each step, a user-supplied probability vector is used to 

choose an objective. This vector can be fixed or varied across generations. Assuming 

the mth objective is selected, the fitness of certain solution x is computed as the 

weighted sum of the dominant objective value and the recessive one as follows: 
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For each selection step, the population is sorted based on each objective function and 
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 portion of the population is selected as parents. This procedure is 

repeated M times, every time using the survived population from the previous sorting. 

Thus, the relation between the number of parents µ  and the number of children λ  can 

be expressed as follows:  
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For example, for the bi-objective case, we obtain λµ 25.0= . All new µ  solutions are 

copied into an external archive which stores the non-dominated individuals found since 

the beginning of the simulation run. After adding such solutions to this archive, a non-

domination check is performed and only new non-dominated solutions are retained. If 

the size of the external archive exceeds the archive size, a niching mechanism is used to 

eliminate crowded solutions in order to promote diversity.  

VOES uses non-domination check to ensure convergence and niching to encourage 

diversity. These features are essential to design a good MOEA. Unfortunately, Kursawe 

assessed the performance of his algorithm on a single test problem and no further 

experimental assessments were pursued since Kursawe’s original study.            

• WBGA: Weight-Based Genetic Algorithm 

WBGA, also called HLGA (Hajela and Lin Genetic Algorithm), was introduced by 

(Hajela and Lin 1992). For each objective function, a weighting coefficient is assigned. 

Unlike the classical weighted sum method, each individual from the population has its 

own weighting coefficient vector which is coded in its string concatenated to its 

decision variables. This fact makes the WBGA able to find multiple non-dominated 

solutions in a single run. The key issue in this algorithm is how to maintain the 

diversity of weighting coefficients among the population individuals. Tow approaches 
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were suggested for this sake. In the first approach, a niching mechanism is used on the 

substring representing the weight coefficient vector. In the second approach, carefully 

chosen subpopulations are evaluated for different pre-defined weight vectors in a 

similar way to VEGA. Unfortunately, WBGA is a weight-based approach; hence it fails 

in finding Pareto optimal solutions residing in the non-convex parts of the front.       

♦ Pareto-based evolutionary methods 

• Non elitist methods 

� MOGA: Multi-Objective Genetic Algorithm 

MOGA (Fonseca and Fleming 1993) is the first MOEA which explicitly used Pareto-

based ranking and niching techniques together to encourage the search towards the true 

Pareto front while maintaining diversity in the population. In fact, each individual is 

assigned a rank which is expressed as a function of the number of individuals 

dominating it. Assuming Ndomt to be the number of solutions dominating a certain 

solution x at a generation t, the rank at t of x is given by: 

tt Ndomxrank += 1)(                                                 (2.11)  

With such ranking mechanism, non-dominated solutions have a rank of 1 (cf. figure 

2.5). The fitness assignment method used in MOGA takes into account the rank of the 

population member and the average fitness value of the population. The process for 

computing the fitness values is as follows. Firstly, the population is sorted by rank. 

Then, a fitness value is assigned to each individual based on an interpolation of the best 

rank to the worst rank according to some specified function. Finally, individuals 

 

Figure 2.5 MOGA ranking process. 
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assigned the same rank receive an averaged fitness value. This ensures that all 

population members of the same rank are sampled with an identical frequency. This 

information is used to maintain constant global population fitness with an appropriate 

amount of selective pressure. Additionally, MOGA implements the concept of fitness 

sharing (also referred to as crowding or niching) and uses a shareσ  parameter called the 

niche radius which must be carefully specified. The niching mechanism is applied in 

the objective space in order to obtain a uniform distribution of the Pareto front 

approximation. Figure 2.6 illustrates the fitness sharing mechanism. In fact, solutions 

residing inside the niching radius are penalized in their fitness values.   

Although in MOGA fitness assignment is explicitly based on Pareto dominance, 

solutions having the same rank may not have the same assigned fitness. This may cause 

an unwanted bias towards a certain zone of the search space. Particularly, MOGA may 

be sensitive to the geometry of the Pareto front in addition to the density of solutions 

over the search space. Besides, the fitness sharing mechanism favors solutions with 

poor ranks over solutions with higher ranks if these latter are more crowded, thereby 

worsening the converging.       

� NPGA: Niched Pareto Genetic Algorithm 

Horn and Nafpliotis (1994) proposed NPGA which differs from the previously 

discussed MOEAs in the selection operator. This algorithm uses the binary tournament 

selection instead of proportionate selection methods used in VEGA and MOGA. 

During the tournament selection, two solutions x and y are picked randomly from the 

 
Figure 2.6 Fitness sharing strategy. 
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parent population P. Then, these two solutions are compared based on Pareto 

dominance to each individual of a randomly selected subpopulation T of size tdom 

(where tdom<< P ). If one of the two solutions is non-dominated with respect to all the 

subpopulation individuals and the other one is dominated by at least one individual, the 

non-dominated solution is retained. In the cases where neither or both members are 

dominated by the subpopulation members, a niching mechanism is implemented to 

select the least crowded solution among x and y.  

NPGA is found to be sensitive to the shareσ  value in addition to the tdom one. The 

numerical results reported in (Horn and Nafpliotis 1994) suggest that tdom should be 

an order of magnitude smaller than the population size. On one hand, if tdom is too 

small, the non-domination check would be so noisy which may not emphasize non-

dominated solutions sufficiently. On the other hand, if tdom is too large, non-

dominated solutions will be well-emphasized but the computational complexity will 

increase. Additionally, tdomdepends on the number of objectives to optimize.          

� NSGA: Non-dominated Sorting Genetic Algorithm 

NSGA (Srinivas and Deb 1994) is based on the non-dominated sorting strategy (cf. 

figure 2.7). This strategy classifies the population members into several fronts. The 

non-dominated sorting algorithm begins by identifying the non-dominated individuals 

from all population members. These individuals have the rank of one and are assigned a 

large dummy fitness value. After that, the first front members are discarded temporary 

from the population and the non-dominated individuals from the truncated population 

are identified and assigned the rank of 2 (eventually assigned a dummy fitness value 

smaller than the one of the first front). This process continues until classifying all 

population members. The diversity maintenance is achieved in NSGA by applying the 

fitness sharing front-wise in the decision space (instead of the objective space) in order 

to degrade the fitness values based on a user-defined niche radius value shareσ . The 

sharing in each front is achieved by calculating a sharing function value between two 

individuals i and j in the same front as follows:  
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where ijd  is the Euclidean distance separating i and j. After that, a parameter niche 

count is calculated by adding the above sharing function values for all individuals in the 

current front. Finally, the shared fitness value of each individual is computed by 
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dividing its dummy fitness value by its niche count. The best individuals are always 

preferred over other solutions, thereby favoring the generation of new individuals near 

the non-dominated solutions. The fitness sharing mechanism helps the algorithm to 

distribute the non-dominated solutions along the Pareto front. However, the high 

sensitivity to the shareσ  parameter yields to a less efficient performance of NSGA.  

• Elitist methods 

Elitism means that elite individuals cannot be excluded from the archive gene pool of 

the population in favour of worse individuals (Holland 1975). In the following, we 

review the most representative elitist MOEAs.   

� SPEA/SPEA2: Strength Pareto Evolutionary Algorithm 

(Zitzler and Thiele 1999) proposed the strength Pareto approach which uses two 

populations: (1) a main population P and (2) an archive population A which contains 

the non-dominated individuals found so far during the evolutionary process. Initially, 

the population P is generated randomly and the archive A is empty. Then, A is filled 

with non-dominated members from P. After that, solutions from A which are dominated 

by any other member from A are deleted. Besides, if the number of externally stored 

non-dominated solutions exceeds the archive size A , then A is pruned by means of a 

clustering procedure which will be discussed next. Once all population and archive 

members are each assigned a fitness value, binary tournament selection with 

replacement is applied to fulfil the mating pool. After applying genetic operators, a new 

population P is generated. If a stopping condition is met then the evolutionary process 

 
      Figure 2.7 Non-dominated sorting strategy. 
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is stopped, else non-dominated vectors from P are copied to the archive A as usual and 

the overall process is repeated.  

The fitness assignment in SPEA is a two-stage process. First, the non-dominated 

individuals from the archive A are ranked. Then, the population P members are 

evaluated. In fact, every solution i from the archive A is assigned a strength value 

[ [1,0∈is  which is proportional to the number of individuals in P which are dominated 

by i. The strength is  is given by: 

1+
=

P

nd
si                                                       (2.13) 

where nd  denotes the number of individuals in P that are covered by i and P  is the 

main population size. The fitness of population individual Pj ∈  is obtained by 

summing the strengths of all non-dominated solutions Ai ∈  that dominates j. The 

obtained sum is raised by 1 in order to guarantee that archive members have better 

performance than P members. This fitness is to be minimized and is given by: 
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The clustering mechanism is applied to reduce the size of the archive while keeping its 

characteristics. The general idea is to partition the archive into C groupings (clusters), 

where C < A  and all individuals of the same grouping have the same characteristics. 

The clustering procedure begins by making each element of the initial non-dominated 

archive a cluster. Following this, two clusters are chosen via a distance measurement to 

be combined into one cluster. The distance is calculated as average Euclidean distance 

between pairs of individuals across the clusters. At the completion of the clustering 

process, the new non-dominated archive consists of the centroid members of each 

cluster. The authors show favorable results compared to other MOEAs. 

In another study (Zitzler et al. 2001) have identified three weaknesses for SPEA. 

Firstly, for the fitness assignment strategy, individuals that are dominated by the same 

archive members have identical fitness values. Hence, in the case when the archive 

contains only a single individual, all population members have the same rank 

independently of whether they dominate each other or not. Consequently, the selection 

pressure is decreased substantially and in this particular case SPEA behaves like a 

random search algorithm. Secondly, for the density estimation, if many individuals of 

the current generation are Pareto equivalent, none or very little information can be 

obtained on the basis of the partial order defined by the dominance relation. In this 
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situation, which is very likely to occur when the number of objectives exceeds two, 

density information has to be used in order to guide the search more effectively. 

Clustering makes use of this information, but only with regard to the archive and not to 

the main population. Thirdly, for the archive truncation strategy, although the clustering 

mechanism used in SPEA is able to reduce the non-dominated set without destroying its 

characteristics, it may lose extreme (outer) solutions. However, these solutions should 

be kept in the archive in order to obtain a good spread of non-dominated solutions. In 

response to the above mentioned SPEA weaknesses, Zitzler et al. (2001) have proposed 

an improved version of SPEA, called SPEA2. In contrast to SPEA, SPEA2 uses a fine-

grained fitness assignment strategy which incorporates density information. 

Furthermore, the archive size is fixed, i.e., whenever the number of non-dominated 

individuals is less than the predefined archive size, the archive is filled up by dominated 

individuals; with SPEA, the archive size may vary over time. In addition, the clustering 

technique, which is invoked when the non-dominated front exceeds the archive limit, 

has been replaced by an alternative truncation method which has similar features but 

preserves boundary solutions. Finally, another difference to SPEA is that in SPEA2 

only members of the archive participate in the mating selection process.  

The SPEA 2 fitness assignment for a certain solution i takes into account the number of 

individuals dominating i in addition to the number of individuals dominated by i. Each 

 

Figure 2.8 Comparison of fitness assignment mechanisms:    

(a) SPEA versus (b) SPEA2 (from (Zitzler et al. 2001)). 
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solution i from the population P and the archive A is assigned a strength value is  

representing the number of individuals dominated by i:   

jiAPjjsi   p∧∪∈=                                             (2.15) 

After that, the raw fitness Ri is computed as flows: 
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This raw fitness is determined by the strengths of its dominators in both archive and 

population, as opposed to SPEA where only archive members are considered in this 

context. It is important to note that fitness is to be minimized here, i.e., Ri = 0 

corresponds to a non-dominated individual, while a high Ri value means that i is 

dominated by many individuals (which in turn dominate many individuals). This 

scheme is illustrated in figure 2.8(b). 

The raw fitness assignment strategy supplies a sort of niching based on the Pareto 

dominance concept. However, this strategy becomes inefficient when most individuals 

are non-dominated with each other. For this reason, additional density information is 

incorporated to discriminate between individuals having identical raw fitness values. 

The density estimation technique used in SPEA2 is an adaptation of the kth nearest 

neighbor method where the density at any point is a decreasing function of the distance 

to the kth nearest points. The density estimate corresponds to the inverse of the distance 

to the kth nearest neighbor. In fact, for each individual i, the distances in objective space 

to all individuals j from AP ∪  are computed then stored in a list in an increasing order. 

After that, the kth nearest neighbor gives the sought distance denoted by k
iσ . The k 

parameter value is usually set to AP + . The density Di  of solution i is: 
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In the denominator, two is added to ensure that its value is greater than zero and that 

.1<iD  Finally, the fitness of a certain solution i is obtained by summing the raw 

fitness and the density information as follows: 

iii DRF +=                                                     (2.18) 

The SPEA2 environmental selection mechanism differs from SPEA one by preserving 

the boundary solutions and by the fact that the number of stored external solutions is 

constant over time.  
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� NSGA-II: Non-dominated sorting Genetic Algorithm II  

NSGA-II is the improved version of NSGA (Deb et al. 2000; 2002a). NSGA-II is one 

of the most cited MOEAs. The most prominent features of NSGA-II are its low 

computational complexity, elitist approach and a method for diversity that does not 

need additional parameters. The general principle of NSGA-II is as follows. The 

NSGA-II algorithm begins by creating an offspring population Q0 by applying genetic 

operators to a randomly generated parent population P0. From the first generation 

award, the basic iteration of NSGA-II is different. First, the two populations Pt and Qt 

are combined to form a population Rt of size 2N (|Pt| = |Qt| = N). Second, a non-

dominated sorting is performed to classify the entire population Rt. Once, the non-

dominated sorting is over, the population Rt becomes subdivided in several categories 

in the same manner of NSGA. After that, the new parent population Pt+1 is filled with 

individuals of the best non-dominated fronts, one at a time. Since the overall population 

size is 2N, not all fronts may be accommodated in N slots available in the new 

population Pt+1. When the last allowed front is being considered, it may contain more 

solutions then the remaining available slots in Pt+1. Instead of discarding arbitrary some 

elements from the last front, NSGA-II uses a niching strategy to choose individuals 

from the last front which reside in the least crowded regions in this front. In fact, for 

each ranking level, a crowding distance is estimated by calculating the sum of the 

Euclidean distances between the two neighboring solutions from either side of the 

solution along each of the objectives as demonstrated by figure 2.9. In order to preserve 

boundary solutions, these latter are each assigned an infinite crowding distance. The 

crowding distance assignment procedure can be summarized by the three following 

steps:  

� Step 1: For each solution i from the considered front F, initialize its crowding 

distance CDi  to zero: 0←iCD ; 

� Step 2: For each objective function, sort the front members in a decreasing order of 

fm, and find the sorted indices vector: ),( >= m
m fsortI ; 

� Step 3: For ,,...,1 Mm= assign an infinite crowing distance to extreme solutions 
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where m
jI  corresponds to the index of the jth member in the list sorted based on the mth 

objective function. 
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NSGA-II is demonstrated to be one of the most competitive MOEAs through the 

specialized literature. The main weakness of NSGA-II was reported in (Deb 2001). In 

fact, when the cardinality of the first front from the combined population Rt exceeds the 

population size P , some closely packed Pareto optimal solutions may give their places 

to some non-dominated yet non Pareto optimal solutions since the replacement 

becomes based only on the crowding distance criterion.  

� PAES/PESA: Pareto Archived Evolutionary Strategy/Pareto Envelope-based 

Selection Algorithm 

(Knowles and Corne 1999; 2000) proposed a (1+1)-Evolutionary Strategy ((1+1)-ES), 

named PAES, to approximate the whole Pareto front. This work was motivated by the 

success of (1+1)-ES in resolving mono-objective problems. For this reason the authors 

have adapted such search method for the multi-objective case. PAES begins by 

producing a child c0 from a randomly generated parent p0. In each generation t, non-

dominated solutions found are stored in an archive with a pre-specified size. The two 

individuals pt and ct are firstly compared. If one solution dominates the other, the 

dominated individual is discarded and the dominant one is retained as parent for the 

next generation. In the case where pt and ct are non-dominated, the new candidate 

solution is compared with a reference population of previously archived non-dominated 

solutions, i.e., archive members. If comparison to the population in the archive fails to 

favor one solution over the other, the tie is split to favor the solution which resides in 

the least crowded region of the search space. The archive has a user-specified 

maximum size which reflects the desired number of final solutions. Each child ct which 

 

Figure 2.9 Crowding distance. 
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is not dominated by its parent pt is compared with each member of the archive. 

Candidates which dominate the archive members are always accepted (as parents) and 

archived. Candidates which are dominated by the archive members are always rejected, 

while those which are non-dominated are accepted and/or archived based on the degree 

of crowding in their grid location. The major feature of PAES is its strategy for 

promoting diversity in the approximation set. PAES uses an adaptive hyper-gridding 

system in the objective space to divide it into d non-overlapping hyper-boxes. The 

belonging of a certain solution to a certain region in the hyper-box is determined by the 

objectives’ values which define the solution’s coordinates. In the case where an 

offspring solution is non-dominated with respect to the archive members, a crowding 

measure based on the number of solutions residing in a certain hyper-box is applied to 

determine whether the offspring solution is accepted or not.  

The major advantage of this diversity maintenance technique is that it does not require 

any additional parameters such as the niche size parameter .shareσ  However, the main 

crux of PAES is the sensitivity of the performance of such algorithm to the d parameter 

of the hyper-gridding system (cf. figure 2.10). 

The same authors (Corne and Knowles 2000) have proposed PESA which is a modified 

version of PAES. PESA has the same archiving and diversity preserving mechanisms of 

PAES. In PESA, like SPEA2, only archive members participate in genetic operations. 

PESA begins by randomly generating a small internal population IP. PESA uses also a 

large external population EP which is initially empty. After that, the archive EP is 

 

Figure 2.10 PAES hyper-gridding system with d = 6. 
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updated with elite solutions in the same manner as PAES. If the stopping criterion is 

met then the algorithm returns EP, else IP is fulfilled with new individuals by the 

following operations. With probability pc, two parents are selected from EP. A single 

child is subsequently created by crossover. This child is then mutated. With probability 

),1( cp−  a selected parent from EP is mutated. After that, the archive EP is updated and 

the overall process is repeated.  

As PAES, PESA necessitates the tuning of the archive size and the d parameter of the 

gridding system. We note that the number of hyper-boxes changes exponentially with 

the modification of d value which influences the final population distribution. An 

improved version of PESA, called PESA-II, was proposed by Corne et al. (2001) where 

selection is region-based and the subject of selection is now a hyper-box not only an 

individual (i.e., first selecting a hyper-box, then an individual is chosen from the 

selected hyper-box). The motivation behind PESA is to reduce the computational cost 

of Pareto ranking.      

� IBEA: Indicator-Based Evolutionary Algorithm 

(Zitzler and Künzli 2004) proposed a MOEA where selection is based on solution 

contribution to a certain quality indicator. Indicator-based MOEAs can, therefore, be 

seen as a third generation of MOEAs. IBEA begins by randomly generating a 

population P. After that, for each solution i from P, the algorithm computes the fitness 

of i corresponding to the loss in quality if i is removed from the population P. The 

solution with the lowest fitness is removed from the population and then the population 

members’ fitness values are recomputed since the population is truncated. This 

selection strategy is used in creating the mating pool and in environmental selection. 

The main crux of IBEA is its sensitivity to the κ  parameter which is used to scale the 

fitness function values since the algorithm performance largely depends on this 

parameter which is reported to depend of the considered MOP. Another indicator-based 

selection algorithm is the S Metric Selection-based Evolutionary Multi-Objective 

Algorithm (SMS-EMOA) (Beume et al. 2007) which combines non-dominated sorting 

with indicator-based selection mechanism. IBEAs can be seen as the last generation of 

MOEAs. The main critical point in this type of algorithms is the important required 

computational effort for computing the quality indicator values for a certain non-

dominated solution set.    

2.4 Performance assessment of MOEAs 

2.4.1 Test functions 
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     Table 2.1 Bi-objective ZDT test problems’ characteristics. 

Name Features 

ZDT1 The Pareto front is convex. 

ZDT2 The Pareto front is concave. 

ZDT3 The Pareto front is formed by several disjoint convex parts. 

ZDT4 There are 921 local fronts. 

ZDT5 The Pareto front is convex. ZDT5 is a discrete problem with a deceptive landscape. 

ZDT6 The Pareto front is concave. This problem is characterized by the non-uniformity not only 

of the search space but also of the solution distribution along the Pareto front. 

 

Table 2.2 Scalable DTLZ test problems’ characteristics. 

Name Features 

DTLZ1 The Pareto front is linear (Hyper-plane). There are )111( −k  local optimal fronts where k is 

a user-specified parameter. 

DTLZ2 For 3>M , the Pareto optimal solutions lie inside the first quadrant of the unit sphere in a 

three-objective plot with Mf  as one of the axes.  

DTLZ3 There are )13( −k  local fronts that are parallel to the global Pareto front where k is a user-

specified parameter. 

DTLZ4 The Pareto optimal solutions are non-uniformly distributed along the Pareto front. 

DTLZ5 The front is a curve and the Pareto optimal solutions are non-uniformly distributed along 

the Pareto front. 

DTLZ6 The front is a curve and the solution density gets thinner towards the Pareto front. 

DTLZ7 The Pareto front is formed by 12 −M  disjoint regions in the objective space.  

DTLZ8 The Pareto front is a combination of a straight line and a hyper-plane. The straight line is 

the intersection of the first (M-1) constraints with 121 ... −=== Mfff  and the hyper-plane is 

represented by another constraint .Mg  

DTLZ9 The Pareto front is a curve with 121 ... −=== Mfff . The solution density gets thinner 

towards the Pareto front. 

Several test functions are proposed to challenge MOEA capabilities in approximating 

the Pareto front. The most cited test function suites are: (1) the bi-objective ZDT 

(Zitzler-Deb-Thiele) suite (Zitzler et al. 2000) and (2) the scalable DTLZ (Deb-Thiele-

Laumans-Zitzler) suite (Deb et al. 2002b) where the Pareto optimal front can be 
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determined analytically (cf. appendices A and B). Such test functions encapsulate 

several characteristics such as non-convexity, multimodality, non-uniformity of the 

search space and discontinuity which cause difficulties to a MOEA. These test 

functions do not reflect necessarily the main features of real world MOPs. It is true that 

some of these functions contain important characteristics that make them particularly 

difficult to solve. Thus, if a MOEA can resolve such test functions, it should also be 

able to tackle real world MOPs; although this is not necessarily true. Tables 2.1 and 2.2 

present the ZDT and DTLZ test functions’ characteristics respectively. We notice that 

for DTLZ test problems, the parameters can be modified in order to increase or 

decrease the problem’s difficulties (e.g., modifying the number of local optimal Pareto 

fronts). 

2.4.2 Performance indicators  

When evaluating the performance of a MOEA, there are two main goals to pursue: (1) 

closeness of the provided non-dominated solution set to the Pareto optimal front and (2) 

diversity of the obtained solution set (with a good distribution) along the Pareto optimal 

front. Several performance measures are proposed in the EMO literature to evaluate one 

or both of these goals (Zitzler et al. 2003). Table 2.3 presents a classification of selected 

representative performance measures. The classification criteria are the following: 

- unary which indicates if it is a unary performance indicator (i.e., performance 

measure which assigns a single value to each non-dominated solution set); 

- binary which indicates if it is a binary performance indicator (i.e., performance 

measure which assigns a single value to a pair of non-dominated solution sets); 

- convergence which indicates that the performance indicator assigns a single value 

corresponding to the convergence of the non-dominated solution set; 

- diversity which indicates that the performance indicator assigns a single value 

corresponding to the diversity of the non-dominated solution set; 

- reqPFtrue which indicates if the performance measure requires the true Pareto 

optimal front truePF  to assign a single value to the non-dominated solution set; 

- best value which indicates the best value that can be obtained from the performance 

indicator; 

- Pareto compliant which indicates whether the performance measure is Pareto 

dominance compliant. Before defining the notion of Pareto dominance compliance, 

we give the definitions of compatibility and completeness. The definitions are 

derived from the study of Zitzler et al. (2003): 

Definition 2.8: Compatibility and Completeness  

Assuming W and Z two approximation sets, a quality indicator ℜ→Ω:I  (assuming 
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Table 2.3 Main features of performance indicators. 

Performance 

indicators 

unary binary  convergence diversity  reqPFtrue best 

value 

Pareto 

compliant 

ER  

SC 

+εI  

X  

X 

X 

X 

X 

X 

 X 0 

1 

- 

X 

X 

X 

GD 

IGD 

∆  

X 

X 

X 

 X 

X 

 

 

X 

X 

X 

0 

0 

0 

 

HV 

S 

χ
2–like 

deviation 

X 

X 

X 

 

 X X 

X 

X 

 

 

X 

1 

0 

0 

X 

higher values of the indicator mean better performance) is said to be compatible with 

the Pareto dominance relation if and only if: 

ZWZIWI  )()( p⇒>                                                (2.20)          

The quality indicator I is said to be complete if and only if:  

)()( ZIWIZW >⇒p                                                (2.21) 

Definition 2.9: Compliance 

A quality indicator I is said to be Pareto dominance compliant if I is both compatible 

and complete with the Pareto dominance relation. 

Error Ratio (ER): This indicator is proposed by Van Veldhuizen and Lamont (2000). It 

corresponds to the ratio of the number of solutions that are not members of the true 

Pareto optimal front truePF  by the cardinality of the obtained solution set. 

Mathematically, ER is expressed as follows:  

N

e

ER

N

i
i∑

== 1                                                      (2.22) 

where N is the number of non-dominated solutions provided by the MOEA and 1=ie  

if solution i is dominated by any member from truePF  and 0=ie  otherwise. 1=ER  

means that no solution belongs to the true front .truePF  and 0=ER  when all solutions 

are in the true front.  

Set Coverage (SC): This indicator can be termed relative coverage of two solution sets 

(Zitzler et al. 2000). SC is defined as the mapping of the pair (W, Z) to the interval [0,1] 
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 as follows:  

{ }
Z

wzWwZz
ZWSC

 :;
),(

p∈∃∈
=                           (2.23) 

),( ZWSC  expresses the percentage of solutions from Z that dominates solutions in W. 

1),( =ZWSC  means that each solution in Z dominates at least one solution from W; 

while 0),( =ZWSC  means the opposite (i.e., there is no solution from Z dominating 

solutions from W).  

Binary additive epsilon indicator )( +εI : This metric takes a pair of non-dominated 

solution sets W and Z as inputs and returns a pair of numbers as outputs ),( ZW II  such 

that (Zitzler et al. 2003): 

{ }zwWwZzInf(W,Z) II
ε

εW +
ℜ∈

+ ∈∃∈∀== εp:,                       (2.24) 

{ }wzZzWwInf(Z,W) II
ε

εZ +
ℜ∈

+ ∈∃∈∀== εp:,    (2.25) 

),( ZWI +ε  expresses the minimum quantity ε  by which each solution from W must be 

translated in the objective space so that each solution from Z becomes dominated by (or 

equal to) at least one member from W. A pair of numbers ZW II ,0( ≤ > )0  indicates that 

W is strictly better than Z, while a pair of numbers WI( > ZI,0 > )0  means that W and Z 

are incomparable. Nevertheless, if IW is less than IZ, then in a weaker sense, we can say 

that W is better than Z because the minimum ε value needed so that W ε-dominates Z is 

smaller than the ε value needed so that Z ε-dominates W. 

Generational distance (GD): This indicator estimates how far are the elements in the 

Pareto front produced by the MOEA from those in the true Pareto front of the problem 

(i.e., )truePF  (Van Veldhuizen and Lamont 2000). It is given by the following equation: 

true

N

i
i

PF

d

GD

∑
== 1

2

                                                            (2.26)   

where N is number of non-dominated solutions provided by the MOEA and di is the 

distance between each of these solutions to its nearest member from .truePF  A variant 

of this indicator is the Inverted Generational Distance (IGD) in which a reference true 

Pareto front is used and its elements are compared with respect to the approximation 

produced by the MOEA.  
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Spread (∆): The metric ∆ measures the deviation among consecutives solutions in the 

Pareto front PF furnished by the MOEA (Deb 2001). Analytically, ∆ is stated as 

follows: 

∑
=

−
=∆

PF

i

i

PF

distdist

1

                                                    (2.27) 

where disti is the Euclidean distance between two consecutive solutions in PF and dist  

is the average of these distances. In order to ensure that this calculation takes into 

account the spread of solutions in the entire region of the true front, the boundary 

solutions in the non-dominated front are included. For a perfect distribution, 

0=∆ which means that disti is constant for all i.  

HyperVolume (HV): This indicator, called also S metric, estimates the hypervolume of 

the portion of the objective space which is dominated by an approximation set (Zitzler 

and Thiele 1999). The larger HV value is, the better the result is. This metric assesses 

both convergence and diversity. The HV indicator can be expressed as follows: 

PFivolHV i
i

∈=  U                                        (2.28) 

where ivol  corresponds to hyperarea bounded by a pre-specified reference point and a 

solution i. The HV metric is compatible and complete with the Pareto dominance 

relation; thereby HV is said to be Pareto compliant which is an important feature for 

this indicator.  

Spacing (S): This metric assesses the solution distribution along the Pareto front and it 

is given by: 

( )∑
=

−
−

=
PF

i
i disdis

PF
S

1

2

1

1
                                 (2.29)    

where ∑
=∈

−=
k

m

j
m

i
m

PFj
i ffdis

1
min  and dis is the mean of these distances. The distance 

measure is the minimum value of the sum of the absolute differences in objective 

function values between solution i and any other solution in the Pareto optimal set. 

0=S  means that all solutions are equally distributed along the Pareto front. 

Chi-square-like deviation measure −2(χ like deviation): Proposed by Srinivas and 

Deb (1994), this indicator evaluates the diversity of the obtained solution set PF. PF 

solutions are compared with respect to a uniformly distributed set of truePF  called F. 
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For each { }Fi ,...,2,1∈ , we denote by in  the number of solutions in PF whose distance 

from i is less than a user-specified quantityω . Then, the measure is computed as 

follows: 

∑
+

=









 −=
1

1

2F

i i

ii nn

σ
χ                                        (2.30)  

The ideal distribution is achieved when all the neighborhoods of points in F have the 

same cardinality, i.e., if for each solution i in F there is 
F

PF
ni =  points whose distance 

from i is less than ,ω  then .0=χ  The variance 2
iσ  is proposed to be 











−=

PF

n
n i

ii 12σ  for all { }Fi ,...,2,1∈ . The lower the χ  value is, the better the 

distribution is.   

2.5 Conclusion 

Through this chapter, we have provided a comprehensive review of the EMO research 

field. We classified MOEAs based on two main criteria: (1) the use of the Pareto 

dominance as a selection criterion and (2) the elitism. Figure 2.11 illustrates a 

cartography of the different discussed MOEAs. Non-Elitist approaches are seen as a 

first generation of MOEAs while the second generation corresponds to the elitist 

methods. The use of a performance indicator as a selection criterion can be considered 

as the selection mechanism of the third generation of MOEAs and several studies are 

recently conducted in this direction. We have presented how MOEA output can be 

assessed by means of quality metrics and difficult test functions with predefined Pareto 

optimal fronts each having some geometrical features presenting challenges to every 

search method. As discussed through this chapter, most of the described MOEAs have 

shown their effectiveness and efficiency in ensuring not only convergence towards the 

Pareto front but also diversity between the final obtained solutions. However, this fact 

does not resolve the problem of decision making since the DM has to choose a single 

solution from a huge set of non-dominated solutions. The next chapter is dedicated to 

review the incorporation of DM’s preferences in MOEAs since in reality the DM is not 

interested in discovering the whole Pareto front but rather finding only the portion of 

the front that matches at most his/her preferences.   
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Figure 2.11 MOEA cartopgraphy. 

VOES (Kursawe 1991) uses a probability 
vector to choose the objective to be 
optimized in each step of the algorithm. 

MOGA  (Fonseca and Fleming 1993) uses 
Pareto based-fitness assignment and 
fitness sharing.  

SPEA (Zitzler and Thiele 1999) uses an 
external archive for storing non-dominated 
solutions and clustering based-diversity 
mechanism.  

PAES (Knowles and Corne 1999) is 
(1+1)-ES using Pareto dominance for 
archive updating and hyper-gridding 
system for diversity promoting.  

PESA (Corne et al. 2000) is an enhanced 
version of PAES using a small internal 
population and a large external population. 

PESA-II  (Corne et al. 2001) is an 
enhanced version of PESA using hyper-
box-based selection. 

SPEA2 (Zitzler et al. 2001) is an enhanced 
version of SPEA using Pareto-based 
fitness assignment incorporating density 
information.  

NSGA-II  (Deb et al. 2000) uses non-
dominated sorting in combination with 
crowding distance assignment.   

WBGA  (Hajela and Lin 1992) uses a 
weighted sum-based selection where each 
individual has its own weight vector. 

SMS-EMOA (Beume et al. 2007) 
combines non-dominated sorting with 
indicator-based selection to promote both 
convergence and diversity    

VEGA  (Schaffer 1985) uses multiple 
subpopulations each optimizing a single 
objective. 

IBEA  (Zitzler and Künzli 2004) uses 
indicator-based selection to promote both 
convergence and diversity.    

NPGA (Horn and Nafpliotis 1994) uses 
tournament selection based on a randomly 
selected subpopulation. 

NSGA (Srinivas and Deb 1994) uses non-
dominated sorting and fitness sharing.   

Second generation of MOEAs 
 

Third generation of MOEAs 

First generation of MOEAs 
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Chapter 3  

Explicit Preference-based Evolutionary 

Multi-objective Optimization 

3.1 Introduction 

Over the two past decades, MOEAs have demonstrated their effectiveness and 

efficiency in providing well-converged and well-diversified approximations of the 

Pareto front. Recently, there has been an increased emphasis in addressing the decision 

making task by injecting DM’s preference information in the evolutionary process. This 

chapter surveys existing preference-based MOEAs (Bechikh et al. 2012a). In such type 

of algorithms, the DM can provide his/her preferences before (a priori), after (a 

posteriori) or during the MOEA run (interactively). These preferences are used to guide 

the search towards the preferred part(s) of the Pareto optimal front, i.e., the ROI(s). 

Each solution belonging to a ROI is considered to be a preferred and satisfying solution 

for the DM. The DM’s preference information can be expressed in several ways. Most 

of these ways are issued from the classical Multi-Criteria Decision Making (MCDM) 

literature (Miettinen 1999). In the following, we cite the commonly used preference 

information structures in the EMO community: 

� Weights: Each objective is assigned a weighting coefficient expressing its 

importance. The larger the weight is, the more important the objective is.  

� Solution ranking: The DM is provided with a sample of solutions (a subset of the 

current MOEA’s population) and is invited to perform pairwise comparisons 

between pairs of solutions in order to rank the sample’s solutions where 

incomparability and indifference may exist between the solutions to rank.  

