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Abstract

Classification problems often have a large number of features, but not all
of them are useful for classification. Irrelevant and redundant features
may even reduce the classification accuracy. Feature selection is a process
of selecting a subset of relevant features, which can decrease the dimen-
sionality, shorten the running time, and/or improve the classification ac-
curacy. There are two types of feature selection approaches, i.e. wrapper
and filter approaches. Their main difference is that wrappers use a clas-
sification algorithm to evaluate the goodness of the features during the
feature selection process while filters are independent of any classification
algorithm. Feature selection is a difficult task because of feature interac-
tions and the large search space. Existing feature selection methods suf-
fer from different problems, such as stagnation in local optima and high
computational cost. Evolutionary computation (EC) techniques are well-
known global search algorithms. Particle swarm optimisation (PSO) is an EC
technique that is computationally less expensive and can converge faster
than other methods. PSO has been successfully applied to many areas, but
its potential for feature selection has not been fully investigated.

The overall goal of this thesis is to investigate and improve the capabil-
ity of PSO for feature selection to select a smaller number of features and
achieve similar or better classification performance than using all features.
This thesis investigates the use of PSO for both wrapper and filter, and for
both single objective and multi-objective feature selection, and also inves-
tigates the differences between wrappers and filters.

This thesis proposes a new PSO based wrapper, single objective feature
selection approach by developing new initialisation and updating mecha-

nisms. The results show that by considering the number of features in the



initialisation and updating procedures, the new algorithm can improve
the classification performance, reduce the number of features and decrease
computational time.

This thesis develops the first PSO based wrapper multi-objective fea-
ture selection approach, which aims to maximise the classification accu-
racy and simultaneously minimise the number of features. The results
show that the proposed multi-objective algorithm can obtain more and
better feature subsets than single objective algorithms, and outperform
other well-known EC based multi-objective feature selection algorithms.

This thesis develops a filter, single objective feature selection approach
based on PSO and information theory. Two measures are proposed to eval-
uate the relevance of the selected features based on each pair of features
and a group of features, respectively. The results show that PSO and infor-
mation based algorithms can successfully address feature selection tasks.
The group based method achieves higher classification accuracies, but the
pair based method is faster and selects smaller feature subsets.

This thesis proposes the first PSO based multi-objective filter feature
selection approach using information based measures. This work is also
the first work using other two well-known multi-objective EC algorithms
in filter feature selection, which are also used to compare the performance
of the PSO based approach. The results show that the PSO based multi-
objective filter approach can successfully address feature selection prob-
lems, outperform single objective filter algorithms and achieve better clas-
sification performance than other multi-objective algorithms.

This thesis investigates the difference between wrapper and filter ap-
proaches in terms of the classification performance and computational
time, and also examines the generality of wrappers. The results show that
wrappers generally achieve better or similar classification performance
than filters, but do not always need longer computational time than fil-
ters. The results also show that wrappers built with simple classification
algorithms can be general to other classification algorithms.
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Chapter 1
Introduction

This chapter introduces this thesis. It starts with the problem statement,
then outlines the motivations, the research goals, the major contributions

and the organisation of the thesis.

1.1 Problem Statement

Classification is an important task in machine learning and data mining,
which aims to classify each instance in the data into different groups. The
feature space of a classification problem is a key factor influencing the per-
formance of a classification/learning algorithm [2]. Without prior knowl-
edge, it is difficult to determine which features are useful. Therefore, a
large number of features are usually introduced into the dataset, includ-
ing relevant, irrelevant and redundant features. However, irrelevant and
redundant features are not useful for classification. Their presence may
mask or obscure the useful information provided by relevant features, and
hence reduces the quality of the whole feature set [3]. Meanwhile, the
large number of features causes one of the major obstacles in classification
known as “the curse of dimensionality” [4]. Therefore, feature selection
is proposed to increase the quality of the feature space, reduce the number

of features and/or improve the classification performance [5, 6, 7].

1



2 CHAPTER 1. INTRODUCTION

Feature selection (See Figure 1.1) aims to select a subset of relevant
features that are necessary and sufficient to describe the target concept [1].
By reducing the irrelevant and redundant features, feature selection could
decrease the dimensionality, reduce the amount of data needed for the
learning process, shorten the running time, simplify the structure and/or
improve the performance of the learnt classifiers [1]. Naturally, an optimal
feature subset is the smallest feature subset that can obtain the optimal
performance, which makes feature selection a multi-objective problem [8].
Note that feature selection algorithms choose a subset of features from the

original feature set, and do not create new features.

i |
! Original |
|
| Features Selected !
! Features :
| Feature 1 !
|
| Feature 2 Feature x1 :
i Feature 3 Feature Feature x2 !
: ' Selection Feature x3 | Classification
|
i _ : Algorithm
| Feature n-2 i
. |
. | Feature n-1 Feature xm :
: Feature n !
P TeAIe |
i I

Figure 1.1: Feature selection, where m and n are constant, 1 < m < n, and
{Feature z; ... Feature z,,} € {Feature 1, ... Feature n } without replace-

ment.

Existing feature selection methods can be broadly classified into two
categories: filter approaches and wrapper approaches [5, 1]. Wrapper
approaches include a classification algorithm as a part of the evaluation
function to determine the goodness of the selected feature subsets. Fil-
ter approaches use statistical characteristics of the data for evaluation and
the feature selection search process is independent of any classification al-

gorithm. Filter approaches are computationally less expensive and more
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general than wrapper approaches while wrappers are better than filters in
terms of the classification performance [1].

Feature selection is a difficult task. Although many approaches have
been proposed, most of them still suffer from the problems of stagnation
in local optima and high computational cost due mainly to the large search
space. Therefore, an efficient global search technique is needed to address
feature selection tasks. Evolutionary computation (EC) techniques are a
group of powerful global search algorithms, which have been successfully
applied to many areas [9]. Particle swarm optimisation (PSO) [10, 11] is
a relatively recent EC technique based on swarm intelligence. The un-
derlying concept of PSO is that knowledge is optimised by social interac-
tions, where the “thinking” /interaction is not only personal but also social
[10, 12]. Compared with other EC techniques, such as genetic algorithms
(GAs) and genetic programming (GP), PSO is easier to implement, has
fewer parameters and can converge more quickly [9]. PSO has been re-
cently applied to solve feature selection problems [13, 14, 15], but its po-

tential on feature selection has not been fully investigated.

1.2 Motivations

1.2.1 Challenges of Feature Selection

Feature selection is a difficult problem [16, 17], especially when the num-
ber of available features is large. The task is challenging due mainly to two
reasons, which are feature interaction and the large search space.

Feature interaction (also called epistasis [18]) happens frequently in
classification tasks. There can be two-way, three-way or complex multi-
way interactions among features. On one hand, a feature, which is weakly
relevant or even completely irrelevant to the target concept by itself, can
significantly improve the classification accuracy if it is complementary to

other features. Therefore, the removal of such features may also miss the
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optimal feature subsets. On the other hand, an individually relevant fea-
ture can become redundant when working together with other features.
The selection/use of such features brings redundancy, which may deteri-
orate the classification performance.

In feature selection, the size of the search space grows exponentially
with respect to the number of available features in the dataset (2" possi-
ble subsets for n features) [19]. In most cases, it is practically impossible
to exhaustively search all the candidate solutions. To better address this
problem, a variety of search techniques have been applied to feature se-
lection [1, 19]. However, existing methods still suffer from the problem of

stagnation in local optima and/or high computational cost.

1.22 Why PSO

PSO is an effective and efficient global search technique [9, 12]. Itis a
suitable algorithm to address feature selection problems because of the
following reasons:

e The representation of PSO is appropriate to feature selection tasks.
PSO uses an array or a vector to encode each individual/particle in
the swarm, which is a natural way to encode the candidate solution
of a feature selection problem, where the dimensionality is the num-
ber of features and the value in each dimension shows whether the

corresponding feature is selected;

e Feature selection has a large search space, which often causes the
problem of becoming stuck in local optima in existing methods. So
it needs a global search technique. EC methods are well-known for
their global search ability. PSO is an EC algorithm that is able to
effectively search large spaces to find optimal or near-optimal solu-
tions;

e The large search space in feature selection also causes the problem of
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high computational cost, especially for wrapper approaches. PSO is
argued to be computationally less expensive than other EC methods;

e Compared with other EC methods, PSO is easier to implement, has

fewer parameters and can converge faster; and

e There have been a limited number of studies on PSO for feature se-
lection, which have shown that PSO has the potential to address fea-
ture selection problems. However, the capability/capacity of PSO
for feature selection has not been fully investigated.

1.2.3 Limitations of Existing Work

PSO has been used for feature selection, but PSO has never been inves-
tigated /modified according to the characteristics of the feature selection
task. There are many important factors in PSO, which can be investigated
for a particular task to improve the performance, such as the initialisation
strategy and the updating mechanisms. Therefore, tuning the PSO algo-
rithm according to the objectives of the feature selection task can further
improve the classification performance and/or reduce the number of fea-
tures.

Feature selection is a multi-objective problem. It has two main ob-
jectives, which are to maximise the classification accuracy (minimise the
classification error rate) and minimise the number of features. These two
objectives are usually conflicting to each other and the optimal decision
needs to be made in the presence of a trade-off between them. Treating
feature selection as a multi-objective problem can obtain a set of non-
dominated feature subsets to meet different requirements in real-world
applications. However, there are rare studies treating feature selection as a
multi-objective problem [20, 21]. Although PSO has been shown to be suc-
cessful in addressing many multi-objective problems [9], PSO has never

been applied to multi-objective feature selection tasks.
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Most of the existing PSO based feature selection algorithms are wrap-
per approaches, which are argued to be less general, that is the selected
features may obtain low performance in classification algorithms rather
than the internal classification algorithm used in the evaluation function.
Meanwhile, as each evaluation involves a training and testing classifica-
tion process, wrappers are usually computationally expensive. Filter ap-
proaches are argued to be more general and computationally less expen-
sive. However, there are very few studies on using PSO for filter feature
selection and no work on using PSO for filter based multi-objective feature
selection.

Wrapper and filter approaches are argued to have their own advan-
tages and disadvantages. Wrappers can achieve better classification per-
formance than filters, but filters are computationally less expensive and
more general than wrappers. However, no thorough investigations have
been made on how much difference there probably is between the two ap-
proaches in terms of the classification performance and the computational
cost.

1.3 Goals

The overall goal of this thesis is to investigate/improve the capability of
PSO for feature selection and propose a new approach to the use of PSO
for feature selection in classification problems to reduce the number of
features and achieve similar or even better classification performance than
using all the original features. To achieve this overall goal, a set of research
objectives have been established to guide this research, which can be seen
as follows.

1. Develop a new wrapper based single objective feature selection method
by proposing new initialisation and updating mechanisms in PSO.
The proposed algorithm is expected to select a small number of fea-

tures and achieve similar or better classification performance than
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using all features and outperform existing PSO based feature selec-

tion algorithms.

In existing work, PSO has never been tuned to the feature selec-
tion task. The initialisation strategy in PSO can improve its per-
formance. Gutierrez et al. [22] show that the influence of the ini-
tialisation strategy varies in different tasks. However, no existing
initialisation strategies are specifically proposed for the feature se-
lection problems. Meanwhile, in standard PSO, the personal and
global best are updated solely based on the fitness value of the par-
ticles (i.e. classification performance in feature selection problems).
For two feature subsets with the same classification performance but
different numbers of features, the traditional updating mechanism

does not tend to choose the smaller feature subset.

2. Develop a new wrapper based multi-objective feature selection algo-
rithm using a multi-objective PSO algorithm. The proposed algo-
rithm is expected to evolve a set of non-dominated feature subsets
with a smaller number of features and better classification perfor-
mance than using all features, and outperform other well-known EC

based multi-objective feature selection methods.

EC techniques are particularly suitable for multi-objective optimisa-
tion because they use a population of candidate solutions and are
able to find multiple non-dominated solutions in a single run. PSO
has been successfully used to solve many multi-objective problems,
but has never applied to multi-objective feature selection. The pro-
posed PSO based multi-objective feature selection algorithm aims to
optimise the two main objectives, i.e. maximising the classification
performance and minimising the number of features. It is expected
to select a set of non-dominated solutions rather than a single solu-
tion, which can assist users in choosing their preferred solutions to

meet different requirements in real-world applications.
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3. Develop a new filter based single objective feature selection approach
based on PSO and an information theory measure to evaluate the
goodness of the selected features. The proposed algorithm is ex-
pected to efficiently select a small feature subset with which different
classification algorithms can achieve similar or even better classifica-

tion performance than using all features.

Filter approaches are argued to be computationally less expensive
and more general than wrapper approaches. The main reason is that
filters use statistical characteristics of the data as the evaluation mea-
sure rather than using a classification algorithm as in wrappers. The
evaluation measure is a key factor in a filter approach. Information
theory is one of the most important theories that are capable to mea-
sure the relevance between features and class labels [1]. However,
no work has been conducted to investigate the use of information
theory in PSO based feature selection.

4. Develop afilter based multi-objective feature selection approach based
on multi-objective PSO and the information theory based measure.
The proposed approach is expected to efficiently select a set of non-
dominated feature subsets to achieve similar or even better classifi-

cation performance than using all features.

EC techniques are particularly suitable for multi-objective optimisa-
tion. However, multi-objective PSO and other two well-known evo-
lutionary multi-objective algorithms, non-dominated sorting based
multi-objective genetic algorithm II (NSGAII) [23] and strength Pareto
evolutionary algorithm 2 (SPEA2) [24] have not been applied to fil-
ter based multi-objective feature selection. In this objective, multi-
objective PSO, NSGAII and SPEA2 will be used to develop filter
based multi-objective methods. The proposed multi-objective PSO
based algorithm is expected to achieve better performance than the
PSO based single objective method, the NSGAII and SPEA2 based
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multi-objective methods.

5. Further investigate the differences between wrapper and filter fea-
ture selection methods in terms of the computational time, the gen-
erality and classification performance.

Wrappers are usually considered to be less general than filter ap-
proaches. To examine the generality of wrapper approaches, this
objective will investigate whether the feature subset selected by us-
ing a certain classification algorithm during the training process can
improve the performance of other classification algorithms. Mean-
while, it is also needed to test the difference on the classification per-
formance and the computational time between wrapper and filter
approaches, which can provide more information to help users make
a choice between filter and wrapper methods according to their re-
quirements on the classification performance and the computational

time.

1.4 Major Contributions

This thesis makes the following major contributions.

1. The thesis proposes a PSO based feature selection approach based
on a new initialisation strategy and a new personal and global best
updating mechanism. The new initialisation strategy simulates con-
ventional forward and backward feature selection methods [1]. The
new updating mechanism considers both the classification perfor-
mance and the number of features. In addition, a new PSO based
two-stage feature selection method is proposed as a baseline algo-
rithm. Experimental results show that the two-stage algorithm can
achieve better performance than traditional feature selection meth-
ods and existing PSO based methods. With the new initialisation

and updating mechanisms, the proposed method further improves
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the performance in terms of the classification performance, the num-

ber of features and the computational time.
Part of this contribution has been published in:

Bing Xue, Mengjie Zhang and Will N. Browne. “New Fitness Func-
tions in Binary Particle Swarm Optimisation for Feature Selection”.
Proceedings of 2012 IEEE Congress on Evolutionary Computation.
IEEE Press. 2012. pp. 2145-2152.

