High Institute of Management of Tunis

University of Tunis

Incorporating Decision Maker’s Preference Information in

Evolutionary Multi-objective Optimization

by

Slim BECHIKH
(Defense day: 08 January 2013)

PhD thesis submitted, on 26 January 2012, to the computer science department of

the high institute of management of Tunis in candidature for the diploma of:

DOCTORATE

in

Computer Science Applied to Management

Thesis committee:
Pr. Henda HAJJAMI BEN GHEZALA
Pr. Khaled GHEDIRA
Pr. Jin-Kao HAO
Dr. Saoussen KRICHEN KHALFALLAH
Dr. Lamjed BEN SAID

University of Manouba
University of Tunis
University of Angers
University of Jendouba

University of Tunis

Chair
Advisor
Examiner

Examiner

Member



Abstract

Most optimization problems often involve multiplebjectives to be considered
simultaneously under some constraints. Unlike silodfjective problems, the resolution
of this kind of problems gives rise to a set oflgaff solutions, called the Pareto front,
rather than a single global optimum. During the tlast decades, evolutionary
algorithms have demonstrated a great success moapyating the whole Pareto front.
Recently, researchers have remarked that provitieghuman decision maker with
some hundreds or thousands of optimal solutionsesétke decision making task very
difficult especially when the number of objectivasreases. In reality, since objective
functions are not equally important from the demismaker’s viewpoint, this latter is
not interested in discovering the whole Paretotfrather than finding only the portion
of the front that satisfies his/her preferencescWwhs called the region of interest. For
this reason, researchers have mentioned the ngcesdiybridize optimization with
decision making. The problematic of our PhD theésito articulate decision maker’s
preferences within multi-objective evolutionary @iighms in order to guide the search
towards the region of interest; therefore not dalyilitating the decision making task
but also saving the computational cost requiredxqalore the remainder of the Pareto
frontier. In this research work, we categorise @mfces into two main classes. The
first class concerns explicit preferences which axpressed in a straightforward
manner via one of the available preference modgtiols. The second class concerns
implicit preferences which correspond to the desfrexploring special points from the
Pareto front in the absence of explicit preferences knee regions corresponding to
the worthiest regions in terms of trade-offs betvéee objectives and the nadir point
corresponding to the vector composed with the wobgective values at the Pareto
optimality stage. Additionally, we consider, inghhesis, the case where there exists
more than one decision maker each having his/her meferences. All the proposed
contributions are assessed through experimentatliestuincluding comparative
experiments against the most prominent recent waykstilizing academic benchmark
problems commonly used by the community in addit@ra practical instance of the
portfolio selection problem.

Keywords: Multi-objective optimization, evolutionary algdmins, decision making, explicit/implicit
decision maker’s preferences, region of interastug preference aggregation/negotiation.
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Chapter 1

Introduction and Overview

1.1 Problematic and motivations

Most real world optimization problems encountenegiactice often involve multiple
objectives to be minimized or maximized simultarspuwith respect to a set of
constraints (Deb 2001; Coello et al. 2007). Thegeatives are often conflicting and
incommensurable. The decision on a cell phone @gghfor instance, among other
examples, can be influenced by several criteridn f.cthe price, the battery life, the
weight, the performance and so fourth. Usuallyrehis no single solution that is
optimal with respect to all these objectives atghme time, but rather many different
designs exist which are incomparable. Consequectyntrary to Single-objective
Optimization Problems (SOPs) where we look for fidution presenting the best
performance, the resolution of a Multi-objectiveti@pzation Problem (MOP) gives
rise to a set of compromise solutions presentireggdptimal trade-offs between the
different objectives. When plotted in the objectispace, the set of compromise
solutions is called the Pareto front. The main goahulti-objective optimization is to
find a well-converged and well-distributed approation of the Pareto front from
which the Decision Maker (DM) will subsequently esetl his/her preferred alternative
to realize. Several methods were proposed in tleeiaized literature in order to
approximate the Pareto front for the discrete @askthe continuous one. Mimicking
the principles of biological evolution, Evolutioya”lgorithms (EAs) have earned
popularity in solving MOPs during the two last dées and beyond thanks to two
reasons: (1) EAs are able to provide a set of comse solutions as output on a single
run and (2) EAs are insensitive to the shape ofdlfjective functions such as non-
convexity, discontinuity, multimodality, non-unifoity of the search space, etc (Deb
2001). As a consequence of the success of Mulaative Optimization EAs (MOEAS)
in handling MOPs, a new branch in the optimizatiesearch field has appeared which
is called Evolutionary Multi-objective OptimizatiqicMO). The final goal of MOEAs
is to assist the DM to select the final solutionickh matches at most his/her
preferences. Since MOEAs supply the DM with a hugber of solutions, it seems to
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be a difficult task to choose the final preferrd@raative (Fonseca 2007). In order to
facilitate the decision making task, the DM woulidel to incorporate his/her
preferences into the search process. These preéere used to guide the search
towards the preferred part of the Pareto front, tlee Region Of Interest (ROI). The
ROI is defined as the preferred part of the Padgibmal region from the DM’s
perspective (Adra et al. 2007). Our research wérkas on the incorporation of DM’s
preference information in MOEAs in order to dirdbe search towards the ROI;
thereby facilitating the task of selecting the $ioluto realize.

1.2 Research goals and main contributions

Our research goals are essentially the following:

1) Incorporating explicit DM’'s preferences in EMO: This goal is achieved by
proposing a new dominance relation based on DM&epences expressed in an
explicit manner (i.e., aspiration levels). This neleminance relation is then
incorporated in a MOEA. The resulting preferencedtekMOEA has demonstrated
its ability in providing the Pareto optimal ROI. I&equently, the DM could select
the solution to realize from this preferred regigkdditionally, the proposed
approach has been shown to outperform severaltre@#ks in this research area.

2) Incorporating implicit DM’s preferences in EMO: DM's preferences could be
expressed in an explicit manner (e.g., weightsiraspn levels, trade-off between
objectives, and so on (Coello 2000)) or in an iciplmanner (i.e., knee regions
(Branke et al. 2004) or nadir point (Deb and Mretti 2008)). Knee regions are
potential parts of the Pareto representing the malxirade-offs between objectives.
Such characteristic renders knee regions almostyshwef particular interest to the
DM in practical context (Rachmawati and Srinivas?d09). Nadir point is the
vector composed with the worst objective valuesrdhe Pareto optimal front.
Hence, a particular DM could be interested onlydiscovering nadir objective
values (Deb et al. 2006b); thereby the nadir pomtld be seen as another form of
implicit DM’s preferences. The integration of impti preference information in
EMO is achieved by proposing two preference-bas€dEMs: (1) the first one
allows the discovery of knee regions and (2) treoisd one permits the estimation
of the nadir point. Comparative experiments show dghtperformance of the two
proposed algorithms over several recent approaches.

3) Handling DM group preferences: There are several decision making situations
where there exist more than one DM. The DMs hawalisdifferent attitudes and
behaviors. Consequently, their preferences ara aftaflicting. For this reason, we
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propose a Negotiation Support System for GroupelPeete Aggregation (called
NSS-GPA) based on softwaagentparadigm(WooldridgeandJenningsl994).The
designedgent-based system allows the DMs to commteigdath each others
and to adjust their preferences through a nurabdiscussion rounds. The output
of the system is a set of social explicit prefeemnavhich will be injected
subsequently into the MOEA in order to guide tharcle towards a social ROI. A
solution picked from this social region is cons&teto be a satisfying solution for
all group members.

All proposed preference-based EMO methods in amdito NSS-GPA are validated
through several experimental studies involving acaid test problems commonly used
by the EMO community and valorized by a case stiaed on a practical instance of
the portfolio selection problem (Markowitz 1952; IDet al. 2011). This latter is
described and handled in the last contribution tdrap
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1.3 Document organization

This document is structured as follows (cf. figurd). Chapter 2 gives a review of
MOEAs. Chapter 3 presents a survey of explicit gneice-based MOEAs where the
algorithms are classified based on the way theepeate are expressed and designed.
Additionally, this chapter gives a brief review BM group preference handling.
Chapter 4 presents a brief survey of implicit prefiee-based MOEAs. Chapter 5 is
dedicated to present our new preference-based doeenrelation in addition to the
resulting preference-based MOEA. Chapter 6 focasesicorporating implicit DM’s
preferences in EMO and is subdivided into two nzants. The first one is devoted to
approximating knee regions. The second one is didticto nadir point estimation.
Chapter 7 describes the NSS-GPA system. Finallgpteln 8 concludes this thesis and
gives some avenues for future research.
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Chapter 2

Evolutionary Multi-objective Optimization

2.1 Introduction

This chapter is devoted to survey evolutionary méshto handle MOPs. In order to
solve a MOP, there are three goals to pursue: gbyvergence, (2) diversity and
(3) solution distribution uniformity. In fact, thebtained non-dominated solutions
should be as close as possible to the Pareto dgtiom of the optimization problem.
This goal is similar to the demand of convergerehte global optimum in single-
objective optimization. Often, there exist an iitBn number of Pareto optimal
solutions. Naturally, only a finite number of satuis can be generated during an
optimization process. Furthermore, the number olegeed solutions must be limited
otherwise the computational cost would become togel. Nevertheless, the largest
possible freedom of choice should be offered toDM Therefore, a well-distributed
approximation set is demanded which is a goal¢basists itself of two requirements:
(1) an extent that is as large as possible and (@3tribution that is as evenly spaced as
possible. Pareto optimal fronts may be disconne&edn that case an exactly uniform
distribution of solutions is not possible. Neveldss, the non-dominated solutions
should cover all regions of the Pareto-optimal frand reproduce the curvature of the
underlying Pareto optimal front as correctly assias. These demands do not have a
counterpart in single-objective optimization sincethat case only one solution is
generated. This chapter is structured as follovesti®n 2.2 gives some background
definitions related to the multi-objective optimiwen research field. Section 2.3
provides a classification and a discussion of tifierént proposed methods to tackle
MOPs. Section 2.4 discusses the issue of perforenassessment by presenting well-
cited benchmarks and some selected quality indicatged for MOEA evaluation.

2.2 Multi-objective optimization basic definitions

A MOP consists in minimizing or maximizing an oljge function vector under some
constraints. The general form of a MOP is as fodl¢ideb 2001):
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Min f(x) =[f,(X), f2(X),..., Ty (X)]T

gj(X)ZO ] =1,...P; (2.1)
h.(x)=0 k=1,..,Q;

xiL < x < XiU i=1,...,n

whereM is the number of objective functior® s the number of inequality constraints,
Q is the number of equality constraintg,L and in correspond respectively to the
lower and upper bounds of the variabie (This notation is assumed throughout the
overall document). A solutiorx; satisfying the P+Q) constraints is said feasible and

the set of all feasible solutions defines the fdassearch space denoted @yIn this
formulation, we consider a minimization MOP sincaximization can be easily turned
to minimization based on the duality principle byltiplying each objective function
by -1 and transforming constraints based on thétguales.

The resolution of a MOP vyields a set of trade-affusons, called Pareto optimal
solutions or non-dominated solutions, and the imagais set in the objective space is
called the Pareto front. Hence, the resolution M@P consists in approximating the
whole Pareto front. In the following, we give soimeckground definitions related to
multi-objective optimization:

Definition 2.1: Pareto optimality

A solution X" 0Q is Pareto optimal if1x0Q and | ={1..,M} either 0 mO1 we

have f,(x) = f,,(X') orthere is at least omald| such thatf_(x)> f (X).

The definition of Pareto optimality states thatis Pareto optimal if no feasible vector
X exists which would improve some objectives witha#stusing a simultaneous
worsening in at least another one.

Definition 2.2: Pareto dominance
A solution u = (u;,Uu,,...,u, ) is said to dominate another solutisre (v, V,,....v,, )

(denoted by f(u)=< f(v)) if and only if f(u) is partially less thar v(.)In other
words, Om0O{1..,.M} we have f (u)<f,¢) and OmO{1..M} where

frn(U) < (V).

Definition 2.3: Pareto optimal set
For a given MOF X )the Pareto optimal set R’ :{ xO Q| -0x0Q, f(x')=< f(x)}.

Definition 2.4: Pareto optimal front
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For a given MOF(x) and its Pareto optimal seP’, the Pareto front is
PF ={ f (), xOP'}.

Definition 2.5: Ideal point
The ideal pointz' =(z,...,z,, )is the vector composed by the best objective values
over the search spa€e Analytically, the ideal objective vector is expsed by:

z.' =Minq f. (x),mO{1,...,M} (2.2)

Definition 2.6: Nadir point
The nadir pointzM =(z",...,z}}) is the vector composed by the worst objective value

over the Pareto optimal set. Analytically, the madijective vector is expressed by:

Zy =Max . f,(x),mO{L....M} (2.3)

Definition 2.7: e-dominance

A solution u is said to epsilon-dominate a solution (u=<,,v) if and only if
OmO{L,....M}: Uy < vy, + € for a givene > Owhereu,,/v,, is them™ objective value

of solutionu/v.

2.3 Resolution methods

2.3.1 Aggregative methods

Traditional multi-objective optimization methods gaggate the different objective
functions into a single one. In order to generatepesentative approximation of the
whole Pareto front, the user must perform seveuals rwith different parameter
settings. Some representatives of this class ohaalst are the weighted sum method
(Cahon 1978), the-constraint method (Cahon 1978), the goal programgngCharnes
et al. 1955), the reference point method (Wierzbit880), the reference direction
method (Korhonen and Laakso 1986a) and the lighimbsearch method (Jaszkiewicz
and Slowinski 1999) which are briefly discussedhis subsection.

¢ The weighted sum method
This method converts the MOP to a SOP by forminfjnear aggregation of the
objectives as follows:

{Min f(X) =wyf1(X) + Wy fo(X) +...+ Wiy fiy (X) (2.4)

xdQ
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Figure 2.1 Graphical interpretation of: (a) the weghted sum method
and (b) theeg-constraint method (inspired by itzler 1999).

where w;, corresponds to the weighting coefficient of thi¥ objective such that

SM w,=1 and w, = 0 OmO{L...,M}. Solving (2.4) with different weighting

m=1
coefficients sets yields a set of solutions. Urttlercondition that an exact optimization
algorithm is used and all weighting coefficiente positive, it is easy to show that this
method will only generate Pareto optimal solutiohssuming that a feasible decision
vectoru minimizes f for a given weight combination and is not Paretonog@l, then

there is a solutiow which dominates, i.e., DmD{L...,M} we havef (V)< f, @)
and DmD{L...,M} where f_(v)<f, 0) Therefore, f(v)< f(u), which is a

contradiction to the assumption thatu (s)minimum.

The main disadvantage of this technique is thaamnot generate all Pareto optimal
solutions with non-convex trade-off surfaces. Tisisllustrated in figure 2.1(a). For
fixed weightsw; andw,, solutionx is sought to minimizg = w; f;(X) + w, f,(x). This
equation can be formulated dg(x) = —(Wl/Wz)fl(X) +(y/w2), which defines the line
L (solid line in figure 2.1(a)) with a slope ef(vvl/wz) and an intercept oﬁy/wz) in
the objective space. Graphically, the optimizafwacess corresponds to moving this
solid line downwards until no feasible objectivectee is above it and at least one
feasible objective vector (hefeandD) is on it. However, the poinBandC will never
minimizey. In fact, if the slope is increased (upper dasles), D achieves a lesser

value ofy thanB andC. Besides, if the slope is decreased (lower daBhell A has a
lessely value tharB andC.
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¢ The e-constraint method

This method converts the MOP into a SOP by optingzindividually a selected
objective while keeping the remaininlyl{l) objectives’ values less than or equal to
some user-specified thresholds as follows:

Min f(x) = f, (X) ho{t,....M}
fn(X) < é&n mO{L...M},m#h; (2.5)
xdQ

The upper boundg,, are the parameters to be varied in each run ieraa obtain

multiple Pareto optimal solutions. As depictedigufe 2.1(b), the-constraint method
is able to find solutions associated with non-conparts of the Pareto front. Setting
h=1 and &, =r (solid line in figure 2.1(b)) makes solutifninfeasible while solution
C minimizesf;. Figure 2.1(b) also shows a problem with this teghe. In fact, if the
lower bounds are not chosen appropriat@y =r'), the obtained feasible set may be
empty, i.e., there is no solution to the obtain€PSIn order to avoid this problem, a
suitable range of values for tl#e, quantities has to be known beforehand.

¢ The goal-programming method
For each objective function, the user provides al g8 to be achieved. The goal-

programming method transforms the MOP into a SOnlyymizing individually the
weighted sum of deviations from goals as follows:

Min f(x) = %Wm| frn(X) = G|
m=1

xdQ

(2.6)

wherewy, corresponds to the weighting coefficient of tm& objective such that

M
> w, =1 andw, > 0 OmO{L...,M}.
m=1

As discussed by (Miettinen 1999), if the optimalealive function value of the goal
programming method equals zero, then some causidn brder since the obtained
solution may not be Pareto optimal. In fact, if sdittled goals are feasible, then the
value zero for all the deviational variables givies minimal value (zero) for the goal
programming objective function. Hence, the soluimequal to the reference point (the
vector composed with all user-specified goals) aodnally there exist many feasible
solutions that are non Pareto optimal. If the sohg are intended to be Pareto optimal

10
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Figure 2.2 The reference point method.

independently of the selection of goals, then é& ¢foals are feasible, the functidnis

to be maximized,; else if the goals are infeasibéeftinction f is to be minimized.

¢ The reference point method

The classical Reference Point Method (RPM) was gse@ by (Wierzbicki 1980). A
reference poing for a particular MOP consists of an aspiratiorelexector. Aspiration

levels represent the DM’s desired values for edgkabive. This method projects the
reference point onto the Pareto optimal regiontheminimization of an Achievement
Scalarizing Function (ASF). Among the most commdmpwn forms of an ASF is the

following:

Min s(f (x),g) = me;;fM [wi, (£, = g, )] (2.7)

wheregn, is them™ component of the reference point amg is the weight associated
with them™ objective.

As shown in figure 2.2, the reference point couddféasible belonging to the Pareto
front (A), feasible not belonging to the Paretontr@B) or infeasible (C). For a chosen
reference point, the RPM tries to find the clodeateto optimal solution. The main
drawback of this method is that it provides onlg @olution in a single run. Hence, if
the DM is dissatisfied with the obtained solutiordér he/she would like to obtain a

11
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Figure 2.3 The reference direction method (fron{Deb and Kumar 2007g)

small sample of Pareto optimal solutions near eaférence point then he/she must
perform several runs of the algorithm. It shouldno¢ed that the DM could obtain a
sample of near reference point solutions by peirtgrithe reference point and/or the
weights and performing several runs of this metHdessides, in order to make this
method interactive, Wierzbicki (1980) suggestedr@acedure to update the reference
point automatically which facilitates the DM’s taskhen using the reference point
approach in practice, the DM is asked to suppkfarence point and a weight vector at
a time. The reference point guides the search tisvéite desired region while the
weight vector provides more detailed informatiomwatbwhich Pareto optimal point to

converge to.

¢ The reference direction method

Korhonen and Laakso (1986a) suggested a referemeetidn-based approach for
multi-criterion optimization using the principle «folving ASFs repeatedly. This
method is described as follows:

= Step I Choose an initial arbitrary poinf in the objective space and let— 1;

12
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= Step 2 Specify another vectog® and determine the reference direction
d“ =g — %
= Step 3 Determine a sef* of efficient solutiongy which solves the following ASF:
{Min (fegrw)=  Max  [(fn() = 1)/ W]

w,>0,m=1,...,

2.8)
r(t) =q<*+td*

wheret is an integer parameter increased from zero toiipf w is a weighting
vector and ,(t) is them™ component of (t);

= Step 4:Find the most preferred solutiofi in Q¥ using a particular utility function
or by other mean;

= Step 5:1f ' # ¢, setk — k + 1 and go tetep 2 Otherwise, check for optimality
conditions (Kuhn-Tucker conditions (Miettinen 1999r other optimality
conditions (Korhonen and Laasko 1986a)) of thetamiug®. If ¢ is optimal then
terminate the optimization run. Otherwise, incretierdetermine a new reference
direction and go t&tep 3

Figure 2.3 shows a sketch 8tep 3 of the above optimization procedure. For each
point (say pointC) marked on the reference direction (frafthtowardsg'), a Pareto
optimal solution (poin®) is found by solving the ASF given in equationd{2.Step 3
of the above procedure involves multiple applicatod a single-objective optimization
for different values ot, thereby finding a range of efficient solutios t{ll E). The
idea of finding an efficient solution correspondiega point on a reference direction is
similar to the reference point approach of Wierkbid980). Although the original
study of the reference direction approach and spese studies of Korhonen and his
co-authors (Korhonen and Laasko 1986b; Korhonen»amdl997) concentrated on
parametric solutions for multiple points on theerehce direction, the principle can be
used by forming multiple ASFs and solving them bysiagle-objective optimizer
independently. An analytical hierarchy process vedso used to determine the
reference direction (Korhonen 1987). Interestinghe reference direction approach
corresponds to the process of projecting the reteralirection on the Pareto optimal
frontier.

¢ The light beam search method

The Light Beam Search (LBS), as described in (Jesaéz and Slowinski 1999),
combines the reference point idea and tools of iMuttibute Decision Analysis

(MADA). It enables an interactive analysis of MOBP&nks to the presentation of
samples of a large set of non-dominated pointsh®o DM in each iteration. An
aspirationpoint anda reservatiorone shoulde suppliedby theDM. Thesetwo points

13
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Figure 2.4 The light beam search method.

define the direction of the search in a particuteration. If these two points are not
suggested, the ideal point and the nadir point(aorse point than the nadir one) can
be assumed as aspiration and reservation poirgeatdgely. Initially a non-dominated
middle point is determined by projecting the agmrapoint on to the non-dominated
front by using an augmented version of WierzbickASF. Thereafter, a local
preference model in the form of an outranking retaf is used to obtain neighboring
solutions of the current non-dominated point, cg thiddle point. It is said tha
outranksb (or a S b, if a is considered to be at least as good.a3o define an
outranking relation, the DM has to specify threeef@rence thresholds for each
objective: (1) indifference threshold, (2) prefaererthreshold and (3) veto threshold. In
the LBS procedure, they are considered to providg local information, thus they are
assumed to be constants. The extreme points caatkaistic neighbors are found one
for each objective by considering the maximum addwmprovement in a particular
objective in relation to the middle point. The DMnccontrol the search by either
modifying the aspiration and/or reservation poimtisby shifting the middle point to
selected better point from its neighborhood or londitying the preference threshold
values. Figure 2.4 illustrates the LBS method meigma. The LBS procedure is as
follows:

14
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= Step 1:Ask the DM to specify starting aspiration and reagon points;

= Step 2:Compute the starting middle point on the Paretorag front;

= Step 3: Ask DM to specify the local preferential informati used to build an
outranking relation;

= Step 4:Present the middle point to the DM,;

= Step 5:Calculate the characteristic neighbors of the mheighwint and present them
to the DM;

= Step 6:If DM is satisfied, terminate the procedure; eds& the DM to: (1) choose
one of the neighboring points to be the new migdimt, (2) update the preferential
information or (3) define a new aspiration point&m a new reservation point. The
algorithm proceeds by moving &iep 5for the case (1) and ®tep 4otherwise.

2.3.2 Evolutionary methods
¢ Non Pareto-based evolutionary methods

e VEGA: Vector Evaluated Genetic Algorithm
Schaffer (1985) proposed one of the first altexeatito adapt EAs to handle MOPs
called VEGA. The basic idea is to divide the popatainto M subpopulations of equal
sizes. Then, in each one of them, the selectionatge by taking into account only the
unique corresponding objective. Once the selectithanism was performed, the
population is mixed to apply the rest of the evioléry operators. All this process is
repeated in each generation. An evident VEGA prohbkethat it does not promote the
survival of good trade-off solutions, but it prefeéhe best solutions of each objective
separately. This problem is known as speciation i{fpyanalogy in genetics). This
problem was identified and attacked by Schaffemgugnating restrictions (i.e., not
allowing recombination between individuals of trem& subpopulation) as well as
other heuristic rules applied during the selectimechanism. In another work
(Richardson et al. 1989), it was also demonstrtitad if proportional selection is used,
VEGA’s scheme is equivalent to a linear combinatadnobjective functions which
means that it has limitations regarding non-corRareto fronts.

* VOES: Vector Optimized Evolutionary Strategy
Few years after the VEGA studies, Kursawe (199bppsed the Vector Optimized
Evolutionary Strategy for multi-objective optimizat (VOES). The VOES fitness
assignment mechanism is similar to VEGA one, butswe used other genetic aspects
from nature. In VOES, a solution is representea layploid chromosome, each having
a dominant string and recessive one. Two differgsitition vectors (each with a
decision variablex and the corresponding strategy veeipare used as an individual in

a population. Hence, a solutionis evaluated by calculating: (1j° based on the

15
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dominant genotype and (2)" based on the recessive genotype. In the followivey,

present the evaluation and the selection mechanidihe selection process is
performed inM steps. For each step, a user-supplied probahiéttor is used to

choose an objective. This vector can be fixed giedaacross generations. Assuming
the m™ objective is selected, the fitness of certain tofux is computed as the

weighted sum of the dominant objective value amdrétessive one as follows:

F( =2 £209+ 140 (2.9)

For each selection step, the population is sorts®db on each objective function and

the best[ M
M

th
j portion of the population is selected as parehités procedure is

repeatedVl times, every time using the survived populatianfrthe previous sorting.
Thus, the relation between the number of parentnd the number of childreA can

be expressed as follows:

M
E [%j p) (2.10)

For example, for the bi-objective case, we obtam0251. All new u solutions are

copied into an external archive which stores the-ad@minated individuals found since
the beginning of the simulation run. After addingls solutions to this archive, a non-
domination check is performed and only new non-chated solutions are retained. If
the size of the external archive exceeds the agddize, a niching mechanism is used to
eliminate crowded solutions in order to promoteedsity.

VOES uses non-domination check to ensure conveegand niching to encourage
diversity. These features are essential to desmgwod MOEA. Unfortunately, Kursawe
assessed the performance of his algorithm on destegt problem and no further
experimental assessments were pursued since Kussamginal study.

* WBGA: Weight-Based Genetic Algorithm
WBGA, also called HLGA (Hajela and Lin Genetic Alghm), was introduced by
(Hajela and Lin 1992). For each objective functianyeighting coefficient is assigned.
Unlike the classical weighted sum method, eachviddal from the population has its
own weighting coefficient vector which is coded iis string concatenated to its
decision variables. This fact makes the WBGA abldinnd multiple non-dominated
solutions in a single run. The key issue in thigoathm is how to maintain the
diversity of weighting coefficients among the pagdidn individuals. Tow approaches

16
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Figure 2.5 MOGA ranking process.

were suggested for this sake. In the first approaafiching mechanism is used on the
substring representing the weight coefficient vecto the second approach, carefully
chosen subpopulations are evaluated for differegstdefined weight vectors in a
similar way to VEGA. Unfortunately, WBGA is a weigbased approach; hence it fails
in finding Pareto optimal solutions residing in then-convex parts of the front.

¢ Pareto-based evolutionary methods

* Non elitist methods

=  MOGA: Multi-Objective Genetic Algorithm

MOGA (Fonseca and Fleming 1993) is the first MOEAiah explicitly used Pareto-
based ranking and niching techniques together ¢cowgage the search towards the true
Pareto front while maintaining diversity in the pigtion. In fact, each individual is
assigned a rank which is expressed as a functiothef number of individuals
dominating it. AssumindNdon to be the number of solutions dominating a certain
solutionx at a generatiot) the rank at of x is given by:

rank'(x) =1+ Ndoni (2.11)

With such ranking mechanism, non-dominated solstibave a rank of 1 (cf. figure
2.5). The fitness assignment method used in MOG&ganto account the rank of the
population member and the average fitness valutnefpopulation. The process for
computing the fitness values is as follows. Firsthe population is sorted by rank.
Then, a fitness value is assigned to each individased on an interpolation of the best
rank to the worst rank according to some specifigaction. Finally, individuals
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Figure 2.6 Fitness sharing strategy.

assigned the same rank receive an averaged fivelse. This ensures that all
population members of the same rank are sampldd amtidentical frequency. This
information is used to maintain constant global yation fitness with an appropriate
amount of selective pressure. Additionally, MOGApiements the concept of fithess
sharing (also referred to as crowding or nichiny) ases &, parameter called the

niche radius which must be carefully specified. Hrghing mechanism is applied in
the objective space in order to obtain a uniformstrtbution of the Pareto front
approximation. Figure 2.6 illustrates the fithebarsng mechanism. In fact, solutions
residing inside the niching radius are penalizether fitness values.

Although in MOGA fitness assignment is explicithaded on Pareto dominance,
solutions having the same rank may not have the smsigned fithess. This may cause
an unwanted bias towards a certain zone of thelsegace. Particularly, MOGA may
be sensitive to the geometry of the Pareto frordddition to the density of solutions
over the search space. Besides, the fitness sharaupanism favors solutions with
poor ranks over solutions with higher ranks if théstter are more crowded, thereby
worsening the converging.

» NPGA: Niched Pareto Genetic Algorithm

Horn and Nafpliotis (1994) proposed NPGA which eiff from the previously
discussed MOEAs in the selection operator. Thisrélgn uses the binary tournament
selection instead of proportionate selection methaded in VEGA and MOGA.
During the tournament selection, two solutionandy are picked randomly from the
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parent populationP. Then, these two solutions are compared based ametd®
dominance to each individual of a randomly selecedpopulationT of size tdom

(wheretdom<<|P)). If one of the two solutions is non-dominatedhwiéspect to all the

subpopulation individuals and the other one is dat@d by at least one individual, the
non-dominated solution is retained. In the casesra/meither or both members are
dominated by the subpopulation members, a nichieghanism is implemented to
select the least crowded solution amarandy.

NPGA is found to be sensitive to tlw,, . value in addition to thedom one. The

numerical results reported in (Horn and Nafplidi#94) suggest thatdom should be
an order of magnitude smaller than the populatiae. On one hand, ifdom is too
small, the non-domination check would be so noigyctv may not emphasize non-
dominated solutions sufficiently. On the other haifd tdom is too large, non-
dominated solutions will be well-emphasized but tdoenputational complexity will
increase. Additionallyfdomdepends on the number of objectives to optimize.

= NSGA: Non-dominated Sorting Genetic Algorithm

NSGA (Srinivas and Deb 1994) is based on the nanhaated sorting strategy (cf.
figure 2.7). This strategy classifies the populatmembers into several fronts. The
non-dominated sorting algorithm begins by identifyithe non-dominated individuals
from all population members. These individuals hneerank of one and are assigned a
large dummy fitness value. After that, the firsirft members are discarded temporary
from the population and the non-dominated individideom the truncated population
are identified and assigned the rank of 2 (evelytwsigned a dummy fitness value
smaller than the one of the first front). This @es continues until classifying all
population members. The diversity maintenance lsexed in NSGA by applying the
fithess sharing front-wise in the decision spanst@ad of the objective space) in order
to degrade the fitness values based on a useredefirche radius value,, .. The

sharing in each front is achieved by calculatingharing function value between two
individualsi andj in the same front as follows:

2
1- if d; <

Shjij = [ UshareJ ij = Oshare (2.12)
0 otherwise

where d; is the Euclidean distance separatingndj. After that, a parameter niche

count is calculated by adding the above sharingtfon values for all individuals in the
current front. Finally, the shared fitness value eafch individual is computed by
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Figure 2.7 Non-dominated sorting strategy.

dividing its dummy fitness value by its niche caufhe best individuals are always
preferred over other solutions, thereby favoring gleneration of new individuals near
the non-dominated solutions. The fitness sharinghaeism helps the algorithm to
distribute the non-dominated solutions along theet®afront. However, the high

sensitivity to theoy,,,.. parameter yields to a less efficient performarfdd ®GA.

» Elitist methods
Elitism means that elite individuals cannot be eseld from the archive gene pool of
the population in favour of worse individuals (Hoid 1975). In the following, we
review the most representative elitist MOEAs.

= SPEA/SPEAZ2: Strength Pareto Evolutionary Algorithm
(Zitzler and Thiele 1999) proposed the strengthet®ampproach which uses two
populations: (1) a main populatidghand (2) an archive populatioh which contains
the non-dominated individuals found so far durihg evolutionary process. Initially,
the populationP is generated randomly and the archivés empty. ThenA is filled
with non-dominated members fraf After that, solutions fronA which are dominated
by any other member frorA are deleted. Besides, if the number of exterrstityed

non-dominated solutions exceeds the archive |sﬁlz,ethenA Is pruned by means of a
clustering procedure which will be discussed n&wuce all population and archive
members are each assigned a fitness value, biramgnament selection with
replacement is applied to fulfil the mating pooftek applying genetic operators, a new
populationP is generated. If a stopping condition is met ttiem evolutionary process
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is stopped, else non-dominated vectors fidare copied to the archiveas usual and
the overall process is repeated.

The fitness assignment in SPEA is a two-stage peocEirst, the non-dominated
individuals from the archiveA are ranked. Then, the populatiéh members are
evaluated. In fact, every solutianfrom the archiveA is assigned a strength value
S D[O,][ which is proportional to the number of individuaisP which are dominated

byi. The strengths is given by:

nd

S

where nd denotes the number of individuals nthat are covered byand |P| is the

main population size. The fitness of populationivichal jOP is obtained by
summing the strengths of all non-dominated solgtionl A that dominateg. The
obtained sum is raised by 1 in order to guarariteé @archive members have better
performance thaR members. This fitness is to be minimized andvegiby:

f, :1+.Z§ 2.14)

iix]

The clustering mechanism is applied to reduce itee s the archive while keeping its
characteristics. The general idea is to partitioa drchive intaC groupings (clusters),

whereC <|A4 and all individuals of the same grouping have shme characteristics.

The clustering procedure begins by making each etraf the initial non-dominated
archive a cluster. Following this, two clusters e@nesen via a distance measurement to
be combined into one cluster. The distance is tatled as average Euclidean distance
between pairs of individuals across the clustensth&® completion of the clustering
process, the new non-dominated archive consistthefcentroid members of each
cluster. The authors show favorable results congprether MOEAs.

In another study (Zitzler et al. 2001) have ideetif three weaknesses for SPEA.
Firstly, for the fitness assignment strategy, indlials that are dominated by the same
archive members have identical fitness values. Blenc the case when the archive
contains only a single individual, all populationembers have the same rank
independently of whether they dominate each oth@&obt Consequently, the selection
pressure is decreased substantially and in thiscpkr case SPEA behaves like a
random search algorithm. Secondly, for the dersstymation, if many individuals of
the current generation are Pareto equivalent, rneery little information can be
obtained on the basis of the partial order defibgdhe dominance relation. In this
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Figure 2.8 Comparison of fithess assignment mechams:
(a) SPEA versus (b) SPEA2 (fronfzitzler et al. 2001)

situation, which is very likely to occur when thamber of objectives exceeds two,
density information has to be used in order to guilde search more effectively.
Clustering makes use of this information, but onlth regard to the archive and not to
the main population. Thirdly, for the archive tration strategy, although the clustering
mechanism used in SPEA is able to reduce the nonrded set without destroying its
characteristics, it may lose extreme (outer) sohgi However, these solutions should
be kept in the archive in order to obtain a gooetag of non-dominated solutions. In
response to the above mentioned SPEA weaknessdgy 2t al. (2001) have proposed
an improved version of SPEA, called SPEA2. In casttto SPEA, SPEA2 uses a fine-
grained fitness assignment strategy which incotgsradensity information.
Furthermore, the archive size is fixed, i.e., wivemethe number of non-dominated
individuals is less than the predefined archive dize archive is filled up by dominated
individuals; with SPEA, the archive size may vawgtime. In addition, the clustering
technique, which is invoked when the non-domindtedt exceeds the archive limit,
has been replaced by an alternative truncation adetvhich has similar features but
preserves boundary solutions. Finally, anotheredifice to SPEA is that in SPEA2
only members of the archive participate in the ntatielection process.

The SPEA 2 fitness assignment for a certain saluttakes into account the number of
individuals dominating in addition to the number of individuals dominatgdi. Each
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solutioni from the populatiorP and the archiveA is assigned a strength valige

representing the number of individuals dominated by
s =[i[iDPOADI<j| (2.15)
After that, the raw fitnesR; is computed as flows:

R = ZSJ- (2.16)
jOP+A,j<i

This raw fitness is determined by the strengthgsoflominators in both archive and
population, as opposed to SPEA where only archieenbers are considered in this
context. It is important to note that fithess is ie minimized here, i.eR = 0
corresponds to a non-dominated individual, whildigh R value means thai is
dominated by many individuals (which in turn dontenamany individuals). This
scheme is illustrated in figure 2.8(b).

The raw fitness assignment strategy supplies a afortiching based on the Pareto
dominance concept. However, this strategy becomeffidient when most individuals
are non-dominated with each other. For this reaaddijtional density information is
incorporated to discriminate between individualsih@ identical raw fitness values.
The density estimation technique used in SPEA2nisadaptation of th&™" nearest
neighbor method where the density at any pointde@easing function of the distance
to thek™ nearest points. The density estimate correspantietinverse of the distance
to thek™ nearest neighbor. In fact, for each individiyahe distances in objective space
to all individualsj from P [0 A are computed then stored in a list in an increpsmder.