� Objective ranking: Pairwise comparisons between pairs of objectives are performed 

in order to rank the MOP’s objectives where incomparability and indifference may 

exist between some objectives.   

� Reference point (also called a goal or an aspiration level vector): The DM supplies, 

for each objective, the desired level that he/she wishes to achieve. This desired level 

is called aspiration level.  
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� Reservation point (also called a reservation level vector): The DM supplies, for 

each objective, the accepted level that he/she wishes to reach. This accepted level is 

called reservation level.  

� Trade-off between objectives: The DM specifies that the gain of one unit in one 

objective is worth a degradation in some others and vice versa.    

� Outranking thresholds: The DM specifies the necessary thresholds to design a fuzzy 

predicate modelling the truth degree of the predicate “solution x is at least as good 

as solution y”.  

� Desirability thresholds: The DM supplies: (1) an absolutely satisfying objective 

value and (2) a marginally infeasible objective value. These thresholds represent the 

parameters that define the Desirability Functions (DFs).   

The next section provides a classification of preference-based MOEAs based on the 

structure of the DM’s preference information. We focus on the way the preferences are 

supplied and the mechanism adopted to incorporate these preferences so that the 

population is guided towards the ROI(s).      

3.2 Preference-based MOEAs 

3.2.1 Weight-based approaches 

♦ Deb (1999) work: the biased sharing-based approach  

In this work, the author incorporated the relative importance of each objective in the 

form of weight. In fact, he modified the Euclidean distance computation in the sharing 

mechanism of NSGA. Originally, the distance between two decision variable vectors x 

and y is computed as follows: 
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The quantity (3.1) is modified by incorporating weighting coefficients into it. The 

obtained distance metric is called the weighted Euclidean distance and is expressed by:  
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where mw'  is the normalized weighting coefficient and is expressed by:  
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where mw  is the user-specified weight assigned to the mth objective expressing its 

importance degree. We note that [ ]1,0∈mw  and .11 =∑ =
M
m mw  The sharing mechanism 

(cf. equation (2.12)) can then be used in order to bias the Pareto optimal solution 

distribution towards the preferred part of the front. However, this approach was 

assessed only on two bi-objective problems having convex Pareto fronts with very 

restricted weight sets that are (0.9, 0.1) and (0.1, 0.9). Hence, further experiments with 

higher dimension problems and diversified weight sets are required for validation.  

♦ Branke and Deb (2004) work: the biased crowding-based approach 

The authors modified the crowding distance calculation in NSGA-II in order to focus 

the search on the preferred part of the front. For an objective vector u from a particular 

front, a biased crowding distance D(u) is defined as follows. Let η be a DM-specified 

direction vector indicating the most probable or central linearly weighted utility 

function and let θ be a parameter controlling the bias intensity, then: 

θ



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
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ud

ud
uduD                                                   (3.4) 

where )(ud  and )(' ud  are, respectively, the original crowding distance and the 

crowding distance computed based on the locations of the individuals projected onto 

the (hyper-)plane with η as a direction vector. Figure 1 illustrates this concept. In fact, 

for a solution from the front more or less parallel to the projected plane (such as 

solution a), the original crowding distance d(a) and the projected crowding distance 

d′(a) are more or less the same, thereby making the ratio d′(a)/d(a) close to one. 

Consequently, according to equation (3.4), solution a will have a biased crowding 

distance D(a) almost the same as that in the original objective space, i.e., d(a). 

Contrariwise, for a solution having a large difference in slope on the Pareto optimal 

front where the tangent has an orientation significantly different from the chosen plane 

(such as solution b), the projected crowding distance d′(b) is much smaller than the 

original crowding distance d(b), thereby making the ratio d′(b)/d(b) so smaller than one. 

For such a solution, the biased crowding distance will be a small quantity which means 

that solution b is assumed to be artificially crowded. Figure 3.1 shows also the biased 

crowding distance values for all non-dominated points and how would they typically be 

distributed for a certain front and a chosen plane. Solutions with large crowding 

distance are preferred which allows solutions situated near the tangent point to survive. 

The parameter θ  controls the extent of the obtained solutions. The larger θ  is, the 

smaller the extent is. The main advantages of this approach are: (1) its scalability with 



Chapter 3. Explicit Preference-based Evolutionary Multi-objective Optimization 

 

 38 

the number of objectives and (2) its insensibility to the non-convexity of the Pareto 

optimal front. However, the approach was shown to be inferior to the G-MOEA 

(Branke et al. 2001) in terms of convergence. 

♦ Zitzler et al. (2007) work: the weighted hypervolume-based approach  

The hypervolume indicator is a performance measure that computes the surface of the 

objective space dominated by a solution set and bounded by a reference point (Zitzler et 

al. 2003). The main feature of this performance measure is its Pareto compliance, i.e., it 

does not contradict the order induced by the Pareto dominance relation (Zitzler and 

Thiele 1999). In Zitzler et al. (2007), the authors proposed a weighted version of the 

hypervolume metric in order to guide the search based on the DM’s preferences 

expressed by: (1) a weighting coefficient vector or (2) a reference point. Three different 

weighting schemes were proposed for the bi-objective case: (1) a weight distribution 

which favors extreme solutions, (2) a weight distribution which favors one objective 

over the other (but still keeping the best solution with respect to the less important 

objective), and (3) a weight distribution based on a reference point, which generates a 

ridge-like function through a reference point parallel to the diagonal. In the following, 

we give the definitions of the hypervolume measure followed by the weighted version 

of this indicator. The classical definitions of the hypervolume indicator are based on 

volumes of polytopes (Zitzler and Thiele 1999) or hypercubes (Fleischer 2003) and 

assume that Pareto dominance is the underlying preference relation. Here, we give a 

generalized definition based on attainment functions that allows considering arbitrary 

 

Figure 3.1 Illustration of the biased crowding based-approach for 

the bi-objective case (from (Branke and Deb 2004)). 
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dominance relations. The attainment function (da Fonseca et al. 2003) gives, for each 

objective vector the probability that it is dominated by the outcome of a particular 

multi-objective optimizer. As only single sets are considered here, we can take a 

slightly simplified definition of the attainment function as follows: 

Definition 3.1: Attainment function 

Assuming A to be an objective vector set and z to be an objective vector, the attainment 

function [ ] { }1 ,01 ,0:)( →M
A zα  for A is defined as: 
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α                                               (3.5) 

This definition is illustrated in figure 3.2. The concept of attainment function can be 

used to give a formal definition of the hypervolume indicator. In fact, this latter is 

defined as the volume of the objective space enclosed by the attainment function and 

the axes.  

Definition 3.2: Hypervolume indicator 

The hypervolume indicator *HI  with the reference point (0, ..., 0) could be formulated 
via the attainment function as:  

     ∫= )1,...,1(
)0,...,0(

* )()( dzzAI AH α                                             (3.6) 

The attainment function, the integration over which gives the hypervolume for a given 

set A, is a binary function such that all weakly dominated objective vectors are assigned 

1, while the remaining objective vectors are assigned 0. That means all weakly 

dominated objective vectors have the same weight and contribute equally to the overall 

 

Figure 3.2 Illustration of the attainment function Aα  for 

A = {z1, z2, z3} for the bi-objective maximization case. 
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indicator value. The main idea behind the weighted hypervolume approach is to give 

different weights to different regions in the objective space. This can be achieved by 

defining a weight distribution over the objective space such that the value that a 

particular weakly dominated objective vector contributes to the overall indicator value 

can be any strictly positive real value. To this end, the authors introduced a weight 

distribution function .: +ℜ→Ζw  The hypervolume is calculated as the integral over 

the product of the weight distribution function and the attainment function: 

     dzzzwAI A
w
H  )( . )()(

)1,...,1(
)0,...,0(∫= α                                   (3.7) 

The weighted hypervolume is integrated in IBEA (cf. section 2.3.2) and the resulting 

algorithm has shown its ability to drive the search as expected. However, as noted by 

the authors, this approach is restricted to the bi-objective case. Moreover, there is no 

control over the ROI spread. It is worth noting that, in a more recent study (Auger et al. 

2009), this work was extended for the M-objective case by defining general indicator 

classes for an arbitrary number of objectives. Furthermore, this extension enables the 

DM to control the ROI breadth. The main disadvantage of this more recent approach is 

that, for the case where the DM would like to find a ROI near his/her expressed 

reference point, the obtained solution distribution highly depends of the position of this 

preference point. 

3.2.2 Solution ranking-based approaches 

♦ Greenwood et al. (1997) work 

In this study, the authors proposed an imprecisely specified multi-attribute utility 

theory-based weighted sum approach where the ranking of objectives is implicitly 

derived from the ranking of some candidate solutions. The imprecisely specified 

weighting coefficients are characterized by a set of constraints describing preferences 

as revealed in pairwise comparisons of the candidate solutions. The used utility 

function is called imprecise because weights do not have specific values but they are 

constrained by the DM’s preferences. A minimization of the difference in the weighted 

sums of a pair of solutions, subject to the pre-determined constraints, is performed in 

the fitness computation. This linear optimization is performed for every solution pair in 

the archive and in the population to obtain the solution fitness values. Assuming u  and 

v  to be two normalized objective vectors (i.e., mapped to the interval [0,1]) where the 

DM prefers u  to v , we obtain:  

      vu   preferredp  ⇒  0)(
1

≤−∑
=

mm

M

m
m vuw                                   (3.8) 



Chapter 3. Explicit Preference-based Evolutionary Multi-objective Optimization 

 

 41 

The expression (3.8) defines a constraint for the objective weights. When several 

solution pairs are ranked by the DM, a series of such constraints are defined. These 

constraints confine the objective weighting coefficients to a subspace MW +ℜ∈  where 

M
+ℜ  is the M-dimensional space of positive real numbers. Using the normalized 

objective values and the constraint subspace W, other configurations created from 

running a MOEA may be evaluated. More specifically, by definition: 

        0)(
1

≤−∑
=

mm

M

m
m vuw  ⇒  vu   preferredp                                (3.9) 

It follows that two alternatives u  and 'u  can be compared by solving the following 

linear programming problem:  
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 then: 

1) If 0<z  then 'u  is preferred to ;u  

2) If 0≥z  and 0<z  then u  is preferred to ;'u  

3) If 0≥z  and 0≥z  then u  and 'u  are indifferent. 

In summary, the DM is invited to make pairwise comparisons in order to define the 

constraint subspace W. W is subsequently used in the series of linear programming 

problems that should be solved to conduct pairwise comparisons between solutions. 

The authors noted that alternatives compared by the DM should be selected carefully so 

that they can be ranked consistently, unless conflicting constraints may be produced. 

Consequently, there will be no solution for the resulting linear programming problem, 

i.e., this latter would be infeasible. The authors implemented an algorithm for 

identifying the inconsistent preference statements. This algorithm identifies the 

minimum sets of preference statements that, if removed, would result in a feasible 

solution to the linear programming instance. However, this algorithm has an 

exponential time complexity. 

♦ Deb et al. (2010) work : the Progressively Interactive EMO Algorithm (PI-EMOA) 

The authors proposed a preference based-MOEA based on the concept of value 

function. Every few τ generations, the DM is provided with a sample of η solutions and 

is asked to rank these solutions from the best to the worst where the incomparability 
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between solutions is allowed. This step is termed “DM call”. Based on this preference 

information, an optimization problem is formulated and solved to find a suitable value 

function which optimally captures DM’s preference information by maximizing the 

value function value between ranked points. From this iteration till the next DM call, 

the derived value function is utilized to drive the MOEA in: (1) modifying the 

domination principle which directly affects MOEA’s convergence and diversity 

preserving operators, thereby guiding the search towards the preferred solutions and (2) 

determining the termination criterion of the overall procedure. 

During the preference elicitation step (i.e., the DM call), the DM is provided with a 

sample of η points and for each pair of alternatives ),,( yx  he/she can precise if x is 

preferred to y ) denoted( yx PP f  or x and y are incomparable ) denoted( yx PP ≡ . For 

the bi-objective case, the authors proposed the following value function structure: 

       ( )( )2122121121  ),( lfkflfkfffV ++++=                          (3.11) 

where f1 and f2 are the considered objective functions and k1, k2, l1 and l2 are unknown 

parameters and should be determined from the DM’s preferences. For this purpose, the 

following Value Function Optimization Problem (VFOP) should be solved:  
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The value function V, for two objectives shown above, is considered to be the product 

of two linear functions: ℜ→ℜ++= 2
12111 :lfkfS  and .: 2

21222 ℜ→ℜ++= lfkfS  

Considering all the expressions, we have the following optimization problem: 
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A little thought reveals that the above optimization problem attempts to find a value 

function for which the minimum difference in the value function values between the 

ordered pairs of points is maximal. For a general M-objective problem the value 

function can be written as follows: 
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The above value function (3.14) can be expressed more elegantly as follows: 
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For a general M-objective problem, the VFOP is expressed as follows: 
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       (3.16) 

Once the value function is build, the conventional dominance principle is modified in 

order to focus the search on preferred solutions. Let V be the value function found from 

the most recent decision-making interaction. Let V2 be the value function value for the 

second best member (P2 defined previously) from the sample of η points. For the 

maximization case, any two feasible solutions x and y can be compared with their 

objective function values by using the following modified domination criteria: 

1) If both solutions have a value function value less than V2, then the two points are 

compared based on the usual Pareto dominance principle; 

2) If both solutions have a value function value more than V2, then the two points are 

compared based on the usual Pareto dominance principle; 

3) If one has a value function value more than V2 and the other has a value function 

value less than V2, then the former dominates the latter. 
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Figure 3.3 illustrates a confrontation between the value function-based dominance 

dominated region and the Pareto dominance one for the bi-objective maximization case. 

This figure presents the region dominated by two points A and B. The value function 

contour having a value V2 is shown by the curved line. The point A lies in the region in 

which the value function is smaller than V2. The region dominated by point A is shaded. 

This dominated area is identical to that which can be obtained using the Pareto 

dominance principle. However, the point B lies in the region in which the value 

function is larger than V2. For this point, the dominated region is different from that 

which would be obtained using the usual domination principle. In addition to the usual 

region of dominance, the dominated region includes all points having a smaller value 

function value than V2.  

Once the value function V is determined, the MOEA is driven by it in the next τ 

generations. The value function V can also be used for determining whether the overall 

optimization procedure should be terminated or not. To implement the idea, the best 

and second best points P1 and P2 from the given set of η points are firstly identified 

based on the DM’s preference information. The constructed value function can provide 

information about whether any new point P is better than the current best solution P1 

with respect to the value function. Thus, a single-objective search is performed along 

the gradient of the value function ( )V∇  from P1 in order to create better preferred 

solutions than P1. This principle is used to develop a termination criterion by solving 

the following ASF problem for P1 = zb:  

 
Figure 3.3 Dominated regions for: (1) Pareto dominance with solution A 

and (2) value function-based dominance with solution B. 
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The second term with a small ρ (= 10−10 used in this work) prevents the solution to 

converge to a weak Pareto optimal point. Any single-objective optimization method 

(e.g., the Sequential Quadratic Programming (SQP) method (Wilson 1963)) can be used 

for solving the above problem and the intermediate solutions ,...)2,1,( =izi  can be 

recorded. If at any intermediate point, the Euclidean distance between zi from P1 is 

larger than a termination parameter ds, the ASF optimization task is stopped and the 

MOEA search is resumed. In this case, we replace P1 with zi. Figure 3.4(a) depicts this 

scenario for the bi-objective maximization case. If at the end of the SQP run, the final 

SQP solution (say, zT) is not greater than ds distance away from P1, the MOEA is 

terminated and zT is declared as the final preferred solution. This situation indicates that 

based on the current value function, there exists no solution in the search space which 

will provide a significantly better objective vector than P1. Hence, the optimization run 

is terminated. Figure 3.4(b) shows such a situation, for the two-objective maximization 

case, warranting a termination of the PI-EMOA. 

The PI-EMOA has shown its effectiveness on two- to five-objective test problems in 

providing the preferred point corresponding to a DM-emulated utility function. 

However, the authors have not handled the case in which the DM judges some of the η 

points to be incomparable and the role of the δV parameter is not studied in the value 

function construction. Moreover, the authors noted that there are some cases which may 

 
(a) (b) 

Figure 3.4 Local search along the value function gradient direction as a 

termination criterion: (a) success of the search and (b) failure of the search. 
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occur in which the building of a value function satisfying all DM’s preferences is not 

possible.    

♦ Köksalan and Karahan (2010) work : the interactive Territory Defining 

Evolutionary Algorithm (iTDEA) 

The iTDEA is a preference-based interactive version of the TDEA (Karahan and 

Köksalan 2010). The TDEA is a new MOEA that approximates the whole Pareto front 

by using the concept of territory. This MOEA is a steady-state algorithm that maintains 

two populations: (1) the archive population that consists of individuals that are non-

dominated relative to the population at hand and (2) the regular population that contains 

both dominated and non-dominated individuals. When updating the archive population, 

a territory around the individual closest to the offspring is defined and the offspring is 

rejected if it violates this territory. The territory defining property of TDEA eliminates 

the need for an explicit diversity operator, resulting in a fast operation while always 

keeping a diverse set of individuals in the archive population. The concept of territory 

is illustrated by figure 3.5(a). The territory region is mentioned with grey colour. The 

territory of a particular solution x corresponds to the region with a distance τd from f (x) 

in each objective among the region that neither dominates nor is dominated by f (x). 

Mathematically, the territory of )(xf  is defined as the following hypervolume:      

{
}  oneleat at for  0)()(  and  oneleat at for 

0)()(  and ,...,1 )()()())(( d
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  (3.18) 

The authors proposed a strategy to choose a convenient τd value. The authors modified 

the TDEA in order to handle DM’s preferences and focus the search on the preferred 

part of the front. The DM is supplied with a sample of diversified solutions and is 

invited to select the best one from his/her own perspective. In order to concentrate the 

search towards the preferred solution, the authors suggest shrinking the territories of the 

individuals falling near the preferred solution. This can be achieved by simply using a 

smaller τd for such offspring in the archive evaluation stage. This maintains more 

individuals in this region in the archive population, leading to a higher resolution and 

better approximation. Meanwhile, individuals located elsewhere are evaluated using a 

larger τd. This leads to less population density in the regions that are less desirable to 

the DM. An illustration of this mechanism is shown by figure 3.5(b). The iTDEA has 

demonstrated its effectiveness in providing a biased distribution of the supplied non-

dominated solution set where the distribution is denser near the DM’s preferred 

solution. However, the authors noted that filtering the population to provide the 

potential sample to the DM from which he/she picks his/her preferred solution may 
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mislead the algorithm in the first interactions. They suggest increasing the number of 

solutions to present to the DM; however this number should have a limit. 

♦ Battiti and Passerini (2010) work : the Brain–Computer Evolutionary Multi-

objective Optimization Algorithm (BC-EMOA) 

The authors suggested a preference-based MOEA characterized by its ability to learn an 

arbitrary utility function from a human DM who expresses his/her preferences between 

couples of selected solutions. The used method to build a flexible preference model, 

possibly highly non-linear, is based on the concept of Support Vector Machine (SVM) 

(Cohen et al. 1999). The objective of the learning process is the approximated 

construction of a utility function U to be optimized by the DM, who is also the source 

of learning signals. The function U to be optimized is not completely unknown, such as 

in a black-box context (Jones 2001), but is to be modelled based on the DM’s ranking 

of candidate solutions. Preference models are built from the DM input by using a SVM-

based ranking method. The functional form of the preference function is not fixed a 

priori by a well-defined ASF, such as in the weighted sum or Chebyshev approaches 

(Zhang and Li 2007), but is itself learnt during the process in a reactive fashion. The 

authors noted that SVM-based ranking has a number of desirable properties making it a 

suitable candidate for learning the DM’s preferences. Firstly, it accepts supervision in 

terms of pairwise preferences, a much more affordable request for a human DM than a 

quantitative quality score. Secondly, it is well-grounded on learning theory; its trading-

off data fitting and complexity of the learned hypothesis allows to effectively dealing 

with noisy observations, a situation which is quite likely to occur when receiving 

feedback from a human DM with only partial knowledge on the domain at hand. 

Thirdly, the ability to implicitly project data onto a higher dimensional feature space 

 

               (a)                                                             (b)         

Figure 3.5 The territory effect with: (a) TDEA and (b) iTDEA. 
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via the kernel trick (Shawe-Taylor and Cristianini 2004) provides the needed flexibility 

in order to best approximate the underlying preference model of the specific user. 

The basic functioning of BC-EMOA can be summarized as follows. Objective vectors 

are passed to the DM who ranks them and returns the ordered list as feedback. This 

feedback is converted into pairwise constraints for the SVM-based ranking procedure. 

After training, the predicted utility function U is employed to guide the search towards 

the ROI. From the multi-objective decision making perspective, the main contribution 

of this method is its ability to function without any a priori assumptions on the shape of 

the DM’s utility function. The methodology of reactive search optimization (Battiti et 

al. 2008), based on the paradigm of learning while optimizing, is adopted in two 

directions: (1) the progressive tuning of a preference model following a DM’s 

interactive evaluation and (2) the automated adaptation of the model form to one which 

is most appropriate, in a cross-validated manner, to the data collected during the 

interaction. The method is robust as it can potentially withstand incomplete, imprecise 

and even contradictory feedback by the DM. The BC-EMOA is a generic formulation 

which can be implemented on top of any MOEA. In this study, the authors adopted the 

NSGA-II. This latter runs in its original formulation, including the crowded-

comparison operator for guaranteeing a sufficiently diversified population, for gen1 

generations. After that, the preference model is trained according to the DM’s feedback 

and the ordering of the new population and the selection criterion of the binary 

tournament selection operator are performed based on the actual utility function value. 

Additionally, the crowding mechanism is switched-off at this point as the goal is 

directing the generation of new individuals towards the ROI. The BC-EMOA has 

demonstrated its effectiveness in guiding the search towards the DM’s most preferred 

solution on some selected DTLZ problems (cf. section 2.4.1) in addition to some 

instances of the 0/1 multi-objective knapsack problem (Martello and Toth 1990). 

However, the authors noted that the gen1 parameter value should allow a reasonable 

coverage of the Pareto front in order not to miss portions possibly containing the DM’s 

preferred solutions; it should thus be of the same order of the number of generations for 

a plain MOEA run on the same problem. This step seems to be computationally costly. 

Additionally, after gen1 generations, the crowding mechanism is turned-off and the 

population is guided towards a certain region of the search space based on the utility 

function which can reduce population diversity significantly and encourage the 

premature convergence to occur especially on multimodal MOPs. This problematic is 

omitted by the authors. 

♦ Fowler et al. (2010) work: the cone-dominance-based approach  
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The authors exploited the notion of preference convex polyhedral cones (Ramesh et al. 

1988) in order to integrate DM’s preferences in a MOEA. Periodically, the DM is 

provided with a sample of η solutions and is invited to specify the best alternative in 

addition to the worst one from his/her own perspective. These two selected solutions 

are then used to form a convex polyhedral cone. The cone defines a convex set of 

solutions that are inferior to the cone vertex in addition to solutions residing within the 

cone. Since the designed algorithm is interactive, all defined cones are retained during 

the overall optimization run whether or not the population members from which they 

are derived are still surviving. Figure 3.6 illustrates graphically the concept of convex 

polyhedral cone for the bi-objective maximization case for: (a) the case of two solutions 

(B is preferred to A) and (b) the case of three solutions (B is preferred to A and C is 

preferred to A). For the case of η=2 (cf. figure 3.6(a)), the convex cone corresponds to 

the line segment AB and has solution A as vertex. Accordingly, every solution that is 

dominated by the cone (shaded region in figure 3.6(a)) is less preferred to solution A, 

and hence to every solution belonging to the line segment AB. These solutions are 

considered to be inferior and are to be discouraged in the selection process of the 

MOEA. For the case of η=3 > 2 (cf. figure 3.6(b)), the preference cone corresponds to a 

convex polyhedral set. In this case, any population member can have one of the 

following four possible locations: (1) under the cone (like solution F), (2) in the cone 

(like solution D), (3) outside the cone (like solution E) or (4) being the cone’s vertex 

(like solution A). The DM’s preference information is applied by placing solution v 

before solution u if v is within the cone and u is the cone’s vertex. The three-point cone 

in figure 3.6(b) is composed from the union of two two-point cones defined by the two 

preference relations: (1) solution B is preferred to solution A (the corresponding shaded 

area is drawn with thin lines) and (2) solution C is preferred to solution A (the 

corresponding shaded area is drawn with bold lines). Solutions under the cone (shaded 

area) like F are considered to be dominated by the cone. We say that they are cone-

dominated. Solution D is considered to be superior to solution A since D belongs to the 

cone and A is the cone’s vertex. It is important to note that every solution from the grey 

region defined by points A, B and C is considered to be superior to the cone’s vertex A 

and subsequently preferred to every point belonging to the shaded region.  

The cone-dominance principle is used in parent selection and replacement mechanisms. 

The designed preference-based MOEA has been assessed on the multi-objective 0/1 

knapsack problem with 2, 3 and 4 objectives. The computational experiments have 

shown that it is possible to obtain solutions with a reasonable number of DM 

interactions that are very near or equal to the best found by a similar algorithm that is 

operating with perfect knowledge of the user’s preference function. However, the 
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authors noted that investigating the effect of DM’s preferences inconsistencies is still a 

direction for future research. Moreover, there is no control over the ROI extent. 

♦ Branke et al. (2010) work: the Necessary preference-enhanced Evolutionary 

Multi-objective Optimizer (NEMO) 

The NEMO algorithm is the result of the combination of NSGA-II and the Robust 

Ordinal Regression (ROR) (Greco et al. 2010) within an interactive procedure. In ROR, 

the DM is presented with a small set of alternatives and can express his/her preferences 

by specifying a holistic preference of one alternative over another or comparing 

intensities of preferences between pairs of alternatives. ROR then identifies the whole 

set of additive value functions compatible with the preference information given by the 

DM. This allows comparing any pair of alternatives, x and y, in a simple and intuitive 

way, as follows:  

1) x is necessarily at least as good as y, if this is true for all compatible value 

functions; 

2) x is possibly at least as good as y, if this is true for at least one compatible value 

function. 

The authors noted that, usually, among the many sets of parameters of a preference 

model representing the preference information, only one specific set is used to give a 

recommendation on a set of alternatives. For example, among many value functions 

representing pairwise comparisons of some alternatives made by the DM, only one 

value function is finally used to recommend the best choice or to sort or to rank the 

 

 (a)                                                           (b) 

Figure 3.6 Two preference cones: (a) defined with the two solutions A and B and 

(b) defined with the three solutions A, B and C (inspired by (Ramesh et al. 1988)). 
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alternatives. Since the choice of one among many sets of parameters compatible with 

the preference information is rather arbitrary, ROR has been recently proposed with the 

aim of taking into account all the sets of parameters compatible with the preference 

information given by the DM (Greco et al. 2008; Figueira et al. 2009). The ROR 

approach extends the simple ordinal regression by taking into account not a single 

instance of the preference model compatible with DM’s preference information, but the 

whole set of compatible instances of the preference model. As a result of considering 

the whole set of compatible instances of the preference model, one gets two kinds of 

results with respect to each pair of alternatives x and y: 

1) necessary preference relation (x �N
 y), if and only if x is at least as good as y 

according to all instances of the preference model compatible with the preference 

information; 

2) possible preference relation (x �P
 y), if and only if x is at least as good as y 

according to at least one instance of the preference model compatible with the 

preference information. 

Since, NEMO, is a modified version of NSGA-II, we give the modifications performed 

to this latter as follows: 

1) the Pareto dominance relation is replaced by the necessary preference relation in the 

non-dominated sorting;  

2) the crowding distance is substituted by a distance calculated by taking into account 

the multidimensional scaling given by the most representative value function 

among the whole set of compatible value functions. The most representative value 

function corresponds to the value function which maximizes the difference of 

scores between alternatives related by preference in the necessary preference 

relation-based ranking (Figueira et al. 2008). 

The NEMO algorithm has demonstrated its ability to bias the search towards the ROI 

interactively. However, the algorithm was tested only on two bi-objective test 

problems. Consequently, a more thorough empirical analysis on a variety of test 

problems with more than two objective functions is necessary. Moreover, there is no 

control over the ROI spread.  

3.2.3 Objective ranking-based approaches 

♦ Jin and Sendhoff (2002) work 

The authors turned fuzzy preferences into weight intervals which were incorporated 

into a MOEA using Random Weighted Aggregation (RWA) and Dynamic Weighted 

Aggregation (DWA) techniques (Jin et al. 2001). This was achieved by setting the 
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upper and lower bounds to the weight perturbations. In fact, the DM is invited to make 

pairwise comparisons on the set of objectives by using linguistic statements such as 

“objective f2 is much more important than objective f1”, etc. The authors developed a 

method that converts these fuzzy preferences into interval-based weights where each 

weight indicates the importance of the relative objective. This approach converts the 

MOP into a SOP by weighted aggregation, but varies the weights dynamically during 

the run within the relevant boundaries. 

For the RWA, assuming that each individual i has it own weight combination 

))(),(( 21 twtw ii in generation t for the bi-objective case, then the MOEA is able to find 

different Pareto optimal solutions. The weight combinations need to be distributed 

uniformly and randomly among the individuals in each generation as follows:  

PPtwi /)( random)(1 =                                     (3.19) 

)(1)( 12 twtw ii −=                                               (3.20) 

where P is the population size and random is function that generates a uniformly 

distributed random number between 0 and P.  

For the DWA, all the individuals have the same weight combination which is changed 

gradually in each generation. The change of the weights is realized as follows assuming 

a bi-objective case: 

)/  2sin()(1 Fttw π=                                         (3.21) 

)(1)( 12 twtw −=                                               (3.22) 

The weights will change from 0 to 1 periodically from generation to another. The 

change frequency can be adjusted by the F parameter.  

In both RWA- and DWA-based EMO approaches, the weight varies in the interval [0,1] 

in order to approximate the whole Pareto front. However, in order to take the DM’s 

preferences into account, the weight of each objective mf  is varied in the interval 

],[ maxmin
mm ww  where the boundaries of the latter interval are obtained from the 

conversion of the DM’s fuzzy preferences. In this way, the search process is guided 

towards the ROI. The designed weighted sum-based algorithms support 

incomparability between solutions and provide the user with a control over the focus 

extent. While DWA facilitates retention of compromise solutions in the non-convex 

parts of the non-dominated front, the lack of explicit diversity preservation and inferior 

performance in high-dimensional problems constitute significant drawbacks of the 
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approach (Jin et al. 2001). Arriving at the upper and lower bounds of weights for higher 

dimensional problems is also difficult. 

♦ Cvetkovic and Parmee (2002) work: the weighted-dominance relation-based 

approach 

The authors proposed the integration of DM’s fuzzy preferences into MOEAs by 

converting linguistic variables into weights. The DM is invited to make pairwise 

comparisons between the MOP’s objectives by using some linguistic labels such as 

“more important”, “much less important”, “do not care”, etc. As the number of 

objectives increases, the number of pairwise comparisons becomes a tedious task for 

the DM. The use of transitive relations was therefore proposed to reduce the number of 

pairwise comparisons required from the DM (Cvetkovic and Parmee 2002). The reader 

is invited to confer to the original paper to explore the details of the mechanism 

converting the linguistic terms to weights. Based on the obtained weight vector 

expressing the relative importance for each objective, a new weight-based dominance 

relation is designed. This relation is called weighted-dominance relation and is 

expressed by: 

yx   wp  ⇔  ∑
≤=

≥
M

yfxfMm
m

mm

w
)()( ,,...,1

τ                      (3.23) 

with a strict inequality for at least one objective. yx   wp  means that solution x is 

preferred to solution y based on weighted-dominance and τ  is a user-defined parameter 

expressing the minimum required level of dominance. The main drawback of this 

dominance relation is that it only considers the number of improvements of one 

solution with respect to another one and it ignores the amount of each improvement. 

Additionally, the control of the guidance is difficult and there is no clear interest to use 

such approach in an interactive way. In a more recent study, Rachmawati (2008) have 

discussed the effects produced by the obtained values for the weighting coefficients. 

The weighted-dominance relation preserves Pareto-dominance relation and also allows 

incomparability when τ  is set such that .min ,...,1 mMm w=≥τ  However, the weighted-

dominance has a serious drawback illustrated in the following for a bi-objective MOP. 

Without loss of generality, we assume that .21 ww >  For bi-objective problems, three 

scenarios with respect to different values of τ  exist. The dominated and non-dominated 

regions of the objective space around a candidate solution in the three scenarios are as 

follows: 

1) :1w≥τ  In this scenario, the weighted-dominance is equivalent to the Pareto 

dominance. 
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2) :2w≤τ  In this scenario, the weighted-dominance includes all solutions non-

dominated in terms of the Pareto-dominance relation. In an MOEA implementing 

weighted Pareto dominance with this setting, there will be no non-dominated 

solution according to the weighted-dominance unless a candidate solution that 

strongly Pareto dominates all other solutions in the population is present. If this 

latter does not exist in the population, the MOEA degenerates into a random search. 

3) :12 ww ≤≤τ  In this scenario, the weighted-dominance includes solutions non-

dominated in terms of the Pareto dominance relation with inferior f2 values. In an 

MOEA implementing the weighted-dominance with this setting, the solution in the 

best non-dominated front that also corresponds to the smallest f2 value dominates all 

other solutions. Unless the archiving policy allows inclusion of weakly dominated 

solutions, only the extreme solution is retained in each generation. With an archival 

policy that allows dominated solutions with respect to the weighted-dominance, the 

archive includes solutions other than the extreme solution that corresponds to the 

best secondary niching criterion. Preference is only incorporated in the search as 

much as the inclusion of the extreme solution corresponding to the smallest 

attainment f1 into the archive is guaranteed. However, even in general purpose 

MOEAs using the Pareto dominance relation, the inclusion of extreme solutions in 

the archive is always guaranteed. 

♦ Rachmawati and Srinivasan (2010) work 

In this approach, the DM is invited to express his/her preferences in the form of relative 

importance of objectives without using any weighting coefficient. In fact, the DM is 

invited to specify a total or partial order on the set of objectives. For each pair of 

objectives (fm, fn), the DM can express one of the following statements: (1) objective fm 

is preferred to objective fn (denoted fm Pr fn), (2) fm and fn are equally important 

(denoted fm I fn) or (3) fm and fn are incomparable (denoted fm Q fn). An elicitation 

algorithm is provided to assist the DM in constructing a coherent overall preference. 

Besides elicitation of a priori preference, an interactive facility is also furnished to 

enable modification of overall preference while the search progresses. We note that the 

default preference relation between pairs of objectives is the incomparability relation. If 

incomparability is the only preference relation considered by the DM, the whole Pareto 

front is returned as a general-purpose MOEA.  

