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CHAPTER 1 

INTRODUCTION 

1.1 Multi-objective optimization 

Multi-objective optimization is the problem of producing solutions which map to 

good values for several different and conflicting functions. Because they judge solutions 

according to more than one criterion, multi-objective problems are more expressive and 

complex than single-objective problems. Consequently, the task of solving them is more 

difficult. Multi-objective optimization is important because solutions to many real-world 

problems are viewed from a variety of perspectives, and cannot be expressed using only 

one objective. 

A multi-objective problem is formulated as 

 Minimize       ܨሺݔԦሻ ൌ ሺ ଵ݂ሺݔԦሻ, … , ெ݂ሺݔԦሻሻ 

 subject to      ݃௜ሺݔԦሻ ൑ 0, ݅ ൌ 1,…  ܯ,

We compare solutions to multi-objective problems using the notion of dominance. For an 

m-objective minimization problem, a solution ݔଵ dominates ݔଶ if ݅׊ ൌ 1,… ,݉, ௜݂ሺݔଵሻ ൑

௜݂ሺݔଶሻ and ݅׌ א ሼ1,… ,݉ሽ |  ௜݂ሺݔଵሻ ൏ ௜݂ሺݔଶሻ. Therefore, we can only consider solution ݔ 

better than ݕ if ݔ dominates ݕ. Two solutions which do not dominate each other are said 

to be incomparable. In this case we cannot deem one to be better than the other unless 

we are able to prioritize the objective functions. Given a set of solutions ܺ ൌ ሼݔଵ, … ,  ,௡ሽݔ

we say ݔ௜  is non-dominated in the set if ݔ׍௝ א ௝ݔ | ܺ  dominates ݔ௜ . A solution ݔ  is 

considered Pareto Optimal or Pareto Efficient if ݕ | ݕ׍ dominates ݔ for any ݕ in the 

search space. In order for a Pareto optimal solution to decrease one objective, it must 

incur an increase in another. We call the set of Pareto optimal solutions is called the 
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Pareto Set, and the corresponding vectors in objective space are called the Pareto Front 

[1]. 

Many techniques have been developed to reduce multi-objective problems to 

single-objective problems so that single-objective optimization algorithms, such as CA, 

can be applied. However, we are interested in well formed multi-objective problems, that 

is, problems which contain no solutions which are optimal for all objective functions. Well 

formed problems cannot be reduced to an equivalent single-objective problem. 

Therefore, we must modify CA to natively consider multi-objective problems. 

1.2 Cultural Algorithms 

In 1979, Reynolds introduced Cultural Algorithms (CA), an extension of Genetic 

Algorithms [2]. While Genetic Algorithms simulate the process of evolution to optimize a 

function, Cultural Algorithms recognize interaction between individuals beyond genetic 

recombination and mutation. Individuals in a population communicate and interact to form 

a culture, first defined by Edward B. Tylor as “that complex whole which includes 

knowledge, belief, art, law, morals, custom, and any other capabilities and habits 

acquired by man as a member of society.” The process by which information is shared 

between individuals which allows culture to emerge is immensely complex and we do not 

hope to model it. Instead, we model culture at a high level, examining what type of 

information is shared, and how individuals are influenced by it. Cultural Algorithms are a 

functional model of the process by which human fitness is improved through knowledge 

sharing in a population. The CA has been successful in optimizing a variety of problems. 

It has also been used to assess how humans have solved Multi-Objective problems 

relative to site location [3]. 
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Given the success of the CA, we investigate whether a cultural model can be used 

to solve multi-objective optimization problems. We are encouraged by the abundance of 

mechanisms within human culture to aid the search for solutions to multi-objective 

problems faced by individuals. Consider a community of individuals settling a small 

island, immediately faced with the problem of where to take up residence. They will want 

to find land with fertile soil to produce crops, a source of fresh water to drink, and an area 

in which to hunt. Almost certainly, no single place on the island will provide an optimal 

location for all of these activities. Instead, individuals will begin settling in locations 

conducive to one or two of the goals. By sharing information about the landscape, the 

community will avoid locations which are worse for all three goals than some other 

location. In this sense, culture has helped guide the community onto the Pareto set of 

locations on the island. It is possible, then, that a functional model of culture can be used 

to solve multi-objective optimization problems as they can for single-objective 

optimization problems. 

Using CA methods to solve multi-objective problems has been proposed before 

with some success [3] [4]. However, Coello Coello’s CAEP was limited in scope to one 

type of knowledge source, and CA was used only as a small component of the algorithm. 

The current approach is to modify CA component-wise to apply all of its mechanisms to 

multi-objective problems. 

In chapter 2 we discuss the design and mechanics of Cultural Algorithms so that 

we may understand how we can adapt them to solve multi-objective problems. Chapter 3 

describes the changes that we made to produce the Multi-Objective Cultural Algorithms 

(MOCA), and our implementation of the components of the system. We also show a 
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sample run to exhibit the mechanics of the algorithm. In chapter 4, the test problems and 

system parameters used to evaluate the performance of MOCA are presented. Chapter 5 

gives the results of the experiments and compares MOCA to other multi-objective 

evolutionary algorithms. The conclusions are given in chapter 6. 
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CHAPTER 2 

SINGLE-OBJECTIVE CULTURAL ALGORITHMS 

In this chapter the Cultural Algorithms Toolkit (CAT) is described, and the 

adjustments that need to be made in order to support MO problems are discussed. To 

start, the Cultural Algorithm system consists of several components: the Belief Space, the 

Population, the Acceptance Function, and the Influence Function. In the CAT system, 

each are implemented in as simple a fashion as possible. This allows us to add 

complexity back into the system incrementally. Now now each component is briefly 

discussed. 

The five knowledge sources used here are characterized by their ubiquity in the 

problem solving process. Each can be used in some form in most problems. Also, there is 

a basis for the presence of each knowledge type in pre-human species as well. Thus, the 

knowledge sources used do not have to be viewed as unique to the human species. 

In the earliest Cultural Algorithms only one knowledge source was used in the 

Belief Space. This was typically tailored to direct the search for the problem at hand. 

Situational knowledge was used first, then normative, topographic, domain, and finally 

history knowledge in succession. Their additions reflect an evolution in the complexity of 

the problems to which Cultural Algorithms were applied. The knowledge sources are 

described here in terms of their ability to coordinate the spread of individuals over the 

landscape for a problem. 

2.1 Topographical Knowledge 

Topographical Knowledge was originally proposed to reason about region-based 

functional landscape patterns [5]. It can distribute individuals potentially over the entire 
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landscape. It was motivated in conjunction with data mining problems where the problem 

space was so large that a systematic way of partitioning the space during the search 

process was needed. If we view a state as associated with a region in the functional 

landscape then the topographic knowledge source is looking for new states. Thus, the 

state space may vary dynamically as new sub-regions are discovered and added to the 

mix. 

2.2 Normative Knowledge 

Normative Knowledge is a set of promising variable ranges that provide standards 

for individual behaviors, and guidelines within which individual adjustments can be made. 

Normative knowledge came into play during the learning of rules for expert system 

applications. Normative Knowledge directs individuals to “jump into the good range” if 

they are not already there. In other words it produces conduits or regional landing strips 

that guide the population in moving from one attractive region to the next. It therefore, 

spreads individuals into subregions of the space. 