After that, thek™ nearest neighbor gives the sought distance dertglea‘ik. Thek

parameter value is usually setJtP +|A . The densityd; of solutioni is:

Di=— 1 (2.17)

o +2

In the denominator, two is added to ensure thatatse is greater than zero and that
D, <1. Finally, the fitness of a certain solutionis obtained by summing the raw

fitness and the density information as follows:
F=R +D, (2.18)

The SPEA2 environmental selection mechanism difiensy SPEA one by preserving
the boundary solutions and by the fact that the bmmof stored external solutions is
constant over time.
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= NSGA-II: Non-dominated sorting Genetic Algorithm I
NSGA-II is the improved version of NSGA (Deb et 2000; 2002a). NSGA-II is one
of the most cited MOEAs. The most prominent feauoé NSGA-II are its low
computational complexity, elitist approach and athuod for diversity that does not
need additional parameters. The general principldNSGA-II is as follows. The
NSGA-II algorithm begins by creating an offspringppilationQp by applying genetic
operators to a randomly generated parent popul@®gpnrFrom the first generation
award, the basic iteration of NSGA-II is differefirst, the two populationB; and Q;
are combined to form a populatidd of size N (|P] = Q| = N). Second, a non-
dominated sorting is performed to classify the renpopulationR.. Once, the non-
dominated sorting is over, the populatiBnbecomes subdivided in several categories
in the same manner of NSGA. After that, the newepapopulatiorP..; is filled with
individuals of the best non-dominated fronts, oha ame. Since the overall population
size is N, not all fronts may be accommodated Nhslots available in the new
populationPi;. When the last allowed front is being considerediay contain more
solutions then the remaining available slot®in. Instead of discarding arbitrary some
elements from the last front, NSGA-II uses a nighgstrategy to choose individuals
from the last front which reside in the least creddegions in this front. In fact, for
each ranking level, a crowding distance is estichdig calculating the sum of the
Euclidean distances between the two neighboringtisols from either side of the
solution along each of the objectives as demorstray figure 2.9. In order to preserve
boundary solutions, these latter are each assignedfinite crowding distance. The
crowding distance assignment procedure can be sumedaby the three following
steps:

= Step 1: For each solution from the considered frorf, initialize its crowding
distanceCD; to zero:CD, — Q

= Step 2:For each objective function, sort the front memlera decreasing order of
fm and find the sorted indices vectof® = sort(f,,>);

= Step 3: For m=1...,M,assign an infinite crowing distance to extreme tsohs

(CD,, =CD, =) and for the other solutiorjs= 2,...[F| -1, assign:

|

mom
fm _fm

i I max _ £ min
i i fm fm

(2.19)

where | " corresponds to the index of tfifemember in the list sorted based on i

objective function.
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Figure 2.9 Crowding distance.

NSGA-Il is demonstrated to be one of the most cditipe MOEAs through the
specialized literature. The main weakness of NSGWals reported in (Deb 2001). In
fact, when the cardinality of the first front fraime combined populatioR; exceeds the

population size*P| , some closely packed Pareto optimal solutions ginag/ their places

to some non-dominated yet non Pareto optimal swigtisince the replacement
becomes based only on the crowding distance arteri

» PAES/PESA: Pareto Archived Evolutionary Strategy/Paeto Envelope-based
Selection Algorithm

(Knowles and Corne 1999; 2000) proposed a (1+1)tHEemary Strategy ((1+1)-ES),
named PAES, to approximate the whole Pareto ffoms work was motivated by the
success of (1+1)-ES in resolving mono-objectivebfms. For this reason the authors
have adapted such search method for the multi-bbgecase. PAES begins by
producing a childcy from a randomly generated pargit In each generatioty non-
dominated solutions found are stored in an archiite a pre-specified size. The two
individuals p; and ¢; are firstly compared. If one solution dominates tither, the
dominated individual is discarded and the domiram is retained as parent for the
next generation. In the case whexeand c; are non-dominated, the new candidate
solution is compared with a reference populatiopretiously archived non-dominated
solutions, i.e., archive members. If comparisoth® population in the archive fails to
favor one solution over the other, the tie is sfaifavor the solution which resides in
the least crowded region of the search space. Thkiva has a user-specified
maximum size which reflects the desired numberraf fsolutions. Each child which
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Figure 2.10 PAES hyper-gridding system witld = 6.

is not dominated by its parem is compared with each member of the archive.
Candidates which dominate the archive memberslaeya accepted (as parents) and
archived. Candidates which are dominated by thie\sganembers are always rejected,
while those which are non-dominated are acceptdébaarchived based on the degree
of crowding in their grid location. The major feeuof PAES is its strategy for
promoting diversity in the approximation set. PAESes an adaptive hyper-gridding
system in the objective space to divide it imkanon-overlapping hyper-boxes. The
belonging of a certain solution to a certain regiothe hyper-box is determined by the
objectives’ values which define the solution’s atinates. In the case where an
offspring solution is non-dominated with respecthe archive members, a crowding
measure based on the number of solutions residirggcertain hyper-box is applied to
determine whether the offspring solution is accemtenot.

The major advantage of this diversity maintenamchnique is that it does not require
any additional parameters such as the niche simemteo, . .However, the main

crux of PAES is the sensitivity of the performamdé¢esuch algorithm to thd parameter
of the hyper-gridding system (cf. figure 2.10).

The same authors (Corne and Knowles 2000) haveopeappPESA which is a modified
version of PAES. PESA has the same archiving avetsity preserving mechanisms of
PAES. In PESA, like SPEA2, only archive memberdipaate in genetic operations.
PESA begins by randomly generating a small intepoglulationlP. PESA uses also a
large external populatioBP which is initially empty. After that, the archiveP is
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updated with elite solutions in the same mannelPAES. If the stopping criterion is
met then the algorithm returrisP, elselP is fulfilled with new individuals by the
following operations. With probabilitp., two parents are selected frdaf. A single

child is subsequently created by crossover. Thisl ¢hthen mutated. With probability
(L- p.), a selected parent froBP is mutated. After that, the archita® is updated and

the overall process is repeated.

As PAES, PESA necessitates the tuning of the aecsize and thd parameter of the
gridding system. We note that the number of hymeels changes exponentially with
the modification ofd value which influences the final population distion. An
improved version of PESA, called PESA-II, was pregubby Corne et al. (2001) where
selection is region-based and the subject of setees now a hyper-box not only an
individual (i.e., first selecting a hyper-box, tham individual is chosen from the
selected hyper-box). The motivation behind PES#figseduce the computational cost
of Pareto ranking.

= |BEA: Indicator-Based Evolutionary Algorithm
(Zitzler and Kunzli 2004) proposed a MOEA whereestbn is based on solution
contribution to a certain quality indicator. Indicebased MOEAs can, therefore, be
seen as a third generation of MOEAs. IBEA begins ragdomly generating a
populationP. After that, for each solutionfrom P, the algorithm computes the fithess
of i corresponding to the loss in qualityiiis removed from the populatidd. The
solution with the lowest fitness is removed frore gfopulation and then the population
members’ fitness values are recomputed since thmulgion is truncated. This
selection strategy is used in creating the matiogl pnd in environmental selection.
The main crux of IBEA is its sensitivity to thre parameter which is used to scale the
fitness function values since the algorithm perfange largely depends on this
parameter which is reported to depend of the censtdiMOP. Another indicator-based
selection algorithm is thé& Metric Selection-based Evolutionary Multi-Objediv
Algorithm (SMS-EMOA) (Beume et al. 2007) which coimés non-dominated sorting
with indicator-based selection mechanism. IBEAs loarseen as the last generation of
MOEAs. The main critical point in this type of algbms is the important required
computational effort for computing the quality iodior values for a certain non-
dominated solution set.

2.4 Performance assessment of MOEASs

2.4.1 Test functions
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Table 2.1 Bi-objective ZDT test problems’ chaacteristics.

Name Features

ZDT1 The Pareto front is convex.

ZDT2 The Pareto front is concave.

ZDT3 The Pareto front is formed by several disjaiotvex parts.

ZDT4 | There are21’ local fronts.

ZDT5 The Pareto front is convex. ZDT5 is a discratblem with a deceptive landscape.

ZDT6 The Pareto front is concave. This problemharacterized by the non-uniformity not only
of the search space but also of the solution Histion along the Pareto front.

Table 2.2 Scalable DTLZ test problems’ characterigts.

Name Features

DTLZ1 | The Pareto front is linear (Hyper-plane). There aﬂg -1 local optimal fronts wherk is
a user-specified parameter.

DTLZ2 | For M >3, the Pareto optimal solutions lie inside the fqaadrant of the unit sphere infa
three-objective plot withf,, as one of the axes.

DTLZ3 | There are(3k -1) local fronts that are parallel to the global Parfebnt wherek is a user-
specified parameter.

DTLZ4 | The Pareto optimal solutions are non-unifgraistributed along the Pareto front.

DTLZ5 | The front is a curve and the Pareto optin@ltons are non-uniformly distributed along
the Pareto front.

DTLZ6 | The front is a curve and the solution dengigys thinner towards the Pareto front.

DTLZ7 | The Pareto front is formed b3 disjoint regions in the objective space.

DTLZ8 | The Pareto front is a combination of a stiiline and a hyper-plane. The straight line is
the intersection of the firsM-1) constraints withf, = f, =...= f,,_, and the hyper-plane is
represented by another constragy; .

DTLZ9 | The Pareto front is a curve with, = f,=...= f,,_,. The solution density gets thinner

towards the Pareto front.

Several test functions are proposed to challeng&EM®@apabilities in approximating
the Pareto front. The most cited test functionesuiaire: (1) the bi-objective ZDT
(Zitzler-Deb-Thiele) suite (Zitzler et al. 2000)da(R) the scalable DTLZ (Deb-Thiele-
Laumans-Zitzler) suite (Deb et al. 2002b) where Bwreto optimal front can be
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determined analytically (cf. appendices A and B)clIs test functions encapsulate
several characteristics such as non-convexity, imattality, non-uniformity of the
search space and discontinuity which cause diffesilto a MOEA. These test
functions do not reflect necessarily the main fesgof real world MOPs. It is true that
some of these functions contain important chareties that make them particularly
difficult to solve. Thus, if a MOEA can resolve sutest functions, it should also be
able to tackle real world MOPs; although this i mecessarily true. Tables 2.1 and 2.2
present the ZDT and DTLZ test functions’ charastess respectively. We notice that
for DTLZ test problems, the parameters can be memtlifin order to increase or
decrease the problem’s difficulties (e.g., modifythe number of local optimal Pareto
fronts).

2.4.2 Performance indicators

When evaluating the performance of a MOEA, theeetao main goals to pursue: (1)
closeness of the provided non-dominated solutibtosthe Pareto optimal front and (2)
diversity of the obtained solution set (with a gabstribution) along the Pareto optimal
front. Several performance measures are propost IEMO literature to evaluate one
or both of these goals (Zitzler et al. 2003). Tahl& presents a classification of selected
representative performance measures. The clasgfhazriteria are the following:

- unary which indicates if it is a unary performance iradar (i.e., performance
measure which assigns a single value to each nonnrdted solution set);

- binary which indicates if it is a binary performance icator (i.e., performance
measure which assigns a single value to a paiowfdominated solution sets);

- convergenceavhich indicates that the performance indicatoigassa single value
corresponding to the convergence of the non-domihsoblution set;

- diversity which indicates that the performance indicatorigass a single value
corresponding to the diversity of the non-dominaeldition set;

- regPFtrue which indicates if the performance measure requtre true Pareto

optimal front PF,,,. to assign a single value to the non-dominatedisolset;

rue

- best valuawvhich indicates the best value that can be obddiren the performance
indicator;

- Pareto compliantwhich indicates whether the performance measur@aeto
dominance compliant. Before defining the notiorPafeto dominance compliance,
we give the definitions of compatibility and comigleess. The definitions are
derived from the study of Zitzler et al. (2003):

Definition 2.8: Compatibility and Completeness
AssumingW and Z two approximationsets,a quality indicator |1 : Q - [0 (assuming
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Table 2.3 Main features of performance indicators.

Performance | unary binary | convergence| diversity | regPFtrue| best | Pareto
indicators value | compliant
ER X X X 0 X
SC X X 1 X
l,. X X X
GD X X X 0
IGD X X X 0
A X X 0
HV X X X 1 X
S X X 0
2—like X X X 0
deviation

higher values of the indicator mean better perforwea is said to beompatiblewith
the Pareto dominance relation if and only if:

(W) >1(Z2) >W=<Z (2.20)

The quality indicatot is said to beompletef and only if:

W=<Z = [ (W)>1(2) (2.21)

Definition 2.9: Compliance

A quality indicatorl is said to be Pareto dominanoempliantif | is both compatible
and complete with the Pareto dominance relation.

Error Ratio (ER): This indicator is proposed by Van Veldhuizen amaganiont (2000). It
corresponds to the ratio of the number of solutithred are not members of the true
Pareto optimal front PR, by the cardinality of the obtained solution set.

MathematicallyERis expressed as follows:

N

28
ER:% (2.22)

whereN is the number of non-dominated solutions providgdhe MOEA ande = 1

if solutioni is dominated by any member froRPF, . and g = O otherwise.ER =1

rue
means that no solution belongs to the true fi®Rf,, and ER=0 when all solutions
are in the true front.

Set Coverage (SC): This indicator can be termed relative coveragemvof solution sets
(Zitzler et al. 2000)SCis defined aghe mapping othe pair W, Z) to the interval [0,1]
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as follows:

{z0Z; CvOW : z< wf
2]

SQW, Z) = | (2.23)

SQW, Z) expresses the percentage of solutions fZotinat dominates solutions .
SCW, Z) =1 means that each solution Zhdominates at least one solution froih
while SCW, Z) =0 means the opposite (i.e., there is no solutiomfidbdominating
solutions fromW).

Binary additive epsilon indicator (I_.): This metric takes a pair of non-dominated

solution setdV andZ as inputs and returns a pair of numbers as ouifdtd ;) such
that (Zitzler et al. 2003):

ly = 1..(W,2)=Inf{0z0Z, CvOW : w=,, 7} (2.24)

00

1, = 1,,(ZW)= Inf{OwOw, (z0Z : z<,,w} (2.25)

00

| . (W,Z) expresses the minimum quanti¢yby which each solution fro must be

translated in the objective space so that eachiigolfrom Z becomes dominated by (or
equal to) at least one member frékh A pair of numbergl,, <0,1,>0) indicates that
W is strictly better thaiZ, while a pair of number¢l,,>0,1, >0) means thatV andZ

are incomparable. Neverthelesslfis less thar, then in a weaker sense, we can say
thatW is better tha@ because the minimumvalue needed so thdf e-dominate<Z is
smaller than the value needed so thats-dominatedn.

Generational distance (GD): This indicator estimates how far are the elemantbe
Pareto front produced by the MOEA from those inttluie Pareto front of the problem
(i.e., PR, ) (Van Veldhuizen and Lamont 2000). It is given bg following equation:

N
,/Zdiz
GD=1=1 (2.26)

B |PFtrue|

whereN is number of non-dominated solutions provided iy MOEA andd; is the

distance between each of these solutions to iteesemember fronPF, , A variant

of this indicator is thénverted Generational Distang¢GD) in which a reference true
Pareto front is used and its elements are compaitbdrespect to the approximation
produced by the MOEA.
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Spread (A): The metricA measures the deviation among consecutives sotutiothe
Pareto frontPF furnished by the MOEA (Deb 2001). Analytically is stated as
follows:

17 |dist, - dis
=0

(2.27)

wheredist is the Euclidean distance between two consecstltions inPF and dist

is the average of these distances. In order torerthat this calculation takes into
account the spread of solutions in the entire regb the true front, the boundary
solutions in the non-dominated front are includdtbr a perfect distribution,
A =0which means thalist; is constant for ali.

HyperVolume (HV): This indicator, called als6 metri¢ estimates the hypervolume of
the portion of the objective space which is domeddby an approximation set (Zitzler
and Thiele 1999). The largétV value is, the better the result is. This metriccasss
both convergence and diversity. TH¥ indicator can be expressed as follows:

HV =Uvol|i OPF (2.28)
i

where vol, corresponds to hyperarea bounded by a pre-spec#dierence point and a

solution i. The HV metric is compatible and completewith the Pareto dominance
relation; therebyHV is said to be Paretcompliantwhich is an important feature for
this indicator.

Spacing (S): This metric assesses the solution distributiomglihe Pareto front and it
is given by:

[PF _
S= \/ﬁ 5" (dis —dis)’ (2.29)

i=1

ja
measure is the minimum value of the sum of the labsalifferences in objective

Kk, . .
where dis = min Y, ‘f&]— fn#]‘ and dis is the mean of these distances. The distance
jOPF 12q

function values between solutionand any other solution in the Pareto optimal set.
S =0 means that all solutions are equally distributedgthe Pareto front.

Chi-square-like deviation measure (x? - like deviation): Proposed by Srinivas and
Deb (1994), this indicator evaluates the diversitthe obtained solution sé. PF
solutions are compared with respect to a unifordigributed set ofPF,  calledF.
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For eachi 0{1.2.,...|F|}, we denote by the number of solutions iF whose distance

from i is less than a user-specified quandity Then, the measure is computed as
follows:

(2.30)

The ideal distribution is achieved when all theghbéiorhoods of points i have the

L o . — _|PF| . :
same cardinality, i.e., if for each solutipim F there isn, =u points whose distance

F|

from i is less thana, then y=0. The variance o7 is proposed to be

Ji2=ﬁ{1—i] for all i0{12,...|F|}. The lower they value is, the better the

[PF]

distribution is.

2.5 Conclusion

Through this chapter, we have provided a comprehiensview of the EMO research
field. We classified MOEAs based on two main crder{l) the use of the Pareto
dominance as a selection criterion and (2) theselit Figure 2.11 illustrates a
cartography of the different discussed MOEAs. NoridEliapproaches are seen as a
first generation of MOEAs while the second generatamrresponds to the elitist
methods. The use of a performance indicator asegtgah criterion can be considered
as the selection mechanism of the third generaifodOEAs and several studies are
recently conducted in this direction. We have pnesé how MOEA output can be
assessed by means of quality metrics and diffieslt functions with predefined Pareto
optimal fronts each having some geometrical featymesenting challenges to every
search method. As discussed through this chaptest af the described MOEAs have
shown their effectiveness and efficiency in engyiniot only convergence towards the
Pareto front but also diversity between the finatamed solutions. However, this fact
does not resolve the problem of decision makingesime DM has to choose a single
solution from a huge set of non-dominated solutidriee next chapter is dedicated to
review the incorporation of DM’s preferences in MQEgince in reality the DM is not
interested in discovering the whole Pareto front dather finding only the portion of
the front that matches at most his/her preferences.
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Third generation of MOEAS

i SMS-EMOA (Beume et al. 2097 i
! combines non-dominated sorting with !
! IBEA (Zitzler and Kiinzli 200}uses indicator-based selection to promote botly |
| indicator-based selection to promote bot convergence and diversity |
i convergence and diversity. i

Second generation of MOEAs

SPEAZ2 (Zitzler et al. 200}is an enhanced PESA-II (Corne et al. 2001is an

version of SPEA using Pareto-based enhanced version of PESA using hyper-
fitness assignment incorporating density box-based selection.

informatior.

dominated sorting in combination with version of PAES using a small internal
crowding distance assignment. population and a large external populati

SPEA (Zitzler and Thiele 1999uses an PAES (Knowles and Corne 199%
external archive for storing non-dominatdgd (1+1)-ES using Pareto dominance for
solutions and clustering based-diversity archive updating and hyper-gridding
mechanist. systemfor diversity promotin.

NSGA-II (Deb et al. 200puses non- PESA (Corne et al. 2000's an enhanced i

First generation of MOEAS

NSGA (Srinivas and Deb 1994ises non- NPGA (Horn and Nafpliotis 1994uses
dominated sorting and fithess sharing. tournament selection based on a rando
selected subpopulation.

MOGA (Fonseca and Fleming 1903ses
Pareto based-fithess assignment and
fitness sharing.

WBGA (Hajela and Lin 199Quses a
weighted sum-based selection where ea

individual has its own weight vector. VOES (Kursawe 199).uses a probability

vector to choose the objective to be
optimized in each step of the algorithm.

VEGA (Schaffer 198puses multiple
subpopulations each optimizing a single
objective.

Figure 2.11 MOEA cartopgraphy.
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Chapter 3

Explicit Preference-based Evolutionary
Multi-objective Optimization

3.1 Introduction

Over the two past decades, MOEAs have demonstrtten effectiveness and
efficiency in providing well-converged and well-énsified approximations of the
Pareto front. Recently, there has been an increarsgdhasis in addressing the decision
making task by injecting DM’s preference informatio the evolutionary process. This
chapter surveys existing preference-based MOEAsHhiBbk et al. 2012a). In such type
of algorithms, the DM can provide his/her prefeesdefore (a priori), after (a
posteriori) or during the MOEA run (interactivelylhese preferences are used to guide
the search towards the preferred part(s) of thet®asptimal front, i.e., the ROI(S).
Each solution belonging to a ROI is consideredd@lpreferred and satisfying solution
for the DM. The DM’s preference information candgressed in several ways. Most
of these ways are issued from the classical Muite@a Decision Making (MCDM)
literature (Miettinen 1999). In the following, wete the commonly used preference
information structures in the EMO community:

= Weights Each objective is assigned a weighting coefficiexpressing its
importance. The larger the weight is, the more irtgpd the objective is.

= Solution ranking The DM is provided with a sample of solutionss(éset of the
current MOEA’s population) and is invited to perforpairwise comparisons
between pairs of solutions in order to rank the aim solutions where
incomparability and indifference may exist betw#as solutions to rank.

= Objective rankingPairwise comparisons between pairs of objectaresperformed
in order to rank the MOP’s objectives where incorapdity and indifference may
exist between some objectives.

= Reference poinfalso called goal or anaspiration level vectgr The DM supplies,
for each objective, the desired level that he/sishes to achieve. This desired level
is calledaspiration level

35



Chapter 3. Explicit Preference-based Evolutionary Multi—objective Optimization

= Reservation poin{also calleda reservation level vectpr The DM supplies, for
each objective, the accepted level that he/sheesighreach. This accepted level is
calledreservation level

= Trade-off between objectiveshe DM specifies that the gain of one unit in one
objective is worth a degradation in some others\varel versa.

= Qutranking thresholdsThe DM specifies the necessary thresholds t@desifuzzy
predicate modelling the truth degree of the preadi¢solutionx is at least as good
as solutiory”.

= Desirability thresholds The DM supplies: (1) an absolutely satisfying emijve
value and (2) a marginally infeasible objectivewealThese thresholds represent the
parameters that define the Desirability FunctiddBsy).

The next section provides a classification of meriee-based MOEAs based on the
structure of the DM’s preference information. Weus on the way the preferences are
supplied and the mechanism adopted to incorpotatset preferences so that the
population is guided towards the ROI(S).

3.2 Preference-based MOEAS

3.2.1 Weight-based approaches

¢ Deb (1999 work: the biased sharing-based approach

In this work, the author incorporated the relatingortance of each objective in the
form of weight. In fact, he modified the Euclidedistance computation in the sharing
mechanism of NSGA. Originally, the distance between decision variable vectors
andy is computed as follows:

2
d(X, y) — \/i{ fm(x) _ fm(y)j (31)

max min
m=1 fm - fm

The quantity (3.1) is modified by incorporating wglating coefficients into it. The
obtained distance metric is called theighted Euclidean distaneend is expressed by:

M _ 2
doxy) - \/ZW(MJ 52
m=1

max min
fm - fm

wherew ., is the normalized weighting coefficient and ipeessed by:

— (1_ Wm)
n= maxy_(1- w,) &)
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where w,, is the user-specified weight assigned to 2 objective expressing its

importance degree. We note thay, 0[01] and 3" w,, =1. The sharing mechanism

(cf. equation (2.12)) can then be used in ordebits the Pareto optimal solution
distribution towards the preferred part of the frorlowever, this approach was
assessed only on two bi-objective problems havioigvex Pareto fronts with very
restricted weight sets that are (0.9, 0.1) and, @9). Hence, further experiments with
higher dimension problems and diversified weiglt$ see required for validation.

¢ Branke and Deb Q004 work: the biased crowding-based approach

The authors modified the crowding distance caloaain NSGA-II in order to focus
the search on the preferred part of the front.dfoobjective vectou from a particular
front, a biased crowding distanB¥u) is defined as follows. Lej be a DM-specified
direction vector indicating the most probable ontcal linearly weighted utility
function and let) be a parameter controlling the bias intensitynthe

L \d
D(u) = d(u)(d (”)j (3.4)

d(u)

where d(u) and d'(u) are, respectively, the original crowding distareed the
crowding distance computed based on the locatidrikenindividuals projected onto
the (hyper-)plane witly as a direction vector. Figure 1 illustrates troseept.In fact,

for a solution from the front more or less paraliel the projected plane (such as
solution a), the original crowding distandé) and the projected crowding distance
d'(a) are more or less the same, thereby making dahie d'(a)/d(a) close to one.
Consequently, according to equation (3.4), solugomill have a biased crowding
distanceD(a) almost the same as that in the original objecspace, i.e.d(a).
Contrariwise, for a solution having a large diffeze in slope on the Pareto optimal
front where the tangent has an orientation sigaifily different from the chosen plane
(such as solution b), the projected crowding distadi(b) is much smaller than the
original crowding distance(b), thereby making the ratati(b)/d(b) so smaller than one.
For such a solution, the biased crowding distanileoer a small quantity which means
that solution b is assumed to be artificially cr@ddFigure 3.1 shows also the biased
crowding distance values for all non-dominated soand how would they typically be
distributed for a certain front and a chosen plaBelutions with large crowding
distance are preferred which allows solutions s#tiaear the tangent point to survive.
The paramete@ controls the extent of the obtained solutions. Tdrger @ is, the
smaller the extent is. The main advantages ofapgoach are: (1) its scalability with

37



Chapter 3. Explicit Preference-based Evolutionary Multi—objective Optimization
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Figure 3.1 lllustration of the biased crowding basd-approach for
the bi-objective case (from(Branke and Deb 2004)

the number of objectives and (2) its insensibitidythe non-convexity of the Pareto
optimal front. However, the approach was shown ¢oifferior to the G-MOEA
(Branke et al. 2001) in terms of convergence.

¢ Zitzler et al. (2007 work: the weighted hypervolume-based approach

The hypervolume indicator is a performance meatwatcomputes the surface of the
objective space dominated by a solution set andidbed by a reference point (Zitzler et
al. 2003). The main feature of this performancesueais its Pareto compliance, i.e., it
does not contradict the order induced by the Paletninance relation (Zitzler and
Thiele 1999). In Zitzler et al. (2007), the authpreposed a weighted version of the
hypervolume metric in order to guide the searchebasn the DM’'s preferences
expressed by: (1) a weighting coefficient vectofdra reference point. Three different
weighting schemes were proposed for the bi-objectizse: (1) a weight distribution
which favors extreme solutions, (2) a weight dsttion which favors one objective
over the other (but still keeping the best solutwith respect to the less important
objective), and (3) a weight distribution basedaoreference point, which generates a
ridge-like function through a reference point pklaio the diagonal. In the following,
we give the definitions of the hypervolume meadoil®wed by the weighted version
of this indicator. The classical definitions of thgpervolume indicator are based on
volumes of polytopes (Zitzler and Thiele 1999) gpércubes (Fleischer 2003) and
assume that Pareto dominance is the underlyingramte relation. Here, we give a
generalized definition based on attainment funetitimat allows considering arbitrary
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Figure 3.2 lllustration of the attainment function a, for

A = {Z', 7, 7’} for the bi-objective maximization case.

dominance relations. The attainment function (daséca et al. 2003) gives, for each
objective vector the probability that it is domiedtby the outcome of a particular
multi-objective optimizer. As only single sets arensidered here, we can take a
slightly simplified definition of the attainmentriation as follows:

Definition 3.1: Attainment function
AssumingA to be an objective vector set antb be an objective vector, the attainment

function ap @) [0M - {0,4} for Ais defined as:

1 if A-{Z

35
0 else (3.5)

an(2) ={
This definition is illustrated in figure 3.2. The@mcept of attainment function can be
used to give a formal definition of the hypervolumneicator. In fact, this latter is
defined as the volume of the objective space eadldy the attainment function and
the axes.

Definition 3.2: Hypervolume indicator

The hypervolume indicator*H with the reference point (O, ..., 0) could be fatated
via the attainment function as:

* _@.)
H(A)=] g5 aa(2dz (36)
The attainment function, the integration over whipves the hypervolume for a given
setA, is a binary function such that all weakly domethbbjective vectors are assigned
1, while the remaining objective vectors are as=igi). That means all weakly
dominated objective vectors have the same weightantribute equally to the overall

39



Chapter 3. Explicit Preference-based Evolutionary Multi—objective Optimization

indicator value. The main idea behind the weightggervolume approach is to give
different weights to different regions in the olijee space. This can be achieved by
defining a weight distribution over the objectivpase such that the value that a
particular weakly dominated objective vector cdnites to the overall indicator value
can be any strictly positive real value. To thigl,ethe authors introduced a weight

distribution functionw:Z — O". The hypervolume is calculated as the integral over
the product of the weight distribution function aheé attainment function:

W (A) = j(%:::fg)w(z).aA(z) dz 3.7)

The weighted hypervolume is integrated in IBEA @éction 2.3.2) and the resulting
algorithm has shown its ability to drive the seaashexpected. However, as noted by
the authors, this approach is restricted to thebpective case. Moreover, there is no
control over the ROI spread. It is worth notingttha a more recent study (Auger et al.
2009), this work was extended for theobjective case by defining general indicator
classes for an arbitrary number of objectives. arrhore, this extension enables the
DM to control the ROI breadth. The main disadvaatafjthis more recent approach is
that, for the case where the DM would like to findROI near his/her expressed
reference point, the obtained solution distributioghly depends of the position of this
preference point.

3.2.2 Solution ranking-based approaches

¢ Greenwood et al. 1997 work

In this study, the authors proposed an imprecisggcified multi-attribute utility
theory-based weighted sum approach where the mgnédnobjectives is implicitly
derived from the ranking of some candidate solgtiomhe imprecisely specified
weighting coefficients are characterized by a $atomstraints describing preferences
as revealed in pairwise comparisons of the canglidautions. The used utility
function is called imprecise because weights dohavte specific values but they are
constrained by the DM’s preferences. A minimizatofrihe difference in the weighted
sums of a pair of solutions, subject to the prexaeined constraints, is performed in
the fitness computation. This linear optimizatisrperformed for every solution pair in
the archive and in the population to obtain theitsah fitness values. Assuming and

v to be two normalized objective vectors (i.e., m&po the interval [0,1]) where the
DM prefersu to v, we obtain:

M

U=preferredV = > Win(Um ~Vm) <0 (3.8)
m=1
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The expression (3.8) defines a constraint for thgeaiive weights. When several
solution pairs are ranked by the DM, a series @hstonstraints are defined. These

constraints confine the objective weighting coedints to a subspadé/ [ D'},/' where

D_'Y' is the M-dimensional space of positive real numbers. Ugimg normalized

objective values and the constraint subsp®teother configurations created from
running a MOEA may be evaluated. More specificdily definition:

M

2 Wm(Um —Vm) S0 = U=preferred” (3.9)
m=1

It follows that two alternativess and u' can be compared by solving the following
linear programming problem:

M
Min > Wy U'm=Uy) <0

o (3.10)
Wy, UW
M M
Let z=min ) WpnU'm—Upy) andz=min > wq(Um —u'y) then:
Wn m=1 Wn m=1

1) If z<O0 thenu 'is preferred tay;
2) If z=20 andz<0 thenu is preferred ta’;

3) If z=0 andz=0 thenu andu 'are indifferent.

In summary, the DM is invited to make pairwise camgons in order to define the
constraint subspac®/. W is subsequently used in the series of linear rogning
problems that should be solved to conduct paire@@parisons between solutions.
The authors noted that alternatives compared bipMeshould be selected carefully so
that they can be ranked consistently, unless atimitj constraints may be produced.
Consequently, there will be no solution for theutsg linear programming problem,
i.e., this latter would be infeasible. The authamsplemented an algorithm for
identifying the inconsistent preference statemerithis algorithm identifies the
minimum sets of preference statements that, if kdpwould result in a feasible
solution to the linear programming instance. Howevthis algorithm has an
exponential time complexity.

¢ Deb et al.(2010 work : the Progressively Interactive EMO Algorithm (PI-EMOA)

The authors proposed a preference based-MOEA basethe concept of value
function. Every fewr generations, the DM is provided with a sample sblutions and
is asked to rank these solutions from the beshéowtorst where the incomparability
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between solutions is allowed. This step is termBM “‘call’. Based on this preference
information, an optimization problem is formulatadd solved to find a suitable value
function which optimally captures DM’s preferenadormation by maximizing the
value function value between ranked points. Froi® itleration till the next DM call,
the derived value function is utilized to drive th@OEA in: (1) modifying the
domination principle which directly affects MOEA’sonvergence and diversity
preserving operators, thereby guiding the seansiartis the preferred solutions and (2)
determining the termination criterion of the ovepabcedure.

During the preference elicitation step (i.e., thil Dall), the DM is provided with a
sample ofy points and for each pair of alternativesy), he/she can precise Xfis

preferred toy (denoted? - Py) or x andy are incomparablgdenoted® =PR,). For

the bi-objective case, the authors proposed thewoig value function structure:
V(fy, f2) = (f1+ kg fo +1p)(fo + ko f +15) (3.11)

wheref; andf, are the considered objective functions &nd,, |, andl, are unknown
parameters and should be determined from the Dkfepences. For this purpose, the
following Value Function Optimization Problem (VFDP$&hould be solved:

Max &

V isnonnegativeateverypoint P ;

V isstrictlyincreasingateverypoint P ;

V(Py) -V (P) = £, for all pairs(x, y) staisfyingPy - Py;

’V(PX) —V(Py)‘ < dy ,for all pairs(x, y) staisfyingP = P;
£>0,0y = 0.le.

(3.12)

The value functiorV, for two objectives shown above, is consideretdedhe product
of two linear functions:S, = f, +k,f, +1,:0% - 0 and S, = fp +kofy +15: 0%.0.
Considering all the expressions, we have the fallgwptimization problem:

Max &

Sn(P)=0,x=1...7andm=12;

S(P) + k2S1(Px) 2 0,x =1,....7;

kiSp (P) + Su(P) = 0, x =1,....7; (3.13)
V(Py) -V (Py) = &, for all pairs(x, y) staisfyingPy > P, ;

‘V(Px) —V(Py)‘ < oy ,for all pairs(x, y)staisfyinng =Py;

£>0,0y = 01e.
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A little thought reveals that the above optimizatjoroblem attempts to find a value
function for which the minimum difference in thelwa function values between the
ordered pairs of points is maximal. For a gendévabbjective problem the value
function can be written as follows:

V(f ) = (fl + k11f2 + k12f3 +...+ kl(l\/l _1) fM + |1)X
(fz tkoifatkoofs +..tky(w-1)fa +|2)><

(3.14)
(fM +tkymafi kv g+t ky(m-1) fm -1 +1m )
The above value function (3.14) can be expressaé glegantly as follows:
M( M
v(f)= iIjll[ jZ_likij Fj +ki(m +1)i} (3.15)

For a generall-objective problem, the VFOP is expressed as falow

Max &

Sn(R) =0, x=1,...7 andm=1,...M;

kj 20,i=1..M andj=1..(M-1);

’V(PX) —V(Py)‘ > g, for all pairs(x, y) staisfying P - By (3.16)
combinatins satisfyingx<y;,

’V(PX) —V(Py)‘ <4y, for all pairs(x,y) staisfyingP, = P,;

£>0 9, =01e

Once the value function is build, the conventiot@iinance principle is modified in
order to focus the search on preferred solutiorsVlbe the value function found from
the most recent decision-making interaction. \/ebe the value function value for the
second best membePy defined previously) from the sample gfpoints. For the
maximization case, any two feasible solutionsndy can be compared with their
objective function values by using the following difced domination criteria:

1) If both solutions have a value function value lésm V,, then the two points are
compared based on the usual Pareto dominancegdéenci

2) If both solutions have a value function value mibranV,, then the two points are
compared based on the usual Pareto dominancegdenci

3) If one has a value function value more thgnand the other has a value function
value less thakN>, then the former dominates the latter.
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Max f;

Figure 3.3 Dominated regions for: (1) Pareto dominace with solutionA
and (2) value function-based dominance with solutioB.

Figure 3.3 illustrates a confrontation between Wadue function-based dominance
dominated region and the Pareto dominance onéédbitobjective maximization case.
This figure presents the region dominated by twmtscA andB. The value function
contour having a valu¥, is shown by the curved line. The pohties in the region in
which the value function is smaller th&an The region dominated by poiAtis shaded.
This dominated area is identical to that which d¢sn obtained using the Pareto
dominance principle. However, the poiBt lies in the region in which the value
function is larger tharv,. For this point, the dominated region is differémm that
which would be obtained using the usual dominagionciple. In addition to the usual
region of dominance, the dominated region incluglepoints having a smaller value
function value thaiw,.

Once the value functio¥ is determined, the MOEA is driven by it in the hex
generations. The value functidhcan also be used for determining whether the dvera
optimization procedure should be terminated or iot.implement the idea, the best
and second best poinB and P, from the given set of points are firstly identified
based on the DM’s preference information. The qogtd value function can provide
information about whether any new polxts better than the current best solutfn
with respect to the value function. Thus, a singdgective search is performed along
the gradient of the value functioft]V) from Py in order to create better preferred

solutions tharP;. This principle is used to develop a terminatioibedon by solving
the following ASF problem foP; = 2
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Figure 3.4 Local search along the value function gdient direction as a
termination criterion: (a) success of the search ah(b) failure of the search.

M| f (x)-20 Mot (x)- 22
m m m m
Max rr;llg v +pZ_: SRR v (3.17)
" m=1 "
of of

The second term with a small(= 10° used in this work) prevents the solution to
converge to a weak Pareto optimal point. Any shkaigective optimization method
(e.g., the Sequential Quadratic Programming (SQ&had (Wilson 1963)) can be used

for solving the above problem and the intermedsdRitions (zi,i =12 ,..)can be

recorded. If at any intermediate point, the Eudialistance between from P; is
larger than a termination parametly the ASF optimization task is stopped and the
MOEA search is resumed. In this case, we repRosith Z. Figure 3.4(a) depicts this
scenario for the bi-objective maximization caseatlthe end of the SQP run, the final
SQP solution (sayz') is not greater thau distance away fronP;, the MOEA is
terminated and' is declared as the final preferred solution. Hitisation indicates that
based on the current value function, there existsalution in the search space which
will provide a significantly better objective vectthanP;. Hence, the optimization run
is terminated. Figure 3.4(b) shows such a situafmmthe two-objective maximization
case, warranting a termination of the PI-EMOA.

The PI-EMOA has shown its effectiveness on twofite-objective test problems in
providing the preferred point corresponding to a ©Mulated utility function.
However, the authors have not handled the caséichvthe DM judges some of thye
points to be incomparable and the role of dhgparameter is not studied in the value
function construction. Moreover, the authors ndted there are some cases which may
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occur in which the building of a value functionisting all DM’s preferences is not
possible.