Bing Xue, Mengjie Zhang, Will N. Browne. “Novel Initialisation
and Updating Mechanisms in PSO for Feature Selection in Classi-
tication”. Proceedings of the 16th European Conference on Applica-
tions of Evolutionary Computation (EvoApplications 2013). Lecture
Notes in Computer Science. Vol. 7835. Vienna, Austria, April 3-5,
2013. pp. 428-438.

Bing Xue, Mengjie Zhang, Will N. Browne. “Particle Swarm Opti-
misation for Feature Selection in Classification: Novel Initialisation
and Updating Mechanisms”. Applied Soft Computing. (Accepted,
30-09-2013).

. This thesis proposes the first PSO based multi-objective, wrapper

feature selection approach. The proposed algorithm aims to max-
imise the classification performance and minimise the number of
features. Experimental results show that the proposed algorithm
can successfully obtain a set of feature subsets that have a smaller
number of features and achieve similar or better classification per-
formance than using all features. The proposed algorithm outper-
forms PSO based single objective algorithms and three other multi-
objective EC techniques based wrapper algorithms, which are NS-
GAII, SPEA2 and Pareto archived evolutionary strategy (PAES).

Part of this contribution has been published in:

Bing Xue, Mengjie Zhang, Will N. Browne. “Multi-Objective Particle
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Swarm Optimisation (PSO) for Feature Selection”. Proceedings of
2012 Genetic and Evolutionary Computation Conference (GECCO
2012). ACM Press. Philadelphia, USA. 7-11 July 2012. pp. 81-88.

Bing Xue, Mengjie Zhang, Will Browne. “Particle Swarm Optimi-
sation for Feature Selection in Classification: A Multi-Objective Ap-
proach”. IEEE Transactions on Systems, Man, and Cybernetics (Part
B). (13 Dec 2012 published online). DOI: 10.1109/ TSMCB.2012.2227469.

3. This thesis proposes a filter based single objective feature selection
approach using PSO and new information theory based measures.
The new measures are used to evaluate the relevance between fea-
tures and the class labels, and the redundancy amongst the selected
features, which indicates the classification performance and the num-
ber of features, respectively. New fitness functions using such rel-
evance and redundancy measures are developed to guide PSO to
search for the optimal feature subsets. Experimental results show
that the proposed algorithms can select a small number of features to
achieve similar or even better classification performance than using
all features, and outperform two traditional filter feature selection

algorithms and even a traditional wrapper method.
Part of this contribution has been published in:

Liam Cervante, Bing Xue and Mengjie Zhang. “Binary Particle Swarm
Optimisation for Feature Selection: A Filter Based Approach”. Pro-
ceedings of 2012 IEEE Congress on Evolutionary Computation. IEEE
Press. 2012. pp. 881-888.

4. This thesis proposes the first multi-objective, filter feature selection
approach using PSO, NSGAII or SPEA2. The proposed algorithms
maximise an information measure representing the classification per-
formance and minimise the number of features. Experimental results
show that all the proposed multi-objective algorithms can obtain a

set of feature subsets, which include a smaller number of features
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and achieve similar or even better classification performance than
using all features. The proposed multi-objective algorithms outper-
form traditional filter algorithms and PSO based single objective al-
gorithms. The PSO based multi-objective approach achieves slightly
better classification performance than the NSGAII and SPEA2 based
algorithms.

Part of this contribution has been published in:

Bing Xue, Liam Cervante, Lin Shang, Will N. Browne, Mengjie Zhang.
“ A Multi-Objective Particle Swarm Optimisation for Filter Based Fea-
ture Selection in Classification Problems”. Connection Science. Vol.
24, No. 2-3,2012. pp. 91-116 DOI: 10.1080/09540091.2012.737765.

Bing Xue, Liam Cervante, Lin Shang and Mengjie Zhang. “A Particle
Swarm Optimisation Based Multi-Objective Filter Approach to Fea-
ture Selection for Classification”. Proceeding of the 12th Pacific Rim
International Conference on Artificial Intelligence (PRICAI 2012). Lec-
ture Notes in Artificial Intelligence. Vol. 7458. Kuching, Sarawak,
Malaysia. 3-7 September 2012. pp. 673-685.

Bing Xue, Liam Cervante, Lin Shang, Will N. Browne, Mengjie Zhang.
“"Multi-Objective Evolutionary Algorithms for Filter Based Feature
Selection in Classification”. International Journal on Artificial In-
telligence Tools . Vol. 22, Issue 04, August 2013. pp. 1350024-1 —
1350024-31. DOI: 10.1142/50218213013500243.

. This thesis investigates the differences between wrapper and filter

approaches in terms of the classification performance and the com-
putational time, and examines the generality of different wrappers.
The experimental results show that wrapper approaches generally
achieve better or similar (but not worse) classification performance
than filters, but wrapper approaches do not necessarily always need
longer computational time than filter approaches. Wrapper approaches
were previously claimed not general to different classification algo-



1.5. ORGANISATION OF THE THESIS

13

rithms, but this thesis finds that wrappers built with a simple classi-

fication algorithm can be general to other classification algorithms.

PSO for Feature Selection

T

Wrapper Approaches Filter Approaches
Single Objective Multi-Objective Single Objective Multi-Objective
(Chapter 3) (Chapter 4) (Chapter 5) (Chapter 6)
Discussions
(Chapter 7)

Figure 1.2: The overall structure of the contributions.

1.5 Organisation of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 presents the

literature review of related work. The main contributions of the thesis are

presented in Chapters 3-7, which can be seen in Figure 1.2. Each chapter

addresses one of the research objective. Chapter 8 concludes the thesis.

Chapter 2 presents essential background and basic concepts of machine

learning and classification, feature selection, evolutionary computation

particularly PSO, multi-objective optimisation and information theory. It

reviews typical related work in feature selection using conventional meth-

ods and evolutionary computation techniques. It also visits advances in
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feature selection using PSO and other EC methods. It then discusses open
questions and current challenges that form the motivations of this thesis.

Chapter 3 proposes new initialisation and updating mechanisms in
PSO for feature selection. It discusses the influence of the initialisation,
updating mechanism and the fitness function on the classification perfor-
mance and the number of features selected. The chapter then proposes
new algorithms and examines their performance against traditional meth-
ods and existing PSO based algorithms. A set of experiments are con-
ducted on commonly used classification problems of varying difficulty.
The results are then presented and analysed.

Chapter 4 proposes a novel wrapper based multi-objective feature se-
lection algorithm using multi-objective PSO, which aims to maximise the
classification accuracy and minimise the number of features. The pro-
posed algorithm is then examined and compared with single objective
algorithms, and three other EC based multi-objective algorithms, i.e. NS-
GAII, SPEA2 and PAES in terms of the number of features, the classifica-

tion performance and the computational time.

Chapter 5 develops a new filter algorithm based on PSO and informa-
tion theory. It discusses the capability of information theory in measuring
the relevance between class labels and a groups of features, and the re-
dundancy with the features. New information based measures are then
developed to form the fitness function of the new PSO based feature se-
lection algorithm. The performance of the new algorithm is examined on
a set of datasets and the classification performance is evaluated using dif-

ferent classification algorithms to test its generality.

Chapter 6 proposes new filter based multi-objective algorithms using
multi-objective PSO and information based measures. It also proposes two
other EC based multi-objective algorithms using NSGAII and SPEA2. All
these algorithms aim to the information theory based relevance measure
and minimise the number of features. Their performances are then exam-

ined and compared with PSO or GA based single objective algorithms on
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datasets of varying difficulty.

Chapter 7 discusses and tests the advantages and disadvantages of
both filter and wrapper approaches. Based on the experimental results,
the classification performance, the computational time and the generality
of filter and wrapper approaches are compared and discussed.

Chapter 8 summaries the work and draws overall conclusions of the
thesis. Key research points and the contributions of the thesis are ascer-

tained. It also suggests some possible future research directions.

1.6 Benchmark Datasets

Throughout this thesis, the proposed PSO based feature selection algo-
rithms are evaluated on a number of benchmark classification tasks of
varying difficulty.

The datasets are summarised in Table 1.1. These datasets are carefully
choosen from the UCI Repository of Machine Learning Databases [25].
The datasets are selected to have different numbers of features (from 13
to 649), classes (from 2 to 19) and instances (from 32 to 44473), and dif-
ferent data type (continuous and categorical). The datasets are used as
representative samples of the problems that the proposed algorithms can

address.
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Table 1.1: Datasets
Number of | Number of | Number of Data
Dataset
Features Classes Instances Type

Wine 13 3 178 Continuous
Australian 14 2 690 Continuous
Zoo 17 7 101 Continuous
Vehicle 18 4 846 Continuous
German 24 2 1000 Continuous
Wisconsin Breast

Cancer-Diagnostic (WBCD) 30 2 569 Continuous
Ionosphere (Ionosp) 34 2 351 Continuous
Lung Cancer (Lung) 56 3 32 Continuous
Sonar 60 2 208 Continuous
Movementlibras (MoveLib) 90 15 360 Continuous
Hillvalley 100 2 606 Continuous
Musk Versionl1(Musk1) 166 2 476 Continuous
Madelon 500 2 4400 Continuous
Isolet5 617 2 1559 Continuous
Lymphography (Lymph) 18 4 148 Categorical
Mushroom 22 2 5644 Categorical
Spect 22 2 267 Categorical
Leddisplay 24 10 1000 Categorical
Dermatology 34 6 366 Categorical
Connect4 42 3 44473 Categorical
Soybean Large 35 19 307 Categorical
Chess 36 2 3196 Categorical
Splice 60 3 3190 Categorical
Statlog 36 6 6435 Categorical
Waveform 40 3 5000 Categorical




Chapter 2
Literature Review

This chapter provides a review on the literature that forms the background
and supports the motivations of the thesis. This chapter covers essential
background and basic concepts of machine learning and classification, fea-
ture selection, evolutionary computation (particularly PSO), multi-objective
optimisation and information theory. It reviews typical related work in
feature selection using conventional methods and evolutionary computa-

tion techniques.

2.1 Machine Learning and Classification

Machine learning is a major research area of artificial intelligence. It is
concerned with the design, analysis, implementation, and application of
programs that are capable of learning in the environment [26, 27, 28]. A
machine learning system is expected to be able to automatically improve
its performance at a certain task as it gains more experience [28].

Mitchell [28] provided a widely quoted definition of machine learning;

“computer program is said to learn from experience E with re-
spect to some class of tasks T and performance measure P, if

its performance at tasks in T, as measured by P, improves with

17
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experience E” .

Machine learning algorithms use a feedback mechanism to change their

behaviour (learn). Depending on the type of feedback, machine learning

algorithms can be classified into three main categories: supervised learn-

ing, unsupervised learning and reinforcement learning [2].

e In supervised learning, the learner is learning with labelled exam-
ples or instances. The desired outputs for a problem are known in
advance. The goal is to learn a function that maps inputs to the de-
sired outputs. Classification is a typical form of supervised learning.
Given a set of instances represented by features or attributes and cor-
responding class labels, classification involves learning a model to

correctly predict the class membership of each instance [29].

In unsupervised learning, the learner is learning with examples which
are not labelled. This means that there are no correct answers from
which the learner can explicitly learn [30]. It attempts to find inher-
ent patterns that can then be used to determine groups for the given
instances. An example of unsupervised learning is clustering, where
the learner must explore underlying structures or correlations in the

data to learn relationships rather than rules.

In reinforcement learning, desired outputs are not directly provided.
Every action of the learner has different impact to the environment,
and the environment provides feedback on the goodness of its action
in the form of rewards and punishments. The learner learns based on

the rewards and punishments that it receives from the environment

[31].

Classification is one of the major tasks in machine learning, which

refers to the process of assigning a given piece of input data (an instance

or example) to one of the given categories/classes [29]. A learnt classifier is

needed for classification. The classifier is learnt by a learning/classification
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algorithm, also called a classifier inducer, which is a supervised learning
algorithm. The learning algorithm uses a set of examples to learn a clas-
sifier that is expected to correctly predict the class label of unseen (future)
instances [29]. The learnt classifier takes the values of the features or at-
tributes of an object as input and the predefined class labels for the object
as output. The set of class labels is defined as part of the problem (by
users).

A typical classification example is the email spam-catching system,
which is important and necessary in real-world applications. Given a set
of emails marked as “spam” and “non-spam” , the learner will learn the
characteristics of the spam emails and then the learnt classifier is able to

process future email messages to mark them as “spam” or “non-spam”.

21.1 Training and Testing

Common to classification problems are the processes of training and test-
ing. The process by which a learning algorithm (classifier inducer) uses
observations to learn a new classifier is called the training process. The
process by which the learnt classifier is tested on unseen observations is
called the testing process [28]. During the training process, the classifier is
learnt from a collection of observations from the problem domain called
instances, which is called the training set. The algorithm learns important
knowledge or rules in the training set by building models and adjusting
the corresponding parameters. The performance of the algorithm is then
evaluated on the test set, which is also a collection of instances in the same
problem domain, but these are not used and remain unseen during the
training process.

The learning ability of classification algorithms is usually examined by
applying them to a set of benchmark problems. Benchmark problems are
usually chosen from datasets that are publicly accessible to researchers
(e.g. UCI Machine Learning Repository [25]) so that results can be veri-

fied and the performance can be checked. A dataset usually has a train-
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ing set and a test set. In such problems, the learning algorithm then be-
comes two-fold: to discover or learn different kinds of knowledge or rules
from the training set, and apply these rules to the test set to measure the
learnt model. However, many benchmark problems do not have a spe-
cific test set or some of them only have a small number of available in-
stances in the dataset. To evaluate the performance of a classifier on these
problems, it is necessary to use some resampling methods, such as n-fold

cross-validation [32].

In n-fold cross-validation, a dataset is randomly partitioned into n folds
(partitions) and the folds are near-equal size. In n-fold cross-validation,
the folds are selected so that the proportion of instances from different
classes remains the same in all folds. Subsequently, a single fold of the
n folds is retained as the test set for testing the learnt classifier, and the
remaining (n — 1) folds are used as the training set. The cross-validation
process is then repeated n times, with each of the n folds used only once
as the test set. The n results from the n experiments are then averaged to
produce a single estimate of the classification performance. The advan-
tage of such a method is that all instances are used for both training and
testing, and each instance is used for testing only once. Generally, a larger
n will produce an estimate with smaller bias because of the higher propor-
tion of instances in the training set, but potentially higher variance (on top
of being computationally expensive) [32]. Leave-one-out cross-validation
(LOOCYV) is an extreme case of n-fold cross-validation, which uses a single
observation from the dataset as the test set, and the remaining instances
as the training set. This is the same as a n-fold cross-validation with n be-
ing equal to the total number of instances in the dataset. Note that n-fold
cross-validation is usually used when the number of instances in the entire

dataset is small.
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2.1.2 Data Representation

In classification, each instance in the dataset is presented to a classification
algorithm using a representation system. The quality of the representation
system is of key importance in the majority of classification algorithms.
The most commonly used representation system is feature-value [6]. In this
system, each instance is represented in the form of a vector of values for
the features defined in the problem domain. The datasets (including both
the training set and the test set) are usually represented in the form of a ta-
ble, where each row is an instance and each column represents a different
feature in the problem domain. The quality of the feature space defined
in the problem domain, which usually involves the number of features
and their relevance to the desired task, significantly influences the perfor-
mance of a classification algorithm.