2.3 Domain Knowledge 

Domain Knowledge uses knowledge about the problem domain in order to guide 

search. Domain Knowledge was first used to find the resource cone(s) of maximum 

height in a landscape by Saleem [6]. In this case, problem knowledge defines properties 

of the resource cones that make up the performance surface. For example, in a functional 

landscape composed of cones, knowledge about cone shape and related parameters will 

be useful in reasoning about them during the search process. In particular, domain 

knowledge can be used to generate individuals up and down slope from a location as a 

function of cone slope and height. Once a relatively productive area is found, the domain 
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knowledge can guide the exploitation of that region. 

2.4 Situational Knowledge 

Situational Knowledge provides a set of exemplary cases that are useful for the 

interpretation of specific individual experiences. Situational Knowledge leads individuals 

to “move toward the exemplars”. This was the earliest knowledge source used with 

Cultural Algorithms and was inspired by elitist approaches in Genetic Algorithm. This 

knowledge source collaborates with domain knowledge to exploit above average regions. 

2.5 Historical Knowledge 

Historical or Temporal knowledge monitors the search process and records 

important events in the search. This knowledge source was first used by Saleem [6] and 

expanded by Peng [7]. Individuals guided by History knowledge can consult those 

recorded events for guidance in predicting a good move direction. There is no dynamic 

component in the static examples used, so the variance associated with the knowledge 

source is a function of the local topography. In more dynamic problems it can distribute 

individuals over the entire space akin to topographic knowledge in order to monitor 

regions that were highlighted in the past. 

2.6 Population model 

In general, the population space can support any evolutionary algorithm to run in 

tandem with the influence from the belief space. In this paper, we omit any such algorithm 

running in the population space to study the effectiveness of the Cultural Algorithm. We 

consider problems for which individuals in the population are vectors of real numbers. 

2.7 Acceptance function 

The acceptance function determines which individuals and their behaviors can 
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impact the belief space knowledge. It is often specified as a percentage of the number of 

current individuals ranging between 1% and 100% of the population size, based upon 

selected parameters such as performance. For example, we can select the best 

performers (e.g. top 10%), worst performers (e.g. bottom 10%), or any combination. 

2.8 Multi-objective considerations in cultural algorithms 

In the CA, the Belief Space holds knowledge contributed by individuals in 

population, including information about the highest performing individual. Some 

knowledge sources use this information when generating new solutions. For a 

multi-objective problem, however, the highest performing individual is not defined, so 

there is no single best solution to model future solutions after. More generally, we cannot 

always strictly compare two solutions to a multi-objective problem. MOCA uses the widely 

used Pareto scheme to compare solutions. Specifically, we use the Goldberg ranking 

scheme, where all non-dominated solutions in the population are given rank 1. These 

solutions are removed, and the non-dominated solutions in the remaining population are 

given rank 2, and so on [8]. The total ordering on solutions is replaced by a partial 

ordering of individuals into Pareto ranks. Therefore, when we convert CA to handle 

multi-objective problems, the concept of “the best performing individual” is often replaced 

by “an individual chosen from the set of non-dominated individuals in the current 

population.” This choice can be random, or if the problem allows, we can apply a heuristic 

to suggest an auspicious individual. 

A trivial conversion of the CA to handle multi-objective problems would be to 

maintain copies of the five knowledge sources for each objective. Conceptually, we can 

think of this as having a belief space specific to each objective. To influence an individual 
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in the population with a knowledge source, we would choose an objective and a type of 

knowledge source, then influence the solution with the copy of that knowledge source for 

that objective. This approach amounts to little more than running a single-objective 

cultural algorithm separately for each objective and combining the results. This can be 

viewed as a kind of co-evolutionary process, five different populations are running 

simultaneously and exchanging solutions. Running Cultural Algorithms for each objective 

would, in the best case, find dark corners of the true Pareto front. In the expected case the 

resulting solutions would be optimal for one objective and would not lie on the true Pareto 

front. 

This conversion of CA can outperform a system of separate single-objective CAs, 

because individuals can be influenced based on different objectives in succession. 

Theoretically, this can drive solutions toward the Pareto front, but in practice, we find that 

solutions only reach the true front for simple, low-dimension problems. In order to find the 

true Pareto front, the objective functions must be considered collectively when knowledge 

sources influence individuals. In chapter 3 we describe how we modified each knowledge 

source in order to consider multiple objectives and their roles in guiding the search to the 

true Pareto front. We also explain how new individuals are selected into the population, 

and which are accepted to update the belief space. 
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CHAPTER 3 

MULT-OBJECTIVE CULTURAL ALGORITHMS (MOCA) 

MOCA, at the top level, is identical to CA. In this sense, we suggest that MOCA is 

a CA, and not an approach based on CA. A semanticist, then, might refer to Reynolds' 

original algorithm as a Single-Objective Cultural Algorithm. We make this distinction to 

clarify that MOCA and CA are identically motivated. We aim to approximate the 

mechanism by which human culture evolves solutions to complex problems. 

As described in chapter 2 and shown in Figure 1, a Cultural Algorithm has two 

stores of information: the Population Space, holding a set of individual solutions, and the 

Belief Space, holding information and statistics collected from the population. The two 

stores interact through the accept and influence functions. 

 

Figure 1: MOCA Structure 

The accept function determines which individuals from the population are permitted to 
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contribute information to the belief space. Our implementation of accept is describe in 

section 3.3. We call the set of individuals accepted into the belief space the “voting” 

solutions. Once they have been identified, the update function extracts information 

needed by the five knowledge sources. In fact, each knowledge source implements its 

own update function which is called during update. The individual knowledge source 

update functions are described in section 3.1. The influence function then creates new 

solutions by modifying individuals in the current population using information from one of 

the five knowledge sources. Again, the knowledge sources each implement an influence 

function and influence selects one from a random distribution when it operates on a 

solution. The knowledge source influence functions are described in section 3.1, and the 

method by which they are chosen is described in section 3.2. Select considers the new 

individuals generated by the knowledge sources together with the current population and 

determines which will compose the next generation. 

3.1 Knowledge Source Implementation 

3.1.1 Situational Knowledge 

The goal of the situational knowledge source is to model new individuals after the 

highest performing individuals currently in the population. To fulfill this role in a 

multi-objective setting, we recognize that the set of exemplary individuals are readily 

defined as those in the population which are non-dominated. These individuals are stored 

when the belief space is updated, and one is chosen to act as the exemplar when the 

knowledge source influences another individual. The Information about a problem may be 

exploited to intelligently decide which individual to choose from the Pareto front. For 

example, we may take the individual with the best value for an objective which the 
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population is not optimizing well. In the general case, we can select randomly from the 

front with acceptable results. The influence procedure is very simple. For a given parent 

 and an individual ݁ chosen from the non-dominated solutions, the situation knowledge ,݌

source creates a child ܿ ൌ ݌ ൅ ሺ݁ െ ሻ݌ ڄ ݇ where ݇ is chosen randomly from ሾ0,1ሿ. 