¢ Koksalan and Karahan (010 work : the interactive Territory Defining
Evolutionary Algorithm (iTDEA)

The iTDEA is a preference-based interactive versibrthe TDEA (Karahan and
Kdksalan 2010). The TDEA is a new MOEA that appneies the whole Pareto front
by using the concept of territory. This MOEA istaaly-state algorithm that maintains
two populations: (1) the archive population thahgists of individuals that are non-
dominated relative to the population at hand andh@ regular population that contains
both dominated and non-dominated individuals. Winetkating the archive population,
a territory around the individual closest to théspfing is defined and the offspring is
rejected if it violates this territory. The termyodefining property of TDEA eliminates
the need for an explicit diversityperator, resulting in a fast operation while algvay
keeping a diverse set of individuals in the arctpepulation.The concept of territory
is illustrated by figure 3.5(a). The territory regiis mentioned with grey colour. The
territory of a particular solutior corresponds to the region with a distancgom f (X)

in each objective among the region that neitheridatas nor is dominated Hy(x).
Mathematically, the territory of (x) is defined as the following hypervolume:

T(F0) ={F () DT £ () = (¥ < 7 OM=1...,M andT () = F(y) <O

(3.18)
for atleatonemandUf, (x) — f,,(y) > Ofor atleatonem}

The authors proposed a strategy to choose a coméemnalue. The authors modified
the TDEA in order to handle DM’s preferences and $othe search on the preferred
part of the front. The DM is supplied with a samplediversified solutions and is
invited to select the best one from his/her owrspective. In order to concentrate the
search towards the preferred solution, the authuggest shrinking the territories of the
individuals falling near the preferred solution. Flgian be achieved by simply using a
smaller zqy for such offspring in the archive evaluation stagis maintains more
individuals in this region in the archive populatideading to a higher resolution and
better approximation. Meanwhile, individuals loch&lsewhere are evaluated using a
largerzy. This leads to less population density in the negithat are less desirable to
the DM. An illustration of this mechanism is showy figure 3.5(b). The ITDEA has
demonstrated its effectiveness in providing a lladistribution of the supplied non-
dominated solution set where the distribution iais#e near the DM’'s preferred
solution. However, the authors noted that filterittge population to provide the
potential sample to the DM from which he/she pibks/her preferred solution may
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Figure 3.5 The territory effect with: (a) TDEA and (b) iTDEA.

mislead the algorithm in the first interactions.eyrsuggest increasing the number of
solutions to present to the DM; however this nundbeuld have a limit.

¢ Battiti and Passerini 2010 work : the Brain—Computer Evolutionary Multi-
objective Optimization Algorithm (BC-EMOA)

The authors suggested a preference-based MOEActbarad by its ability to learn an
arbitrary utility function from a human DM who exgsses his/her preferences between
couples of selected solutions. The used methoduiid la flexible preference model,
possibly highly non-linear, is based on the conacé@upport Vector Machine (SVM)
(Cohen et al. 1999). The objective of the learnprgcess is the approximated
construction of a utility functiotJ to be optimized by the DM, who is also the source
of learning signals. The functids to be optimized is not completely unknown, such as
in a black-box context (Jones 2001), but is to lmelelied based on the DM'’s ranking
of candidate solutions. Preference models are toaitt the DM input by using a SVM-
based ranking method. The functional form of thefgnence function is not fixed a
priori by a well-defined ASF, such as in the weeghsum or Chebyshev approaches
(Zzhang and Li 2007), but is itself learnt during throcess in a reactive fashion. The
authors noted that SVM-based ranking has a nunfiggsirable properties making it a
suitable candidate for learning the DM’s preferenddrstly, it accepts supervision in
terms of pairwise preferences, a much more affdedadmuest for a human DM than a
guantitative quality score. Secondly, it is welbgnded on learning theory; its trading-
off data fitting and complexity of the learned hyipesis allows to effectively dealing
with noisy observations, a situation which is quiteely to occur when receiving
feedback from a human DM with only partial knowledgn the domain at hand.
Thirdly, the ability to implicitly project data oota higher dimensional feature space
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via the kernel trick (Shawe-Taylor and Cristiar@®04) provides the needed flexibility
in order to best approximate the underlying prefeeemodel of the specific user.

The basic functioning of BC-EMOA can be summariasdollows. Objective vectors
are passed to the DM who ranks them and return®ritered list as feedback. This
feedback is converted infmirwise constraintdor the SVM-based ranking procedure.
After training, the predicted utility functiod is employed to guide the search towards
the ROI. From the multi-objective decision makirgrgpective, the main contribution
of this method is its ability to function withoutyaa priori assumptions on the shape of
the DM’s utility function. The methodology of reaa search optimization (Battiti et
al. 2008), based on the paradigm of learning wbid¢imizing, is adopted in two
directions: (1) the progressive tuning of a preafeee model following a DM’s
interactive evaluation and (2) the automated adiaptaf the model form to one which
IS most appropriate, in a cross-validated mannerthe data collected during the
interaction. The method is robust as it can paadigtivithstand incomplete, imprecise
and even contradictory feedback by the DM. The BWCA is a generic formulation
which can be implemented on top of any MOEA. Iis ttudy, the authors adopted the
NSGA-Il. This latter runs in its original formulat, including the crowded-
comparison operator for guaranteeing a sufficienlilyersified population, fogen
generations. After that, the preference modelam#éd according to the DM’s feedback
and the ordering of the new population and thecsiele criterion of the binary
tournament selection operator are performed basdatieoactual utility function value.
Additionally, the crowding mechanism is switched-at this point as the goal is
directing the generation of new individuals towattie ROI. The BC-EMOA has
demonstrated its effectiveness in guiding the $etywards the DM’s most preferred
solution on some selected DTLZ problems (cf. sect®4.1) in addition to some
instances of the 0/1 multi-objective knapsack peobl(Martello and Toth 1990).
However, the authors noted that then parameter value should allow a reasonable
coverage of the Pareto front in order not to mmdipns possibly containing the DM’s
preferred solutions; it should thus be of the sander of the number of generations for
a plain MOEA run on the same problem. This stepnse® be computationally costly.
Additionally, aftergen generations, the crowding mechanism is turnedaofi the
population is guided towards a certain region & skearch space based on the utility
function which can reduce population diversity #igantly and encourage the
premature convergence to occur especially on mattahMOPs. This problematic is
omitted by the authors.

¢ Fowler et al. 010 work: the cone-dominance-based approach
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The authors exploited the notion of preference earpolyhedral cones (Ramesh et al.
1988) in order to integrate DM’s preferences in @BA. Periodically, the DM is
provided with a sample of solutions and is invited to specify the best ali¢ive in
addition to the worst one from his/her own perspectThese two selected solutions
are then used to form a convex polyhedral cone. ddree defines a convex set of
solutions that are inferior to the cone vertexdulition to solutions residing within the
cone. Since the designed algorithm is interactledlefined cones are retained during
the overall optimization run whether or not the plation members from which they
are derived are still surviving. Figure 3.6 illiges graphically the concept of convex
polyhedral cone for the bi-objective maximizati@se for: (a) the case of two solutions
(B is preferred toA) and (b) the case of three solutiolsi¢ preferred toA andC is
preferred toA). For the case of=2 (cf. figure 3.6(a)), the convex cone correspaiods
the line segmenfAB and has solutio® as vertex. Accordingly, every solution that is
dominated by the cone (shaded region in figureal)@¢ less preferred to solutidy
and hence to every solution belonging to the liagnseentAB. These solutions are
considered to be inferior and are to be discourdgethe selection process of the
MOEA. For the case 0f=3 > 2 (cf. figure 3.6(b)), the preference conaegponds to a
convex polyhedral set. In this case, any populatimember can have one of the
following four possible locations: (1) under theneo(like solutionF), (2) in the cone
(like solutionD), (3) outside the cone (like solutid) or (4) being the cone’s vertex
(like solutionA). The DM's preference information is applied byaghg solutionv
before solutioru if v is within the cone and is the cone’s vertex. The three-point cone
in figure 3.6(b) is composed from the union of tim@-point cones defined by the two
preference relations: (1) soluti@is preferred to solutioA (the corresponding shaded
area is drawn with thin lines) and (2) soluti@his preferred to solutiorA (the
corresponding shaded area is drawn with bold liféglutions under the cone (shaded
area) likeF are considered to be dominated by the cone. Wehlsdythey are cone-
dominated. Solutiol is considered to be superior to solut®sinceD belongs to the
cone andA is the cone’s vertex. It is important to note teery solution from the grey
region defined by point8, B andC is considered to be superior to the cone’s veftex
and subsequently preferred to every point belontprige shaded region.

The cone-dominance principle is used in parencteleand replacement mechanisms.
The designed preference-based MOEA has been adsessihe multi-objective 0/1
knapsack problem with 2, 3 and 4 objectives. Thenmatational experiments have
shown that it is possible to obtain solutions wahreasonable number of DM
interactions that are very near or equal to the feesd by a similar algorithm that is
operating with perfect knowledge of the user’s grefce function. However, the
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Figure 3.6 Two preference cones: (a) defined withhé two solutionsA and B and
(b) defined with the three solutionsA, B and C (inspired by (Ramesh et al. 1988)

authors noted that investigating the effect of Didfeferences inconsistencies is still a
direction for future research. Moreover, thereasontrol over the ROI extent.

¢ Branke et al. 2010 work: the Necessary preference-enhanced Evolutiany
Multi-objective Optimizer (NEMO)

The NEMO algorithm is the result of the combinatiohNSGA-II and the Robust
Ordinal Regression (ROR) (Greco et al. 2010) witmninteractive procedure. In ROR,
the DM is presented with a small set of alternatisad can express his/her preferences
by specifying a holistic preference of one alter®atover another or comparing
intensities of preferences between pairs of alteress ROR then identifies the whole
set of additive value functions compatible with greference information given by the
DM. This allows comparing any pair of alternativegndy, in a simple and intuitive
way, as follows:
1) x is necessarily at least as good yasif this is true for all compatible value
functions;
2) xis possibly at least as good ysf this is true for at least one compatible value
function.

The authors noted that, usually, among the many afeparameters of a preference
model representing the preference information, amyg specific set is used to give a
recommendation on a set of alternatives. For examahong many value functions
representing pairwise comparisons of some alteremtmade by the DM, only one
value function is finally used to recommend thetlm®ice or to sort or to rank the
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alternatives. Since the choice of one among matsyafeparameters compatible with

the preference information is rather arbitrary, R#8 been recently proposed with the
aim of taking into account all the sets of paramset®mmpatible with the preference

information given by the DM (Greco et al. 2008; trega et al. 2009). The ROR

approach extends the simple ordinal regressionaking into account not a single

instance of the preference model compatible with'®Meference information, but the

whole set of compatible instances of the preferenodel. As a result of considering

the whole set of compatible instances of the pesifee model, one gets two kinds of
results with respect to each pair of alternativasdy:

1) necessary preference relatiqr ="' y), if and only if x is at least as good 3s

according to all instances of the preference madeipatible with the preference
information;

2) possible preference relatiotx ="y), if and only if x is at least as good 3s

according to at least one instance of the preferanodel compatible with the
preference information.

Since, NEMO, is a modified version of NSGA-II, wergthe modifications performed

to this latter as follows:

1) the Pareto dominance relation is replaced by tieessary preference relation in the
non-dominated sorting;

2) the crowding distance is substituted by a distarateulated by taking into account
the multidimensional scaling given by the most espntative value function
among the whole set of compatible value functidriee most representative value
function corresponds to the value function whichximazes the difference of
scores between alternatives related by preferencéhe necessary preference
relation-based ranking (Figueira et al. 2008).

The NEMO algorithm has demonstrated its abilityptas the search towards the ROI
interactively. However, the algorithm was testedlyoon two bi-objective test
problems. Consequently, a more thorough empiricallygis on a variety of test
problems with more than two objective functionsecessary. Moreover, there is no
control over the ROI spread.

3.2.3 Objective ranking-based approaches
¢ Jin and Sendhoff 002 work

The authors turned fuzzy preferences into weigtgruals which were incorporated
into a MOEA using Random Weighted Aggregation (RW&kidd Dynamic Weighted
Aggregation (DWA) techniques (Jin et al. 2001). sTlwas achieved by setting the
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upper and lower bounds to the weight perturbatibm$act, the DM is invited to make
pairwise comparisons on the set of objectives bgiguinguistic statements such as
“objective f, is much more important than objectif4& etc. The authors developed a
method that converts these fuzzy preferences mtervial-based weights where each
weight indicates the importance of the relativeechye. This approach converts the
MOP into a SOP by weighted aggregation, but vahesweights dynamically during
the run within the relevant boundaries.

For the RWA, assuming that each individualhas it own weight combination

(V\/il(t),vﬁé(t)) in generatiort for the bi-objective case, then the MOEA is alddind

different Pareto optimal solutions. The weight camabions need to be distributed
uniformly and randomly among the individuals in le@eneration as follows:

wi (t) = random(P)/ P (3.19)

wh (1) =1-w (t) (3.20)

where P is the population size and random is function thaherates a uniformly
distributed random number between 0 &nd

For the DWA, all the individuals have the same Wweigpmbination which is changed
gradually in each generation. The change of thghteiis realized as follows assuming
a bi-objective case:

wy(t) =[sin(2 77t/ F) (3.21)

Wo (t) =1-wq (t) (3.22)

The weights will change from 0 to 1 periodicallyprn generation to another. The
change frequency can be adjusted byRlparameter.

In both RWA- and DWA-based EMO approaches, the latergries in the interval [0,1]
in order to approximate the whole Pareto front. ideer, in order to take the DM’s
preferences into account, the weight of each obgct,, is varied in the interval

[wl" wl®] where the boundaries of the latter interval ar¢aiokd from the

conversion of the DM’s fuzzy preferences. In thiaywthe search process is guided
towards the ROI. The designed weighted sum-basedoriims support
incomparability between solutions and provide tkeruwith a control over the focus
extent. While DWA facilitates retention of compr@misolutions in the non-convex
parts of the non-dominated front, the lack of exiplliversity preservation and inferior
performance in high-dimensional problems constitsignificant drawbacks of the
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approach (Jin et al. 2001). Arriving at the uppsat Bwer bounds of weights for higher
dimensional problems is also difficult.

¢ Cvetkovic and Parmee 2002 work: the weighted-dominance relation-based
approach
The authors proposed the integration of DM’'s fuzrgferences into MOEAs by
converting linguistic variables into weights. TheMDis invited to make pairwise
comparisons between the MOP’s objectives by usomeslinguistic labels such as
“more important”, “much less important”, “do notred etc. As the number of
objectives increases, the number of pairwise coisgas becomes a tedious task for
the DM. The use of transitive relations was theeefaroposed to reduce the number of
pairwise comparisons required from the DM (Cvetkoamd Parmee 2002). The reader
is invited to confer to the original paper to explahe details of the mechanism
converting the linguistic terms to weights. Baseu the obtained weight vector
expressing the relative importance for each ohjeci new weight-based dominance
relation is designed. This relation is called weésghdominance relation and is
expressed by:
M

m=1..M, f ()< f.(y)

with a strict inequality for at least one objective<,, y means that solutior is

preferred to solutioy based on weighted-dominance ands a user-defined parameter
expressing the minimum required level of dominaritlee main drawback of this
dominance relation is that it only considers thembar of improvements of one
solution with respect to another one and it igndhesamount of each improvement.
Additionally, the control of the guidance is diffiit and there is no clear interest to use
such approach in an interactive way. In a morenteseidy, Rachmawati (2008) have
discussed the effects produced by the obtainedesdior the weighting coefficients.
The weighted-dominance relation preserves Paretardmce relation and also allows
incomparability wherr is set such that > ming,-1  \ Wy,. However, the weighted-
dominance has a serious drawback illustrated irfdle@wing for a bi-objective MOP.
Without loss of generality, we assume tlvgt>w,. For bi-objective problemshree
scenarios with respect to different values oéxist. The dominatednd non-dominated
regions of the objective space around a candidateien in the three scenarios are as
follows:
1) 72wy : In this scenario, the weighted-dominance is eqeialto the Pareto
dominance.
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2) T<wW,: In this scenario, the weighted-dominance includéssolutions non-
dominated in terms of the Pareto-dominance relatioran MOEA implementing
weighted Pareto dominance with this setting, ther be no non-dominated
solution according to the weighted-dominance unlessandidate solution that
strongly Pareto dominates all other solutions i@ gopulation is present. If this
latter does not exist in the population, the MOEgeherates into a random search.

3) wo<7<wW: In this scenario, the weighted-dominance includesit®ns non-
dominated in terms of the Pareto dominance relatith inferior f, values. In an
MOEA implementing the weighted-dominance with thétting, the solution in the
best non-dominated front that also correspondsdainallest, value dominates all
other solutions. Unless the archiving policy allowslusion of weakly dominated
solutions, only the extreme solution is retaine@éach generation. With an archival
policy that allows dominated solutions with respiecthe weighted-dominance, the
archive includes solutions other than the extreoiatisn that corresponds to the
best secondary niching criterion. Preference iy amtorporated in the search as
much as the inclusion of the extreme solution spoading to the smallest
attainmentf; into the archive is guaranteed. However, evenanegal purpose
MOEAs using the Pareto dominance relation, theusioh of extreme solutions in
the archive is always guaranteed.

¢ Rachmawati and Srinivasan 2010 work

In this approach, the DM is invited to expresshesfpreferences in the form of relative
importance of objectives without using any weiggtroefficient. In fact, the DM is
invited to specify a total or partial order on thet of objectives. For each pair of
objectives f, fn), the DM can express one of the following statetsiefl) objective,

is preferred to objectivé, (denotedf,, Pr f,), (2) f, and f, are equally important
(denotedf, | f,) or (3) f, andf, are incomparable (denotdd Q f,). An elicitation
algorithm is provided to assist the DM in constigta coherent overall preference.
Besides elicitation of a priori preference, an ratéive facility is also furnished to
enable modification of overall preference while fisarch progresses. We note that the
default preference relation between pairs of objestis the incomparability relation. If
incomparability is the only preference relation siolered by the DM, the whole Pareto
front is returned as a general-purpose MOEA.

A way of consistently characterizing the prefersadutions for a given preference
profile irrespective of the geometry of the Paretmt is desirable. This consistency is
instrumental to an effective articulation of preflece by the DM. Even if the
geometrical attributes of the actual Pareto fromt anknown a priori, a consistent
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Figure 3.7 Desired solutions corresponding td, P f, (squares),f; | f,
(asterisks) andf, P f; (triangles) (from (Rachmawati and Srinivasan 201.0)

characterization equips the DM with some informatmf the solutions he/she may
expect for any given preference profile. To achiéws consistency, the functional
mapping from preferences expressed in the preferstracturePg (i.e., the group of

binary relations that can be defined on the saibpéctive pairs) to the Pareto front is
defined in terms of a prototype non-dominated frdrite selected prototype front is
linear, continuous and defined in the interval [Ol®t the prototype front be described

by F :[ﬂ, i‘;], then i‘;+ i‘; = 1. An illustration of the prototype front and a mamgpi

from the actual front is given in figure 3.7. Theote of the linear front is motivated
partly by its simplicity and its scalability witthé number of objectives. Simplicity
helps the DM in formulating his/her preferenceems of binary relations iRg. The
scaling of the preference model and its functionapping toM-objective problems are
described next.

To accommodate the three binary preference relatiefined inPg, the prototype front
is divided into three non-overlapping segmentdehtical length as depicted by figure
3.7. The linear front in this figure is the protpgyfront while the curve is a normalized
concave Pareto front associated with an actual MO# first portion plotted as
squares is desired whépPr f, is asserted. The second and third portions, mabked
asterisks and triangles respectively, are the e@subsets of the front whépl f, and

f, Pr f,, are asserted respectively. We recall that theepeate assertiofy, Q f,
corresponds to the entire span of the prototypetBdiront. Mathematically, the desired
subsets of the Pareto front could be charactebydte following inequalities:
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f,Pf, - 2f,<f, (3.24)
flf, « f<f,<af, (3.25)

where f~1 and f~2 correspond to the prototype objective space andt®dront. The
choice of the coefficients 2 and 4 in the aboveuadties follows from equal division
of the prototype front into three non-overlappingpsets. Other values may of course
be used if other ways of dividing the prototypentres deemed necessary or desirable.

In this approach, equal and non-overlapping divige adopted as it is deemed most
intuitive for the general case.

The authors proposed three versions of the NSGwHére DM’s preferences are

incorporated as follows:

1) Inclusion of preference information as constrainf® incorporate preference, the
inequalities (3.18) and (3.19) are applied to therent population and/or archive
where normalization is done with respect to theeswa of the best non-dominated
front. In this particular strategy, the ROI as defi by inequalities derived from the
partial ranking of solutions is considered as #w@sible region. The following rule

is applied when comparing a pair of solutiorsy) in the population and/or the
archive:

If ((V(x) >0) and ¥(y) >0)) Then
If (V(X) <V(y)) Then
X'<pref y
Else If (V(y) < V(X)) Then
y'<pref X
End If
Else
If (x<y)Then
X'<pref y
Else If (y < X) Then
y<pref X
End If
End If
The functionV(x) in the above rule denotes a measure of constr@olation of
solution x, which is taken to be the maximum magnitude of vlaation of all
inequalities describing the desired region. TheresgionXx <, ¥ indicates that

solutionx is preferred to solution.
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2) Inclusion of preference information as rank penaRareto ranking introduces a
complete order to the partially ordered objectiymce by means of existing
dominance relation between solution pairs in thelsere, incompatibility with the
preference-based inequalities incurs a penalthénRareto rank of a solution. As
Pareto rank is usually defined as integers, thalpeimposed is equal to one. The
strategy works only with MOEASs that implement Panetnking. Pareto dominance
is preserved in NSGA-II by performing the rankirrgrh the best non-dominated
layer such that non-dominated solutions satisfyireference-based inequalities are
assigned rank 1 (subset 1), non-dominated solutiarts satisfying preference
inequalities are assigned rank 2 (subset 2) aloith ®solutions which satisfy
preference inequalities and are non-dominated wilutions in subset 2. This
process is repeated until the population is filleckhis manner, the search is guided
based on DM'’s preferences.

3) Inclusion of preference in the crowding distancenpatation: Satisfaction of the
preference inequalities leads to a multiple of #wtual crowding distance of a
solution to be considered as the crowding distaneg,if a solution satisfies the
inequalities thenCrowdingDistance = Factor x ActualCrowdingDistanagith
Factor is greater than one, whereas dissatisfaction iweQualities corresponds to
factor equals one. The multiplication factor is thasing strength of this approach.
This strategy is applicable to any MOEA that impéens crowding in the fitness
computation.

The three NSGA-II versions were assessed on tweixtobjective test functions. The
constraint-based approach and the rank penaltydtaggaoach have demonstrated their
abilities to provide a ROI based on DM'’s preferencéhe crowding-based approach
has shown its effectiveness in biasing the non-dated solution distribution towards
the preferred Pareto front subset. However, treem®icontrol over the ROI spread.

3.2.4 Reference point-based approaches

¢ Fonseca and FlemingX993 work

This work is probably the first attempt to incorater DM’s preference information in
EMO. The authors model DM’s preferences as a goaletachieved (i.e., a reference
point). The main idea, in this study, is to givgher priority to objectives that do not
satisfy the goal. Assuming a goay =(g;,....dy) and two objective vectors
u=(u,....uy) andv=(v,....vy ) to be compared, there exist three cases:

Case 1:u meetsM -k goals (i.e.,M -k of the specified goal components). This can
be expressed as follows:
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k=1..M-U0i=1..kOj=k+1...M (4 >g)0u; <g;) (3.26)

The expression (3.26) assumes a convenient peipntstthe objectives.
Case 2:u does not meet any goal. This can be expresselllass:

0i=1..M (u>g) (3.27)

Case 3: u meet all the goals. This can be expressed aswilo
0i=1..M (4<g) (3.28)

In case 1 (cf. (3.26))u meets the goal& +1..M and therefore it is considered to be
preferred tov if it Pareto dominates with respect to itk components. For the case
where all of thek components olu are equal to those of, u is preferred tov if it
Pareto dominatess with respect to the remainingd —k components or if the
remaining M —k components ofv does not meet their goals. Analytically, is
preferred tov (denotedu <, v) if and only if:

U s 2va.w)C

3.29
{(u(l...k)=V(1---.k))D[(u(k+l-.-.M)jv(k+1...,M))D_'(V(k+l---.|\/|)Sg(k+l-.-.M))]} (3:29)

In case 2 (cf. (3.27) does not satisfy any goal, thenis preferred tov if and only if
u Pareto dominates, i.e.:

u=<v (3.30)

In case 3 (cf. (3.28))y meet all the goals which means that it is a sattsfy, though
not necessarily optimal solution. Thea, is preferred tov if and only if u Pareto
dominatesv or v is not a satisfactory solution, i.e.:

(u=<v)O-(vsg) (3.31)

This approach can be used a priori or interactivEhe authors also proposed an expert
system ensuring the task of supplying goals simteng an appropriate goal is not a
trivial task. However, if the goal has been setastbitious that there is no solution
which can reach the goal in even a single objecthe goal has no effect on the search,
and simply the whole Pareto front is returned. @guogently, we can say that the
obtained results heavily depend on the positiorthef goal in the objective space.
Moreover, the spread of the obtained ROI cannotcdetrolled and the proposed
approach does not consider this issue.

¢ Tanetal. 1999; 2003 work
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The authors proposed a variant of the Pareto doroeancorporating goal and priority
information. In the first stage, the ranking schegnefers objective vectors fulfilling all
criteria and ranks those vectors according to MORaketo dominance-based sorting
(Fonseca and Fleming 1993). Among the remainingtisols, the objective vectan
dominates the objective vector if and only if u dominatesv with respect to the
criteria in whichu does not fulfil the goaf = (gl,...,gM ) (as in (Fonseca and Fleming

1993)), or if ju-g <|v-g| (where u-g| denotes the vector composed with the

absolute values of the differences between thecobgs’ values of the solutiom and

the goalg). The latter expression corresponds tmiaroring of the objective vector
along the axis of the fulfilled criteria. Analytibg u is preferred tov (denoted
u g v) if and only if:

1) uandv both satisfy all the goals ano<v; or
2) uandv both does not satisfy all the goals anetv or ju-g| <|v—-g|, wheret and

vV corresponds to the vectors composed with the coergerihat does not fulfil the
goals ofu andv respectively.

The main advantages of this approach is the pdisgitn consider multiple goals by
the use ofAND andOR connectives. The main drawback of this approadhas this
kind of dominance is intransitive, i.e., it mayde® the case whepeis preferred ty
andy is preferred t@, butx andz are considered as equivalent.

¢+ Deb et al. 0063 work: the Reference point-based NSGA-II (R-NSGA-)
R-NSGA-II is a modified version of NSGA-Il that foses the search on the ROIs
according to a user-provided reference point de¢. fEference points are used to guide
the search towards the preferred parts of the ®&m@tt. In fact, the crowding distance
of NSGA-II is modified as follows. For each refecerpoint, the normalized Euclidean
distance of each solution of the front is calcudatnd the solutions are sorted in
ascending order of distance. The closest solutiom fthe reference point is assigned a
rank of one; the second nearest solution is asdigmank of two and so on. After such
computations are performed for all reference poitfiis crowding distance of a certain
solution is equal to the minimum of its assigneaksa In this way, solutions closest to
all reference points are assigned the smallestdirgwdistance of one. The solutions
having next-to-smallest Euclidean distance toefrence points are assigned the next-
to-smallest crowding distance of two, and so oneréhfter, solutions with smaller
crowding distances are preferred in the tournamsefdction and in forming the new
population from the combined population of paresms children. In order to control
the extent of the obtained solutions, all solutibaging a sum of normalized difference
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in objective values of or less between them are grouped. A randomly digiadution
from each group is retained and the rest of alugranembers are assigned a large
crowding distance in order to discourage them tmaia in the race. The above
procedure provides an equal emphasis of solutitosest to each reference point,
thereby allowing multiple ROIs to be found simukansly in a single simulation run.

R-NSGA-II has demonstrated good results on twofite-objective test problems.
However, there were difficulties when using a sengdference point since diversity is
not well-maintained. Moreover, theclearing parameter setting is not trivial.

¢ Deb and Kumar (20073 work: the reference direction-based approach

The authors combined the reference direction methitd NSGA-II. The reference
direction method allows the DM to set a startingnpand a reference point such that
the difference of the two defines the referencesdafion. Firstly, a set of points
(rt),t00) are marked on the given reference direction. Thamneach point(t), we
compute the ASF values(z,r(t),w jor a chosen weight vectow and for each
population member. Thereafter, the individuat having the smallest value sfis
declared to lie on the first non-dominated frontdssigning it the rank of one. This
procedure is continued for each poirdnd the corresponding population member for
the minimums is included in the first non-dominated front. Téa&fter, these chosen
population members are temporarily discarded frév@ population and the above
procedure is repeated. The next set of mininstgulutions is then declared to form the
second non-dominated front. This procedure is teyel all population members are
classified into non-dominated frontiers. Thereaftee crowding distance is computed
for each of the classified population members aslusThis hybrid method has the
ability to find Pareto optimal solutions correspoglto several reference points along
the reference direction. Several preferences cbeldnodelled by various reference
directions and the hybrid algorithm found for eaeference direction its corresponding
ROI. The authors noted that the population sizeuith a NSGA-I1I version should be at
least two or three times the number of points atersid along the reference direction.
The multiplicity is needed to ensure that the deascadequately guided towards the
corresponding efficient point. The reference dimttpproach has demonstrated good
results in tackling two- to ten-objective MOPs. Hmwer, the population diversity
degradation that can be yielded when using a singfierence direction remains a
significant matter since this approach does ndude a clearing mechanism such as
the R-NSGA-II one.

¢ Deb and Kumar (200709 work: the light beam search-based approach
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The authors combined the LBS method (cf. secti@rl2with NSGA-II. In the original
LBS method, the DM has to specify three preferepaemeters for each objective
which is quite demanding on the part of the DMotder to reduce the DM’s load, the
authors use only the veto preference parametere,Qne middle point (cf. figure 2.4)
is obtained, the feasible direction of the largesprovement of each objective is
determined. The best feasible point in each dwacsiatisfying the outranking criterion
is determined. These points are then projectetherPareto optimal front by solving an
augmented form of Wierzbicki’'s ASF. This resultstire best feasible point in each
direction satisfying the outranking criterion an@réo optimality. In this hybrid
preference-based MOEA, the DM is asked to supplyaapiration point (i.e., a
reference point) and a reservation point. The layalgorithm is as follows:

1) Non-dominated sorting is performed for the wholpydation,
2) For each front, each solution from the front isgresd a crowding rank:
a) Crowding distance of each solutigrfdenotedcd(x)) is computed as:

cd( = max Ot -2} 03 (100 -23) (3.32)
m=1...| 1

where 22 =[Z],...,zf; ] is the aspiration pointA =[A,....Ay] is the
weighting coefficient vectofA,, > @Im=1..M) and p is a sufficient
small positive number (called augmentation coedfitiwhich is fixed to

107 here). The weighting vector can be defined byagiration point

2% and the reservation one' (where z% <z, Om=1..,M) as

follows:

g =1 (3.33)

z -2z

m m

b) Solution with leastd value is the middle poirf” and it is assigned the
highest crowding rank.

c) For all solutionsx outrankingZ’, the maximum difference in objective
value withZ is determined:

$() = max (1,00~ 2;) (3.34)

Based upon theg x( )value, a crowding rank is assigned to each
solution. Solutions with smallep x( are assigned higher ranks and vice
versa.
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d) The remaining solutions, that do not outrafik are assigned smaller
crowding ranks so they are discouraged during ¢lecson process.

In the case of multiple light beams, a crowdingkraarresponding to each light
beam is first determined for each solution. Thae,minimum rank for all light
beams is assigned as the final crowding rank ottimsidered solution.

3) In order to obtain a uniform distribution in thghied regions, no two objective
vectors apart by less than adistance are preferred in the same manner as the
clearing procedure of R-NSGA-II.

The modified outranking relation used in this waak

{f (x) Sz° if t,(f(x),z°) =0 (3.35)

t,(f(%,2°) = card{m: f,,(x) - 2, 2 vetq,,m=1...M}

The objective vectof (X) outranksZz® (denotedf (X) S Z°) means thaf (X) is as
good asZ. As both solutions belong to the same non-doméhfrtent, if f (X) is
better thanz® in some objectives, the amount of deterioratiorf 6f) over Z
must not exceed the corresponding provided vegshtwids ¢etg,, m=1,... M).

This hybrid algorithm has demonstrated its abiidyind the part of the Pareto optimal
region illuminated by the light beam emanating frdine reservation point to the
aspiration point with a span controlled by the vétesholds. The simulation results
have shown good results when applying this appraatha suite of benchmarks.
However, providing the veto thresholds is not asydask for the human DM. Further
efforts are needed to study how to help the DMititesuch parameters.

¢+ Allmendinger et al. 2008 work: the Reference point-based Particle Swam
Optimization using a Steady State approach (RPSO-$S

The authors hybridized the Particle Swarm Optinnira{PSO) metaheuristic with the
reference point method. The authors used a stéaty approach where an offspring is
generated one at a time. A replacement strategyftén employed to compare the
offspring with its parents. The offspring only rapés a weaker parent. Note that this
procedure results in a population size that is teonisduring the entire run of the
algorithm. There is no notion of generation. Thoery is set randomly to be within
the variable ranges. The DM is invited to supple @m more reference point(s). The
population is divided into equal sized clustershefausing on one reference point.
The main loop is described as follows. Do the fwlltg for each particlex in each
cluster until a stopping criterion is met:
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1) Choose a particle randomly from the current cluatethe best global (or local)

best positionp9 =[p?....,p§ 1,

2) Produce an offspring based ®np? andp® Wherepb :[pf’,...,pEA ] is the best

position found by the partickeso far during the optimization process,

3) If the generated offspring Pareto dominatg® then it replaces it, else if the
offspring is non-dominated with respect to bathndp® then the two particles
closest to the reference point are kept and thidsar particle is deleted.

RPSO-SS uses also arclearing mechanism like R-NSGA-II in order to pese

population diversity and to allow the DM to conttbe ROI extent. The experimental
study has mentioned good results in solving twad tiree-objective test problems.
However, there were difficulties when solving highhultimodal problems such ZDTA4.

In the same study, the authors proposed an exteseledtion strategy. In fact, the
original selection strategy will not keep an offsgrin the population that is farther
than x and p from the reference point. The new replacementegiya extends the
replacement strategy of the basic RPSO-SS and da®vihe offspring with the
opportunity to replace particles other thaar p°. Thus, a randomly selected partigle
is compared to the offspring and it is replaceitl is dominated by the offspring or it is
non-dominated regarding the offspring but it istifar than the offspring from the
reference point. Additionally, instead of usingiagte randomly selected particle as a
p%, the new sampling-based selection mechanism seNygt particles randomly.
Among these patrticles, the one with the shortesti®an distance to the reference
point is chosen ag’. The obtained results have demonstrated the langéMp® value
is, the better the convergence is.

¢ Wickramasinghe and Li (2008 work

The authors hybridized the Non-dominated Sortin@ RESPSO) (Li 2003) and the
MaxiMin PSO (MMPSO) (Li 2004) with the referenceiqtomethod. The NSPSO has
the same sorting and diversity preserving mechanisimNSGA-II. In fact, from a
population of sizeN, an offspring population of sizW is created. After that, a non-
dominated sorting is performed on the merged pojomaf size A in order to classify

it into several non-dominated fronts. Once non-d@tion ranks are assigned, the
crowding distance assignment is performed frontwi$es leaderg® are then selected
from the set of top 10% least crowded solutionsnftbe first non-dominated front. In
MMPSO, the fitness of particle is given by the maximum of the minimum values
betweerx and all other particlegfrom the populatiod® and is given by:
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fitnesgx) = oy Max P\{X}{min{ f.(x) - .V} (3.36)

The particles having a fitness values less than ae2 considered as non-dominated
and constitute the first non-dominated front. Toialtnumber of individuals that move
to the next generation consists of all individualghe first non-dominated set. If the
non-dominated set size is less than desired, tloenindited individuals are chosen
randomly to fill the vacant positions. A particldhhaoses a leader (global best),
randomly from the top 10% of least crowded parsidle the non-dominated front. In
both reference point-based PSO algorithms, thesteseglection strategy is modified. In
NSPSO, a particle chooses its leader from the pateset corresponding to the top
10% closest particles to the reference point pidkexh the first non-dominated front.
In MMPSO, a patrticle will choose random values frathdimensions of the set of
potential leaders and produce a leader.cAthearing mechanism is included in both
NSPSO and MMPSO in the same way as R-NSGA-II ireotd control the ROI
spread. The two PSO algorithms have demonstrateid albility to provide several
ROIs near the user-provided reference points witloratrolled spread defined by the
user-specified parameter. However, NSPSO and MMPSO effectivedeggnds on
the population size since the potential set sipedds on the population size.

¢ Molina et al. (2009 work : the g-dominance

The authors suggested a new kind of dominancesdbgdtlominancewhere solutions
satisfying all aspiration levels and solutions iflitfg none of the aspiration levels are
preferred over solutions satisfying some aspiratemels. The g-dominance has three
merits: (1) it can be incorporated in several metaistics, (2) although the preferences
are modelled as a reference point, the search ggagerks without using any ASF and
(3) it can be used in an interactive way. Formadlgsumingg =(gl,...,gM) to be a

reference point, each solutians assigned a flag as follows:

1 if f,(X<g,Im=1..M
Flagy(x) =<1 if f,(x)=29, OUm=1...M (3.37)
0 otherwise

Given two distinct solutions andy, x is said to g-dominatgif and only if:
Flag,(x) > Flag,(y) or Flag,(x) = Flag, (y) and f (x) < f(y) (3.38)

The main disadvantage of this approach is thateéscot preserve the order induced by
the Pareto dominance relation. Hence, a dominatiedien which satisfies none of the
goals may be preferred to a solution that dominatasd which fulfills some of the
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Minf: a

Pareto front

Min fi
Figure 3.8 The g-dominance: non-preservation of thBareto
dominance order.

goals. Figure 3.8 illustrates this case. SolufioRareto dominate8, however solution
B g-dominates solutiorA. This fact discourages convergence towards thet®ar
optimal front.