A way of consistently characterizing the preferred solutions for a given preference 

profile irrespective of the geometry of the Pareto front is desirable. This consistency is 

instrumental to an effective articulation of preference by the DM. Even if the 

geometrical attributes of the actual Pareto front are unknown a priori, a consistent 
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characterization equips the DM with some information of the solutions he/she may 

expect for any given preference profile. To achieve this consistency, the functional 

mapping from preferences expressed in the preference structure PF (i.e., the group of 

binary relations that can be defined on the set of objective pairs) to the Pareto front is 

defined in terms of a prototype non-dominated front. The selected prototype front is 

linear, continuous and defined in the interval [0,1]. Let the prototype front be described 

by ],
~

,
~

[
~

21 ffF =  then .1
~~

21 =+ ff  An illustration of the prototype front and a mapping 

from the actual front is given in figure 3.7. The choice of the linear front is motivated 

partly by its simplicity and its scalability with the number of objectives. Simplicity 

helps the DM in formulating his/her preference in terms of binary relations in PF. The 

scaling of the preference model and its functional mapping to M-objective problems are 

described next. 

To accommodate the three binary preference relations defined in PF, the prototype front 

is divided into three non-overlapping segments of identical length as depicted by figure 

3.7. The linear front in this figure is the prototype front while the curve is a normalized 

concave Pareto front associated with an actual MOP. The first portion plotted as 

squares is desired when fm Pr fn is asserted. The second and third portions, marked by 

asterisks and triangles respectively, are the desired subsets of the front when fm I fn and 

fn Pr fm are asserted respectively. We recall that the preference assertion fm Q fn 

corresponds to the entire span of the prototype Pareto front. Mathematically, the desired 

subsets of the Pareto front could be characterized by the following inequalities: 

 
Figure 3.7 Desired solutions corresponding to f1 P f2 (squares), f1 I f2 

(asterisks) and f2 P f1 (triangles) (from (Rachmawati and Srinivasan 2010)). 
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~~

2        2121 fffPf ≤⇔                                            (3.24) 

12121
~

4
~~

        ffffIf ≤≤⇔                                           (3.25) 

where 1
~
f  and 2

~
f  correspond to the prototype objective space and Pareto front. The 

choice of the coefficients 2 and 4 in the above inequalities follows from equal division 

of the prototype front into three non-overlapping subsets. Other values may of course 

be used if other ways of dividing the prototype front is deemed necessary or desirable. 

In this approach, equal and non-overlapping division is adopted as it is deemed most 

intuitive for the general case. 

The authors proposed three versions of the NSGA-II where DM’s preferences are 

incorporated as follows: 

1) Inclusion of preference information as constraints: To incorporate preference, the 

inequalities (3.18) and (3.19) are applied to the current population and/or archive 

where normalization is done with respect to the extrema of the best non-dominated 

front. In this particular strategy, the ROI as defined by inequalities derived from the 

partial ranking of solutions is considered as the feasible region. The following rule 

is applied when comparing a pair of solutions (x, y) in the population and/or the 

archive: 

If ((V(x) > 0) and (V(y) >0)) Then  

 If (V(x) < V(y)) Then  

  yx prefp  

 Else If (V(y) < V(x)) Then 

  xy prefp  

 End If 

Else 

 If  (x p  y) Then  

  yx prefp  

 Else If (y p  x) Then 

  xy prefp  

 End If 

End If 

The function V(x) in the above rule denotes a measure of constraint violation of 

solution x, which is taken to be the maximum magnitude of the violation of all 

inequalities describing the desired region. The expression yx prefp  indicates that 

solution x is preferred to solution y.  
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2) Inclusion of preference information as rank penalty: Pareto ranking introduces a 

complete order to the partially ordered objective space by means of existing 

dominance relation between solution pairs in the set. Here, incompatibility with the 

preference-based inequalities incurs a penalty in the Pareto rank of a solution. As 

Pareto rank is usually defined as integers, the penalty imposed is equal to one. The 

strategy works only with MOEAs that implement Pareto ranking. Pareto dominance 

is preserved in NSGA-II by performing the ranking from the best non-dominated 

layer such that non-dominated solutions satisfying preference-based inequalities are 

assigned rank 1 (subset 1), non-dominated solutions not satisfying preference 

inequalities are assigned rank 2 (subset 2) along with solutions which satisfy 

preference inequalities and are non-dominated with solutions in subset 2. This 

process is repeated until the population is filled. In this manner, the search is guided 

based on DM’s preferences.  

3) Inclusion of preference in the crowding distance computation: Satisfaction of the 

preference inequalities leads to a multiple of the actual crowding distance of a 

solution to be considered as the crowding distance, i.e., if a solution satisfies the 

inequalities then CrowdingDistance = Factor × ActualCrowdingDistance with 

Factor is greater than one, whereas dissatisfaction with inequalities corresponds to 

factor equals one. The multiplication factor is the biasing strength of this approach. 

This strategy is applicable to any MOEA that implements crowding in the fitness 

computation. 

The three NSGA-II versions were assessed on two- to six-objective test functions. The 

constraint-based approach and the rank penalty-based approach have demonstrated their 

abilities to provide a ROI based on DM’s preferences. The crowding-based approach 

has shown its effectiveness in biasing the non-dominated solution distribution towards 

the preferred Pareto front subset. However, there is no control over the ROI spread. 

3.2.4 Reference point-based approaches 

♦ Fonseca and Fleming (1993) work 

This work is probably the first attempt to incorporate DM’s preference information in 

EMO. The authors model DM’s preferences as a goal to be achieved (i.e., a reference 

point). The main idea, in this study, is to give higher priority to objectives that do not 

satisfy the goal. Assuming a goal ),...,( 1 Mggg =  and two objective vectors 

),...,( 1 Muuu =  and ),...,( 1 Mvvv =  to be compared, there exist three cases:  

Case 1: u  meets kM −  goals (i.e., kM −  of the specified goal components). This can 

be expressed as follows:   
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 ( ) ( )jjii guguMkjkiMk ≤∧>+=∀=∀−=∃ ,...,1;,...,1/1,...,1            (3.26) 

The expression (3.26) assumes a convenient permutation of the objectives. 

Case 2: u  does not meet any goal. This can be expressed as follows:  

Mi ,...,1=∀  ( )ii gu >                                                 (3.27) 

Case 3:  u  meet all the goals. This can be expressed as follows:  

 Mi ,...,1=∀  ( )ii gu ≤                                                (3.28) 

In case 1 (cf. (3.26)), u  meets the goals Mk ...1+ and therefore it is considered to be 

preferred to v  if it Pareto dominates v  with respect to its k  components. For the case 

where all of the k  components of u  are equal to those of ,v u  is preferred to v  if it 

Pareto dominates v  with respect to the remaining kM −  components or if the 

remaining kM −  components of v  does not meet their goals. Analytically, u  is 

preferred to v  (denoted vu pp ) if and only if: 

        
( )

( ) ( ) ( )[ ]{ }             

    

),...,1(),...,1(),...,1(),...,1(),...,1(),...,1(

),...,1(),...,1(

MkMkMkMkkk

kk

gvvuvu

vu

++++ ≤¬∨∧=

∨

p

p

     (3.29) 

In case 2 (cf. (3.27)), u  does not satisfy any goal, then u  is preferred to v  if and only if 

u  Pareto dominates ,v  i.e.: 

vu   p                                                                (3.30) 

In case 3 (cf. (3.28)), u  meet all the goals which means that it is a satisfactory, though 

not necessarily optimal solution. Then, u  is preferred to v  if and only if u  Pareto 

dominates v  or v  is not a satisfactory solution, i.e.: 

( ) ( )gvvu ≤¬∨    p                                            (3.31) 

This approach can be used a priori or interactively. The authors also proposed an expert 

system ensuring the task of supplying goals since setting an appropriate goal is not a 

trivial task. However, if the goal has been set so ambitious that there is no solution 

which can reach the goal in even a single objective, the goal has no effect on the search, 

and simply the whole Pareto front is returned. Consequently, we can say that the 

obtained results heavily depend on the position of the goal in the objective space. 

Moreover, the spread of the obtained ROI cannot be controlled and the proposed 

approach does not consider this issue.    

♦ Tan et al. (1999; 2003) work 
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The authors proposed a variant of the Pareto dominance incorporating goal and priority 

information. In the first stage, the ranking scheme prefers objective vectors fulfilling all 

criteria and ranks those vectors according to MOGA Pareto dominance-based sorting 

(Fonseca and Fleming 1993). Among the remaining solutions, the objective vector u  

dominates the objective vector v  if and only if u  dominates v  with respect to the 

criteria in which u  does not fulfil the goal ( )Mggg ,...,1=  (as in (Fonseca and Fleming 

1993)), or if gvgu −− p  (where gu −  denotes the vector composed with the 

absolute values of the differences between the objectives’ values of the solution v  and 

the goal g). The latter expression corresponds to a mirroring of the objective vector 

along the axis of the fulfilled criteria. Analytically, u  is preferred to v  (denoted 

vu g   π ) if and only if:  

1) u and v both satisfy all the goals and vu   p ; or   

2) u and v both does not satisfy all the goals and vu
)

p

)

   or gu − p ,gv − where  u
)

and 

v
)  corresponds to the vectors composed with the components that does not fulfil the 

goals of u and v respectively.   

The main advantages of this approach is the possibility to consider multiple goals by 

the use of AND and OR connectives. The main drawback of this approach is that this 

kind of dominance is intransitive, i.e., it may lead to the case where x is preferred to y 

and y is preferred to z, but x and z are considered as equivalent.   

♦ Deb et al. (2006a) work: the Reference point-based NSGA-II (R-NSGA-II)  

R-NSGA-II is a modified version of NSGA-II that focuses the search on the ROIs 

according to a user-provided reference point set. The reference points are used to guide 

the search towards the preferred parts of the Pareto front. In fact, the crowding distance 

of NSGA-II is modified as follows. For each reference point, the normalized Euclidean 

distance of each solution of the front is calculated and the solutions are sorted in 

ascending order of distance. The closest solution from the reference point is assigned a 

rank of one; the second nearest solution is assigned a rank of two and so on. After such 

computations are performed for all reference points, the crowding distance of a certain 

solution is equal to the minimum of its assigned ranks. In this way, solutions closest to 

all reference points are assigned the smallest crowding distance of one. The solutions 

having next-to-smallest Euclidean distance to all reference points are assigned the next-

to-smallest crowding distance of two, and so on. Thereafter, solutions with smaller 

crowding distances are preferred in the tournament selection and in forming the new 

population from the combined population of parents and children. In order to control 

the extent of the obtained solutions, all solutions having a sum of normalized difference 
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in objective values of ε or less between them are grouped. A randomly picked solution 

from each group is retained and the rest of all group members are assigned a large 

crowding distance in order to discourage them to remain in the race. The above 

procedure provides an equal emphasis of solutions closest to each reference point, 

thereby allowing multiple ROIs to be found simultaneously in a single simulation run. 

R-NSGA-II has demonstrated good results on two- to five-objective test problems. 

However, there were difficulties when using a single reference point since diversity is 

not well-maintained. Moreover, the ε clearing parameter setting is not trivial.   

♦ Deb and Kumar (2007a) work: the reference direction-based approach  

The authors combined the reference direction method with NSGA-II. The reference 

direction method allows the DM to set a starting point and a reference point such that 

the difference of the two defines the reference direction. Firstly, a set of points 

) ),(( ℵ∈ttr  are marked on the given reference direction. Then, for each point r(t), we 

compute the ASF value )),(,( wtrzs  for a chosen weight vector w  and for each 

population member z. Thereafter, the individual z* having the smallest value of s is 

declared to lie on the first non-dominated front by assigning it the rank of one. This 

procedure is continued for each point r and the corresponding population member for 

the minimum s is included in the first non-dominated front. Thereafter, these chosen 

population members are temporarily discarded from the population and the above 

procedure is repeated. The next set of minimum s solutions is then declared to form the 

second non-dominated front. This procedure is repeated till all population members are 

classified into non-dominated frontiers. Thereafter, the crowding distance is computed 

for each of the classified population members as usual. This hybrid method has the 

ability to find Pareto optimal solutions corresponding to several reference points along 

the reference direction. Several preferences could be modelled by various reference 

directions and the hybrid algorithm found for each reference direction its corresponding 

ROI. The authors noted that the population size in such a NSGA-II version should be at 

least two or three times the number of points considered along the reference direction. 

The multiplicity is needed to ensure that the search is adequately guided towards the 

corresponding efficient point. The reference direction approach has demonstrated good 

results in tackling two- to ten-objective MOPs. However, the population diversity 

degradation that can be yielded when using a single reference direction remains a 

significant matter since this approach does not include a clearing mechanism such as 

the R-NSGA-II one.   

♦ Deb and Kumar (2007b) work: the light beam search-based approach  
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The authors combined the LBS method (cf. section 2.3.1) with NSGA-II. In the original 

LBS method, the DM has to specify three preference parameters for each objective 

which is quite demanding on the part of the DM. In order to reduce the DM’s load, the 

authors use only the veto preference parameter. Once, the middle point (cf. figure 2.4) 

is obtained, the feasible direction of the largest improvement of each objective is 

determined. The best feasible point in each direction satisfying the outranking criterion 

is determined. These points are then projected on the Pareto optimal front by solving an 

augmented form of Wierzbicki’s ASF. This results in the best feasible point in each 

direction satisfying the outranking criterion and Pareto optimality. In this hybrid 

preference-based MOEA, the DM is asked to supply an aspiration point (i.e., a 

reference point) and a reservation point. The hybrid algorithm is as follows: 

1) Non-dominated sorting is performed for the whole population, 

2) For each front, each solution from the front is assigned a crowding rank:  

a) Crowding distance of each solution x (denoted cd (x)) is computed as: 

( ){ } ( )∑
==

−+−=
M

m

a
mm

a
mmm

Mm
zxfzxfxcd

1,...,1
)()(max)( ρλ               (3.32) 

where ],...,[ 1
a
M

aa zzz =  is the aspiration point, ],...,[ 1 Mλλ=Λ  is the 

weighting coefficient vector 0( >mλ  ),...1 Mm =∀  and ρ  is a sufficient 

small positive number (called augmentation coefficient which is fixed to 
610−  here). The weighting vector can be defined by the aspiration point 

az  and the reservation one rz  (where r
m

a
m zz <  ),...,1 Mm =∀  as 

follows: 

a
m

r
m

m
zz −

= 1λ                                     (3.33) 

b) Solution with least cd value is the middle point zc and it is assigned the 

highest crowding rank. 

c) For all solutions x outranking zc, the maximum difference in objective 

value with zc is determined: 

( )c
mm

Mm
zxfx −=

=
)(max)(

,...,1
ϕ                  (3.34) 

Based upon the )(xϕ  value, a crowding rank is assigned to each 

solution. Solutions with smaller )(xϕ  are assigned higher ranks and vice 

versa.  
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d) The remaining solutions, that do not outrank zc, are assigned smaller 

crowding ranks so they are discouraged during the selection process.  

In the case of multiple light beams, a crowding rank corresponding to each light 

beam is first determined for each solution. Then, the minimum rank for all light 

beams is assigned as the final crowding rank of the considered solution. 

3) In order to obtain a uniform distribution in the lighted regions, no two objective 

vectors apart by less than an ε distance are preferred in the same manner as the 

clearing procedure of R-NSGA-II.  

The modified outranking relation used in this work is:     

{ }





=≥−=

=

Mmvetozxfmcardzxft

zxftzSxf
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mm
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,...,1,)(:)),((

0)),(( if     )(
   (3.35) 

The objective vector f (x) outranks zc (denoted f (x) S zc) means that f (x) is as 

good as zc. As both solutions belong to the same non-dominated front, if f (x) is 

better than zc in some objectives, the amount of deterioration of f (x) over zc 

must not exceed the corresponding provided veto thresholds (vetom, m=1,…,M). 

This hybrid algorithm has demonstrated its ability to find the part of the Pareto optimal 

region illuminated by the light beam emanating from the reservation point to the 

aspiration point with a span controlled by the veto thresholds. The simulation results 

have shown good results when applying this approach on a suite of benchmarks. 

However, providing the veto thresholds is not an easy task for the human DM. Further 

efforts are needed to study how to help the DM to elicit such parameters.  

♦ Allmendinger et al. (2008) work: the Reference point-based Particle Swam 

Optimization using a Steady State approach (RPSO-SS) 

The authors hybridized the Particle Swarm Optimization (PSO) metaheuristic with the 

reference point method. The authors used a steady state approach where an offspring is 

generated one at a time. A replacement strategy is often employed to compare the 

offspring with its parents. The offspring only replaces a weaker parent. Note that this 

procedure results in a population size that is constant during the entire run of the 

algorithm. There is no notion of generation. The velocity is set randomly to be within 

the variable ranges. The DM is invited to supply one or more reference point(s). The 

population is divided into equal sized clusters each focusing on one reference point. 

The main loop is described as follows. Do the following for each particle x in each 

cluster until a stopping criterion is met:   
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1) Choose a particle randomly from the current cluster as the best global (or local) 

best position ],...,[ 1
g
M

gg ppp = , 

2) Produce an offspring based on x, pg and pb where ],...,[ 1
b
M

bb ppp =  is the best 

position found by the particle x so far during the optimization process,  

3) If the generated offspring Pareto dominates x/pg then it replaces it, else if the 

offspring is non-dominated with respect to both x and pg then the two particles 

closest to the reference point are kept and the farthest particle is deleted. 

RPSO-SS uses also an ε-clearing mechanism like R-NSGA-II in order to preserve 

population diversity and to allow the DM to control the ROI extent. The experimental 

study has mentioned good results in solving two- and three-objective test problems. 

However, there were difficulties when solving highly multimodal problems such ZDT4.  

In the same study, the authors proposed an extended selection strategy. In fact, the 

original selection strategy will not keep an offspring in the population that is farther 

than x and pg from the reference point. The new replacement strategy extends the 

replacement strategy of the basic RPSO-SS and provides the offspring with the 

opportunity to replace particles other than x or pg. Thus, a randomly selected particle y 

is compared to the offspring and it is replaced if it is dominated by the offspring or it is 

non-dominated regarding the offspring but it is farther than the offspring from the 

reference point. Additionally, instead of using a single randomly selected particle as a 

pg, the new sampling-based selection mechanism selects Npg particles randomly. 

Among these particles, the one with the shortest Euclidean distance to the reference 

point is chosen as pg. The obtained results have demonstrated the larger the Npg value 

is, the better the convergence is. 

♦ Wickramasinghe and Li (2008) work    

The authors hybridized the Non-dominated Sorting PSO (NSPSO) (Li 2003) and the 

MaxiMin PSO (MMPSO) (Li 2004) with the reference point method. The NSPSO has 

the same sorting and diversity preserving mechanisms of NSGA-II. In fact, from a 

population of size N, an offspring population of size N is created. After that, a non-

dominated sorting is performed on the merged population of size 2N in order to classify 

it into several non-dominated fronts. Once non-domination ranks are assigned, the 

crowding distance assignment is performed frontwise. The leaders pg are then selected 

from the set of top 10% least crowded solutions from the first non-dominated front. In 

MMPSO, the fitness of particle x is given by the maximum of the minimum values 

between x and all other particles y from the population P and is given by: 
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{ }
{ }{ })()(minmax)(
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                  (3.36) 

The particles having a fitness values less than zero are considered as non-dominated 

and constitute the first non-dominated front. The total number of individuals that move 

to the next generation consists of all individuals in the first non-dominated set. If the 

non-dominated set size is less than desired, then dominated individuals are chosen 

randomly to fill the vacant positions. A particle chooses a leader (global best), 

randomly from the top 10% of least crowded particles in the non-dominated front. In 

both reference point-based PSO algorithms, the leader selection strategy is modified. In 

NSPSO, a particle chooses its leader from the potential set corresponding to the top 

10% closest particles to the reference point picked from the first non-dominated front. 

In MMPSO, a particle will choose random values from all dimensions of the set of 

potential leaders and produce a leader. An ε-clearing mechanism is included in both 

NSPSO and MMPSO in the same way as R-NSGA-II in order to control the ROI 

spread. The two PSO algorithms have demonstrated their ability to provide several 

ROIs near the user-provided reference points with a controlled spread defined by the 

user-specified ε parameter. However, NSPSO and MMPSO effectiveness depends on 

the population size since the potential set size depends on the population size.         

♦ Molina et al. (2009) work : the g-dominance   

The authors suggested a new kind of dominance, called g-dominance, where solutions 

satisfying all aspiration levels and solutions fulfilling none of the aspiration levels are 

preferred over solutions satisfying some aspiration levels. The g-dominance has three 

merits: (1) it can be incorporated in several metaheuristics, (2) although the preferences 

are modelled as a reference point, the search process works without using any ASF and 

(3) it can be used in an interactive way. Formally, assuming ( )Mggg ,...,1=  to be a 

reference point, each solution x is assigned a flag as follows:  


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g                     (3.37)                   

Given two distinct solutions x and y, x is said to g-dominate y if and only if: 

   )()( yFlagxFlag gg >  or )()( yFlagxFlag gg =  and )(  )( yfxf p             (3.38)   

The main disadvantage of this approach is that it does not preserve the order induced by 

the Pareto dominance relation. Hence, a dominated solution which satisfies none of the 

goals may be preferred to a solution that dominates it and which fulfills some of the 
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goals. Figure 3.8 illustrates this case. Solution A Pareto dominates B, however solution 

B g-dominates solution A. This fact discourages convergence towards the Pareto 

optimal front.   

♦ Thiele et al. (2009) work : the Preference Based-Evolutionary Algorithm 

(PBEA)   

The authors combined IBEA with the reference point method. The obtained method is 

called the Preference-based IBEA and denoted PBEA. In IBEA the fitness function of a 

particular solution x is given by:  

( )
{ }
∑

∈

−−=
xPy

xyIexfitness
\

/),()( κ                                     (3.39) 

where κ  is a scaling factor (Zitzler and Künzli 2004). The fitness of x expresses the 

loss in quality if solution x is removed from the population, i.e., the marginal 

contribution of x in terms of approximation quality. The quality indicator used in IBEA 

is the additive binary ε-indicator +εI  which is a Pareto compliant indicator. The 

following expression gives another formulation of +εI :  

{ }MmyfxfyxI mm ,...,1  )()(min),( =∀≤−=+ ε
εε                  (3.40) 

In order to take DM’s preferences into account, the authors modified (3.40) as follows: 

( )PBEAp xfgsyxIyxI δε ),(,),(),( +=                                    (3.41) 

 
Figure 3.8 The g-dominance: non-preservation of the Pareto 

dominance order.  
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where               ( ) { }))(,(min))(,(),(, yfgsxfgsxfgs
Py

PBEAPBEA ∈
−+= δδ       (3.42) 

PBEAδ  is called the specificity parameter and allows the DM to control the spread of the 

obtained ROI and ))(,( xfgs  is the ASF of solution x. The main advantages of this 

approach are that the used ),( yxI p  binary quality indicator is Pareto dominance 

preserving and the approach can be used interactively with more than one reference 

point. However, the authors noted that adjusting the specificity parameter is not an easy 

task and such topic is for further investigation (Thiele et al. 2009). 

3.2.5 Trade-off-based approaches 

♦ Branke et al. (2001) work: the Guided MOEA (G-MOEA)   

The authors proposed a variant of the Pareto dominance relation that focuses the search 

towards the preferred part of the front based on trade-off information provided by the 

DM. In fact, the DM is invited to provide, for each pair of objectives, maximally 

acceptable trade-offs. For example, for the bi-objective case, the DM could specify that 

an improvement by one unit in objective f2 is worth a degradation of objective f1 by at 

most c12 unit. Similarly, a gain in objective f1 by one unit is worth a degradation of 

objective f2 by at most c21 unit. This trade-off information is then used to modify the 

dominance relation as follows:  

yx   tp  ⇔  ( )∧+≤+ )()()()( 21212121 yfcyfxfcxf          

                           ( ))()()()( 21212121 yfyfcxfxfc +≤+               (3.43)            

where yx   tp  means that x is preferred to y based on the designed trade-off-based 

 
(a)                                                                   (b) 

Figure 3.9 Dominated region for: (a) Pareto dominance                      

and (b) trade-off-based dominance. 
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dominance relation. Figure 3.9 shows the effect produced by the new dominance 

relation in the objective space. In fact, when compared to the original dominance 

relation, a particular solution now dominates a larger region. With this dominance 

scheme, only a portion of the Pareto optimal front remains non-dominated. This portion 

corresponds to the ROI. However, since this approach implicitly assumes linear utility 

functions, it may not be possible for G-MOEA to focus on all parts of concave Pareto 

optimal front (Branke et al. 2001). Moreover, this approach is restricted to the bi-

objective case. 

3.2.6 Outranking-based approaches 

♦ Fernandez et al. (2010) work: the Non-Outranking Sorting Genetic Algorithm 

(NOSGA) 

The authors exploited the outranking concept (Roy 1996) in order to integrate DM’s 

preferences in NSGA-II. For each objective function fm, a relational system of 

preferences (Prm, Im) is designed where Pr means preference and I means indifference. 

For each objective vector component pair (fm(x), fm(y)), one and only one of the three 

following statements holds: 

� fm(x) Pr fm(y), 

� fm(y) Pr fm(x), or 

� fm(x) I  fm(y). 

This formulation allows indifference thresholds in order to model some kinds of 

imprecise one-dimensional preferences. It should be noticed that the considered 

relational system of preferences is more general than the usual formulations which 

consider only true criteria (i.e., )()( yfxf mm ≠  implies non-indifference). Without loss 

of generality, the following is supposed:  

 )(xfm Pr )()()( yfxfyf mmm >⇒                             (3.44) 

For each pair (f (x), f (y)), the DM, assisted by the decision analyst, creates a fuzzy 

predicate modelling the truth degree of the predicate “f (x) is at least as good as f (y)”. 

The authors adopted the outranking approach based on ELECTRE methods (Roy 1990, 

Mousseau and Dias 2004). Assuming u = f (x) and v = f (y), the proposition “u outranks 

v” which means “u seems at least as good as v” holds if and only if the coalition of 

criteria in agreement with this proposition is strong enough and there is no important 

coalition discordant with it. It can be expressed by the following logical equivalence: 

),(  ),(        vuDvuCvSu ¬∧⇔                                    (3.45) 

where C(u, v) is the predicate about the strength of the concordance coalition and      
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D(u, v) is the predicate about the strength of the discordance coalition.  

The NOSGA works with non-strictly outranked solutions instead of non-dominated 

ones. The selection process is similar to NSGA-II one but it extracts non-strictly 

outranked individuals in order to classify the population into different non-strictly 

outranked fronts. Since the MOEA searches for the ROI and not an approximation of 

the whole Pareto front, the crowding distance criterion is replaced by a weakness 

measure W (Fernandez et al. 2010). The NOSGA performance assessment was done on 

several instances of four- to nine-objective knapsack problem. The NOSGA has 

demonstrated its superiority over NSGA-II in providing non-outranked solutions in a 

privileged zone of the Pareto front. Moreover, the NOSGA is shown to be less sensitive 

to the increase of the number of objectives than NSGA-II. The main crux of this study 

is that the NOSGA was not confronted to any preference-based MOEA. Such 

confrontation is required for more validation.     

♦ Fernandez et al. (2011) work: the Non-Outranking Sorting Genetic Algorithm 

II (NOSGA-II) 

In a more recent study (Fernandez et al. 2011), the same authors proposed an enhanced 

version of NOSGA, called NOSGA-II, which increases the selective pressure towards 

the preferred solutions. This is achieved by considering other binary preference 

relations (Roy 1996) in the preferential system in addition to the strict preference 

relation and the indifference one. Assuming u = f (x) and v = f (y), these relations are 

the following: 

1) Weak preference: It corresponds to the existence of clear and positive reasons in 

favor of u over v, but that are not sufficient to justify strict preference. 

2) Incomparability: None of the situations of indifference, strict preference nor weak 

preference predominates. That is, the absence of clear and positive reasons that 

justify any of these relations. 

3) K-preference: It corresponds to the existence of clear and positive reasons that 

justify strict preference in favor of one (identified) of the two solutions or 

incomparability between the two solutions, but with no significant division 

established between the situations of strict preference and incomparability.  

The authors reported that the NOSGA-II outperforms the NSGA-II and the NOSGA on 

a real world instance of the multi-objective knapsack problem.   

3.2.7 Desirability function-based approaches 

♦ Wagner and Trautmann (2010) work: the Desirability Function-based SMS-

EMOA (DF-SMS-EMOA) 
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The authors proposed a preference-based version of the SMS-EMOA. We recall that 

SMS-EMOA belongs to the third generation of MOEAs since it combines non-

dominated sorting with hypervolume-based selection. In fact, in each generation, the 

last (worst) considered non-dominated front is pruned by removing the individual 

having the least contribution in terms of hypervolume. For each objective function, the 

DM is invited to express his/her preferences by supplying two thresholds which 

represent: (1) an Absolutely Satisfying objective value (AS) and (2) a Marginally 

Infeasible objective value (MI). These thresholds serve as parameters to the DF of the 

corresponding objective function. The concept of desirability was introduced by 

Harrington (1965) in the context of multi-objective industrial quality control. DFs map 

the values of the objectives to disirablities, i.e., values on a unitless scale in the domain 

[0,1]. The mapping is based on preference information regarding exemplary objective 

values (i.e., the two thresholds AS and MI). We note that in addition to supplying AS 

and MI, the DM specifies a desirability value for each threshold in the domain [0,1]. 

The preferences are specified under the assumption that the smaller the difference 

between the actual desirability and the maximum value of one is, the better the quality 

of the solution in the corresponding objective is. In general, any DF: f (x) → [0,1] 

describing the desirability of different regions in the objective space can be defined as a 

DF. Figure 3.10 presents an example of a realization of Harrington’s DF (Harrington 

1965). The main idea of DF-SMS-EMOA is to convert the objective function of the 

original MOP into DFs and then optimizing these DFs instead of the original 

objectives. We recall that disirablities are to be maximized. The DF-SMS-EMOA has 

demonstrated its ability to bias the search towards the DM’s preferred region on the bi-

objective ZDT test functions and the five-objective turning process problem (Biermann 

et al. 2008). However, the authors noted that, when the number of objectives increases, 

 

Figure 3.10 A realization of Harrington’s DF based on DM’s 

preferences: (AS, DF(AS)) and (MI, DF(MI)).   
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the number of border solutions outside the specifications limits of DFs increases and 

the hypervolume computational complexity also increases. Consequently, further 

research effort is required to study the combinations between MOEAs and DFs for 

many-objective optimization problems (i.e., MOPs involving more than 3 objective 

functions (Hughes 2005)). 

3.3 Discussion 

3.3.1 From MOEAs to preference-based MOEAs 

If a single solution is to be selected from the Pareto front of a MOP at some point 

during the optimization process, the DM has to reveal his/her preferences. Specifying 

these preferences a priori, i.e., before alternatives are known, often means to ask too 

much from the DM. On the other hand, searching for all non-dominated solutions, as 

most MOEAs do, may result in: (1) wasting computational efforts to find solutions that 

are clearly undesired by the DM and (2) complicating the DM’s task when selecting the 

final preferred alternative from a huge set of solutions. In the previous section, we 

presented a review of the most prominent preference-based MOEAs which allow 

avoiding the two above cited shortcomings of general-purpose MOEAs. Table 3.1 

presents a synthetic comparison of Preference-based MOEAs. The works are classified 

based on the type of the DM’s preferences and are listed in a chronological order for 

each category in order to illustrate the evolution scheme of each class of algorithms. 

We remark that most of these works are published after 2006. Additionally, we see that 

from 2008, there is an increasing emphasis on the topic of including DM’s preferences 

in EMO. Table 3.1 lists several comparison criteria that are classified into two main 

classes: (1) general criteria that are discussed in this subsection and (2) pros and cons 

criteria that are discussed in section next. The general criteria are: (1) modification 

which indicates the modified part of the MOEA and influence which indicates whether 

the result is a bounded region of the Pareto optimal front or a just a biased distribution. 

According to the algorithmic details of the different search methods provided in the 

second section, we remark that most preference-based MOEAs are modified versions of 

general-purpose MOEAs. This observation is emphasized by the column modification 

in table 3.1, where we see that the most frequently modified part of the MOEA is the 

dominance relation. In fact, several preference-based dominance relations were 

proposed such as the g-dominance, the trade-off-based dominance, and so fourth. When 

the Pareto dominance is replaced by such dominance relations, the search process is 

guided towards the ROI according to the DM’s preferences. Based on the column 

influence, we see that most preference-based MOEAs aim at providing a bounded ROI  
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Table 3.1 Comparison of preference-based MOEAs (inspired by 
(Branke 2008)): MROI means Multiple ROIs, SC means Spread 
Control, PDP means Pareto Dominance Preservation, DP means 
Diversity Problems and SCAD means SCAlability Demonstration 
with respect to the number of objectives. For pros and cons criteria, 
“Y” means Yes and “N” means No.    

 General criteria Pros & Cons criteria 

Reference Modification Influence M 
R 
O 
I 

S
C 

P 
D 
P 

D 
P 

S 
C 
A 
D 

Weights 

(Deb 1999) Crowding 
operator 

Distribution N N Y N N 

(Branke and Deb 2004) Crowding 
operator 

Distribution N Y Y N Y 

(Zitzler et al. 2007) Quality indicator Distribution N N Y N Y 

Ranking some candidate solutions 

(Greenwood et al. 1997) Dominance  Region N N Y N N 

(Deb et al. 2010) Dominance  Region N N Y N Y 

(Köksalan and Karahan 2010a) Dominance  Distribution  N Y Y N N 

(Battiti and Passerini 2010) Crowding 
operator 

Region N N Y Y Y 

(Fowler et al. 2010) Dominance  Region N N Y N Y 

(Branke et al. 2010) Dominance + 
crowding 
distance 

Distribution N N Y N N 

Ranking objectives 

(Jin and Sendhoff 2002) Objectives 
aggregation 

Distribution N N N Y N 

(Cvetkovic and Parmee 2002) Dominance  Distribution N Y N N N 

(Rachmawati and Srinivasan 2010) 1) Dominance 
2) Solution 

sorting 
mechanism 

3) Crowding  
operator 

Region 
Region 
 
 
Distribution 

N 
N 
 
 
N 

N 
N 
 
 
N 
 

N 
Y 
 
 
Y 

N 
N 
 
 
N 

Y 

Y 

 

Y 

Reference point 

(Fonseca and Fleming 1993) Dominance Region N N Y N N 

(Tan et al. 1999, 2003) Dominance  Region Y N N N Y 

(Deb et al. 2006) Crowding 
operator 

Region Y Y Y Y Y 

(Allmendinger et al. 2008) Leader selection 
strategy 

Region Y Y Y Y N 

(Wickramasinghe and Li 2008) Leader selection 
strategy 

Region Y Y Y Y N 

(Molina et al. 2009) Dominance  Region  Y N N Y N 

(Thiele et al. 2009) Quality indicator Region Y Y Y N Y 

Reference direction (reference point + reservation point) 

(Deb et al. 2007a) Solution 

sorting 

mechanism 

Region Y Y Y Y Y 
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rather than a biased distribution of non-dominated solutions. This fact provides the DM 

only with preferred solutions.   

3.3.2 Preference modeling tools 

From the preference modelling tools cited in this table, it is difficult for the DM to 

precisely state his/her preferences in a priori way, e.g., how could the DM specify the 

aspiration/reservation levels while he/she ignores the range of each objective function? 