Figure 2 and Figure 3 show an example of situational knowledge influence. The 

example is a two-dimensional, two-objective minimization problem with ଵ݂ሺݔሻ ൌ |ሺ1,1ሻሬሬሬሬሬሬሬሬሬሬԦ െ

ሻݔand ଶ݂ሺ |ݔ ൌ ଵݔ ଶ. The true Pareto front lies onݔ ൌ 1. The individuals in the current 

population are shown in blue and green, and are separated by rank. A solution with 

Pareto rank 2 is being influenced. The situational knowledge source has chosen a 

non-dominated solution and generates an individual on a line between the two solutions 

with ݇ ൌ 0.5. The new solution is non-dominated in the population. 

 

Figure 2: Situational knowledge influence, decision space 
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Figure 3: Situational knowledge influence, objective space 

By design, the situational knowledge source influences individuals to produce 

children near known good solutions. We observe that, as a result, the situational 

knowledge source performs two major functions. The first is to search near the best 

solutions to improve them, honing the front if it is not optimal. This is also the role of the 

domain knowledge source. However, situational knowledge does so with a wider search 

space because it generates solutions between the Pareto front and a parent solution 

which may not be on the front. The other function of situational knowledge source is to 

distribute solutions over the true Pareto front once it is found. Other knowledge sources 

may encounter the true Pareto front by aggressively optimizing one objective. Situational 

knowledge influencing such a solution will generate a child likely to be on the front, but 

separated from the parent. Repetition of this type of influence over generations will create 

and maintain a distributed coverage of the front. 

3.1.2 Domain Knowledge 
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The domain knowledge source is here intended to perform an incremental search 

of a region of the total search space. For a single objective problem, it is equivalent to a 

gradient search starting from a given individual. Over several generations of influence, it 

finds a solution which is at least locally optimal. To implement the domain knowledge 

source for multi-objective problems, we accept the analog to the single-objective local 

optimum as our goal: the knowledge source should search toward a solution which is 

locally Pareto efficient. To find the best direction in which to search, the domain 

knowledge source in the single-objective cultural algorithm produces 3௡ individuals to 

surround the parent in n-dimensional search space. These 3௡  individuals are 

constructed by increasing, decreasing, and maintaining the value for each dimension 

independently. The exponential number of individuals is prohibitive to solving 

high-dimensional problems. In MOCA, we implement a heuristic requiring only 2݊ ൅ 1 to 

be examined to approximate a good search direction. Given a parent ݌Ԧ, we generate the 

2݊ solutions:  

 ሺ݌଴, … , ௜݌ േ …,ߝ , ݅׊        ௡ିଵሻ݌ א ሼ0,… , ݊ െ 1ሽ 

From the above solutions, let us call the ݉ ൐ 0 which dominate the parent ݀଴, … , ݀௠ିଵ. 

Let ݑ௜ ൌ
ௗ೔ି௣
|ௗ೔ି௣|

, the unit vector in the direction of ݀௜ െ  We sum the direction vectors to .݌

get ݏ ൌ ∑  ௠ିଵ
௜ୀ଴ ݀௜. Since only 2 of the originally created solutions differ from ݌ in any one 

dimension, we have ݏ௜ א ሼെ1,0,1ሽ, ݅׊ א ሼ0, … , ݊ െ 1ሽ. Finally, we create one more solution 

݀௠ ൌ ሺ݌଴ ൅ ܿ଴ ڄ ,ߝ … , ௡ିଵ݌ ൅ ܿ௡ିଵ ڄ ሻߝ . If ݀௠  dominates ݌ , we create a child ܿ ൌ ݌ ൅

ሺ݀௠ െ ܿ then we create a child ,݌ ሻ݇ for some ݇. If ݀௠ does not dominate݌ ൌ ݌ ൅ ሺ ௝݀ െ

݆ ሻ݇ for some ݇ and݌ א ሼ0, … ,݉ െ 1ሽ. Finally, if ݉ ൌ 0 and therefore none of the original 

2݊ solutions dominated ݌, then the parent is at least locally Pareto efficient. In this case 
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we ignore the parent and influence a solution which is known not to be locally Pareto 

efficient. The domain knowledge source identifies such an individual during the update 

function. 

Figure 4 and Figure 5 show an example of domain knowledge influence. This 

maximization problem has objective functions ଵ݂ሺݔሻ ൌ ଵሻሺ1ݔߨଵ଴.ଵcosሺ2ݔ െ ଶሻݔ  and 

ଶ݂ሺݔሻ ൌ ଵሻݔߨଵ଴.ଵcosሺ2ݔ ڄ ଵݔ ଶ. The true Pareto front lies atݔ ൌ 1 and a local Pareto front is 

located at ݔଵ ൎ 0.035. The domain knowledge source searches in the four cardinal 

directions around the parent, resulting in the solutions in red, cyan and magent. The new 

solution positioned directly away from the true Pareto front dominates the other 

individuals produced because it lies near the local Pareto front. The domain knowledge is 

successfully searching toward the local Pareto front nearby at the expense of finding the 

true Pareto front. 

 

Figure 4: Domain knowledge influence, decision space  
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Figure 5: Domain knowledge influence, objective space 

3.1.3 Normative Knowledge 

There is an immediate conversion of the normative knowledge source to handle 

multi-objective problems. In a Cultural Algorithm, the normative knowledge source 

calculates the minimum and maximum values for each dimension over a set of 

high-performing individuals. For a multi-objective problem, an obvious choice for our set 

of high-performing individuals is the current non-dominated solutions. Normative 

knowledge, therefore, constructs a bounding box of the current Pareto front in the 

decision space. It provides a particularly promising region of the search space on which to 

focus new solutions. 

In order to influence solutions in Cultural Algorithms, the normative knowledge 

source examines each dimension of the parent solution separately. If the parent's value 

for the given dimension lies within the normative range, we generate a value for the child 

nearby. Otherwise, we assign to the child a random value uniformly distributed over the 

range. In MOCA we adopt this influence algorithm, but augment it with another approach. 
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For each dimension, ݅, two copies of the parent are created, and their ݅୲୦ values are set 

to the minimum and maximum values of the normative range. If exactly one of the two 

solutions dominate the parent, or one solution dominates both the parent and the other 

solution, its value for dimension ݅ is assigned to the child. If both dominate the parent but 

neither dominates the other, we select one randomly and assign it's value to the child. If 

neither of the solutions dominate the parent, the child is given the parent's value. 

In Figure 6 and Figure 7 we see the first type of influence of the normative 

knowledge source. The individuals in the current population are shown in blue and green, 

and are separated into Pareto ranks. The objective functions are ଵ݂ሺݔሻ ൌ |ሺ0.5,0.5ሻശሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ െ  |ݔ

and ଶ݂ ൌ  ଶ are indicated by the rectangle. We canݔ ଵ andݔ ଶ. The normative ranges forݔ

see that the bounding rectangle is formed by the minimum and maximum values of the 

individuals with Pareto rank 1. Since the ݔଵ  value of the parent already lies in the 

normative range, the generated solution takes that value. A random value is chosen from 

the normative range for ݔଶ, and we see the new individual in red in the bounding box.  
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Figure 6: Normative knowledge influence, decision space 

 

Figure 7: Normative knowledge influence, objective space  

Normative knowledge combats the tendency of the domain knowledge source to 

converge to local optima. Given a well-distributed initial population, normative knowledge 

serves to keep the search space from excluding the true Pareto front. The normative 

ranges are initialized to encompass the entire decision space, and gradually contract to 
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include regions which produce fit individuals. Regions are eliminated only when they fail 

to provide good solutions, so the true Pareto front will not be bypassed as it might using 

only greedy information such as domain knowledge. 