¢ Thiele et al. (2009 work : the Preference Based-Evolutionary Algoritm
(PBEA)

The authors combined IBEA with the reference ponethod. The obtained method is
called the Preference-based IBEA and denoted PBREKMEA the fitness function of a
particular solutiorx is given by:

fithesgx) = z(;e"<y'x>’K) (3.39)
yOP\{x

where k is a scaling factor (Zitzler and Kinzli 2004). Timess ofx expresses the
loss in quality if solutionx is removed from the population, i.e., the marginal
contribution ofx in terms of approximation quality. The quality icator used in IBEA
is the additive binary-indicator | . which is a Pareto compliant indicator. The

following expression gives another formulationlof :
. (x,y)=m€in{fm(x)—£s f.(y)Om=1..,M} (3.40)

In order to take DM'’s preferences into account,abthors modified (3.40) as follows:

1,06 Y) =1 (%, y) /90, T (X), Opgen) (3.41)
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Figure 3.9 Dominated region for: (a) Pareto dominaoe
and (b) trade-off-based dominance.

where 0, f (%), Opgen) = (G, f (X)) + Opgen— ryDiQ{S(g, f(y)} (3.42)

Opgea IS called the specificity parameter and allows[ié to control the spread of the
obtained ROI ands(g, f(x)) is the ASF of solutiorx. The main advantages of this
approach are that the usdd(x,y) binary quality indicator is Pareto dominance
preserving and the approach can be used interbctivieh more than one reference

point. However, the authors noted that adjustimgsbecificity parameter is not an easy
task and such topic is for further investigatiohi€le et al. 2009).

3.2.5 Trade-off-based approaches

¢ Branke et al. 001 work: the Guided MOEA (G-MOEA)

The authors proposed a variant of the Pareto darmoeeelation that focuses the search
towards the preferred part of the front based adetoff information provided by the
DM. In fact, the DM is invited to provide, for eagdair of objectives, maximally
acceptable trade-offs. For example, for the bi-ctibje case, the DM could specify that
an improvement by one unit in objectifgels worth a degradation of objectifeby at
most c;2 unit. Similarly, a gain in objectivé by one unit is worth a degradation of
objectivef, by at mostcy; unit. This trade-off information is then used todifg the
dominance relation as follows:

X<y = (fi00)+cfa(x) < fi(y) + e fr(y) O
CRAGER AR AV EIA) (3.43)
where x=<, y means thak is preferred toy based on the designed trade-off-based
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dominance relation. Figure 3.9 shows the effectdpced by the new dominance
relation in the objective space. In fact, when camefd to the original dominance
relation, a particular solution now dominates adarregion. With this dominance
scheme, only a portion of the Pareto optimal frembains non-dominated. This portion
corresponds to the ROI. However, since this appraaplicitly assumes linear utility

functions, it may not be possible for G-MOEA to dgcon all parts of concave Pareto
optimal front (Branke et al. 2001). Moreover, tlapproach is restricted to the bi-
objective case.

3.2.6 Outranking-based approaches

¢ Fernandez et al. 2010 work: the Non-Outranking Sorting Genetic Algorithm
(NOSGA)

The authors exploited the outranking concept (R896) in order to integrate DM’s

preferences in NSGA-Il. For each objective functifhp a relational system of

preferencesHrm, I1y) is designed wherBr means preference ahaneans indifference.

For each objective vector component p&ifX), fn(y)), one and only one of the three
following statements holds:

= fm(X) Prfm(y),

= fn(y) Prfm(x), or

(X)) 1 fn(y).

This formulation allows indifference thresholds ander to model some kinds of
imprecise one-dimensional preferences. It shouldnb&ced that the considered
relational system of preferences is more generah tine usual formulations which
consider only true criteria (i.ef,(x) # f,, y(ilnplies non-indifference). Without loss

of generality, the following is supposed:

fn(X) Pr fn(y) = (%) > fa(y) (3.44)

For each pairf((x), f (y)), the DM, assisted by the decision analyst, exa fuzzy
predicate modelling the truth degree of the pradi¢a(x) is at least as good &sy)”.
The authors adopted the outranking approach bas&d BCTRE methods (Roy 1990,
Mousseau and Dias 2004). Assuming f (x) andv =f (y), the proposition U outranks

V' which means ti seems at least as good\ésholds if and only if the coalition of
criteria in agreement with this proposition is sfyoenough and there is no important
coalition discordant with it. It can be expressgdtee following logical equivalence:

uSv < C(u,v)C- D(u,v) (3.45)

where C(u, v) is the predicateabout the strengthof the concordancecoalition and
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D(u, v) is the predicate about the strength of the ddaace coalition.

The NOSGA works with non-strictly outranked solusoinstead of non-dominated
ones. The selection process is similar to NSGAHE dut it extracts non-strictly
outranked individuals in order to classify the plagpion into different non-strictly
outranked fronts. Since the MOEA searches for tlo¢ &d not an approximation of
the whole Pareto front, the crowding distance adte is replaced by a weakness
measura/V (Fernandez et al. 2010). The NOSGA performancesassent was done on
several instances of four- to nine-objective knaksaroblem. The NOSGA has
demonstrated its superiority over NSGA-II in praagl non-outranked solutions in a
privileged zone of the Pareto front. Moreover, H@SGA is shown to be less sensitive
to the increase of the number of objectives tha®GN$l. The main crux of this study
is that the NOSGA was not confronted to any prefeeebased MOEA. Such
confrontation is required for more validation.

¢ Fernandez et al. 2011) work: the Non-Outranking Sorting Genetic Algorithm
[l (NOSGA-II)

In a more recent study (Fernandez et al. 2011)sdinee authors proposed an enhanced
version of NOSGA, called NOSGA-II, which increaghs selective pressure towards
the preferred solutions. This is achieved by carand) other binary preference
relations (Roy 1996) in the preferential systemaddition to the strict preference
relation and the indifference one. Assuming f (x) andv =f (y), these relations are
the following:

1) Weak preferencdt corresponds to the existence of clear andtpesreasons in
favor ofu overv, but that are not sufficient to justify strict preence.

2) Incomparability None of the situations of indifference, stricef@rence nor weak
preference predominates. That is, the absenceeaf @nd positive reasons that
justify any of these relations.

3) K-preference It corresponds to the existence of clear andtpesreasons that
justify strict preference in favor of one (idendidi) of the two solutions or
incomparability between the two solutions, but witlo significant division
established between the situations of strict pegfeg and incomparability.

The authors reported that the NOSGA-II outperfothesNSGA-II and the NOSGA on
a real world instance of the multi-objective knagsproblem.

3.2.7 Desirability function-based approaches

¢ Wagner and Trautmann (2010 work: the Desirability Function-based SMS-
EMOA (DF-SMS-EMOA)
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AS MI f[_;)

Figure 3.10 A realization of Harrington’s DF basedon DM'’s
preferences: (AS, DF(AS)) and (MI, DF(MI)).

The authors proposed a preference-based versitimeddMS-EMOA. We recall that
SMS-EMOA belongs to the third generation of MOEASscse it combines non-
dominated sorting with hypervolume-based selectiorfact, in each generation, the
last (worst) considered non-dominated front is pdurby removing the individual
having the least contribution in terms of hypervo&u For each objective function, the
DM is invited to express his/her preferences bypsupg two thresholds which
represent. (1) an Absolutely Satisfying objectivelue (AS) and (2) a Marginally
Infeasible objective value (MI). These thresholds/e as parameters to the DF of the
corresponding objective function. The concept ofimdility was introduced by
Harrington (1965) in the context of multi-objectivelustrial quality control. DFs map
the values of the objectives to disirablities,, ivalues on a unitless scale in the domain
[0,1]. The mapping is based on preference inforomategarding exemplary objective
values (i.e., the two thresholds AS and MI). Weenthiat in addition to supplying AS
and MI, the DM specifies a desirability value fach threshold in the domain [0,1].
The preferences are specified under the assumph@nthe smaller the difference
between the actual desirability and the maximunuevalf one is, the better the quality
of the solution in the corresponding objective Iis.general, anyDF: f (x) — [0,1]
describing the desirability of different regionstive objective space can be defined as a
DF. Figure 3.10 presents an example of a realizatioHarrington’s DF (Harrington
1965). The main idea of DF-SMS-EMOA is to convér objective function of the
original MOP into DFs and then optimizing these DiAstead of the original
objectives. We recall that disirablities are torbaximized. The DF-SMS-EMOA has
demonstrated its ability to bias the search tow#rdsDM’s preferred region on the bi-
objective ZDT test functions and the five-objecttuening process problem (Biermann
et al. 2008). However, the authors noted that, whemumber of objectives increases,
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the number of border solutions outside the spetifias limits of DFs increases and
the hypervolume computational complexity also iases. Consequently, further
research effort is required to study the combimetibetween MOEAs and DFs for
many-objective optimization problems (i.e., MOPsadlving more than 3 objective
functions (Hughes 2005)).

3.3 Discussion

3.3.1 From MOEAs to preference-based MOEAs

If a single solution is to be selected from theeRarfront of a MOP at some point
during the optimization process, the DM has to akves/her preferences. Specifying
these preferences a priori, i.e., before altereati@re known, often means to ask too
much from the DM. On the other hand, searchingatbnon-dominated solutions, as
most MOEAs do, may result in: (1) wasting compuwtaail efforts to find solutions that
are clearly undesired by the DM and (2) compligatime DM’s task when selecting the
final preferred alternative from a huge set of 8ohs. In the previous section, we
presented a review of the most prominent preferdased MOEAs which allow
avoiding the two above cited shortcomings of gdrsugpose MOEAs. Table 3.1
presents a synthetic comparison of Preference-bd€deAs. The works are classified
based on the type of the DM’s preferences andistedlin a chronological order for
each category in order to illustrate the evolutsmheme of each class of algorithms.
We remark that most of these works are publishet @D06. Additionally, we see that
from 2008, there is an increasing emphasis ondpie of including DM’s preferences
in EMO. Table 3.1 lists several comparison crite¢hat are classified into two main
classes: (1) general criteria that are discussedisnsubsection and (2) pros and cons
criteria that are discussed in section next. Theeg® criteria are: (1)nodification
which indicates the modified part of the MOEA anfluencewhich indicates whether
the result is a bounded region of the Pareto opfiraat or a just a biased distribution.

According to the algorithmic details of the diffatesearch methods provided in the
second section, we remark that most preferenceddd&EAs are modified versions of
general-purpose MOEAs. This observation is empbdsizy the colummodification

in table 3.1, where we see that the most frequenddlified part of the MOEA is the
dominance relation. In fact, several preferencetbasominance relations were
proposed such as the g-dominance, the trade-offdbdeminance, and so fourth. When
the Pareto dominance is replaced by such domingeiagons, the search process is
guided towards the ROI according to the DM’s prefees. Based on the column
influence we seethat mostpreference-based OEAs aim at providing a boundedR Ol
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Table 3.1 Comparison of preference-based MOEAs (ipged by
(Branke 2003: MROI means Multiple ROIs, SC means Spread
Control, PDP means Pareto Dominance Preservation, B> means
Diversity Problems and SCAD means SCAlability Demastration
with respect to the number of objectives. For prosind cons criteria,
“Y” means Yes and “N” means No.

General criteria Pros & Cons criteria
Reference Modification Influence M|S (P |[D |S
R |C D |P |C
O P A
[ D
Weights
(Deb 1999) Crowding Distribution N[NJ[Y |N]|N
operator
(Branke and Deb 2004) Crowding Distribution N|[Y[Y |[N]Y
operator
(Zitzler et al. 2007) Quality indicatgr Distributio | N [ N [ Y | N |Y
Ranking some candidate solutions
(Greenwood et al. 1997) Dominance Region N [N [Y [N [N
(Deb et al. 2010) Dominance Region N N ¥ N VY
(Koksalan and Karahan 2010a) Dominance Distributig N | Y | Y | N | N
(Battiti and Passerini 2010) Crowding Region
operator
(Fowler et al. 2010) Dominance Region N N ¥ N VY
(Branke et al. 2010) Dominance + | Distribution N[NJ[Y |N]|N
crowding
distance
Ranking objectives
(Jin and Sendhoff 2002) Objectives Distribution N[N[NJ|]Y|N
aggregation
(Cvetkovic and Parmee 2002) Dominance DistributionN
(Rachmawati and Srinivasan 2010) 1) Dominancg Region N [N [N [N [Y
2) Solution Region N I[N |Y [N |y
sorting
mechanism
3) Crowding Distribution N [N [Y [N |Y
operator
Reference point
(Fonseca and Fleming 1993) Dominance Region N [N |[Y |N
(Tan et al. 1999, 2003) Dominance Region Y N N N |Y
(Deb et al. 2006) Crowding Region Y|Y|Y|Y]|Y
operator
(Allmendinger et al. 2008) Leader selectiorRegion Y|Y|Y]|Y|N
strategy
(Wickramasinghe and Li 2008) Leader selectipRegion Y|Y|Y]|]Y|N
strategy
(Molina et al. 2009) Dominance Region N N N
(Thiele et al. 2009) Quality indicatgr Region N |Y
Reference direction (reference point + reservation point)
(Deb et al. 2007a) Solution Region Y |Y |Y |Y |Y
sorting
mechanism
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Reference direction and some preference thresholds

(Deb et al. 2007b) Crowding Region Y |Y |Y |Y |Y
operator

Trade-offs between objectives

(Branke et al. 2001) Objective Region N [N [Y [Y [N
functions

Outranking parameters

(Fernandez et al. 2010) Dominance Region

(Fernandez et al. 2011) Dominance Region N [N [Y [N |Y

Desirability thresholds

(Wagner and Trautmann 2010) Objective Region Y I[N |Y [N |Y
functions

rather than a biased distribution of non-dominatedtions. This fact provides the DM
only with preferred solutions.

3.3.2 Preference modeling tools

From the preference modelling tools cited in tlable, it is difficult for the DM to
precisely state his/her preferences in a priori,veag., how could the DM specify the
aspiration/reservation levels while he/she igndnesrange of each objective function?
A simple way to handle this difficulty is to runeglMOEA for some small number of
generations and then provide the DM with some gbigtsuch as the ideal point and
the nadir one. In this way, the DM builds an iddéewt the ranges of the different
objectives which facilitates the task of supplyagpiration/reservation levels. This fact
has motivated researchers to design some EMO-lasédiques for estimating the
nadir point which plays a crucial role in the digeny of objective ranges (Deb and
Miettinen 2008; Bechikh et al. 2010b). Such techeghave demonstrated their ability
in finding near nadir point quickly and reliably dngh dimension MOPs. When
modelling preferences as weights, it is difficdtdontrol the guidance of the search
towards the ROI. In fact, with the increase of mluenber of objectives, it is difficult to
verify whether the MOEA’s provided approximationallg replies to the DM’s
specified weights. For this reason, using weightan interactive manner is not really
so attractive. Modelling preferences as trade-b#aveen objectives is a complicated
task especially when the number of objectives mmes. Consequently, using such
approach interactively augments the demanded dffart the DM. Ranking a sample
of solutions seems to be an interesting way tatdliM’s preferences. However, how
to select solutions to build such a sample is atillopen question for further research.
For example, in the BC-EMOA (Battiti and PasseBiL0), the authors noted that the
evolutionary process should be run for a certaimlmer of generations, that is of the
same order of a plain MOEA run on the same problarorder to ensure a reasonable
coverage of the whole Pareto front and eventuaityte miss portions containing some
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possibly preferred solutions. This fact makes BC&M\behave like a general purpose
MOEA where the entire Pareto front is firstly apgmated and then the DM’s
preferences are used to select the final altematwealize. Consequently, we do not
really see the advantages of articulating DM’'s @mfices within the MOEA.
Furthermore, the computational complexity is insegh Using outranking relations in
a priori way seems to be interesting. However, EiM should be assisted by the
decision analyst (an expert) to set appropriateraolgying parameters. Moreover,
updating such parameters interactively during tHeBM run is not a trivial task and
may augment the DM’s burden. Objective rankingl$® an interesting way to model
DM'’s preferences. However, the preference updatehar@sm should be controlled in
order to ensure preference consistency as notéRdghmawati and Srinivasan 2010).
Desirability thresholds seem to allow a straightfard specification of the DM’s
preferences. We note that the concepts of destsabithresholds and
aspiration/reservation levels seem to be so similar

Among all the used preference modelling toolseérss to be that the most natural and
precise way to express DM'’s preferences is thaerte point (Bechikh et al. 2012a)
(e.g., the DM would like to achieve 20 units in fivst objective and 15 units in the
second objective). In this way, DM’s preferencesldoguide the search towards the
ROI precisely and interactively without demandingraat effort from the DM even if
the number of objectivel! increases. Indeed, the reference point could berdion
the same plot of the MOEA’s population whatevethis number of objectivelsl (by
using the 2D/3D plots for the two-/three-dimensiarases and the parallel coordinates
plots for higher dimension cases). This fact feaiis not only the verification of the
guidance of the population but also the updatdefreference point. These statements
are emphasized by the results presented in tablgir®ce the reference point is the most
used DM’s preference information structure.

3.3.3 Pros and cons

Table 3.1 lists a set of criteria that allow illaging the pros and cons of the different
approaches:

—MROI “Y” value means that the algorithm offers the DM ability to obtain more
than one ROI. Usually, at the beginning of the etiohary process, the DM does not
have any idea about the search space. This facihzke the DM doubtful when
expressing his/her preferences. Hence, with thooMROI, the DM can guide the
search towards multiple ROIs and then he/she fectieee MOEA's population on the
final desired ROI during the interactive run. Th&®I option represents an advantage
for the MOEA since it allows the DM to learn abdle search space and consequently
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about his/her preferences during the interactiviopation process which facilitates
the task of preference updating and adjusting.

—SC “Y” value means that the algorithm allows the D control spread of the
obtained ROI. The option SC represents an advarftagihe MOEA because if the
algorithm does allow controlling the ROI breadtie tobtained results can be
ambiguous for the DM. Since MOEAs are stochastarae algorithms, if the ROI
breadth is not controlled, the DM can obtain degf@rROIs’ spreads in each run of the
algorithm. This fact represents a difficulty to tB# when selecting his/her final
alternative to realize. Additionally, in this cadbge focus of the population on the
desired region heavily depends on the terminatioteron since the population is
guided gradually towards a particular region in fearch space from generation to
another which may cause a diversity problem esfyecigth the increase of the
number of objectives.

—PDP: “Y” value means that the preference-based guidanechanism of the related
MOEA preserves the order induced by the Pareto wiance relation, i.e., a dominated
solution with respect to the Pareto dominance imlatannot be preferred to a solution
that dominates it. This fact preserves elitism (20061). In fact, the PDP criterion has
been mentioned in the survey of Coello (2000)h& preference-based MOEA allows
contradicting the Pareto dominance order, thenogsgriconvergence problems can
occur.

—DP: “Y” value means that the algorithm has some diitgr problems; which
represents an inconvenient for the MOEA. In faaidopg the search process towards a
particular region of the search space at the baggnof the search process may cause a
reduction in the population phenotypic diversityr Rhis reason, when designing a
preference-based MOEA, it is of particular intetestonceive a diversity mechanism
that allows preserving the population diversity.

—SCAD “Y” value means that the scalability of the prepd approach with respect to
the number of objectives is demonstrated in thgimal paper of the algorithm. The
emerging field of many-objective optimization (H&gh2005) has recently attracted a
lot of researchers. One of the proposed approachikeandle such type of problems is
to incorporate DM’s preferences in the evolutionargcess in order to explore only the
desired portion of the Pareto front. With the irs® of the number of objectives, the
Pareto dominance becomes ineffective when comparbegween solutions.
Consequently, researchers have used DM’s prefeseasean additional criterion to
distinguish between the population individuals &ois the search towards the optimal
ROI of a many-objective problem.
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3.4 Group preference handling

3.4.1 Group preference handling in EMO

In the EMO community, the problematic of incorpargtthe preferences of a group of
DMs in MOEAs is ignored by most researchers. (Rdeiét al. 2008) is probably the
unique work that has considered such a problenbgtiproposing four variants of the
previously discussed algorithm R-NSGA-II. Accorditgythe authors, while th©R
operator evolves the population towards either hed teference points, thAND
operator tries to minimize the deviation from abtlas concurrently and therefore
attempts to find a consensus. The four variantsdaseribed and classified into two
categories as follows:

¢ Ranking-based approach

Instead of using the minimum of the ranks (in refe to the OR operator), the
maximum of the ranks is taken as crowding dista(inereference to the AND
operator). Since in contrast to the original NSGAHe crowding distance is supposed
to be minimized, this variant is called tvenMaxRankingapproach. The second idea
is to assign the average rank as crowding distanue. variant is name#vgRanking
approach. For example, if one solution has thegdnk4 and 10 to each of the three
reference points respectively, the crowding distamould be 5.

¢ Distance-based approach

In this approach, only the normalized Euclideanagises directly are used as crowding
distances. The crowding distance is assigned deereithe maximal normalized
Euclidean distance they have to a reference pdiniNlaxDistanceapproach) or the
average distanc@ygDistanceapproach).

These four variants of the R-NSGA-II algorithm weassessed on three ZDT test
problems (i.e., ZDT1, ZDT2 and ZDT3 (cf. appendiy And two realistic instances of
the flow shop scheduling problem. The obtained Itesshow that the proposed
approaches are able to provide the desired avdR&jewhich is considered to be
composed with consensus solutions according t@udfieors. However, from our point
of view, the fact of providing an average ROI doed resolve the problem since
several DMs are still dissatisfied with the obtainesults and the conflict is still
existing. In fact, consensus reaching is a comptexess and requires more elaborated
mechanisms for preference aggregation (HerrerasWaedt al. 2007). For this reason,
we present in the next section a brief presentatf@ocial choice theoryArrow 1951)
and the main difficulties encountered when aggiegdhe preferences of a set of DMs
especially: (1) the impossibility to achieve ahés of fairness and (2) manipulation.
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3.4.2 Social choice theory: A brief review

Social choice theory is a theoretical framework foeasuring individual interests,
values or welfares as an aggregate towards a tiededecision (Arrow 1951). The
problematic of social choice can be described Bewse. Assuming that we have a set
of agents having preferences over a set of aligggtthe issue is how to design a
mechanism that outputs a social preference or glesiwinner over the set of
alternatives. Voting methods, such as pluralityhmdt Borda method and Condorcet
method are considered as examples of social meshanBouyssou et al. 2009). The
most known and influential result within the soc@ioice community isArrow’s
impossibility theoremvhich states thdairnessis multifacetedand that it is impossible
to achieve all of these kinds of fairness simultarsty (Shoham and Leyton-Brown
2009). According to Arrow (1951), the multifacetiaitrness criteria are the following:

1) Unrestricted domain (or the universality criteriorffach agent is allowed to rank
the set of alternatives in any order without angriari constraint and the social
choice function must generate a collective prefegearder from any logically
possible set of individual preference orders;

2) Transitivity. Assuming three alternatives b andc, if each agent prefeesto b and
b to c thena should be preferred tin the collective preferences;

3) Pareto efficiencyWhenever all individuals prefer an alternatevéo anothem, a
must be preferred toin the collective preferences;

4) Independence of irrelevant Alternativeélse collective preference order of any pair
of alternativesa andb should depend solely on the individuals' prefeesrnzetween
these alternatives and not on their preferencestfar (irrelevant) alternatives; and

5) Non-dictatorshipthe collective preferences should not invariafmyrespond to the
preferences of any single individual, regardlesthefpreferences of the others.

The Arrow’s Impossibility Theorem is given as falls:

Definition 3.3: Arrow’s impossibility theorem

When there are more than two alternatives, anyabatioice function that satisfies
Pareto efficiency and independence of alternatneeessarily violates non-dictatorship
and is therefordictatorial.

Another important issue in social choice theoryattihas received considerable
attention, ismanipulation(Conitzer 2006). By definition, a manipulationafway of
misreporting one’s true preferences that leads beetger result for oneself. Another
impossibility result in social choice theory is teth by theGibbard’'s impossibility
theoremwhich is given as follows (Gibbard 1973):
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Definition 3.4: Gibbard’'s impossibility theorem

When there are more than two alternatives, anyakohbice function that: (1) satisfies
non-dictatorship and (2) isnto (onto means that every alternative can be a winner
under some preference profilemanipulable

We can say that the two aforementioned impossibil@sults represent the main
challenges when designing a social choice mechamibioh makes social choice a
very active research area till today (Chevaleyrad.€2007).

3.5 Conclusion

This chapter provided a survey of preference-bad@EAs. These algorithms are
mostly modified versions of general-purpose MOEBs#ferent parts of the MOEAs
can be modified in order to direct the search tolwadhe preferred part(s) of the Pareto
front. The DM’s preference information structurenchave different forms. The
reference point seems to be a promising way toudelDM’s preferences within
MOEAs. Reference point-based MOEAs are charactdrlzg their abilities to: (1)
provide a Pareto optimal bounded ROI, (2) contnel breadth of the obtained ROI and
(3) provide more than one ROIs. Additionally, sualgorithms can be executed
interactively without increasing the DM’s burdendapermits the DM to verify in a
straightforward manner if the obtained ROI realbyresponds to his/her preferences,
i.e., whether the obtained Pareto-optimal solutiares concentrated around the DM’s
reference point. Most of the proposed preferensedMOEAS consider the case of a
single DM. For this reason, in section 3.4, we haresented the work of Pfeiffer et al.
(2008) that is probably the unique work in the EM@nmunity that has considered the
case of multiple DMs. Additionally, we have intrashd the main difficulties faced
when aggregating a set of DMs’ preferences by plingi a brief review of social
choice theory.
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Chapter 4

Implicit Preference-based Evolutionary
Multi-objective Optimization

4.1 Introduction

In the absence of explicit DM’s preference inforimat there exist special points of the
Pareto front that could represent implicitly preéer parts of the Pareto front for the
DM. These parts are: (1) knee regions and (2) naalimt. Knee regions are potential
parts of the Pareto front presenting the maximaberoffs between the MOP’s
objectives. Solutions residing in knee regionsdraracterized by the fact that a small
improvement in either objective will cause a ladgterioration in at least another one
which makes moving in either direction not attraeti Such characteristic renders
almost always knee solutions of particular inteiaspractical context. Nadir point is
the vector composed with the worst objective vakitethe Pareto optimality stage. For
this reason, this special point represents veryntapt information for the DM. Figure
4.1 illustrates the concepts of knee regions ardir rint. This chapter is devoted to
review the different approaches for integrating licipDM’s preferences in MOEAs.
The next section presents the existing approadairekniee region approximation. The
third section reviews the proposed approaches &alirnpoint estimation. The last
section concludes the chapter.

4.2 Implicit DM’s preferences as knee regions

4.2.1 Motivations for knee region approximation

Das (1999) noticed that the trade-off level is wagyacross the Pareto front and there
are solutions corresponding to maximal trade-oftle. In fact, Das noted thatrétm
practical experience . . . the user or designer usually picks a point in the middle of the
surface . . . where the Pareto surface bulges out the most.”. Such solutions are called
“knee” solutions and they are very interesting to the BMce they constitute the
optima in terms of trade-off. Knee regions are tituted with solutions having the
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Figure 4.1 lllustration of implicit DM’s preferences: (1) knee
regions and (2) nadir point.

highest values in terms of the marginal rate afrmetSubstitution of a given non-knee
Pareto optimal solution with another solution ol #nee region yields the largest
improvement per unit degradation. Such characieristnders knee regions so
important to the DM. Few studies were interesteddiacovering knee regions
compared to the general-purpose MOEAS’ literaturehe next subsection, we give a
brief review of these works.

4.2.2 Existing methods for knee region approximatio

The focus on knee regions is not new. Das (1998pgwed a method based on the
Normal-Boundary Intersection (NBI) (Das and Dent@98) to locate the knee of the
Pareto front. Das characterized the knee solutioterms of the Convex Hull of

Individual Minima (CHIM), which was defined as tlset of points inO" that are

convex combinations oF —F(X"), where F" is the utopia vector of the global
minima of objectivesF =[f,, f,,...,f,,] and F(X,, ) is the objective vector of the

global minimizer of f.,, X, . The knee solution corresponds to the farthesttisol

from the CHIM. The non-linear programming methodais maximizes the distance to
the CHIM in order to get the knee solution. Thehteque requires an a priori estimate

of F(Xm*) for each objective (i.e., extreme solutions) dmeldccuracy of the obtained

knee solution is directly related to these estisale general, providing an accurate a
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priori estimate of the CHIM is not an easy taskislteven more difficult when the
Pareto front contains multiple knee regions. Ashdatee solution is associated with its
corresponding CHIM, finding all knee solutions nesitates the estimation of several
CHIMs and the discovery of each farthest pointeimms of the distance to each CHIM.
Extensions to cater the problem with multiple kneautions with non-uniform
geometry were not provided either in Das’s work §(0®99). Additionally, the NBI
furnishes only one unique knee solution. Howevepractice, it would be desirable to
obtain a set of solutions in the vicinity of eaahek center which facilitates the DM’s
task when selecting the final preferred alternatBeanke et al. (2004) designed a
MOEA which does not require a priori informationoalb the extreme solutions. In fact,
they proposed two modification strategies to th&sRSI (Deb et al. 2002a) to make it
focusing on knee regions. The authors modify theerdity selection criterion of
NSGA-II. In the first strategy, the algorithm utdis a geometrical property of knee
regions, i.e., the external angle formed by a geralution and its neighboring non-
dominated solutions is larger for solutions lying the knee region than for those
otherwise located. Hence, the NSGA-II crowding dacivas replaced by an angle-
based measure and the focus on knee regions weieved by maximization of this
measure. This approach has been shown to be efefur the bi-objective case.
However, it is not amenable to higher dimensiorbfgms. In the second strategy, the
authors suggested a marginal utility function tpragimate the angle-based measure in
the case of more than two objectives. In fact,ltnger the external angle between a
solution and its neighbors is, the larger the gaiterms of linear utility obtained from
substituting the neighbors with the solution ofenaist is. The substitution of the
NSGA-Il diversity factor by this linear utility meare forces the algorithm to
concentrate the search on knee regions and hersoevdring knee regions for
problems involving more than two objectives. Howewtke reliance of the proposed
utility function on weighted sums precludes the wvagence of the algorithm to the
non-convex parts of the Pareto front which may leadhe loss of less pronounced
knee regions. It is worth noting that the issueaitrolling the extent of knee regions
was not addressed in both methods (Branke et 84)2Rachmawati and Srinivasan
(2006a, 2006b) developed a MOEA focusing on kn€ks.proposed MOEA computes
a transformation of the original objectives basadweighted sums. The transformed
functions identify niches which correspond to kneethe objective space. The extent
and the density of coverage of the knee regionganérollable by the niche strength
and pool size parameters respectively. Althougledhasn weighted sums, the algorithm
is capable to find out solutions in the non-conuegions of the Pareto-front. In fa€),
weighted sums of objectives are computed with @&t uniformly distributed weight
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sets. These weighted sums are then sorted accotalingagnitude to yieldQ rank
figures for each individual. The highd3trank figures constitute objective values to be
optimized for an individualP andQ are user-defined positive integer parameters where
P < Q. A biasing selection criterion formulated on thigategy encourages the survival
of the global optima dP subsets of th® weighted sums. The strategy is susceptible to
the loss of less pronounced knee regions whichtitoteslocal Pareto optima in the
aggregation computed with the weight sets desayikieir respective CHIMs but are
not part of the global optima in the very same \Wtid sums. The authors argued that
while a judicious choice of the paramekand a large) minimizes the loss of less
pronounced knee regions, there are special casee\sbme knee solutions cannot be
found. Another disadvantage of this approach (Raotati and Srinivasan 2006b) is
that the efficacy of controlling the spread of #reee regions depends heavily on the
geometrical shape of the Pareto front which mayeaadthe DM. Schitze et al. (2008)
suggested two updating strategies which can begratied in stochastic search
algorithms for the approximation of knee region$ie Tadvantage of the proposed
strategies is that they can be used either as atarel algorithms together with any
stochastic search procedure or integrated into athgr archiving strategy without
causing additional function calls. Additionallyetknee region extent can be controlled
by a user-provided parameter. However, this studg vestricted to the bi-objective
case. Recently, Rachmawati and Srinivasan (2008pgsed a fitness scheme that
applies preference-based selection pressure in BAO obtain solutions concentrated
on knee regions. This scheme can be considerea &tansion of their preceding
work (Rachmawati and Srinivasan 2006b). The styategy be easily incorporated into
any MOEA framework with Pareto-based ranking in fisection of solutions. The
proposed method is a two-step algorithm. In thst fitep, the MOEA seeks a rough
approximation of the Pareto front, and in the secstep, the linear weighted sums of
the original objective functions are optimized toide solutions towards the knee
regions. A heuristic was introduced to compute #ppropriate weights for each
potential knee region in the front approximationm&chanism to control the extent of
focus on the knee region was also provided via uker-supplied parametey.
Although the approach relies on weighted sumstisoisi on the non-convex region of
the Pareto front can also be retained once disedwgiven an enough large valuesof
The preference-based fithess introduces little ddaenputational cost, as the number
of objective functions to be optimized in the satatage is the same as the number of
original objective functions. The approach has bseccessfully applied on several
two- and three-objective knee-based test probléFhe. main disadvantages of this
approach are: (1) the obtained results heavily niema the quality of the weight sets
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found during the first step of the optimization gees and (2) the control of the extent
of the knee regions depends on the geometrical fafrthe optimal knee which may
mislead the DM.

4.3 Implicit DM’s preferences as nadir point

4.3.1 Motivations for nadir point estimation

Nadir point estimation is an age-old important taskmulti-objective optimization
(Deb and Miettinen 2008). Unlike the ideal pointigthcan be found by minimizing
each objective individually over the feasible sbapace, the nadir point is constructed
from worst objective values in the Pareto optimmaht. Hence, the Pareto optimality is
a necessary condition to the exact determinatiothefnadir criterion values which
makes the estimation of the nadir point a diffidqatk especially when the number of
objectives increases. Researchers have been tetiesfinding the nadir point since
the early seventies. However, there is still a latkmethods to estimate the nadir
objective vector with the desired accuracy for jpeois involving more than three
objectives. Hence, the question that arises heftgg estimating the nadir point?”.
The nadir point is reported to represent importafdrmation not only for the DM but
also for multi-objective optimization researchdrsfact, along with the ideal point, the
nadir point can be used to normalize the objectppace which helps multi-objective
methods to be applied more reliably to problemsoiwimg non commensurable
objective functions. It was reported that normalizthe objective space may help in
reducing the computational effort by solving thelpem faster (Miettinen et al. 2006).
Besides, the nadir point and the ideal point hélp DM to know the range of the
objective functions at the Pareto optimality staghich facilitates the task of
preference expression for him/her. Additionallye thadir point is a pre-requisite for
different interactive algorithms such as the GUBSShod (Buchanan 1997), the STEP
method (Benayoun et al. 1971) and the NIMBUS me{Miéttinen and Makela 2006).
Moreover, together with the ideal point, the naaint is crucial for visualizing the
optimal Pareto front which facilitates the compamisbetween solutions especially
when using visualization techniques for high dimemsproblems (e.g., parallel
coordinates plot, petal diagrams, bar charts,.dimplly, it was reported in (Deb and
Miettinen 2008) that the accurate estimation ofridir point for problems involving
more than three criteria is still an open reseanttéllenging topic till today. For all
these reasons, the nadir point could be consideseda form of implicit DM’s
preferences.

4.3.2 Existing methods for nadir point estimation
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In this subsection, we review the proposed appreE=dh the specialized literature to
estimate the nadir point in Multi-Objective LineRrogramming (MOLP) and Multi-

Objective Non-Linear Programming (MONLP). We enhatitis review by drawing a

classification scheme for these approaches.

¢ Exact methods

Benayoun et al. (1971) used the payoff table topdm the nadir objective values.
This involves the minimization of each objectivalividually over the search space.
Then, the payoff table is constructed in such a thay" row corresponds to values of
all other objective functions evaluated at the peihere the™ objective obtained its
minimum. After that, the maximum (worst) value b&§™ column is considered as an
estimate of th¢" component of the nadir objective vector. The nurawback of this
approach is that the payoff table may provide angrestimation (overestimation or
underestimation) of the nadir point when there mrenthan one solution having the
minimum value for a certain objective and differeatues for the others. Moreover,
this approach faces difficulties when the numbeblgkctives increases. Iserman and
Steuer (1988) have demonstrated the difficultiefrafing the nadir point when using
the payoff table method even for linear problemd aave emphasized the need of
using a better method. Hence, they suggested #xaet approaches to do this task
more reliably. The first uses a vector-maximum ctaeompute all Pareto optimal
extreme points. The second resolves a large puwal-program with non-linear
constraints. The third is a simplex-based appraael uses the fact that all Pareto
optimal extreme points are connected with pathseffitient edges. The authors
concluded that the third approach is the only deit@stic approach that can be used in
practice. However, they noticed that this appro@&hcomputationally expensive.
Erghott and Tenfelde-Podehl (2003) suggested aariighn to compute the nadir
objective values exactly in MOLP. This approachpractical only for bi- and tri-
objective problems. In fact, its application to Ehobjective MOP necessitates the
discovery of the whole efficient set of each subbbem optimizing i1-1) objectives.
Hence, the efficacy of such an approach decreasesatically with the increase of the
number of objectives to optimize. Alves and Co&@00a) proposed a new method to
determine the exact nadir criterion values overRheeto optimal set in MOLP. The
basic idea is to determine for each criterion, mssg the maximization case, the
region of the weight space associated with thesiefit solutions that have a value in
that criterion below the minimum already known (bgfault, the minimum in the
payoff table). If this region is empty, the nadialywe is found. Otherwise, a new
efficient solution is computed using a weight veqiecked from the delimited region
and a new iteration is performed. The method is &blfind the nadir values in MOLP
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problems with any number of objective functionsweéwer the authors argued that the
computational cost increases significantly with theerease of the number of
objectives. It is worth noting that all these exaetthods are restricted to the linear case
and thus they cannot handle non-linear problems.