A simple way to handle this difficulty is to run the MOEA for some small number of 

generations and then provide the DM with some solutions such as the ideal point and 

the nadir one. In this way, the DM builds an idea about the ranges of the different 

objectives which facilitates the task of supplying aspiration/reservation levels. This fact 

has motivated researchers to design some EMO-based techniques for estimating the 

nadir point which plays a crucial role in the discovery of objective ranges (Deb and 

Miettinen 2008; Bechikh et al. 2010b). Such techniques have demonstrated their ability 

in finding near nadir point quickly and reliably on high dimension MOPs. When 

modelling preferences as weights, it is difficult to control the guidance of the search 

towards the ROI. In fact, with the increase of the number of objectives, it is difficult to 

verify whether the MOEA’s provided approximation really replies to the DM’s 

specified weights. For this reason, using weights in an interactive manner is not really 

so attractive. Modelling preferences as trade-offs between objectives is a complicated 

task especially when the number of objectives increases. Consequently, using such 

approach interactively augments the demanded effort from the DM. Ranking a sample 

of solutions seems to be an interesting way to elicit DM’s preferences. However, how 

to select solutions to build such a sample is still an open question for further research. 

For example, in the BC-EMOA (Battiti and Passerini 2010), the authors noted that the 

evolutionary process should be run for a certain number of generations, that is of the 

same order of a plain MOEA run on the same problem, in order to ensure a reasonable 

coverage of the whole Pareto front and eventually not to miss portions containing some 

Reference direction and some preference thresholds 

(Deb et al. 2007b) Crowding 
operator 

Region Y Y Y Y Y 

Trade-offs between objectives 

(Branke et al. 2001) Objective 
functions  

Region N N Y Y N 

Outranking parameters 

(Fernandez et al. 2010) Dominance  Region N N Y N Y 

(Fernandez et al. 2011) Dominance  Region N N Y N Y 

Desirability thresholds 

(Wagner and Trautmann 2010) Objective 
functions 

Region Y N Y N Y 
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possibly preferred solutions. This fact makes BC-EMOA behave like a general purpose 

MOEA where the entire Pareto front is firstly approximated and then the DM’s 

preferences are used to select the final alternative to realize. Consequently, we do not 

really see the advantages of articulating DM’s preferences within the MOEA. 

Furthermore, the computational complexity is increased. Using outranking relations in 

a priori way seems to be interesting. However, the DM should be assisted by the 

decision analyst (an expert) to set appropriate outranking parameters. Moreover, 

updating such parameters interactively during the MOEA run is not a trivial task and 

may augment the DM’s burden. Objective ranking is also an interesting way to model 

DM’s preferences. However, the preference update mechanism should be controlled in 

order to ensure preference consistency as noted by (Rachmawati and Srinivasan 2010). 

Desirability thresholds seem to allow a straightforward specification of the DM’s 

preferences. We note that the concepts of desirability thresholds and 

aspiration/reservation levels seem to be so similar.  

Among all the used preference modelling tools, it seems to be that the most natural and 

precise way to express DM’s preferences is the reference point (Bechikh et al. 2012a) 

(e.g., the DM would like to achieve 20 units in the first objective and 15 units in the 

second objective). In this way, DM’s preferences could guide the search towards the 

ROI precisely and interactively without demanding a great effort from the DM even if 

the number of objectives M increases. Indeed, the reference point could be drawn on 

the same plot of the MOEA’s population whatever is the number of objectives M (by 

using the 2D/3D plots for the two-/three-dimensional cases and the parallel coordinates 

plots for higher dimension cases). This fact facilitates not only the verification of the 

guidance of the population but also the update of the reference point. These statements 

are emphasized by the results presented in table 3.1 since the reference point is the most 

used DM’s preference information structure.  

3.3.3 Pros and cons 

Table 3.1 lists a set of criteria that allow illustrating the pros and cons of the different 

approaches: 

—MROI: “Y” value means that the algorithm offers the DM the ability to obtain more 

than one ROI. Usually, at the beginning of the evolutionary process, the DM does not 

have any idea about the search space. This fact can make the DM doubtful when 

expressing his/her preferences. Hence, with the option MROI, the DM can guide the 

search towards multiple ROIs and then he/she focuses the MOEA’s population on the 

final desired ROI during the interactive run. The MROI option represents an advantage 

for the MOEA since it allows the DM to learn about the search space and consequently 
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about his/her preferences during the interactive optimization process which facilitates 

the task of preference updating and adjusting. 

—SC: “Y” value means that the algorithm allows the DM to control spread of the 

obtained ROI. The option SC represents an advantage for the MOEA because if the 

algorithm does allow controlling the ROI breadth, the obtained results can be 

ambiguous for the DM. Since MOEAs are stochastic search algorithms, if the ROI 

breadth is not controlled, the DM can obtain different ROIs’ spreads in each run of the 

algorithm. This fact represents a difficulty to the DM when selecting his/her final 

alternative to realize. Additionally, in this case, the focus of the population on the 

desired region heavily depends on the termination criterion since the population is 

guided gradually towards a particular region in the search space from generation to 

another which may cause a diversity problem especially with the increase of the 

number of objectives.    

—PDP: “Y” value means that the preference-based guidance mechanism of the related 

MOEA preserves the order induced by the Pareto dominance relation, i.e., a dominated 

solution with respect to the Pareto dominance relation cannot be preferred to a solution 

that dominates it. This fact preserves elitism (Deb 2001). In fact, the PDP criterion has 

been mentioned in the survey of Coello (2000). If the preference-based MOEA allows 

contradicting the Pareto dominance order, then serious convergence problems can 

occur.  

—DP: “Y” value means that the algorithm has some diversity problems; which 

represents an inconvenient for the MOEA. In fact, guiding the search process towards a 

particular region of the search space at the beginning of the search process may cause a 

reduction in the population phenotypic diversity. For this reason, when designing a 

preference-based MOEA, it is of particular interest to conceive a diversity mechanism 

that allows preserving the population diversity. 

—SCAD: “Y” value means that the scalability of the proposed approach with respect to 

the number of objectives is demonstrated in the original paper of the algorithm. The 

emerging field of many-objective optimization (Hughes 2005) has recently attracted a 

lot of researchers. One of the proposed approaches to handle such type of problems is 

to incorporate DM’s preferences in the evolutionary process in order to explore only the 

desired portion of the Pareto front. With the increase of the number of objectives, the 

Pareto dominance becomes ineffective when comparing between solutions. 

Consequently, researchers have used DM’s preferences as an additional criterion to 

distinguish between the population individuals and focus the search towards the optimal 

ROI of a many-objective problem. 
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3.4 Group preference handling 

3.4.1 Group preference handling in EMO 

In the EMO community, the problematic of incorporating the preferences of a group of 

DMs in MOEAs is ignored by most researchers. (Pfeiffer et al. 2008) is probably the 

unique work that has considered such a problematic by proposing four variants of the 

previously discussed algorithm R-NSGA-II. According to the authors, while the OR 

operator evolves the population towards either of the reference points, the AND 

operator tries to minimize the deviation from all goals concurrently and therefore 

attempts to find a consensus. The four variants are described and classified into two 

categories as follows: 

♦ Ranking-based approach  

Instead of using the minimum of the ranks (in reference to the OR operator), the 

maximum of the ranks is taken as crowding distance (in reference to the AND 

operator). Since in contrast to the original NSGA-II, the crowding distance is supposed 

to be minimized, this variant is called the MinMaxRanking approach. The second idea 

is to assign the average rank as crowding distance. This variant is named AvgRanking 

approach. For example, if one solution has the ranks 1, 4 and 10 to each of the three 

reference points respectively, the crowding distance would be 5. 

♦ Distance-based approach  

In this approach, only the normalized Euclidean distances directly are used as crowding 

distances. The crowding distance is assigned as either the maximal normalized 

Euclidean distance they have to a reference point (MinMaxDistance approach) or the 

average distance (AvgDistance approach). 

These four variants of the R-NSGA-II algorithm were assessed on three ZDT test 

problems (i.e., ZDT1, ZDT2 and ZDT3 (cf. appendix A)) and two realistic instances of 

the flow shop scheduling problem. The obtained results show that the proposed 

approaches are able to provide the desired average ROI which is considered to be 

composed with consensus solutions according to the authors. However, from our point 

of view, the fact of providing an average ROI does not resolve the problem since 

several DMs are still dissatisfied with the obtained results and the conflict is still 

existing. In fact, consensus reaching is a complex process and requires more elaborated 

mechanisms for preference aggregation (Herrera-Viedma et al. 2007). For this reason, 

we present in the next section a brief presentation of social choice theory (Arrow 1951) 

and the main difficulties encountered when aggregating the preferences of a set of DMs 

especially: (1) the impossibility to achieve all kinds of fairness and (2) manipulation. 
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3.4.2 Social choice theory: A brief review 

Social choice theory is a theoretical framework for measuring individual interests, 

values or welfares as an aggregate towards a collective decision (Arrow 1951). The 

problematic of social choice can be described as follows. Assuming that we have a set 

of agents having preferences over a set of alternatives, the issue is how to design a 

mechanism that outputs a social preference or a single winner over the set of 

alternatives. Voting methods, such as plurality method, Borda method and Condorcet 

method are considered as examples of social mechanisms (Bouyssou et al. 2009). The 

most known and influential result within the social choice community is Arrow’s 

impossibility theorem which states that fairness is multifaceted and that it is impossible 

to achieve all of these kinds of fairness simultaneously (Shoham and Leyton-Brown 

2009). According to Arrow (1951), the multifaceted fairness criteria are the following: 

1) Unrestricted domain (or the universality criterion): Each agent is allowed to rank 

the set of alternatives in any order without any a priori constraint and the social 

choice function must generate a collective preference order from any logically 

possible set of individual preference orders; 

2) Transitivity: Assuming three alternatives a, b and c, if each agent prefers a to b and 

b to c then a should be preferred to c in the collective preferences;   

3) Pareto efficiency: Whenever all individuals prefer an alternative a to another b, a 

must be preferred to b in the collective preferences; 

4) Independence of irrelevant Alternatives: the collective preference order of any pair 

of alternatives a and b should depend solely on the individuals' preferences between 

these alternatives and not on their preferences for other (irrelevant) alternatives; and 

5) Non-dictatorship: the collective preferences should not invariably correspond to the 

preferences of any single individual, regardless of the preferences of the others. 

The Arrow’s Impossibility Theorem is given as follows: 

Definition 3.3: Arrow’s impossibility theorem 

When there are more than two alternatives, any social choice function that satisfies 

Pareto efficiency and independence of alternatives necessarily violates non-dictatorship 

and is therefore dictatorial.  

Another important issue in social choice theory, that has received considerable 

attention, is manipulation (Conitzer 2006). By definition, a manipulation if a way of 

misreporting one’s true preferences that leads to a better result for oneself. Another 

impossibility result in social choice theory is stated by the Gibbard’s impossibility 

theorem which is given as follows (Gibbard 1973):  
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Definition 3.4: Gibbard’s impossibility theorem 

When there are more than two alternatives, any social choice function that: (1) satisfies 

non-dictatorship and (2) is onto (onto means that every alternative can be a winner 

under some preference profile) is manipulable.  

We can say that the two aforementioned impossibility results represent the main 

challenges when designing a social choice mechanism which makes social choice a 

very active research area till today (Chevaleyre et al. 2007).  

3.5 Conclusion  

This chapter provided a survey of preference-based MOEAs. These algorithms are 

mostly modified versions of general-purpose MOEAs. Different parts of the MOEAs 

can be modified in order to direct the search towards the preferred part(s) of the Pareto 

front. The DM’s preference information structure can have different forms. The 

reference point seems to be a promising way to include DM’s preferences within 

MOEAs. Reference point-based MOEAs are characterized by their abilities to: (1) 

provide a Pareto optimal bounded ROI, (2) control the breadth of the obtained ROI and 

(3) provide more than one ROIs. Additionally, such algorithms can be executed 

interactively without increasing the DM’s burden and permits the DM to verify in a 

straightforward manner if the obtained ROI really corresponds to his/her preferences, 

i.e., whether the obtained Pareto-optimal solutions are concentrated around the DM’s 

reference point. Most of the proposed preference-based MOEAs consider the case of a 

single DM. For this reason, in section 3.4, we have presented the work of Pfeiffer et al. 

(2008) that is probably the unique work in the EMO community that has considered the 

case of multiple DMs. Additionally, we have introduced the main difficulties faced 

when aggregating a set of DMs’ preferences by providing a brief review of social 

choice theory.    
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Chapter 4  

Implicit Preference-based Evolutionary 

Multi-objective Optimization 

4.1 Introduction 

In the absence of explicit DM’s preference information, there exist special points of the 

Pareto front that could represent implicitly preferred parts of the Pareto front for the 

DM. These parts are: (1) knee regions and (2) nadir point. Knee regions are potential 

parts of the Pareto front presenting the maximal trade-offs between the MOP’s 

objectives. Solutions residing in knee regions are characterized by the fact that a small 

improvement in either objective will cause a large deterioration in at least another one 

which makes moving in either direction not attractive. Such characteristic renders 

almost always knee solutions of particular interest in practical context. Nadir point is 

the vector composed with the worst objective values at the Pareto optimality stage. For 

this reason, this special point represents very important information for the DM. Figure 

4.1 illustrates the concepts of knee regions and nadir point. This chapter is devoted to 

review the different approaches for integrating implicit DM’s preferences in MOEAs. 

The next section presents the existing approaches for knee region approximation. The 

third section reviews the proposed approaches for nadir point estimation. The last 

section concludes the chapter.    

4.2 Implicit DM’s preferences as knee regions 

4.2.1 Motivations for knee region approximation 

Das (1999) noticed that the trade-off level is varying across the Pareto front and there 

are solutions corresponding to maximal trade-off levels. In fact, Das noted that “from 

practical experience . . . the user or designer usually picks a point in the middle of the 

surface . . . where the Pareto surface bulges out the most.”. Such solutions are called 

“knee” solutions and they are very interesting to the DM since they constitute the 

optima in terms of trade-off. Knee regions are constituted with solutions having the 
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highest values in terms of the marginal rate of return. Substitution of a given non-knee 

Pareto optimal solution with another solution on the knee region yields the largest 

improvement per unit degradation. Such characteristic renders knee regions so 

important to the DM. Few studies were interested in discovering knee regions 

compared to the general-purpose MOEAs’ literature. In the next subsection, we give a 

brief review of these works.   

4.2.2 Existing methods for knee region approximation 

The focus on knee regions is not new. Das (1999) proposed a method based on the 

Normal-Boundary Intersection (NBI) (Das and Dennis 1998) to locate the knee of the 

Pareto front. Das characterized the knee solution in terms of the Convex Hull of 

Individual Minima (CHIM), which was defined as the set of points in nℜ  that are 

convex combinations of )( ** XFF − , where *F  is the utopia vector of the global 

minima of objectives ],...,,[ 21 MfffF =  and )( *
mXF  is the objective vector of the 

global minimizer of mf , *
mX . The knee solution corresponds to the farthest solution 

from the CHIM. The non-linear programming method of Das maximizes the distance to 

the CHIM in order to get the knee solution. The technique requires an a priori estimate 

of )( *
mXF  for each objective (i.e., extreme solutions) and the accuracy of the obtained 

knee solution is directly related to these estimates. In general, providing an accurate a 

 
Figure 4.1 Illustration of implicit DM’s preferences: (1) knee 

regions and (2) nadir point. 
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priori estimate of the CHIM is not an easy task. It is even more difficult when the 

Pareto front contains multiple knee regions. As each knee solution is associated with its 

corresponding CHIM, finding all knee solutions necessitates the estimation of several 

CHIMs and the discovery of each farthest point in terms of the distance to each CHIM. 

Extensions to cater the problem with multiple knee solutions with non-uniform 

geometry were not provided either in Das’s work (Das 1999). Additionally, the NBI 

furnishes only one unique knee solution. However, in practice, it would be desirable to 

obtain a set of solutions in the vicinity of each knee center which facilitates the DM’s 

task when selecting the final preferred alternative. Branke et al. (2004) designed a 

MOEA which does not require a priori information about the extreme solutions. In fact, 

they proposed two modification strategies to the NSGA-II (Deb et al. 2002a) to make it 

focusing on knee regions. The authors modify the diversity selection criterion of 

NSGA-II. In the first strategy, the algorithm utilizes a geometrical property of knee 

regions, i.e., the external angle formed by a certain solution and its neighboring non-

dominated solutions is larger for solutions lying on the knee region than for those 

otherwise located. Hence, the NSGA-II crowding factor was replaced by an angle-

based measure and the focus on knee regions were achieved by maximization of this 

measure. This approach has been shown to be effective for the bi-objective case. 

However, it is not amenable to higher dimension problems. In the second strategy, the 

authors suggested a marginal utility function to approximate the angle-based measure in 

the case of more than two objectives. In fact, the larger the external angle between a 

solution and its neighbors is, the larger the gain in terms of linear utility obtained from 

substituting the neighbors with the solution of interest is. The substitution of the 

NSGA-II diversity factor by this linear utility measure forces the algorithm to 

concentrate the search on knee regions and hence discovering knee regions for 

problems involving more than two objectives. However, the reliance of the proposed 

utility function on weighted sums precludes the convergence of the algorithm to the 

non-convex parts of the Pareto front which may lead to the loss of less pronounced 

knee regions. It is worth noting that the issue of controlling the extent of knee regions 

was not addressed in both methods (Branke et al. 2004). Rachmawati and Srinivasan 

(2006a, 2006b) developed a MOEA focusing on knees. The proposed MOEA computes 

a transformation of the original objectives based on weighted sums. The transformed 

functions identify niches which correspond to knees in the objective space. The extent 

and the density of coverage of the knee regions are controllable by the niche strength 

and pool size parameters respectively. Although based on weighted sums, the algorithm 

is capable to find out solutions in the non-convex regions of the Pareto-front. In fact, Q 

weighted sums of objectives are computed with a set of Q uniformly distributed weight 
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sets. These weighted sums are then sorted according to magnitude to yield Q rank 

figures for each individual. The highest P rank figures constitute objective values to be 

optimized for an individual. P and Q are user-defined positive integer parameters where 

P < Q. A biasing selection criterion formulated on this strategy encourages the survival 

of the global optima of P subsets of the Q weighted sums. The strategy is susceptible to 

the loss of less pronounced knee regions which constitute local Pareto optima in the 

aggregation computed with the weight sets describing their respective CHIMs but are 

not part of the global optima in the very same weighted sums. The authors argued that 

while a judicious choice of the parameter P and a large Q minimizes the loss of less 

pronounced knee regions, there are special cases where some knee solutions cannot be 

found. Another disadvantage of this approach (Rachmawati and Srinivasan 2006b) is 

that the efficacy of controlling the spread of the knee regions depends heavily on the 

geometrical shape of the Pareto front which may mislead the DM. Schütze et al. (2008) 

suggested two updating strategies which can be integrated in stochastic search 

algorithms for the approximation of knee regions. The advantage of the proposed 

strategies is that they can be used either as standalone algorithms together with any 

stochastic search procedure or integrated into any other archiving strategy without 

causing additional function calls. Additionally, the knee region extent can be controlled 

by a user-provided parameter. However, this study was restricted to the bi-objective 

case. Recently, Rachmawati and Srinivasan (2009) proposed a fitness scheme that 

applies preference-based selection pressure in a MOEA to obtain solutions concentrated 

on knee regions. This scheme can be considered as an extension of their preceding 

work (Rachmawati and Srinivasan 2006b). The strategy may be easily incorporated into 

any MOEA framework with Pareto-based ranking in the selection of solutions. The 

proposed method is a two-step algorithm. In the first step, the MOEA seeks a rough 

approximation of the Pareto front, and in the second step, the linear weighted sums of 

the original objective functions are optimized to guide solutions towards the knee 

regions. A heuristic was introduced to compute the appropriate weights for each 

potential knee region in the front approximation. A mechanism to control the extent of 

focus on the knee region was also provided via the user-supplied parameter δ′. 

Although the approach relies on weighted sums, solutions on the non-convex region of 

the Pareto front can also be retained once discovered given an enough large value of δ′. 

The preference-based fitness introduces little added computational cost, as the number 

of objective functions to be optimized in the second stage is the same as the number of 

original objective functions. The approach has been successfully applied on several 

two- and three-objective knee-based test problems. The main disadvantages of this 

approach are: (1) the obtained results heavily depend on the quality of the weight sets 
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found during the first step of the optimization process and (2) the control of the extent 

of the knee regions depends on the geometrical form of the optimal knee which may 

mislead the DM. 

4.3 Implicit DM’s preferences as nadir point 

4.3.1 Motivations for nadir point estimation 

Nadir point estimation is an age-old important task in multi-objective optimization 

(Deb and Miettinen 2008). Unlike the ideal point which can be found by minimizing 

each objective individually over the feasible search space, the nadir point is constructed 

from worst objective values in the Pareto optimal front. Hence, the Pareto optimality is 

a necessary condition to the exact determination of the nadir criterion values which 

makes the estimation of the nadir point a difficult task especially when the number of 

objectives increases. Researchers have been interested in finding the nadir point since 

the early seventies. However, there is still a lack of methods to estimate the nadir 

objective vector with the desired accuracy for problems involving more than three 

objectives. Hence, the question that arises here is “why estimating the nadir point?”. 

The nadir point is reported to represent important information not only for the DM but 

also for multi-objective optimization researchers. In fact, along with the ideal point, the 

nadir point can be used to normalize the objective space which helps multi-objective 

methods to be applied more reliably to problems involving non commensurable 

objective functions. It was reported that normalizing the objective space may help in 

reducing the computational effort by solving the problem faster (Miettinen et al. 2006). 

Besides, the nadir point and the ideal point help the DM to know the range of the 

objective functions at the Pareto optimality stage which facilitates the task of 

preference expression for him/her. Additionally, the nadir point is a pre-requisite for 

different interactive algorithms such as the GUESS method (Buchanan 1997), the STEP 

method (Benayoun et al. 1971) and the NIMBUS method (Miettinen and Mäkelä 2006). 

Moreover, together with the ideal point, the nadir point is crucial for visualizing the 

optimal Pareto front which facilitates the comparison between solutions especially 

when using visualization techniques for high dimension problems (e.g., parallel 

coordinates plot, petal diagrams, bar charts, etc.). Finally, it was reported in (Deb and 

Miettinen 2008) that the accurate estimation of the nadir point for problems involving 

more than three criteria is still an open research challenging topic till today. For all 

these reasons, the nadir point could be considered as a form of implicit DM’s 

preferences. 

4.3.2 Existing methods for nadir point estimation 
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In this subsection, we review the proposed approaches in the specialized literature to 

estimate the nadir point in Multi-Objective Linear Programming (MOLP) and Multi-

Objective Non-Linear Programming (MONLP). We enhance this review by drawing a 

classification scheme for these approaches. 

♦ Exact methods 

Benayoun et al. (1971) used the payoff table to compute the nadir objective values. 

This involves the minimization of each objective individually over the search space. 

Then, the payoff table is constructed in such a way the ith row corresponds to values of 

all other objective functions evaluated at the point where the ith objective obtained its 

minimum. After that, the maximum (worst) value of the jth column is considered as an 

estimate of the jth component of the nadir objective vector. The main drawback of this 

approach is that the payoff table may provide a wrong estimation (overestimation or 

underestimation) of the nadir point when there is more than one solution having the 

minimum value for a certain objective and different values for the others. Moreover, 

this approach faces difficulties when the number of objectives increases. Iserman and 

Steuer (1988) have demonstrated the difficulties of finding the nadir point when using 

the payoff table method even for linear problems and have emphasized the need of 

using a better method. Hence, they suggested three exact approaches to do this task 

more reliably. The first uses a vector-maximum code to compute all Pareto optimal 

extreme points. The second resolves a large primal-dual program with non-linear 

constraints. The third is a simplex-based approach that uses the fact that all Pareto 

optimal extreme points are connected with paths of efficient edges. The authors 

concluded that the third approach is the only deterministic approach that can be used in 

practice. However, they noticed that this approach is computationally expensive. 

Erghott and Tenfelde-Podehl (2003) suggested an algorithm to compute the nadir 

objective values exactly in MOLP. This approach is practical only for bi- and tri-

objective problems. In fact, its application to an M-objective MOP necessitates the 

discovery of the whole efficient set of each sub-problem optimizing (M-1) objectives. 

Hence, the efficacy of such an approach decreases dramatically with the increase of the 

number of objectives to optimize. Alves and Costa (2009a) proposed a new method to 

determine the exact nadir criterion values over the Pareto optimal set in MOLP. The 

basic idea is to determine for each criterion, assuming the maximization case, the 

region of the weight space associated with the efficient solutions that have a value in 

that criterion below the minimum already known (by default, the minimum in the 

payoff table). If this region is empty, the nadir value is found. Otherwise, a new 

efficient solution is computed using a weight vector picked from the delimited region 

and a new iteration is performed. The method is able to find the nadir values in MOLP 
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problems with any number of objective functions. However the authors argued that the 

computational cost increases significantly with the increase of the number of 

objectives. It is worth noting that all these exact methods are restricted to the linear case 

and thus they cannot handle non-linear problems.   

♦ Heuristic methods 

• Non-evolutionary approaches 

Dessouky et al. (1986) suggested three heuristic methods for approximating the nadir 

values. The authors argued that none of these methods guarantee the exact estimation of 

the nadir point. Moreover, this work is restricted for only linear problems where all 

objectives and constraints are linear functions of the decision variables. Korhonen et al. 

(1997) proposed another heuristic method which is based on reference directions. In 

each iteration, a reference direction is chosen that maximally minimizes the objective 

under consideration. This process is iterated until the considered objective reaches a 

local minimum over the non-dominated set. Then, a cutting plane is inserted into the 

problem and another direction, if one can be found, that maximally minimizes the 

objective under consideration is employed. Although the method is heuristic, 

computational experience shows that much better estimation of the nadir criterion 

values can be obtained than with the use of the payoff table approach. However, this 

approach is restricted for MOLP problems. Metev and Vassilev (2003) designed a 

heuristic approach using reference points. The obtained results are better than those 

obtained by using the payoff table. However, the approach cannot be applied for the 

non-linear case.  

• Evolutionary approaches 

Several evolutionary approaches for nadir objective values estimation were proposed in 

the specialized literature. According to the study of Deb and Miettinen (2008), these 

approaches can be classified into three classes: 

� Surface-to-nadir class  

Since MOEAs are shown to be effective black-box tools to approximate the whole 

Pareto front of various MOPs, the simplest-minded idea comes from finding a 

representative approximation of the optimal Pareto front and then the nadir point is 

computed from the extreme solution values. This approach was tested by Deb et al. 

(2006b) using the NSGA-II. It faces essentially two difficulties. On one hand, the 

algorithm must find the extreme Pareto optimal points accurately. Otherwise, it may 

provide a wrong estimation of the nadir point. On the other hand, MOEAs have shown 

to not work well in discovering a well-distributed set of solutions on the whole Pareto 
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optimal front for many-objective problems (Hughes 2005), thereby making MOEAs 

difficult to apply in such scenario.  

� Edge-to-nadir class  

Since the nadir point is constructed from only extreme points, it is unnecessary to get 

intermediate Pareto optimal solutions. The idea is to find only critical edges of the 

Pareto surface. Critical edges are boundaries responsible for the true estimation of the 

nadir point. This approach was implemented in Szczepanski and Wierzbicki (2003) by 

solving 







2
M  bi-objective sub-problems and the nadir point is then constructed from the 

extreme non-dominated points from all obtained solutions. This approach seems to be 

less computationally expensive than the surface-to-nadir approach. However, as 

discussed by Deb et al. (2006b), this approach may present at least three difficulties:  

(1) the algorithm may not provide the true extreme solutions if the solutions are not 

well-distributed on the critical edges, (2) solving many bi-objective sub-problems may 

provide the same boundary (or a part of it) repeatedly, thereby wasting computational 

effort and (3) such an approach may require to find multi-modal Pareto optimal 

solutions and may need to employ a lexicographic procedure to find the true extreme 

Pareto optimal points.  

� Extreme-point-to-nadir class  

It is intuitive to say that finding intermediate solutions on the critical edges does not 

help to compute the nadir point since the estimation of the nadir values requires only 

the discovery of the true extreme Pareto optimal points. Recent studies suggested 

finding only these extreme points. Several recently proposed methods fall into this 

class. Deb et al. (2006b) proposed two modified versions of the NSGA-II that focus the 

search on extreme solutions by modifying the diversity criterion. In the first approach, 

termed Worst-Crowded NSGA-II (WC-NSGA-II), in every generation, the population 

members in every non-dominated front of size NF are first sorted in an ascending order 

based on each objective (assuming the minimization case) and a rank equal to the 

position of the solution in the sorted front is assigned. Hence, each individual i from the 

front gets a rank m
iR  from the sorting based on the mth objective. After assigning all 

ranks based on each one of the M objectives, the crowding of individual i is equal to the 

maximum of its assigned ranks, i.e., { }M
iiii RRRd ,...,, max 21= . The authors reported 

that this approach faces difficulties in maintaining the population diversity which may 

not only slow down the search but also encourage the premature convergence 

phenomenon to occur. Additionally, this approach may provide spurious solutions 

which are non-dominated with respect to the current extreme solutions but non Pareto 
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optimal.  This type of solutions may cause a wrong estimation of the nadir point. The 

second approach, termed Extremized-Crowded NSGA-II (EC-NSGA-II), represents a 

slight modification of the first one by modifying the rank assignment as follows: 

{ }1,  max +−= m
iF

m
i

m
i RNRR . In this way, solutions having best objective values and 

solutions having worst ones are emphasized. The authors reported that the second 

approach avoids the difficulties faced by the first approach and provides better 

performance. More recently, Deb et al. (2009a, 2009b) enhanced the extremized-

crowded approach by hybridizing it with a bi-level local search based on the reference 

point method. The upper-level optimization uses a reference point and a weight vector 

as decision variables and optimizes the critical objective. The lower-level optimization 

projects solutions onto the Pareto front by minimising an augmented ASF using the 

reference point and the weight vector obtained in the upper-level optimization. The 

authors reported that this approach presents better performance compared to the two 

other extreme-point-to-nadir approaches. Another evolutionary approach was proposed 

by Alves and Costa (2009b). This approach uses a population of weight vectors with 

particular characteristics, which are then used as parameters in the optimization of 

weighted sums of the objective functions. The population evolves through a process of 

selection, recombination and mutation. The algorithm has been tested on a number of 

problems for which the nadir point is known and good results where reported. 

However, the application of such an approach is restricted to linear problems.    

4.4 Conclusion 

In this chapter, we have provided a review of the most prominent works in 

incorporating implicit DMs preferences in EMO. Actually, there are two forms of 

implicit preferences. In one hand, we have knee regions corresponding to the portions 

of the Pareto front composed with the worthiest solutions in terms of compromise 

between the different conflicting objectives. The breadth control and the sensitivity to 

the objective functions’ shapes represent difficult challenges for all discussed methods. 

In the other hand, we have the nadir point which represents important information for 

the DM since it is composed by the worst values picked from the Pareto optimal front 

and not from the whole search space. As discussed previously, there are several 

motivations to estimate such vector. One of them, which is directly related to our thesis 

topic, is the assistance of the DMs in expressing their preferences in terms of reference 

points. The main challenges for the discussed methods for nadir point estimation are: 

(1) the accuracy of the estimation and (2) the computational efficiency.  
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Chapter 5 

Incorporating Explicit DM’s Preferences in 

Evolutionary Multi-objective Optimization 

5.1 Introduction 

In this chapter, we propose a new dominance relation for preference-based EMO. This 

dominance relation is called r-dominance and is inspired from the reference point 

method and the classical Pareto dominance relation (Ben Said et al. 2010). The 

originality of the r-dominance is its ability to create a strict partial order among Pareto-

equivalent (non-dominated) solutions. This fact makes our new proposed dominance 

relation able de guide the search towards the ROI based on DM’s explicit preference 

information expressed as a set of aspiration levels (i.e., a reference point). After 

integrating the r-dominance in the NSGA-II, the efficacy and the usefulness of the 

modified algorithm (called “r-NSGA-II”) are assessed through two- to ten-objective test 

problems a priori and interactively. Moreover, the proposed approach provides 

competitive and better results when compared to other recently proposed preference-

based EMO approaches. This chapter is structured as follows. The second section 

details the proposed approach. The third section is devoted to the experimental study. 

The fourth section concludes this chapter. 

5.2 Proposed approach 

5.2.1 The r-dominance: definition and properties 

The r-dominance (reference solution-based dominance) takes its origins from the 

hybridization between the Pareto dominance principle and the reference point method. 

The key feature of this new dominance relation is to prefer solutions that are closer to 

the reference point (DM’s preferences) while preserving the order induced by the 

Pareto dominance. In order to determine the closeness of a certain solution to the 

reference point, an ASF is required. There exist various ASFs in the MCDM literature 
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(cf. (Miettinen 1999) for a review). We choose to use the weighted Euclidean distance 

employed by Deb et al. (2006a): 
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where x is the considered solution, gm is the mth component of the user-specified 

reference point g, max
mf  is the upper bound of the mth objective values, min

mf  is the 

lower bound of the mth objective values and wm is the weight associated with the mth 

objective. It should be noted that the ASF (5.1) can be used when solving non-convex 

MOPs (Deb et al. 2006a). Our choice is justified by the fact that the weighted Euclidean 

distance gathers more information about the closeness of a certain solution to the 

reference point than the ASF proposed by Wierzbicki (cf. equation (2.7)) especially 

when the number of objectives increases. For example, given two solutions X = (10, 8, 

9, 7) and Y = (10, 2, 3, 4) for a four-objective minimization problem and assuming the 

reference point (0, 0, 0, 0) and a uniform weight vector, when using the Wierzbicki 

ASF, X and Y are considered to be equivalent. However, when using the ASF (5.1), the 

solution Y is closer to the fixed reference point than X which is seen from the objectives 

values of the two solutions. In the following, we give the definition of the r-dominance 

relation and we study its main properties. 

Definition 5.1: The r-dominance 

Assuming a population of individuals P, a reference point g and a weight vector w, a 

solution x is said to r-dominate a solution y (denoted yx rp ) if one of the following 

statements holds true: 

1) x dominates y in the Pareto sense; or 

2) x and y are Pareto-equivalent and ,),,( δ−<gyxD  where [ ]1,0∈δ  and: 

minmax

),(),(
),,(

DistDist

gyDistgxDist
gyxD

−
−=                                         (5.2) 

),( max gzDistMaxDist Pz∈=                                                  (5.3) 

    ),( min gzDistMinDist Pz∈=                                                   (5.4) 

δ is termed the non-r-dominance threshold.  
 
The main idea behind the r-dominance relation is to create a strict partial order between 

Pareto-equivalent solutions. Hence, the r-dominance has the ability to differentiate 

between non-dominated solutions in a partial manner based on the user-supplied 
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aspiration level vector. This fact not only makes the r-dominance selection pressure 

“stronger” than the Pareto dominance one but also integrates the DM’s preferences in 

the selection process. In order to prove the strict Partial order induced by the                

r-dominance on the set of Pareto-equivalent solutions, we study the properties of the    

r-dominance relation as follows. Let A be a set containing only Pareto-equivalent 

solutions and let { } .,, Azyx ⊆  

Property 5.1: The r-dominance is an irreflexive relation on the set of alternatives A.  