3.1.4 Historical Knowledge 

The historical knowledge source tracks the progress of the elite individual in the 

population over the course of generations. New solutions, then, can be modeled not only 

after the best individuals in the current population, but from exemplary individuals from 

the past. Because the knowledge source depends heavily on the notion of a single best 

individual, we chose to maintain historical knowledge for each objective separately. For 

each objective ௜݂, a historical knowledge source ܪ௜ records the individual with the best 

௜݂  value for the past ݇  generations. To use historical knowledge to influence an 

individual, we choose an objective ௜݂, and use knowledge source ܪ௜ to influence the 

solution as we do in a single-objective cultural algorithm: one of the ݇ solutions stored by 

 .௜ is selected at random, and a solution is generated nearbyܪ

Figure 8 shows the historical knowledge source generating a new solution. The 

problem has one decision variable and at least one objective function. We show ܪଵ 

influencing a solution based on the first objective function: ଵ݂ሺݔሻ ൌ cosሺ4ݔߨሻ ൅  We see .ݔ

the ݇ ൌ 7 best individuals from the preceding generations in blue, with solutions from 

older generations faded to white. The solution generated by ܪଵ  is placed near the 

exemplar at 0.7 and is shown in red. Although it is approaching only a local optimimum 

for ଵ݂, the solution may be Pareto optimal given the remaining objectives.  
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Figure 8: Historical knowledge influence 

In MOCA, the historical knowledge source serves mainly to spread the distribution 

of solutions over the Pareto front once it is found. Since it doesn't actively seek to improve 

the fitness of solutions, most individuals generated from historical knowledge are soon 

dominated by improved solutions contributed by other knowledge sources. In fact, the 

presence of historical knowledge influence in a population can be a useful measure of 

progress made by the algorithm. Once the true Pareto front has been found, historical 

knowledge also helps to prevent regions of the front from being deserted by the other 

knowledge sources. After a sufficient number of generations has passed since the 

discovery of the true Pareto front, most or all of the historical exemplars will be on the true 

front. The historical knowledge source will continue to place solutions around them, 

preventing the search from abandoning the area. 

3.1.5 Topographical Knowledge 

Topographical knowledge aims to divide the search space and identify regions 
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which promise good solutions. It is similar to historical knowledge in that it has a strong 

dependence on the examination of a single objective function. In the case of 

topographical knowledge, a threshold value in the objective range is selected and used to 

judge members of the population. Therefore, as with historical knowledge, we implement 

the topographical knowledge source by maintaining one knowledge source, ௜ܶ, for each 

objective function ௜݂. Each ௜ܶ identifies a threshold value as the median fitness value of 

the individuals in the population. It then breaks the search space into regions recursively 

by dividing regions which contain solutions above and below the threshold. To generate a 

new solution, the topographical knowledge source selects a region containing good 

solutions, and produces an individual near the best from the region. 

In Figure 9, we see an example of a solution being generated by the topographical 

knowledge source. The problem shown has one decision variable and at least one 

objective. We plot only the objective function being considered by the topographical 

knowledge source ଵܶ: ଵ݂ሺݔሻ ൌ cosሺ3ݔߨሻ ൅ We see the threshold value ଵ݂ .ݔ ൌ 0.3 in red. 

ଵܶ  has divided the search space ሾ0,1ሿ  into the regions 

ቂ0, ଵ
଼
ቃ , ቀଵ

଼
, ଵ
ସ
ቃ , ቀଵ

ସ
, ଵ
ଶ
ቃ , ቀଵ

ଶ
, ଷ
ସ
ቃ , ቀଷ

ସ
, ଻
଼
ቃ , ቀ଻

଼
, 1ቃ. These divisions are shown in blue. Looking at the 

current population shown in blue, we can see that the regions are a result of recursively 

dividing regions in half until each contains only solutions above the threshold, or only 

solutions below the threshold.  
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Figure 9: Topographical knowledge influence  

Topographcal knowledge can help to avoid stalling on a local Pareto front, but 

without a good heuristic will search the entire space which will produce additional 

comparisons. The knowledge source also requires more processing time and allocates 

more memory than the others, increasing the clock-time required to optimize a problem. 

Therefore, for simplicity, we exclude the topographical knowledge source here when 

performing the experiments described in chapter 4. 

3.2 Choosing Knowledge Sources 

To help guide the optimization process, knowledge sources are selected in order 

to influence members of the population by sampling a dynamic probability distribution. As 

the optimization runs, we adjust the distribution to encourage knowledge sources that are 

producing comparatively fit individuals. We also implement safe-guards against the 

starvation of any knowledge source, so that all sources have the opportunity to lead the 

search if they are able. The prevention of starvation is discussed in section 3.4.1 
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Each knowledge source KS௜ has an associated probability ௜ܲ of being chosen to 

influence a given individual. We will define ܲ to form a probability distribution over the 

knowledge sources. To encourage the exploitation of knowledge sources which are 

producing high-performing individuals, we derive its probability from the Pareto ranks of 

the individuals in the current population that they generated. To create the probability 

distribution, we first assign each knowledge source a score: the average of the inverses of 

the Pareto ranks of the individuals created by the knowledge source. Let IND௜ be the set 

of individuals in a population created by knowledge source KS௜, and let PR(ݔ) be the 

Pareto rank of individual ݔ, where non-dominated solutions have Pareto rank 1. Then we 

define the score of a knowledge source in equation (2). 

 Scoreሺܭ ௜ܵሻ ൌ
∑  ೕ

భ
ುೃሺ಺ಿವ೔,ೕሻ

|ூே஽೔|
 (2) 

For example, we see a population in Figure 10 with individuals from the ߂, d, and 

W knowledge sources. The individuals form three Pareto ranks. The scores for each 

knowledge source are as follows: 

 Scoreሺܭ ௱ܵሻ ൌ
ହ/ଶ
ହ
ൌ 5/6 

 ScoreሺܵܭOሻ ൌ
ହ/ଷ
ହ
ൌ 5/9 

 Scoreሺܵܭᇝሻ ൌ
ହ/଺
ହ
ൌ 5/12 
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Figure 10: Example Pareto Fronts 

To compute the final probabilities for each knowledge source, we divide the score 

of each knowledge source by the sum of scores for all knowledge sources. We also call 

this probability of the knowledge source being chosen to influence an individual the 

weight of the knowledge source. 

 ௜ܲ ൌ
Sୡ୭୰ୣሺ௄ௌ೔ሻ

∑  ೕ Sୡ୭୰ୣሺ௄ௌೕሻ
 (3) 

For our example from Figure 10, we compute the following probabilities: 

 ܹሺܭ ௱ܵሻ ൌ 6/13 ൎ 0.46 

 ܹሺܵܭOሻ ൌ 4/13 ൎ 0.31 

 ܹሺܵܭᇝሻ ൌ 3/13 ൎ 0.23 

Since ߂  is currently outperforming the other knowledge sources, we reward it by 

increasing the probability that it is chosen to influence individuals. 