2.1.3 Classification Algorithms

Many different learning/classification algorithms (classifiers) have been
proposed in machine learning. Four most commonly used classifiers, which
will be used in this thesis, are reviewed in this section. They are K-nearest
neighbour (KNN), decision tree classifiers (DT), support vector machines
(SVMs), and Bayesian classifiers.

K-nearest Neighbour Classifier (KNN)

The K-nearest neighbour classifier (KNN) [33] is a type of instance-based
learning algorithm. When using KNN for classification, it calculates the
distances between an instance in the test set and every instance in the
training set. KNN assigns the test instance to the class that is the most
common amongst its k& nearest neighbours, where £ is a positive integer,
typically small. If £ = 1, the test instance is simply assigned to the class of

the single nearest neighbour.
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Euclidean distance, Manhattean distance, Minkowski Distance and other
distance measures can be used to measure the distance between the test
instance and the training instances in KNN [26]. In KNN, there is no ex-
plicit training process or it is very minimal. In other words, KNN does not
use the training data points to do any generalisation. The training data in
KNN is needed during the testing process, which is in contrast to other
techniques like SVM, where the training set and all non-support vectors
(hyperplanes) can be safely discarded.

KNN does not make any assumptions on the underlying data distri-
bution. In real-world applications, most of the datasets do not obey the
typical theoretical assumptions (e.g. Gaussian mixtures, linearly separa-
ble or independent features), which are needed in certain classifiers [26].
Therefore, KNN is a simple learning algorithm, but works well in practice.
However, for a large training set, KNN requires large memory and is very

time-consuming to make a decision [34].

Decision Tree Classifiers (DT)

Decision tree (DT) learning is an algorithm to approximate discrete-valued
functions [28]. DT classifiers partition the input training data into smaller
subsets by producing rules or decisions, also called nodes, which max-
imise the information gained [28].

A decision tree is usually learnt or built by recursively selecting the best
feature/attribute to split the training data and expanding the leaf nodes of
the tree until the stopping cirterion is met. The main problem in learning
a decision tree is to determine which feature should be tested at each node
of the tree. Most decision tree learning algorithms employ a top-down
greedy search through the space of possible decision trees. The choice of
the best split condition is determined by comparing the impurity of child
nodes and also depends on which impurity measurement is used. Com-
mon used methods, such as classification and regression tree (CART) [35],
the iterative dichotomiser 3 algorithm (ID3) [36], and the C4.5 algorithm
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[37], employ an entropy function to measure the homogeneity of examples
and choose the best node at each stage.

The learnt decision tree can be expressed as a set of ‘if-then’ deci-
sion rules to improve human readability. It is a hierarchy of nodes, where
leaves represent the class labels and branches represent conjunctions of
features that lead to those class labels. Instances in the test set are classi-
fied by sorting them down the tree from the root to certain leave nodes.
For a given instance, the classification process starts at the root node by
testing the value of the feature at the root node and then moves to one of
the child nodes. Then the process is repeated for the subtree rooted at the
new node.

Decision trees are easy to understand and interpret when the trees are
small. People are able to understand decision tree models after a brief ex-
planation. Important insights can be generated based on experts” domain
knowledge and adding possible scenarios. A disadvantage of decision
trees is that they are weak in separating non-rectangular areas in the input
space [37], which creates two-way or multi-way feature interactions (See

the challenges discussed in Section 1.2).

Support Vector Machines (SVMs)

Support vector machines (SVMs) are a popular machine learning method.
They are based on the concept of decision planes that define decision
boundaries. The main idea of SVMs is to use a kernel function to map the
input data to a higher-dimensional space, where the instances are linearly
separable. In the high-dimensional space, SVMs construct a hyperplane
or a set of hyperplanes, which are used to create decision boundaries for
classification [38]. SVMs are inherently two-class classifiers. Each hyper-
plane is expected to separate between a set of instances having two classes.
Instances are classified based on what side of these hyperplanes they fall
on. SVMs aim to maximise the distances between the hyperplanes and

the nearest training data points of any class (so-called functional margin),
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since in general the larger the margin the lower the generalisation error of
the classifier [38].

SVMs were primarily designed for binary classification. Different meth-
ods have been developed to use SVMs for multiple (C) class classification
[39]. A common way is to build C' “one-versus-rest” classifiers (commonly
referred to as “one-versus-all” classification) [40], and to choose the clas-
sifier that classifies the instances with the greatest margin. Another way
is to build a set of “one-versus-one” (binary) classifiers [41], and to choose
the class that is selected by the most classifiers.

A particular advantage of SVMs over other learning algorithms is that
they are based on sound mathematics theory and can be analysed theoret-
ically using concepts from the computational learning theory [42]. From a
practical point of view, the most serious disadvantage of SVMs is the high
algorithmic complexity and extensive memory requirements in large-scale
tasks [43].

Bayesian classifiers

Bayesian classifiers are probabilistic methods for classification. Their as-
sumptions are that the behaviour of data (input-output relationships) can
be captured in probability distributions and features or attributes of the
problem are statistically independent [28]. A Bayesian algorithm stores a
simple probabilistic summary for each class and this summary contains
the conditional probability of each feature or attribute value given the
class, as well as the probability (or base rate) of the class [44].

Naive Bayes (NB) classifiers are the most common and straightforward
Bayesian classifiers [45]. It has been shown that NB classifiers are quite
competitive with other classifiers, such as DT and neural networks (NN)
[46]. NB classifiers make significant use of the assumption that all input
features are conditionally independent, i.e. assuming that the presence or
absence of a particular feature is unrelated to the presence or absence of

any other feature, given the class label.
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An advantage of NB is that it only requires a small amount of training
data to estimate the parameters (means and variances of the variables) nec-
essary for classification. However, the assumption of features being con-
ditional independent to each other can not be applied to many real-world
problems, where there are interdependency between the input features.

2.2 Feature Selection

In classification, features/attributes are used to describe the instances in
the datasets. Since useful features are usually unknown in advance, a large
number of features are introduced to describe the instances in the datasets.
Clearly, not all of the features are useful for classification. Irrelevant or
redundant features may even reduce the classification performance [1].
Classification algorithms often suffer from the problem of “the curse of
the dimensionality” [19] because of the large number of features in the
dataset. Therefore, feature selection, also known as variable selection or
attribute selection, is proposed as a data pre-processing step to reduce or
eliminate irrelevant and redundant features.

Feature selection is defined by many researchers from different points
of view, but most of them are similar in intuition and/or content [1]. The
following lists those that are conceptually different and cover a range of

definitions.

e Improving classification accuracy: feature selection is to choose a
subset of features for improving the classification performance or re-
ducing the complexity of the model without significantly decreasing
the classification accuracy of the classifier built using only the se-
lected features [47].

e Approximating original class distribution: feature selection is to se-
lect a subset of features such that the resulting class distribution,
given only the values of the selected features, is as close as possible
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to the original class distribution given by all the available features
[47].

e Classical: feature selection is to select m features from n original fea-
tures, m < n, such that the value of a criterion function is optimised
over all subsets of size m [48].

e Idealised: feature selection is to find the minimally sized feature sub-
set that is necessary and sufficient to describe the target concept [49].

Note that the second definition emphasises the class distribution of
the training set, whereas the third definition emphasises on selecting the
best combination of m features based on a certain criterion. Overall, fea-
ture selection is the process of finding a small subset of original features
that is necessary and sufficient to solve a classification problem. Natu-
rally, the optimal feature subset is the smallest subset that can obtain the
highest classification performance, which makes feature selection a multi-
objective problem [8, 20], i.e. to minimise the number of features and to
maximise the classification performance.

Feature selection leads to dimensionality reduction by reducing or elim-
inating irrelevant and redundant features from the dataset, which in turn
improves the classification performance and makes the learning and ex-
ecution processes faster. Models constructed using a smaller number of

features are typically easier to interpret and visualize [1, 19].

2.2.1 General Feature Selection Process

Generally, there are five basic steps in a typical feature selection algorithm
[1] (see Figure 2.1).
1. A feature selection algorithm starts with a initialisation procedure.

The initalisation procedure is the first step of a feature selection algo-

rithm and it is based on all the original features in the problem. For
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Figure 2.1: General feature selection process [1].

example, in a PSO based feature selection algorithm, the dimension-
ality of the search space is usually set as the total number of all the

available features in this procedure.

2. A discovery procedure to generate candidate feature subsets.

It is a search procedure [50], which can start with no features, all fea-
tures, or a random subset of features. Many search techniques, in-
cluding conventional methods and evolutionary techniques, are ap-
plied in this feature subset search step to search for the best subset of

features.

3. An evaluation function to measure the feature subset.

Feature subsets produced by the search procedure will be examined
by a evaluation function to determine their goodness. The evalua-
tion function plays an important role in a feature selection algorithm,
because it helps guide the algorithm to search for the optimal feature
subset.

4. Based on given criteria to decide when to stop.

Stopping criteria can be based on the search procedure or the evalua-

tion function. Criteria based on the search procedure can be whether
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a predefined number of features are selected and whether a prede-
termined maximum number of iterations have been reached. Evalu-
ation based criteria include whether addition or deletion of any fea-
ture does not produce a better subset and whether the optimal sub-
set according to certain evaluation functions has been obtained. The
loop continuous until the stopping criterion is satisfied.

5. A validation procedure to check whether the subset is valid.

The validation procedure is not part of the feature selection process
itself, but a feature selection algorithm must be validated. The se-
lected feature subset will be validated on the test set. The results are
compared with previously established results or the results of prede-

tined benchmark techniques.

Two key factors in a feature selection algorithm are the search strategy and
the evaluation criterion. The search space of a feature selection problem has
2" possible points/solutions, where n is the number of available features.
The algorithm explores the search space of different feature combinations
to find the best feature subset. However, the size of the search space is
huge, especially when the number of features is large. This is one of the
main reasons making feature selection a challenging task. In many situa-
tions, it is impractical to search the whole space exhaustively [5]. There-
fore, an efficient and effective global search technique is needed to find the
optimal feature subset.

The evaluation criterion is used to form the evaluation function, which
determines the goodness of the selected feature subset and leads the search
of the algorithm. The optimal feature subset is always relative to a cer-
tain evaluation function. For a feature selection problem, the optimal fea-
ture subset chosen using one evaluation function may not be the same
feature subset chosen using another evaluation function. Because of the
feature interaction problem, the feature subset that can achieve the highest

classification performance is usually a group of complementary features.
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Figure 2.2: A filter feature selection algorithm in which the features are
filtered independently the classification algorithm.

A good evaluation function is expected to guide the algorithm to search
for such a complementary subset of features. Based on whether a learn-
ing/classification algorithm is used in the evaluation function, the existing
feature selection methods can be broadly classified into two categories: fil-
ter approaches and wrapper approaches [50]. A filter feature selection al-
gorithm is independent of any classification algorithm, whereas wrappers

use a classification algorithm in the evaluation function.

2.2.2 Filter vs Wrapper Approaches

Figure 2.2 shows the diagram of a feature selection system taking a filter
algorithm. In filter algorithms, the search process is independent of any
classification algorithm. The goodness of feature subsets are evaluated
based on a certain criterion like distance measure, information measure
and consistency measure [1].

Figure 2.3 shows the diagram of a wrapper feature selection algorithm.
In a wrapper model, the feature selection algorithm exists as a wrapper
around a classification algorithm and the classification algorithm is used
as a “black box” by the feature selection algorithm [51]. The performance
of the classification algorithm is used in the evaluation function to evaluate

the goodness of feature subsets and guide the search.
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Figure 2.3: A wrapper feature selection algorithm which exists as a wrap-
per around the classification algorithm.

Filter algorithms are argued to be computationally less expensive and
more general than wrapper algorithms [52, 51], but filter algorithms to-
tally ignore the performance of the selected feature subset on the classifi-
cation algorithm, which usually leads to lower performance than wrap-
per algorithms on a particular classification algorithm [51]. Compared
with filter algorithms, wrappers usually produce better classification per-
formance because of the interaction between the classification algorithm
and the selected feature subsets during the feature selection process [5].
However, wrapper feature selection algorithms are usually computation-
ally more expensive than filters because each evaluation of a candidate
solution needs a learning/classification algorithm to be trained and tested
[53].

2.2.3 Single Feature Ranking and Feature Construction
Single Feature Ranking

Single feature ranking is a relaxed version of feature selection [19]. Sin-
gle feature ranking is computationally cheap, because it only requires the

computation of the relative importance of the individual features and sub-
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sequently sorting them [54]. In single feature ranking, a score denotes
the relative importance of a single feature, which is measured by a pre-
defined criterion. All the features are ranked according to the score and
then feature selection can be accomplished by selecting a small number
of top-ranked features. Normally, users specify the number of top-ranked
features they need according to their requirements. There are also analyt-
ical methods to determine the best number of features [55].

Many measures have been proposed to evaluate the relative impor-
tance of each feature in single feature ranking algorithms, including infor-
mation gain, gain ratio, mutual information and so forth [56]. Most sin-
gle feature ranking methods fall into the filter approach category and not
much work has been conducted on wrapper based single feature ranking
[57,58]. However, existing single feature ranking algorithms only measure
the goodness of a single feature, not taking into account the interaction be-
tween groups of features [19, 59]. The combination of top-ranked features
may still have redundancy. The combination of one or more top-ranked
features and one or more low-ranked features are more likely to be com-
plementary to each other and can typically achieve better classification
performance. Therefore, in this thesis, single feature ranking for feature

selection is not considered.

Feature Construction

In classification, the quality of representation of a dataset can also be im-
proved by feature construction. Feature construction is a means of en-
hancing the quality of the feature space by constructing new high-level
features [6, 60]. Different from selecting a subset of original features in
feature selection, feature construction creates one or more new features to
better describe the problem and reduce the complexity [61]. A constructed
feature is usually a function of original low-level features and mathemat-
ical/logical operators. The constructed feature(s) should be able to dis-

cover the hidden relationship amongst the original low-level features to
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increase the classification performance.

Based on whether a classification algorithm is included in the feature
construction process, feature construction approaches (like feature selec-
tion methods) can be divided into two categories, which are wrapper ap-
proaches and filter approaches [6]. In wrapper approaches, feature con-
struction and learning are integrated into one single algorithm, where new
features are constructed within the learning process of the classification al-
gorithm. However, wrapper feature construction approaches have a dis-
advantage of losing the generality and increasing the processing time in
general [62]. In filter approaches, the process of feature construction is a
separate, independent preprocessing stage and the new features are con-
structed before the classification algorithm is applied. Recently, more fea-
ture construction methods fall into this category than wrapper category
because of computational efficiency and generality of filter approaches
[62, 63, 64].

Feature construction can be used to reduce the dimensionality and in-
crease the classification performance, but feature selection has an advan-
tage of keeping the original features, which facilitates domain experts to
understand and interpret of the problem. Therefore, this thesis will only
focus on feature selection problems, which are important and challenging
tasks needing further investigation.