Proof: We would like to show that ., xxAx rp/∈∀  

.0
),(),(

),,(
minmax

=
−
−=

DistDist

gxDistgxDist
gxxD  Thus, the condition "),,(" δ−<gyxD  is not 

satisfied since [ ]1,0∈δ . For this reason, rp( , A) is irreflexive.  

Property 5.2: The r-dominance is an asymmetric relation on the set of alternatives A.  

Proof: We would like to show that if yx rp  then .xy rp/  

yx rp ⇔  .
),(),(

),,(
minmax

δ−<
−
−=

DistDist

gyDistgxDist
gyxD  

).,,(
),(),(

),,(
minmax

gyxD
DistDist

gxDistgyDist
gxyD −=

−
−=  

Since δ−<),,( gyxD , then .),,( δ>gxyD  Hence, if yx rp  then .xy rp/  For this 

reason, rp( , A) is asymmetric. 

Property 5.3: The r-dominance is a transitive relation on the set of alternatives A. 

Proof: We would like to show that if yx rp  and ,zy rp  than .zx rp  

minmax

),(),(
),,(

DistDist

gzDistgxDist
gzxD

−
−=           ⇔  
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DistDist
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−
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−
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),,(),,(),,( gzyDgyxDgzxD +=  

Given that yx rp  and ,zy rp  we have δ−<),,( gyxD  and .),,( δ−<gzyD  

Consequently, δ−<),,( gzxD  (i.e., zx rp ). For this reason, rp( , A) is transitive. 
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Property 5.4: The r-dominance defines a strict partial order on the set of alternatives A.  

Proof: Since the r-dominance is an irreflexive, asymmetric and transitive relation on 

the set of alternatives A, then it defines a strict partial order on A. 

One of the main issues identified by Coello (2000) when discussing preference-based 

MOEAs is the preservation of the Pareto dominance. Hence, it is interesting to study 

the compatibility and the completeness of the r-dominance with the Pareto dominance 

relation. Thus, we first define these two terms. Following the study of Zitzler et al. 

(2003), the compatibility and the completeness with the Pareto dominance are defined 

as follows: 

Definition 5.2: Compatibility and completeness with the Pareto dominance  

Let >  be an arbitrary binary relation where the expression yx>  means that solution x 

is preferred to solution y. The relation >  is said to be compatible with the Pareto 

dominance if and only if: 

yx>  ⇒  yx p                                                (5.5) 

The relation >  is said to be complete with the Pareto dominance if and only if: 

       yx p  ⇒  yx>                                                (5.6) 

Now, we can announce the following theorem. 

Theorem 5.1: Given a population of individuals P, the r-dominance is (1) complete 

with the Pareto dominance relation and (2) compatible with the non Pareto dominance 

relation.   

Proof: 

1) From the r-dominance definition, if x Pareto-dominates y ( yx  p ) than automatically 

x r-dominates y ( yx rp ). Consequently, the r-dominance is said to be complete 

with the Pareto dominance.  

2) From the r-dominance definition, if x r-dominates y ( yx rp ) then one of the two 

following assumptions may hold: (a) x Pareto-dominates y ( yx  p ) or (b) x and y are 

Pareto-equivalent. Hence, if yx rp  then . xyp/  Consequently, the r-dominance is 

said to be compatible with the non Pareto dominance relation.  

From the above mentioned theorem, the r-dominance respects the issue announced by 

Coello (2000). The r-dominance is said to be Pareto dominance compliant, i.e., it does 

not contradict the order induced by the Pareto dominance. The conclusion to draw from 

this theorem is that the r-dominance encapsulates DM’s preferences expressed as a 
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reference point while preserving the Pareto dominance which makes the r-dominance 

able to focus on Pareto optimal solutions that matches at most the DM’s preferences.  

5.2.2 The non-r-dominated sorting 

Inspired from the non-dominated sorting algorithm used in NSGA-II (Deb et al. 2002a), 

we propose to modify this sorting algorithm by substituting the Pareto dominance 

relation  by  the r-dominance relation. We recall that the original non-dominated sorting 

algorithm classifies a population of individuals into several fronts. First, non-dominated 

solutions are assigned a rank of one. Then, the individuals belonging to the first front 

are discarded temporarily and non-dominated solutions from the rest of the truncated 

population are assigned a rank of two, and so on. This process is performed until the 

classification of all population individuals. The idea behind the replacement of Pareto 

dominance by the r-dominance is to classify a population of solutions based on DM’s 

preferences (expressed as a reference point) while preserving the order induced by 

Pareto dominance. Figure 5.1 illustrates an example of classification of a population of 

16 individuals using the r-dominance principle, the reference point (0.2, 0.4) shown 

with a filled black star and the ZDT1 problem (cf. appendix A). For each population  

 
Figure 5.1 The non-r-dominated sorting (δ= 0.3). 
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Table 5.1 Effect of varying the parameter δ. 

δ value 0 0.2 0.4 0.6 0.8 1 

Number of classes 100 6 4 3 2 1 

       
individual (designed by a filled black circle), we mark the non Pareto domination rank 

on the left of the individual and the non r-domination rank on the right of the 

individual. From this figure, it is clear that the Pareto dominance selection pressure is 

weaker than the r-dominance one. For example, if we take a look around the first non-

dominated front composed by solutions (A, B, C, D), we remark that this front is 

subdivided into two different classes when using the non-r-dominated sorting. The two 

classes are: C1 = {B, C} containing individuals that are closer to the reference point and  

C2 = {A, D} containing solutions that are farther from the reference point. We conclude 

that solutions A and D are each r-dominated by one of the solutions B and C. Hence, the 

selection pressure of the r-dominance relation is stronger than the Pareto dominance 

one. This selection pressure is guided by DM’s preferences and controlled with the non 

r-dominance threshold δ (cf. section 5.2.3). Besides, the same phenomenon is observed 

for the second and third non-dominated fronts. These observations prove what has been 

demonstrated theoretically in section 5.2.1. 

5.2.3 Effect of varying the non-r-dominance threshold δ 

In this subsection, we study the effect of varying the non-r-dominance threshold value. 

When observing the definition of the r-dominance, we remark that this relation is 

equivalent to Pareto dominance in the case where δ = 1. Besides, when δ = 0, the          

r-dominance induces a total order between non-equidistant Pareto-equivalent solutions 

from the reference point. In other words, when δ = 0, we prefer solutions that are closer 

to the reference point between such Pareto-equivalent solutions. Table 5.1 illustrates the 

number of classes obtained when performing a non-r-dominated sorting on a population 

of 100 Pareto-equivalent (non-equidistant) individuals using different δ values. We 

used the ZDT1 problem for this experimentation. The reference point is set to (0.4, 0.6). 

From table 5.1, we notice that the total number of obtained classes increases when 

decreasing the non-r-dominance threshold δ from 1 to 0, and vice versa. The above 

mentioned remarks concerning δ = 1 and δ = 0 are also observed from this table. 

Consequently, we conclude that the δ parameter enables the DM to control the selection 

pressure of the r-dominance relation.   

5.2.4 The r-NSGA-II procedure  

In this subsection, we propose a variant of the NSGA-II which incorporates the                 

r-dominance concept. We call this variant reference solution-based NSGA-II and we 
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denote it as r-NSGA-II. This latter is based on the non-r-dominated sorting and on 

crowding distance assignment (cf. figure 2.9). The interactive scenario of r-NSGA-II is 

as follows: 

� Step 1: Ask the DM to provide the population size, the stopping criterion, the 

reference solution, the weight vector and the δ value;    

� Step 2: Run the r-NSGA-II procedure until the stopping criterion is met; 

� Step 3: Supply the DM with the set of obtained preferred solutions. If the DM is 

satisfied with the provided set of solutions then stop the optimization process, else 

ask the DM if he/she would like to update the reference solution, the weight vector, 

the δ value and/or the stopping criterion then return to Step 2.  

It should be noted that Step 2 is equivalent to running the NSGA-II using the               

r-dominance instead of the Pareto dominance. It is important to note that r-NSGA-II 

could be extended to guide the search towards multiple user-supplied reference points 

and hence it explores multiple ROIs. This fact is achieved by sorting the population 

based on each user-supplied reference solution in each generation. After that, the rank 

of the individual is equal to the minimum of its assigned ranks. This extension is 

interesting when the DM is not sure about his/her preferences and he/she would like to 

explore several ROIs. 

5.2.5 Managing the non-r-dominance threshold δ  

Driving the search towards a certain region of the search space at the beginning of the 

optimization process may cause a lack of solution diversity since the population 

individuals will have similar phenotypes. This fact has been treated in (Deb et al. 

2006a, Allmendinger et al. 2008; Wickramasinghe and Li 2008) by using some clearing 

mechanisms. These mechanisms ensure that similar solutions are grouped and a 

randomly picked solution from each group is retained. All the rest of the group 

members are discouraged to remain in the race of the evolution process. In order to 

avoid such additional computations and keep population diversity, we propose to 

manage the non-r-dominance threshold δ adaptively during the evolutionary process. It 

is important to note that the idea of adaptive management of MOEA parameters is not 

new (Tan et al. 2001). Assuming nb_gen to be the number of generations indicated by 

the DM as a stopping criterion of a certain evolutionary cycle, gen to be the current 

generation index of the current evolutionary cycle, and δ_user to be the δ value 

provided by the DM, we suggest managing the δ parameter as shown in figure 5.2. At 

the initialization stage (gen = 0), r-NSGA-II sorts the population based on Pareto 

dominance (since δ = 1). From the first generation onwards, the δ value is truncated by 

a quantity equal to )_/)_1((1 gennbuserδ−−  in each generation. In this manner, in the 
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last generation, the δ value is equal to the δ value provided by the DM (i.e., δ_user). 

The aim of such adaptive management of the δ parameter is to guide the search 

gradually during the evolution process towards the ROI which avoids the premature 

convergence phenomenon to occur. 

5.3 Experimental study  

This section is devoted to demonstrate simulation results on two- to ten-objective test 

problems using the r-NSGA-II. All experiments are made with MATLAB software1. 

Firstly, we show some interesting a priori simulation results. Secondly, we demonstrate 

experimentally the positive effect of managing the non-r-dominance threshold δ 

adaptively. Then, we describe an interactive scenario. In the last subsection, the           

r-dominance is compared to three other recently proposed preference-based EMO 

approaches: (1) the g-dominance (Molina et al. 2009), (2) PBEA (Thiele et al. 2009) 

and (3) R-NSGA-II (Deb et al. 2006a). For each test problem, we show the mean of the 

obtained results over 20 independent simulation runs. In all simulations, we use the 

SBX operator with a distribution index of 10 and polynomial mutation with a 

distribution index of 20 (Deb and Agrawal 1995). The crossover and mutation 

probabilities are set to 0.9 and 1/n (where n is the number of decision variables) 
                                                 
1 The used version is MATLAB 7.4 (http://www.mathworks.com). 

 

Figure 5.2 Managing the parameter δ. 
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respectively. For all bi-objective experiments, we use a population of 50 individuals 

unless otherwise specified. 

5.3.1 A priori simulation results  

First, we consider the bi-objective 30-variable Fonseca test problem (Fonseca 1995). 

This problem has a concave Pareto optimal front. Figure 5.3 shows the effect of 

different δ values on the distribution of the obtained solutions after performing 500 

generations (i.e., 25000 Function Evaluations (FEs) since r-NSGA-II evaluates 50 

offspring individuals per generation). We use the reference point (0.6, 0.5) designed 

with filled star and the weight vector (0.5, 0.5). For δ = 0, all population individuals 

have converged to the closest Pareto optimal point to the reference solution. In figure 

5.3, solutions with other δ values are shown with an offset to the true Pareto optimal 

front for ease of visualization. It is obvious that the range of the obtained solutions 

increases with the increase of the parameter δ. Thus, if the DM would like to obtain a 

large neighborhood of solutions near the desired region, a large value of δ should be 

chosen. We conclude that the DM could control the spread of the obtained ROI by 

means of the parameter δ. For δ = 1, the r-NSGA-II provides an approximation of the 

whole Pareto front. This observation emphasizes our claim discussed in section 5.2.3 

(i.e., the r-dominance is equivalent to the Pareto dominance when δ = 1).   

Next, we investigate the effect of changing the weight vector of the weighted Euclidean 

distance on the distribution of the obtained preferred solutions. We use the same 

problem as previously. Figure 5.4 shows the obtained solutions after 500 generations 

(i.e., 25000 FEs) with the three following weight vectors: (0.5, 0.5), (0.25, 0.75) and 

(0.75, 0.25). The reference point and the δ parameter are settled to  (0.6, 0.5) and 0.4 

respectively. The solutions obtained for each one of the weight vectors are 

superimposed on another in figure 5.4 for ease of visualization. From this figure, we 

remark that modifying the weight vector introduces a bias on the distribution of the 

ROI solutions. For the first weight vector (0.5, 0.5), there is no bias among the obtained 

solutions. As expected for the second weight vector (0.25, 0.75), there is more 

emphasis on 2f , thereby obtaining solutions that optimize 2f  more than 1f . For the 

third weight vector (0.75, 0.25), the opposite phenomenon is observed. Thus, the ASF 

weights express a second level of preferences, i.e., if the DM would like to bias some 

objectives more than others, a biased distribution of near user-supplied reference point 

solutions could be obtained by r-NSGA-II. In all subsequent simulations, we use a 

uniform weight vector but the user can modify this vector freely if he/she is interested 

to bias some objectives over others.   
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Figure 5.3 Effect of varying the δ value on Fonseca test problem. 

 

Figure 5.4 Effect of varying weights on Fonseca test problem. 
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Now, we assess the ability of our algorithm to search for multiple ROIs near multiple 

reference points on the tri-objective DTLZ7 problem. We recall that this problem has 

four disjoint Pareto optimal regions (cf. section 2.4.1). We use three reference points: 

(1) a feasible Pareto optimal point A(0.1650, 0.7100, 5.6780), (2) a feasible non Pareto 

optimal point B(0.75, 0.15, 6.00) and (3) an infeasible point C(0.10, 0.10, 5.00). The 

population size is set to 60 and the parameter δ is set to 0.2. Figure 5.5 shows the 

preferred obtained solutions after 500 generations (i.e., 30000 FEs). Through this 

figure, we notice that our proposed approach could be easily extended to handle 

multiple reference points and thus it discovers various ROIs. This is an important 

feature when the DM is not sure about his/her preferences and he/she would like to 

explore several ROIs. In addition, it should be noted that the r-NSGA-II is insensitive to 

the feasibility of the reference point.  

In the following, we solve 19-variable 10-objective DTLZ2 problem with the reference 

point: (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.35, 0.35, 0.25, 0.45). The δ parameter is set 

to 0.2. We use a population of 200 individuals. Figure 5.6 shows the parallel 

coordinates plot of the obtained preferred solutions after performing 500 generations 

(i.e., 100000 FEs). The higher number of objectives makes the problem harder. 

 

Figure 5.5 Handling three reference points on the tri-objective 

DTLZ7 problem. 
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Therefore, the population size and the number of generations are increased. From figure 

5.6, we remark that, although the objective values lie in [0,1], most obtained solutions 

are concentrated near the reference point designed with a dashed bold grey line which 

would be the region closest to the chosen reference point. When computing ∑ =
10

1
2

i if for 

all obtained solutions, the values are found to lie within [1.131, 1.324], thereby 

meaning that all solutions are near the true Pareto region (since Pareto optimal solutions 

of the 10-objective DTLZ2 satisfy 110
1

2 =∑ =i if ).   

5.3.2 Adaptive management effect 

In order to show the positive effect of managing the δ parameter value adaptively, we 

compared two versions of our algorithm: (1) a first version of r-NSGA-II without 

adaptive management, denoted r-NSGA-IIW, where the value of δ is constant during the 

overall run and (2) a second version of r-NSGA-II with adaptive management, denoted 

r-NSGA-IIA (i.e., the original r-NSGA-II version described in section 5.2), where the 

value of δ is updated during the run according to the strategy described by figure 5.2. 

For this experiment, we use the 30-variable bi-objective ZDT3 test problem. Its Pareto 

front consists of several non-contiguous convex parts. The reference point and the 

weight vector are set to (0.4, 0.0) and (0.5, 0.5) respectively. The δ value is settled to 

 

Figure 5.6 The ROI for the 10-objective DTLZ2. 
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0.2. Figure 5.7 demonstrates the obtained results after performing 500 generations (i.e., 

25000 FEs) for the two versions. From this figure, we remark that r-NSGA-IIW is 

unable to reach the Pareto optimal front. However, r-NSGA-IIA provides solutions 

lying on the optimal Pareto front. As discussed previously in section 5.2.5, focusing the 

search towards a certain region of the search space at the beginning of the evolutionary 

process may reduce the diversity and hence preventing the population individuals to 

progress towards the Pareto optimal front. This phenomenon explains the obtained 

results by r-NSGA-IIW. The conclusion to draw from this experimentation is that the 

adaptive management of the δ parameter is a bonus feature for r-NSGA-II since it 

permits reaching the Pareto optimal front while focusing on the desired ROI.  

5.3.3 Interactive scenario 

In this subsection, we describe an interactive run of the r-NSGA-II algorithm on the 

ZDT1 problem. The overall interactive scenario is illustrated by figure 5.8 and it is 

composed of four cycles. We call cycle a run of the r-NSGA-II algorithm for a certain 

number of generations freely fixed by the DM.  Firstly, the DM performs a run of 50 

generations (first cycle) without preferences (i.e., δ = 1) in order to have an idea about  

 

 

Figure 5.7 Showing the positive effect of the adaptive management 

of the parameter δ on ZDT3. 
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the objective ranges. The solutions designed with triangles are obtained. These 

solutions are well diversified as shown in figure 5.8. After that, the DM puts the 

reference point to A(0.6, 1.0) and performs a run of 100 generations (second cycle) with 

δ = 0.25. Near user-supplied reference point solutions are obtained (designed with 

circles). We suppose now that the DM is dissatisfied. Thus, he/she resets the reference 

point to B(0.2, 0.7) and he/she reruns the search process for 150 generations (third 

cycle) with δ = 0.2 and a bias expressed by using a non uniform weighting coefficient 

vector (0.75, 0.25). Pareto optimal solutions drawn with diamonds are obtained near the 

reference solution. These solutions show a bias emphasizing the minimization of f1 

more than f2. The DM is always dissatisfied. He/She performs a run of 100 generations 

(fourth cycle) with the reference point C(0.4, 0.4), a uniform weight vector and the 

same δ value. The solutions shown with the symbol “+” are obtained. They belong to 

the Pareto optimal front while matching DM’s preferences. It is important to notice 

that, after performing the third cycle, the r-NSGA-II gets Pareto optimal solutions in the 

vicinity of the reference point B(0.2, 0.7). Nevertheless, the DM is not interested with 

such solutions. Hence, he/she resets the reference point to C(0.4, 0.4) and performs a 

fourth cycle. The Pareto optimal solutions seem to slide along the Pareto optimal front 

towards the chosen reference point. We conclude that: (1) the r-NSGA-II solutions can 

 

Figure 5.8 Interactive scenario on ZDT1. 
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move along the Pareto front based on DM’s preferences and (2) the reference point 

plays the role of a “magnet” to the candidate solutions. It is worth noting that several 

parameters were varied from one cycle to another just to demonstrate that this is 

possible but it is not necessary. Hence, the DM can modify several parameters after 

each performed evolutionary cycle which makes him/her free when specifying his/her 

preferences interactively. Consequently, the population individuals seem to “walk” in 

the objective space according to these preferences. This fact develops the DM’s 

acquired knowledge about the exploration of the search space. 

5.3.4 Comparative experiments 

In this subsection, we conduct three sets of experiments. In the first set, we confront our 

approach to the g-dominance of Molina et al. (2009). In the second set, we compare the 

r-NSGA-II to PBEA of Thiele et al. (2009). Finally, in the third set, we make a 

comparison between r-NSGA-II and R-NSGA-II of Deb et al. (2006a). It should be 

noted that (Molina et al. 2009) and (Thiele et al. 2009) are the most recent reference 

point-based EMO methodologies cited in table 3.1 (cf. section 3.3).   

♦ r-dominance versus g-dominance 

In this subsection, we compare the r-dominance relation to the recently proposed         

g-dominance relation on two- to ten-objective optimization problems. Differently 

speaking, we compare the r-NSGA-II to the g-NSGA-II (i.e., the NSGA-II version 

incorporating the g-dominance (Molina et al. 2009)). For fairness of comparison, we 

use two instances of r-NSGA-II with two δ values: (1) a first instance with δ = 0.3 

(denoted r-NSGA-II’) and (2) a second instance with δ = 0.1 (denoted r-NSGA-II”). 

This comparison is made by: (1) visualizing the plots of the obtained solutions and (2) 

using the additive binary ε-indicator as a performance indicator (cf. section 2.5.2). 

Firstly, we consider the 30-variable ZDT1 problem. We perform two runs of 500 

generations each one. For the first run, we use a feasible reference point which is far 

from the Pareto front (0.3, 0.8). For the second run, we use a feasible reference point 

which is very near to the Pareto front (0.5, 0.3). Figure 5.9 shows the obtained preferred 

solutions of the first run (i.e., for the reference point (0.3, 0.8)). We observe that          

g-NSGA-II and r-NSGA-II’ provide similar results. The two ROIs are very similar 

viewpoint convergence and spread. However, the spread of the ROI of r-NSGA-II” is 

so small since δ = 0.1 in this instance. Table 5.2 presents the additive binary epsilon 

indicator values for ZDT1 problem (we suppose that G is the g-NSGA-II solution set, 

R’ is the r-NSGA-II’ solution set and R” is the r-NSGA-II” one). From this table, we 

remark that for the reference point (0.3, 0.8): 
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         (a) 

 
          (b) 

 
         (c) 

Figure 5.9 Preferred solutions on ZDT1 with the reference point 

(0.3, 0.8): (a) g-NSGA-II, (b) r-NSGA-II’ and (c) r-NSGA-II”. 
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Table 5.2 Binary ε-indicator values for ZDT1. 

Reference point (0.3, 0.8) (0.5, 0.3) 

(I(R ’, G), I(G, R’)) (0.0495, 0.0800) (-0.0176, 0.1093) 

(I(R " , G), I(G, R" )) (0.1433, 0.0090) (-0.0117, 0.0389) 

   

� I(R’, G)>0, I(G, R’)>0 and I(R’, G)<I(G, R’). The set R’ is said to be better than G in 

a weaker sense, 

� I(G, R”)>0 and I(R”, G)>0 and I(G, R”)< I(R”, G). The set G is said to be better than 

R’’ in a weaker sense. 

This result may be explained by the fact that the spread of the ROI of r-NSGA-II” is 

smaller than the spread of g-NSGA-II ROI since the two ROIs have approximately the 

same convergence rate. Hence, the ROI having greater spread is better viewpoint the            

ε-indicator value.  

Figure 5.10(a-c) illustrates the obtained preferred solutions of the second run (i.e., for 

the reference point (0.5, 0.3)). We observe from the plots that the two r-NSGA-II 

instances perform better than g-NSGA-II viewpoint convergence and diversity. The     

ε-indicator values emphasize these observations since:   

� I(R’, G) <0 and I(G, R’)>0, and  

� I(R”, G) <0 and I(G, R”)>0. 

The conclusion to draw from all these observations is that the g-dominance performs 

worse when the reference point is very close to the Pareto optimal front. This 

phenomenon could be explained by the fact that the g-dominance excludes solutions 

fulfilling partially the goals. Hence, the solutions being Pareto-equivalent to the 

reference point (which are important in the case where the reference point is near the 

Pareto front) are discouraged to remain in the race. However, the r-dominance is 

insensitive to such a problem since it preserves this kind of solutions. This 

characteristic seems to be the main inconvenience of the g-dominance.  

It should be noted here that the DM can control the spread of the obtained ROI when 

using r-NSGA-II. However, this is not possible when using g-NSGA-II. This fact 

represents another advantage of the r-dominance over the g-dominance. Additionally, 

the g-dominance is very dependent on the position of the reference point in the search 

space. For example, if we use one of the reference points (0, 0) or (1, 1) when solving 

ZDT1 problem, g-NSGA-II will provide an approximation of the whole Pareto front 

instead of a bounded ROI. More generally, when using a reference point (x, y) such that  
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  (a) 

 
         (b) 

 
         (c) 

Figure 5.10 Preferred solutions on ZDT1 with the reference point 

(0.5, 0.3): (a) g-NSGA-II, (b) r-NSGA-II’ and (c) r-NSGA-II”. 
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Table 5.3 Binary ε-indicator values for tri-objective DTLZ2.   

Reference point (0.4, 0.8, 0.8) (0.3, 0.5, 0.8) 

(I(R ’, G), I(G, R’)) (-0.0975, 0.1570) (-0.0218,  0.0696) 

(I(R " , G), I(G, R" )) (-0.0492, 0.1314) (-0.0319, 0.0578) 

 

 “ 0≤x  and 0≤y ” or “ 1≥x  and 1≥y ”, g-NSGA-II approximates the whole Pareto 

front of ZDT1 problem instead of a bounded ROI. This shortcoming is independent of 

the used multi-criteria problem and can be generalized to any MOP. This fact is due to 

the g-dominance principle which prefers solutions satisfying all aspiration levels and 

solutions fulfilling none of the aspiration levels over solutions satisfying some of the 

aspiration levels. This last mentioned defect makes the g-dominance inefficient when 

used interactively since it can mislead the DM. Moreover, we note that the r-dominance 

is insensitive to the reference point position which makes it superior to the g-dominance 

when facing such situations. 

In the following, we make a comparison between the two r-NSGA-II instances and     

g-NSGA-II on the 12-variable tri-objective DTLZ2 test problem. We recall that this 

problem has a non-convex three-dimensional Pareto optimal region. We perform two 

simulation runs: (1) a first run with a feasible reference point which is far from the 

Pareto front (0.4, 0.8, 0.8) and (2) a second run with a feasible reference point which is 

very near to the Pareto front (0.3, 0.5, 0.8). The population size and the number of 

generations are set to 50 and 500 respectively. Unlike the bi-objective case, we observe 

from figures 5.11(a-c) and 5.12(a-c) that the two instances of r-NSGA-II perform better 

than g-NSGA-II in the tri-objective case for the two used reference points. This claim is 

emphasized by the binary ε-indicator values presented in table 5.3 (assuming the same 

notation as table 5.2). It should be noted that the same remark, discussed for the bi-

objective case with ZDT1 test problem, remains valid since the reference point                   

(0.3, 0.5, 0.8) is very close to the Pareto optimal region. This disadvantage of the         

g-dominance relation is dangerous when the DM runs the algorithm interactively 

especially when he/she puts a reference point near the Pareto front. It should be noted 

that the probability of the event “setting a reference point near the Pareto front” 

increases during the interactive run of the algorithm since the search is guided towards 

the optimal region progressively. This phenomenon makes the g-dominance inefficient 

when used in an interactive way.  

Next, we solve the 10-objective DTLZ2 problem using g-NSGA-II and compare the 

obtained approximation to r-NSGA-II’ and r-NSGA-II” ones. The population size and 

the number of generations are set to 200 and 500 respectively. The used reference point   
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(a) 

 
 (b) 

 
          (c) 

Figure 5.11 Preferred solutions on tri-objective DTLZ2 with the reference point 

(0.4, 0.8, 0.8): (a) g-NSGA-II, (b) r-NSGA-II’ and (c) r-NSGA-II”. 
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(a) 

 
(b) 

 
(c) 

Figure 5.12 Preferred solutions on tri-objective DTLZ2 with the reference point 

(0.3, 0.5, 0.8): (a) g-NSGA-II, (b) r-NSGA-II’ and (c) r-NSGA-II”. 
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Table 5.4 Binary ε-indicator values for 10-objective DTLZ2. 

Reference point (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.35, 0.35, 0.25, 0.45) 

(I(R ’, G), I(G, R’)) (0.0242, 1.043) 

(I(R " , G), I(G, R" )) (0.0544, 1.0428) 

 

is (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.35, 0.35, 0.25, 0.45). From figure 5.13(a-c), we 

remark that the performance of g-NSGA-II degrades dramatically with the increase of 

the number of objectives to optimize. In order to validate our claim, we compute the 

quantity ∑ =
10

1
2

i if for all obtained solutions of each algorithm. The values are found to 

lie within [6.6884, 11.5308] for g-NSGA-II, within [1.131, 1.324] for r-NSGA-II’ and 

within [1.127, 1.884] for r-NSGA-II”. Unlike the two instances of r-NSGA-II,             

g-NSGA-II provides solutions that are so far from the true Pareto region (since Pareto 

optimal solutions of DTLZ2 satisfy 110
1

2 =∑ =i if ). This phenomenon could be explained 

by the fact that the probability of obtaining solutions fulfilling all the goals (eventually 

none of the goals) decreases largely when the problem dimension increases. Table 5.4 

demonstrates the ε-indicator values for this problem (assuming the same notation as 

table 5.3). The obtained values show the performance of r-NSGA-II’ and r-NSGA-II” 

over g-NSGA-II. We conclude that the r-dominance could be not only a way to tackle 

many-objective optimization problems (i.e., MOPs with M > 3 (Hughes 2005; López 

Jaimes et al. 2009)) but also a tool to search for ROIs in such type of problems. In fact, 

as discussed by Farina and Amato (2004), the Pareto dominance could be unsatisfactory 

in the many-criteria decision making task due to two reasons: (1) the number of 

improved or equal objective values is not taken into account and (2) the (normalized) 

size of improvements is not considered. The r-dominance could be a way to overcome 

the two aforementioned defects since the used ASF encapsulates implicitly the number 

of improvements and the size of these improvements. These observations emphasize 

the obtained results on the 10-objective DTLZ2 problem. 

♦ r-NSGA-II versus PBEA 

PBEA and r-NSGA-II are similar in the fact that they require reference point(s) and a 

parameter controlling the spread of the obtained ROI(s) supplied by the DM. However, 

their internal behaviors are different since r-NSGA-II is based on non-r-dominated 

sorting and crowding distance assignment and not on indicator based selection. In this 

subsection, we make a comparison between r-NSGA-II and PBEA on two test 

problems. We use the same experimental design presented in (Thiele et al. 2009) and 

described in table 5.5. We note that the comparative experiments with PBEA are done 
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(a) 

 
(b) 

 
(c) 

Figure 5.13 Preferred solutions on 10-objective DTLZ2 with the reference 

point (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.35, 0.35, 0.25, 0.45): (a) g-NSGA-II, 

(b) r-NSGA-II’ and (c) r-NSGA-II”. 
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Table 5.5 Parameter settings: r-NSGA-II versus PBEA. 

Parameters r-NSGA-II PBEA 

Population size 20 20 

Number of 
generations 

500 for ZDT1 

100 for ZDT3 

500 for ZDT1 

100 for ZDT3 

Fitness scaling  

factor (κ) 

- 0.05 

 

under the framework of PISA (Bleuler et al. 2003). The first experiment is made with 

the bi-objective ZDT1 problem using the reference point (0.6, 1.0). For both 

algorithms, we use the same spread, i.e., .1.0== PBEAδδ  The obtained ROI 

approximations of the two algorithms are shown by figure 5.15(a-c). The two 

approximations have similar convergence rates. However, although we use the same 

spread value (termed specificity in (Thiele et al. 2009)) for the two algorithms, we 

observe that r-NSGA-II approximation is more concentrated around the projected 

 

Figure 5.14 r-NSGA-II versus PBEA on ZDT1 with the reference 

point (0.6, 1.0). 
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reference point shown by a black circle. The projected reference point corresponds to 

the solution having the smallest ASF value among PBEA approximation members. We 

conclude that the mechanisms designed in each one of the algorithms to control the 

spread of the ROI are different and have different effects. It is worth noting that the 

spread control is easier when using r-NSGA-II than with the use of PBEA. In fact, the 

upper/lower bounds of the spread parameter δ of r- NSGA-II are known since ]1,0[∈δ  

(cf. definition 5.1). Contrariwise, the upper/lower bounds of PBEAδ  are unknown which 

represents a great difficulty to the DM to control the ROI spread especially when 

solving real world MOPs with PBEA.  

The second experiment is performed with the bi-objective ZDT3 test problem. We use 

three reference points: (0.7, 2.5), (0.4, 2.7) and (0.3, 2.6). Figure 5.15 shows the 

approximations obtained by PBEA (PBEAδ = 0.03 for the first reference point,      

PBEAδ = 0.02 for the second one and PBEAδ = 0.01 for the third one (Thiele et al. 2009)) 

and those obtained by r-NSGA-II (δ = 0.2 for the three reference points). We observe, 

from this figure, that for each reference point r-NSGA-II produces a bounded ROI in 

the vicinity of the projected reference point designed by a black circle. Nevertheless, 

for each reference point, PBEA provides a biased distribution of solutions concentrated 

in the proximity of the projected reference point. We remark that the larger the distance 

between the reference point and PBEA approximation is, the smaller the effect of 

concentring the search around the projection of the reference point is. This phenomenon 

can be easily seen from figure 5.15(c) where the optimistic reference point (0.3, 2.6) is 

used. Additionally, these observations were highlighted in the work of Thiele et al. 

(2009). This fact represents the main inconvenience of PBEA since the probability of 

the event “setting an optimistic reference point” increases during the interactive run of 

PBEA, since the population is converging progressively towards the Pareto optimal 

front, which can mislead the DM when specifying his/her preferences. However, the    

r-NSGA-II is insensitive to such problem. In summary, we can resume the advantages 

of r-NSGA-II over PBEA as follows: (1) the control of the spread of the ROI in           

r-NSGA-II is easy in contrast to PBEA where this control is very rough, (2) contrarily 

to PBEA, r-NSGA-II is independent of the position of the reference point in the search 

space and (3) finally, the last point which has not been mentioned previously is the 

sensitivity of IBEA, and eventually PBEA, to the fitness scaling factor κ which depends 

on the used quality indicator and on the MOP under consideration (Zitzler and Künzli 

2004). Thus, setting an appropriate value to κ represents a great difficulty to the DM 

when solving real world multi-criteria problems. 
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     (a) 

 
    (b) 

 
    (c) 

Figure 5.15 r-NSGA-II versus PBEA on ZDT3 with the reference points: 

(a) (0.7, 2.5), (b) (0.4, 2.7) and (c) (0.3, 2.6).  
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♦ r-NSGA-II versus R-NSGA-II 

In this subsection, we compare r-NSGA-II to R-NSGA-II approach of Deb et al. 