3.3 Acceptance 

The first step in the Cultural Algorithm cycle is to accept a number of individuals to 

update the belief space. The Belief Space is intended to represent information which can 

be used to produce high-performing individuals. Therefore, we adopt a very simple 

acceptance function: 25% of the individuals with the best Pareto ranks are accepted. This 
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is an elitist acceptance process, and with it, we make no attempt to promote diversity to 

avoid settling on local optima. Instead of enforcing diversity in the Belief Space, we do so 

in the population by the design of our selection function. To enforce diversity, we must 

permit known suboptimal solutions. Since the Belief Space is used to influence the entire 

population, fitness concessions made to tolerate diverse solutions would feed back into 

the population, slowing the search for true optimal solutions. 

3.4 Selection 

After elite members of the population update the belief space, each individual is 

influenced by one knowledge source and a child is produced. For a population of size ܰ, 

we have the ܰ individuals from the original population and ܰ newly created individuals 

from which to select those which will form the next generation. In addition to the standard 

goal of allowing fit solutions to survive, we also use selection to promote diversity. So as 

to adhere to the principle of the survival of the fittest, we generate most of our new 

population from the highest performing individuals. In order to encourage diversity and 

escape local optima, a small fraction of individuals from each knowledge source 

regardless of their Pareto rank is selected. Specifically, the ܰ original individuals and ܰ 

new individuals are first combined into a single collection, and their Goldberg Pareto 

ranks are computed. Each knowledge soure has ܰ/20 of its solutions selected into the 

new population regardless of their Pareto ranks. This leaves 3ܰ/4 spots in the new 

population, which are filled by individuals with the lowest Pareto ranks. 

3.4.1 Diversity through selection 

In general, the approach to selection described above incurs a brief search of 

areas away from the current non-dominated solutions which may contain optima. These 
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dominated solutions can lead to promising regions which would otherwise be lost. If the 

search nearby is fruitless, the dominated solution and those found nearby will be 

discarded with high probability after failing to be selected in future generations. The 

inclusion of meritless individuals also helps alleviate a specific common problem. The 

problem occurs when the domain knowledge source performs better than the others but 

only finds a local optimum. After a number of generations of progressing toward the false 

Pareto front, it is likely that the domain knowledge source will have a high weight and 

control many individuals. The other more exploratory and less aggressive knowledge 

sources will be starved for weight and control of individuals. This problem is exacerbated 

by the social fabric feature which encourages conformity, requiring individuals to accept 

the influence of a knowledge source if many of its neighbors do. An individual, then, will 

likely be influenced by the domain knowledge source, even if another is initially chosen for 

it. By forcing ܰ/20 individuals from each knowledge source into the population, we can 

prevent their starvation, and allocate solutions to the search away from a false Pareto 

front. Also note that during the influence procedure, we must ensure that at least ܰ/20 

solutions are chosen for each knowledge source. This ensures that we will have enough  

individuals from which to select the next population. 

3.5 An example run 

To illustrate the mechanics of MOCA, we examine the progress of the algorithm in 

detail as it optimizes a test problem. In chapter 4, we describe the test problems we use to 

evaluate the performance of MOCA. We use the first of these problems, DTLZ1, for our 

example run. 

3.5.1 DLTZ1 
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Minimize 
ଵ݂ሺݔሻ ൌ

ଵ
ଶ
ଶݔଵݔ ெିଵሺ1ݔڮ ൅ ݃ሺݔெሻሻ, 

ଶ݂ሺݔሻ ൌ
ଵ
ଶ
ଶݔଵݔ ڮ ሺ1 െ ெିଵሻሺ1ݔ ൅ ݃ሺݔெሻሻ, 

 ڭ
ெ݂ିଵሺݔሻ ൌ

ଵ
ଶ
ଵሺ1ݔ െ ଶሻሺ1ݔ ൅ ݃ሺݔெሻሻ, 

ெ݂ሺݔሻ ൌ
ଵ
ଶ
ሺ1 െ ଵሻሺ1ݔ ൅ ݃ሺݔெሻሻ, 

subject to 0 ൑ ௜ݔ ൑ 1, for ݅ ൌ 1,2, … , ݊. 
where ݃ሺݔெሻ ൌ 100ሺ|ݔெ| ൅ ∑  ௫೔א௫ಾ ሺݔ௜ െ 0.5ሻଶ െ cosሺ20ߨሺݔ௜ െ 0.5ሻሻሻ  

The example run uses a population size of 100 and runs for 200 generations. We 

take ܯ ൌ 3, and ݇ ൌ |ெݔ| ൌ 5. The total number of variables is 7. 

The Pareto set lies on ݔ௜ ൌ 0.5 for ݔ௜ א ∑ ெ and the Pareto front lies onݔ  ெ
௜ୀଵ ௜݂ ൌ

0.5 . The has  ݃ሺݔெሻ  function produces 11௞ െ 1  false Pareto fronts where ݔ௜ א

ሼ0.1, 0.2, … , 1ሽ ݔ׊௜ א  .ெݔ

Figure 11 plots the minimum and median values of ∑  ெ
௠ୀଵ ௠݂ሺݔሻ  for ݔ א

population. We show the same plot in Figure 12 at a smaller scale so the behavior at the 

end of the optimization can be seen clearly. The knowledge source which produced the 

minimum solution is also indicated. Indicators are omitted when a knowledge source 

provides the minimum solution over consecutive generations. Figure 14 displays the 

number of individuals in the population generated by each knowledge source. Figure 13 

shows the weights associated with each knowledge as described in section 3.2 

In Figure 11 we see that the domain knowledge source immediately makes drastic 

improvement on the poorly performing initial population.  
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Figure 11: The minimum and median values for ∑ ࡹ 
ୀ૚࢓   ࢓ࢌ

At generation 8, the search begins approaching the locally Pareto-optimal front at 

ெݔ ൌ ሺ0.6, 0.6, 0.3, 0.7, 0.6ሻ  with ∑  ݂ ௜ ൌ 6 . The minimum solution at generation 8 has 

ெݔ ൌ ሺ0.6007, 0.6005, 0.3033, 0.7005, 0.5993ሻ and ∑  ݂ ௜ ൌ 7.204. By generation 24, the 

domain knowledge source has found a solution very near the local optimum, and makes 

little progress thereafter. A better local optima isn't found until generation 51. During the 

generations between, the situational knowledge source begins to place individuals on the 

local front. In Figure 13, we see the resultant increase in weight for situational knowledge 

which peaks in generation 46.  
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Figure 12: The minimum and median values for ∑ ࡹ 
ୀ૚࢓  ࢓ࢌ

 

Figure 13: Knowledge source weights  

This high weight allows situational knowledge to increase its presence in the 

population until it matches that of the domain in generation 69, as shown in Figure 14.  
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Figure 14: Knowledge source presence 

In generation 71 the normative knowledge source finds the local Pareto front at 

ெݔ ൌ ሺ0.6, 0.5, 0.4, 0.4, 0.5ሻ . The individuals generated by situational knowledge then 

begin to be dominated and expelled from the population. The normative knowledge finds 

one more false Pareto front in generation 92, which is improved by domain knowledge in 

generation 96, before approaching the true Pareto front in generation 112. After domain 

knowledge refines the solutions, situational knowledge begins distributing solutions 

across the front once again. 