2.3 Particle Swarm Optimisation (PSO)

2.3.1 Evolutionary Computation (EC)

Evolutionary computation (EC) is an area of computational intelligence,
which is inspired by the principles of biological evolution. In general,
EC consists of evolutionary algorithms (EAs), swarm intelligence (SI) and
other techniques.

EC techniques often perform well approximating solutions in differ-
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ent types of problems because they do not make any assumption about
the underlying fitness landscape. Therefore, these techniques have shown
successes in a variety of fields, ranging from practical applications in in-
dustry to leading-edge scientific research [9].

Evolutionary Algorithms

Evolutionary algorithms (EAs) are a subset of evolutionary computation,
which are population based meta-heuristic optimisation algorithms. An
EA uses some mechanisms inspired by biological evolution: reproduction,
mutation, recombination, and selection. In EAs, each candidate solution
of the optimisation problem is represented as an individual in the pop-
ulation. The fitness function determines the goodness of each individ-
ual. Evolution of the population then takes place through the repeated
application of selection and genetic operators, e.g. reproduction, muta-
tion, and crossover. Four important EAs, which are genetic algorithms,
genetic programming, evolutionary strategies and evolutionary program-
ming, are briefly discussed here:

Genetic Algorithms. Genetic algorithms (GAs) [65] are evolutionary
algorithms that simulate the process of natural selection, which are pos-
sibly the first algorithmic models developed to simulate genetic systems
[66]. In GAs, candidate solutions of the problem are encoded as a pop-
ulation of chromosomes. A standard representation of each chromosome
is as a fixed-length array of bits (bitstrings). The population is evolved to
search for the optimal solution by applying genetic operators. The main
driving operators of a GA is selection (to model survival of the fittest) and
recombination through application of a crossover operator (to model re-
production). Compared to analytical optimisation methods like gradient
based optimisation, GAs are less likely to be trapped in local optima. They,
however, tend to be computationally expensive.

Genetic Programming. Genetic programming (GP) [67] was devel-

oped to evolve executable computer programs [68]. Similar to GAs, GP
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concentrates on the evolution of genotypes. The main difference between
the two paradigms is in the representation scheme. In GAs, each chro-
mosome is represented as an array (or string ). In GP, each individual
is a computer program, which often uses a variable-length tree-like rep-
resentation. A population of computer programs is optimised according
to a fitness landscape, which determines a program’s ability to perform a
given task. GP has been a successful technique for getting computers to

automatically solve problems without having to tell them explicitly how
[9]

Evolutionary Strategies. Evolution strategies (ESs) [69] are in many
ways very similar to GAs, but ESs consider both genotypic and pheno-
typic evolution and the emphasis is toward the phenotypic behavior of
individuals [9]. In ESs, each individual is represented by a fixed-length
real-valued vector. The vector includes the genetic building blocks and a
set of strategy parameters. The strategy parameters simulate the behavior
of that individual in its environment. Evolution then consists of evolv-
ing both the genetic characteristics and the strategy parameters, where the
evolution of the genetic characteristics is controlled by the strategy param-
eters. Another difference between ESs and other EC algorithms is that ESs
typically uses self-adaptive mutation rates. The selection of survivals in
ESs is deterministic, that is, once the genetic operators are applied, a num-
ber of individuals with highest fitness are selected for the population in

the next generation.

Evolutionary Programming. Evolutionary programming (EP) [70] is
similar to GP, but the structure of the program is fixed. A population
of chromosomes in EP is used to evolve finite-state machines (FSMs) [9].
Each FSM is in fact a program. A sequence of symbols that have been
observed up to the current time is fed to each FSM. The fitness of an indi-
vidual is evaluated by its ability in predicting future symbols. Like other
EAs, EP uses fitness values to select individuals and then applies some

evolutionary operators to find other solutions. Different from GAs, EP
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applies two evolutionary operators, namely variation through application
of mutation and selection operators. The recombination operators are not
used with original EP.

Swarm Intelligence

Swarm intelligence (SI) is inspired by the collective intelligence of decen-
tralised, self-organized systems [12] . A swarm is a population of inter-
acting individuals that is able to optimise global objectives through col-
laborative search of the space. The intelligence relies on the networks of
interactions among individuals, and between individuals and the envi-
ronment. There is a general stochastic (or chaotic) tendency in a swarm
for individuals to move toward a centre of mass in the population on crit-
ical dimensions, resulting in convergence on an optimum [12]. Two main
techniques in swarm intelligence are particle swarm optimisation and ant
colony optimisation.

Particle Swarm Optimisation. Particle swarm optimisation (PSO) [10]
is a swarm intelligence algorithm inspired by the social behaviour of birds
flocking or fish schooling [10]. In PSO, each candidate solution of the
problem is represented as a particle, which is encoded by a vector or an
array. Particles move in the search space to search for the optimal solu-
tions. During the movement, each particle can remember its best expe-
rience. The whole swarm searches for the optimal solution by updating
the position of each particle based on the best experience of its own and
its neighbouring particles [12]. PSO is a simple but powerful search tech-
nique, which has been successfully applied to solve problems in a variety
of areas [9, 71, 72, 73].

Ant Colony Optimisation. Ant colony optimisation (ACO) [74, 75]
takes inspiration from the behaviour of real ants seeking the shortest path
between their colony and a source of food [76]. Candidate solutions of
the problem are represented as ants in the population. These ants de-

posit pheromone on the ground in order to mark their favourable path
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that should be followed by other members of the colony. The best solution
is the “path” that has the most pheromone. This mechanism allows the
algorithms explicitly use the elements of previous solutions, which is the
characteristic of ACO algorithm.

Besides, there are also some other popular EC methods, such as learn-
ing classifier systems (LCS) [77, 78], differential evolution (DE) [79, 80],
artificial immune systems (AIS) [81, 82] and evolutionary multi-object op-
timisation algorithms (EMO) [83].

2.3.2 Standard Particle Swarm Optimisation (PSO)

PSO is an EC technique proposed by Kennedy and Eberhart in 1995 [10,
11]. PSO simulates the social behaviours such as birds flocking and fish
schooling. In PSO, a population, also called a swarm, of candidate solu-
tions are encoded as particles in the search space. PSO starts with the ran-
dom initialisation of a population of particles. Particles move in the search
space to search for the optimal solution by updating the position of each
particle based on the experience of its own and its neighbouring particles.
During the movement, the current position of particle i is represented by
a vector z; = (x;1, Ts2, ..., ;p), Where D is the dimensionality of the search
space. The velocity of particle i is represented as v; = (v;1, vi2, ..., v;p). The
best previous position of a particle is recorded as the personal best called
pbest and the best position obtained by the swarm so far is the global best
called gbest. PSO searches for the optimal solution by updating the posi-

tion and the velocity of each particle according to the following equations:
el = aly + ol 2.1)

Ufgl = w* Vjg + 1 %71 * (Dig — Tig) + €2 % T * (Pga — zty) (2.2)

where ¢ denotes the tth iteration in the evolutionary process. d € D de-

notes the dth dimension in the search space. w is inertia weight, which is
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Initialise the swarm with random
position and velocity

employed to control the impact of the previous velocities on the current
velocity. ¢; and c; are acceleration constants. 7; and ry; are random values
uniformly distributed in [0, 1]. p;; and p,q represent the elements of pbest
and gbest in the dth dimension. v, is limited by a predefined maximum
velocity, Vmaz,d tO [—Vmaz, Umaz| according to the following equation [9].

Figure 2.4 and Algorithm 1 show the flowchart and the pseudo-code

A

Evaluate the fitness of each particle

A

If the fitness of a particle is better than
pbest, update pbest

If the fitness of any pbest is better than
gbest, update gbest

Return gbest

+

Yes

Termination ?

<+— Update the position of each particle

A

Update the velocity of each particle

Figure 2.4: The flowchart of PSO
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Vid, lf |Uid’ S Uma:p,d
Umazx,d> if Vid > Umazx,d

—Umaz,d> if Vig < —VUmazx,d
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(2.3)

of PSO, where each particle is assumed to take the entire population as its
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topological neighbours. First, each particle is initialised with a random ve-
locity and a random position in a D-dimensional search space. Second, the
titness of each particle is evaluated by a predefined fitness function, and
then based on pbest and gbest, the velocity and the position of each parti-
cle are updated according to Equation 2.2 and 2.1 to search for the possible
best solution. During the search process, if the fitness of the particle is bet-
ter than that of pbest, then its position will be saved to replace/update the
pbest. If the fitness of any pbest in the population is better than gbest, the
gbest will be replaced by this pbest. The algorithm iteratively updates the
position and velocity values of each particle to search for the best solution
of the problem until a predefined stopping criterion is met. The stopping
criterion can be a maximum number of iterations or a satisfactory fitness

value.

2.3.3 Binary Particle Swarm Optimisation (BPSO)

PSO was originally proposed as an optimisation technique to address con-
tinuous problems. However, many optimisation problems, such as feature
selection, occur in a space featuring discrete, where there are qualitative
distinctions between variables and between levels of variables. To extend
the use of the PSO algorithm, Kennedy and Eberhart [84] developed a bi-
nary particle swarm optimisation (BPSO) to solve discrete problems. The
position of each particle is encoded by a binary string. The values in x4,
pia and py, are restricted to 1 or 0. The velocity in BPSO represents the
probability of an element in the position taking value 1. Equation (2.2) is
still applied to update the velocity. A sigmoid function s(v;4) is introduced
to transform v;4 to the range of (0, 1). BPSO updates the position of each

particle according to the following formulae:

iy = { 1, if rand() < s(viq) (2.4)

0, otherwise
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Input : w: inertia weight; c;, co: acceleration constants
Umaz: Maximum velocity; D: dimension of search space
|Swarm]|: the population size
T: the maximum number of iterations
Output: gbest
best fitness value
1 begin
2 randomly initialise the position and velocity of each particle;
3 while T or other the stopping criterion is not met do
4 evaluate fitness of each particle;
5 for i=1 to |Swarm| do
6 if fitness of x; is better than that of pbest; then
7 L pbest; = x; ; // Update the pbest of particle i
8 if fitness of pbest; is better than that of gbest then
9 t gbest = pbest; ; // Update the gbest of particle i
10 for i=1 to |Swarm/| do
1 ford=1to D do
12 update the velocity of particle i according to Equation 2.2;
13 update the position of particle ¢ according to Equation 2.1;
14 return gbest and its fitness value;
Algorithm 1: Pseudo-code of PSO
where
1
s(vig) = ———— 2.5
(vid) 1+ e vid (2.5)

where rand() are numbers randomly selected from a uniform distribution
in [0,1].

2.3.4 Initialisation and Updating Mechanisms in PSO

In PSO, the initialisation and updating mechanisms are two of the im-

portant aspects that can significantly influence its performance. Recently,
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many initialisation strategies and updating mechanisms for pbest and gbest

have been proposed in PSO to improve its performance.

Richards and Ventura [85] proposed an initialisation strategy for PSO
based on centroidal Voronoi tessellations (CVTs) [86], which is a mathe-
matical way of dividing space into a number of regions to initialise the par-
ticles” positions using evenly distributed points to cover the search space.
Comparisons on eight benchmark functions showed that the CVTs based
initialisation strategy can improve the performance of PSO when the di-
mensionality is 50.

Parsopoulos and Vrahatis [87] applied the Nonlinear Simplex method
(NSM) [88] to generate initial particles in PSO. Experiments showed that
the NSM based initialisation can improve the performance of PSO on 14
benchmark functions. However, some parameters of PSO used in the ex-
periments are different from common settings, such as ¢; = ¢; = 5, which
are usually set as values between 1 and 2 [10, 89]. This is a possible reason
why the standard PSO performed poorly. Since NSM was slow and can be
applied only to the problems with low dimensionality, this initialisation
method may not be appropriate for feature selection problems, where the
dimensionality is typically large.

Jabeen et al. [90] proposed an opposition based initialisation strategy in
PSO. In this initialisation strategy, a population of random particles was
firstly generated and the opposition of each particle was calculated ac-
cording to the opposition based learning. Particles in both the randomly
generated population and its opposition population were treated as can-
didate particles. The fitness of all the candidate particles was evaluated
and the fitter ones were selected as the initial population of PSO. The ex-
periments showed that the proposed opposition based PSO achieves bet-
ter performance than the random initialisation method. Later, Wang et
al. [91] proposed an initialisation method based on space transformation
search (STS) strategy by evaluating the solutions in both the original and

the transformed spaces to get a better set of initial particles. Experimental
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results showed that the proposed initialisation strategy outperformed the
traditional random initialisation and the opposition-based population ini-
tialisation. Gutierrez et al. [22] assumed that uniformly distributed par-
ticles in the initialisation was able to improve the performance of PSO.
Three different initialisation strategies, the orthogonal array initialisation,
a chaotic technique and the opposition-based initialisation in PSO were
compared on problems with high dimensional search space. The experi-
ments showed that the three initialisation strategies performed differently
on different problems. However, all these strategies are general methods
and no existing initialisation strategies are specifically proposed for fea-

ture selection problems.

Some researchers also work on developing new gbest updating mech-
anisms. Wang et al. [92] applied a dynamic Cauchy mutation to gbest,
where if the new gbest was better after the application of the mutation op-
erator then it was replaced by the mutated gbest. However, the proposed
algorithm does not work well on multi-modal problems and it may also
not perform well for feature selection problems, which have many local
optima in the search space. Chuang et al. [93] proposed a gbest updat-
ing mechanism, but it simply set gbest to zero and could not be applied to

pbest.

Chen et al. [94] proposed a preferential velocity-updating mechanism
in PSO to avoid premature convergence, where the particles far away from
gbest were updated with more preference on the second term in veloc-
ity updating (Equation 2.2) and less preference on the third term. On the
other hand, the particles close to gbest were updated with more prefer-
ence on the third term and less preference on the second term. The ex-
periments showed that this algorithm achieved better performance than
other conventional PSO variants on 14 benchmark functions. Qi and Ding
[95] adapted an updating mechanism to PSO to avoid the problem of pre-
mature convergence. In this updating mechanism, a random dimension

of each pbest was re-set if a convergence measure was lower than a pre-
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defined threshold. In six of the eleven tested cases, this PSO algorithm
outperforms other methods used in the experiments.

Existing works have shown that the performance of PSO can be im-
proved by developing new initialisation and updating mechanisms for
gbest and pbest. However, there has been no existing work that proposes
an initialisation or a gbest and pbest updating mechanism in PSO specifi-

cally for feature selection to date.

2.4 Multi-Objective Optimisation

Multi-objective problems happen wherever optimal decisions need to be
taken in the presence of trade-offs between two or more conflicting objec-
tives [96]. Multi-objective optimisation involves minimising or maximis-
ing multiple conflicting objective functions. In mathematical terms, the
formulae of a minimisation problem with multiple objective functions can

be written as follows:

minimise F(z) = [fi(z), f2(x), ..., [x(z)] (2.6)

subject to:
gi(x) <0,1=1,2, ... m (2.7)
hi(z) =0,i=1,2, .1 2.8)

where z is the vector of decision variables, f;(x) is a function of z, K is
the number of objective functions to be minimised, g;(x) and h;(z) are the
constraint functions of the problem. m and [ are integer numbers.