¢ Heuristic methods

* Non-evolutionary approaches
Dessouky et al. (1986) suggested three heuristitiade for approximating the nadir
values. The authors argued that none of these ethitarantee the exact estimation of
the nadir point. Moreover, this work is restricted only linear problems where all
objectives and constraints are linear functionthefdecision variables. Korhonen et al.
(1997) proposed another heuristic method whichaised on reference directions. In
each iteration, a reference direction is chosen riteximallyminimizes the objective
under consideration. This process is iterated uhél considered objective reaches a
local minimum over the non-dominatsdt. Then, a cutting plane is inserted into the
problem and anothetirection, if one can be found, that maximally mies the
objective under consideration is employed. Althoutite methodis heuristic,
computational experience shows that much betstimation of the nadir criterion
values can be obtained thaith the use of the payoff table approach. Howetlas
approach is restricted for MOLP problems. Metev Mabsilev (2003)designed a
heuristic approach using reference points. Theiddaresults are better than those
obtained by using the payoff table. However, thpragch cannot be applied for the
non-linear case.

» Evolutionary approaches
Several evolutionary approaches for nadir objectaleies estimation were proposed in
the specialized literature. According to the stuwdyDeb and Miettinen (2008), these
approaches can be classified into three classes:

= Surface-to-nadir class
Since MOEAs are shown to be effective black-boxistdo approximate the whole
Pareto front of various MOPs, the simplest-mindée@ai comes from finding a
representative approximation of the optimal Pafedat and then the nadir point is
computed from the extreme solution values. Thisr@ggh was tested by Deb et al.
(2006b) using the NSGA-II. It faces essentially tdifficulties. On one hand, the
algorithm must find the extreme Pareto optimal piaccurately. Otherwise, it may
provide a wrong estimation of the nadir point. @a bther hand, MOEAs have shown
to not work well in discovering a well-distributsét of solutions on the whole Pareto
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optimal front for many-objective problems (Hughe302), thereby making MOEAs
difficult to apply in such scenario.

= Edge-to-nadir class
Since the nadir point is constructed from only exte points, it is unnecessary to get
intermediate Pareto optimal solutions. The ide#oidind only critical edges of the
Pareto surface. Critical edges are boundaries nssigle for the true estimation of the
nadir point. This approach was implemented in Szaaski and Wierzbicki (2003) by

solving (2") bi-objective sub-problems and the nadir pointient constructed from the

extreme non-dominated points from all obtained tsmhg. This approach seems to be
less computationally expensive than the surfaceattir approach. However, as
discussed by Deb et gR006b), this approach may present at least thiféeutties:

(1) the algorithm may not provide the true extresoutions if the solutions are not
well-distributed on the critical edges, (2) solvimgny bi-objective sub-problems may
provide the same boundary (or a part of it) repHgatehereby wasting computational
effort and (3) such an approach may require to fmdlti-modal Pareto optimal
solutions and may need to employ a lexicographicgaure to find the true extreme
Pareto optimal points.

= Extreme-point-to-nadir class

It is intuitive to say that finding intermediatelgtions on the critical edges does not
help to compute the nadir point since the estimatibthe nadir values requires only
the discovery of the true extreme Pareto optimahtpo Recent studies suggested
finding only these extreme points. Several receptiyposed methods fall into this
class. Deb et al. (2006b) proposed two modifiedioas of the NSGA-II that focus the
search on extreme solutions by modifying the ditersiterion. In the first approach,
termedWorst-Crowded NSGA-II (WC-NSGA-II), in every generation, the population
members in every non-dominated front of dikeare first sorted in an ascending order
based on each objective (assuming the minimizatese) and a rank equal to the
position of the solution in the sorted front isigeed. Hence, each individuiafrom the

front gets a rankR™ from the sorting based on te" objective. After assigning all
ranks based on each one of M@bjectives, the crowding of individuials equal to the
maximum of its assigned ranks, i.el, = max{ Rl,Riz,...,RM}. The authors reported

that this approach faces difficulties in maintagnie population diversity which may
not only slow down the search but also encourage pghemature convergence
phenomenon to occur. Additionally, this approachynpaovide spurious solutions
which are non-dominated with respect to the cureaiteme solutions but non Pareto

85



Chapter 4. Implicit Preference-based Evolutionary Multi—objective Optimization

optimal. This type of solutions may cause a wresgimation of the nadir point. The
second approach, termdgktremized-Crowded NSGA-II (EC-NSGA-II), represents a
slight modification of the first one by modifyindné rank assignment as follows:

R™= max{ R™ N -R™ +1}. In this way, solutions having best objective esland

solutions having worst ones are emphasized. Theoeutreported that the second
approach avoids the difficulties faced by the fiegiproach and provides better
performance. More recently, Deb et al. (2009a, BPGshhanced the extremized-
crowded approach by hybridizing it with a bi-levetal search based on the reference
point method. The upper-level optimization usegfarence point and a weight vector
as decision variables and optimizes the criticjgdive. The lower-level optimization
projects solutions onto the Pareto front by miningsan augmented ASF using the
reference point and the weight vector obtainedhm wipper-level optimization. The
authors reported that this approach presents be¢tdormance compared to the two
other extreme-point-to-nadir approaches. Anothefuwonary approach was proposed
by Alves and Costa (2009b). This approach usespalaton of weight vectors with
particular characteristics, which are then useda@smeters in the optimization of
weighted sums of the objective functions. The pafpoih evolves through a process of
selection, recombination and mutation. The algaritiis been tested on a number of
problems for which the nadir point is known and doresults where reported.
However, the application of such an approach igioésd to linear problems.

4.4 Conclusion

In this chapter, we have provided a review of thesmprominent works in
incorporating implicit DMs preferences in EMO. Aally, there are two forms of
implicit preferences. In one hand, we have kne@resgcorresponding to the portions
of the Pareto front composed with the worthiesusohs in terms of compromise
between the different conflicting objectives. Thedwth control and the sensitivity to
the objective functions’ shapes represent diffichiallenges for all discussed methods.
In the other hand, we have the nadir point whigiregents important information for
the DM since it is composed by the worst value&gacfrom the Pareto optimal front
and not from the whole search space. As discussedopsly, there are several
motivations to estimate such vector. One of thelmickvis directly related to our thesis
topic, is the assistance of the DMs in expresdnaiy preferences in terms of reference
points. The main challenges for the discussed ndstiiar nadir point estimation are:
(1) the accuracy of the estimation and (2) the aaatpnal efficiency.

86



Part ||
Contributions

87



Chapter 5

Incorporating Explicit DM’s Preferences in
Evolutionary Multi-objective Optimization

5.1 Introduction

In this chapter, we propose a new dominance reldtio preference-based EMO. This
dominance relation is calleddominanceand is inspired from the reference point
method and the classical Pareto dominance relgian Said et al. 2010). The
originality of the r-dominance is its ability toeate a strict partial order among Pareto-
equivalent (non-dominated) solutions. This fact esakur new proposed dominance
relation able de guide the search towards the RB&dh on DM'’s explicit preference
information expressed as a set of aspiration le{eds, a reference point). After
integrating the r-dominance in the NSGA-II, theiegty and the usefulness of the
modified algorithm (calledr*-NSGA-II') are assessed through two- to ten-objective test
problems a priori and interactively. Moreover, theoposed approach provides
competitive and better results when compared terotbcently proposed preference-
based EMO approaches. This chapter is structurefblisvs. The second section
details the proposed approach. The third sectiatew®ted to the experimental study.
The fourth section concludes this chapter.

5.2 Proposed approach

5.2.1 The r-dominance: definition and properties

The r-dominance (reference solution-based dominatedees its origins from the
hybridization between the Pareto dominance priecgnd the reference point method.
The key feature of this new dominance relatioroipriefer solutions that are closer to
the reference point (DM’s preferences) while presgr the order induced by the
Pareto dominance. In order to determine the clasemé a certain solution to the
reference point, an ASF is required. There exisioua ASFs in the MCDM literature
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(cf. (Miettinen 1999) for a review). We choose &euhe weighted Euclidean distance
employed by Deb et al. (2006a):

2
Dist(x, g) = \/ iwm(]f;q(x)f}?nmj o 0[0d] 3w, =1 (5.1)

m=1 m=1

where x is the considered solutiom, is the m" component of the user-specified
reference poing, f™® is the upper bound of tha™ objective values,f™ is the

lower bound of then™ objective values andi, is the weight associated with the"
objective. It should be noted that the ASF (5.1) ba used when solving non-convex
MOPs (Deb et al. 2006a). Our choice is justifiedhmy fact that the weighted Euclidean
distance gathers more information about the closerté a certain solution to the
reference point than the ASF proposed by Wierzbicki equation (2.7)) especially
when the number of objectives increases. For exangplen two solutionX = (10, 8,

9, 7) andY = (10, 2, 3, 4) for a four-objective minimization piem and assuming the
reference point (0, 0, 0, 0) and a uniform weigétter, when using the Wierzbicki
ASF, X andY are considered to be equivalent. However, whemgusie ASF (5.1), the
solutionY is closer to the fixed reference point thawhich is seen from the objectives
values of the two solutions. In the following, wieeythe definition of the r-dominance
relation and we study its main properties.

Definition 5.1: The r-dominance

Assuming a population of individual, a reference poirg and a weight vectow, a
solutionx is said to r-dominate a solutign(denotedx <, y) if one of the following
statements holds true:

1) xdominatey in the Pareto sense; or

2) x andy are Pareto-equivalent arigl(x, y, g) < -9, whered [l [0,1] and:

Dist(x, g) — Dist(y, g)

D(x,y,9) = , : 52

(.y.0) Dist, ., — Dist;, (5-2)
Distyax = Max,p Dist(z, g) (5.3)
Distnin = Min,p Dist(z, g) (5.4)

o is termedhe non-r-dominance threshold

The main idea behind the r-dominance relation isréate a strict partial order between
Pareto-equivalent solutions. Hence, the r-dominadmae the ability to differentiate
between non-dominated solutions in a partial manresed on the user-supplied
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aspiration level vector. This fact not only makbs t-dominance selection pressure
“strongef than the Pareto dominance one but also integtae$M’s preferences in
the selection process. In order to prove the stAattial order induced by the
r-dominance on the set of Pareto-equivalent salstiove study the properties of the
r-dominance relation as follows. L&t be a set containing only Pareto-equivalent
solutions and lefx, y,z} 0 A

Property 5.1: The r-dominance is an irreflexive relation on sle¢ of alternatives.

Proof: We would like to show thatx A, x «, x.

Dist(x, g) — Dist(x, 9)

D(x,x,0) = - :
( 9) Dist_ .. — Dist

=0. Thus, the condition'D(x,y,g)<-J" is not

max min

satisfied sincey1[0]1]. For this reasotf<, , A) is irreflexive.
Property 5.2: The r-dominance is an asymmetric relation on gtefalternatived\.
Proof: We would like to show that ik<, y theny £, x.

Dist(x,g) — Dist(y, q) <-5
Dist,., — Dist .. '

X<, Y = D(x,y,g):

Dist(y, g) — Dist(x, g) _
Dist,,, — Dist

D(y,x,9) = -D(x,y,9).

min

Since D(x,y,9) <-0, then D(y,Xx,g) >9J . Hence, if x<, y then y £, X. For this
reason(=<, , A) is asymmetric.

Property 5.3: The r-dominance is a transitive relation on theoalternatives\.

Proof: We would like to show that ik<, y andy <, z, thanx=<, z

D(xzg)= Dist(x, g) — Dist(z, g)
' Dist,, — Dist,,..

_ Dist(x g) —Dist(y, g) + Dist(y,g) —Dist(z g)
D(x29)= Dist,.«—Dist,in

D(x2g)= Dist(x g) - Dist(y,g) , Dist(y,g) - Dist(z g)
Dist, .~ Distin Dist,.x— Distin

D(xz9)=D(x,y,9) +D(Y,z09)

Given that x<, y and y=<, z, we have D(x,y,g)<-0 and D(y,zg)<-0.

ConsequentlyD(xzg) <-9 (i.e., X<, z). For this reasorfx, , A) is transitive.
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Property 5.4: The r-dominance defines a strict partial ordettanset of alternatives.

Proof: Since the r-dominance is an irreflexive, asymmeand transitive relation on
the set of alternatives, then it defines a strict partial order An

One of the main issues identified by Coello (20@@en discussing preference-based
MOEAs is the preservation of the Pareto dominahtance, it is interesting to study
the compatibility and the completeness of the r-tamce with the Pareto dominance
relation. Thus, we first define these two termslidwang the study of Zitzler et al.
(2003), the compatibility and the completeness \hilh Pareto dominance are defined
as follows:

Definition 5.2: Compatibility and completeness withthe Pareto dominance
Let > be an arbitrary binary relation where the expmssi> y means that solutiox
is preferred to solutioly. The relation> is said to be compatible with the Pareto

dominance if and only if:

X>Yy = X<V (.5

The relation> is said to be complete with the Pareto dominahard only if:

X<y = X>y (b.6

Now, we can announce the following theorem.

Theorem 5.1: Given a population of individualB, the r-dominance is (1gomplete
with the Pareto dominance relation and ¢@npatiblewith the non Pareto dominance
relation.

Proof:
1) From the r-dominance definition,xfPareto-dominateg (x< y) than automatically
x r-dominatesy (x <, y). Consequently, the r-dominance is said to be t¢ei@p

with the Pareto dominance.

2) From the r-dominance definition, ¥ r-dominatesy (x <, y) then one of the two
following assumptions may hold: (&)Pareto-dominateg(x<y) or (b)x andy are
Pareto-equivalent. Hence, ¥<, y then y£ x. Consequently, the r-dominance is
said to be compatible with the non Pareto dominaeleion.

From the above mentioned theorem, the r-dominaesgects the issue announced by

Coello (2000). The r-dominance is said toR#eto dominance complignte., it does

not contradict the order induced by the Pareto damge. The conclusion to draw from
this theorem is that the r-dominance encapsulatdss preferences expressed as a
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Figure 5.1 The non-r-dominated sorting é= 0.3).

reference point whilg@reservingthe Pareto dominance which makes the r-dominance
able to focus on Pareto optimal solutions that hegat most the DM’s preferences.

5.2.2 The non-r-dominated sorting

Inspired from the non-dominated sorting algoritheediin NSGA-II (Deb et al. 2002a),
we propose to modify this sorting algorithm by ditbsng the Pareto dominance
relation by the r-dominance relation. We redadittthe original non-dominated sorting
algorithm classifies a population of individualsarseveral fronts. First, non-dominated
solutions are assigned a rank of one. Then, theithdhls belonging to the first front
are discarded temporarily and non-dominated saiatipom the rest of the truncated
population are assigned a rank of two, and so bis process is performed until the
classification of all population individuals. Theea behind the replacement of Pareto
dominance by the r-dominance is to classify a pajpi of solutions based on DM’s
preferences (expressed as a reference point) ywhigerving the order induced by
Pareto dominance. Figure 5.1 illustrates an examipbbassification of a population of
16 individuals using the r-dominance principle, tie¢éerence point (0.2, 0.4) shown
with afilled black starandthe ZDT1 problem(cf. appendixA). For eachpopulation
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Table 5.1 Effect of varying the parametes.

J value 0 02| 04| 06| 08 1
Number of classes | 100 | 6 4 3 2 1

individual (designed by a filled black circle), weark the non Pareto domination rank
on the left of the individual and the non r-domioat rank on the right of the
individual. From this figure, it is clear that tikareto dominance selection pressure is
weaker than the r-dominance one. For example, ifake a look around the first non-
dominated front composed by solutiors 8, C, D), we remark that this front is
subdivided into two different classes when using ribn-r-dominated sorting. The two
classes areC1 = {B, C} containing individuals that are closer to theereince point and
C2 = {A, D} containing solutions that are farther from théerence point. We conclude
that solutionA andD are each r-dominated by one of the solutBrsdC. Hence, the
selection pressure of the r-dominance relationtnsnger than the Pareto dominance
one. This selection pressure is guided by DM’sgregices and controlled with the non
r-dominance thresholdl (cf. section 5.2.3). Besides, the same phenomenobserved
for the second and third non-dominated fronts. €lasservations prove what has been
demonstrated theoretically in section 5.2.1.

5.2.3 Effect of varying the non-r-dominance threshid

In this subsection, we study the effect of varyihg non-r-dominance threshold value.
When observing the definition of the r-dominances vemark that this relation is
equivalent to Pareto dominance in the case wherel. Besides, whea = 0, the
r-dominance induces a total order between-equidistanPareto-equivalent solutions
from the reference point. In other words, wlden 0, we prefer solutions that are closer
to the reference point between such Pareto-equivat@utions. Table 5.1 illustrates the
number of classes obtained when performing a ndorminated sorting on a population
of 100 Pareto-equivalent (non-equidistant) indialduusing different values. We
used the ZDT1 problem for this experimentation. féference point is set to (0.4, 0.6).
From table 5.1, we notice that the total numbewlfained classes increases when
decreasing the non-r-dominance threshblifom 1 to 0, and vice versa. The above
mentioned remarks concernig= 1 andé = 0 are also observed from this table.
Consequently, we conclude that thparameter enables the DM to control the selection
pressure of the r-dominance relation.

5.2.4 The r-NSGA-II procedure

In this subsection, we propose a variant of the N$IGwhich incorporates the
r-dominance concept. We call this variaaterence solution-based NSGAahd we

93



Chapter 5. Incorporating Explicit DM’s Preferences in Evolutionary Multi—objective Optimization

denote it ag-NSGA-IL This latter is based on the non-r-dominated sgrand on

crowding distance assignment (cf. figure 2.9). Triteractivescenario of r-NSGA-II is

as follows:

= Step 1: Ask the DM to provide the population size, the giag criterion, the
reference solution, the weight vector anddhalue;

= Step 2:Run the r-NSGA-II procedure until the stoppingeibn is met;

= Step 3: Supply the DM with the set of obtained preferretusons. If the DM is
satisfied with the provided set of solutions th&spshe optimization process, else
ask the DM if he/she would like to update the refee solution, the weight vector,
theo value and/or the stopping criterion then returStep 2

It should be noted thaBtep 2 is equivalent to running the NSGA-II using the
r-dominance instead of the Pareto dominance. iinfgortant to note that r-NSGA-II
could be extended to guide the search towards pheiltiser-supplied reference points
and hence it explores multiple ROIs. This fact ¢hiaved by sorting the population
based on each user-supplied reference solutioadh generation. After that, the rank
of the individual is equal to theninimumof its assigned ranks. This extension is
interesting when the DM is not sure about his/hefggences and he/she would like to
explore several ROIs.

5.2.5 Managing the non-r-dominance threshold

Driving the search towards a certain region ofgharch space at the beginning of the
optimization process may cause a lack of solutiorerdity since the population
individuals will have similar phenotypes. This fdtas been treated in (Deb et al.
2006a, Allmendinger et al. 2008; Wickramasinghe &in2D08) by using some clearing
mechanisms. These mechanisms ensure that similatioss are grouped and a
randomly picked solution from each group is retdindll the rest of the group
members are discouraged to remain in the raceeokttolution process. In order to
avoid such additional computations and keep pojativersity, we propose to
manage the non-r-dominance threshblbaptively during the evolutionary process. It
is important to note that the idea of adaptive nganzent of MOEA parameters is not
new (Tan et al. 2001). Assumimdp_gento be the number of generations indicated by
the DM as a stopping criterion of a certain evalodry cycle,gento be the current
generation index of the current evolutionary cya@ad o userto be thes value
provided by the DM, we suggest managing dhgarameter as shown in figure 5.2. At
the initialization stagegen = 0), r-NSGA-Il sorts the population based on Raret
dominance (sincé = 1). From the first generation onwards, shealue is truncated by
a quantity equal ta-((-o_use)/nb_gen in each generation. In this manner, in the
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Figure 5.2 Managing the parameteid.

last generation, thé value is equal to thé value provided by the DM (i.ed, use).
The aim of such adaptive management of éghparameter is to guide the search
gradually during the evolution process towards Rl which avoids the premature
convergence phenomenon to occur.

5.3 Experimental study

This section is devoted to demonstrate simulatesults on two- to ten-objective test
problems using the r-NSGA-II. All experiments arada with MATLAB softwaré,
Firstly, we show some interesting a priori simwatresults. Secondly, we demonstrate
experimentally the positive effect of managing then-r-dominance threshold
adaptively. Then, we describe an interactive séendn the last subsection, the
r-dominance is compared to three other recentlypgsed preference-based EMO
approaches: (1) the g-dominance (Molina et al. 209 PBEA (Thiele et al. 2009)
and (3) R-NSGA-II (Deb et al. 2006a). For each pgsblem, we show the mean of the
obtained results over 20 independent simulatiors.rim all simulations, we use the
SBX operator with a distribution index of 10 andlypmmial mutation with a
distribution index of 20 (Deb and Agrawal 1995).eTlerossover and mutation
probabilities are set to 0.9 andnl{wheren is the number of decision variables)

! The used version is MATLAB 7.4tp://www.mathworks.coin
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respectively. For all bi-objective experiments, use a population of 50 individuals
unless otherwise specified.

5.3.1 A priori simulation results

First, we consider the bi-objective 30-variable $e&ra test problem (Fonseca 1995).
This problem has a concave Pareto optimal fromguféi 5.3 shows the effect of
different 6 values on the distribution of the obtained sohsiafter performing 500
generations (i.e., 25000 Function Evaluations (F&iege r-NSGA-II evaluates 50
offspring individuals per generation). We use thé&erence point (0.6, 0.5) designed
with filled star and the weight vector (0.5, 0.6pr ¢ = 0, all population individuals
have converged to the closest Pareto optimal goitihe reference solution. In figure
5.3, solutions with othes values are shown with an offset to the true Papptomal
front for ease of visualization. It is obvious thhe range of the obtained solutions
increases with the increase of the param&tdihus, if the DM would like to obtain a
large neighborhood of solutions near the desirgibre a large value of should be
chosen. We conclude that the DM could control theead of the obtained ROI by
means of the parametér Foro = 1, the r-NSGA-II provides an approximation of the
whole Pareto front. This observation emphasizesctaim discussed in section 5.2.3
(i.e., the r-dominance is equivalent to the Pagetminance when = 1).

Next, we investigate the effect of changing theghiewvector of the weighted Euclidean
distance on the distribution of the obtained preigrsolutions. We use the same
problem as previously. Figure 5.4 shows the obths®utions after 500 generations
(i.e., 25000 FEs) with the three following weigtgctors: (0.5, 0.5), (0.25, 0.75) and
(0.75, 0.25). The reference point and ¢hparameter are settled to (0.6, 0.5) and 0.4
respectively. The solutions obtained for each orfeth® weight vectors are
superimposed on another in figure 5.4 for easeisafalization. From this figure, we
remark that modifying the weight vector introdu@bias on the distribution of the
ROI solutions. For the first weight vector (0.5%5)).there is no bias among the obtained
solutions. As expected for the second weight ve¢mR5, 0.75), there is more
emphasis onf,, thereby obtaining solutions that optimiZg more thanf,. For the

third weight vector (0.75, 0.25), the opposite pimaenon is observed. Thus, the ASF
weights express second level of preferencase., if the DM would like to bias some

objectives more than others, a biased distributibnear user-supplied reference point
solutions could be obtained by r-NSGA-II. In allbsequent simulations, we use a
uniform weight vector but the user can modify théstor freely if he/she is interested
to bias some objectives over others.
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Figure 5.5 Handling three reference points on theritobjective
DTLZ7 problem.

Now, we assess the ability of our algorithm to skedor multiple ROIs near multiple
reference points on the tri-objective DTLZ7 probléie recall that this problem has
four disjoint Pareto optimal regions (cf. sectiod.2). We use three reference points:
(1) a feasible Pareto optimal poi0.1650, 0.7100, 5.6780), (2) a feasible non Pareto
optimal pointB(0.75, 0.15, 6.00) and (3) an infeasible pali®.10, 0.10, 5.00). The
population size is set to 60 and the paraméter set to 0.2. Figure 5.5 shows the
preferred obtained solutions after 500 generatipres, 30000 FEs). Through this
figure, we notice that our proposed approach cdiddeasily extended to handle
multiple reference points and thus it discoversiotsr ROIs. This is an important
feature when the DM is not sure about his/her peefees and he/she would like to
explore several ROIs. In addition, it should beadahat the r-NSGA-II insensitiveto
the feasibility of the reference point.

In the following, we solve 19-variable 10-objectid@LZ2 problem with the reference
point: (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.38500.25, 0.45). Thé parameter is set
to 0.2. We use a population of 200 individuals. urgg 5.6 shows the parallel
coordinates plot of the obtained preferred soliafter performing 500 generations
(i.,e., 100000 FEs). The higher number of objectiveakes the problem harder.
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Figure 5.6 The ROI for the 10-objective DTLZ2.

Therefore, the population size and the number nég#ions are increased. From figure
5.6, we remark that, although the objective valieesn [0,1], most obtained solutions
are concentrated near the reference point desigitaca dashed bold grey line which

would be the region closest to the chosen referpocd. When computin(‘iilf1 fi2 for

all obtained solutions, the values are found touighin [1.131, 1.324], thereby
meaning that all solutions are near the true Paegfion (since Pareto optimal solutions

of the 10-objective DTLZ2 satisElfl f.2=1).

5.3.2 Adaptive management effect

In order to show the positive effect of managing drparameter value adaptively, we
compared two versions of our algorithm: (1) a fiverrsion of r-NSGA-Il without
adaptive management, denoted r-NSG#\-Where the value afis constant during the
overall run and (2) a second version of r-NSGA-ithvadaptive management, denoted
r-NSGA-lIa (i.e., the original r-NSGA-II version described section 5.2), where the
value of¢ is updated during the run according to the stsatsgscribed by figure 5.2.
For this experiment, we use the 30-variable bi-ctibje ZDT3 test problem. Its Pareto
front consists of several non-contiguous convexsparhe reference point and the
weight vector are set to (0.4, 0.0) and (0.5, @Spectively. Th& value is settled to
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Figure 5.7 Showing the positive effect of the adape management
of the parameterd on ZDT3.

0.2. Figure 5.7 demonstrates the obtained resiiéis @erforming 500 generations (i.e.,
25000 FEs) for the two versions. From this figune remark that r-NSGA-)} is
unable to reach the Pareto optimal front. HoweveMSGA-II4 provides solutions
lying on the optimal Pareto front. As discussed/fangsly in section 5.2.5, focusing the
search towards a certain region of the search sgate beginning of the evolutionary
process may reduce the diversity and hence premxgtitie population individuals to
progress towards the Pareto optimal front. Thisnph@non explains the obtained
results by r-NSGA-ll,. The conclusion to draw from this experimentatisrihat the
adaptive management of tldeparameter is a bonus feature for r-NSGA-II since i
permits reaching the Pareto optimal front whileugsinog on the desired ROI.

5.3.3 Interactive scenario

In this subsection, we describe an interactive gtithe r-NSGA-II algorithm on the
ZDT1 problem. The overall interactive scenario ligstrated by figure 5.8 and it is
composed of four cycles. We caljclea run of the r-NSGA-II algorithm for a certain
number of generations freely fixed by the DM. #ysthe DM performs a run of 50
generations (first cycle) withoudreferencegi.e.,é = 1) in orderto havean ideaabout
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Figure 5.8 Interactive scenario on ZDT1.

the objective ranges. The solutions designed withngles are obtained. These
solutions are well diversified as shown in figuré.5After that, the DM puts the
reference point t&\(0.6, 1.0) and performs a run of 100 generatioesdisd cycle) with

0 = 0.25. Near user-supplied reference point solgtiare obtained (designed with
circles). We suppose now that the DM is dissatisfiehus, he/she resets the reference
point to B(0.2, 0.7) and he/she reruns the search proces$5forgenerations (third
cycle) witho = 0.2 and a bias expressed by using a non unifeeighting coefficient
vector (0.75, 0.25). Pareto optimal solutions dravith diamonds are obtained near the
reference solution. These solutions show a biashasping the minimization of;
more tharf,. The DM is always dissatisfied. He/She performmaraof 100 generations
(fourth cycle) with the reference poiti(0.4, 0.4), a uniform weight vector and the
sameo value. The solutions shown with the symbol “+” atgained. They belong to
the Pareto optimal front while matching DM’s prefieces. It is important to notice
that, after performing the third cycle, the r-NS@Ayets Pareto optimal solutions in the
vicinity of the reference poir8(0.2, 0.7). Nevertheless, the DM is not interesteth
such solutions. Hence, he/she resets the refeqmrine to C(0.4, 0.4) and performs a
fourth cycle. The Pareto optimal solutions seerslitte along the Pareto optimal front
towards the chosen reference point. We conclude thathe r-NSGA-II solutions can
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move along the Pareto front based on DM’s prefererand (2) the reference point
plays the role of arhagnet to the candidate solutions. It is worth notingtseveral
parameters were varied from one cycle to anothst o demonstrate that this is
possible but it is not necessary. Hence, the DM roadify several parameters after
each performed evolutionary cycle which makes hanfree when specifying his/her
preferences interactively. Consequently, the pdmrandividuals seem towalk’ in
the objective space according to these preferentes fact develops the DM’s
acquired knowledge about the exploration of thectespace.

5.3.4 Comparative experiments

In this subsection, we conduct three sets of erpanrts. In the first set, we confront our
approach to the g-dominance of Molina et al. (2009}he second set, we compare the
r-NSGA-Il to PBEA of Thiele et al. (2009). Finallyn the third set, we make a
comparison between r-NSGA-II and R-NSGA-II of Dabaé (2006a). It should be
noted that (Molina et al. 2009) and (Thiele et24109) are the most recent reference
point-based EMO methodologies cited in table 3fls@ction 3.3).

¢ r-dominance versus g-dominance

In this subsection, we compare the r-dominancetioelato the recently proposed
g-dominance relation on two- to ten-objective optamion problems. Differently
speaking, we compare the r-NSGA-Il to the g-NSGAte., the NSGA-II version
incorporating the g-dominance (Molina et al. 20090r fairness of comparison, we
use two instances of r-NSGA-II with twi values: (1) a first instance with= 0.3
(denoted r-NSGA-II') and (2) a second instance with 0.1 (denoted r-NSGA-II").
This comparison is made by: (1) visualizing thetplof the obtained solutions and (2)
using the additive binarytindicator as a performance indicator (cf. sec2dn?2).

Firstly, we consider the 30-variable ZDT1 probleWe perform two runs of 500
generations each one. For the first run, we useasilfle reference point which is far
from the Pareto front (0.3, 0.8). For the second we use a feasible reference point
which is very near to the Pareto front (0.5, ORyure 5.9 shows the obtained preferred
solutions of the first run (i.e., for the referenpeint (0.3, 0.8)). We observe that
g-NSGA-Il and r-NSGA-I1 provide similar results. The two ROIs are very &mi
viewpoint convergence and spread. However, theadpot the ROI of r-NSGA-Tlis

so small since& = 0.1 in this instance. Table 5.2 presents thet@edbinary epsilon
indicator values for ZDT1 problem (we suppose tBas the g-NSGA-II solution set,
R is the r-NSGA-I1 solution set andR” is the r-NSGA-IT one). From this table, we
remark that for the reference point (0.3, 0.8):
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Figure 5.9 Preferred solutions on ZDT1 with the reérence point
(0.3, 0.8): (a) g-NSGA-II, (b) r-NSGA-II" and (c) rNSGA-II".
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Table 5.2 Binary e-indicator values for ZDT1.

Reference point (0.3,0.8) (0.5,0.3)

((R’, G), I(G, R)) | (0.0495, 0.0800) | (-0.0176, 0.1093)

((R", G), I(G, R")) | (0.1433,0.0090) | (-0.0117, 0.0389)

» (R, G)>0, I(G, R)>0 and IR, G)<I(G, R). The seR is said to be better thaa in
a weaker sense,

» |(G,R)>0and IR, G)>0 and IG, R")< I(R’, G). The se(G is said to be better than
R” in a weaker sense.

This result may be explained by the fact that tiead of the ROI of r-NSGA-llis
smaller than the spread of g-NSGA-II ROI sincetihie ROIs have approximately the
same convergence rate. Hence, the ROI having greptead is better viewpoint the
e-indicator value.

Figure 5.10(a-c) illustrates the obtained prefeellitions of the second run (i.e., for
the reference point (0.5, 0.3)). We observe from piots that the two r-NSGA-II
instances perform better than g-NSGA-Il viewpoioheergence and diversity. The
e-indicator values emphasize these observationg:sinc

» |(R,G)<0andIG, R)>0, and
» |(R’, G) <0 and IG, R")>0.

The conclusion to draw from all these observatisnthat the g-dominance performs
worse when the reference point very closeto the Pareto optimal front. This
phenomenon could be explained by the fact thatgtdeminance excludes solutions
fulfilling partially the goals. Hence, the solutions being Pareto-elgntao the
reference point (which are important in the caseretthe reference point is near the
Pareto front) are discouraged to remain in the.r&tmvever, the r-dominance is
insensitive to such a problem since it preserves #ind of solutions. This
characteristic seems to be the main inconveniehtteeqy-dominance.

It should be noted here that the DM can controlgbeead of the obtained ROI when
using r-NSGA-II. However, this is not possible whasing g-NSGA-II. This fact
represents another advantage of the r-dominancetbgey-dominance. Additionally,
the g-dominance is very dependent on the positidhereference point in the search
space. For example, if we use one of the referpoags (0, 0) or (1, 1) when solving
ZDT1 problem, g-NSGA-II will provide an approximati of the whole Pareto front
instead of a bounded ROI. More generally, whengiaineference poink(y) such that
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Figure 5.10 Preferred solutions on ZDT1 with the réerence point
(0.5, 0.3): (a) g-NSGA-II, (b) r-NSGA-II" and (c) rNSGA-II".
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Table 5.3 Binarye-indicator values for tri-objective DTLZ2.

Reference point (0.4,0.8,0.8) (0.3,0.5,0.8)

((R’, G), (G, R)) | (-0.0975,0.1570) | (-0.0218, 0.0696)

((R", G), I(G, R")) | (-0.0492,0.1314) | (-0.0319, 0.0578)

“x<0 and y<0” or “x=1 and y= I, g-NSGA-II approximates the whole Pareto

front of ZDT1 problem instead of a bounded ROI.sTsihortcoming is independent of
the used multi-criteria problem and can be gernegdlto any MOP. This fact is due to
the g-dominance principle which prefers solutioatistying all aspiration levels and

solutions fulfilling none of the aspiration levatser solutions satisfying some of the
aspiration levels. This last mentioned defect makesg-dominance inefficient when

used interactively since it can mislead the DM. &tiwer, we note that the r-dominance
is insensitive to the reference point position waigakes it superior to the g-dominance
when facing such situations.

In the following, we make a comparison between tthe r-NSGA-II instances and
g-NSGA-II on the 12-variable tri-objective DTLZ2steproblem. We recall that this
problem has a non-convex three-dimensional Pangtinal region. We perform two
simulation runs: (1) a first run with a feasiblderence point which is far from the
Pareto front (0.4, 0.8, 0.8) and (2) a second rith avfeasible reference point which is
very near to the Pareto front (0.3, 0.5, 0.8). Pogulation size and the number of
generations are set to 50 and 500 respectivelyk&litte bi-objective case, we observe
from figures 5.11(a-c) and 5.12(a-c) that the tng&tances of r-NSGA-II perform better
than g-NSGA-II in the tri-objective case for theotwsed reference points. This claim is
emphasized by the binagyindicator values presented in table 5.3 (assurtliegsame
notation as table 5.2). It should be noted thatstime remark, discussed for the bi-
objective case with ZDT1 test problem, remains dradince the reference point
(0.3, 0.5, 0.8) is very close to the Pareto optimegjion. This disadvantage of the
g-dominance relation is dangerous when the DM riines algorithm interactively
especially when he/she puts a reference point theaPareto front. It should be noted
that the probability of the eventétting a reference point near the Pareto ffont
increases during the interactive run of the algarmitsince the search is guided towards
the optimal region progressively. This phenomenakes the g-dominance inefficient
when used in an interactive way.

Next, we solve the 10-objective DTLZ2 problem usm@NSGA-Il and compare the
obtained approximation to r-NSGA-l&nd r-NSGA-IT ones. The population size and
the number of generatiomsesetto 200 and500respectivelyThe usedreferenceoint
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Figure 5.11 Preferred solutions on tri-objective DTZ2 with the reference point
(0.4, 0.8, 0.8): (a) g-NSGA-II, (b) r-NSGA-II" and(c) r-NSGA-II".
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Figure 5.12 Preferred solutions on tri-objective DTZ2 with the reference point
(0.3, 0.5, 0.8): (a) g-NSGA-II, (b) r-NSGA-II' and(c) r-NSGA-II".
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Table 5.4 Binarye-indicator values for 10-objective DTLZ2.

Reference point (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.35, 0.3%5,,00.45)

((R’, G), I(G, R)) | (0.0242, 1.043)

((R", G), I(G, R")) | (0.0544, 1.0428)

is (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.35, 0B85, 0.45). From figure 5.13(a-c), we
remark that the performance of g-NSGA-II degradesrétically with the increase of

the number of objectives to optimize. In order &didate our claim, we compute the

quantity Y2 f,” for all obtained solutions of each algorithm. Traues are found to

lie within [6.6884, 11.5308] for g-NSGA-II, withifiL.131, 1.324] for r-NSGA-lland
within [1.127, 1.884] for r-NSGA-Il Unlike the two instances of r-NSGA-II,

g-NSGA-II provides solutions that are so far frame true Pareto region (since Pareto

optimal solutions of DTLZ2 satis@ilfl fi2 =1). This phenomenon could be explained

by the fact that the probability of obtaining saduis fulfilling all the goals (eventually
none of the goals) decreases largely when the gmoblimension increases. Table 5.4
demonstrates the-indicator values for this problem (assuming thensanotation as
table 5.3). The obtained values show the performaria-NSGA-II and r-NSGA-IT
over g-NSGA-Il. We conclude that the r-dominanceldde not only a way to tackle
many-objectiveoptimization problems (i.e., MOPs wit > 3 (Hughes 2005; L6pez
Jaimes et al. 2009)) but also a tool to searctRfors in such type of problems. In fact,
as discussed by Farina and Amato (2004), the Pdogtinance could be unsatisfactory
in the many-criteria decision making task due twm treasons: (1) the number of
improved or equal objective values is not taken @mtcount and (2) the (normalized)
size of improvements is not considered. The r-damie could be a way to overcome
the two aforementioned defects since the used ASBpsulategmplicitly the number
of improvements and the size of these improvemeéliiese observations emphasize
the obtained results on the 10-objective DTLZ2 peob

¢ 1-NSGA-II versus PBEA

PBEA and r-NSGA-II are similar in the fact that yhequire reference point(s) and a
parameter controlling the spread of the obtained(§Gupplied by the DM. However,
their internal behaviors are different since r-NSGAs based on non-r-dominated
sorting and crowding distance assignment and nohaicator based selection. In this
subsection, we make a comparison between r-NSGanld PBEA on two test
problems. We use the same experimental designmiessen (Thiele et al. 2009) and
describedn table 5.5We note that the comparativeexperimentsvith PBEA aredone
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Figure 5.13 Preferred solutions on 10-objective DTE2 with the reference
point (0.30, 0.30, 0.30, 0.10, 0.30, 0.55, 0.3850.0.25, 0.45): (a) g-NSGA-II,
(b) r-NSGA-II" and (c) r-NSGA-II".
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Figure 5.14 r-NSGA-Il versus PBEA on ZDT1 with thereference
point (0.6, 1.0).