The final population in objective space is shown in Figure 15. We can see that the 

distribution of solutions is not uniform, and a significant portion of the true Pareto front is 

not represented in the final population. No solutions from the topographical knowledge 

source are visible because they do not lie on the Pareto front. In fact, throughout the 

optimization, topographical knowledge produced no solutions with Pareto rank 1, and 

never had more than the five guaranteed individuals accepted into the population. 
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Figure 15: The final population in objective space  

Figure 16 plots ݔଵ against ݔଶ for the final population. We omit the remaining five 

decision variables because, for solutions on the true Pareto front, they are all 

approximately 0.5. Again, the population is not evenly distributed, and leaves two corners 

of the search space bare. 

 

Figure 16: The final population in decision space  
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CHAPTER 4 

EXPERIMENTAL FRAMEWORK 

We test the performance of MOCA on the DTLZ problems originally presented in 

Scalable Multi-Objective Optimization Test Problems in 2002 by Deb, Thiele, Laumanns, 

and Zitzler. The problems were designed to scale to any number of objective functions or 

decision variables [9]. We use the definitions of the problems given in Evolutionary 

algorithms for solving multi-objective problems [10] and compare the results of MOCA to 

NSGA-II. We also follow the recommendations for the number of decision variables and 

objectives for each problem. For all of the problems, MOCA uses a population size of 100 

and runs for 300 generations. The social fabric component introduced by used in CA was 

also used in MOCA. Here we used LBEST. The topographical knowledge source is not 

included in MOCA for any of the experiments. Statistics for NSGA-II were produced using 

the implementation provided by jMetal [11]. NSGA-II is run with a population size of 100 

and is limited to 100,000 fitness evaluations. It uses a crossover probability of 0.9 and a 

mutation probability 1/݊ for n decision variables. We also use the jMetal implementation 

to compute the performance measures for MOCA. Below we describe the individual 

problems used and the parameters of the algorithm. 

4.1 DTLZ1 

Minimize 
ଵ݂ሺݔሻ ൌ

ଵ
ଶ
ଶݔଵݔ ெିଵሺ1ݔڮ ൅ ݃ሺݔெሻሻ, 

ଶ݂ሺݔሻ ൌ
ଵ
ଶ
ଶݔଵݔ ڮ ሺ1 െ ெିଵሻሺ1ݔ ൅ ݃ሺݔெሻሻ, 

 ڭ
ெ݂ିଵሺݔሻ ൌ

ଵ
ଶ
ଵሺ1ݔ െ ଶሻሺ1ݔ ൅ ݃ሺݔெሻሻ, 

ெ݂ሺݔሻ ൌ
ଵ
ଶ
ሺ1 െ ଵሻሺ1ݔ ൅ ݃ሺݔெሻሻ, 

subject to 0 ൑ ௜ݔ ൑ 1, for ݅ ൌ 1,2, … , ݊. 
where ݃ሺݔெሻ ൌ 100ሺ|ݔெ| ൅ ∑  ௫೔א௫ಾ ሺݔ௜ െ 0.5ሻଶ െ cosሺ20ߨሺݔ௜ െ 0.5ሻሻሻ  
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The Pareto set lies on ݔ௜ ൌ 0.5  for ݔ௜ א ெݔ  and the Pareto front lies on the 

hyperplane ∑  ெ
௜ୀଵ ௜݂ ൌ 0.5. The sinusoidal ݃ሺݔெሻ function produces 11௞ െ 1 false Pareto 

fronts where ݔ௜ א ሼ0.1, 0.2, … , 1ሽ ݔ׊௜ א ܯ ெ. For our tests we useݔ ൌ 3, and ݇ ൌ |ெݔ| ൌ 5. 

The total number of variables is 7. 

 

4.2 DTLZ2 

Minimize 
ଵ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵ2/ߨሻcosሺݔଶ2/ߨሻڮcosሺݔெିଶ2/ߨሻcosሺݔெିଵ2/ߨሻ, 
ଶ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵ2/ߨሻcosሺݔଶ2/ߨሻڮ cosሺݔெିଶ2/ߨሻsinሺݔெିଵ2/ߨሻ, 
ଷ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵ2/ߨሻcosሺݔଶ2/ߨሻڮ sinሺݔெିଶ2/ߨሻ, 

 ڭ
ெ݂ିଵሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵ2/ߨሻsinሺݔଶ2/ߨሻ, 
ெ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻsinሺݔଵ2/ߨሻ, 

subject to 0 ൑ ௜ݔ ൑ 1, for ݅ ൌ 1,2, … , ݊. 
where ݃ሺݔெሻ ൌ ∑  ௫೔א௫ಾ ሺݔ௜ െ 0.5ሻଶ 

The Pareto set lies on ݔ௜ ൌ 0.5 for ݔ௜ א  ெ and the Pareto front lies on the unitݔ

hypersphere ∑  ெ
௜ୀଵ ௜݂

ଶ ൌ 1. DTLZ2 uses a simple parabolic ݃ሺݔெሻ function which does 

not incur any false Pareto fronts. For our tests we use ܯ ൌ 3 and ݇ ൌ |ெݔ| ൌ 10.  

4.3 DTLZ3 

Minimize 
ଵ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵ2/ߨሻcosሺݔଶ2/ߨሻڮcosሺݔெିଶ2/ߨሻcosሺݔெିଵ2/ߨሻ, 
ଶ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵ2/ߨሻcosሺݔଶ2/ߨሻڮ cosሺݔெିଶ2/ߨሻsinሺݔெିଵ2/ߨሻ, 
ଷ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵ2/ߨሻcosሺݔଶ2/ߨሻڮ sinሺݔெିଶ2/ߨሻ, 

 ڭ
ெ݂ିଵሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵ2/ߨሻsinሺݔଶ2/ߨሻ, 
ெ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻsinሺݔଵ2/ߨሻ, 

subject to 0 ൑ ௜ݔ ൑ 1, for ݅ ൌ 1,2, … , ݊. 
where ݃ሺݔெሻ ൌ 100ሺ|ݔெ| ൅ ∑  ௫೔א௫ಾ ሺݔ௜ െ 0.5ሻଶ െ cosሺ20ߨሺݔ௜ െ 0.5ሻሻሻ 

DTLZ3 is identical to DTLZ2 but uses the ݃ሺݔெሻ function from DTLZ1, producing 

the same 11௞ െ 1 false Pareto fronts as DTLZ1. The Pareto set lies on ݔ௜ ൌ 0.5 for 

௜ݔ א ெݔ  and the Pareto front lies on ∑  ெ
௜ୀଵ ௜݂

ଶ ൌ 1. For our tests we use ܯ ൌ 3 and 
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݇ ൌ |ெݔ| ൌ 10. 