In multi-objective optimisation, the quality of a solution is explained
in terms of trade-offs between conflicting objectives. Let y and z be two
solutions of the above K-objective minimisation problem. If the following

conditions are met, one can say y dominates z or y is better than z:

Vi: fi(y) < fi(z) and 3j: fi(y) < f;(2) (2.9)
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£

Pareto front

Figure 2.5: A minimisation problem with two objective functions.

where i, j € {1,2,3,...K}.

Take a two-objective minimisation problem (shown in Figure 2.5) as an
example, z; dominates both z, and z3. For the case that neither x5 domi-
nates x3 nor x3 dominates x5, x5 and x5 are called non-dominated solutions
or trade-off solutions of each other. When a solution is not dominated by
any other solutions, it is referred as a Pareto-optimal solution. The set of
all Pareto-optimal solutions forms the trade-off surface in the search space,
called Pareto front.

Feature selection has two main conflicting objectives, which are min-
imising both the number of features and the classification error rate. There-
fore, feature selection can be expressed as a two-objective minimisation

problem.

2.4.1 Evolutionary Multi-Objective Optimisation

Evolutionary computation techniques are particularly suitable for multi-

objective optimisation because they use a population of candidate solu-
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tions and are able to find multiple non-dominated solutions in a single run.
Therefore, evolutionary computation techniques have recently gained more
attention than many other techniques to address multi-objective problems.
Evolutionary multi-objective algorithms (EMO) can be generally classified
into three main types depending on how the objectives are treated in the
evolutionary search process, which are a priori, a posteriori and progressive

objective articulation [83].

Priori articulation

In a priori articulation, before the search process starts, the multiple ob-
jectives of the problem are combined or aggregated together according to
pre-defined objective preference. The evolutionary process is guided by
the combined objectives and returns a single solution, which is expected
to be optimal according to this objective prioritisation. The focuses of this
type of algorithms are how to combine or aggregate the objectives, and
how to determine the relative importance prior to the search.

The simplest and most common method is to use a linear aggregating
function to combine the multiple objectives into a single fitness function. A
weighting factor is usually assigned to each objective to specify its relative
importance. Take a K-objective minimisation problem as an example, the
linearly aggregated fitness function can be expressed by Equation 2.10.

K
minimise F(x) = minimise Z wi f(x)g (2.10)
k=1
where wj, represents the weighted relative importance for the kth objec-
tive. Usually, 0 < wy, < 1and > w; = 1.

The priori articulation is simple and easy to implement and has been
used in many existing works, including feature selection, where there are
two objectives of minimising the classification error rate and the number of
features [97, 98]. However, a major limitation of this technique is that the

relative importance of each objective has to be specified before the optimi-
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sation process starts. In many real-world problems, it is not a trivial task
to determine the suitable values of the weight factors. Bad combination
of the objectives leads to poor solutions and in many cases, the objectives
cannot be linearly interrelated. Another major limitation is that only one
solution is returned, which means that any change to the objective prefer-

ence needs a new optimisation process to obtain the desired solution.

Posteriori articulation

Posteriori articulation approaches assume that the objectives cannot be in-
terrelated with each other. Each objective is treated separately in the op-
timisation process. They focus on finding a set of the trade-off solutions
along the objectives, i.e. the Pareto front. The users therefore have multi-
ple choices and they can choose any solution from the Pareto front accord-
ing to their own requirements.

As stated previously, prior articulation methods have two major limi-
tations. Most EMO algorithms belong to a posteriori approach [83]. The
search of such EMO algorithms aims to push the frontier of trade-off solu-
tions (Pareto front) closer toward a point which is optimal on all objectives.

This requires two major adaptations in EMO compared to a single ob-
jective EC algorithm. The first one is to adapt the evolutionary search
algorithm to evolve a set of non-dominated solutions in parallel, where
the Pareto front is the output. In contrast, a single objective EC algorithm
focuses on finding only a single best solution and only a single solution
is returned. The second one is to incorporate the concept of Pareto dom-
inance in the fitness evaluation, which measures the performance of each
individual based on all the objectives and relative to all others in the pop-
ulation.

Progressive articulation

Progressive articulation approaches integrate a posteriori EMO search with
objective preference during the optimisation process in an iterative and in-
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teractive way [83]. Progressive articulation has been found very useful in
many-objective (more than 2 objectives) problems [99].

This thesis uses concepts from a priori and a posteriori objective ar-
ticulation. More detailed discussions on EMO approaches can be seen in
[83,9, 100, 101].

2.4.2 Typical Evolutionary Multi-Objective Algorithms

In recent years, a large number of EMO algorithms have been proposed,
which are posteriori algorithms and aim to evolve a set of Pareto non-
dominated solutions [83, 9]. All these algorithms use a Pareto-based fit-
ness evaluation scheme, which treats each objective as a separate entity
during the evolutionary search process. Typical EMO algorithms will be

reviewed in this section.

Non-dominated sorting based multi-objective genetic algorithm II (NS-
GAII). NSGAII is one of the most popular evolutionary multi-objective
algorithms proposed by Deb et al. [23]. The main principle of NSGAII is
the use of a fast non-dominated sorting technique and a diversity preser-
vation strategy. The fast non-dominated sorting technique is used to rank
the parent and offspring populations to different levels of non-dominated
solution fronts. A density estimation based on the crowding distance is
adopted to keep the diversity of the population. More details can be seen
in the literature [23].

Strength Pareto evolutionary algorithm 2 (SPEA2). SPEA2 is a popu-
lar evolutionary multi-objective algorithm proposed by Zitzler et al. [24].
The main principle is the fine-gained fitness assignment strategy and the
use of an archive truncation method. In SPEA?2, the fitness of each indi-
vidual is the sum of its strength raw fitness and a density estimation. A
new population is constructed by the non-dominated solutions in both the

original population and the archive. When the number of non-dominated
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solutions is larger than the population size, the archive truncation method
is applied to determine whether a non-dominated solution should be se-
lected or not according to the distance to its kth nearest neighbour. More
details can be seen in the literature [24].

Pareto archived evolution strategy (PAES). PAESis an evolutionary multi-
objective algorithm proposed by Knowles and Corne [102]. The authours
claimed that PAES may represent the simplest possible non-trival algo-
rithm capable of generating diverse solutions in the Pareto front. The main
idea of PAES is the use of a local search and the use of an archive of previ-
ously found non-dominated solutions. PAES was proposed as a baseline
approach for Pareto multi-objective algorithms. More details about PAES
can be seen in the literature [102].

Multi-objective PSO (MOPSO). PSO has been widely used for multi-
objective optimisation [100, 83, 9]. The key issue in using PSO for multi-
objective optimisation is how to determine a gbest for each particle since
there is no longer a single better solution, but a set of non-dominated so-
lutions. Researchers have proposed many different ways to address this
problem [100]. Two of them are non-dominated sorting multi-objective
PSO (named NSPSO) [103] and multi-objective PSO based on crowding,
mutation and e-dominance (named CMDPSO) [104]. NSPSO is based on
the idea of non-dominated sorting mechanism in NSGAII, where the non-
dominated solutions are kept in the swarm. The non-dominated solutions
are ranked according to a crowding factor and the gbest is randomly se-
lected from the top-ranked solutions. CMDPSO employs an archive to
store the non-dominated solutions. A binary tournament selection and a
crowding factor are used together to select a gebst for a particle. More
details about NSPSO and CMDPSO can be seen in [103, 104].



48 CHAPTER 2. LITERATURE REVIEW

Multi-objective Evolutionary Algorithm Based on Decomposition
(MOEA/D). MOEA/D is another popular EMO algorithm proposed by
Zhang and Li [105] in 2007. MOEA /D is based on decomposition, which is
a basic strategy in traditional multi-objective optimisation. In MOEA /D,
a multi-objective optimisation problem is decomposed into a number of
scalar optimisation sub-problems. Each sub-problem is optimised by only
using information from its neighboring sub-problems. All the sub-problems
are optimised simultaneously. This lowers the computational complex-
ity over NSGALII, but still maintains a powerful search ability. However,
MOEA /D involves a decomposition process, which is not particularly
suitable for the feature selection task in this thesis. More details about
MOEA /D can be seen in [105].

2.5 Information Theory

Information theory provides a way to measure the information of the ran-
dom variables [106]. Information theory can be viewed as a branch of
mathematics and it is also related to electrical engineering, bioinformatics,
and computer science [107]. Since the fundamental premises of informa-
tion theory were proposed by Shannon [106] in 1949, it has gained atten-
tion from almost every field of science and technology [108].

Information theory provides different ways to quantify uncertainty.
We only review the concepts of entropy and mutual information briefly
since they are used in this thesis. More details about information theory
can be seen from [107, 108]

2.5.1 Entropy and Mutual Information

The entropy is a measure of the uncertainty of random variables. Let X be
a random variable with discrete values, its uncertainty can be measured

by entropy H (X ), which is defined as
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=—> p(x)logy p(z (2.11)
rzeX

where p(x) = Pr(X = z) is the probability density function of X. Note
that entropy does not depend on actual values, just the probability distri-
bution of the random variable.

For two discrete random variables X and Y with their probability den-
sity function p(z, y), the joint entropy H (X, Y) is defined as

H(X,Y)==> p(x,y)logyp(z,y) (2.12)
reX yey

When a certain variable is known and others are unknown, the remain-
ing uncertainty is measured by the conditional entropy. Assume that vari-
able Y is given, the conditional entropy H (X|Y') of X with respect to Y is
shown by Equation 2.13.

H(X|Y) ==Y p(z,y)logy p(x|y) (2.13)
reX yey

where p(x|y) is the posterior probabilities of X given Y. From this defi-
nition, if X completely depends on Y, then H(X|Y) is zero, which means
that no more other information is required to describe X when Y" is known.
On the other hand, H(X|Y) = H(X) denotes that knowing Y will do noth-
ing to observe X, i.e. they are fully independent or unrelated.

The information shared between two random variables is defined as
mutual information. Given variable X, how much information one can

gain about variable Y, which is mutual information /(.X;Y").

I(X;Y) = H(X) — HX|Y)
= H(Y) - H(Y|X)

p(z,y)
= _ p(z,y)lo 14
> pales or @14




50 CHAPTER 2. LITERATURE REVIEW

According to Equation 2.14, the mutual information /(X;Y") will be
large if two variables X and Y are closely related. Otherwise, I(X;Y) =0
if X and Y are totally unrelated.

Information theory, mainly mutual information, has been applied to
filter feature selection to measure the relationship between the selected
features and the class labels. Typical methods will be reviewed in the next
section.

2.6 Traditional Methods for Feature Selection

This section reviews typical traditional feature selection methods some of
which will be used in this thesis to compare with the newly developed
algorithms.

2.6.1 Wrapper Feature Selection Approaches

Generally, wrapper feature selection algorithms are usually computation-
ally more expensive than filters because each evaluation involves a train-
ing process and a testing process of the classification algorithm [53]. Mean-
while, since the search space of a feature selection problem with n fea-
tures has 2" possible points, it is usually impossible to search the whole
search space exhaustively. Therefore, most of the existing wrappers em-
ploy greedy or stochastic search strategies [4].

Sequential forward selection (SFS) [109] and sequential backward se-
lection (SBS) [110] are two commonly used wrapper feature selection al-
gorithms. Both of them use a greedy hill-climbing search strategy to search
for the optimal feature subset. SFS starts with an empty set of features and
iteratively adds one feature at one time until no improvement in classifi-
cation accuracy can be achieved. By contrast, SBS sequentially removes
features from a full candidate feature subset until the further removal of

any feature does not increase the classification accuracy. However, both
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SFS and SBS suffer from the so-called nesting effect, which means that
once a feature is selected (discarded) it cannot be discarded (selected) later.
Therefore, both SFS and SBS are easily trapped in local optima [5]. In addi-
tion, both SFS and SBS require long computational time when the number
of features is large [5].

In order to avoid nesting effect, Stearns [111] proposed a “plus-I-take
away-r” method in which SFS was applied [ times forward and then SBS
was applied for r back tracking steps. However, determining the best val-
ues of (I, r) is a challenging task. In order to solve this problem, Pudil et
al. [112] proposed two floating selection methods, sequential backward
floating selection (SBFS) and sequential forward floating selection (SFES)
to automatically determine the values of (/, r). In addition, the values of
(I, ) in SBFS and SFFS that denotes the number of forward and backtrack-
ing steps are dynamically controlled instead of being fixed in the “plus-i-
take away-r” method. Although the floating methods are claimed to be at
least as good as the best sequential method, they are still likely to become
trapped in a local optimal solution even the criterion function is mono-
tonic and the scale of the problem is small [113].

Based on the best-first algorithm and SFFS, Gutlein et al. [114] pro-
posed a linear forward selection (LFS) in which the number of features
considered in each step was restricted. Because of the small number of fea-
tures used for evaluations in each step, LFS improves the computational
efficiency of sequential forward methods while maintaining comparable
accuracy of the selected feature subset. However, LSF starts with ranking
all the individual features without considering the presence or absence of
some other features, which in turn limits the performance of the LSF algo-

rithm in problems where there are interactions between features.

Recently, evolutionary computation techniques have been applied to
wrapper feature selection models, such as PSO [115], GAs [8], GP [116],
and ACO [117]. Typical methods will be reviewed in Section 2.7.
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2.6.2 Filter Feature Selection Approaches

A filter feature selection algorithm searches for the optimal feature sub-
set in the search space based on a certain evaluation criterion, which is
independent of any learning/classification algorithm.

Different criteria, including distance measures [118], dependency mea-
sures [119], consistency measures [120], and information measures [121],
have been applied to develop filter feature selection algorithms. Besides
the evaluation criterion, how to search for the best feature subset is an-
other important factor in feature selection methods. Among the existing
feature selection algorithms, two classical filter based methods are FOCUS
[122, 123] and Relief [124]. The FOCUS algorithm was originally defined
for noise-free Boolean domains [123]. It starts with an empty feature sub-
set and exhaustively examines all subsets of features and then selects the
minimal subset of features that is sufficient to determine the class labels for
all instances in the training set. However, the FOCUS algorithm performs
an exhaustive search to find the best feature subset, which is computation-
ally expensive.

The Relief algorithm is another popular filter feature selection method
that assigns a relevance weight to each feature [124]. The weight is in-
tended to denote the relevance of the feature to the target concept. Relief
samples instances randomly from the training set and updates the rele-
vance values based on the difference between the selected instance and
the two nearest instances of the same and opposite class (the “near-hit”
and “near-miss” ). However, the Relief algorithm does not deal with re-
dundant features, because it attempts to find all relevant features regard-
less of the redundancy between them [125], which is referred as feature
interaction, a challenge in feature selection tasks.

Decision trees use only relevant features that are needed to completely
classify the training set and remove all other features. Cardie [126] pro-
posed a filter based feature selection algorithm that used a decision tree

algorithm to select a subset of features for a nearest neighbourhood algo-
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rithm. Experiments showed that the feature subset generated by a deci-
sion tree helped the nearest neighbour algorithm to reduce its classifica-
tion error rate.

Yu and Liu [119] claimed that feature relevance alone was insufficient
for efficient feature selection of high-dimensional data. They proposed a
feature selection algorithm that took both relevance and redundancy into
account. The algorithm, however, is limited to problems that only have
discrete features.

Mutual Information for Filter Feature Selection

Since mutual information are capable to evaluate the relationship between
variables, they have been applied to feature selection to measure the rela-
tionship between the selected features and the class labels.