Table 5.5 Parameter settings: r-NSGA-II versus PBEA

Parameters r-NSGA-II PBEA
Population size 20 20
Number of 500 for ZDT1 500 for ZDT1
generations 100 for ZDT3 100 for ZDT3
Fitness scaling - 0.05
factor ()

under the framework of PISA (Bleuler et al. 200B)e first experiment is made with
the bi-objective ZDT1 problem using the referenceinp (0.6, 1.0). For both
algorithms, we use the same spread, .85 O0pgea=01. The obtained ROI
approximations of the two algorithms are shown lgure 5.15(a-c). The two
approximations have similar convergence rates. Mewealthough we use the same
spread value (termed specificity in (Thiele et 2009)) for the two algorithms, we
observe that r-NSGA-Il approximation is more coricaied aroundthe projected
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reference poinshown by a black circle. The projected refereno@tpcorresponds to
the solution having the smallest ASF value among/&Bpproximation members. We
conclude that the mechanisms designed in each bitee algorithms to control the
spread of the ROI are different and have diffedifdcts. It is worth noting that the
spread control is easier when using r-NSGA-II thath the use of PBEA. In fact, the
upper/lower bounds of the spread paraméteirr- NSGA-II are known since [1[0]1]

(cf. definition 5.1). Contrariwise, the upper/lowssunds ofdpge, are unknown which

represents a great difficulty to the DM to conttbe ROI spread especially when
solving real world MOPs with PBEA.

The second experiment is performed with the bi-cthje ZDT3 test problem. We use
three reference points: (0.7, 2.5), (0.4, 2.7) &@, 2.6). Figure 5.15 shows the

approximations obtained by PBEAJ{zz,= 0.03 for the first reference point,
Opgea= 0.02 for the second one adgdg,= 0.01 for the third one (Thiele et al. 2009))

and those obtained by r-NSGA-H € 0.2 for the three reference points). We observe,
from this figure, that for each reference point $®A-Il produces a bounded ROI in
the vicinity of the projected reference point desd by a black circle. Nevertheless,
for each reference point, PBEA provides a biassttidution of solutions concentrated
in the proximity of the projected reference poite remark that the larger the distance
between the reference point and PBEA approximaisprthe smaller the effect of
concentring the search around the projection ofeference point is. This phenomenon
can be easily seen from figure 5.15(c) whereapi@misticreference point (0.3, 2.6) is
used. Additionally, these observations were hidgtibg in the work of Thielet al.
(2009). This fact represents the main inconveniafd@BEA since the probability of
the event'setting an optimistic reference pointhcreases during the interactive run of
PBEA, since the population is converging progresdgitowards the Pareto optimal
front, which can mislead the DM when specifying/nés preferences. However, the
r-NSGA-II is insensitive to such problem. In sumgare can resume the advantages
of r-NSGA-II over PBEA as follows: (1) the controff the spread of the ROI in
r-NSGA-Il is easy in contrast to PBEA where thisitol is very rough, (2) contrarily
to PBEA, r-NSGA-Il is independent of the positiohtlee reference point in the search
space and (3) finally, the last point which has beén mentioned previously is the
sensitivity of IBEA, and eventually PBEA, to thénkess scaling factar which depends
on the used quality indicator and on the MOP urd&isideration (Zitzler and Kinzli
2004). Thus, setting an appropriate value teepresents a great difficulty to the DM
when solving real world multi-criteria problems.
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Figure 5.15 r-NSGA-II versus PBEA on ZDT3 with thereference points:
(@) (0.7, 2.5), (b) (0.4, 2.7) and (c) (0.3, 2.6).
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¢ -NSGA-II versus R-NSGA-II

In this subsection, we compare r-NSGA-Il to R-NSGAapproach of Deb et al.
(2006). Contrary to r-NSGA-Il where preference-lthselection is based on the
r-dominance relation, R-NSGA-II preference-basddci®n is made by modifying the
crowding distance assignment strategy by emphagsoiutions situated near reference
points to survive for the next generations. Addiéthy, ans-clearing procedure is used
to control the spread of the obtained ROIs by i&stg the distance in objective space
between two neighboring solutions in the same ftorthe greater than a user-defined
small quantity (cf. section 3.2.4). R-NSGA-Il has demonstratedabbility to guide the
search towards multiple reference points; howevesret were difficulties when
handling only one unique reference point. For tieigson, we make an experiment
using a single reference point and compare ther@mtaesults of the two algorithms:
(1) r-NSGA-II and (2) R-NSGA-Il. We use the 30-ale bi-objective test problem
ZDT1 and the reference point (0.2, 0.2). The papdasize and the number of
generations are set to 100 and 500 respectively RFNSGA-II clearing parameter and
the r-NSGA-Ilo threshold are settled, by trial and error, to 0.80d 0.1 respectively in
order to obtain similar ROI spreads for both altjons. Figure 5.16 shows the obtained
results for the two different preference-based EM@&thodologies. We remark that
r-NSGA-II ROI lies on the optimal Pareto front. Hever, R-NSGA-II is unable to
reach the Pareto optimal front. This phenomenon begxplicated by two reasons.
Firstly, R-NSGA-II guides the search towards thegk reference point at the
beginning of the search process which reduces dpelation diversity. The diversity
reduction slows down the search process and magecaupremature convergence
which makes the MOEA unable to reach the Paretonaptiront. The used-clearing
procedure seems to be unable to keep the populdittensity sufficiently. In fact, Deb
et al. (2006a) have mentioned this problem and fsanggested the use of extreme
points as additional reference points in order eéegk population diversity and avoid
getting stuck in local optima. The conclusion tawlris that R-NSGA-1I must handle
more than one reference point to achieve satigfaawsults. Secondly, contrary to
R-NSGA-II, -NSGA-II does not concentrate the skarca certain region of the search
space at an early stage of the evolutionary prodastact, the population is guided
towards the reference poigtadually during the MOEA execution by means of the
adaptive management of the non-r-dominance threshol@f. section 5.2.5) which
preserves population diversity and allows the cogemce towards the Pareto optimal
front. It is important to note that, unlike R-NSGKthe crowding distance assignment
used in the original NSGA-II is kept in r-NSGA-Ilhich emphasizes even more the
population diversity. In summary, the main advaatagf r-NSGA-II over R-NSGA-II
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Figure 5.16 r-NSGA-Il versus R-NSGA-Il on ZDT1 with the
reference point (0.2, 0.2).

are: (1) the ability of -NSGA-II to handle a ungveference point where R-NSGA-II
faces difficulties in such situation and (2) theirass of the ROI spread control when
using r-NSGA-II since the upper/lower bounds of tlee-r-dominance thresholdare
known (0[0[0]], cf. definition 5.1) which is not the case for FBBGEA-II since setting

an appropriate-clearing factor is not a trivial task when solvirggl world problems.
5.4 Conclusion

In this chapter, we have suggested a new domingatagon inspired from the Pareto
dominance concept and the reference point apprd&blen incorporated in NSGA-II,
the r-dominance has shown its ability to guide ¢karch based on DM’s preferences
towards the preferred parts of the Pareto optimeadtfon a reasonable number of FEs.
The spread of the obtained ROI could be easilyrotatl by the non-r-dominance
thresholds. Bias on certain objectives could be achieved &nyimg the ASF weight
vector. The r-NSGA-II has also the ability to handhultiple reference points. The
usefulness of our new proposed approach has beprond&rated a priori and
interactively on a set of two- to ten-objectivettpsoblems. Moreover, our approach
has shown competitive and better results when oaotéd to three recently proposed
reference point-based EMO approaches. In the regiter, we focus on searching for
special points of the Pareto front which could hmnsidered as implicit DM’s
preferences, i.e., DM’s preferences when the DMVsdu specify explicit preferences.
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Chapter 6

Incorporating Implicit DM’s Preferences in
Evolutionary Multi-objective Optimization

6.1 Introduction

As noted in the fourth chapter, in the absencexpfigit DM’s preference information,
there exist special points of the Pareto front t@ild represent implicitly preferred
parts of the optimal frontier for the DM, which ar@) knee regions and (2)nadir
point. This chapter is devoted to present two contrdngi The first one corresponds to
a preference-based MOEA which approximates kneeomeg The second one
corresponds to a preference-based MOEA which appeigs nadir objective values.
The rest of this chapter is structured as followse second section describes our
proposed approach for knee region approximatiore fird section presents our
proposed algorithm for nadir point estimation. laclke of these two sections, we
describe the proposed methods and we provide catiarexperiments that allow
validating them regarding the most prominent warkshe corresponding specialized
literature. The last section concludes the chapter.

6.2 Proposed methods for knee region approximation

6.2.1 Knee-based R-NSGA-II (KR-NSGA-II)

¢ Algorithmic description

Before presenting the algorithmic details of KR-NSG (Bechikh et al. 2010a), we
describe the knee point characterization adoptesumalgorithm. In fact, we choose
the characterization of Das (1999) which is illagtd in figure 6.1 for the convex case
and the concave one. In the bi-objective casekiiee of the Pareto front corresponds
to the farthest solution from the extreme line The extreme line is the line defined by
the extreme solutions, ands, (i.e., solutions having minimal objectives values)
According to Das, the knees correspond to the maxirbulges of the convex/concave
parts of the Pareto front of a MOP. However, the BMinterested only to knees
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Figure 6.1 Das characterization of the concept ofrlee for: (a) the convex
case and (b) the concave case.

situated in convex parts since these latter haeentaximal values in terms of the
marginal rate of return (Das 1999). Hence, kneksmt&d in concave parts are to be
discarded. Consequently, we are interested onlyottvex bulges (figure 6.1(a)) and
not to concave ones (figure 6.1(b)).

KR-NSGA-II is an extension of the R-NSGA-II (Deb at. 2006a) usingmobile
reference points. We caihobile reference point a reference point that is updated
automatically in each generation of the MOEA. Ie tiriginal version of R-NSGA-II,
the reference points are to be supplied by the Diviai or interactively. However, in
KR-NSGA-II, the reference points are picked frome tlirst non-dominated front
automatically via an updating strategy in each gaian of the MOEA. We call this
selection strategivobile Reference Points Updating Strategy (MRPUS). The MRPUS
algorithm is presented in figure 6.2. First, the RAFRS considers extreme solutions of
the first non-dominated front as reference pointges these solutions define the
extreme linel". Hence, we assign infinite distances to the extreniutions (lines 09-
12). Besides, we compute the Cartesian coordiraftéise extreme line." defined by
the extreme solutions. These coordinates serveotigpute the distance of a certain
solution to the extreme line (line 13). After assimy each solution its distance frdm
(lines 15-17), the MRPUS procedure searches folKidarthest solutions from the
extreme lineL" situated in the convex parts of the Pareto fraritefe KN is a user-
supplied parameter indicating the number of kneasthe DM is searching for). Thus,
the cardinality of the mobile reference points &P isKN+2. The MRPUS updates
the reference points in such a way they are nowsse &-duplicates (lines 18-28). Two
solutions are’-duplicates if they have a normalized differenceha objective space
less than or equal t& This is an important feature of the updatingtstyg since it
ensureghat onlya unique reference point resides in ekberegion. This fact avoids
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MRPUS algorithm

01.Input

02. M: the objectives number

03. KN: the knees number

04. FF: the first non-dominated front

05. OMRP: the old mobile reference point set
06. Output

07. MRP: the updated mobile reference point set
08.Begin

09. ES— extreme solutions (FF, M);

10. For i = 1to sizdES)do

11. ES(i).distance- Inf;

12. End For

13. L « cartesian_coordinates (ES);

15. For i = 1to sizdFF)do

16.  FF(i).distance— distance_to_L(FF(i), L);
17. End For

18. Sorted_Fk- Sort (FF, ‘descend);

19. j—1;

20. k<« 1I;

21. While (k <= KN+2)and (j <= size(FF))do
22. If (NOT(is_&_duplicate (sorted_FF(j), OMRP)hen

23. MRP(K)« sorted FF(j);
24. OMRP(K}— MRP(K);
25. ke— k+1;

26. End If

27. je—j+1;

28. End While

29. If (size(MRP) < KN+2)Then
30. For i = (size(MRP) + 1)to KN+2 do

31. MRP(i)« sorted FF(i);
32. End For

33. End If

34.End

Figure 6.2 The MRPUS algorithm.

the premature convergence of the mobile referemoetgptowards the same knee to
occur. The control of-duplicates reference points provides an equal esiphof
solutions closest to each reference point situateceach distinct knee, thereby
allowing multiple knee regions to be found simuétansly in a single simulation run.
Figure 6.3 illustrates the functioning principle thie MRPUS algorithm for the bi-
objective case with two knee regions. First, exgresulutionsA andB are selected in
order to preserve population diversity. After tithg algorithm selects the poiGtas a
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Figure 6.3 lllustration of the selection of the molte reference points
with the MRPUS for the bi-objective case with two kees.

reference point since it has the maximal distanoen fthe extreme ling". In order to
not to converge to the same knee region, the algorignores the poir since it is a
¢-duplicate with the already selected patheand jumps directly to the poit which
permits the discovery of a new knee region. Thetrobrof &-duplicates reference
points provides an equal emphasis of solutionsesko® each reference point situated
in each distinct knee, thereby allowing multipleekrregions to be found. For the case
where the DM supplies a knees numhbeN) greater than the existing knees in the
Pareto front of the MOP under consideration, the A8 procedure permits to
¢-duplicates reference points to occur (i.e., refeeepoints residing in the same knee)
(lines 29-33). Besides, for the case where the patidies the paramet&N in such a
way KN is less than the existing knees in the Paretd inbthe MOP, we remediate
this problem, as will be shown later, by making tHK&R-NSGA-II algorithm
interactive. Hence, the DM may exploit its acquired knowledfeut the search space
during the interactive run of the algorithm in arde explore all the existing knee
regions. It should be noted that the extent okiiee regions is controlled by means of
the clearing parameter (used in R-NSGA-II) since a knee region in KR-NSGA
corresponds to a ROI in R-NSGA-II. Additionally,ist worth noting that the MRPUS
is scalable with the number of objectives. Theaxe lineL" can be replaced by: (1)
the extreme plane P* defined bythree extreme solutions for thei-objective case and
(2) theextreme M-dimensional hyper-plane HP™ defined byM extreme points for the
M-objective case.

In the following, we explain how we assign for eaciution its distance to the extreme
line L". Mathematically, the distance from a given poifx,,y,) to a given line
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Figure 6.4 Encouraging the discovery of convex kneegions.

D:ax+by+c=0 is expressed by the following formula (Smedley anNtseman
2001):

d(A D):'aXA+byA+‘i 6.1)

a2 +b?

The sign ofs=ax+by+c determines on which side the point { ,ligs with respect
to the line. If s>0 then the point lies on the same side as the nofma). If s<0
then it lies on the opposite side. Finally,siE tllen the point X y )ies on the line.
Since in KR-NSGA-II we are interested only to conkaee regions, the distance from

a solutionZ(x,,y,) to the extreme lind" : ax+by +c =0 is computed as follows:

|axz +byz +¢|
Va2 +b?
_laxz +byz +

\/a2+b2

According to equation (6.2), solutions residing dancave knees (for the case of
minimization problems) are discouraged to remairhig race by assigning them the

if axzy +byz +c<0
d(Z,D) = 6.2)

otherwise

opposite of their distances to the extreme linas phenomenon is illustrated by figure
6.4. From this figure, solutionS andD are residing in concave knee regions. Hence,
they are to be discarded by assigning them the sifgpof their distances (i.e., negative
distances). However, solutioAsandB residing in convex knees are to be preserved to
the next generations. Analogously, such computatican be extended for the
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M-dimensional §1-objective) case (Smedley and Wiseman 2001) whieke® the

KR-NSGA-II able to focus on knees for problem wittore than two objectives. It is
important to note that, based on the knee charaatiem adopted in KR-NSGA-II,

concave knees do not always occur in a Pareto damtgining knees.

¢ Experimental results

This subsection is devoted to demonstrate simulat@sults on two- and three-
objective knee-based test problems using the KRA8Glgorithm. All experiments
are made with MATLAB software. For each test problem, we show the noéahe
obtained results over 20 independent simulatioms.rin all simulations, we use the
SBX operator with a distribution index of 10 andlypmmial mutation with a
distribution index of 20 (Deb and Agrawal 1995).eTlerossover and mutation
probabilities are set to 0.9 andnl¢where n is the number of decision variables)
respectively. The population size is set to 100ther bi-objective case and 200 for the
tri-objective case. For all experiments, thparameter is set to T0 The knee-based
test problems used in this chapter are describepgpendix B. Inspired from the DTLZ
problems (Deb et al. 2002b), Branke et al. (200d3ighed three knee-based test
problems named DO2DK, DEB2DK and DEB3DK in ordemlassess their knee-based
MOEAs. DO2DK and DEB2DK are two bi-objective profig with n decision
variables. They have a settable param#&tarontrolling the number of knees in the
front. DO2DK has an additional parametercontrolling the skew of the front.
DEB3DK is a tri-objective problem where, like DEBRDthe parameteK expresses
the number of knee regions in the Pareto surfaese® on these three test problems,
Rachmawati and Srinivasan (2009) created otherhmearks: DO2DK-1, DEB2DK-1
and DEB3DK-1. These problems are modified versioh©02DK, DEB2DK and
DEB3DK respectively. In fact, thg(x) function is updated in order to impose a greater
density of solutions away from the optimal frontance versa. This non-uniformity of
the search space challenges the MOEA's abilityrogmess towards the Pareto front.
DEB2DK-2 is a modified DEB2DK where the Pareto fras discontinuous and
contains a bias in the solution distribution alahg front in addition to knees in
concave parts. All bi-objective test problems amplemented witiK = 1 to 4. The
parameters is set to 0 forKk = 1 and to 1 forK > 1. Tri-objective problems are
implemented wittK = 1 to 2. In total, 24 problem instances are useaxdir study.

e A priori simulation results
Firstly, we consider the DO2DK test problem. Figarg shows the obtained solutions
after performing 100 generationgi.e., 10000FEs) with & = 0.0001,KN = K = 4 and

! The used version is MATLAB 7.4vivw.mathworks.com
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Figure 6.5 Obtained solutions with DO2DK test probém with 4 knees.

s= 1.0. We remark that KR-NSGA-II has the ability tecfis on the four knee regions
of the DO2DK problem while preserving extreme sols. As has been discussed
before, extreme solutions are considered as refer@oints in KR-NSGA-II since
these solutions play a crucial role in: (1) theed®mination of the extreme lire and
consequently in the detection of knees and (2) ramguhe population diversity and
consequently preserving the reference point setrsiiy.

Next, we consider the DEB2DK test problem. Figuré éemonstrates the effect of
varying the cleaning parametepn this bi-objective problem, witkN = K = 4, after
performing 100 generations. We remark that KR-NSGA- able to find solutions
located in the four knee regions in addition to ¢éixéreme optimal solutions. Besides,
for ¢ = 0.0001, we remark that population individuals cageesharply towards the
center of each knee region in addition to extremlat®ns. Solutions with othes
values are shown with an offset to the true Pamgdtimal front for ease of
visualization. We notice that the range of the wiatd solutions increases with the
increase of the parameter Hence, if the DM would like to obtain a large
neighbourhood of solutions near each knee centiarga value ot should be chosen.
We conclude that the DM could control the spreadhef obtained ROIs (i.e., knee
regions) by means of the cleaning parameter

Finally, we consider the tri-objective DEB3DK prebi. Figure 6.7 demonstrates the
KR-NSGA-II obtained solutions after performing 28@nerations (i.e., 25000 FESs)
with ¢ = 0.0001 andKN = K = 1. It is clear, from this 3D-plot, that the KR-NSGA-

has the ability to focus on the knee region(s)hia three-objective case in addition to
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Figure 6.6 Effect of varying theg parameter on the DEB2DK
test problem with 4 knees.
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Figure 6.7 Obtained solutions with the tri-objective DEB3DK
test problem with one knee.

finding extreme solutions. It is worth noting hdahat the distance computations are

done according to the extreme plafe(defined by three extreme solutions) instead of
the extreme liné" as discussed previously.
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* An interactive scenario

In this subsection, we propose an interactive soetiar the KR-NSGA-II algorithm.
This scenario is useful especially when the DM haddea about the number of the
existing knees in the Pareto optimal front of thebtem under consideration. The
interactive version of KR-NSGA-II can be summarizsdfollows:

= Step 1: Ask the DMto supply the population size, the stopping criterithe
number of knee regions to be discovered (i.e.KiNeparameter), the parameter
and theZ parameter;

= Step 2:Perform the KR-NSGA-II algorithm until the stoppgigriterion is met;

= Step 3: Supply the DM with the set of the obtained solusiolf the DM is satisfied
with the supplied set of solutions then stop th@naogation process, else ask the
DM if he/she would like to update the parameti€id, ¢, & and/or the stopping
criterion then return t&tep 2

In the following, we illustrate an interactive roh the KR-NSGA-II algorithm on the
bi-objective DEB2DK test problem with 4 kneds € 4) using a population of 100
individuals. The parametersand¢ are set initially to 0.0005 and 0.01 respectiviiie
suppose that the DM has no idea about the numbiieagxisting knees in the optimal
Pareto front. The overall interactive run is ddsed by figure 6.8 and it is composed
with two cycles. We callcycle a run of KR-NSGA-II for a certain number of
generations freely fixed by the DM. Firstly, the Dddrforms an evolutionary cycle of
100 generations wittKN = 2. The obtained solutions (figure 6.8(a)) show that
KR-NSGA-II discovers two knee regions in additiom the extreme solutions. We
suppose that the DM is dissatisfied and he/shatésdsted in finding all existing knees
in the Pareto front. Hence, he/she sets the paesuiiitto 6 and he/she performs a run
of 100 generations. According to figure 6.8(E remark that the population focus on
the four knee regions existing in the Pareto fafMEB2DK problem with four knees.
We conclude that, although the DM sets the paraniéteo 6, KR-NSGA-II provides

4 knee regions. This fact emphasizes what has theenssed previously in the fourth
section, i.e., the MRPUS procedure accéptsiplicates reference points if and only if
the DM setKN > K which ensures the discovery of all existing kregians.

In summary, the KR-NSGA-II has demonstrated itea@feness in approximating

knee regions for the bi- and tri-objective casd® hteractive scenario is shown to be
useful to discover all knee regions when the DMoigs the number of existing knees a
priori. However, the KR-NSGA-II performance depends the success of the

algorithm in discovering the Pareto optimal extreso&utions which was reported not

to be an easy task when estimating the nadir §Diglb and Miettinen 2008).
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Figure 6.8 Interactive scenario on DEB2DK with 4 kees:

(&) KN =2 and (b)KN = 6.

6.2.2 Trade-off-based KR-NSGA-II (TKR

¢ Algorithmic description

-NSGA-II)

TKR-NSGA-II (Bechikh et al. 2011a) is an enhancestsion of KR-NSGA-II. As

noted previously, the optimal extreme point
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Hence, the failure of KR-NSGA-II in discovering tlree extreme solutions engenders
the loss a potential knee solutions or the disgoeérspurious ones. In order to avoid
such problematic, we modified the knee point chiaréation in KR-NSGA-II. In fact,
instead of the distance to the extreme line, wel @seecently proposed trade-off worth
metric designed by Rachmawati and Srinivasan (2009act, although Pareto optimal
solutions are equivalent, the trade-off magnitudees across the optimal front. Trade-
off characterizes two non-dominated objective viecttnd can be defined as the net
gain of improvement in some objective subset byabeompanying deterioration in
some other criteria as a result of substitutingohjective vector with another non-
dominated one. Equation (3) offers a mathematicafindion of the trade-off
information for a pair of non-dominated solutions:

M () = fn() |
mz_"lmax 0, fMmax _ ¢ min
T(X,Xj) =— S m m_ (6.3)
M 9 fn (%) = fm(X;)
Z_: max & f Max _ ¢ min
m=1 m m ]

We note that f (X, )corresponds to then” objective value of solution; and

f MaX/ £ M corresponds to the maximal/minimal value of th® objective in the

population individuals. In the above equation, naliration is performed in order to
prevent some objectives being predominant overrsteace objectives are usually
incommensurable in real world applications. In egum(5.3), the numerator expresses
the aggregated improvement gained by substitutgwith x. However, the
denominator evaluates the deterioration generayetthdo substitution. A more concise
metric to compute the worth of a solutignin terms of trade-off, relative to the set of
non-dominated solution$ to which it belongs is given by equation (6.4a¢Rmawati
and Srinivasan 2009):

H(%;,S) = Min — T(x,Xj) (6.4)
ijS,xi KX, X KX

We note thak; denotes members of the set of non-dominated sok® that are non-
dominated with respect tg. The quantity /(X ,S) expresses the least amount of

improvement per unit deterioration by substitutemy alternativex; from S with x.
Solutions residing in convex knee regions havehighest values in terms of the trade-
off metric u. Such characteristic makes knee regions almosdyalwery important to
the DM in practical context.
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T-MRPUS algorithm

01
02
03
04
05
06
07
08

09.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
31.

Input
M: the objectives number
KN: the knees number
FF: the first non-dominated front
OMRP: the old mobile reference point set
Output
MRP: the updated mobile reference point set
Begin
ES— extreme_solutions (FF, M);
MRP<« ES;
For i = 1to sizgFF) do
FF(i).trade-off_wortk— evaluate_trade-off_metric (FF(i), FF);
End For
sorted_FFk— Sort (FF, ‘descend);
j—1;
ke—1;
While (k <= KN) and (j <=size(FF))do
If (NOT(is_&_ duplicate (sorted FF(j), OMRP)hen
MRP(K)< sorted FF(j);
OMRP(k)}— MRP(k);
K k+1;
End If
jeith
End While
If (size(MRP) < KN)Then
For i = (size(MRP) + 1)to KN do
MRP(i)« sorted FF(i);
End For
End If
End

The TKR-NSGA-II is the result of substituting théstdnce from the extreme line

computation

Figure 6.9 The T-MRPUS algorithm.

in KR-NSGA-II by the trade-off worth amire. This modification is

performed in the MRPUS algorithm. The new MRPUScpdure, called Trade-off-

based MRPUS (T-MRPUS), is presented by figure B/8. see from this figure, that
MRPUS and T-MRPUS are nearly the same; just thee kyant characterization is
changed. The T-MRPUS updates the mobile referenagspbased on the trade-off

worth metric values which computation is independeinthe discovery of the true
extreme solutions. Solutions having highest valueserms of trade-off worth are
emphasizedThe control of &-duplicatereferencepoints (cf. figure 6.3) is alsocarried
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TKR-NSGA-II basic iteration algorithm

01. Input

02. P;:the parent population at generation t

03. Q: the offspring population at generation t

04. M :the number of objective functions

05. Output

06. P.;:the updated parent population at generation t+1
07. Qu:: the updated offspring population at generatidn t+
08. Begin

09. RRP 0OQ;

10. R+« non-domination_sort (RM);

11. FF« select_best _front (R

12. MRP« T-MRPUS (M, KN, FF, MRP);

13. R < reference_point_based_crowding, (RRP);

14. R < e-clearing (R;

15. P.1 < environmental_selection (R

16. Q.1 <« reproduction (Ry);

17. t« t+1;

18. End

Figure 6.10 The TKR-NSGA-II basic iteration.

out by the T-MRPUS in order to ensure the discow@rall existing knee regions.
Additionally, it is worth noting that T-MRPUS is aable with the number of
objectives since the trade-off worth meiwics independent of the number of criteria to
optimize.

Figure 6.10 presents the basic iteration of the THGA-II algorithm. Firstly, the
parent populatior’; and the offspring populatio®; are merged to form the combined
populationR; (line 9). Besides, a non-dominated sorting is igplplo the populatiofk
(line 10). Hence, the populatid® becomes subdivided into several fronts. Then, the
best frontFF is selected (line 11) and passed as input paranetthe T-MRPUS
procedure in order to generate the new mobile eafsx point seMRP (line 12). We
note that theMRP set passed as input parameter (line 12) to theRRWIS procedure
corresponds to the old mobile reference point get, (the MRP of the previous
generation). Once theRP set is generated, we assign to each solutiont Wwise, its
crowding distance based on its distance from théilmaeference points (line 13).
Since solutions near reference points have bettewding factors, the population is
guided gradually towards knee centers; which makessearch converging to knee
regions. In order to ensure the control of the mixté the obtained knee regions and
promote further population diversity, a clearingpgedure is applied t& (line 14).
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This procedure is applied front wise and ensures tihe minimal allowed distance
between two objective vectors having the same rwnkdhation rank is greater than the
user-supplied quantity Finally, the new parent populatié®.; for the next generation

is created by performing environmental selectionRprfline 15), the new offspring

populationQ.1 for the next generation is produced by applyingetie operators to

Pw1 (line 16) and the evolutionary process is repeatetil the stopping criterion is

met.

¢ Experimental results

This subsection is devoted to confront TKR-NSGAelthe most representative works
in this research area. We note that the TKR-NSGhAal demonstrated similar results
to KR-NSGA-II ones not only on a priori experimetst also on an interactive run
(Bechikh et al. 2011a). Before presenting compagagixperiments, we would like to
discuss an important issue here which is the coatiputal cost of TKR-NSGA-II. In
fact, knee regions can be obtained by approximabiegomplete Pareto front and then
knee regions can be detected, in a posteriori mmabgeapplying anytrade-off metric

on the final population (e.g., the smart Pareterfil(Mattson et al. 2004)yhich goes
without any further function call. We note thatteafapplying the NSGA-II to the
DEB2DK test problem, the required number of FEsapproximate the whole Pareto
front was about 50000 FEs. This fact shows theieficy of TKR-NSGA-II over its
base MOEA NSGA-II since it can provide optimal knesgions after 10000 FEs.
Consequently, TKR-NSGA-II has two main advantages &NSGA-1l. On one hand, it
provides the DM with the maximal trade-offs whichcilitates his/her task when
selecting the final alternative. On the other handeduces the required computational
cost significantly. Additionally, similar observatis were seen for the other test
problems which proves the efficiency of TKR-NSGA-tver NSGA-II from a
computational cost viewpoint and hence the needudoh preference-based MOEA.

* Assessing converging towards knee regions

In this subsection, we compare the TKR-NSGA-II witle most representative works
in this research area from a convergence viewp®hKR-NSGA-II is confronted to the
Marginal Utility Approach MUA) (Branke et al. 2004), the Weighted sum Niching
Approach WSNA) (Rachmawati and Srinivasan 2006b), Sgversion of the Parallel
Local Weighted Sum Optimization approadPL{¥VSO) (Rachmawati and Srinivasan
2009) and KR-NSGA-II (Bechikh et al. 2010a). Sing¥OEAs focusing on knee
regions are preference-based MOEAs, we cannothgshyipervolume metric because
the dominated portion of the objective space dep@mdthe distribution of the obtained
solutions. Forthis reason, weuse another well-cited metric, i.e., the genenagio
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Table 6.1 MOEA specific parameter settings.

Algorithm MOEA specific parameter values
WSNA Q=100,P =20
PLWSO Q=100,0'=0.1,S, = 80%

KR-NSGA-II ¢ =0.05 for bi-objective case and 0.08 for tri-aitijee case,
TKR-NSGA-Il | ¢ =0.001 KN =K

distanceGD which expresses the proximity of the obtained tsmtusets to the Pareto
optimal front. We recall that this performance measis given by the average
Euclidean distance separating the obtained soluteomd the nearest members of a
uniformly distributed reference set taken from Bagreto front. In this study, we use a
reference Pareto front of size 500 for the bi-dfjecproblems and 900 for the tri-
objective problems. We use the same experimensadjdef the study of Rachmawati
and Srinivasan (2009) in order to make fair congmans. A set of 10 simulation runs
was done for each paiMOEA, problem instance) under MATLAB software. For all
MOEAs, the termination criterion is set to 20000sH&r DO2DK and DO2DK-1,
25000 FEs for DEB2DK, DEB2DK-1 and DEB2DK-2 and B0OFEs for DEB3DK
and DEB3DK-1 unless otherwise specified. The usedetic operators are the
simulated binary crossover (SBX) and the polynommaltation (Deb and Agrawal
1995) with crossover probability of 0.9 and mutatprobability of 1A (wheren is the
number of decision variables). The population s&aeettled to 100 for all problem
instances. The other MOEA-specific parameter valisegl in this study are indicated
in table 6.1 unless otherwise specified. We noé¢ tile marginal utility approach does
not have specific parameters. The significancdefarameters figuring in table 6.1 is
detailed in subsection 6.2.1 and the referencesithe

Table 6.2 presents theD values for the five algorithms under comparisore Wéte
that we exploit the results published in (Rachmaaadl Srinivasan 2009). We remark,
from this table, that for a Pareto front containeginique knee region, the reference
point-based algorithms (i.e., KR-NSGA-II and TKR-G&-1l) present better
convergence than the three other weighted sum-kmgedthms. This observation may
be explained by the fact that the reference poaseld methods preserve the survival of
extreme solutions which promotes population divgrsand hence emphasizes
convergence towards the Pareto optimal front. Hawnethe three weighted sum-based
algorithms focus the search only towards the unikjee region which may reduce
population diversity and hence deemphasizing cqyerare. FoK greater than one, we
see that (1) the KR-NSGA-II algorithm performs betthan the MUA and the WSNA
and (2) TKR-NSGA-II presents better results tham fibur other algorithms omost
problems.The superiorityof TKR-NSGA-II over KR-NSGA-II may be explainedby
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Table 6.2 Generational distance values.

Problem K MUA WSNA PLWSO KR-NSGA-II TKR-NSGA-II
Mean SD Mean SD Mean SD Mean SD Mean SD
DO2DK 1| 0.03505 0.01858 0.00437 0.00003 0.0032900024| 0.00311 0.0008p 0.00299 0.00031
2 | 0.02497 0.0062 0.00396 0.00043 0.00290 0.0008®0353 0.00039 0.00281 0.00054
3 | 0.02511 0.0036 0.00463 0.000838 0.00365 0.000290374 0.00048 0.00317 0.00083
4 | 0.02305 0.0030%5 0.00483 0.000/3 0.00437 0.0003®0411 0.00039 0.00398 0.00046
DO2DK-1 1| 0.24272 0.60024 0.00442 0.00023 0.0033900018| 0.00334 0.00028 0.00308 0.00037
2 | 0.01420 0.01566 0.00361 0.00007 0.00287 0.0000.80367 0.00029 0.00291 0.00017
3 | 0.06192 0.10532 0.00348 0.000R6 0.00445 0.000920331 0.00041 0.00315 0.00081
4 | 0.00696 0.00781 0.00363 0.000R5 0.00457 0.001680391 0.00046 0.00338 0.00018
DEB2DK 1| 0.04060 0.00708 0.42352 0.39414 0.01624 0126| 0.14971 0.00549 0.01232 0.00271
2 | 0.02497 0.00628 0.00396 0.00043 0.00290 0.000860303 0.00052 0.00238 0.00061
3 | 0.02511 0.0036 0.00463 0.000838 0.00365 0.000290501 0.00074 0.00294 0.00083
41 0.01368 0.00139 0.31743 0.47184 0.00674 0.00104€1883 0.00211 0.00731 0.00319
DEB2DK-1 | 1| 0.24272 0.60024 0.54071 0.74018 0.00339200018| 0.00334 0.0002L 0.00304 0.00014
2 | 0.01420 0.01566 0.00361 0.00007 0.00287 0.0000.8405 0.00033 0.00229 0.00026
3 | 0.06192 0.10532 0.00348 0.000R6 0.00445 0.000920389 0.00051 0.00377 0.00081
41 0.03299 0.00573 2.78440 3.66200 0.00666 0.001290591 0.00098 0.00517 0.00034
DEB2DK-2 | 1| 0.03446 0.00295 0.03669 0.00491 0.0253800143| 0.02511 0.0016p 0.00219 0.00118
2 | 0.03393 0.00351 0.04150 0.00532 0.01883 0.0009®2239 0.00382 0.01890 0.00102
3 | 0.03262 0.00293 0.04632 0.00368 0.01439 0.00206€3848 0.00329 0.01511 0.00198
4 1 0.03367 0.0028 0.04783 0.00388 0.01279 0.0018p4872 0.00196 0.01324 0.00186
DEB3DK 1| 0.17511 0.11718 0.13382 0.02361 0.11368 1958 | 0.10322 0.0233p 0.09461 0.01992
2 | 0.76320 0.25049 0.29348 0.07652 0.32930 0.156033782 0.1408§ 0.29917 0.12063
DEB3DK-1 | 1| 0.13239 0.1011p 2.31280 0.35338 0.11282043B5| 0.10074 0.08098 0.09567 0.06511
2 | 2.18844 0.60789 12.100 1.042P3 0.27393 0.161282006 0.03027 0.25476 0.04258

the fact that the discovery of knee region centieess not depend on the success of the
algorithm in finding the optimal extreme solutiombich is the case for KR-NSGA-II.
In fact, TKR-NSGA-II updates the mobile referencanp set based on the trade-off
worth metricu whose computation does not necessitate the discov@xtreme points
which is not an easy task for MOEAs as reported(Deb et al. 2009a). The
TKR-NSGA-II considers extreme objective vectorgeference points only to promote
population diversity and consequently enhancingveagence. The superiority of
TKR-NSGA-II over PLWSO on most test problems mayelplained by the fact that
the output provided by PLWSO depends heavily onwbeght sets generated during
the first step of the optimization process (sint®#30 is a two-step method where the
first step is devoted to generate the adequatehiveas). However, TKR-NSGA-Il is a
one-step method which guides the search directitds knee regions at an early stage
of the evolutionary process while preserving pofpaoita diversity. Besides, since
PLWSO is reported to perform better than WSNA andJAMin the study of
Rachmawatiand Srinivasan(2009), by transitivity TKR-NSGA-II is declaredto be
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Figure 6.11 WSNA spread control on DO2DK withK = 4:
(&) Q=100,P =30 and (b)Q = 100,P = 50.
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Figure 6.12 TKR-NSGA-II spread control on DO2DK
with K = 4: (a)¢ = 0.001 and (b} = 0.01.

superior to MUA and WSNA. The obtained results pnéed in table 6.2 emphasize
this statement.

e Assessing knee region spread control

Obtaining a small neighborhood of solutions in wi@nity of the knee center is more
interesting for the DM than obtaining a single $iolo. The neighborhood size should
be well-controlled by the DM in order to have aaclelea about the worthiest solutions
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in terms of trade-off. For this reason, in this setiion, we assess the ability of the
algorithms to control the extent of the furnishetk& regions. The MUA is excluded
from the comparison since it does not allow cotitrglthe knee region spread. Hence,
the TKR-NSGA-II is confronted only to WSNA, PLWS@Q&AKR-NSGA-II.