4.4 DTLZ4 

Minimize 
ଵ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵఈ2/ߨሻcosሺݔଶఈ2/ߨሻڮ cosሺݔெିଶఈ ெିଵఈݔ2ሻcosሺ/ߨ  ,2ሻ/ߨ
ଶ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵఈ2/ߨሻcosሺݔଶఈ2/ߨሻڮ cosሺݔெିଶఈ ெିଵఈݔ2ሻsinሺ/ߨ  ,2ሻ/ߨ
ଷ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵఈ2/ߨሻcosሺݔଶఈ2/ߨሻڮ sinሺݔெିଶఈ  ,2ሻ/ߨ

 ڭ
ெ݂ିଵሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺݔଵఈ2/ߨሻsinሺݔଶఈ2/ߨሻ, 
ெ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻsinሺݔଵఈ2/ߨሻ, 

subject to 0 ൑ ௜ݔ ൑ 1, for ݅ ൌ 1,2, … , ݊. 
where ݃ሺݔெሻ ൌ ∑  ௫೔א௫ಾ ሺݔ௜ െ 0.5ሻଶ 

DTLZ4 modifies DTLZ2 by replacing ݔ௜ with ݔ௜ఈ. This replacement concentrates 

solutions near the ଵ݂ െ ெ݂ plane. The Pareto set lies on ݔ௜ ൌ 0.5 for ݔ௜ א  ெ and theݔ

Pareto front lies on ∑  ெ
௜ୀଵ ௜݂

ଶ ൌ 1. For our tests we use ܯ ൌ 3, ݇ ൌ ߙ ெ|, andݔ| ൌ 100. 

4.5 DTLZ5 

Minimize 
ଵ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺߠଵ2/ߨሻcosሺߠଶ2/ߨሻڮ cosሺߠெିଶ2/ߨሻcosሺߠெିଵ2/ߨሻ, 
ଶ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺߠଵ2/ߨሻcosሺߠଶ2/ߨሻڮ cosሺߠெିଶ2/ߨሻsinሺߠெିଵ2/ߨሻ, 
ଷ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺߠଵ2/ߨሻcosሺߠଶ2/ߨሻڮ sinሺߠெିଶ2/ߨሻ, 

 ڭ
ெ݂ିଵሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺߠଵ2/ߨሻsinሺߠଶ2/ߨሻ, 
ெ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻsinሺߠଵ2/ߨሻ, 

subject to 0 ൑ ௜ݔ ൑ 1, for ݅ ൌ 1,2, … , ݊. 
where 

௜ߠ ൌ
ߨ

4൫1 ൅ ݃ሺݔெሻ൯
ሺ1 ൅ 2݃ሺݔெሻݔ௜ሻ, for ݅ ൌ 1,2, … , ሺܯ െ 1ሻ 

݃ሺݔெሻ ൌ෍  
௫೔א௫ಾ

ሺݔ௜ െ 0.5ሻଶ 

The Pareto set lies on ݔ௜ ൌ 0.5 for ݔ௜ א  ெ and the Pareto front lies on a curve onݔ

∑  ெ
௜ୀଵ ௜݂

ଶ ൌ 1. For our tests we use ܯ ൌ 3 and ݇ ൌ |ெݔ| ൌ 10. 

4.6 DTLZ6 

Minimize 
ଵ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺߠଵ2/ߨሻcosሺߠଶ2/ߨሻڮ cosሺߠெିଶ2/ߨሻcosሺߠெିଵ2/ߨሻ, 
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ଶ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺߠଵ2/ߨሻcosሺߠଶ2/ߨሻڮ cosሺߠெିଶ2/ߨሻsinሺߠெିଵ2/ߨሻ, 
ଷ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺߠଵ2/ߨሻcosሺߠଶ2/ߨሻڮ sinሺߠெିଶ2/ߨሻ, 

 ڭ
ெ݂ିଵሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻcosሺߠଵ2/ߨሻsinሺߠଶ2/ߨሻ, 
ெ݂ሺݔሻ ൌ ሺ1 ൅ ݃ሺݔெሻሻsinሺߠଵ2/ߨሻ, 

subject to 0 ൑ ௜ݔ ൑ 1, for ݅ ൌ 1,2, … , ݊. 
where 

௜ߠ ൌ
ߨ

4൫1 ൅ ݃ሺݔெሻ൯
ሺ1 ൅ 2݃ሺݔெሻݔ௜ሻ, for ݅ ൌ 1,2, … , ሺܯ െ 1ሻ 

݃ሺݔெሻ ൌ෍  
௫೔א௫ಾ

ሺݔ௜ሻ଴.ଵ 

The Pareto set lies on ݔ௜ ൌ 0 for ݔ௜ א  ெ and the Pareto front is identical to that ofݔ

DTLZ5. For our tests we use ܯ ൌ 3 and ݇ ൌ |ெݔ| ൌ 10. 
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CHAPTER 5 

RESULTS 

5.1 Performance Measures 

Table 1 shows the comparison of NSGA-II and MOCA for two performance 

metrics: hypervolume (HV) [12] and generational distance (GD) [13]. The HV value 

provides a measure of how much of the true Pareto front is covered. Since we use three 

objective functions for each problem, the hypervolume is the volume of the union of 

cuboids with corners ሺ0,0,0ሻ  and ሺ ଵ݂ሺݔ௜ሻ, ଶ݂ሺݔ௜ሻ, ଷ݂ሺݔ௜ሻሻ ݔ׊௜  in the population. Before 

computing the volume, the decision variables are scaled so that, for each dimension, the 

minimum and maximum values of a reference Pareto front are 0 and 1 respectively. 

Finally, each decision variable of each solution is inverted, that is, subtracted from 1, to 

obtain the set of solutions for which the hypervolume will be calculated. The HV of the 

reference Pareto front for DTLZ1 is 0.8257. The reference Pareto front for DTLZ2 through 

DTLZ4 has HV 0.4678. For DTLZ5 and DTLZ6, the reference Pareto front has HV 0.0956. 

The generational distance measures how close a population is to the true Pareto 

front. It is implemented as ට∑ ,௜ݔሺܦ ௉௢௣אோ௎ாሻଶ௫೔்ܨܲ /݊ where ܦሺݔ,  ሻ is the distanceܨܲ

from x to the nearest point in a reference Pareto front PF, and n is the number of solutions 

in the population. Values for GD are in ሾ0,∞ሻ. 

5.2 Algorithm Comparison 

For each of the problems, MOCA provides a competitive mean HV but is 

outperformed by NSGA-II. The standard deviation of HV for MOCA is an average of a 

factor of ten higher than that of NSGA-II. MOCA performs best on DTLZ1 and DTLZ5, 

giving an average HV within a factor of 0.9 of NSGA-II. For DTLZ4, MOCA is unable to 
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distribute solutions over the face of the spherical Pareto front, placing solutions only on 

the f1-f2 or f1-f3 planes. The mechanisms in the knowledge sources designed to provide a 

good distribution are functioning correctly but need improvement to match the leading 

MOEAs. 

MOCA gives very competitive GD metric values for most of the problems tested. It 

performs worst on DTLZ2, with a mean GD an order of magnitude greater than NSGA-II. 