Hall [127] proposed a correlation based filter feature selection method
(Cfs), which uses mutual information to evaluate the correlation between
the features and the class labels to evaluate the goodness of the selected
features. Kwak and Choi [128] developed a greedy search based feature
selection method, where mutual information was used to evaluate the
goodness of the selected features. The algorithm stopped when a desired
number of features was reached. There are also some other filter methods
using mutual information, but most of them suffer from two problems
[129]. The first one is that they need a predefined weighting parameter to
balance the relative importance of the relevance (reflecting the classifica-
tion performance) and the redundancy (reflecting the number of features)
of the selected feature subset, which is usually difficult to determine. The
second one is that the redundancy was shown by the mutual information
between two features and the class labels was not considered. Because of
feature interaction, two correlated features may become complementary
to each other when considering the class labels [129].

To address these problems, Peng et al. [130] combined the use of mu-

tual information (filter) with a wrapper method that considers the class la-
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bels. A feature selection evaluation criterion named minimal-redundancy-
maximal-relevance criterion (mRMR) was first developed, where mutual
information was also used to measure the relevance and the redundancy of
the selected features. Based on mRMR, a two-stage algorithm by com-
bining the mRMR with other more sophisticated feature selectors (e.g.,
wrappers) was developed and successfully selected a small number of fea-
tures and maintained or increased the classification performance. To avoid
the determination of the weighting parameter, Foithong et al. [129] also
combined the mutual information based criterion with a wrapper method,
where Multilayer perceptron (MLP) [131] with a single hidden layer was
trained by using the back-propagation algorithm to evaluate the good-
ness of the feature subsets. Later, Liu et al. [132] developed a feature se-
lection method based on dynamic mutual information, where the mutual
information of each candidate feature was re-calculated on unlabelled in-
stances, rather than the whole sampling space. These existing works have
shown that the concept of mutual information can be used for feature se-
lection, but it has never been applied together with EC based algorithms
for feature selection.

Different evolutionary computation techniques have been applied to
develop filter feature selection algorithms and typical algorithms will be
reviewed in Section 2.7.

2.7 EC Techniques for Feature Selection

Recently, different evolutionary computation techniques have been ap-
plied to develop feature selection algorithms, such as PSO [133], GAs [134],
GP [135], and ACO [136, 137]. Since the focus of this thesis is to develop
new PSO based approaches to feature selection, we review PSO related

work first, then other EC related work for feature selection.
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2.7.1 PSO for Feature Selection

There are two versions of PSO, which are the original continuous PSO
and BPSO. Both of them have been applied to feature selection. Gen-
erally, when a continuous PSO algorithm is applied to feature selection
problems, the dimensionality of the search space is n, where n is the total
number of available features in the dataset. Each particle in the swarm
is encoded using a vector of n real numbers. The position of particle ¢ in
the dth dimension, z,4, is usually in interval [0, 1]. In order to determine
whether a feature will be selected or not, a threshold 0 < 6 < 1 is needed
to compare with the real numbers in the position vector. If z;,; > 0, then
the corresponding feature d will be selected. Otherwise, feature d will be
abandoned. When using BPSO to solve feature selection problems [13, 16],
the representation of a particle is a n-bit binary string. The position of each
particle is Boolean, where “1” represents that the feature will be selected
and “0” otherwise.

PSO has recently gained more attention to solve feature selection prob-
lems. Many PSO based feature selection algorithms have been proposed,

which include both wrapper approaches and filter approaches.

PSO Based Wrapper Feature Selection

Azevedo et al. [138] proposed a wrapper feature selection algorithm using
PSO and SVM for personal identification in a keystroke dynamic system.
Experiments showed that the proposed algorithm produces better perfor-
mance than a GA with SVM model. However, the proposed algorithm
obtained a relatively high false acceptance rate, which should be low in
most identification systems. Marinakis et al. [139] proposed a wrapper
algorithm based on BPSO and KNN for a real-world medical diagnosis
problem called Pap-smear cell classification. The results showed that this
method removed around half of the features and achieved good classifica-

tion performance.
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Based on PSO and a linear discriminant analysis algorithm (LDA), Lin
and Chen [140] proposed a wrapper feature selection algorithm named
PSOLDA. PSOLDA aimed to maximise the classification performance eval-
uated by LDA. Different parameters were tuned to obtain the best settings
for PSOLDA. Experimental results showed that PSOLDA outperformed
LDA using all features, LDA with principal components analysis (PCA),
and LDA with either forward or backward selection in almost all cases.
However, PSOLDA is sensitive to parameter settings and the datasets in

the experiments have a small number of features.

Lin et al. [115] proposed a wrapper feature selection algorithm, which
was based on PSO and SVM. The difference from the method in [138] was
that this method could optimise the parameters in SVM and search for
the best feature subset simultaneously. Huang and Dun [141] also pro-
posed a wrapper algorithm for feature selection and parameter optimi-
sation in a SVM using both continuous PSO and BPSO. In the proposed
algorithm, each particle was encoded by two parts, where the first part
represents the features in a dataset, which are optimised by BPSO, and the
second part is the parameters in SVM, which are evolved by continuous
PSO. Experiments showed that the proposed algorithm could determine
the parameters and search for the optimal feature subset simultaneously,
and also achieve high classification accuracy. However, only one dataset
with a small number of features was used in the experiments, which is
not enough to verify the performance of the proposed algorithm. Mo-
hemmed et al. [15] proposed a hybrid method (PSOAdaBoost), which
incorporated PSO with an AdaBoost framework [142] for face detection.
The proposed PSOAdaBoost algorithm aimed to search for the best fea-
ture subset and determine the decision thresholds of AdaBoost simultane-
ously, which could also speed up the process of the training and increase
the accuracy of weak classifiers in AdaBoost.

Inertia weight can improve the performance of PSO by properly bal-
ancing its local search and global search. Yang et al. [52] proposed two
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strategies to determine the inertia weight of BPSO. Experiments on a wrap-
per feature selection model suggested that the two proposed BPSOs out-
performed other methods, including SFS, “plus-I-take away-r” method,
SFFS, sequential GA and different hybrid GAs.

In order to avoid the particles converging at local optima, Yang et al.
[16] proposed a strategy to reset the gbest during the search process to
keep the diversity of the population in BPSO. In the proposed algorithm,
when gbest was identical after three iterations, a Boolean operator ‘and(.)’
would ‘and’ each bit of the pbest of all particles in an attempt to create
a new gbest. Experimental results illustrated that the proposed method
usually achieved higher classification accuracy with fewer features than
GA and standard BPSO. Chuang et al. [93] also developed a strategy for
gbest in BPSO for feature selection in which gbest would be reset to zero
if it maintained the same value after several iterations. Experiments with
cancer-related human gene expression datasets showed that the proposed
BPSO algorithm outperformed the algorithm proposed by Yang et al. [16]
in most cases. However, the proposed algorithm was only compared with
one traditional method in terms of the classification performance. No
PSO or EC based algorithms have been used for comparisons. Chuang et
al. [143] applied the so-called catfish effect to BPSO for feature selection,
which was to introduce new particles into the swarm by re-initialising the
worst particles when gbest has not improved for a number of iterations.
The authors claimed that the introduced catfish particles could help PSO
avoid premature convergence and lead to better results than sequential
GA, SFS, and SFFS.

The use of the gbest resetting strategy in PSO for feature selection was
also investigated by Vieira et al. [144], who proposed two improved BPSO
for wrapper feature selection. To avoid premature convergence, the first
algorithm employed mutation operators and a gbest reseting strategy, which
randomly reset gbest using a feature subset including only one feature.

The second algorithm combined the same gbest reseting strategy with local
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search and a maximum velocity control strategy. Results suggested that
the proposed methods outperformed two other PSO based algorithms,
and achieved similar classification performance to GA, but used less com-
putational time and selected fewer features. The results also showed that
the gbest resetting strategy helped BPSO avoid the problem of prema-
ture convergence. However, the experiments were only conducted on one

dataset and the number of features is relatively small.

Alba et al. [145] combined a geometric BPSO with a SVM algorithm for
feature selection, where the current position, pbest and gbest of a particle
were used as three parents in a three-parent mask-based crossover oper-
ator to create a new position for the particle instead of using the position
updating equation. Experiments on high dimensional microarray prob-
lems showed that the proposed algorithm could achieve slightly higher
accuracy than a GA with SVM in most cases. Meanwhile, experiments also
showed that the initialisation of the BPSO had a great influence in the per-
formance since it introduced an early subset of acceptable solutions in the
evolution process. Talbi et al. [146] also proposed a geometric BPSO and
compare it with a GA using SVM for feature selection in high dimensional
microarray data. They concluded that the performance of the proposed
BPSO was superior to a GA in terms of the classification accuracy.

Unler and Murat [13] modified the standard BPSO by extending social
learning to update the velocity of the particles. Meanwhile, an adaptive
feature subset selection strategy was developed, where the features were
selected not only according to the likelihood calculated by BPSO, but also
according to their contribution to the subset of features already selected.
The improved BPSO was applied to a wrapper feature selection model
for binary classification problems. Experimental results indicated that the
proposed BPSO method outperformed tabu search and scatter search al-
gorithms.

Liu et al. [14] proposed a multiple swarm BPSO (MSPSO) to search for

the best feature subset and optimise the parameters of SVM. Experimental
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results showed that the proposed feature selection methods could achieve
higher classification accuracy with a smaller subset of features than grid
search, standard BPSO and a GA. However, the proposed MSPSO was
computationally more expensive than the other three methods because of
the large population size and complicated communication rules between
different sub-swarms. Fdhila et al. [98] also developed a distributed PSO
algorithm with a number of sub-swarms searching for the optimal fea-
ture selection, where KNN with K = 1 was used to test the classifica-
tion performance. The number of features and the classification error rate
were combined into a single fitness function. The proposed algorithm
achieved a set of solutions by keeping the good solutions in different sub-
swarm. However, the computational cost of the proposed algorithm is
also high because it involves parallel evolutionary processes and multiple

sub-swarms with a relative large number of particles.

PSO Based Filter Feature Selection

Wang et al. [133] proposed an improved BPSO by defining the velocity as
the number of elements that should be changed. The performance of the
improved BPSO was compared with that of a GA in a filter feature selec-
tion model based on rough sets theory [147]. Experimental results showed
that the improved BPSO was computationally less expensive than a GA in
terms of both memory and running time. However, the classification per-
formance of the feature subset is only tested on one learning algorithm,
the LEM2 algorithm, which has some bias for rough set based algorithms.

Chakraborty [148] compared the performance of BPSO with that of a
GA in a filter feature selection algorithm with a fuzzy sets [149] based
fitness function. The results showed that BPSO performed better than a
GA in terms of the classification accuracy.

Based on BPSO, Iswandy and Koenig [97] developed a filter based fea-
ture selection algorithm, where they used different weights to linearly
combine three objectives, which were evaluated by three filter criteria, into
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a single fitness function. Experimental results showed that the proposed
algorithm outperformed other methods on several benchmark problems.
However, although the proposed algorithm used multiple evaluation cri-
teria, it aimed to select only one feature subset instead of a set of non-
dominated solutions.

Esseghir et al. [150] proposed a filter-wrapper feature selection method
based on PSO, which aimed to integrate the strengths of both filters and
wrappers. The proposed filter-wrapper scheme encoded the position of
each particle in PSO with filter scores of features, which reflected feature-
class dependency levels, and then PSO was applied to adjust the scores
to search for the best feature subset. The positive score meant the corre-
sponding feature was selected, otherwise it was abandoned. The fitness of
each particle was the classification accuracy achieved by a KNN classifier
with the selected features. The results showed that the proposed method
could achieve slightly better performance than a BPSO based filter algo-
rithm. However, the performance of the proposed algorithm has not been
compared with any wrapper algorithm, which can usually obtain higher
classification performance than a filter algorithm.

Overall, existing work has shown that PSO has the potential to ad-
dress feature selection problems. Almost all PSO based feature selection
approaches are developed in recent years (after 2007). There are more PSO
based wrapper approaches than filter approaches. Meanwhile, PSO has
only been used for single objective feature selection and no work has been
conducted for multi-objective feature selection. Therefore, it is needed to

further investigate the potential of PSO for feature selection.

2.7.2 Other EC Techniques for Feature Selection

Besides PSO, many other EC algorithms have also been applied to feature
selection problems such as GAs [134], GP [135], and ACO [151]. Typical
methods will be briefed in this section.
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Genetic Algorithms (GAs) for Feature Selection

Generally, in a GA based feature selection algorithm, each individual (chro-
mosome) in the population represents a subset of features. Each chromo-
some is encoded by a n-bit binary string for a n-dimensional feature search
space. The bit with value “1” indicates the feature is selected in the subset,
and “0” otherwise. Crossover, mutation and reproduction operators are
applied in the algorithm to search for the optimal subset of features [134].
GAs have been applied to both filter and wrapper models for feature se-
lection as a single objective and also a multi-objective task.

Before developing the feature selection method based on fuzzy sets
and BPSO [148], Chakraborty [134] proposed a GA with fuzzy sets based
fitness function to build a filter algorithm for feature selection. This method
had the same fitness function as the BPSO based method [148]. The GA
based feature selection method was robust but the computational time
was usually long. Meanwhile, the performance of proposed method was
worse than that of PSO based feature selection method in [148] in terms of
the classification accuracy, the number of selected features and the com-
putation time.

Yuan et al. [120] proposed a two-phase feature selection algorithm us-
ing both filter and wrapper, which aimed to take advantages of both mod-
els. The proposed method started with a filter model to remove irrelevant
features, and then a wrapper algorithm was applied to remove the redun-
dant features. In the filter phase, a GA was employed for feature selection
with inconsistency criterion to evaluate the fitness of solutions. The wrap-
per phase started with a feedforward neural network whose input nodes
were features in the feature subset obtained in the first phase. The pro-
posed algorithm intended to reduce the computational cost in the wrap-
per algorithm in the second phase by deleting irrelevant features in the
first phase. However, because of feature interactions (epistasis), the pro-
posed algorithm may remove the features in the first phase, which should
be included in the best feature subset.
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Zhu et al. [152] proposed a feature selection method using a memetic
algorithm that is a combination of local search and a GA. In this algo-
rithm, individual features were firstly ranked according to a filter mea-
sure. The GA employed the classification accuracy as the fitness function
and deleted or added a feature according to the ranking information. The
experiments showed that this algorithm outperformed the GA alone and
other algorithms. The results also suggested that the performance and the
efficiency of the proposed algorithm can be improved by finding a proper
balance between the genetic search and the local search.

GAs have also been applied to the wrapper model using multi-objective
methods in feature selection problems. For example, based on a multi-
objective GA and neural networks (NN), Oliveira et al. [8] proposed a
modified wrapper feature selection method. Instead of directly using the
classification performance, the sensitivity of NN, which estimates the re-
lationship between input features and classification performance of the
NN, was used to evaluate the goodness of the selected features. Exper-
iments on a handwritten digit recognition dataset showed the proposed
algorithm reduced the number of features and improved the classifica-
tion performance. However, only one dataset is not sufficient to verify
the effectiveness of this method. Hamdani et al. [153] develop a multi-
objective feature selection algorithm using non-dominated sorting based
multi-objective genetic algorithm II (NSGAII), but the performance of the
proposed algorithm has not been compared with any other feature selec-
tion algorithm. Wagqas et al. [20] also developed a wrapper algorithm to
feature selection using a multi-objective GA. In this method, a subset that
was irrelevant with one class and might be relevant with another one was
regarded as a non-dominated or Pareto-optimal solution. ID3 was em-
ployed to evaluate the fitness of each individual. Experiments showed
that selected subsets of features could achieve high classification accuracy.