(2006). Contrary to r-NSGA-II where preference-based selection is based on the          

r-dominance relation, R-NSGA-II preference-based selection is made by modifying the 

crowding distance assignment strategy by emphasizing solutions situated near reference 

points to survive for the next generations. Additionally, an ε-clearing procedure is used 

to control the spread of the obtained ROIs by restricting the distance in objective space 

between two neighboring solutions in the same front to be greater than a user-defined 

small quantity ε (cf. section 3.2.4). R-NSGA-II has demonstrated its ability to guide the 

search towards multiple reference points; however there were difficulties when 

handling only one unique reference point. For this reason, we make an experiment 

using a single reference point and compare the obtained results of the two algorithms: 

(1) r-NSGA-II and (2) R-NSGA-II. We use the 30-variable bi-objective test problem 

ZDT1 and the reference point (0.2, 0.2). The population size and the number of 

generations are set to 100 and 500 respectively. The R-NSGA-II clearing parameter and 

the r-NSGA-II δ threshold are settled, by trial and error, to 0.001 and 0.1 respectively in 

order to obtain similar ROI spreads for both algorithms. Figure 5.16 shows the obtained 

results for the two different preference-based EMO methodologies. We remark that     

r-NSGA-II ROI lies on the optimal Pareto front. However, R-NSGA-II is unable to 

reach the Pareto optimal front. This phenomenon may be explicated by two reasons. 

Firstly, R-NSGA-II guides the search towards the single reference point at the 

beginning of the search process which reduces the population diversity. The diversity 

reduction slows down the search process and may cause a premature convergence 

which makes the MOEA unable to reach the Pareto optimal front. The used ε-clearing 

procedure seems to be unable to keep the population diversity sufficiently. In fact, Deb 

et al. (2006a) have mentioned this problem and have suggested the use of extreme 

points as additional reference points in order to keep population diversity and avoid 

getting stuck in local optima. The conclusion to draw is that R-NSGA-II must handle 

more than one reference point to achieve satisfactory results. Secondly, contrary to     

R-NSGA-II, r-NSGA-II does not concentrate the search in a certain region of the search 

space at an early stage of the evolutionary process. In fact, the population is guided 

towards the reference point gradually during the MOEA execution by means of the 

adaptive management of the non-r-dominance threshold δ (cf. section 5.2.5) which 

preserves population diversity and allows the convergence towards the Pareto optimal 

front. It is important to note that, unlike R-NSGA-II, the crowding distance assignment 

used in the original NSGA-II is kept in r-NSGA-II which emphasizes even more the 

population diversity. In summary, the main advantages of r-NSGA-II over R-NSGA-II 
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are: (1) the ability of r-NSGA-II to handle a unique reference point where R-NSGA-II 

faces difficulties in such situation and (2) the easiness of the ROI spread control when 

using r-NSGA-II since the upper/lower bounds of the non-r-dominance threshold δ are 

known ( ]1,0[∈δ , cf. definition 5.1) which is not the case for R-NSGA-II since setting 

an appropriate ε-clearing factor is not a trivial task when solving real world problems.        

5.4 Conclusion 

In this chapter, we have suggested a new dominance relation inspired from the Pareto 

dominance concept and the reference point approach. When incorporated in NSGA-II, 

the r-dominance has shown its ability to guide the search based on DM’s preferences 

towards the preferred parts of the Pareto optimal front on a reasonable number of FEs. 

The spread of the obtained ROI could be easily controlled by the non-r-dominance 

threshold δ. Bias on certain objectives could be achieved by varying the ASF weight 

vector. The r-NSGA-II has also the ability to handle multiple reference points. The 

usefulness of our new proposed approach has been demonstrated a priori and 

interactively on a set of two- to ten-objective test problems. Moreover, our approach 

has shown competitive and better results when confronted to three recently proposed 

reference point-based EMO approaches. In the next chapter, we focus on searching for 

special points of the Pareto front which could be considered as implicit DM’s 

preferences, i.e., DM’s preferences when the DM does not specify explicit preferences.    

 
Figure 5.16 r-NSGA-II versus R-NSGA-II on ZDT1 with the 

reference point (0.2, 0.2). 
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Chapter 6  

Incorporating Implicit DM’s Preferences in 

Evolutionary Multi-objective Optimization 

6.1 Introduction 

As noted in the fourth chapter, in the absence of explicit DM’s preference information, 

there exist special points of the Pareto front that could represent implicitly preferred 

parts of the optimal frontier for the DM, which are: (1) knee regions and (2) nadir 

point. This chapter is devoted to present two contributions. The first one corresponds to 

a preference-based MOEA which approximates knee regions. The second one 

corresponds to a preference-based MOEA which approximates nadir objective values. 

The rest of this chapter is structured as follows. The second section describes our 

proposed approach for knee region approximation. The third section presents our 

proposed algorithm for nadir point estimation. In each of these two sections, we 

describe the proposed methods and we provide comparative experiments that allow 

validating them regarding the most prominent works in the corresponding specialized 

literature. The last section concludes the chapter.  

6.2 Proposed methods for knee region approximation 

6.2.1 Knee-based R-NSGA-II (KR-NSGA-II) 

♦ Algorithmic description 

Before presenting the algorithmic details of KR-NSGA-II (Bechikh et al. 2010a), we 

describe the knee point characterization adopted in our algorithm. In fact, we choose 

the characterization of Das (1999) which is illustrated in figure 6.1 for the convex case 

and the concave one. In the bi-objective case, the knee of the Pareto front corresponds 

to the farthest solution from the extreme line L*. The extreme line is the line defined by 

the extreme solutions s1
* and s2

* (i.e., solutions having minimal objectives values). 

According to Das, the knees correspond to the maximum bulges of the convex/concave 

parts of the Pareto front of a MOP. However, the DM is interested only to knees 
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situated in convex parts since these latter have the maximal values in terms of the 

marginal rate of return (Das 1999). Hence, knees situated in concave parts are to be 

discarded. Consequently, we are interested only to convex bulges (figure 6.1(a)) and 

not to concave ones (figure 6.1(b)). 

KR-NSGA-II is an extension of the R-NSGA-II (Deb et al. 2006a) using mobile 

reference points. We call mobile reference point a reference point that is updated 

automatically in each generation of the MOEA. In the original version of R-NSGA-II, 

the reference points are to be supplied by the DM a priori or interactively. However, in 

KR-NSGA-II, the reference points are picked from the first non-dominated front 

automatically via an updating strategy in each generation of the MOEA. We call this 

selection strategy Mobile Reference Points Updating Strategy (MRPUS). The MRPUS 

algorithm is presented in figure 6.2. First, the MRPUS considers extreme solutions of 

the first non-dominated front as reference points since these solutions define the 

extreme line L*. Hence, we assign infinite distances to the extreme solutions (lines 09-

12). Besides, we compute the Cartesian coordinates of the extreme line L* defined by 

the extreme solutions. These coordinates serve to compute the distance of a certain 

solution to the extreme line (line 13). After assigning each solution its distance from L* 

(lines 15-17), the MRPUS procedure searches for the KN farthest solutions from the 

extreme line L* situated in the convex parts of the Pareto front (where KN is a user-

supplied parameter indicating the number of knees that the DM is searching for). Thus, 

the cardinality of the mobile reference points set MRP is KN+2. The MRPUS updates 

the reference points in such a way they are not pairwise ξ-duplicates (lines 18-28). Two 

solutions are ξ-duplicates if they have a normalized difference in the objective space 

less than or equal to ξ. This is an important feature of the updating strategy since it 

ensures that only a unique reference point resides in each knee region. This fact avoids 

    
                (a)                                                       (b) 

Figure 6.1 Das characterization of the concept of knee for: (a) the convex 

case and (b) the concave case.  
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the premature convergence of the mobile reference points towards the same knee to 

occur. The control of ξ-duplicates reference points provides an equal emphasis of 

solutions closest to each reference point situated in each distinct knee, thereby 

allowing multiple knee regions to be found simultaneously in a single simulation run. 

Figure 6.3 illustrates the functioning principle of the MRPUS algorithm for the bi-

objective case with two knee regions. First, extreme solutions A and B are selected in 

order to preserve population diversity. After that, the algorithm selects the point C as a 

MRPUS algorithm 

01. Input 
02. M: the objectives number 
03. KN: the knees number  
04. FF: the first non-dominated front 
05. OMRP: the old mobile reference point set 
06. Output  
07. MRP: the updated mobile reference point set 
08. Begin 
09.   ES ← extreme_solutions (FF, M); 
10.   For i = 1 to size(ES) do 
11. ES(i).distance ← Inf ;  
12.   End For 
13.   L* ← cartesian_coordinates (ES); 
15.   For i = 1 to size(FF) do 
16. FF(i).distance ← distance_to_L* (FF(i), L*); 
17.   End For 
18.   Sorted_FF ← Sort (FF, ‘descend’);  
19.   j ← 1;  
20.   k ← 1;  
21.   While (k <= KN+2) and (j <= size (FF)) do  
22. If  (NOT(is_ξ_duplicate (sorted_FF(j), OMRP)) Then 
23.  MRP(k) ← sorted_FF(j); 
24.  OMRP(k) ← MRP(k); 
25.  k ← k+1; 
26. End If  
27. j ← j +1; 
28.   End While 
29.   If (size (MRP) < KN+2) Then  
30. For i = (size (MRP) + 1) to KN+2 do 
31.  MRP(i) ← sorted_FF(i); 
32. End For 
33.   End If   
34. End 

Figure 6.2 The MRPUS algorithm. 
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reference point since it has the maximal distance from the extreme line L*. In order to 

not to converge to the same knee region, the algorithm ignores the point D since it is a 

ξ-duplicate with the already selected point C and jumps directly to the point E which 

permits the discovery of a new knee region. The control of ξ-duplicates reference 

points provides an equal emphasis of solutions closest to each reference point situated 

in each distinct knee, thereby allowing multiple knee regions to be found. For the case 

where the DM supplies a knees number (KN) greater than the existing knees in the 

Pareto front of the MOP under consideration, the MRPUS procedure permits to          

ξ-duplicates reference points to occur (i.e., reference points residing in the same knee) 

(lines 29-33). Besides, for the case where the DM specifies the parameter KN in such a 

way KN is less than the existing knees in the Pareto front of the MOP, we remediate 

this problem, as will be shown later, by making the KR-NSGA-II algorithm 

interactive. Hence, the DM may exploit its acquired knowledge about the search space 

during the interactive run of the algorithm in order to explore all the existing knee 

regions. It should be noted that the extent of the knee regions is controlled by means of 

the clearing parameter ε (used in R-NSGA-II) since a knee region in KR-NSGA-II 

corresponds to a ROI in R-NSGA-II. Additionally, it is worth noting that the MRPUS 

is scalable with the number of objectives. The extreme line L* can be replaced by: (1) 

the extreme plane P* defined by three extreme solutions for the tri-objective case and 

(2) the extreme M-dimensional hyper-plane HP* defined by M extreme points for the 

M-objective case.  

In the following, we explain how we assign for each solution its distance to the extreme 

line L*. Mathematically, the distance from a given point ),( AA yxA  to a given line 

 

 

Figure 6.3 Illustration of the selection of the mobile reference points 

with the MRPUS for the bi-objective case with two knees. 
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0: =++ cbyaxD  is expressed by the following formula (Smedley and Wiseman 

2001):  

22
),(

ba

cbyax
DAd AA

+

++
=                     (6.1) 

The sign of cbyaxs ++=  determines on which side the point ),(yx  lies with respect 

to the line. If 0>s  then the point lies on the same side as the normal ),( ba . If 0<s  

then it lies on the opposite side. Finally, if 0=s  then the point ),( yx  lies on the line. 

Since in KR-NSGA-II we are interested only to convex knee regions, the distance from 

a solution ),( zz yxZ  to the extreme line 0:* =++ cbyaxL  is computed as follows:  
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           (6.2) 

According to equation (6.2), solutions residing in concave knees (for the case of 

minimization problems) are discouraged to remain in the race by assigning them the 

opposite of their distances to the extreme line. This phenomenon is illustrated by figure 

6.4. From this figure, solutions C and D are residing in concave knee regions. Hence, 

they are to be discarded by assigning them the opposite of their distances (i.e., negative 

distances).  However, solutions A and B residing in convex knees are to be preserved to 

the next generations. Analogously, such computations can be extended for the             

 

 

Figure 6.4 Encouraging the discovery of convex knee regions.  
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M-dimensional (M-objective) case (Smedley and Wiseman 2001) which makes the  

KR-NSGA-II able to focus on knees for problem with more than two objectives. It is 

important to note that, based on the knee characterization adopted in KR-NSGA-II, 

concave knees do not always occur in a Pareto front containing knees.    

♦ Experimental results 

This subsection is devoted to demonstrate simulation results on two- and three-

objective knee-based test problems using the KR-NSGA-II algorithm. All experiments 

are made with MATLAB1 software. For each test problem, we show the mean of the 

obtained results over 20 independent simulations runs. In all simulations, we use the 

SBX operator with a distribution index of 10 and polynomial mutation with a 

distribution index of 20 (Deb and Agrawal 1995). The crossover and mutation 

probabilities are set to 0.9 and 1/n (where n is the number of decision variables) 

respectively. The population size is set to 100 for the bi-objective case and 200 for the 

tri-objective case. For all experiments, the ξ parameter is set to 10-2. The knee-based 

test problems used in this chapter are described in appendix B. Inspired from the DTLZ 

problems (Deb et al. 2002b), Branke et al. (2004) designed three knee-based test 

problems named DO2DK, DEB2DK and DEB3DK in order to assess their knee-based 

MOEAs. DO2DK and DEB2DK are two bi-objective problems with n decision 

variables. They have a settable parameter K controlling the number of knees in the 

front. DO2DK has an additional parameter s controlling the skew of the front. 

DEB3DK is a tri-objective problem where, like DEB2DK, the parameter K expresses 

the number of knee regions in the Pareto surface. Based on these three test problems, 

Rachmawati and Srinivasan (2009) created other benchmarks: DO2DK-1, DEB2DK-1 

and DEB3DK-1. These problems are modified versions of DO2DK, DEB2DK and 

DEB3DK respectively. In fact, the g(x) function is updated in order to impose a greater 

density of solutions away from the optimal front and vice versa. This non-uniformity of 

the search space challenges the MOEA’s ability to progress towards the Pareto front. 

DEB2DK-2 is a modified DEB2DK where the Pareto front is discontinuous and 

contains a bias in the solution distribution along the front in addition to knees in 

concave parts. All bi-objective test problems are implemented with K = 1 to 4. The 

parameter s is set to 0 for K = 1 and to 1 for K > 1. Tri-objective problems are 

implemented with K = 1 to 2. In total, 24 problem instances are used in our study.    

• A priori simulation results 

Firstly, we consider the DO2DK test problem. Figure 6.5 shows the obtained solutions 

after performing 100 generations (i.e., 10000 FEs) with ε = 0.0001, KN = K = 4 and      
                                                 
1 The used version is MATLAB 7.4 (www.mathworks.com). 
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s = 1.0. We remark that KR-NSGA-II has the ability to focus on the four knee regions 

of the DO2DK problem while preserving extreme solutions. As has been discussed 

before, extreme solutions are considered as reference points in KR-NSGA-II since 

these solutions play a crucial role in: (1) the determination of the extreme line L* and 

consequently in the detection of knees and (2) ensuring the population diversity and 

consequently preserving the reference point set diversity. 

Next, we consider the DEB2DK test problem. Figure 6.6 demonstrates the effect of 

varying the cleaning parameter ε on this bi-objective problem, with KN = K = 4, after 

performing 100 generations. We remark that KR-NSGA-II is able to find solutions 

located in the four knee regions in addition to the extreme optimal solutions. Besides, 

for ε = 0.0001, we remark that population individuals converge sharply towards the 

center of each knee region in addition to extreme solutions. Solutions with other ε 

values are shown with an offset to the true Pareto optimal front for ease of 

visualization. We notice that the range of the obtained solutions increases with the 

increase of the parameter ε. Hence, if the DM would like to obtain a large 

neighbourhood of solutions near each knee center, a large value of ε should be chosen. 

We conclude that the DM could control the spread of the obtained ROIs (i.e., knee 

regions) by means of the cleaning parameter ε.     

Finally, we consider the tri-objective DEB3DK problem. Figure 6.7 demonstrates the 

KR-NSGA-II obtained solutions after performing 250 generations (i.e., 25000 FEs) 

with ε = 0.0001 and KN = K = 1. It is clear, from this 3D-plot, that the KR-NSGA-II 

has the ability to focus on the knee region(s) in the three-objective case in addition to 

 

 

Figure 6.5 Obtained solutions with DO2DK test problem with 4 knees. 



Chapter 6. Incorporating Implicit DM’s Preferences in Evolutionary Multi-objective Optimization 

 123 

finding extreme solutions. It is worth noting here that the distance computations are 

done according to the extreme plane P* (defined by three extreme solutions) instead of 

the extreme line L* as discussed previously.  

 

Figure 6.6 Effect of varying the ε parameter on the DEB2DK 

test problem with 4 knees. 

 

 

Figure 6.7 Obtained solutions with the tri-objective DEB3DK 

test problem with one knee. 
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• An interactive scenario 

In this subsection, we propose an interactive scenario for the KR-NSGA-II algorithm. 

This scenario is useful especially when the DM has no idea about the number of the 

existing knees in the Pareto optimal front of the problem under consideration. The 

interactive version of KR-NSGA-II can be summarized as follows: 

� Step 1:  Ask the DM to supply the population size, the stopping criterion, the 

number of knee regions to be discovered (i.e., the KN parameter), the ε parameter 

and the ξ parameter; 

� Step 2: Perform the KR-NSGA-II algorithm until the stopping criterion is met; 

� Step 3:  Supply the DM with the set of the obtained solutions. If the DM is satisfied 

with the supplied set of solutions then stop the optimization process, else ask the 

DM if he/she would like to update the parameters KN, ε, ξ and/or the stopping 

criterion then return to Step 2. 

In the following, we illustrate an interactive run of the KR-NSGA-II algorithm on the 

bi-objective DEB2DK test problem with 4 knees (K = 4) using a population of 100 

individuals. The parameters ε and ξ are set initially to 0.0005 and 0.01 respectively. We 

suppose that the DM has no idea about the number of the existing knees in the optimal 

Pareto front. The overall interactive run is described by figure 6.8 and it is composed 

with two cycles. We call cycle a run of KR-NSGA-II for a certain number of 

generations freely fixed by the DM. Firstly, the DM performs an evolutionary cycle of 

100 generations with KN = 2. The obtained solutions (figure 6.8(a)) show that         

KR-NSGA-II discovers two knee regions in addition to the extreme solutions. We 

suppose that the DM is dissatisfied and he/she is interested in finding all existing knees 

in the Pareto front. Hence, he/she sets the parameter KN to 6 and he/she performs a run 

of 100 generations. According to figure 6.8(b), we remark that the population focus on 

the four knee regions existing in the Pareto front of DEB2DK problem with four knees. 

We conclude that, although the DM sets the parameter KN to 6, KR-NSGA-II provides 

4 knee regions. This fact emphasizes what has been discussed previously in the fourth 

section, i.e., the MRPUS procedure accepts ξ-duplicates reference points if and only if 

the DM sets KN > K which ensures the discovery of all existing knee regions.  

In summary, the KR-NSGA-II has demonstrated its effectiveness in approximating 

knee regions for the bi- and tri-objective cases. The interactive scenario is shown to be 

useful to discover all knee regions when the DM ignores the number of existing knees a 

priori. However, the KR-NSGA-II performance depends on the success of the 

algorithm in discovering the Pareto optimal extreme solutions which was reported not 

to be an easy task when estimating the nadir point (Deb and Miettinen 2008). 
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6.2.2 Trade-off-based KR-NSGA-II (TKR-NSGA-II) 

♦ Algorithmic description 

TKR-NSGA-II (Bechikh et al. 2011a) is an enhanced version of KR-NSGA-II. As 

noted previously, the optimal extreme point estimation is not an easy task for MOEAs. 

 

      (a) 

 

      (b) 
 

Figure 6.8 Interactive scenario on DEB2DK with 4 knees: 

(a) KN = 2 and (b) KN = 6.  
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Hence, the failure of KR-NSGA-II in discovering the true extreme solutions engenders 

the loss a potential knee solutions or the discovery of spurious ones. In order to avoid 

such problematic, we modified the knee point characterisation in KR-NSGA-II. In fact, 

instead of the distance to the extreme line, we used a recently proposed trade-off worth 

metric designed by Rachmawati and Srinivasan (2009). In fact, although Pareto optimal 

solutions are equivalent, the trade-off magnitude varies across the optimal front. Trade-

off characterizes two non-dominated objective vectors and can be defined as the net 

gain of improvement in some objective subset by the accompanying deterioration in 

some other criteria as a result of substituting an objective vector with another non-

dominated one. Equation (3) offers a mathematical definition of the trade-off 

information for a pair of non-dominated solutions: 
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We note that )( im xf  corresponds to the mth objective value of solution xi and 

max
mf / min

mf  corresponds to the maximal/minimal value of the mth objective in the 

population individuals. In the above equation, normalization is performed in order to 

prevent some objectives being predominant over others since objectives are usually 

incommensurable in real world applications. In equation (5.3), the numerator expresses 

the aggregated improvement gained by substituting xj with xi. However, the 

denominator evaluates the deterioration generated by the substitution. A more concise 

metric to compute the worth of a solution xi, in terms of trade-off, relative to the set of 

non-dominated solutions  S  to which it belongs is given by equation (6.4) (Rachmawati 

and Srinivasan 2009): 
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We note that xj denotes members of the set of non-dominated solutions S that are non-

dominated with respect to xi. The quantity ),( Sxiµ  expresses the least amount of 

improvement per unit deterioration by substituting any alternative xj from S with xi. 

Solutions residing in convex knee regions have the highest values in terms of the trade-

off metric µ. Such characteristic makes knee regions almost always very important to 

the DM in practical context.  
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T-MRPUS algorithm 

01. Input 
02. M: the objectives number 
03. KN: the knees number  
04. FF: the first non-dominated front 
05. OMRP: the old mobile reference point set 
06. Output  
07. MRP: the updated mobile reference point set 
08. Begin 
09.   ES ← extreme_solutions (FF, M); 
10.   MRP ← ES; 
11.   For i = 1 to size(FF) do 
12. FF(i).trade-off_worth ← evaluate_trade-off_metric (FF(i), FF); 
13.   End For 
14.   sorted_FF ← Sort (FF, ‘descend’);  
15.   j ← 1;  
16.   k ← 1;  
17.   While (k <= KN) and (j <= size (FF)) do  
18. If  (NOT(is_ξ_duplicate (sorted_FF(j), OMRP)) Then 
19.  MRP(k) ← sorted_FF(j); 
20.  OMRP(k) ← MRP(k); 
21.  k ← k+1; 
22. End If  
23. j ← j +1; 
24.   End While 
25.   If (size (MRP) < KN) Then  
26. For i = (size (MRP) + 1) to KN do 
27.  MRP(i) ← sorted_FF(i); 
28. End For 
29.   End If   
31. End 

Figure 6.9 The T-MRPUS algorithm. 

 
The TKR-NSGA-II is the result of substituting the distance from the extreme line 

computation in KR-NSGA-II by the trade-off worth measure. This modification is 

performed in the MRPUS algorithm. The new MRPUS procedure, called Trade-off-

based MRPUS (T-MRPUS), is presented by figure 6.9. We see from this figure, that 

MRPUS and T-MRPUS are nearly the same; just the knee point characterization is 

changed. The T-MRPUS updates the mobile reference points based on the trade-off 

worth metric values which computation is independent of the discovery of the true 

extreme solutions. Solutions having highest values in terms of trade-off worth are 

emphasized. The control of ξ-duplicate reference points (cf. figure 6.3) is also carried  
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TKR-NSGA-II basic iteration algorithm 

01. Input 
02.   Pt : the parent population at generation t 
03.   Qt : the offspring population at generation t   
04.   M : the number of objective functions 
05. Output 
06.   Pt+1 : the updated parent population at generation t+1 
07.   Qt+1 : the updated offspring population at generation t+1 
08. Begin  
09.   Rt ← Pt ∪ Qt; 
10.   Rt ← non-domination_sort (Rt, M); 
11.   FF ← select_best_front (Rt); 
12.   MRP ← T-MRPUS (M, KN, FF, MRP); 
13.   Rt ← reference_point_based_crowding (Rt, MRP); 
14.   Rt ← ε-clearing (Rt); 
15.   Pt+1 ← environmental_selection (Rt); 
16.   Qt+1 ← reproduction (Pt+1); 
17.   t ←  t+1;    
18. End 

Figure 6.10 The TKR-NSGA-II basic iteration. 
 

out by the T-MRPUS in order to ensure the discovery of all existing knee regions. 

Additionally, it is worth noting that T-MRPUS is scalable with the number of 

objectives since the trade-off worth metric µ is independent of the number of criteria to 

optimize.        

Figure 6.10 presents the basic iteration of the TKR-NSGA-II algorithm. Firstly, the 

parent population Pt and the offspring population Qt are merged to form the combined 

population Rt (line 9). Besides, a non-dominated sorting is applied to the population Rt 

(line 10). Hence, the population Rt becomes subdivided into several fronts. Then, the 

best front FF is selected (line 11) and passed as input parameter to the T-MRPUS 

procedure in order to generate the new mobile reference point set MRP (line 12). We 

note that the MRP set passed as input parameter (line 12) to the T-MRPUS procedure 

corresponds to the old mobile reference point set (i.e., the MRP of the previous 

generation). Once the MRP set is generated, we assign to each solution, front wise, its 

crowding distance based on its distance from the mobile reference points (line 13). 

Since solutions near reference points have better crowding factors, the population is 

guided gradually towards knee centers; which makes the search converging to knee 

regions. In order to ensure the control of the extent of the obtained knee regions and 

promote further population diversity, a clearing procedure is applied to Rt (line 14). 



Chapter 6. Incorporating Implicit DM’s Preferences in Evolutionary Multi-objective Optimization 

 129 

This procedure is applied front wise and ensures that the minimal allowed distance 

between two objective vectors having the same non-domination rank is greater than the 

user-supplied quantity ε. Finally, the new parent population Pt+1 for the next generation 

is created by performing environmental selection on Rt (line 15), the new offspring 

population Qt+1 for the next generation is produced by applying genetic operators to 

Pt+1 (line 16) and the evolutionary process is repeated until the stopping criterion is 

met. 

♦ Experimental results  

This subsection is devoted to confront TKR-NSGA-II to the most representative works 

in this research area. We note that the TKR-NSGA-II has demonstrated similar results 

to KR-NSGA-II ones not only on a priori experiments but also on an interactive run 

(Bechikh et al. 2011a). Before presenting comparative experiments, we would like to 

discuss an important issue here which is the computational cost of TKR-NSGA-II. In 

fact, knee regions can be obtained by approximating the complete Pareto front and then 

knee regions can be detected, in a posteriori manner, by applying any trade-off metric 

on the final population (e.g., the smart Pareto filter (Mattson et al. 2004)) which goes 

without any further function call. We note that, after applying the NSGA-II to the 

DEB2DK test problem, the required number of FEs to approximate the whole Pareto 

front was about 50000 FEs. This fact shows the efficiency of TKR-NSGA-II over its 

base MOEA NSGA-II since it can provide optimal knee regions after 10000 FEs. 

Consequently, TKR-NSGA-II has two main advantages over NSGA-II. On one hand, it 

provides the DM with the maximal trade-offs which facilitates his/her task when 

selecting the final alternative. On the other hand, it reduces the required computational 

cost significantly. Additionally, similar observations were seen for the other test 

problems which proves the efficiency of TKR-NSGA-II over NSGA-II from a 

computational cost viewpoint and hence the need for such preference-based MOEA.    

• Assessing converging towards knee regions 

In this subsection, we compare the TKR-NSGA-II with the most representative works 

in this research area from a convergence viewpoint. TKR-NSGA-II is confronted to the 

Marginal Utility Approach (MUA) (Branke et al. 2004), the Weighted sum Niching 

Approach (WSNA) (Rachmawati and Srinivasan 2006b), the Sp2 version of the Parallel 

Local Weighted Sum Optimization approach (PLWSO) (Rachmawati and Srinivasan 

2009) and KR-NSGA-II (Bechikh et al. 2010a). Since MOEAs focusing on knee 

regions are preference-based MOEAs, we cannot use the hypervolume metric because 

the dominated portion of the objective space depends on the distribution of the obtained 

solutions.  For  this  reason,  we  use  another  well-cited  metric,  i.e.,  the  generational  
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Table 6.1 MOEA specific parameter settings. 

Algorithm MOEA specific parameter values 
WSNA Q = 100, P =20 
PLWSO Q = 100, δ′ = 0.1, SP2 = 80% 
KR-NSGA-II 
TKR-NSGA-II 

ξ = 0.05 for bi-objective case and 0.08 for tri-objective case, 
ε = 0.001, KN = K 

  

distance GD which expresses the proximity of the obtained solution sets to the Pareto 

optimal front. We recall that this performance measure is given by the average 

Euclidean distance separating the obtained solutions and the nearest members of a 

uniformly distributed reference set taken from the Pareto front. In this study, we use a 

reference Pareto front of size 500 for the bi-objective problems and 900 for the tri-

objective problems. We use the same experimental design of the study of Rachmawati 

and Srinivasan (2009) in order to make fair comparisons. A set of 10 simulation runs 

was done for each pair (MOEA, problem instance) under MATLAB software. For all 

MOEAs, the termination criterion is set to 20000 FEs for DO2DK and DO2DK-1, 

25000 FEs for DEB2DK, DEB2DK-1 and DEB2DK-2 and 30000 FEs for DEB3DK 

and DEB3DK-1 unless otherwise specified. The used genetic operators are the 

simulated binary crossover (SBX) and the polynomial mutation (Deb and Agrawal 

1995) with crossover probability of 0.9 and mutation probability of 1/n (where n is the 

number of decision variables). The population size is settled to 100 for all problem 

instances. The other MOEA-specific parameter values used in this study are indicated 

in table 6.1 unless otherwise specified. We note that the marginal utility approach does 

not have specific parameters. The significance of the parameters figuring in table 6.1 is 

detailed in subsection 6.2.1 and the references therein.  

Table 6.2 presents the GD values for the five algorithms under comparison. We note 

that we exploit the results published in (Rachmawati and Srinivasan 2009). We remark, 

from this table, that for a Pareto front containing a unique knee region, the reference 

point-based algorithms (i.e., KR-NSGA-II and TKR-NSGA-II) present better 

convergence than the three other weighted sum-based algorithms. This observation may 

be explained by the fact that the reference point-based methods preserve the survival of 

extreme solutions which promotes population diversity and hence emphasizes 

convergence towards the Pareto optimal front. However, the three weighted sum-based 

algorithms focus the search only towards the unique knee region which may reduce 

population diversity and hence deemphasizing convergence. For K greater than one, we 

see that (1) the KR-NSGA-II algorithm performs better than the MUA and the WSNA 

and (2) TKR-NSGA-II presents better results than the four other algorithms on most 

problems. The superiority of TKR-NSGA-II over KR-NSGA-II may be explained by  
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Table 6.2 Generational distance values. 

Problem K MUA WSNA PLWSO KR-NSGA-II TKR-NSGA-II 
  Mean SD Mean SD Mean SD Mean SD Mean SD 

DO2DK  1 0.03505 0.01858 0.00437 0.00003 0.00329 0.00024 0.00311 0.00086 0.00299 0.00031 
 2 0.02497 0.00628 0.00396 0.00043 0.00290 0.00066 0.00353 0.00039 0.00281 0.00054 
 3 0.02511 0.00360 0.00463 0.00038 0.00365 0.00029 0.00374 0.00048 0.00317 0.00033 
 4 0.02305 0.00305 0.00483 0.00073 0.00437 0.00036 0.00411 0.00039 0.00398 0.00046 

DO2DK-1 1 0.24272 0.60024 0.00442 0.00023 0.00339 0.00018 0.00334 0.00023 0.00308 0.00037 
 2 0.01420 0.01566 0.00361 0.00017 0.00287 0.00018 0.00367 0.00029 0.00291 0.00017 
 3 0.06192 0.10532 0.00348 0.00026 0.00445 0.00092 0.00331 0.00041 0.00315 0.00081 
 4 0.00696 0.00781 0.00363 0.00025 0.00457 0.00168 0.00391 0.00046 0.00338 0.00018 

DEB2DK 1 0.04060 0.00708 0.42352 0.39414 0.01624 0.00125 0.14971 0.00549 0.01232 0.00271 
 2 0.02497 0.00628 0.00396 0.00043 0.00290 0.00066 0.00303 0.00052 0.00238 0.00061 
 3 0.02511 0.00360 0.00463 0.00038 0.00365 0.00029 0.00501 0.00074 0.00294 0.00033 
 4 0.01368 0.00139 0.31743 0.47184 0.00674 0.00114 0.01883 0.00211 0.00731 0.00319 

DEB2DK-1 1 0.24272 0.60024 0.54071 0.74018 0.00339 0.00018 0.00334 0.00021 0.00304 0.00014 
 2 0.01420 0.01566 0.00361 0.00017 0.00287 0.00018 0.0405 0.00033 0.00229 0.00026 
 3 0.06192 0.10532 0.00348 0.00026 0.00445 0.00092 0.00389 0.00051 0.00377 0.00081 
 4 0.03299 0.00573 2.78440 3.66200 0.00666 0.00129 0.00591 0.00098 0.00517 0.00034 

DEB2DK-2 1 0.03446 0.00295 0.03669 0.00491 0.02538 0.00143 0.02511 0.00166 0.00219 0.00118 
 2 0.03393 0.00351 0.04150 0.00532 0.01883 0.00096 0.02239 0.00382 0.01890 0.00102 
 3 0.03262 0.00293 0.04632 0.00368 0.01439 0.00216 0.03848 0.00329 0.01511 0.00198 
 4 0.03367 0.00280 0.04783 0.00388 0.01279 0.00187 0.04872 0.00196 0.01324 0.00136 

DEB3DK 1 0.17511 0.11718 0.13382 0.02361 0.11368 0.01958 0.10322 0.02335 0.09461 0.01992 
 2 0.76320 0.25049 0.29348 0.07652 0.32930 0.15690 0.33782 0.14088 0.29917 0.12063 

DEB3DK-1 1 0.13239 0.10110 2.31280 0.35338 0.11282 0.04535 0.10074 0.08093 0.09567 0.06511 
 2 2.18844 0.60789 12.100 1.04223 0.27393 0.16129 0.32096 0.03027 0.25476 0.04258 

            

 

the fact that the discovery of knee region centers does not depend on the success of the 

algorithm in finding the optimal extreme solutions which is the case for KR-NSGA-II. 

In fact, TKR-NSGA-II updates the mobile reference point set based on the trade-off 

worth metric µ whose computation does not necessitate the discovery of extreme points 

which is not an easy task for MOEAs as reported in (Deb et al. 2009a). The              

TKR-NSGA-II considers extreme objective vectors as reference points only to promote 

population diversity and consequently enhancing convergence. The superiority of  

TKR-NSGA-II over PLWSO on most test problems may be explained by the fact that 

the output provided by PLWSO depends heavily on the weight sets generated during 

the first step of the optimization process (since PLWSO is a two-step method where the 

first step is devoted to generate the adequate weight sets). However, TKR-NSGA-II is a 

one-step method which guides the search directly towards knee regions at an early stage 

of the evolutionary process while preserving population diversity. Besides, since 

PLWSO is reported to perform better than WSNA and MUA in the study of 

Rachmawati and Srinivasan (2009), by transitivity TKR-NSGA-II is declared to be  
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                                    (a)                                     (b) 

Figure 6.11 WSNA spread control on DO2DK with K = 4: 

(a) Q = 100, P = 30 and (b) Q = 100, P = 50. 