This is because the parabolic fitness functions for DTLZ2 are much less steep near the 

Pareto front than other problems. In MOCA, the domain knowledge source is the primary 

means of placing solutions at precisely optimal values, and works better with steep 

functions.  

Table 1: DTLZ Performance Measures 

MOP MOEA HV 
Mean and SD

HV
Median and IQR

GD
Mean and SD 

GD
Median and IQR

DTLZ1 NSGA-II  7.61݁ െ 01଻.ଽ௘ି଴ଷ 7.62݁ െ 01଻.ଵ௘ି଴ଷ 3.13݁ െ 02ଵ.଼௘ି଴ଵ 6.68݁ െ 04ଶ.ଷ௘ି଴ସ
MOCA  7.15݁ െ 01ଶ.ସ௘ି଴ଶ 7.18݁ െ 01ଶ.଺௘ି଴ଶ 1.25݁ െ 03ଷ.ଷ௘ି଴ସ 1.21݁ െ 03ସ.଴௘ି଴ସ

DTLZ2 NSGA-II  3.75݁ െ 01ହ.ଷ௘ି଴ଷ 3.75݁ െ 01଻.ଵ௘ି଴ଷ 1.30݁ െ 03ଵ.଺௘ି଴ସ 1.31݁ െ 03ଶ.ଶ௘ି଴ସ
MOCA  2.60݁ െ 01଺.ସ௘ି଴ଶ 2.33݁ െ 01ଵ.ଶ௘ି଴ଵ 1.27݁ െ 02ଵ.ସ௘ି଴ଶ 1.66݁ െ 03ଶ.ସ௘ି଴ଶ

DTLZ3 NSGA-II  3.74݁ െ 01଼.଺௘ି଴ଷ 3.75݁ െ 01ଵ.ଵ௘ି଴ଶ 1.30݁ െ 03ଶ.ଽ௘ି଴ସ 1.22݁ െ 03ଶ.ଶ௘ି଴ସ
MOCA  2.53݁ െ 01ଵ.଴௘ି଴ଵ 2.81݁ െ 01ଵ.ସ௘ି଴ଵ 4.37݁ െ 03ଵ.ଵ௘ି଴ଶ 1.93݁ െ 03ହ.଺௘ି଴ସ

DTLZ4 NSGA-II  3.76݁ െ 01ସ.଺௘ି଴ଷ 3.77݁ െ 01଻.ଵ௘ି଴ଷ 5.17݁ െ 03ଶ.଺௘ି଴ସ 5.19݁ െ 03ଷ.ସ௘ି଴ସ
MOCA  1.35݁ െ 01ଽ.ଷ௘ି଴ଶ 1.97݁ െ 01ଶ.଴௘ି଴ଵ 3.40݁ െ 03ଵ.ଵ௘ି଴ଶ 2.12݁ െ 03ଶ.ସ௘ି଴ଷ

DTLZ5 NSGA-II  9.29݁ െ 02ଶ.଴௘ି଴ସ 9.29݁ െ 02ଶ.଺௘ି଴ସ 3.76݁ െ 04଻.ଷ௘ି଴ହ 3.59݁ െ 04଼.଴௘ି଴ହ
MOCA  9.05݁ െ 02ଵ.ହ௘ି଴ଷ 9.10݁ െ 02ଵ.଺௘ି଴ଷ 5.02݁ െ 04ଽ.ହ௘ି଴ସ 2.64݁ െ 04ହ.଼௘ି଴ହ

DTLZ6 NSGA-II  8.35݁ െ 02ଵ.ଶ௘ି଴ଶ 9.36݁ െ 02ଵ.଼௘ି଴ଶ 2.30݁ െ 03ଶ.଼௘ି଴ଷ 6.69݁ െ 04ଶ.ସ௘ି଴ଷ
MOCA  3.40݁ െ 02ସ.଴௘ି଴ଶ 1.48݁ െ 11଻.ଽ௘ି଴ଶ 6.70݁ െ 04ଵ.଻௘ି଴ଷ 8.02݁ െ 05ହ.ଷ௘ି଴ସ
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Figure 17: MOCA final population in objective space for 
DTLZ2 

Figure 18: MOCA final population in decision space 
for DTLZ2 

 

 
Figure 19: MOCA final population in objective space 

for DTLZ3 

 
Figure 20: MOCA final population in decision space 

for DTLZ3 
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Figure 21: MOCA final population in objective space for 
DTLZ4 

Figure 22: MOCA final population in decision space 
for DTLZ4 

 

  
Figure 23: MOCA final population in objective space 

for DTLZ5 

  
Figure 24: MOCA final population in decision space 

for DTLZ5 
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Figure 25: MOCA final population in objective space 
for DTLZ6 

Figure 26: MOCA final population in decision space 
for DTLZ6 
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CHAPTER 6 

CONCLUSION 

MOCA is a functional model of the multi-objective problem-solving mechanisms 

which occur naturally in human culture. We found that complex cultural processes can be 

approximated using simple rules and used to solve multi-objective optimization problems. 

CA is a proven approach for single-objective optimization and provides the basis 

for our work. MOCA shows great potential by successfully optimizing problems as a 

standalone system. However, like CA, it can also be used to augment existing MOEAs. 

Any generational optimization algorithm can be run in the Population Space and accept 

influence from the knowledge sources. Furthermore, the mechanisms used in MOCA are 

simple enough to be integrated individually into other methods. Any one knowledge 

source can be implemented and used to guide the search of an MOEA. MOCA is 

accessible due to its conformance to the structure of the widely known CA. It uses the 

same communication protocol between the Population Space and Belief Space, and 

implements the same five knowledge sources. This makes the system transparent to 

those who have studied CA. 

The topographical knowledge source is unproductive when considering only one 

of the objective functions in the problem at a time. We suggest modifying the 

topographical influence function to divide the search space based on the Pareto rank of 

the individuals in the population. This can be thought of as maintaining the 

single-objective approach of topographical knowledge, and using the Pareto rank of a 

solution as the objective function. We suggest investigating the use of a Pareto rank other 

than the Goldberg method for this purpose. We also recommend implementing a real 
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gradient approximation method for the domain knowledge source. We were able to avoid 

an exponential number of fitness evaluations by using a simple and effective heuristic. 

However, our heuristic has no mathematical basis and can certainly be improved. Finally, 

we recommend that the mechanisms for spreading the solutions evenly over the Pareto 

front be improved. The situational and historical knowledge sources can achieve an 

acceptable spread on simple problems but not on problems with very uneven density. We 

expect that a better implementation of the topographical knowledge source can be used 

to fill this role.  
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 Multi-objective optimization is a widely applicable problem in Engineering and 

Computer Science. In the past, Cultural Algorithms have been used to solve complex 

optimization and design problems. In this thesis we extend the Cultural Algorithm 

Framework to support multi-objective problems. The resultant system, Multi-Objective 

Cultural Algorithms (MOCA), can be used independently or as a supplement to existing 

MO optimization methods. We compare the performance of our algorithm with NSGA-II 

using problems from the DTLZ test suite, a popular MOEA test suite. We found that 

Cultural Algorithms are a promising technique for solving multi-objective problems. 
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