Overall, it can be seen that the research in a GA for feature selection

covers both filter and wrapper, single objective and multi-objective ap-
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proaches, which is wider than PSO for feature selection. Meanwhile, a
GA for feature selection started at least more than 14 years ago ([120] pub-
lished in 1999), which has a much longer history than PSO. This is prob-
ably because PSO was first proposed much later than GAs and the use
of PSO for feature selection has not been fully investigated. However, al-
though a GA has been applied to both single objective and multi-objective
feature selection, there is no work conducted using the popular multi-

objective GA, i.e. NSGAII, for multi-objective, filter feature selection.

Genetic Programming (GP) for Feature Selection

GP is an evolutionary computation technique inspired by biological evo-
lution to find computer programs that perform a user-defined task. GP
evolves computer programs, traditionally represented as tree structures
[68]. Basically, in a GP based feature selection method, there are a function
set F' and a terminal set 7" including the original features and randomly
generated constants. Each tree for each individual (classifier) is initialised
with a subset of features using F" and 7. The population evolves to search
for the optimal feature subset using genetic operators iteratively. Many
GP based algorithms have been proposed in recent years, including both
filter and wrapper models for feature selection.

Muni et al. [116] developed a multi-tree GP algorithm for feature se-
lection (GPmtfs) to simultaneously select a feature subset and design a
classifier using the selected features. For a problem with c classes, each
classifier in GPmtfs has c trees and each tree was initialised with a random
feature subset. Comparisons suggest that GPmtfs achieved better results
than SFS, SBS and other methods. However, the number of features se-
lected increases when there are (synthetically added) noisy features. Based
on the two crossover operations introduced by [116], Purohit et al. [53] in-
troduced another crossover operator to GP to reduce its randomness when
used in a feature selection model. The crossover operator intended to se-

lect a subtree from the first parent and find its best place in the second
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parent. GP with multi-trees was used to design classifiers with feature se-
lection for a multi-class classification problem. Experiments showed that
proposed GP performed better than GPmtfs [116].

Ramirez and Puiggros [154] applied multi-tree GP to solve a multi-
class problem, which was to classify the instantaneous cognitive state of a
person. The performance measure, the fitness function and initialisation
of the classifiers were similar with those in [53]. Experiments showed that
the proposed method could accurately classify different cognitive states.

Chien and Yang [155] proposed a feature selection algorithm based on
GP and rough sets. Rough membership was used to transform nominal
data into numerical values. After transformation, new features and train-
ing sets were produced, and then GP was applied to search for the optimal
feature subset and learn classification functions. Experiments showed that
the proposed method outperformed other different features selection al-
gorithms in terms of the number of selected features and the classification

accuracy.

Neshatian and Zhang [135] proposed a GP based filter model as a
multi-objective algorithm for feature selection in binary classification prob-
lems. Unlike most filter methods that usually could only measure the rel-
evance of single features to the class variables, the proposed algorithm
could discover the hidden relationships between subsets of features and
the target classes. In this method, an inexpensive binary relevance fit-
ness function was defined to measure the relevance of a GP program tree
(a subset of features) to the classification task. In order to explore large
feature subsets and at the same time avoid overfitting and bloating, the
standard GP was modified by adopting a run-time mechanism for depth
control along with an overfit monitoring system. Moreover, a Pareto front
archive was proposed as a multi-objective algorithm to maximising the
relevance of subsets while minimising their sizes. So the result of the pro-
posed method was a vector of Pareto front points serving as a trade-off

matrix. Experiments showed that an inexpensive linear search over this
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vector could improve the classification performance of classifiers while
decrease their complexity. However, the proposed method might not be
quite appropriate for the problems where the best feature subset was ex-
pected to have a very large number of features.

Based on [135], Neshatian and Zhang [57] further proposed a GP rel-
evance measure (GPRM) to evaluate and rank feature subsets in binary
classification tasks. GPRM extended the concept of a feature relevance
measure function by proposing a virtual structure for GP program trees.
Through case studies, it was found that the proposed method could detect
relevant subsets of features in different situations including multimodal
class distributions and mutually correlated features, where other methods
had difficulties.

Overall, GP has been applied to both single objective and multi-objective
feature selection. Since GP itself can be a classification algorithm, a large
number of GP based feature selection algorithms select features and simul-
taneously train a GP classifier, which are wrapper algorithms. Meanwhile,
since GP has a tree representation, where both features and mathematical
operators can be evolved, GP are more suitable and more often used for
feature construction rather than feature selection [156, 157, 158, 159, 60,
160].

ACO for Feature Selection

Ant colony optimisation (ACO) has also been applied to feature selection
problems. Typically, in an ACO based feature selection model, features are
represented as nodes in the graph. Edges between the nodes indicate the
possible choices of the next feature. Ants traverse through this graph to
add nodes (features) until the stopping criterion is satisfied. The feature
selection problem is thus transformed to the problem of ant finding the
best path on the graph [161, 162, 163, 164, 137].

Jensen and Shen [165] applied ACO to find a small reduct (i.e. feature
subset) in rough set theory to address feature selection problems. Later,
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Ming [151] also proposed a filter algorithm for feature selection based on
ACO and rough set theory. In the proposed method, the CORE of the
rough set is used as the start point and forward selection is adopted to
search for the best subset of features. In addition, the algorithm stops
when the positive region of the selected features in rough set reaches the
original positive region. Experiments compares the performance of the
proposed method and C4.5 as a feature selection method and the results
show that the proposed method could achieve higher accuracy with fewer
features than C4.5.

Jensen [136] proposed a filter feature selection model based on ACO
and fuzzy-rough theory. The proposed algorithm was examined on clas-
sification of web content and complex systems monitoring. Experiments
compared the proposed method with other five benchmark techniques.
Results illustrated that hill-climbing feature selection algorithms often failed
to find minimal subsets even in small and medium-sized datasets. The
proposed algorithm and a simulated annealing (SA) based feature selec-
tion algorithm achieved similar results and both of them outperformed
other three benchmark techniques. However, the proposed method has
not been compared with variations of ACO or other evolutionary compu-
tation techniques for feature selection.

Gao et al. [161] proposed an ACO based wrapper feature selection
algorithm to network intrusion detection. In this wrapper model, least
square based SVM was applied as the classifier to evaluate the feature
subset generated by ants. Fisher discrimination rate was adopted as the
heuristic information for ACO. Experiments on three datasets showed that
the proposed method could be an effective algorithm to intrusion feature
selection and detection. Later, Kanan and Faez [166] also developed a
wrapper feature selection algorithm based on ACO, where both the clas-
sification performance and the number of features are considered. The
proposed algorithm outperformed GA and other ACO based algorithms
on a face detection dataset, but its performance has not been tested on
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other problems.

Ke et al. [21] developed a Pareto-based multi-objective ACO for fea-
ture selection based on rough set theory. It adopted elite strategy to speed
up the convergence performance, used the non-dominated solutions to
add pheromone so as to reinforce the exploitation, and applied crowding
comparison operator to maintain the diversity of the solutions. In addi-
tion, it intended to avoid premature convergence by imposing limits on
pheromone values. Compared with a modified non-dominated sorting
GA, the proposed method obtained competitive solutions for rough fea-
ture selection. However, only three datasets were used in the experiments,
which could not confirm the generalisation of the proposed algorithm.

Overall, ACO has been applied to both single objective and multi-
objective, filter and wrapper feature selection. However, the datasets used
in the papers (we can find) have a relatively small number of features. The
use of ACO for feature selection with a relatively large number of features
has not been done. However, feature selection is actually more important

and necessary in datasets with a large number of features.

2.8 Summary

This chapter reviewed the main concepts of machine learning, classifica-
tion, feature selection, evolutionary computation techniques, particularly
PSO, multi-objective optimisation, entropy and mutual information. This
chapter also reviewed the related work of using conventional methods and
evolutionary computation algorithms for feature selection.

The limitations of the existing work that form the motivations of this
research were also discussed. The overall motivation is that EC techniques
have been successfully used to address feature selection problems. Com-
pared with other EC techniques, PSO has the advantages of being compu-
tationally less expensive, easier to implement, having fewer parameters

and converging more quickly. However, the investigation of using PSO
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for feature selection has much less work and much shorter history than
other EC algorithms. It is needed to further investigate and improve the
performance of PSO for feature selection.

Specifically, the limitations of existing work and the motivations of this

research can be summarised as follows.

e The performance of PSO can be improved by developing good ini-
tialisation strategies and gbest and pbest updating mechanisms. Fea-
ture selection problems are difficult tasks. However, there has been
no work on proposing new initialisation strategies for feature selec-
tion. Although there are works on updating gbest, they are not ap-
plied to pbest. Therefore, it is needed to investigate new initialisation
and updating mechanisms in PSO for feature selection with the ex-
pectations of reducing the number of features, increasing the classi-

fication performance and reducing the computational time.

e PSO has been successfully used to solve many multi-objective prob-
lems and shown promising performance. Feature selection is a multi-
objective task. However, there is no existing work investigating the
use of PSO for multi-objective (wrapper or filter) feature selection.

e Most of the existing PSO based feature selection algorithms are wrap-
pers and there are very few works using PSO for filter feature selec-
tion. Information theory, including entropy and mutual information,
can be used to evaluate the relationship between variables. It has
been used to develop feature selection algorithms, but the use of in-
formation theory and PSO for filter feature selection has never been

investigated.

e Wrapper feature selection algorithms are argued to be able to achieve
better classification performance than filters, but filter algorithms are
computationally less expensive and more general than wrappers.

However, no thorough work has been conducted to investigate the
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differences between the two approaches in terms of the classification
performance and the computational cost, and no work has been con-
ducted to investigate the generality of wrappers.

Following Chapters

This thesis aims to address the above-mentioned issues. The following
chapters will investigate those issues by developing new algorithms. Chap-
ter 3 will develop new initialisation and gbest and pbest updating mech-
anisms in PSO to propose a new wrapper based single objective feature
selection algorithm. Chapter 4 will develop a PSO based multi-objective,
wrapper feature selection approach. Chapter 5 will introduce entropy and
mutual information to PSO for feature selection to develop a new filter
feature selection approach. Chapter 6 will develop a PSO based multi-
objective, filter feature selection approach. Chapter 7 will investigate the
difference between filters and wrappers in terms of the classification per-
formance and the computational time, and also examines the generality of

wrappers.
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Chapter 3

Wrapper Based Single Objective

Feature Selection

3.1 Introduction

Feature selection aims to find the minimal feature subset that can achieve
similar or even better classification performance than using all features.
However, most of the existing feature selection approaches, including PSO
based methods, are wrappers and aim to maximise the classification per-
formance only. As a result, the selected features may still have redundancy
and the same classification performance can be achieved by a smaller fea-
ture subset. Therefore, it is necessary to develop a PSO based feature selec-
tion method to optimise both the classification performance and the num-
ber of features.

3.1.1 Chapter Goals

The goal of this chapter is to develop a PSO based wrapper feature selec-
tion algorithm to maximise the classification performance and minimise
the number of features. To achieve this goal, a new fitness function is pro-

posed to combine the two objectives into a single function. Further, PSO

71
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is investigated to optimise these two objectives by developing new initial-
isation and new pbest and gbest updating mechanisms. Specifically, this
chapter will investigate:

e Whether the PSO based algorithm with the new fitness function can
select a feature subset with a smaller number of features and better
classification performance than using all features, and can achieve
better performance than PSO with the fitness function considering

only the classification performance;

e Whether the new initialisation strategies can improve the perfor-
mance of PSO for feature selection over the traditional initialisation

strategy;

e Whether the new updating mechanisms can improve the performance
of PSO for feature selection over the traditional pbest and gbest up-
dating mechanism;

e Whether combining the new initialisation and updating mechanisms
can further increase the performance of PSO for feature selection and

can outperform all methods mentioned above.

3.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. The second section
describes the new PSO based algorithms. The third section presents the
design of the experiments. The results and discussions are presented in
the fourth section. The fifth section provides a summary of this chapter.

3.2 The Proposed Algorithms

In this section, new algorithms are proposed to investigate and improve

the performance of PSO for feature selection. The overview of a PSO
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Figure 3.1: The overall structure of PSO based feature selection methods.

based feature selection algorithm is first given. The basic PSO based al-
gorithm (PSOEFS) is described as the baseline to test the performance of
the newly proposed algorithms. A new fitness function, three new initial-
isation strategies and three new pbest and gbest updating mechanisms are

then proposed to improve the performance of PSO for feature selection.

3.2.1 Overall Structure

The overall structure of the training and testing processes of a PSO based
feature selection method is shown in Figure 3.1. The algorithm firstly runs
on the training set of the dataset to select a subset of relevant features,
which is the evolutionary training process. Then the training set and the
test set are transformed to a new training set and a new test set by remov-
ing the features that are not selected. A classification algorithm is trained
(learns) on the transformed training set. The learnt classifier is then ap-
plied to the transformed test set to obtain the final testing classification

performance.
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Figure 3.2: The evolutionary training process of a PSO based feature selec-

tion algorithm.

The evolutionary training process of a PSO based wrapper feature se-
lection algorithm is shown in Figure 3.2. The key step is the goodness/fitness
evaluation procedure. The position of a particle represents a selected fea-
ture subset. By removing the features that are not selected, the training set
is transformed to a new training set. The classification performance of the
selected features is evaluated on the transformed training set. Based on
the classification performance, the fitness of the particle is then calculated
according to the predefined fitness function. After evaluating the fitness of
all particles, the algorithm updates the pbest and gbest, and then updates

the velocity and position of each particle. The algorithm stops when a pre-
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defined stopping criterion, e.g. the maximum number of iterations or an

optimal fitness value, has been met.

Representation

In PSO for feature selection, the representation of a particle is a n-bit string,
where n is the total number of features in the dataset. The position value
in the dth dimension (i.e. x;4) is in [0,1], which shows the probability of the
dth feature being selected. A threshold 6 is used to determine whether a
feature is selected or not. If z;; > 6, the dth feature is selected. Otherwise,
the dth feature is not selected.

3.2.2 Basic PSO Based Feature Selection Method: PSOFS

During the evolutionary training process, Equation 3.1, which aims to
minimise the classification error rate, is used as the fitness function to eval-
uate the goodness of particle i, where the position z; represents a feature

subset.

Fitnessi(xz;) = ErrorRate 3.1
where ErrorRate is determined according to Equation 3.2:

FP+FN
E te = 2
rrorRate = TN T FP 1+ FN (32)

where TP, TN, FP and FN stand for true positives, true negatives, false

positives and false negatives, respectively.