  

                                    (a)                                     (b) 

Figure 6.12 TKR-NSGA-II spread control on DO2DK 

with K = 4: (a) ε = 0.001 and (b) ε = 0.01. 

 

superior to MUA and WSNA. The obtained results presented in table 6.2 emphasize 

this statement.  

• Assessing knee region spread control 

Obtaining a small neighborhood of solutions in the vicinity of the knee center is more 

interesting for the DM than obtaining a single solution. The neighborhood size should 

be well-controlled by the DM in order to have a clear idea about the worthiest solutions 
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in terms of trade-off. For this reason, in this subsection, we assess the ability of the 

algorithms to control the extent of the furnished knee regions. The MUA is excluded 

from the comparison since it does not allow controlling the knee region spread. Hence, 

the TKR-NSGA-II is confronted only to WSNA, PLWSO and KR-NSGA-II. 

� TKR-NSGA-II  versus WSNA 

WSNA allows controlling the spread of the obtained regions by means of the 

parameters Q and P (Rachmawati and Srinivasan 2006b). Figure 6.11 shows the effects 

of varying the parameter P on the DO2DK test problem with four knees. We see from 

this figure that the increase of P from 30 (figure 6.11(a)) to 50 (figure 6.11(b)), with Q 

kept constant at 100, increases the neighborhood extent in each knee region. This 

increase does  not  apply uniformly  over  all  knees  which  may  mislead  the DM in 

practical  applications.  However, TKR-NSGA-II does not face such problem. We see 

that the increase of ε from 0.001 (figure 6.12(a)) to 0.01 (figure 6.12(b)) increases the 

extent of the obtained knee regions in addition to the neighborhood spread near each 

extreme solution. Additionally, this increase applies uniformly over all existing knees 

which provides the DM with a clear idea about the maximal trade-offs of the Pareto 

front. Figure 6.13 demonstrates the effect of increasing the parameter P of WSNA from 

30 (figure 6.13(a)) to 50 (figure 6.13(b)), with Q  kept  constant  at  100, on  the  

DO2DK  test  problem  with  two  knees. We see, from this figure, that changing the 

parameter P has no effect on the spread of the knee regions. All obtained knee regions 

have approximately the same breadth. We conclude that the spread control by WSNA 

depends on the geometrical shape of the Pareto optimal front which is not the case for 

TKR-NSGA-II as shown by figure 6.14.   

� TKR-NSGA-II  versus PLWSO 

The spread control in PLWSO is achieved by the parameter δ′. Figure 6.15 shows the 

effect of varying the parameter δ′ on the DO2DK problem with two and four knees 

respectively. We see that the higher the δ′ value is, the larger the knee region spread is. 

However, PLWSO has the same inconvenience as WSNA. In fact, we observe that the 

spread increase does not apply uniformly for all knee regions which is not the case for 

TKR-NSGA-II (cf. figures 6.12 and 6.14). The uniformity of the extent of the obtained 

regions by TKR-NSGA-II may be explicated by the fact that the algorithm selects the 

mobile reference points based on the trade-off worth metric. When the reference points 

are stabilized on the knee centers, the population individuals are distributed near each 

knee center in such a way the minimal distance between two individuals in the 

objective space is greater than the user-specified quantity ε and hence obtaining 

different ROIs having the same extent near the discovered knee centers. Differently, the  
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                                       (a)                                        (b) 

Figure 6.13 WSNA spread control on DO2DK with K = 2: 

(a) Q = 100, P = 30 and (b) Q = 100, P = 50. 

  

                                       (a)                                        (b) 

Figure 6.14 TKR-NSGA-II spread control on DO2DK 

with K = 2: (a) ε = 0.001 and (b) ε = 0.01. 

 

PLWSO algorithm guides the search towards knee regions by optimizing a set of 

weighted sums instead of the original objectives. The spread control is achieved by 

modifying the weights corresponding to the potential knee solutions by means of the 

parameter δ′ which yields knee regions with different spreads. We conclude that the 

spread control in PLWSO depends on the geometrical contour of the optimal knee 

region. That is why the algorithm provides regions with different spreads which is not 

the case for the TKR-NSGA-II. Additionally, Rachmawati and Srinivasan (2009) noted  
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        (a)         (b) 

Figure 6.15 PLWSO on DO2DK with 2 knees: (a) δ′ = 0.1 

and (b) δ′ = 0.2. 

 
that the setting of the δ′ value is a critical task since a large value of this parameter 

makes the PLWSO algorithm missing potential knee regions while a smaller value of δ′ 

leads to the identification of spurious ones. This fact makes the spread control 

ineffective in PLWSO. However, TKR-NSGA-II does not present such problem. The 

DM can use any positive real number for the ε parameter without causing the 

difficulties faced by PLWSO which makes the spread control of knee regions more 

effective with TKR-NSGA-II than with the use of PLWSO.   

� TKR-NSGA-II  versus KR-NSGA-II 

These two search methods use the same spread control mechanism. Hence, we obtain 

the same spread by the two algorithms. However, we would like to discuss here how 

the dependence of the KR-NSGA-II on the success of discovering the Pareto optimal 

extreme solutions may furnish bad results and mislead the DM. We perform an 

experiment on DEB2DK-1 test problem with 4 knees which is characterized by the 

non-uniformity of the solution distribution in the objective space. In fact, the density of 

solutions decreases when getting closer to the optimal front which makes the discovery 

of the true extreme solutions not easy. Figure 6.16 shows the obtained results for both 

algorithms after 15000 functions evaluations with ε set to 0.01 and ξ settled to 0.07. We 

see from figure 6.16(a) that KR-NSGA-II algorithm fails in discovering the optimal 

extreme solutions. Consequently, it provides three true knee regions (i.e., regions A, B 

and C) and a wrong knee region (i.e., region D). The discovery of the non-knee region 

D yields to two negative results. In one hand, the true knee E is lost. The algorithm is  
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         (a)         (b) 

Figure 6.16 Obtained results on DEB2DK-1 with K = 4: 

(a) KR-NSGA-II and (b) TKR-NSGA-II. 

 
unable to encourage the survival of solutions in region E since solutions in the non-

knee region D are farther from the extreme line. On the other hand, the true knee region 

C and the wrong knee-region D are adjacent in such a way they seem to form a big 

region with a large spread with respect to regions A and B which may mislead the DM 

in practical context. Contrariwise, although TKR-NSGA-II does not find the optimal 

extreme solutions, we see from figure 6.16(b) that it provides the four knee regions 

with approximately the same spread. This observation is explained by the fact that the 

mobile reference point set update is achieved in TKR-NSGA-II based on the trade-off 

worth metric µ which does not require the identification of the true extreme solutions. 

Extreme solutions are promoted in TKR-NSGA-II only to encourage population 

diversity. However, the selection of the reference points in KR-NSGA-II is based on 

the computation of the extreme line defined by the extreme solutions which explains 

the obtained results on the DEB2DK-1 test problem. 

6.2.3 Discussion 

Through section 6.2, we have addressed an important issue in multi-objective 

optimization consisting in finding knee regions of the Pareto front and hence providing 

the DM with information about the maximal trade-offs across the Pareto optimal front. 

This information is very important in practical context as the DM may be interested in 

gaining one unit in a chosen criterion at the expense of degradation in one or more 

other criteria. We have proposed preference-based MOEA, i.e., the KR-NSGA-II, 

which uses the concept of mobile reference point to guide the search towards knee 

regions. These mobile reference points play the role of attractors to the population 
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individuals, thereby directing the search towards each knee center. The knee region 

spread can be controlled by means of the user-specified ε-parameter. KR-NSGA-II has 

demonstrated its effectiveness and efficiency in approximating knee regions with a 

controllable spread. Moreover, the KR-NSGA-II interactive version was valorized via 

an interactive run. However, the dependence of KR-NSGA-II on the discovery of 

Pareto optimal extreme solutions has been shown to be the major inconvenient of this 

algorithm. For this reason, we have proposed an improved version of KR-NSGA-II, 

i.e., TKR-NSGA-II. The latter algorithm has demonstrated its superiority to the most 

representative works in this research field including KR-NSGA-II via a set of 

comparative experiments. Moreover, its independence of the Pareto front geometry and 

of the discovery of the true extreme solutions represents the main advantage of this 

enhanced version.          

6.3 Proposed method for nadir point estimation 

6.3.1 Algorithmic description 

♦ Basic idea 

In this subsection, we propose a new way to estimate the nadir point. Our aim is to 

ensure the accurateness of the estimation while minimizing the required computational 

effort. In the previous subsection, the evolutionary approaches were categorized into 

three classes. We suggest here a new further class called extreme-region-of-interest-to-

nadir class. In fact, in the extreme-point-to-nadir class, the crowding distance is 

modified in order to concentrate the search in the vicinity of the extreme points. This 

uncontrolled focus on the extreme solutions may cause a lack of solution diversity and 

hence slows down the search process. The main idea in our new proposed approach 

(Bechikh et al. 2010b) is to guide the search towards extreme solutions while 

preserving a user-controlled diversity by constituting a ROI in the vicinity of each 

extreme non-dominated solution. The MR-NSGA-IIN described in this subsection 

represents an instance of the new suggested class. In fact, we modify the preference-

based MOEA R-NSGA-II of Deb et al. (2006a) in order to force the search to focus 

only on extreme solutions which allows the user to have an accurate estimation of the 

nadir objective vector quickly and reliably. Inspired from (Deb et al. 2006b), we 

propose to use extreme solutions (i.e., solutions having worst objective values) as 

reference points. Hence, the DM does not provide the set of reference points. This latter 

is updated automatically, in every generation of the algorithm, by making the current 

extreme solutions picked from the best non-dominated front as the current reference 

points. This automatic update of the reference points provides a ROI in the proximity of 
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each extreme point which facilitates the task of the discovery of the Pareto optimal 

extreme solutions and hence ensures the task of nadir point estimation. We recall that 

R-NSGA-II allows the DM to control the diversity of the obtained ROIs by using the 

clearing parameter ε. This latter allows controlling the focus of the search towards the 

ROIs which is not the case for Deb’s approaches (Deb et al. 2006b). The diversity 

control allows not only escaping from local optima but also speeding up the 

convergence towards the reference points (i.e., the extreme solutions). The originality 

of our new proposed approach regarding what already exists in the literature is as 

follows: Instead of focusing the search strongly towards the extreme points without any 

control which may degrade the population diversity, this focus is controlled by a user-

defined clearing parameter allowing the enhancement of solution diversification and 

hence speeding up the search by avoiding the stagnation in local optima.   

♦ Enhancement by local search 

Several works in the EMO field have shown that the incorporation of local search 

within MOEAs enhances the performance of these metaheuristics especially from a 

computational cost viewpoint (Bosman and de Jong 2005; Bechikh et al. 2008; Kumar 

et al. 2007; Shukla 2007). Such hybrid algorithms are termed memetic algorithms 

(Moscato 1989). Motivated by this observation, we propose to enhance our approach 

described in the previous subsection by hybridizing it with a gradient-based local. The 

aim of the local search is to push the mobile reference points further towards the true 

extreme Pareto optimal solutions and hence accelerating the convergence of the 

algorithm. Unlike the two-step local search designed by Deb et al. (2009a, 2009b), our 

new proposed local search is a one-step local search based on the SQP method (Wilson 

1963). For this reason, we term the new designed local search SQP-LS. Our choice is 

justified by the fact that the SQP procedure has been shown to significantly enhance the 

overall performance when incorporated into several MOEAs (Hu et al. 2003; Kumar et 

al. 2007; Tiwari et al. 2009). In each generation of our memetic algorithm, the extreme 

solutions are picked from the best non-dominated front and then are subject to the SQP-

LS. The SQP-LS algorithm is illustrated by figure 6.17. The local search procedure 

takes as inputs: (1) the current reference point x (i.e., the current extreme solution) and 

(2) the critical objective index (coi), i.e., index of the objective in which the current 

reference point presents the worst value. As a result, it returns the enhanced reference 

point r. First, SQP-LS generates, from x, M neighbors (where M is the number of 

objectives) by using the SQP procedure. A neighbor N(i) is created by minimizing the 

ith objective individually (line 08). Then, N(i) is evaluated according to each objective 

function (line 09). It is important to note that by minimizing one of the objectives, we 

do  not  obtain  dominated  neighbors  with  respect  to  the  reference  point. Hence, the  
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SQP-LS algorithm 
01. Input 
02.    x: the reference point 
03.    coi: the critical objective index 
04. Output 
05.    r: the enhanced reference point  
06. Begin  
07.    For i = 1 to M do  
08.       N(i) ← SQP(x, i); 
09.       N(i) ← evaluate_objectives(N(i)); 
10.    End For 
11.    For i = 1 to M do 
12.       If (N(i) Pareto dominates x) Then  
13.          x← N(i); 
14.       else If (N(i) and x are non-dominated) then 
15.                   If (N(i).ƒcoi > x.ƒcoi) then 
16.                        x← N(i); 
17.                   End If 
18.               End If     
19.       End If 
20.    End For 
21.    r ← x; 
22. End 

Figure 6.17 The SQP-LS algorithm. 

 

 

Figure 6.18 The SQP-LS replacement strategy: the second case. 

neighborhood generation strategy preserves the order induced by the Pareto dominance 

relation. Once the neighborhood is generated (lines 07-10), the replacement process 

(lines 11-20) begins. The designed replacement strategy is as follows. The neighbor 

replaces the reference point in the two following cases: (1) the generated neighbor N(i) 
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Pareto-dominates the current reference point x (line 12) or (2) the neighbor N(i) and the 

reference solution x are non-dominated and N(i) have a worse value in the critical 

objective than x (lines 14-15). The first case emphasizes the convergence towards the 

optimal Pareto front. However, the second case encourages the convergence towards 

extreme Pareto optimal solutions from which the true nadir point is constructed as 

shown in figure 6.18. 

Inspired from the work of Shukla (2007), we employ the Simultaneous Perturbation 

Method (SPM) instead of the Finite Difference Method (FDM) for gradient estimation. 

In fact, the one-sided FDM requires n+1 FEs (where n denotes the number of decision 

variables) to compute the gradient. Assuming gi to be the ith component of the gradient, 

ei to be a unit vector in the ith direction and c to be the step size at each generation, then 

for an n-dimensional variable x, the one-sided FDM used in (Hu et al. 2003; Kumar et 

al. 2007; Sharma et al. 2007; Tiwari et al. 2009) requires n+1 FEs to compute the 

gradient and is given by: 

c
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This is costly in terms of FEs (of the order O(n)). However, the one-sided SPM requires 

only two FEs to estimate the gradient independently of the number of decision variables 

n and is given by:  

i
i c

xfcxf
xg

∆
−∆+= )()(

)(                                             (6.6) 

where ∆ is an n-dimensional vector of random perturbations satisfying some statistical 

conditions (Spall 1998) and ∆i is its ith component. The computational complexity of 

the SPM is thus O(1) which justifies our choice. 

Our gradient-based memetic MOEA proposed in this subsection is termed Memetic    

R-NSGA-II for Nadir point estimation and is denoted MR-NSGA-IIN. Figure 6.19 

illustrates the basic iteration of this hybrid algorithm. We see from this figure that our 

new algorithm is a modified version of R-NSGA-II. The main modifications are: (1) the 

updating strategy of the mobile reference points set E (lines 11-12) and (2) the 

enhancement of the extreme solutions (i.e., the reference points) by the SQP-LS 

procedure (lines 13-15). We note that we have incorporated Deb’s constraint-handling 

strategy (Deb 2000) in MR-NSGA-IIN in order to make the algorithm able to handle 

constrained problems. This strategy is described as follows:  

1) Any feasible solution is preferred to any infeasible solution, 

2) Among two feasible solutions, the dominating one is preferred,  
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MR-NSGA-II N basic iteration algorithm 
01. Input 
02.    Pt : the parent population at generation t 
03.    Qt : the offspring population at generation t   
04.    M : the number of objective functions 
05. Output 
06.    Pt : the updated parent population at generation t 
07.    Qt : the updated offspring population at generation t 
08. Begin  
09.    Rt ← Pt ∪ Qt ; 
10.    Rt ← non-domination_sort (Rt, M) ; 
11.    Fbest ← select_best_front (Rt) ; 
12.    E ← select_extreme_solutions (Fbest, M) ; 
13.    For i = 1 to M do 
14.       E(i) ← SQP-LS (E(i), i) ;  
15.    End For 
16.    Rt ← distance_from_extreme_solutions (Rt, E) ; 
17.    Rt ← extreme_points_based_crowding (Rt, E) ; 
18.    Rt ← ε-clearing (Rt) ; 
19.    t ←  t+1 ;    
20.    Pt ← environmental_selection (Rt-1) ; 
21.    Qt ← reproduction (Pt) ; 
22. End 

Figure 6.19 The MR-NSGA-IIN basic iteration. 

3) Among two unfeasible solutions, the one having smaller overall constraint violation 

is preferred. 

6.3.2 Experimental results 

♦ Unconstrained problems  

In this subsection, we assess the performance of our algorithm on three- to twenty-

objective unconstrained non-linear test problems. Thus, we compare MR-NSGA-IIN to: 

(1) the naïve NSGA-II approach, (2) the WC-NSGA-II and (3) the EC-NSGA-II. We 

adopt the same experimental design used in (Deb et al. 2006b) for fairness of 

comparison. For the SQP-LS, a neighbor is generated by means of a modified version 

of the fminunc MATLAB function by changing the gradient computing strategy as 

described previously. The termination criterion of the SQP function (i.e., fminunc) is: 

(1) the norm of decent direction 810−≤d or (2) the number of allowed iterations µ is 

elapsed (µ=50 for M=3 and µ=20 for M>3). The used test problems are DTLZ1, 

DTLZ2, and the modified DTLZ5 (Deb et al. 2006b). The corresponding true nadir 

points are known and are: ( )T5.0,,5.0,5.0 K  for DTLZ1 test problem, ( )T0,,0,0 K  for 

DTLZ2 test problem and ( ) ( ) ( ) ( ) ( ) TMMMM





 −−−− 04322

21,,21,21,21,21 K for 



Chapter 6. Incorporating Implicit DM’s Preferences in Evolutionary Multi-objective Optimization 

 142 

DTLZ5 test problem. Also, we use the same termination criterion described in (Deb et 

al. 2006b) which expresses the proximity to the true nadir point. In fact, every p_size 

(p_size: the population size) FEs, we compute the following quantity: 

∑
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where I
iz  is the ith component of the ideal objective vector, N

iz  is the ith component of 

the true nadir point and est
iz  is the ith component of the estimated nadir point. When a 

value smaller than a threshold η (η = 0.01 is used here) is found, the simulation is 

terminated and the algorithm is said to be successful in finding a good estimate of the 

true nadir point. We note that the population size is 100 for M∈{3, 5}, 200 for M = 10, 

and 500 for M∈{15, 20}. The clearing factor ε is set to 0.001 for M∈{3, 5}, and 

0.0005 for M∈{10, 15, 20}. 

Figures 6.20-6.22 illustrate the median values (of 11 runs) of the required number of 

FEs to find a near nadir point (within η = 0.01) by the four algorithms for DTLZ1, 

DTLZ2 and DTLZ5 respectively. From figure 6.22, we see that all the algorithms 

perform more or less similar to each other for 3-, 5- and 10-objective DTLZ5. For 15- 

and 20-objective DTLZ5, MR-NSGA-IIN presents slightly better results than the three 

other algorithms. This similarity of results is explicated by the one-dimensional nature 

of the Pareto optimal front of DTLZ5 which makes the discovery of the true nadir point 

an easy task to achieve for the four search methods. From figures 6.20-6.21, we observe 

that WC-NSGA-II, EC-NSGA-II and MR-NSGA-IIN are strictly better than the naïve 

NSGA-II approach on DTLZ1 and DTLZ 2 especially when M≥ 5. For 10-objective 

DTLZ2, the naïve NSGA-II achieves a normalized difference measure D = 6.002 after 

10 million FEs which signifies that this approach is unable to find a near nadir point. 

For this reason, we do not show the median value of this method in figure 6.21 for 

M ≥ 10. Additionally, in figure 6.20, we do not show the median of the needed number 

of FEs for the naïve approach on DTLZ1 for M≥ 15 since this value is very high on the 

10-objective DTLZ1 compared to the three other algorithms. Let we now compare the 

MR-NSGA-IIN algorithm to the two modified versions of NSGA-II on DTLZ1 and 

DTLZ2. In fact, our hybrid algorithm performs: (1) slightly better than WC-NSGA-II 

for M∈{3, 5} and (2) strictly better than WC-NSGA-II for M∈{10, 15, 20}. Besides, 

MR-NSGA-IIN provides: (1) slightly better results than EC-NSGA-II for M ∈{3, 5, 10} 

and (2) strictly better results for M∈{15, 20}. The performance of MR-NSGA-IIN may 

be explicated by two reasons. The first reason is that our hybrid algorithm does not  
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Figure 6.20 Required number of FEs for DTLZ1. 
 
 

 
 

Figure 6.21 Required number of FEs for DTLZ2. 
 
 

 
 

Figure 6.22 Required number of FEs for DTLZ5. 
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concentrate the search strongly in the vicinity of the extreme solutions as done in the 

EC-NSGA-II. However, our algorithm constitutes a neighborhood (i.e., an ROI) in the 

proximity of each extreme solution in such a way the diversity of each neighborhood is 

controlled by the ε-clearing parameter. This diversity control not only avoids the 

slowing down of the search and the stagnation of the population in a certain region of 

the search space but also it prevents spurious non-dominated non Pareto optimal 

solutions to remain in the population as observed for  WC-NSGA-II  (Deb et al. 2009a). 

Consequently, this diversity control accelerates the search towards the Pareto optimal 

extreme solutions. The second reason is the use of the gradient-based local search as an 

additional operator of the evolutionary algorithm which emphasizes more the 

convergence towards the optimal extreme solutions. We conclude that MR-NSGA-IIN 

maintains a good balance between convergence and diversity which explicates the 

obtained results on DTLZ1 and DTLZ2. 

♦ Constrained problems  

In this subsection, we assess the ability of our memetic algorithm to solve constrained 

non-linear problems. We consider the tri-objective KM problem (Klamroth and 

Miettinen 2008) which is defined as follows: 
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It was reported in (Klamroth and Miettinen 2008) that this problem makes difficulty for 

the payoff table. Individual minimization of objectives yields the following three 

objective vectors: ( ) ,18,0,2 T−−  ( ) ,25.14,1.3,0 T−−  and ( )T55,2.2,5 − thereby the payoff 

table provides ( )T25.14,2.2,5 − as an estimate of the nadir point. However, it was 

reported  in  (Deb et al. 2009a; 2009b)  that  the  true  nadir  point  of  this  problem  is 

( ) .25.14,6.4,5 T−  Consequently, the nadir point estimation supplied by the payoff table  
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is wrong. In order to assess the ability of our algorithm in the constrained case, we 

apply MR-NSGA-IIN to the KM problem. For the SQP-LS, a neighbor is generated by 

means of a modified version of the fmincon MATLAB as described previously. The 

population size is settled to 40 and the other parameters are set as previously. Figure 

6.23 shows the mean of the obtained solutions of 10 runs. The final reference points are 

drawn with stars. We observe that our algorithm provides a ROI in the vicinity of each 

reference point. It is important to note that the mobile reference points (i.e., 

( ) ,003.55,209.2,000.5 T−  ( )T003.25,604.4,000.1 −−  and ( )T252.14,101.3,000.0 −− ) have 

converged to the true extreme Pareto optimal solutions (i.e., ( ) ,000.55,200.2,000.5 T−  

( )T000.25,600.4,000.1 −−  and ( )T250.14,100.3,000.0 −− ) within η = 0.01 at the end of 

the evolutionary process. Consequently, MR-NSGA-IIN is declared to be successful in 

finding the true nadir point of the KM problem (i.e., ( )T25.14,6.4,5 − ). We note that 

each run takes a reasonable number of FEs (about 4000 FEs) to find a near nadir point. 

It is worth noting that figure 6.23 illustrates the working principle of MR-NSGA-IIN. In 

fact, we see from this figure that an ROI is formed near each reference point. Then, the 

reference points are updated by: (1) selecting the extreme solutions from each ROI and 

(2) applying the SQP-LS procedure to these solutions. When the reference points are 

stabilized at the true extreme solutions, the algorithm stops and provides a good 

estimate of the nadir point.   

 

Figure 6.23 The obtained solutions for the constrained KM problem. 
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6.3.3 Discussion 

Through section 6.3, we have addressed an old-age yet important issue in multi-

objective optimization, i.e., that is the estimation of the nadir objective values. As 

discussed previously, the nadir point could be seen as a form of implicit DM’s 

preferences. After discussing the classification of the existing nadir point estimation 

methods into three classes, we have proposed a new class called the extreme-ROI-to-

nadir class. This proposition is motivated by the fact that, in the extreme-point-to-nadir 

approach, the progressive reduction of population diversity may slow down the search 

process. Hence, the constitution of a ROI in the vicinity of each extreme point from the 

population where the ROI diversity is controlled by the ε parameter seems to be a 

promising approach. The MR-NSGA-IIN, which is an instance of the ROI-to-nadir 

class, has demonstrated its effectiveness and efficiency in providing a good nadir point 

estimation. Moreover, this algorithm has been shown to be superior to WC-NSGA-II 

and EC-NSGA-II which belong to the extreme-point-to-nadir class. It is important to 

note that other algorithms could be designed based on the extreme-ROI-to-nadir class 

principle.     

6.4 Conclusion 

In this chapter, we have contributed to the search for special points of the Pareto front 

that correspond to implicit DM’s preferences. This is achieved through the 

approximation of knee regions and nadir objective values. The proposed algorithms 

used the new concept of mobile reference point (Bechikh et al. 2010a). The mobile 

reference points play the role of attractors to the population members and hence they 

guide the search towards special parts of the Pareto front that are implicitly preferred by 

the DM. This type of reference points is updated automatically by the MOEA with 

respect to a predefined characterization (i.e., maximal trade-off or extreme point). 

Similarly to the r-NSGA-II, the diversity control mechanism is very important in the 

three algorithms: (1) KR-NSGA-II, (2) TKR-NSGA-II and (3) MR-NSGA-IIN since 

focusing the search towards a particular region of the search space reduces significantly 

the solution diversification which could make the search decelerating or even 

stagnating. The diversity preservation in the three proposed algorithms was ensured by 

means of the ε-clearing procedure in addition to the extreme solution preservation. Such 

mechanism enabled these algorithms to converge towards the Pareto optimal knee 

regions and the true extreme solutions. The three suggested algorithms have been 

confronted to recent existing works from the specialized literature and promising results 

were obtained.     
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Chapter 7  

Incorporating DM Group Preferences in 

Evolutionary Multi-objective Optimization 

7.1 Introduction 

As noted in the second chapter, most preference-based MOEAs assume the uniqueness 

of the DM. Few of these algorithms consider the hypothesis that there exist more than 

one DM by injecting several reference points in the MOEA each corresponding to a 

particular DM than the algorithm provides an average ROI (e.g., (Pfeiffer et al. 2008)). 

However, this mechanism does not resolve the problem since most DMs are still 

dissatisfied. In fact, the task of DMs’ preference aggregation cannot be delegated to a 

MOEA. This latter cannot achieve a consensus between the different negotiators. 

Motivated by this observation and inspired from the works (Ben Jaâfar and Ghédira 

2007; Conitzer 2006; Herrera-Viedma et al. 2007), we propose in this chapter a 

negotiation support system called NSS-GPA (Negotiation Support System for Group 

Preference Aggregation) (Bechikh et al. 2011b). NSS-GPA takes as inputs the DMs’ 

preferences modelled as reference points and provides as output a single Social 

Reference Point (SRP) that corresponds to an aggregation of all DM’s preferences. By 

running the preference-based MOEA with this SRP, we obtain a social ROI 

corresponding to aggregated DMs’ preferences. Each solution picked from this region 

is considered as a satisfying solution for each of the DMs. We aim by NSS-GPA to 

ensure the highest level of satisfaction for all DMs. Since, in real world situations, the 

DMs’ preferences are usually conflicting, NSS-GPA offers the DMs a framework of 

negotiation to confront and update their preferences through a number of negotiation 

rounds. This chapter is structured as follows. The next section describes in detail the 

NSS-GPA mechanism. The third section demonstrates the usefulness of our system 

through a randomly generated case study. The fourth section valorizes the combination 

between NSS-GPA and r-NSGA-II (cf. section 5.2.4) through the resolution of a 

practical instance of the portfolio selection problem with multiple DMs (Bechikh et al. 

2012b). The last section concludes this chapter.    
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7.2 NSS-GPA 

7.2.1 Overview 

Since our goal consists in providing a framework for different DMs to negotiate their 

preferences, we choose to exploit the software agent paradigm (Morge and Beaune 

2004). Hence, we propose an agent-based system for group preference negotiation (i.e., 

NSS-GPA) to bring closer DMs’ reference points through a certain number of 

negotiation rounds. In fact, each DM is assisted by a software agent called Assistant 

agent. The overall process is supervised and controlled by a software Moderator agent. 

Initially, each human DM agent jE  ),...,1( qj =  expresses his/her preferences as an 

aspiration level vector ],...,[ 1 jMjj aaAV =  where M is the number of objectives and q 

is the number of DMs. Additionally, he/she provides for each objective if  ),...,1( Mi =  

the acceptable deviation quantity jiσ  from his/her specified aspiration level jia  so that 

the agent is still satisfied with these specified deviations. Once all DM agents have 

expressed their preferences, the negotiation process begins. At each negotiation round 

of NSS-GPA, a DM agent may have one of the following two states: (1) satisfied or (2) 

dissatisfied. These two states are defined as follows:  

Definition 7.1: Satisfied DM agent 

A DM agent jE ),...,1( qj =  is said to be satisfied if all its aspiration levels 

jia ),...,1( Mi =  σ-coincide with the social aspiration levels. An aspiration level jia  is 

said to σ-coincide with the social aspiration level avg
ia  if and only if: 

.ji
avg
ijiji

avg
i aaa σσ +≤≤−  We note that ( ) qaa q

j ji
avg
i ∑ == 1  and 

],...,[ 1
avg
M

avg aaSRP = . 

Definition 7.2: Dissatisfied DM agent 

A DM agent jE ),...,1( qj =  is said to be dissatisfied if at least one of his/her aspiration 

levels does not σ-coincide with the relative social aspiration level. 

After each negotiation round, the Moderator agent builds a set of direction rules from 

the observed DM agents’ preferences (cf. section 7.2.2.1). These direction rules guide 

the DMs when updating their preferences so that the consensus rate increases and hence 

the negotiation process converges towards a SRP more quickly. A satisfied DM agent 

can follow the direction rules in order to stop the negotiation processes as soon as 
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possible so that he/she finishes the negotiation with a satisfied state. However, a 

dissatisfied DM agent can have two attitudes: (1) passive who will pursue the 

Moderator’s direction rules or (2) active who has one of the two following behaviors: 

▪ manipulator: this kind of DMs will lie about his/her true preferences in order to 

direct the SRP towards his/her preferences. For example, an agent jE  aspiration 

level jia  is set to 4.0  (with 1.0=jiσ ). However, the corresponding current social 

aspiration level avg
ia  is found to be equal to 0.7. jE  will lie in the next negotiation 

round by putting jia  to 1.0  in order to try to decrease avg
ia  towards his/her true 

preferences about the ith objective (i.e., 4.0 ). 

▪ non-manipulator: this kind of DMs will search for the dissatisfied DMs and will 

invite them to update their preferences with the aim of modifying the SRP towards 

his/her preferences. For example, for two dissatisfied DMs 1E  and 2E , we suppose 

that, for the objective 1f , we have: 5.011 =a , 3.021 =a  and 8.01 =avga . 1E  will 

send a request to 2E  in order to invite him/her to decrease 21a  (eventually, while 

respecting his/her specified acceptable deviation 21σ ). In fact, by decreasing 11a  

and 21a , avga1  value will decrease and will become closer to 11a  and 21a  which 

decreases the dissatisfaction level for both DMs. 

Manipulation in voting systems is seen to be a dishonest behavior which should be 

avoided (Conitzer 2006, Xia and Conitzer 2008). For this reason, the Moderator agent 

which has a global overview about the overall negotiation system, may perceive that 

there are some manipulations during the negotiation rounds and hence detects the 

manipulator agents. In fact, in NSS-GPA, a manipulation is seen as an abrupt change in 

the DM’s preferences which aims to modify one or more social aspiration levels in 

order to increase the DM’s individual welfare. Manipulation seems to be a selfish and 

dictatorial behavior because if all agents are manipulators, the consensus will never be 

reached and hence the negotiation process will never end. For this reason, the 

Moderator agent has the role to detect manipulators and to punish them by retrieving 

them the right to update their preferences without following the global direction rules. 

In fact, manipulators will be punished by forcing them to pursue the global direction 

rules issued from the Moderator software agent.   

7.2.2 Conceptual details 

7.2.2.1 Production of direction rules and process control 
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♦ Determination of the set of preferences to be updated  

For each aspiration level jia  of a DM agent jE , the Moderator agent computes the 

mean gap separating jia  from the aspiration levels kia  of the other agents as follows: 

)1()( _
,1

−−= ∑
≠=

qaaaaspirationMG
q

jkk
kijiji                      (7.1)   

After that, the Moderator agent calculates the average mean gap for each aspiration 

component ia  as follows: 

   qaaspirationMGaMGAverage
q

j
jii ∑

=
=

1
)( _)( _                      (7.2) 

The Moderator agent can now determine the preferences to be updated in order to 

increase the consensus level. In fact, the Moderator agent aims to minimize the mean 

gap of each aspiration level by using the following rule (R1): 

If ( )( _ jiaaspirationMG > )( _ iaMGAverage ) Then 

 Update ( jia ); 

End If 

♦ Determination of the set of DM agents invited to update their preferences 

At the beginning of the negotiation process, all DM agents can be invited to update 

their preferences. In fact, if an aspiration level evaluation jia  is to be changed, then 

automatically the DM agent jE  is invited to modify his/her preferences. This 

mechanism allows evading the problem of group tyranny (Saint and Lawson 1994). 