» TKR-NSGA-II versus WSNA

WSNA allows controlling the spread of the obtainezfjions by means of the
parameter§) andP (Rachmawati and Srinivasan 2006b). Figure 6.1ivshtbe effects
of varying the parametd? on the DO2DK test problem with four knees. We fsem
this figure that the increase Bffrom 30 (figure 6.11(a)) to 50 (figure 6.11(b))itlwvQ
kept constant at 100, increases the neighborhotehiexn each knee region. This
increase does not apply uniformly over all ésiewhich may mislead the DM in
practical applications. However, TKR-NSGA-II doast face such problem. We see
that the increase affrom 0.001 (figure 6.12(a)) to 0.01 (figure 6.19(Increases the
extent of the obtained knee regions in additioth® neighborhood spread near each
extreme solution. Additionally, this increase appluniformly over all existing knees
which provides the DM with a clear idea about thaximal trade-offs of the Pareto
front. Figure 6.13 demonstrates the effect of iasimeg the paramet& of WSNA from
30 (figure 6.13(a)) to 50 (figure 6.13(b)), wih kept constant at 100, on the
DO2DK test problem with two knees. We seemfrinis figure, that changing the
parameteP has no effect on the spread of the knee regiothsbtained knee regions
have approximately the same breadth. We conclualethie spread control by WSNA
depends on the geometrical shape of the Paretmalptiont which is not the case for
TKR-NSGA-II as shown by figure 6.14.

» TKR-NSGA-II versus PLWSO

The spread control in PLWSO is achieved by thermpatars’. Figure 6.15 shows the
effect of varying the parametér on the DO2DK problem with two and four knees
respectively. We see that the higher éhealue is, the larger the knee region spread is.
However, PLWSO has the same inconvenience as W&Nfact, we observe that the
spread increase does not apply uniformly for aleknegions which is not the case for
TKR-NSGA-II (cf. figures 6.12 and 6.14). The unifaity of the extent of the obtained
regions by TKR-NSGA-II may be explicated by thetftwat the algorithm selects the
mobile reference points based on the trade-off wiometric. When the reference points
are stabilized on the knee centers, the populatidividuals are distributed near each
knee center in such a way the minimal distance é&twtwo individuals in the
objective space is greater than the user-specijeantity ¢ and hence obtaining
different ROIs having the same extent near theode@d knee centers. Differently, the
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Figure 6.13 WSNA spread control on DO2DK withK = 2:
(a) Q = 100,P = 30 and (b)Q = 100,P = 50.
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Figure 6.14 TKR-NSGA-II spread control on DO2DK
with K = 2: (a)¢ = 0.001 and (b} = 0.01.

PLWSO algorithm guides the search towards kneeomsgby optimizing a set of

weighted sums instead of the original objectivelse Bpread control is achieved by
modifying the weights corresponding to the potéritiree solutions by means of the
parameters’ which yields knee regions with different spreadée conclude that the

spread control in PLWSO depends on the geometdeoatour of the optimal knee

region. That is why the algorithm provides regiovith different spreads which is not
the case for the TKR-NSGA-IAdditionally, Rachmawatand Srinivasan(2009) noted
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Figure 6.15 PLWSO on DO2DK with 2 knees: (a$’'=0.1
and (b)o’'=0.2.

that the setting of thé' value is a critical task since a large value o$ tbarameter
makes the PLWSO algorithm missing potential knggores while a smaller value 6f
leads to the identification of spurious ones. Thast makes the spread control
ineffective in PLWSO. However, TKR-NSGA-II does matesent such problem. The
DM can use any positive real number for theparameter without causing the
difficulties faced by PLWSO which makes the spreadtrol of knee regions more
effective with TKR-NSGA-II than with the use of PLYD.

= TKR-NSGA-II versus KR-NSGA-II

These two search methods use the same spreadlaoettbanism. Hence, we obtain
the same spread by the two algorithms. Howeverywaeld like to discuss here how
the dependence of the KR-NSGA-II on the succesdismiovering the Pareto optimal
extreme solutions may furnish bad results and miklthe DM. We perform an
experiment on DEB2DK-1 test problem with 4 kneedcWwhs characterized by the
non-uniformity of the solution distribution in tlodbjective space. In fact, the density of
solutions decreases when getting closer to thenaptfront which makes the discovery
of the true extreme solutions not easy. Figure 8H@wvs the obtained results for both
algorithms after 15000 functions evaluations witet to 0.01 and settled to 0.07. We
see from figure 6.16(a) that KR-NSGA-II algorithmil§ in discovering the optimal
extreme solutions. Consequently, it provides tliree knee regions (i.e., regioAs B
andC) and a wrong knee region (i.e., regidh The discovery of the non-knee region
D yieldsto two negative results. lone hand,the true kneeE is lost. The algorithmis
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Figure 6.16 Obtained results on DEB2DK-1 withK = 4:
(a) KR-NSGA-II and (b) TKR-NSGA-II.

unable to encourage the survival of solutions giae E since solutions in the non-
knee regiorD are farther from the extreme line. On the otherdhghe true knee region
C and the wrong knee-regidd are adjacent in such a way they seem to form a big
region with a large spread with respect to regiédradB which may mislead the DM
in practical context. Contrariwise, although TKR-GI&-II does not find the optimal
extreme solutions, we see from figure 6.16(b) ihgurovides the four knee regions
with approximately the same spread. This obsematiexplained by the fact that the
mobile reference point set update is achieved iIRTNSGA-II based on the trade-off
worth metricu which does not require the identification of theetextreme solutions.
Extreme solutions are promoted in TKR-NSGA-II orly encourage population
diversity. However, the selection of the referepoints in KR-NSGA-II is based on
the computation of the extreme line defined by ékereme solutions which explains
the obtained results on the DEB2DK-1 test problem.

6.2.3 Discussion

Through section 6.2, we have addressed an impoissue in multi-objective

optimization consisting in finding knee regionstleé Pareto front and hence providing
the DM with information about the maximal tradeso#cross the Pareto optimal front.
This information is very important in practical ¢ert as the DM may be interested in
gaining one unit in a chosen criterion at the egpeaf degradation in one or more
other criteria. We have proposed preference-bas@tEAM i.e., the KR-NSGA-II,

which uses the concept of mobile reference poingume the search towards knee
regions. These mobile reference points play the il attractors to the population
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individuals, thereby directing the search towardsheknee center. The knee region
spread can be controlled by means of the userfsgbeiparameter. KR-NSGA-II has
demonstrated its effectiveness and efficiency ipragmating knee regions with a
controllable spread. Moreover, the KR-NSGA-II igtetive version was valorized via
an interactive run. However, the dependence of KGN-1I on the discovery of
Pareto optimal extreme solutions has been shovire tihe major inconvenient of this
algorithm. For this reason, we have proposed arrdugal version of KR-NSGA-II,
i.e., TKR-NSGA-II. The latter algorithm has demaoagtd its superiority to the most
representative works in this research field inatlgdiKR-NSGA-II via a set of
comparative experiments. Moreover, its independefitkee Pareto front geometry and
of the discovery of the true extreme solutions espnts the main advantage of this
enhanced version.

6.3 Proposed method for nadir point estimation

6.3.1 Algorithmic description

¢ Basic idea

In this subsection, we propose a new way to estéirtta¢ nadir point. Our aim is to
ensure the accurateness of the estimation whilemizimg the required computational
effort. In the previous subsection, the evolutignapproaches were categorized into
three classes. We suggest here a new further cddlesl extreme-region-of-inter est-to-
nadir class. In fact, in the extreme-point-to-nadir slathe crowding distance is
modified in order to concentrate the search invicaity of the extreme points. This
uncontrolled focus on the extreme solutions may cause a laclotion diversity and
hence slows down the search process. The mainindear new proposed approach
(Bechikh et al. 2010b) is to guide the search tdwaextreme solutions while
preserving a user-controlled diversity by congitigita ROI in the vicinity of each
extreme non-dominated solution. The MR-NSGA-Mescribed in this subsection
representsn instance of the new suggested class. In fact, we modifypreference-
based MOEA R-NSGA-II of Deb et al. (2006a) in orderforce the search to focus
only on extreme solutions which allows the usehawe an accurate estimation of the
nadir objective vector quickly and reliably. Insgdr from (Deb et al. 2006b), we
propose to use extreme solutions (i.e., solutioaginy worst objective values) as
reference points. Hence, the DM does not providestt of reference points. This latter
is updated automatically, in every generation & #iffgorithm, by making the current
extreme solutions picked from theest non-dominated front as the current reference
points. This automatic update of the referencetpgirovides a ROI in the proximity of
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each extreme point which facilitates the task @& thscovery of théPareto optimal
extreme solutions and hence ensures the task of nadir point esbmaie recall that
R-NSGA-II allows the DM to control the diversity tfie obtained ROIs by using the
clearing parametet. This latter allows controlling the focus of theasch towards the
ROIs which is not the case for Deb’s approaches (Beal. 2006b). The diversity
control allows not only escaping from local optintat also speeding up the
convergence towards the reference points (i.e.eftieeme solutions). The originality
of our new proposed approach regarding what alresadsts in the literature is as
follows: Instead of focusing the search stronglydods the extreme points without any
control which may degrade the population diverditys focus is controlled by a user-
defined clearing parameter allowing the enhanceroérsolution diversification and
hence speeding up the search by avoiding the stagna local optima.

¢ Enhancement by local search

Several works in the EMO field have shown that iheorporation of local search
within MOEAs enhances the performance of these Imeetdstics especially from a
computational cost viewpoint (Bosman and de Jor@@h28echikh et al. 2008; Kumar
et al. 2007; Shukla 2007). Such hybrid algorithme germedmemetic algorithms
(Moscato 1989). Motivated by this observation, weppese to enhance our approach
described in the previous subsection by hybridizingith a gradient-based local. The
aim of the local search is to push the mobile exfee points further towards the true
extreme Pareto optimal solutions and hence actilgrahe convergence of the
algorithm. Unlike the two-step local search destgbg Deb et al. (2009a, 2009b), our
new proposed local search is a one-step local lsé@sed on the SQP method (Wilson
1963). For this reason, we term the new designeal earctS8QP-LS. Our choice is
justified by the fact that the SQP procedure hanlshown to significantly enhance the
overall performance when incorporated into sevet@EAs (Hu et al. 2003; Kumar et
al. 2007; Tiwari et al. 2009). In each generatibuar memetic algorithm, the extreme
solutions are picked from the best non-dominatedtfand then are subject to the SQP-
LS. The SQP-LS algorithm is illustrated by figurdd® The local search procedure
takes as inputs: (1) thearrent reference point x (i.e., the current extreme solution) and
(2) the critical objective index (coi), i.e., index of the objective in which the current
reference point presents the worst value. As dtrasweturns theenhanced reference
point r. First, SQP-LS generates, fromp M neighbors (wherév is the number of
objectives) by using the SQP procedure. A neigioris created by minimizing the
i objective individually (line 08). Them\(i) is evaluated according to each objective
function (line 09). It is important to note that bynimizing one of the objectives, we
do not obtain dominated neighbors with resgecthe reference poirtlence,the
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SQP-LS algorithm

01. Input

02. x: the reference point

03. coi: the critical objective index

04. Output

05. r:the enhanced reference point
06. Begin

07. Fori=1toMdo

08. N(i) — SQP(x, i);

09. N(i) — evaluate_objectives(N(i));

10. End For

11. Fori=1toM do

12. If (N(i) Pareto dominates X)hen
13. *— N(i);

14. elsdf (N(i) and x are non-dominatethen
15. IfIN(). f coi > X.feo)) then
16. x— N(i);

17. End If

18. End If

19. End If

20. End For

21. r<x;

22. End

Figure 6.17 The SQP-LS algorithm.
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Figure 6.18 The SQP-LS replacement strategy: the send case.

neighborhood generation strategy preserves the ordeced by the Pareto dominance
relation. Once the neighborhood is generated (I»&40), the replacement process
(lines 11-20) begins. The designed replacementeglyais as follows. The neighbor
replaces the reference point in the two followiages: (1) the generated neighbifi)
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Pareto-dominates the current reference poitine 12) or (2) the neighbd(i) and the
reference solutiorx are non-dominated and(i) have a worse value in the critical
objective tharx (lines 14-15). The first case emphasizes the cgevere towards the
optimal Pareto front. However, the second case wages the convergence towards
extreme Pareto optimal solutions from which theetnadir point is constructed as
shown in figure 6.18.

Inspired from the work of Shukla (2007), we emptbg Simultaneous Perturbation
Method (SPM) instead of the Finite Difference Met{&DM) for gradient estimation.

In fact, the one-sided FDM requires1 FEs (wheren denotes the number of decision
variables) to compute the gradient. Assumin be thé™ component of the gradient,

g to be a unit vector in th& direction anct to be the step size at each generation, then
for ann-dimensional variabl&, the one-sided FDM used in (Hu et al. 2003; Kuetar
al. 2007; Sharma et al. 2007; Tiwari et al. 2008&juiresn+1 FEs to compute the
gradient and is given by:

f(x+cg)—- f(Xx
g = X100 6.5)
This is costly in terms of FEs (of the ordemi)( However, the one-sided SPM requires
only two FEs to estimate the gradient independesftthe number of decision variables
n and is given by:

_ f(x+ch) - f(x)
= CA-

gi (X) (6.6)

where4 is ann-dimensional vector of random perturbations saiigf\some statistical
conditions (Spall 1998) andi is itsi"™ component. The computational complexity of
the SPM is thus O(1) which justifies our choice.

Our gradient-based memetic MOEA proposed in thisssation is termedlemetic
R-NSGA-II for Nadir point estimation and is denotedVIR-NSGA-Ily. Figure 6.19
illustrates the basic iteration of this hybrid aifam. We see from this figure that our
new algorithm is a modified version of R-NSGA-Ih& main modifications are: (1) the
updating strategy of the mobile reference points Bqlines 11-12) and (2) the
enhancement of the extreme solutions (i.e., thereete points) by the SQP-LS
procedure (lines 13-15). We note that we have pm@ted Deb’s constraint-handling
strategy (Deb 2000) in MR-NSGARlin order to make the algorithm able to handle
constrained problems. This strategy is describddlksvs:

1) Any feasible solution is preferred to any infeasibblution,

2) Among two feasible solutions, the dominating onpreferred,
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MR-NSGA-II y basic iteration algorithm

01. Input

02. R:the parent population at generation t

03. Q: the offspring population at generation t
04. M :the number of objective functions

05. Output

06. R:the updated parent population at generation t
07. Q: the updated offspring population at generation t
08. Begin

09. R« P OQ;

10. R« non-domination_sort (RM) ;

11. FRest< Select best_front ¢R;

12. E <« select_extreme_solutionsy(k M) ;

13. Fori=1toMdo

14. E(i)«— SQP-LS (E(i), i) ;

15. End For

16. R < distance_from_extreme_solutions,(R) ;
17. R « extreme_points_based_crowding,(B) ;
18. R «e-clearing (R ;

19. t« t+1;

20. PR < environmental_selection (R ;

21. Q < reproduction (B;

22.End

Figure 6.19 The MR-NSGA-Ily basic iteration.

3) Among two unfeasible solutions, the one having fnalverall constraint violation
is preferred.

6.3.2 Experimental results

¢ Unconstrained problems

In this subsection, we assess the performance oglgorithm on three- to twenty-
objective unconstrained non-linear test problenisT we compare MR-NSGAK/Ito:
(1) the naive NSGA-II approach, (2) the WC-NSGAahd (3) the EC-NSGA-II. We
adopt the same experimental design used in (Debl.eR006b) for fairness of
comparison. For the SQP-LS, a neighbor is genefayetieans of a modified version
of thef m nunc MATLAB function by changing the gradient computistategy as
described previously. The termination criteriorttod SQP function (i.ef,m nunc) is:

(1) the norm of decent directidju]| <10™°or (2) the number of allowed iteratiopsis

elapsed =50 for M=3 and x=20 for M>3). The used test problems are DTLZ1,
DTLZ2, and the modified DTLZ5 (Deb et al. 2006bhel corresponding true nadir

points are known and ar¢:0505,...,05)" for DTLZ1 test problem|00,...,0)" for

DTLZ2 test problem antg(]/\/i)M N (J/\/E)M N (J/\/E)M N , (J/\/E)M _4, . ,(]/x/E)O)T for
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DTLZ5 test problem. Also, we use the same termomatriterion described in (Deb et
al. 2006b) which expresses the proximity to the tnadir point. In fact, every size
(p_size: the population size) FEs, we compute the foll@nguantity:

| _est)?
D = %{%J (6.7)

i=1\ 4 —

where ziI is thei™ component of the ideal objective vecttziilj,V is thei™ component of

the true nadir point anatiGlst is thei™ component of the estimated nadir point. When a

value smaller than a threshoid(ys = 0.01 is used here) is found, the simulation is
terminated and the algorithm is said to be sucaéssfiinding a good estimate of the
true nadir point. We note that the population $z£00 for M_{3, 5}, 200 for M = 10,
and 500 for MI{15, 20}. The clearing factor is set to 0.001 for M{3, 5}, and
0.0005 for M1{10, 15, 20}.

Figures 6.20-6.22 illustrate the median valuesl(bfruns) of the required number of
FEs to find a near nadir point (within= 0.01) by the four algorithms for DTLZ1,
DTLZ2 and DTLZ5 respectively. From figure 6.22, wee that all the algorithms
perform more or less similar to each other for33-and 10-objective DTLZ5. For 15-
and 20-objective DTLZ5, MR-NSGA-\Ipresents slightly better results than the three
other algorithms. This similarity of results is égpted by the one-dimensional nature
of the Pareto optimal front of DTLZ5 which makes tifiscovery of the true nadir point
an easy task to achieve for the four search methwdm figures 6.20-6.21, we observe
that WC-NSGA-II, EC-NSGA-II and MR-NSGA-|l are strictly better than the naive
NSGA-II approach on DTLZ1 and DTLZ 2 especially wh&1>5. For 10-objective
DTLZ2, the naive NSGA-II achieves a normalized efi#ince measur@ = 6.002 after
10 million FEs which signifies that this approashunable to find a near nadir point.
For this reason, we do not show the median valuthiefmethod in figure 6.21 for
M =>10. Additionally, in figure 6.20, we do not showetmedian of the needed number
of FEs for the naive approach on DTLZ1 foeM5 since this value is very high on the
10-objective DTLZ1 compared to the three other algms. Let we now compare the
MR-NSGA-Ily algorithm to the two modified versions of NSGAdh DTLZ1 and
DTLZ2. In fact, our hybrid algorithm performs: (&kghtly better than WC-NSGA-II
for MU{3, 5} and (2) strictly better than WC-NSGA-II favi [1{10, 15, 20}. Besides,
MR-NSGA-Ily provides: (1) slightly better results than EC-NSGAor M LI{3, 5, 10}
and (2) strictly better results for V{15, 20}. The performance of MR-NSGAxImay
be explicatedby two reasons.The first reasonis that our hybrid algorithm doesnot
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concentrate the searstrongly in the vicinity of the extreme solutions as donehe
EC-NSGA-II. However, our algorithm constitutes agmdorhood (i.e., an ROI) in the
proximity of each extreme solution in such a wag diversity of each neighborhood is
controlled by thee-clearing parameter. This diversity control not yoravoids the
slowing down of the search and the stagnation efptbpulation in a certain region of
the search space but also it prevents spuriousdoomnated non Pareto optimal
solutions to remain in the population as obseraedWC-NSGA-II (Deb et al. 2009a).
Consequently, this diversity control accelerates gharch towards the Pareto optimal
extreme solutions. The second reason is the usearadient-based local search as an
additional operator of the evolutionary algorithmhigh emphasizes more the
convergence towards the optimal extreme solutigvis.conclude that MR-NSGA-I
maintains a good balance between convergence ammisily which explicates the
obtained results on DTLZ1 and DTLZ2.

¢ Constrained problems

In this subsection, we assess the ability of oumetée algorithm to solve constrained
non-linear problems. We consider the tri-objectié® problem (Klamroth and
Miettinen 2008) which is defined as follows:

—X —Xo+5
Min é(xlz ~10¢ + X2 — 4%, +11) (6.8)

(5% -1
Subject to:
3 +X%,+-12<0
2% +X,—9<0
X 2%, —12<0
O<x, <4
0<x,<6

(6.9)

It was reported in (Klamroth and Miettinen 2008attthis problem makes difficulty for
the payoff table. Individual minimization of objeets yields the following three

objective vectors{- 20-18)", ( 0: 31-1425)", and( 522-55)" thereby the payoff

table provides( 522-1425)" as an estimate of the nadir point. However, it was
reportedin (Deb et al. 200982009b) that the true nadir point of this problem is

( 54.6-1425)". Consequentlythe nadir point estimationsuppliedby the payoff table
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Figure 6.23 The obtained solutions for the constraed KM problem.

is wrong. In order to assess the ability of ourodthm in the constrained case, we
apply MR-NSGA-I| to the KM problem. For the SQP-LS, a neighborasayated by
means of a modified version of thei ncon MATLAB as described previously. The
population size is settled to 40 and the othermatars are set as previously. Figure
6.23 shows the mean of the obtained solutions atit8. The final reference points are
drawn with stars. We observe that our algorithmvigles a ROI in the vicinity of each
reference point. It is important to note that theobre reference points (i.e.,

(5000,2209+ 55003, (- 1000,4604+25003" and (0000;- 3101+ 14252)" ) have
converged to the true extreme Pareto optimal met(i.e.,(SOOO 2200+ 55000)T,

(- 1000,4600+25000)" and (000031005 14250)") within 4 = 0.01 at the end of
the evolutionary process. Consequently, MR-NSGA#dI declared to be successful in

finding the true nadir point of the KM problem (i.e( 5,4.6,—1425)T). We note that

each run takes a reasonable number of FEs (ab00tHEBs) to find a near nadir point.
It is worth noting that figure 6.23 illustrates twerking principle of MR-NSGA-H. In
fact, we see from this figure that an ROI is fornmegr each reference point. Then, the
reference points are updated by: (1) selectingittieeme solutions from each ROI and
(2) applying the SQP-LS procedure to these solatidhen the reference points are
stabilized at the true extreme solutions, the #lgaor stops and provides a good
estimate of the nadir point.
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6.3.3 Discussion

Through section 6.3, we have addressed an old-agamportant issue in multi-
objective optimization, i.e., that is the estimatiof the nadir objective values. As
discussed previously, the nadir point could be sasna form of implicit DM’s
preferences. After discussing the classificatiorthaf existing nadir point estimation
methods into three classes, we have proposed alas® called the extreme-ROI-to-
nadir class. This proposition is motivated by taet that, in the extreme-point-to-nadir
approach, the progressive reduction of populatiwerdity may slow down the search
process. Hence, the constitution of a ROI in tleenity of each extreme point from the
population where the ROI diversity is controlled the ¢ parameter seems to be a
promising approach. The MR-NSGAx]I which is an instance of the ROI-to-nadir
class, has demonstrated its effectiveness andegitig in providing a good nadir point
estimation. Moreover, this algorithm has been shtavbe superior to WC-NSGA-II
and EC-NSGA-II which belong to the extreme-pointatdir class. It is important to
note that other algorithms could be designed basethe extreme-ROI-to-nadir class
principle.

6.4 Conclusion

In this chapter, we have contributed to the seéosclspecial points of the Pareto front
that correspond to implicit DM’s preferences. This achieved through the
approximation of knee regions and nadir objectiadu@s. The proposed algorithms
used the new concept of mobile reference point l{i&cet al. 2010a). The mobile
reference points play the role of attractors to gbpulation members and hence they
guide the search towards special parts of the ®@&aatt that are implicitly preferred by
the DM. This type of reference points is updatetb@atically by the MOEA with
respect to a predefined characterization (i.e., imalx trade-off or extreme point).
Similarly to the r-NSGA-II, the diversity control eashanism is very important in the
three algorithms: (1) KR-NSGA-II, (2) TKR-NSGA-IInd (3) MR-NSGA-I\ since
focusing the search towards a particular regiothefsearch space reduces significantly
the solution diversification which could make theasch decelerating or even
stagnating. The diversity preservation in the thpemposed algorithms was ensured by
means of the-clearing procedure in addition to the extreme tmtupreservation. Such
mechanism enabled these algorithms to convergerdiswidne Pareto optimal knee
regions and the true extreme solutions. The threggested algorithms have been
confronted to recent existing works from the splexed literature and promising results
were obtained.
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Chapter 7

Incorporating DM Group Preferences in
Evolutionary Multi-objective Optimization

7.1 Introduction

As noted in the second chapter, most preferencedbslOEAs assume the uniqueness
of the DM. Few of these algorithms consider thedtlgpsis that there exist more than
one DM by injecting several reference points in W®EA each corresponding to a
particular DM than the algorithm provides an aver&pl (e.g., (Pfeiffer et al. 2008)).
However, this mechanism does not resolve the pmoldece most DMs are still
dissatisfied. In fact, the task of DMs’ prefereraggregation cannot be delegated to a
MOEA. This latter cannot achieve a consensus betwbe different negotiators.
Motivated by this observation and inspired from therks (Ben Jaafar and Ghédira
2007; Conitzer 2006; Herrera-Viedma et al. 2007 propose in this chapter a
negotiation support system called NSS-GPA (NegotiaBupport System for Group
Preference Aggregation) (Bechikh et al. 2011b). N&FBA takes as inputs the DMs’
preferences modelled as reference points and mevabk output a single Social
Reference Point (SRP) that corresponds to an agtipagof all DM’s preferences. By
running the preference-based MOEA with this SRP, el#ain a social ROI
corresponding to aggregated DMs’ preferences. Batition picked from this region
is considered as a satisfying solution for eaclthef DMs. We aim by NSS-GPA to
ensure the highest level of satisfaction for all ®\ince, in real world situations, the
DMs’ preferences are usually conflicting, NSS-GPi#fers the DMs a framework of
negotiation to confront and update their preferenteough a number of negotiation
rounds. This chapter is structured as follows. gt section describes in detail the
NSS-GPA mechanism. The third section demonstrdtesusefulness of our system
through a randomly generated case study. The f@@cttion valorizes the combination
between NSS-GPA and r-NSGA-II (cf. section 5.2.Bjough the resolution of a
practical instance of the portfolio selection peshlwith multiple DMs (Bechikh et al.
2012b). The last section concludes this chapter.
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7.2 NSS-GPA

7.2.1 Overview

Since our goal consists in providing a framework ddferent DMs to negotiate their
preferences, we choose to exploit the software tagaradigm (Morge and Beaune
2004). Hence, we propose an agent-based systegndiop preference negotiation (i.e.,
NSS-GPA) to bring closer DMs’ reference points tlglo a certain number of
negotiation rounds. In fact, each DM is assistedalgoftware agent called Assistant
agent. The overall process is supervised and dtedroy a software Moderator agent.

Initially, each human DM agenE; (j =1...,q) expresses his/her preferences as an
aspiration level vectoAVj =[aj,....ajm ] whereM is the number of objectives and

is the number of DMs. Additionally, he/she provideseach objectivef; (i =1,...,M)

the acceptable deviation quantits; from his/her specified aspiration leve|; so that

the agent is still satisfied with these specifieVidtions. Once all DM agents have
expressed their preferences, the negotiation psosegins. At each negotiation round
of NSS-GPA, a DM agent may have one of the follaatwo states: (13atisfied or (2)
dissatisfied. These two states are defined as follows:

Definition 7.1: Satisfied DM agent

A DM agent Ej (j=1..,0) is said to be satisfied if all its aspiration leve

aj (i=1...,M) o-coincide with the social aspiration levels. An aspiratiendl a;j; is

said to o-coincide with the social aspiration Ieveiaf’“’g if and only if:

ave ave avg _
a?-oj<a;<a®™ +0;.  We note that g g—(Z?zlaji) g and

RP=[a? ... a29].
Definition 7.2: Dissatisfied DM agent

A DM agentEj (j =1...,0) is said to be dissatisfied if at least one offteés/aspiration
levels does nat-coincide with the relative social aspiration level

After each negotiation round, the Moderator agenldb a set of direction rules from
the observed DM agents’ preferences (cf. secti@7.). These direction rules guide
the DMs when updating their preferences so thattimsensus rate increases and hence
the negotiation process converges towards a SREB quockly. A satisfied DM agent
can follow the direction rules in order to stop thegotiation processes as soon as
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possible so that he/she finishes the negotiatioth \&i satisfied state. However, a

dissatisfied DM agent can have two attitudes: pagsive who will pursue the

Moderator’s direction rules or (2ctive who has one of the two following behaviors:

= manipulator: this kind of DMs will lie about his/her true pegénces in order to
direct the SRP towards his/her preferences. Fomple an agenE; aspiration

level a; is setto04 (with gj; = 0.1). However, the corresponding current social

avg

aspiration levela;™ is found to be equal to 0.E; will lie in the next negotiation

round by puttingaji to 01 in order to try to decreaa?ﬂ.?avg towards his/her true

preferences about thi8 objective (i.e., 04).

= non-manipulator: this kind of DMs will search for the dissatisfi&@Ms and will
invite them to update their preferences with thra af modifying the SRP towards
his/her preferences. For example, for two dissatisbMs E; and E,, we suppose

that, for the objectivef;, we have:a;; =05, ap; =03 anda;"® = 08. Ej will

send a request t&, in order to invite him/her to decreasg, (eventually, while

respecting his/her specified acceptable deviatigr). In fact, by decreasingy

and apy, a; 0 value will decrease and will become closeraig and a,; which

decreases the dissatisfaction level for both DMs.

Manipulation in voting systems is seen to be a ahgist behavior which should be
avoided (Conitzer 2006, Xia and Conitzer 2008). fhis reason, the Moderator agent
which has a global overview about the overall niegjoin system, may perceive that
there are some manipulations during the negotiatmmds and hence detects the
manipulator agents. In fact, in NSS-GPA, a manifiteis seen as an abrupt change in
the DM’s preferences which aims to modify one orrensocial aspiration levels in
order to increase the DM’s individual welfare. Mawlation seems to be a selfish and
dictatorial behavior because if all agents are maators, the consensus will never be
reached and hence the negotiation process will rnewel. For this reason, the
Moderator agent has the role to detect manipulaodsto punish them by retrieving
them the right to update their preferences witHolibwing the global direction rules.
In fact, manipulators will be punished by forcirttein to pursue the global direction
rules issued from the Moderator software agent.

7.2.2 Conceptual details

7.2.2.1 Production of direction rules and processoatrol
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¢ Determination of the set of preferences to be updetl
For each aspiration leved;; of a DM agentE;, the Moderator agent computes the
mean gap separatirmgji from the aspiration levelgy; of the other agents as follows:

q

MG _aspiration(a;;) = > ‘aji - ay ‘/(q—l) (7.1)
k=Lk# ]

After that, the Moderator agent calculates the ayermean gap for each aspiration

componentg; as follows:

q
Average_ MG (g ) = > MG _aspiration (aji)/q (7.2)
j=1

The Moderator agent can now determine the prefesenc be updated in order to
increase the consensus level. In fact, the Modeegient aims to minimize the mean
gap of each aspiration level by using the followinlg R1):

If (MG _aspiration (aji)>Average_ MG (g; )) Then
Update (aj; );
End If
¢+ Determination of the set of DM agents invited to ugate their preferences

At the beginning of the negotiation process, all Rigents can be invited to update
their preferences. In fact, if an aspiration legeéluationaj; is to be changed, then

automatically the DM agentE; is invited to modify his/her preferences. This

mechanism allows evading the problem of group tyya(Baint and Lawson 1994).

After some negotiation rounds, the consensus Mileincrease. In order to preserve
this increase and encourage the consensus improveme minimize the number of

aspiration level evaluations to be updated. Thscisieved by minimizing the number
of DM agents invited to modify their preferencede$e agents are identified as
follows:

For each DM agenk|, the Moderator agent computes the mean gap sepatae
agent’s preferences from all other agents’ prefesmas stated by equation (7.3):

q
MG _agent (Ej) = ZGap(Ej,Ek)/(q—l) (7.3)
k=1Lk#j
M
where Gap(Ej,Ek):Z‘aji —aki‘/M (7.4)
i=1

Then, the Moderator calculates the average agean mep:
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q
Average AMG = ZMG_agent(Ej)/q (7.5)
j=1

Now, the Moderator agent can identify the agent&t #hould update their reference
points in order to augment the consensus levels Thiachieved by minimizing the
mean gap of each agent by the following rire)(

If (MG _agent (Ej) > Average_ AMG) Then
Invite_for_update (E;);
End If
¢ Process control

Here, the Moderator agent firstly computes the SRch corresponds to the

arithmetic mean of all DM agents’ reference poiiies,, SRP=[a:"?,...,a5?]" such

a’Vd =(Zq:ajiJ/q Oi =1,...M (7.6)
j=1

After that, the Moderator agent calculates the geparating each DM agent’'s
reference point from the SRP:
/M (7.7)

Then, the Moderator agent computes the averagk gdas separating the agents from
the collective opinion:

that:

M
Gap_ from_SRP(E;) = Z‘aji -
i=1

q
Average_Gap_ from_SRP =) Gap_ from_SRP(E; )/q (7.8)
j=1

The overall negotiation process is controlled by hoderator agent based on: (1) the
Consensus Rate (CR) and (2) the parametdtaxiter. TheCRis expressed as follows:
CR=1- Average_Gap _from_ SRP (7.9)

Maxiter corresponds to the maximum allowed number of nagoh rounds. This
parameter is important since it ensures that tbegss ends after a specified number of
negotiation rounds.

Based orCR andMaxlter, the Moderator agent controls the negotiation @sedy the
following rule R3):
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If (numliter < Maxiter) Then
If (CR<a)and (NOT All_Satisfied)Then
Execute_update (R1); /*All DM agents can be invited to the update
operation*/
Else If(CR< ) and (NOT All_Satisfied)Then

Execute_update(R1, R2); /*Some DM agents can be invited to the
update operation*/
Else
Stop_negotiation( );
End If
End If
Else
Stop_negotiation( );
End If
where numlter is the current negotiation round inde&; and S are two control

parameters which are specified before the beginointhe negotiation process such
that a O[O, SO[01] and (@ < B). All_Satisfied is a Boolean variable indicating
whether all DMs are satisfied (cf. Definition 7.1).

¢ Direction rule production

Once the preferences to be updated and the ageitiesdi for the update operation are
identified, the Moderator agent furnishes the aglvides to the DM agents as follows:

Advice rule Al: If (aji<ai"?) Then
Invite the agentE | to increaseajj ;

End If

Advice rule A2: If (aji>ai"?) Then
Invite the agentE j to decrease j;;

End If

The objective of these rules is to bring closer Dpteferences in order to reach a high
level of consensus.

7.2.2.2 Manipulator isolation

Manipulation is a bad and undesirable behaviougroup decision making situations
and especially in social choice theory (Xia and i€&n 2008). For this reason, we
offer the Moderator agent the ability to detect lsumehaviour and to penalize
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manipulator DMs. In NSS-GPA, a manipulation is druat change in one DM’s
aspiration level, which does not respect the netaticcepted deviation of the last
negotiation round, in such a way the preferenceatgpanodifies the SRP in the
direction of the manipulator preferences. We assumeur system, that each DM has
the right to makeM manipulations during the negotiation since, inl rearld

negotiation situations, a negotiator may give up ohhis/her aspiration levels without
aiming to manipulate the negotiation. For examible, DM agentE; Is satisfied with

all social aspiration levels except for one asmratevel aj; where thei " objective is

not so important for him/her, then he/she pref@dating his/her preferences so that to
increase the consensus rate which augments thececha#fnending the negotiation
process with an almost satisfied state. Thus, thdévhator agent considers a DM agent
to be a manipulator if he/she perforr(ld +1) manipulations. When, a DM agent is
detected as a manipulator, the Moderator agentivasprhim/her not only of
manipulations but also of sending/receiving messagérom other agents. Hence, the
manipulators are isolated and are obliged to upthese preferences according to the
global direction rules; thereby increasing the emssis rate and making the negotiation
process further converging. Manipulator isolatisran important mechanism to avoid
selfishness, untrustworthiness and dictatorshigbiebs.

7.2.2.3Dissatisfied non-manipulator DMs’ communication

A dissatisfied non-manipulator DM agent would likedecrease his/her dissatisfaction
degree by negotiating with other dissatisfied DM& note that each negotiator has a
complete vision over the preferences of the oth&ssmentioned above, a DM is said
to be dissatisfied if at least one of his/her agmn levels does net-coincide with the
corresponding social onécf. Definition 7.2). For example, considerthe caseof 5
objectivesand 10 DMs, and supposethat thereare threeDM agentsE;, E, and Ej
which are dissatisfiedwith the value of the third social aspirationlevel a3*? such
that: a5"? = 06, aj3 =04, ap3 =08 and agz = 02. We supposealso that thereis a
satisfied agen€, havingayz = 08.1t is interesting to ager; to contact agentg,,
E3, E4 by sending them requests to decrease their aspirkvel evaluationsa,s,
azz and ay3 while respecting theio values. In fact, ifE,, E3, E4 agree about that,

there is more chance thaf"® decreases towards the value@ which decrease the
dissatisfaction level ofg;. Thus, the aim of communicating with other agest$o

bring closer the collective opinion towards; preferences. AgenEz seems to be
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interested with such proposal since drivia@vg towards a;3 = 04is equivalent to

driving agvg towardsagz = 0.2 However, in order to convinc&z to accept his/her
request, E; should promiseEz that he/she will decrease his/her aspiration level
evaluationa; 3 if E3 accepts the proposal and performs the decreasee\do, in real
world situation, a DM may be a liar. So, i lies to Ez then E3 marks E; as a liar
and does not accept his/her future proposals. BgsitlE; takes his/her promisdgg

marks E; as a trustworthy agent and may accept his/herdutaquests. On the

contrary to agenkg, agentE, is not interested to such request since decreaﬁ?’%

makes the SRP roll away from his/her preferencems€quently,E, simply rejects
the request. The satisfied agdfit may be interested in acceptifig proposal in order

to improve the consensus level and hence augmettiggprobability of ending the
negotiation sooner with a satisfied state.