After some negotiation rounds, the consensus level will increase. In order to preserve 

this increase and encourage the consensus improvement, we minimize the number of 

aspiration level evaluations to be updated. This is achieved by minimizing the number 

of DM agents invited to modify their preferences. These agents are identified as 

follows: 

For each DM agent jE , the Moderator agent computes the mean gap separating the 

agent’s preferences from all other agents’ preferences as stated by equation (7.3):    
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kjj                            (7.3) 
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M
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=
−=

1
),(                              (7.4) 

Then, the Moderator calculates the average agent mean gap: 
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Now, the Moderator agent can identify the agents that should update their reference 

points in order to augment the consensus level. This is achieved by minimizing the 

mean gap of each agent by the following rule (R2): 

If  ( )( _ jEagentMG > AMGAverage _ ) Then  

 Invite_for_update ( jE ); 

End If 

♦ Process control 

Here, the Moderator agent firstly computes the SRP which corresponds to the 

arithmetic mean of all DM agents’ reference points, i.e., Tavg
M

avg aaSRP ],...,[ 1= such 

that:  

qaa
q

j
ji
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i 
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After that, the Moderator agent calculates the gap separating each DM agent’s 

reference point from the SRP: 

   MaaESRPfromGap
M

i
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=
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1
)( __                          (7.7) 

Then, the Moderator agent computes the average of all gaps separating the agents from 

the collective opinion: 

qESRPfromGapSRPfromGapAverage
q

j
j∑

=
=

1
)(_____             (7.8) 

The overall negotiation process is controlled by the Moderator agent based on: (1) the 

Consensus Rate (CR) and (2) the parameter MaxIter. The CR is expressed as follows: 

SRPfromGapAverageCR ___1−=                                 (7.9) 

MaxIter corresponds to the maximum allowed number of negotiation rounds. This 

parameter is important since it ensures that the process ends after a specified number of 

negotiation rounds.   

Based on CR and MaxIter, the Moderator agent controls the negotiation process by the 

following rule (R3):  
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 If (numIter ≤  MaxIter) Then 

  If  ( α<CR ) and (NOT All_Satisfied) Then 

Execute_update (R1); /*All DM agents can be invited to the update                                

operation*/ 

       Else If ( β<CR ) and (NOT All_Satisfied) Then  

Execute_update (R1, R2); /*Some DM agents can be invited to the  

update operation*/ 

   Else 

  Stop_negotiation ( ); 

                    End If 

 End If 

   Else  

    Stop_negotiation ( ); 

   End If 

where numIter is the current negotiation round index; α  and β  are two control 

parameters which are specified before the beginning of the negotiation process such 

that [1,0[∈α , ]1,0[∈β  and ( βα < ).  All_Satisfied is a Boolean variable indicating 

whether all DMs are satisfied (cf. Definition 7.1).   

♦ Direction rule production 

Once the preferences to be updated and the agents invited for the update operation are 

identified, the Moderator agent furnishes the advice rules to the DM agents as follows: 

Advice rule A1:  If ( jia < avg
ia ) Then  

        Invite the agent jE to increase jia ; 

       End If 

Advice rule A2:  If ( jia > avg
ia ) Then  

        Invite the agent jE to decrease jia ; 

     End If 

The objective of these rules is to bring closer DMs’ preferences in order to reach a high 

level of consensus. 

7.2.2.2 Manipulator isolation 

Manipulation is a bad and undesirable behaviour in group decision making situations 

and especially in social choice theory (Xia and Conitzer 2008). For this reason, we 

offer the Moderator agent the ability to detect such behaviour and to penalize 
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manipulator DMs. In NSS-GPA, a manipulation is an abrupt change in one DM’s 

aspiration level, which does not respect the relative accepted deviation of the last 

negotiation round, in such a way the preference update modifies the SRP in the 

direction of the manipulator preferences. We assume, in our system, that each DM has 

the right to make M  manipulations during the negotiation since, in real world 

negotiation situations, a negotiator may give up one of his/her aspiration levels without 

aiming to manipulate the negotiation. For example, if a DM agent jE  is satisfied with 

all social aspiration levels except for one aspiration level jia  where the thi  objective is 

not so important for him/her, then he/she prefers updating his/her preferences so that to 

increase the consensus rate which augments the chance of ending the negotiation 

process with an almost satisfied state. Thus, the Moderator agent considers a DM agent 

to be a manipulator if he/she performs ( )1+M  manipulations. When, a DM agent is 

detected as a manipulator, the Moderator agent deprives him/her not only of 

manipulations but also of sending/receiving messages to/from other agents. Hence, the 

manipulators are isolated and are obliged to update their preferences according to the 

global direction rules; thereby increasing the consensus rate and making the negotiation 

process further converging. Manipulator isolation is an important mechanism to avoid 

selfishness, untrustworthiness and dictatorship behaviors. 

7.2.2.3 Dissatisfied non-manipulator DMs’ communication 

A dissatisfied non-manipulator DM agent would like to decrease his/her dissatisfaction 

degree by negotiating with other dissatisfied DMs. We note that each negotiator has a 

complete vision over the preferences of the others. As mentioned above, a DM is said 

to be dissatisfied if at least one of his/her aspiration levels does not σ-coincide with the 

corresponding social one (cf. Definition 7.2). For example, consider the case of 5 

objectives and 10 DMs, and suppose that there are three DM agents 1E , 2E  and 3E  

which are dissatisfied with the value of the third social aspiration level avga3  such 

that: 6.03 =avga , 4.013 =a , 8.023 =a  and 2.033 =a . We suppose also that there is a 

satisfied agent 4E  having .8.043 =a  It is interesting to agent 1E  to contact agents 2E , 

3E , 4E  by sending them requests to decrease their aspiration level evaluations 23a , 

33a  and 43a  while respecting their σ  values. In fact, if 2E , 3E , 4E  agree about that, 

there is more chance that a3
avg decreases towards the value of 4.0  which decrease the 

dissatisfaction level of 1E . Thus, the aim of communicating with other agents is to 

bring closer the collective opinion towards 1E  preferences. Agent 3E  seems to be 
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interested with such proposal since driving avga3  towards 4.013 =a  is equivalent to 

driving avga3  towards 2.033 =a . However, in order to convince 3E  to accept his/her 

request, 1E  should promise 3E  that he/she will decrease his/her aspiration level 

evaluation 13a  if 3E  accepts the proposal and performs the decrease. However, in real 

world situation, a DM may be a liar. So, if 1E  lies to 3E  then 3E  marks 1E  as a liar 

and does not accept his/her future proposals. Besides, if 1E  takes his/her promise, 3E  

marks 1E  as a trustworthy agent and may accept his/her future requests. On the 

contrary to agent 3E , agent 2E  is not interested to such request since decreasing avga3  

makes the SRP roll away from his/her preferences. Consequently, 2E  simply rejects 

the request. The satisfied agent 4E  may be interested in accepting 1E  proposal in order 

to improve the consensus level and hence augmenting the probability of ending the 

negotiation sooner with a satisfied state.    

7.2.3 Implementation details 

In this subsection, we give some important implementation details of our system. NSS-

GPA is implemented by using the Java Agent DEvelopment framework (JADE) 

(Bellifemine et al. 2007) and the ECLIPSE programming tool (d’Anjou et al. 2004). 

Each Assistant agent has a set of cyclic behaviors allowing it to perceive its 

environment, to communicate with other agents and to update its preferences. The 

Moderator agent also has a set of cyclic behaviors allowing him to perceive the DM 

agents’ preferences, to produce then broadcast the advice rules for them, to detect then 

punish manipulators and to control the negotiation process based on the control 

parameters α, β and MaxIter. 

Assuming a minimization MOP, the system provides the DMs with the ideal objective 

vector in addition to the nadir one by using, for example, our MR-NSGA-IIN method 

(Bechikh et al. 2010b). In this way, each DM’s aspiration level value lies in the interval 

].,[ nadir
i

ideal
i ff  After that, the system uses the normalized aspiration values (which lie 

in the interval ])1,0[  in order to ensure that all mean/average gap values lie between 0 

and 1. In this way, the negotiation can be well-controlled and the recommendations can 

be fairly produced based on the designed rules (cf. section 7.2.2.1). Additionally, the 

system works with the normalized accepted deviation values which can be expressed as 

follows: 

)( ideal
i

nadir
iji

norm
ji ff −= σσ                                  (7.10) 
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We note that NSS-GPA imposes that ],0[ max
normnorm

ji σσ ∈  in order to control 

manipulations where norm
maxσ  is specified before the beginning of the negotiation by a 

human Moderator agent. At this stage, we can define a DM’s manipulation analytically. 

Assuming 1−t
jia  an aspiration level fixed by DM agent jE  for the thi  objective at the 

previous negotiation round )1( −t  and t
jia  is the updated value of 1−t

jia  at the actual 

negotiation round ).(t  The update operation is said to be a manipulation if and only if:   

11 −− >− t
ji

t
ji

t
ji aa σ                            (7.11) 

where 1−t
jiσ  is the accepted deviation fixed by jE  for the thi  objective at the 

generation ).1( −t  

7.3 Case study 

This section is devoted to describe a run of NSS-GPA on a case study with 10 arbitrary 

chosen DMs and 4 objectives. α, β and MaxIter are settled to 0.5, 0.8 and 50 

respectively. norm
maxσ  is set to 0.3. These parameters are fixed by a human Moderator 

agent. Table 7.1 shows the initial DM agents’ reference points in addition to the 

accepted deviations (mentioned between parentheses). The DM interacts with the NSS-

GPA through a guided user interface (cf. figure 7.1) which is composed with six panels: 

▪ Agent Preferences: where the DM can see the reference points of all DM agents. 

▪ Collective Preferences: where the DM can see the collective opinion (i.e., the 

SRP).  

▪ Moderator Recommendations: where the DM receives the global advice rules 

from the Moderator agent. 

▪ Agent Proposals: where the human DM receives proposals from other DM agents. 

The user can accept or deny such proposals. 

▪ Requests: where the DM can send requests to other DM agents and can verify for 

each one of his/her sent requests whether it was accepted or denied. 

▪ Preference Update: where the DM can update his/her reference point and his/her 

accepted deviation vector.  

Based on the used parameter setting, the 10 human DMs have confronted their 

preferences, through NSS-GPA, while being supervised and guided by the Moderator 

software agent. Figure 7.2 shows the parallel coordinate plots of the DMs’ reference  



Chapter 7. Incorporating DM Group Preferences in Evolutionary Multi-objective Optimization 

 156 

Table 7.1 Initial DM’s aspiration levels (± accepted deviations). 

 ƒ1 ƒ2 ƒ3 ƒ4 

DM1 0.8 (± 0.10) 0.1 (± 0.05) 0.4 (± 0.18) 0.2 (± 0.11) 

DM2 0.4 (± 0.18) 0.9 (± 0.09) 0.2 (± 0.15) 0.5 (± 0.25) 

DM3 0.6 (± 0.28) 0.5 (± 0.07) 0.7 (± 0.22) 0.4 (± 0.26) 

DM4 0.1 (± 0.09) 0.4 (± 0.18) 0.1 (± 0.05) 0.6 (± 0.30) 

DM5 0.4 (± 0.08) 0.3 (± 0.11) 0.9 (± 0.09) 0.5 (± 0.20) 

DM6 0.8 (± 0.07) 0.7 (± 0.30) 0.1 (± 0.09) 0.2 (± 0.08) 

DM7 0.2 (± 0.20) 0.6 (± 0.14) 0.4 (± 0.25) 0.7 (± 0.11) 

DM8 0.9 (± 0.08) 0.4 (± 0.22) 0.3 (± 0.11) 0.9 (± 0.09) 

DM9 0.3 (± 0.21) 0.9 (± 0.10) 0.2 (± 0.21) 0.8 (± 0.12) 

DM10 0.7 (± 0.23) 0.2 (± 0.15) 0.7 (± 0.16) 0.3 (± 0.18) 

     

points (in addition to the SRP): (a) at the beginning of the negotiation process (cf. table 

7.1) and (b) at the end of this process. Figure 7.2(a) shows how the initial preferences 

are so conflicting. In fact, there are large gaps between DMs’ reference points 

themselves. Besides, these initial aspiration level vectors are so conflicting with the  

 

Figure 7.1 NSS-GPA decision making consol. 
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Table 7.2 DM profiling statistics. 

 NSR NAR NDR NM NARec/NRRec 

DM1 61 37 14 1 15/36 (41.67%) 

DM2 8 3 5 5 18/29 (62.07%) 

DM3 42 23 19 2 12/18 (66.67%) 

DM4 63 48 15 0 17/26 (65.38%) 

DM5 11 6 5 5 19/31 (61.29%) 

DM6 21 9 12 4 14/33 (42.42%) 

DM7 81 69 12 0 21/28 (75.00%) 

DM8 89 76 13 0 22/25 (88.00%) 

DM9 14 6 8 3 26/38 (68.42%) 

DM10 54 26 28 1 22/28 (78.57%) 

      

initial SRP ).51.0,40.0,50.0,52.0(  Figure 7.2(b) illustrates the final reference points at 

the end of the negotiation. We see from this figure how the final reference points are 

less conflicting and so convergent towards the final SRP ).642.0,307.0,560.0,479.0(  

We conclude that NSS-GPA has achieved a good consensus between the different DMs 

about a SRP. We can say that NSS-GPA has succeeded to bring closer DMs’ 

preferences through the negotiation rounds. Table 7.2 presents some statics provided by 

our system that we call profiling statistics since they allow drawing the profile of each 

DM. These statistics are: (1) NSR: the Number of Sent Requests by the DM, (2) NAR: 

the Number of Accepted Requests, (3) NDR: the Number of Denied Requests, (4) NM: 

the Number of Manipulations and (5) NARec/NRRec: the Number of Accepted 

Recommendations divided by the Number of Received Recommendations (the 

 
(a)                                                                (b) 

Figure 7.2 DMs’ preferences: (a) Initial aspiration level 

vectors and (b) final aspiration level vectors. 
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acceptance percentage is set between parentheses). From figure 7.2(b), we observe that 

DM4, DM7 and DM8 are the most satisfied DMs since their final reference points are 

the nearest to the final SRP. The satisfaction of such DMs may be explained by the 

obtained results in table 7.2. In fact, these satisfied agents are the most communicating 

agents since they have large values for the NSR statistic. Additionally, DM4, DM7 and 

DM8 have succeeded to have a large number of accepted requests, they are said to be 

the most trustworthy agents. DM2 and DM5 are detected as manipulators according to 

the NM values (for a 4-objective case, 5=NM  means that the DM agent is a 

manipulator). DM2 and DM5 are the most dissatisfied DM agents according to figure 

7.2(b). This observation may be explained not only by their manipulation behavior but 

also by their poor communication with other DM agents (cf. NSR values from table 

7.2). Intuitively, for a particular DM, the larger his/her NARec/NRRec ratio value is, the 

greater his/her satisfaction level is. However, this is not sufficient since the DM’s 

satisfaction depends also on its communication skills and attitudes. For example, the 

ratio NARec/NRRec of DM9 is greater than DM1 one. Nevertheless, from figure 7.2(b), 

we see that DM1 reference point is nearer to the final SRP than DM9 one. This 

observation can be explained by the superiority of DM1 over DM9 in terms of 

communication skills and trustworthiness (cf. NSR, NAR and NDR values from table 

7.2). We can say that NSS-GPA favors communicating DMs over non-communicating 

ones. 

Once the DMs’ negotiation is performed, we can search for the Pareto optimal ROI of 

the considered MOP by running any reference point-based EMOA (e.g., r-NSGA-II 

(Ben Said et al. 2010), PBEA (Thiele et al. 2009), R-NSGA-II (Deb et al. 2006), etc.) 

with the final SRP obtained by NSS-GPA. We choose to perform a run of r-NSGA-II 

with the final SRP )642.0,307.0,560.0,479.0(    on the four-objective DTLZ2 

minimization test problem which is described in (Deb et al. 2002b). The population size 

and the number of generations are set to 200 and 500 respectively. The parameter δ 

which controls the breadth of the obtained ROI (Ben Said et al. 2010) is set to 0.3. 

Figure 7.3 shows the parallel coordinates plot of the obtained preferred solutions. From 

this figure, we remark that, although the objective values lie in [0,1], most obtained 

solutions are concentrated near the reference point designed with a dashed bold gray 

line which would be the region closest to the final SRP furnished by NSS-GPA. When 

computing ∑ =
n
i if1

2 for all obtained solutions, the values are found to lie within   

[1.051, 1.311], thereby meaning that all solutions are near the true Pareto region (since 

Pareto optimal solutions of DTLZ2 satisfy 11
2 =∑ =

n
i if  (Deb et al. 2002b)). We can 

say that r-NSGA-II has provided a social ROI and, as noted in the first section, each 
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non-dominated solution picked from this region is considered as a satisfying solution 

for each of the considered DMs.  

7.4 Application to a practical portfolio selection problem 

In this section, we demonstrate the usefulness of NSS-GPA on the bi-objective 

portfolio selection problem with practicalities (Deb et al. 2011). In a portfolio 

optimization problem with an asset universe of n securities, let ix  ),...,1( ni =  designate 

the initial capital proportion to be allocated to security i. Typically, there are two 

conflicting objectives: (1) minimize the portfolio risk and (2) maximize the expected 

portfolio return. These two objectives have received the most attention and such 

formulation is known as the mean-variance model of Markowitz (1952). The most basic 

form of this problem can be expressed as follows: 
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The first objective corresponds to the portfolio risk that is usually computed from an 

nn×  covariance matrix ].[ ijσ  The second objective corresponds to the expected 

 

Figure 7.3 The r-NSGA-II ROI with the final SRP provided by 

NSS-GPA (0.479, 0.560, 0.307, 0.642) on the four-objective DTLZ2.  
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portfolio return as computed from a weighted sum of the individual security expected 

returns. The first constraint ensures the investment of all funds while the second one 

ensures the non-negativity of each investment. Such bi-objective problem gives rise to a 

front of several optimal trade-off solutions which should be found to investigate the 

risk-return relationships. One way to solve this MOP is to convert it to a SOP using the 

ε-constraint method as follows: 
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In order to generate a representative approximation of the Pareto front, the above 

quadratic problem is solved repetitively for many different values of R which 

corresponds to the minimal acceptable return value. 

According to the study of Deb et al. (2011), it can be expected that almost any solution 

of (7.13) contains many of its securities at the zero level, i.e., for many i, .0* =ix  It can 

be also expected, for at least a few securities that *
ix  is a very small quantity. However, 

to have a practical portfolio, very small investments in any security may not be desired 

and are to be avoided. Thus, there is the practicality that, for any portfolio to be of 

interest, there is to be a lower limit on any non-zero investment, i.e., either 0* =ix  

(meaning no investment in the ith security) or λ≥*
ix  (meaning that there is a minimum 

non-zero investment amount for the ith security). There may also be an upper bound ω  

on the proportion of any security in any portfolio. Unfortunately, the solution of (7.13) 

for any given R does not guarantee the possession of any of these characteristics. 

In addition to the above, there is a second practicality and it is about the number of non-

zero securities contained in the portfolios along the Pareto front. Over this, a user may 

wish to exert control. To generate practical portfolios, a user may be interested in 

specifying a given number of non-zero investments or a range in the number of non-

zero investments a portfolio has to contain. This is a cardinality constraint and it has 

also been the subject of some research attention (Stein et al. 2008; Streichert and 
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Tanaka-Yamawaki 2006). Taking both practicalities into account, we have the 

following bi-objective optimization problem: 
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where )(xd  is given as follows: 
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Standard quadratic problem solvers face difficulties in the presence of discontinuities 

and other complexities. For instance, the second constraint, requires an “or” operation. 

While 0=ix  or λ=ix  are allowed, values between the two are not. This introduces 

discontinuities in the search space. The third constraint involves a parameter d which is 

defined by a discontinuous function of the decision variables given in (7.15). The 

second and third constraints make the application of standard quadratic problem solvers 

difficult which is not the case for the MOEAs (Deb et al. 2011).  

After presenting the problem details, we can now describe the case study concerning 

the application of NSS-GPA on this practical bi-objective constrained portfolio 

selection problem (Bechikh et al. 2012b). We consider an instance used in (Deb et al. 

2011) with 88 securities, ,005.0=λ  04.0=ω  and ].45,30[∈d  As noted previously in 

the fifth chapter, the nadir point helps the DM to express his/her preferences so that 

each aspiration level lies between the ideal value and the nadir one. Figure 7.4 

demonstrates the effects of expressing: (1) a reference point in the region delimited by 

the ideal point and the nadir one A(0.7,0.4) and (2) a reference point outside of this 

region B(0.7,0.9). We see, from this figure, that although the two reference points have 

the same aspiration level value for the first objective, they provide quite different ROIs. 

This observation emphasizes the importance of the nadir point and the ideal one in the 

preference expression process. The ideal point can be easily obtained by minimizing 
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each objective function individually which is not the case for the nadir point. For this 

reason, we apply our algorithm MR-NSGA-IIN (described in the previous chapter) in 

order to estimate the nadir point. We note that we use, throughout this experiment, the 

repair mechanisms proposed in (Deb et al. 2011) in order to generate feasible solutions 

when initializing the population and generating the children. The used parameter setting 

is described as follows: population size = 200, number of generations = 800, crossover 

probability = 0.9, crossover (SBX operator) distribution index = 10, mutation 

probability = 0.1, polynomial mutation index = 50 and ε = 0.0005. For the SQP-LS 

used in our algorithm MR-NSGA-IIN, the termination criterion is: (1) the norm of 

descent direction 810−=d  or (2) the number of allowed iterations 40=µ  is elapsed. 

The obtained nadir point approximation is NADIR (0.0024, 0.0102). For the bi-

objective case, the ideal point can be deduced from the nadir one; however the opposite 

is not true. Thus, we use the outlier solutions found by MR-NSGA-IIN in order to find 

the ideal point approximation which is found to be IDEAL (0.000123, 0.0238). We 

supply the 10 DMs involved in this experiment with these values in order to express 

their reference points in addition to their accepted deviation vectors. The used 

parameter setting for NSS-GPA is as follows: α, β and MaxIter are settled to 0.4, 0.75 

and 50 respectively. norm
maxσ  is set to 0.3. These parameters are fixed by a human 

Moderator agent. Consequently, the risk aspiration levels should lie in the interval 

[0.000123, 0.002400] with an accepted deviation of (0.002400 - 0.000123) *  0.30 = 
0.000683. The return aspiration levels should lie between [0.0102, 0.0238] with an 

 

Figure 7.4 Importance of the nadir objective vector and the 

ideal one for DM’s preference expression.  
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accepted deviation of (0.0238 - 0.0102) * 0.30 = 0.00408. Table 7.3 shows the initial 

DMs’ preferences. We remark, from this table, that there are several kinds of DMs 

(risk-averse investors, risk-neutral investors, risk-seeking investors) with different 

whishes of return which makes the initial DMs’ reference points so conflicting. Based 

on the used parameter settings, the 10 DMs have confronted their preferences through 

NSS-GPA. Figure 7.5 shows a confrontation, in the risk-return space, between the:    

(1) the initial DMs’ reference points and (2) the final ones. We see, from this figure, 

how the initial preferences are so conflicting not only between themselves but also with 

the initial SRP (0.001416, 0.0171). Figure 7.5(b) illustrates the final reference points at 

the end of the negotiation. We see, from this figure, how the final reference points are 

less conflicting and so convergent towards the final SRP (0.000927, 0.0163). We 

conclude that NSS-GPA has achieved a good consensus between the different DMs 

about a SRP. We can say that NSS-GPA has succeeded to bring closer the DMs’ risk-

return aspiration level vectors. We remark also from figure 7.5 that: (1) most DMs’ 

who have decreased their risk aspiration values have also decreased their return ones 

and (2) most DMs’ who have increased their risk aspiration values have also increased 

their return ones. These two observations emphasize the fact that higher return is 

usually obtained with higher risk.  

We can now apply our reference point-based method r-NSGA-II with the final SRP in 

order to find the social ROI for the considered instance of the practical portfolio 

selection problem. We use a population size of 300 and a number of generations of 

1500. The non-r-dominance threshold δ which controls the breadth of the ROI is set to 

0.3. We note that we use the same repair mechanisms proposed in (Deb et al. 2011) in 

Table 7.3 Initial DM’s aspiration levels (± accepted 
deviations) for the practical portfolio selection problem. 

 Risk Return 

DM1 0.002300  (± 0.000132) 0.0197  (± 0.0018) 

DM2 0.000648  (± 0.000465) 0.0114  (± 0.0033) 

DM3 0.001526  (± 0.000206) 0.0200  (± 0.0030) 

DM4 0.001276  (± 0.000369) 0.0188  (± 0.0023) 

DM5 0.002235  (± 0.000103) 0.0219  (± 0.0028) 

DM6 0.001730  (± 0.000476) 0.0182  (± 0.0024) 

DM7 0.000925  (± 0.000258) 0.0178  (± 0.0012) 

DM8 0.001667  (± 0.000587) 0.0155  (± 0.0018) 

DM9 0.001335  (± 0.000355) 0.0140  (± 0.0011) 

DM10 0.000524  (± 0.000405) 0.0138  (± 0.0027) 
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order to generate feasible solutions. Figure 7.6 shows the obtained social ROI designed 

with green triangles. We see from this figure how this region is composed with the 

nearest Pareto optimal portfolios to the social reference point in the risk-return space. 

Besides, we remark that surprisingly the social ROI corresponds to the knee region 

composed with the worthiest portfolios in terms of risk-return trade-off. Hence, if the 

DMs make a consensus about selecting a portfolio from the knee region, the negotiation 

can be ignored and we can directly use the TKR-NSGA-II method (cf. chapter 6) in 

order to approximate the knee region. Finally, as noted at the beginning of this chapter, 

 

  (a)                                                               (b) 

Figure 7.5 DMs’ preferences in terms of risk and return: (a) initial 

aspiration level vectors and (b) final aspiration level vectors.  

 

Figure 7.6 Obtained social ROI by running r-NSGA-II with the final SRP 

(0.000927, 0.0163) on the practical portfolio selection problem. 
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each portfolio selected from the social ROI is considered as a satisfying portfolio for 

most DMs. 

From a computational viewpoint, we note that the customized NSGA-II approach 

(without using local search) of Deb et al. (2011) needs about 1.5 106 FEs to 

approximate the whole Pareto front according to the experimental results presented in 

the corresponding paper. However, our approach, which uses MR-NSGA-IIN for 

estimating the nadir point and then r-NSGA-II to approximate the social ROI, requires 

about 0.7 106 FEs. This observation emphasizes the computational efficiency of our 

approach regarding the use of a general-purpose MOEA (without any preference-based 

mechanism) and then selecting a portfolio in a posteriori manner.    

7.5 Conclusion  

In this chapter, we have proposed an agent-based system for group preference 

negotiation. Reference point negotiation can be seen as a special case of social choice 

where the different DMs are searching for a consensus about a SRP. In order to avoid 

the impossibility results of social choice theory (Arrow 1951, Gibbard 1973, Xia and 

Conitzer 2008), we have chosen to use the concept of agent-based negotiation by 

proposing NSS-GPA. In fact, we have seen how the DM’s preferences change over 

time through a negotiation round to another one based on the current group preferences 

in addition to the current SRP. Indeed, each DM tries to attract the SRP towards his/her 

own preferences by communicating with other DMs and following the global direction 

rules. The originality of this work resides in the consideration of different human 

profiles and attitudes that a DM can have during a negotiation. NSS-GPA was assessed 

through a case study with 10 DMs and four-objectives. It was demonstrated to:           

(1) discourage dictatorship, manipulation and untrustworthiness behaviors and           

(2) encourage communication between the negotiators. Additionally, NSS-GPA was 

shown to be helpful in confronting and adjusting DMs’ preferences; thereby providing 

a satisfying SRP to be injected in any reference point-based MOEA with the purpose to 

guide the search towards a social ROI. Subsequently, the DMs can select the solution to 

realize for the considered MOP from the obtained region. Finally, we have valorized 

the usefulness of our system through the resolution of a practical instance of the 

portfolio selection problem with two objectives (risk and return) and 10 DMs and the 

obtained results were promising.     
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Chapter 8  

Conclusions and Future Works 

8.1 Key results 

Through this doctoral thesis, we have contributed to the incorporation of DM’s 

preferences in EMO. In detail, the major contributions could be summarized as follows: 

� The proposition of a new reference point-based dominance relation, i.e., the            

r-dominance, which has the ability to create a strict partial order on the set of 

Pareto-equivalent solutions. Such characteristic makes such a relation able to guide 

the search towards the interesting parts of the Pareto optimal region based on the 

DM’ preferences expressed as a set of aspiration levels. After integrating the new 

dominance relation in NSGA-II, the efficacy and the usefulness of the modified 

procedure (i.e., r-NSGA-II) have been assessed through two- to ten-objective test 

problems a priori and interactively. Moreover, the proposed approach provided 

competitive and better results when compared to other recently proposed 

preference-based EMO approaches. 

� The suggestion of new approaches for approximating knee regions which represent 

a form of implicit DM’s preferences. The proposed approaches, i.e., KR-NSGA-II 

and its enhanced version TKR-NSGA-II, have demonstrated their effectiveness and 

efficiency in discovering knee regions on a set of knee-based test problems 

commonly used to assess the ability of MOEAs to find knee regions. Moreover, the 

interactive versions of these approaches are demonstrated as tools to handle the case 

where the DM has no a priori information about the number of existing knee 

regions in the Pareto optimal front. Moreover, the TKR-NSGA-II has been 

confronted to recently proposed knee-based MOEAs including KR-NSGA-II via a 

comparative experimental study. The obtained results have shown the superiority of 

the TKR-NSGA-II over the other approaches.    

� The proposition of a new class of algorithms for nadir point estimation using EAs, 

i.e., the extreme-region-of-interest-to-nadir class. The MR-NSGA-IIN, which is an 

instance of our newly suggested class, has been assessed on a set of three- to 
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twenty-objective unconstrained/constrained problems. The proposed approach has 

shown competitive and better results when compared to other recently proposed 

nadir point estimation approaches. 

� The incorporation of the preferences of a group of DMs in MOEAs which 

represents an omitted problematic in the EMO research field. We have addressed 

this problematic by proposing an agent-based negotiation support system (i.e., NSS-

GPA) that allows the different DMs to negotiate their reference points before the 

beginning of the optimization process. The system output is a SRP to be injected 

subsequently in any reference point-based MOEA, such as r-NSGA-II, in order to 

guide the search towards a social ROI. NSS-GPA has been demonstrated to:         

(1) discourage dictatorship, manipulation and untrustworthiness behaviors and     

(2) encourage communication between the negotiators. Additionally, the usefulness 

of the collaboration between NSS-GPA, MR-NSGA-IIN and r-NSGA-II has been 

shown on a practical instance of the portfolio selection problem.  

8.2 Future works 

Regarding what has already been achieved in the preference-based EMO research field, 

several open questions and perspectives are still to investigate. These perspectives can 

be classified into two main classes. The first one concerns the development of the 

hybridization between EMO and decision making. The second one concerns the 

exploitation of preference incorporation in other EMO related subfields.  

8.2.1 Developing the hybridization between EMO and decision making 

 Among the possible future works that fall in this class of perspectives, we propose: 

� Preference elicitation: An important issue in preference-based algorithms is how to 

interact with the DM(s) and how to guide the DM(s) during the interaction in order 

to elicit his/her preferences in a consistent manner. It seems to be interesting to 

design some specific methods for preference extraction. 

� Interaction between EMO and group decision making: The NSS-GPA supposes that 

reference points should be negotiated and aggregated before the beginning of the 

search in order to find a satisfying SRP. It would be interesting to investigate the 

possibility of designing an agent-based distributed system where each software 

Assistant agent is deployed on a single computer and launch the preference-based 

MOEA with the corresponding DM’s reference point. In this way, the preference 

negotiation and the optimization process are performed in parallel. Additionally, the 

interaction between the different agents could be made based on an argumentation 
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system that exploits information issued from the current states of the MOEAs’ 

populations in the search space. Furthermore, we can enrich this perspective by 

considering the hierarchy and the coalitions between the different DMs.   

� Investigating the incorporation of preferences within other metaheuristics: In 

addition to EAs, several other metaheuristics have demonstrated their efficacy in 

solving MOPs such as PSO (Reyes-Sierra and Coello 2006) and Artificial Immune 

System (AIS) (Freschi et al. 2009). Hence, it is interesting to incorporate preference 

information in such population-based metaheuristics (Azzouz et al. 2012).  

8.2.2 Exploiting preference incorporation in other EMO issues 

Among the possible ideas that fall in this class of perspectives, we suggest: 

� Many-objective optimization: When dealing with MOPs involving more than three 

or four objective functions, the task of approximating the Pareto front becomes 

more difficult due to: (1) the loss of the ability of MOEAs to adequately order 

solutions in terms of objective function values and (2) the exponential increase in 

the number of solutions required to generate a good sample of the Pareto front. One 

of the attempts to tackle such problems is to use modified forms of the Pareto 

dominance based on DM’s preferences (Adra et al. 2007); thereby finding only 

portion of the front that satisfies the DM, i.e., the ROI. For example, in the fifth 

chapter, our r-NSGA-II algorithm has demonstrated its ability to find the ROI for 

up to ten objectives. Hence, more elaborated preference-based dominance relations 

could be designed to solve many-objective problems.      

� Expensive multi-objective optimization: In some engineering MOPs, the evaluation 

of candidate solutions could be extremely computationally and/or financially 

expensive since it requires time-consuming computer simulations. Therefore, a 

method is of great practical interest if it is able to produce reasonably good 

solutions within a given often very tight budget in terms of computational time 

(Zhang et al. 2010). As demonstrated through our thesis, approximating a ROI 

requires fewer FEs than finding the whole Pareto front. Consequently, the 

incorporation of DM’s preferences within an EMO approach specifically designed 

for expensive MOPs may further minimize the required number of FEs; thereby 

decreasing the computational time.   

� Robustness: In optimization studies including multi-objective optimization, the 

main focus is placed on finding the global optimum or global Pareto optimal 

solutions representing the best possible objective values. However, in practice, 

users may not always be interested in finding the so-called global best solutions, 
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particularly when these solutions are quite sensitive to variable perturbations which 

cannot be avoided in practice. In such cases, practitioners are interested in finding 

the robust solutions which are less sensitive to small perturbations in variables (Deb 

and Gupta 2006). Hence, it is interesting to search for the robust ROI. 

� Further applications to real world MOPs: We remark, from the described works in 

this thesis, that most researchers have assessed their preference-based MOEAs on 

academic benchmarks such as the ZDT and DTLZ benchmark suites. For this 

reason, the researchers are encouraged to apply these algorithms to handle real 

world problems, for the discrete case (Loukil et al. 2007, Benlic and Hao 2012) and 

the continuous one (Belgasmi et al. 2008), in an attempt to further valorize the 

preference-based EMO research field.  
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Appendix A 

ZDT and DTLZ Benchmark Suites 

A.1 Zitzler-Deb-Thiele (ZDT) benchmark suite 

The following table gives the definitions of the ZDT test functions (Zitzler et al. 2000): 

     Table A.1 ZDT benchmark suite. 
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A.2 Deb-Thiele-Laumans-Zitzler (DTLZ) benchmark suite 

The following table gives the definitions of the DTLZ test functions (Deb et al. 2002b): 

Table A.2 DTLZ benchmark suite. 

Name Description Pareto front 
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Appendix B 

Knee-based Test Functions 

B.1 Knee-based test problems 

The following table gives the definitions of the knee-based test problems used 

throughout this thesis (Branke et al. 2001, Rachmawati and Srinivasan 2009): 

Table B.1 Knee-based test problems. 
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