7.2.3 Implementation details

In this subsection, we give some important impletaigon details of our system. NSS-
GPA is implemented by using the Java Agent DEvelemmframework (JADE)
(Bellifemine et al. 2007) and the ECLIPSE programgniool (d’Anjou et al. 2004).
Each Assistant agent has a set of cyclic behavatieving it to perceive its
environment, to communicate with other agents andigdate its preferences. The
Moderator agent also has a set of cyclic behawatiosving him to perceive the DM
agents’ preferences, to produce then broadcastdiee rules for them, to detect then
punish manipulators and to control the negotiation procbased on the control
parameters;, f andMaxlter.

Assuming a minimization MOP, the system provides EiMs with the ideal objective
vector in addition to the nadir one by using, faample, our MR-NSGA-N method
(Bechikh et al. 2010b). In this way, each DM’s aapon level value lies in the interval

[ 983 £.Madir) - After that, the system uses the normalized aspiratalues (which lie
in the interval[0]1]) in order to ensure that all mean/average \gdpes lie between 0

and 1. In this way, the negotiation can be welltoated and the recommendations can
be fairly produced based on the designed rulessggdtion 7.2.2.1). Additionally, the
system works with the normalized accepted deviatadoes which can be expressed as
follows:

JJniorm =0;j /(finadir _ fiideal) (7.10)
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We note that NSS-GPA imposes thatj”™0[0,0px" i order to control

manipulations whereray. is specified before the beginning of the negaiiatby a

human Moderator agent. At this stage, we can defidd1’'s manipulation analytically.

Assuming atji"l an aspiration level fixed by DM age#; for the it objective at the

previous negotiation roun@ -1) and a'; is the updated value affj* at the actual

negotiation roundt( )The update operation is said to be a manipulatiand only if:
i —ali*[> 0} (7.12)

t-1

where o1 is the accepted deviation fixed bi; for the i

objective at the

generation(t — 1).

7.3 Case study

This section is devoted to describe a run of NS&GR a case study with 10 arbitrary
chosen DMs and 4 objectivea, f and Maxlter are settled to 0.5, 0.8 and 50

respectively.gfay is set to 0.3. These parameters are fixed by aahulhoderator

agent. Table 7.1 shows the initial DM agents’ refee points in addition to the
accepted deviations (mentioned between parenthédes)DM interacts with the NSS-
GPA through a guided user interface (cf. figurg Wiich is composed with six panels:

= Agent Preferenceswhere the DM can see the reference points dllagents.

= Collective Preferences where the DM can see the collective opinion ,(itee
SRP).

= Moderator Recommendations where the DM receives the global advice rules
from the Moderator agent.

= Agent Proposals:where the human DM receives proposals from other dgjeints.
The user can accept or deny such proposals.

= Regquests:where the DM can send requests to other DM agemtscan verify for
each one of his/her sent requests whether it waepéed or denied.

= Preference Update:where the DM can update his/her reference pointhasfher
accepted deviation vector.

Based on the used parameter setting, the 10 hunMsa IRave confronted their
preferences, through NSS-GPA, while being supedvassd guided by the Moderator
softwareagent.Figure7.2 showsthe parallel coordinateplots of the DMs’ reference
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B Agent E10 decision making consol ol =
Agent preferences (=]
Agent D il T2 13 T4 i
-E8 0.3 0.8 0.1 0.2 T
-E10 0.8 0.4 0.3 0.9 —
-ES 0.2 0.6 0.4 0.7
-E2 0.7 0.2 0.2 0.1 —
-F4 0.4 0.5 0.9 05 -
Collective Preferences

1 f2 13 f4
Social reference point 0.5 0.5 0.4 0.5
Moderator Recommendations [ =]

-You should increase f2 =
-You should decrease 3
-Youshouldincrease f4
Agent Proposals
- RequestID ="E51" =~ |

Request content = "From agent E5 : If you decrease f2, | will decrease f2° —
Accepted Requests |Put here your accepted proposals D separated by commas | | Send replies
Requests [=]
Send Requests Accepted/Denied Requests
For |E3 |V| : Ifyou |increase ‘V| |13 |V| 1 wiill |increase |V| |13 |V| T
Send request ;
Preference update -
New reference point |l:| 7020702 |
New accepted deviations |U.23.0.25.0.23.0.18 |
Confirm Abort ~

Figure 7.1 NSS-GPA decision making consol.

Table 7.1 Initial DM’s aspiration levels (+ accepted deviations).

f1 f2 fs fa

DM1 0.8 (+0.10) 0.1 &0.05) 0.4 ¢0.18) 0.2 ¢£0.11)
DM2 0.4 (+0.18) 0.9 &0.09) 0.2 ¢0.15) 0.5 ¢ 0.25)
DM3 0.6 (+0.28) 0.5 &0.07) 0.7 £0.22) 0.4 ¢0.26)
DM4 0.1 (+0.09) 0.4 ¢:0.18) 0.1 ¢0.05) 0.6 ¢ 0.30)
DM5 0.4 (+0.08) 0.3 £0.11) 0.9 ¢ 0.09) 0.5 ¢ 0.20)
DM6 0.8 (+0.07) 0.7 &0.30) 0.1 ¢0.09) 0.2 ¢0.08)
DM7 0.2 (+0.20) 0.6 &0.14) 0.4 ¢0.25) 0.7 £0.11)
DMS8 0.9 (+0.08) 0.4 0.22) 0.3 ¢£0.11) 0.9 ¢ 0.09)
DM9 0.3 (+0.21) 0.9 £0.10) 0.2 ¢£0.21) 0.8 ¢£0.12)
DM10 | 0.7 (x0.23) 0.2 &0.15) 0.7 £0.16) 0.3 £0.18)

points (in addition to the SRP): (a) at the begignof the negotiation process (cf. table
7.1) and (b) at the end of this process. Figuréaj.@hows how the initial preferences
are so conflicting. In fact, there are large gagiwken DMs’ reference points

themselvesBesides,theseinitial aspirationlevel vectorsare so conflicting with the
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Figure 7.2 DMs’ preferences: (a) Initial aspirationlevel
vectors and (b) final aspiration level vectors.

Table 7.2 DM profiling statistics.

NSR NAR | NDR | NM NARec/NRRec
DM1 61 37 14 1 15/36 (41.67%)
DM2 8 3 5 5 18/29 (62.07%)
DM3 42 23 19 2 12/18 (66.67%)
DM4 63 48 15 0 17/26 (65.38%)
DM5 11 6 5 5 19/31 (61.29%)
DM6 21 9 12 4 14/33 (42.42%)
DM?7 81 69 12 0 21/28 (75.00%)
DMS8 89 76 13 0 22/25 (88.00%)
DM9 14 6 8 3 26/38 (68.42%)
DM10 54 26 28 1 22/28 (78.57%)

initial SRP  (052050040051). Figure 7.2(b) illustrates timal reference points at

the end of the negotiation. We see from this figuogv the final reference points are
less conflicting and so convergent towards thel fBRP (0479,0560,0307,0642).

We conclude that NSS-GPA has achieved a good ceusdaetween the different DMs
about a SRP. We can say that NSS-GPA has succeeddéding closer DMs’
preferences through the negotiation rouriddle 7.2 presents some statics provided by
our system that we cagbrofiling statistics since they allow drawing the profile of each
DM. These statistics are: (NSR: the Number of Sent Requests by the DM,N2R:

the Number of Accepted Requests, KB)R: the Number of Denied Requests, KM

the Number of Manipulations and (3JARec/NRRec: the Number of Accepted
Recommendations divided by the Number of ReceiveztoRimendations (the
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acceptance percentage is set between parenthesas)figure 7.2(b), we observe that
DM4, DM7 and DM8 are the most satisfied DMs sineilt final reference points are
the nearest to the final SRP. The satisfactionuchsDMs may be explained by the
obtained results in table 7.2. In fact, these Batisagents are the most communicating
agents since they have large values forNBR statistic. Additionally, DM4, DM7 and
DM8 have succeeded to have a large number of amteptjuests, they are said to be
the most trustworthy agents. DM2 and DM5 are detkes manipulators according to
the NM values (for a 4-objective casdhM =5 means that the DM agent is a
manipulator). DM2 and DM5 are the most dissatisidd agents according to figure
7.2(b). This observation may be explained not drmyytheir manipulation behavior but
also by their poor communication with other DM aige(cf. NSR values from table
7.2). Intuitively, for a particular DM, the larghis/herNARec/NRRec ratio value is, the
greater his/her satisfaction level is. Howeverstls not sufficient since the DM'’s
satisfaction depends also on its communicatiorisskihd attitudes. For example, the
ratio NARec/NRRec of DM9 is greater than DM1 one. Nevertheless, ffayare 7.2(b),
we see that DM1 reference point is nearer to thal fSRP than DM9 one. This
observation can be explained by the superiorityDbdl over DM9 in terms of
communication skills and trustworthiness (MSR, NAR and NDR values from table
7.2). We can say that NSS-GPA favors communicdliMg over non-communicating
ones.

Once the DMs’ negotiation is performed, we can dedor the Pareto optimal ROI of
the considered MOP by running any reference paased EMOA (e.g., r-NSGA-II
(Ben Said et al. 2010), PBEA (Thiele et al. 200RINSGA-1I (Deb et al. 2006), etc.)
with the final SRP obtained by NSS-GPA. We choasedrform a run of r-NSGA-II
with the final SRP (0479,0560,0307,0642) on the four-objective DTLZ2
minimization test problem which is described in B al. 2002b). The population size
and the number of generations are set to 200 afAdrégpectively. The parametér
which controls the breadth of the obtained ROI (EBaid et al. 2010) is set to 0.3.
Figure 7.3 shows the parallel coordinates plotefdbtained preferred solutions. From
this figure, we remark that, although the objectiadues lie in [0,1], most obtained
solutions are concentrated near the reference peisigned with a dashed bold gray
line which would be the region closest to the fiS&P furnished by NSS-GPA. When
computing zinzlfizfor all obtained solutions, the values are foundliéo within
[1.051, 1.311], thereby meaning that all solutians near the true Pareto region (since
Pareto optimal solutions of DTLZ2 satis@inzlfi2 = (Deb et al. 2002b)). We can

say that r-NSGA-II has providedsacial ROl and, as noted in the first section, each
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: r-NSGA
Ogbooi . Social rPTferenn:e point

Objective value

Objective index

Figure 7.3 The r-NSGA-II ROI with the final SRP provided by
NSS-GPA (0.479, 0.560, 0.307, 0.642) on the fourjexdtive DTLZ2.

non-dominated solution picked from this region esidered as a satisfying solution
for each of the considered DMs.

7.4 Application to a practical portfolio selectionproblem

In this section, we demonstrate the usefulness $54PA on the bi-objective
portfolio selection problem with practicalities (Deet al. 2011). In a portfolio
optimization problem with an asset universeakecurities, lets; (i =1,...,n) designate

the initial capital proportion to be allocated tecsrity i. Typically, there are two
conflicting objectives: (1) minimize the portfolissk and (2) maximize the expected
portfolio return. These two objectives have receitbe most attention and such
formulation is known as the mean-variance modd&lafkowitz (1952). The most basic
form of this problem can be expressed as follows:

n n
Min f(x) =3 > x0jx;
i=1j=1

M f = ; i X
ax f2(x) Elfxi (7.12)

20 Oi=1..n

The first objective corresponds to the portfoliskrthat is usually computed from an
nxn covariance matrix[gjj]. The second objective corresponds to the expected
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portfolio return as computed from a weighted sunthef individual security expected
returns. The first constraint ensures the investroérall funds while the second one
ensures the non-negativity of each investment. Burdbjective problem gives rise to a
front of several optimal trade-off solutions whishould be found to investigate the
risk-return relationships. One way to solve this RIS to convert it to a SOP using the
e-constraint method as follows:

n n
Min f(x) =3 > %05,
i=1j=1

n
f =X 2R
2(X) E,lrl X (7.13)

=20 0i=1..,n

In order to generate a representative approximabiothe Pareto front, the above
guadratic problem is solved repetitively for maniffedlent values ofR which
corresponds to the minimal acceptable return value.

According to the study of Deb et al. (2011), it demnexpected that almost any solution

of (7.13) contains many of its securities at theZevel, i.e., for many, xi* =0. It can

be also expected, for at least a few securitiasx;ﬁas a very small quantity. However,

to have a practical portfolio, very small investrigeim any security may not be desired
and are to be avoided. Thus, there is the praityicdlat, for any portfolio to be of

interest, there is to be a lower limit on any nemezinvestment, i.e., eithex,-* = 0

(meaning no investment in the ith security)xﬁrz A (meaning that there is a minimum

non-zero investment amount for tifesecurity). There may also be an upper boand
on the proportion of any security in any portfolionfortunately, the solution of (7.13)
for any givenR does not guarantee the possession of any of thesacteristics.

In addition to the above, there is a second praldiycand it is about the number of non-
zero securities contained in the portfolios aldmg Pareto front. Over this, a user may
wish to exert control. To generate practical pdidy a user may be interested in
specifying a given number of non-zero investmemta oange in the number of non-
zero investments a portfolio has to contain. This icardinality constraint and it has
also been the subject of some research attentitein(®t al. 2008; Streichert and
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Tanaka-Yamawaki 2006). Taking both practicalitiedoi account, we have the
following bi-objective optimization problem:

n n
Min f1(x) =2 > %0jX;
i=1j=1

n
Max fo(x) = 1%
i=1
n (7.14)
2% =1
]
Xi=0o0or A<y <w
dmin < d(X) < dipax
0<A<sw<l1

whered(x) is given as follows:

n {1 if x >0 @)1

19=210 it x =0

Standard quadratic problem solvers face difficaliie the presence of discontinuities
and other complexities. For instance, the secomdtcaint, requires anot” operation.
While x; =0 or x, =A are allowed, values between the two are not. Ttreduces

discontinuities in the search space. The third waimg involves a parameterwhich is
defined by a discontinuous function of the decisi@riables given in (7.15). The
second and third constraints make the applicatimtamdard quadratic problem solvers
difficult which is not the case for the MOEAs (Debal. 2011).

After presenting the problem details, we can nowcdbe the case study concerning
the application of NSS-GPA on this practical biestjve constrained portfolio
selection problem (Bechikh et al. 2012b). We coaisah instance used in (Deb et al.
2011) with 88 securities) = 0005 ¢ = 004 andd 0 [3045]. As noted previously in
the fifth chapter, the nadir point helps the DMeixpress his/her preferences so that
each aspiration level lies between the ideal vaund the nadir one. Figure 7.4
demonstrates the effects of expressing: (1) aester point in the region delimited by
the ideal point and the nadir o®€0.7,0.4) and (2) a reference point outside of this
regionB(0.7,0.9). We see, from this figure, that althotigé two reference points have
the same aspiration level value for the first otieg they provide quite different ROIs.
This observation emphasizes the importance of #u# point and the ideal one in the
preference expression process. The ideal pointbeaaasily obtained by minimizing
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Figure 7.4 Importance of the nadir objective vectorand the
ideal one for DM’s preference expression.

each objective functiomdividually which is not the case for the nadir point. Fos thi
reason, we apply our algorithm MR-NSGArI(described in the previous chapter) in
order to estimate the nadir point. We note thatuse, throughout this experiment, the
repair mechanisms proposed in (Deb et al. 201byder to generate feasible solutions
when initializing the population and generating théddren. The used parameter setting
is described as follows: population size = 200, bernof generations = 800, crossover
probability = 0.9, crossover (SBX operator) digttibn index = 10, mutation

probability = 0.1, polynomial mutation index = 5@das = 0.0005. For the SQP-LS

used in our algorithm MR-NSGA+] the termination criterion is: (1) the norm of

descent directiord| =108 or (2) the number of allowed iteratiops= 40 is elapsed.

The obtained nadir point approximation MADIR (0.0024, 0.0102). For the bi-
objective case, the ideal point can be deduced frmmadir one; however the opposite
is not true. Thus, we use the outlier solutionstbby MR-NSGA-I| in order to find
the ideal point approximation which is found to H2EAL (0.000123, 0.0238). We
supply the 10 DMs involved in this experiment wittese values in order to express
their reference points in addition to their accdpw@eviation vectors. The used
parameter setting for NSS-GPA is as followsp andMaxlter are settled to 0.4, 0.75

and 50 respectivelyomax is set to 0.3. These parameters are fixed by aahum

Moderator agent. Consequently, the risk aspiratewels should lie in the interval
[0.000123, 0.002400] with an acceptddviation of (0.002400 - 0.000123) 0.30 =
0.000683.The return aspirationlevels should lie between[0.0102,0.0238] with an

162



Chapter 7. Incorporating DM Group Preferences in Evolutionary Multi—objective Optimization

Table 7.3 Initial DM’s aspiration levels (x accepted
deviations) for the practical portfolio selection poblem.

Risk Return
DM1 0.002300 ¢0.000132) 0.0197 40.0018)
DM2 0.000648 ¢ 0.000465) 0.0114 40.0033)
DM3 0.001526 ¢ 0.000206) 0.0200 #0.0030)
DM4 0.001276 ¢ 0.000369) 0.0188 0.0023)
DM5 0.002235 (0.000103) 0.0219 40.0028)
DM6 0.001730 ¢0.000476) 0.0182 0.0024)
DM7 0.000925 ¢ 0.000258) 0.0178 40.0012)
DM8 0.001667 0.000587) 0.0155 40.0018)
DM9 0.001335 ¢ 0.000355) 0.0140 40.0011)
DM10 0.000524 ¢ 0.000405) 0.0138 40.0027)

accepted deviation of (0.0238 - 0.0102) * 0.30 80@08. Table 7.3 shows the initial
DMs’ preferences. We remark, from this table, ttheire are several kinds of DMs
(risk-averse investors, risk-neutral investorsk-geeking investors) with different
whishes of return which makes the initial DMs’ mefiece points so conflicting. Based
on the used parameter settings, the 10 DMs havieoted their preferences through
NSS-GPA. Figure 7.5 shows a confrontation, in tis&-return space, between the:
(1) the initial DMs’ reference points and (2) theal ones. We see, from this figure,
how the initial preferences are so conflicting anly between themselves but also with
the initial SRP (0.001416, 0.0171). Figure 7.5(lhistrates the final reference points at
the end of the negotiation. We see, from this fgumow the final reference points are
less conflicting and so convergent towards thel fl@RP (0.000927, 0.0163). We
conclude that NSS-GPA has achieved a good consdretusen the different DMs
about a SRP. We can say that NSS-GPA has succeedeathg closer the DMs’ risk-
return aspiration level vectors. We remark alsaonfriigure 7.5 that: (1) most DMs’
who have decreased their risk aspiration value® ladso decreased their return ones
and (2) most DMs’ who have increased their riskrasipn values have also increased
their return ones. These two observations emphasieefact that higher return is
usually obtained with higher risk.

We can now apply our reference point-based metHd8@A-II with the final SRP in
order to find the social ROI for the consideredtanse of the practical portfolio
selection problem. We use a population size of 8 a number of generations of
1500. The non-r-dominance threshélavhich controls the breadth of the ROI is set to
0.3. We note that we use the same repair mechamswpssed in (Deb et al. 2011) in
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Figure 7.5 DMs’ preferences in terms of risk and reurn: (a) initial
aspiration level vectors and (b) final aspiration ével vectors.
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Figure 7.6 Obtained social ROI by running r-NSGA-II with the final SRP
(0.000927, 0.0163) on the practical portfolio seleoch problem.

order to generate feasible solutions. Figure 7dvshthe obtained social ROI designed
with green triangles. We see from this figure hdus tregion is composed with the
nearest Pareto optimal portfolios to the sociaéneice point in the risk-return space.
Besides, we remark that surprisingly the social R@responds to the knee region
composed with the worthiest portfolios in termsrigk-return trade-off. Hence, if the

DMs make a consensus about selecting a portfaio the knee region, the negotiation
can be ignored and we can directly use the TKR-NSIGAethod (cf. chapter 6) in

order to approximate the knee region. Finally, @igd at the beginning of this chapter,

164



Chapter 7. Incorporating DM Group Preferences in Evolutionary Multi—objective Optimization

each portfolio selected from the social ROI is ecdexed as a satisfying portfolio for
most DMs.

From a computational viewpoint, we note that thetamized NSGA-II approach
(without using local search) of Deb et al. (201Beds about 1.5 20FEs to
approximate the whole Pareto front according toetkgerimental results presented in
the corresponding paper. However, our approachclwhises MR-NSGA-| for
estimating the nadir point and then r-NSGA-II tpegximate the social ROI, requires
about 0.7 10 FEs. This observation emphasizes the computatieffigiency of our
approach regarding the use of a general-purpose M@fthout any preference-based
mechanism) and then selecting a portfolio in agra®i manner.

7.5 Conclusion

In this chapter, we have proposed an agent-basstersyfor group preference
negotiation. Reference point negotiation can b@ s&ea special case of social choice
where the different DMs are searching for a consembout a SRP. In order to avoid
the impossibility results of social choice theoArrpw 1951, Gibbard 1973, Xia and
Conitzer 2008), we have chosen to use the concepigent-based negotiation by
proposing NSS-GPA. In fact, we have seen how thésDhleferences change over
time through a negotiation round to another onetas the current group preferences
in addition to the current SRP. Indeed, each D#ktto attract the SRP towards his/her
own preferences by communicating with other DMs ftidwing the global direction
rules. The originality of this work resides in tleensideration of different human
profiles and attitudes that a DM can have durimgegotiation. NSS-GPA was assessed
through a case study with 10 DMs and four-objestivk was demonstrated to:
(1) discourage dictatorship, manipulation and wstworthiness behaviors and
(2) encourage communication between the negotiatuditionally, NSS-GPA was
shown to be helpful in confronting and adjusting ®Mreferences; thereby providing
a satisfying SRP to be injected in any referendetgmsed MOEA with the purpose to
guide the search towards a social ROI. Subsequyé¢hdyDMs can select the solution to
realize for the considered MOP from the obtaineglae Finally, we have valorized
the usefulness of our system through the resolutiba practical instance of the
portfolio selection problem with two objectivessiiand return) and 10 DMs and the
obtained results were promising.
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Conclusions and FutureWorks

8.1 Key results

Through this doctoral thesis, we have contributedttie incorporation of DM’s
preferences in EMO. In detail, the major contribos could be summarized as follows:

The proposition of a new reference point-based dantge relation, i.e., the

r-dominance, which has the ability to create acttpartial order on the set of
Pareto-equivalent solutions. Such characteristikemauch a relation able to guide
the search towards the interesting parts of thetBaptimal region based on the
DM’ preferences expressed as a set of aspiratieideAfter integrating the new

dominance relation in NSGA-II, the efficacy and theefulness of the modified

procedure (i.e., r-NSGA-II) have been assessedigffirawo- to ten-objective test

problems a priori and interactively. Moreover, theposed approach provided
competitive and better results when compared toerothecently proposed

preference-based EMO approaches.

The suggestion of new approaches for approximatneg regions which represent
a form of implicit DM’s preferences. The proposeqip@aches, i.e., KR-NSGA-II
and its enhanced version TKR-NSGA-II, have demaistt their effectiveness and
efficiency in discovering knee regions on a setkoke-based test problems
commonly used to assess the ability of MOEAs td finee regions. Moreover, the
interactive versions of these approaches are ddnmaters as tools to handle the case
where the DM has no a priori information about tnember of existing knee
regions in the Pareto optimal front. Moreover, thER-NSGA-II has been
confronted to recently proposed knee-based MOEABIGNg KR-NSGA-II via a
comparative experimental study. The obtained rewdtre shown the superiority of
the TKR-NSGA-II over the other approaches.

The proposition of a new class of algorithms fodin@oint estimation using EASs,
i.e., the extreme-region-of-interest-to-nadir claBse MR-NSGA-I}, which is an
instance of our newly suggested class, has beasssesh on a set of three- to
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twenty-objective unconstrained/constrained problefte proposed approach has
shown competitive and better results when compéwedther recently proposed
nadir point estimation approaches.

= The incorporation of the preferences of a groupDdfls in MOEAs which
represents an omitted problematic in the EMO re$efield. We have addressed
this problematic by proposing an agent-based naigmi support system (i.e., NSS-
GPA) that allows the different DMs to negotiateitheference points before the
beginning of the optimization process. The systerput is a SRP to be injected
subsequently in any reference point-based MOEAh sxscr-NSGA-II, in order to
guide the search towards a social ROI. NSS-GPA been demonstrated to:
(1) discourage dictatorship, manipulation and uwtimorthiness behaviors and
(2) encourage communication between the negotiadalditionally, the usefulness
of the collaboration between NSS-GPA, MR-NSGA-Hnd r-NSGA-II has been
shown on a practical instance of the portfolio cid® problem.

8.2 Futureworks

Regarding what has already been achieved in tHerpree-based EMO research field,

several open questions and perspectives arecstilivestigate. These perspectives can
be classified into two main classes. The first aoacerns the development of the

hybridization between EMO and decision making. T9exond one concerns the

exploitation of preference incorporation in othél@ related subfields.

8.2.1 Developing the hybridization between EM O and decision making
Among the possible future works that fall in tbiass of perspectives, we propose:

= Preference elicitation: An important issue in preference-based algoritisri®ow to
interact with the DM(s) and how to guide the DMdsiying the interaction in order
to elicit his/her preferences in a consistent mantieseems to be interesting to
design some specific methods for preference exract

= |nteraction between EMO and group decision making: The NSS-GPA supposes that
reference points should be negotiated and aggrdeore the beginning of the
search in order to find a satisfying SRP. It wob&linteresting to investigate the
possibility of designing an agent-based distribusgdtem where each software
Assistant agent is deployed on a single computdrlamnch the preference-based
MOEA with the corresponding DM'’s reference point.this way, the preference
negotiation and the optimization process are peréarin parallel. Additionally, the
interaction between the different agents could laglenbased on an argumentation
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system that exploits information issued from therent states of the MOEAS’
populations in the search space. Furthermore, weecaich this perspective by
considering the hierarchy and the coalitions betwibe different DMs.

Investigating the incorporation of preferences within other metaheuristics: In
addition to EAs, several other metaheuristics hd@eonstrated their efficacy in
solving MOPs such as PSO (Reyes-Sierra and Coe06)2and Artificial Immune
System (AIS) (Freschi et al. 2009). Hence, it teriesting to incorporate preference
information in such population-based metaheurigezouz et al. 2012).

8.2.2 Exploiting preference incorporation in other EMO issues

Among the possible ideas that fall in this clasp@&fpectives, we suggest:

Many-objective optimization: When dealing with MOPs involving more than three
or four objective functions, the task of approximgtthe Pareto front becomes
more difficult due to: (1) the loss of the abiliof MOEAs to adequately order
solutions in terms of objective function values g8 the exponential increase in
the number of solutions required to generate a ganaple of the Pareto front. One
of the attempts to tackle such problems is to uselifled forms of the Pareto
dominance based on DM'’s preferences (Adra et &@7@0hereby finding only
portion of the front that satisfies the DM, i.ehetROI. For example, in the fifth
chapter, our r-NSGA-II algorithm has demonstratsdability to find the ROI for
up to ten objectives. Hence, more elaborated prbée-based dominance relations
could be designed to solve many-objective problems.

Expensive multi-objective optimization: In some engineering MOPs, the evaluation
of candidate solutions could be extremely compomaily and/or financially
expensive since it requires time-consuming compsieiulations. Therefore, a
method is of great practical interest if it is alite produce reasonably good
solutions within a given often very tight budgettarms of computational time
(Zhang et al. 2010). As demonstrated through ossi#) approximating a ROI
requires fewer FEs than finding the whole Paretontfr Consequently, the
incorporation of DM’s preferences within an EMO eggch specifically designed
for expensive MOPs may further minimize the recqiirmimber of FEs; thereby
decreasing the computational time.

Robustness: In optimization studies including multi-objectiveptimization, the
main focus is placed on finding the global optimwm global Pareto optimal
solutions representing the best possible objectsieies. However, in practice,
users may not always be interested in finding thealed global best solutions,
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particularly when these solutions are quite seresitd variable perturbations which
cannot be avoided in practice. In such cases, iposers are interested in finding
the robust solutions which are less sensitive tallsperturbations in variables (Deb
and Gupta 2006). Hence, it is interesting to sefoctherobust ROI.

Further applications to real world MOPs. We remark, from the described works in
this thesis, that most researchers have assessiegtbference-based MOEAs on
academic benchmarks such as the ZDT and DTLZ beadhrsuites. For this

reason, the researchers are encouraged to apmg Higorithms to handle real
world problems, for the discrete case (Loukil e28l07, Benlic and Hao 2012) and
the continuous one (Belgasmi et al. 2008), in daangit to further valorize the

preference-based EMO research field.
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Appendix A
ZDT and DTLZ Benchmark Suites

A.lZitzler-Deb-Thiele (ZDT) benchmark suite

The following table gives the definitions of the ZDT test functions (Zitzler et al. 2000):

TableA.1 ZDT benchmark suite.

Name Description Pareto front
ZDT1 f(X) =% The Pareto front
correspondsto g(x) =1.
00 = g(x)(l—w/w]
9(x)
_ 9 %
g(x) —1+n—_1;>§
x 0[04] oiOft...nhn=30
ZDT2 f.(X)=x The Pareto corresponds to
¢ 2 g(x) =1
00 = g(x){l—(ﬁj J
a(x)
1+ 9%
909 =14 =D %
x 0[] oio{g...nhn=30
ZDT3 f(X) =% The Pareto corresponds to
(669 _ 6,09 960 =L
f,(9) = g(¥)| 1- |22 -~ 6in(10 77 1,(x))
[ g  9(x) J
_ 9 %
g(x) —1+n—_1;>§
x 0[04] oioft...nhn=30
ZDT4 f.(X) =X The Pareto front
: correspondsto g(x) =1.
00 = g(x)(l—w/ﬁJ
a(x)
g(x) =1+10(n-1) +Zn:(>gz -10cos(4 ﬂ)g))
x 0[04], x O[-55] Dio{2,...n,n=30
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ZDT5 f (%) =1+u(x) The Pareto front
1 correspondsto g(x) =10.
f,(%,) = g(x)( . J The best deceptive local
1(%) front corresponds to
n g(x) =11
9(x) = D v(u(x))
i=2
u(x) givesthe number of onesin the bit vector x,
2+u(x) if u(x)<5
v(u(x)) =
1 if u(x)=5
n=11% 0{0*, x 0{01° i 0{2,....n}
ZDT6 The Pareto front

f,(x) = 1- exp(~4%,) Sin® (6 77,
£,(0 = g(x) 1—(M)
g(x)
g0 =1+9 =3 x B
95"

x, 0[] oio{L...n,n=30

correspondsto g(x) =1.

A.2 Deb-Thiele-Laumans-Zitzler (DTLZ) benchmark suite

The following table gives the definitions of the DTLZ test functions (Deb et al. 2002b):

Table A.2 DTLZ benchmark suite.

Name

Description

Pareto front

DTLZ1

f,(X) =%X1X2"'XM—1(1+ 9(Xw))

00 = 5 0 (L%, )0+ 9(X)

ua(9 =2 X 030+ 9%, )

£ (9 =5 0= X)L+ 9(X,,)

9(Xy) =100{|XM|+ > (% —0.5)% - cos(207(x, —0.5))

X0Xy

k=5n=M +k-1x 0[01] 0iDO{1,...n},

Xu :(XM'XM+1 ----- Xn)

The Pareto front
corresponds to
Xy =0and
M

> fm =05.

m=1
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DTLZ2 | f;(x) =@+ g(Xp))cos(xq 7T/ 2)...co8(Xy —o 77/ 2) cos(xy 77/ 2) | The Pareto front
£, (%) = (L+ g( Xy )) COS( X477/ 2)...cOS(Xpy -7/ 2) Sin( Xy 77/ 2) | COTTESPONAStO X =0.5
: Ox OX,, ad
fi () = (L+ 9(Xpy )) 0s(xy77/ 2) Sin(x, 771 2) S (f ()2 =
fm (X) = @+ 9(Xy ) sin(xq 77/ 2) me1
2
g(Xm)= D (% -05)
%Xy
k=10,n=M +k-1x O[04 0iO{L....n},
Xn = (X X 42000 %)
DTLZ3 | SameasDTLZ2 except for anew g function: The Pareto front
, correspondsto x, =0.5
g(X,) =10 |xM|+XDZX:(xi -0.5)% - cos(2071(x, —0.5)) 0% 0 Xy
DTLZ4 | f(x) =1+ g(X,,))cos(x" 77/ 2)...cos(x’ ,r/ 2)cos(x’ ,mr/2) | ThePareto front
£,(X) = (1+ G(X,, )) COS(X° 771 2)...cos(xC, 7l 2)sin(x?_zzf2) | COMePondsto x =0.5
: Ox O X -
fu-a(X) = @+ g(X, ) cos(x¢ 77/ 2) sin(x 77/ 2)
fu (09 = @+ g(Xy ) sin(x' 77/ 2)
2
g(Xm)= D (% -05)
XXy
k=10,n=M +k-1% O[04 0iO{L....n}, @ =100
X = (X Xt 52,00 %)
DTLZ5 | SameasDTLZ2 where X isreplaced by The Pareto front
p 7 2 ) correspondsto x =0.5
. = + r)x
i 4(1+ g(r)) a(r)x Ox O Xy -
DTLZ6 | SameasDTLZ5 except for new g function:; The Pareto front
a(X,) = 2&0-1 correspondsto x, =0.5
XDy Ox O Xy -
DTLZ7 f.(X) =X The Pareto front
£,(2 = x corresponds to
:2 2 >(hﬂ =0.
fua(X) =Xy

fu (9 = 1+ g(x )+ h(f, f,enn,
9(Xy) = 1+| |Zx

%0Xy

m-19)

h(f, fprees T ))}

-Z{

m=1

M- 9) =

k=20,n=M +k-1x 0[01] DiO{t...n},

Xy = (XM 1 XMagreees Xn)
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DTLZ8 PJ The Pareto frontisa
_ 1 - : combination of a
fm(x)_T z;ﬁ 0j Oft...., M} straight lineand a
LM Ji: (i hyper-plane. The
straight line isthe
Subject to g,,(X) = f,, (X) +4f, () -120 0jO{L...M -1} intersection of the first
(M-1) constraints with
g (9 =21, (x) + min 4 £, () + f,(9]2 0 f,=f,=..=f,, and
wm the hyper-planeis
x 0[04] DiofL...n}, n=10M represented by the
congtraint gy -
DTLZ9 The Pareto frontisa

f (%) -1 UZJ& 0j 0ft,..., M}
4

Subject to g,(X) = f2(¥) + f2(x)-120 0jOf...,M -1

x 0[04] CiofL...n}, n=10m

curve with
fl = f2 =...= fM_l.
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Appendix B
Knee-based Test Functions

B.1 Knee-based test problems

The following table gives the definitions of the knee-based test problems used
throughout this thesis (Branke et al. 2001, Rachmawati and Srinivasan 2009):

Table B.1 Knee-based test problems.

Problem Problem definition

name

DO2DK T 2°5-1 X
f1(x) = g(x)r(x)[sm[ ij+n(1+ J] fo(x) = g(x)r(x)[cos( 1+nj+1}

23 25+2 2
s/2

g(x)=1+%zin=2xi ; r(x)=5+10(x1—0.5)2+ cos(ZK nxl)
¥ 0[0,1,0i =1,...,30

DO2DK-1 X oS _1 .
f1(x) = g(x) r(x) sm( 1j+n(1+ ZJ ;f2(x)=g(x)r(x){cos(—1+ﬂj+1}

23 25" 2
s/2

g(X):l*'zin:2| ;r(x) = 5+10(x1 05) cos(ZK nxl)
¥ 0[0,1,0i =1,...,30

DEB2DK %
f1(x) = g(X)r(X)Sm( > j fa(x) = g(X)r(X)COS( > j
ag(x) = 1+%_ in=2xi ;r(x):5+10(x1—0.5)2+%cos(2K rrxl)
x 0[0,1,0i =1,...,30

DEB2DK-1 %
f1(x) = g(X)r(X)Sn( > j fz(X)—g(X)r(X)COS( > j
g(x) =1+ Zin=2 x21 ; r(x) =5+10(x —0.5)? +%cos(2K %)
x 4[o0,4,0i =1,...,30

DEB2DK-2

109 =00 00 sn 28| 1200 = a9 (o 7

_ 9 no_o. _ a2, 1
g(x) _1+n__12i:2X' ; r(x) = 2.5+1O(x1 0.5) + m cos(2K 7TX1)
¥ 0[0,1],0i =1,...,30

187




Appendix B. Knee-based Test Functions

DEBIDK f1(x) = g(x)r(x)sm( lejsm(ﬂgzj fo(X) = g(x)r(x)sm( lecos(”;(z];
fg(x)-g(x)r(x)co{ ] 99 =1+ 3 x ; rg =1l TR0e)
ri (%) =5+10(xi —0.5) +%cos(2K TT%)

x 0[0,1,0i =1,....12

DEB3DK-1

f1(X)=9(X)r(X)Sin(ﬂ2lesn(ﬂ22] fo(x) = g(x)r(x)sm( leco{ﬂ;z);

r () +ra(%2) ;

fg(x)-g(x)r(x)co{ ] g0 =1+ Y x5 (0 =1L

ri (%) =5+10(xi —0.5) +%cos(2K TT%)
x 0[0,1,0i =1,...,12

188