3.2.3 New Fitness Function

The feature subset selected by PSOFS may still contain redundancy, be-

cause the basic fitness function (Equation 3.1) does not intend to minimise
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the number of features. We hypothesise that the same classification perfor-
mance could be achieved by a smaller feature subset. In order to further
reduce the number of features without reducing the classification perfor-
mance, a new two-stage feature selection approach (PSO2S) is proposed,
where the whole evolutionary process is divided into two stages. In the
tirst stage, the algorithm focuses on the optimisation of the classification
performance. In the second stage, the number of features is included into
the fitness function. The second stage starts with the solutions achieved
in the first stage, which ensures that the minimisation of the number of
features is based on feature subsets with high classification performance.
The new two-stage fitness function used in PSO2S is shown in Equation
3.3.

ErrorRate, Stagel

# Features + (1

(3.3)
E Rat
FAIl Features Shorate - Stage 2

o * - CE) * Errorqy

Fitnessa(z;) = {

where ErrorRate is the classification error rate obtained by the selected
feature subset. « is a constant value and o € [0, 1]. #Features represents
the number of features selected. # All Features stands for the number of
all the available features. Error,; is the error rate obtained by using all the
available features for classification on the training set.

The fitness function in the second stage considers both the number of
features and the classification error rate. In order to ensure these two com-
ponents are in the same range, i.e. [0,1], the number of features is nor-
malised and represented by ##F catures

All Features

ErrorRate — ErrorRate pather than Error Rate is used here to
Errora Error.y

avoid the situation when ErrorRate is very small (e.g. less than 0.005),

# Features
#All Features

tion, the number of features is treated as more important than the clas-

. The classification performance is

represented by
plays the major role in the fitness function. In such a situa-

sification performance, which is more likely to obtain a feature subset

with higher error rate than using all features. Since ErrorRate should
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Input : A Training set and a Test set;
Output : gbest (selected feature subset);
Training and test classification accuracies.
1 begin
2 randomly initialise the position and velocity of each particle;
3 while Maxzimumiterations is not reached do
4 evaluate fitness of each particle ; /* according to Equation
3.1 in PSOFS or Equation 3.3 in PS02S «*/
5 for i=1 to PopulationSize do
6 update the pbest of particle i;
7 update the gbest of particle i;
8 for i=1 to PopulationSize do
9 for d=1 to Dimensionality do
10 update the velocity of particle i according to Equation 2.2;
11 L update the position of particle ¢ according to Equation 2.1;
12 calculate the classification accuracy of the selected feature subset on the
test set;
13 return the position of gbest (the selected feature subset), the training and
| test classification accuracies;

Algorithm 2: Pseudo-code of PSOFS and PSO2S.

ErrorRate
Errorg

be smaller than Error,; after the first stage, will be in the same

: # Features :
range with ZAll Features’ 1.e. [0,1]

When combining them into a single fitness function, « is used to show
the relative importance of the number of features and (1 — «) shows the
relative importance of the classification error rate. Since the classification
performance is assumed to be more important than the number of fea-

tures, « is set to be smaller than (1 — «) (i.e. a < 0.5).

The pseudo-code of PSOFS and PSO2S can be seen in Algorithm 2. The
main difference between PSOFS and PSO2S relies on the fitness evaluation

procedure, which is shown in Line 4.
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3.2.4 New Initialisation Strategies

Traditionally, particles in PSO are randomly initialised. When using stan-
dard PSO for feature selection (i.e. PSOFS), each particle is randomly ini-
tialised in terms of both the number of features and the selection of indi-
vidual features. To investigate the influence the initialisation strategy in
PSO for feature selection, three new initialisation strategies are proposed
to increase its performance.

The new initialisation strategies are motivated by two typical tradi-
tional feature selection methods, forward selection [109] and backward
selection [110]. Forward selection starts with an empty set of features and
it usually selects a small number of features, but it may miss the optimal
feature subset with a larger number of features. Backward selection starts
with the full set of features and it usually selects a large number of fea-
tures, but the computational time is usually longer than forward selection.
To simulate forward and backward selection and take their advantages,
three new initialisation strategies are proposed in PSO for feature selec-
tion, which are small initialisation motivated by forward selection, large
initialisation motivated by backward selection and mixed initialisation
aiming to take the advantages of forward and backward selection and to
avoid their disadvantages. Details of these three new initialisation strate-

gies are described as follows.

(1) Small initialisation. This is motivated by forward selection to ini-
tialise each particle using a small number of features, but different combi-

nations of randomly selected individual features.

(2) Large initialisation. This is motivated by backward selection to ini-
tialise each particle using a large number of features, but different combi-

nations of randomly selected individual features.

(3) Mixed initialisation. This initialisation strategy combines both the
small initialisation and large initialisation strategies. In this strategy, most
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particles are initialised using a small number of features (simulating for-
ward selection) and other particles are initialised using large feature sub-
sets (simulating backward selection). Meanwhile, through social interac-
tion (updating pbest and gbest), PSO is expected to be able to reach and
search the area of the solution space with medium size feature subsets if
these feature subsets can achieve better classification performance.

Based on the three new initialisation strategies, three new PSO based
feature selection algorithms are developed, which are PSOInil, PSOIni2
and PSOIni3 using the small initialisation, the large initialisation and the
mixed initialisation, respectively. These three new algorithms use the tra-
ditional pbest and gbest updating mechanism and use Equation 3.1 as the
fitness function, which are the same as PSOFS. The performance of PSOInil,
PSOIni2 and PSOIni3 will be compared with that of PSOFS to investigate
the influence of the initialisation strategy.

3.2.5 New pbest and gbest Updating Mechanisms

Sharing information through pbest and gbest is an important component in
PSO, as it influences the behaviour of the swarm during the evolutionary
process. However, the traditional pbest and gbest updating mechanism in
PSO has potential limitation in feature selection tasks.

Traditionally, the pbest and gbest are updated solely based on the fitness
value of the particles. In PSOFS, the pbest and gbest are updated based
on the classification performance. The pbest of a particle is updated only
when the classification performance of the particle’s new position is bet-
ter than the current pbest. The gbest is updated only if a pbest achieves
higher classification accuracy than the current gbest. During the evolu-
tionary training process, if the classification performance of the particle’s
new position is the same as the current pbest, but the number of features is
smaller, the particle’s new position corresponds to a better feature subset.
However, according to the traditional updating mechanism, the pbest will

not be updated because their classification performances are the same.
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// Fitnessi(z;) measures the classification error rate of z;
1 if Fitnessi(z;) < Fitness;(pbest) then
2 t pbest = x; ; // Update the pbest

3 else if Fitnessi(z;) = Fitness;(pbest) and |z;| < |pbest| then

4 t pbest = x; ; // Update the pbest
5 if any Fitnessi(pbest) < Fitnessi(gbest) then

6 t gbest = pbest ; // Update the gbest

7 else if any Fitness;(pbest) = Fitnessy(gbest) and |pbest| < |gbest| then
t gbest = pbest ; // Update the gbest

®

Pseudo-code 3.1: Classification performance as the first priority.

In order to overcome this limitation, three new pbest and gbest updat-
ing mechanisms are proposed, which now considers the number of fea-
tures when updating pbest and gbest. The detailed description of the three

new mechanisms is shown as follows.

(1) Classification performance as the first priority. pbest and gbest are
updated in two situations (See Pseudo-code 3.1). The first situation is that
if the classification performance of the particle’s new position is better than
pbest, pbest will be updated and replaced by the new position. In this case,
the number of features will be ignored, which is the same as in the tra-
ditional updating mechanism. The second situation is that if the classi-
fication performance is the same as pbest and the number of features is
smaller, the current pbest will be replaced by the particle’s new position.
After updating the pbest of each particle, gbest of each particle is updated
in the same way by comparing gbest with the pbest of the particle and its
neighbours.

(2) Improve both the number of features and the classification perfor-
mance. pbest and gbest are updated in two situations (See Pseudo-code
3.2). The first situation is that if the classification performance of the par-
ticle’s new position is better than that of pbest and the number of features
is not larger than pbest, pbest is updated. The second situation is that if the
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// Fitnessi(z;) measures the classification error rate of
1 if Flitnessi(x;) < Fitness;(pbest) and |x;| < |pbest| then
2 L pbest = x; ; // Update the pbest

3 else if Fitness)(x;) = Fitnessy(pbest) and |z;| < |pbest| then

4 t pbest = x; ; // Update the pbest
5 if any Fitness;(pbest) < Fitnessy(gbest) and |pbest| < |gbest| then

6 t gbest = pbest ; // Update the gbest

7 else if any Fitness(pbest) = Fitnessi(gbest) and |pbest| < |gbest| then
8 L gbest = pbest ; // Update the gbest

Pseudo-code 3.2: Improving both the number of features and the classifi-

cation performance.

number of features is smaller than pbest and the classification performance
of the new position is not worse (the same or better) than the current pbest,

pbest is updated. gbest is updated in the same way.

(3) Compromise between the classification performance and the num-
ber of features. pbest and gbest are also updated in two situations (See
Pseudo-code 3.3). The first situation is that if the classification perfor-
mance is better than pbest and the number of features is not larger than
pbest, pbest is updated. The second situation is that if the classification per-
formance decreases by less than 5% and the number of features is smaller,
pbest is updated. gbest is updated in the same way.

All these three new updating mechanisms include the traditional up-
dating mechanism and add other situations in updating pbest and gbest.
Where available, the first two mechanisms will always select a better fea-
ture subset to be the pbest or gbest, which either has better classification
performance or the same classification performance with a smaller num-
ber of features. This can help the algorithm filter out redundant features
and make the feature subset with good classification performance and a
small number of features to be the leader (pbest or gbest) of each particle

and the whole swarm.
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// Fitnessi(z;) measures the classification error rate of z;
1 if Fitnessi(z;) < Fitnessy(pbest) and |z;| < |pbest| then
2 t pbest = x; ; // Update the pbest

3 else if Fitnessi(z;) < 0.95 % Fitness;(pbest) and |z;| < |pbest| then
4 t pbest = x; ; // Update the pbest
5 if any Fitness, (pbest) < Fitnessi(gbest) and |pbest| < |gbest| then
6 t gbest = pbest ; // Update the gbest

7 else if Fitness;(pbest) < 0.95 x Fitnessy(gbest) and |pbest| < |gbest| then
8 t gbest = pbest ; // Update the gbest

Pseudo-code 3.3: Compromise between the classification performance and
the number of features.

Note that the proposed pbest and gbest updating mechanisms are sim-
ilar to parsimony pressure used in genetic programming (GP) [167]. In
GP, each individual is typically represented as a tree. The size of the trees
can be considered in the selection process, where the selection operator
prefers smaller trees only when their fitnesses are equal, known as parsi-
mony pressure [167]. However, the proposed updating mechanisms are
different from parsimony pressure in two aspects. Firstly, the parsimony
pressure in GP changes the size of the trees while the proposed pbest and
gbest updating mechanisms do not change the size of the particles that
is always the total number of features in the dataset. Secondly, the par-
simony pressure is to control the size of the trees in GP, which was not
designed for any problem domain, but the number of features considered
in the proposed pbest and gbest updating mechanisms are particularly de-
signed for feature selection problems to optimise one of the two main ob-

jectives, i.e. minimising the number of features.

Based on the three new pbest and gbest updating mechanisms, three
new PSO based feature selection algorithms are developed, which are PSOPG1,
PSOPG2 and PSOPG3. These three new algorithms use the random initial-
isation strategy and use Equation 3.1 as the fitness function, which are the
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same as PSOFS. The three new algorithms will be compared with PSOFS
to test the influence of the pbest or gbest updating mechanism in PSO for

feature selection.

3.2.6 Combination of New Initialisation and Updating Mech-
anisms

To further investigate and improve the performance of PSO for feature se-
lection, it is also necessary to test the performance of PSO using a new ini-
tialisation strategy and a new pbest and gbest updating mechanism. There-
fore, a new algorithm named PSOIniPG is formed by combining the mixed
initialisation and the pbest and gbest updating mechanism, which treats
the classification performance as the first priority. The reason is that the
mixed initialisation is proposed to utilise the advantages and avoid the
disadvantages of both forward selection and backward selection. Con-
sidering the classification performance as the first priority will reduce the
number of features without reducing the classification performance, which
may even increase the classification performance on unseen test set be-
cause of the removal of redundancy. Therefore, PSOIniPG is expected
to simultaneously increase the classification performance and reduce the
number of features.

The pseudo-code of PSOIniPG can be seen in Algorithm 3. The pseudo-
code of the other new algorithms (i.e. PSOInil, PSOIni2, PSOIni3, PSOPG1,
PSOPG2 and PSOPG3) are similar to that of PSOIniPG except for the pro-

cedures in the initialisation and the pbest and gbest updating mechanism.

3.3 Design of Experiments
3.3.1 Benchmark Techniques

Two conventional wrapper feature selection methods, linear forward se-
lection (LFS) [114] and greedy stepwise backward selection (GSBS) [168],
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Input : A Training set and a Test set;
Output : gbest (selected feature subset);
Training and test classification accuracies.

1 begin
2 initialise most of the particles using small feature subsets and the others
particles using relatively large feature subsets;

3 initialise the velocity of each particle;

4 while Mazimum Iterations is not reached do

5 evaluate the fitness (classification performance, i.e. error rate) of each

particle on the Training set;
6 for i=1 to Population Size do
// Fitnessi(z;) measures the error rate of z;

7 if Fitness(x;) < Fitness;(pbest) then

8 L pbest = x; ; // Update the pbest of particle i

9 else if Fitness; (x;) = Fitness;(pbest) and |x;| < |pbest| then
10 L pbest = x; ; // Update the pbest of particle ¢
11 if any Fitnessi (pbest) < Fitnessy(gbest) then
12 t gbest = pbest ; // Update the gbest of particle i
13 else if any Fitness;(pbest) = Fitnessy(gbest) and |pbest| < |gbest|

then
14 L gbest = pbest ; // Update the gbest of particle 1
15 for i=1 to Population Size do
16 L update the velocity and the position of particle i;
17 calculate the classification accuracy of the selected feature subset on the Test
set;
18 return the position of gbest (the selected feature subset), the training and test
| classification accuracies;

Algorithm 3: The pseudo-code of PSOIniPG.

are used as benchmark techniques in the experiments to examine the per-

formance of the proposed feature selection algorithms.

LFS and GSBS were derived from SFS and SBS, respectively. LFS [114]

restricts the number of features that are considered in each step of the for-
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ward selection, which can reduce the number of evaluations. Therefore,
LFS is computationally less expensive than SFS and can obtain good re-
sults. More details can be seen in the literature [114].

The greedy stepwise based feature selection algorithm can move either
forward or backward in the search space [168]. Given that LFS performs
a forward selection, a backward search is chosen in the greedy stepwise
search to form a greedy stepwise backward selection (GSBS). GSBS starts
with all available features and stops when the deletion of any remaining
feature results in a decrease in evaluation, i.e. the accuracy of classifica-
tion.

3.3.2 Datasets and Parameter Settings

In order to examine the performance of the proposed feature selection al-
gorithms, a set of experiments have been conducted on 14 datasets, where
the details of the datasets can be seen in Table 1.1 on Page 16.

In the experiments, all the instances in each dataset are divided into
two sets: a training set and a test set. A common splitting strategy is that
2/3 (around 66%) of instances in the datasets are in the training set and
1/3 (around 33%) of the instances are in the test set [169]. To make it easy,
we split 70% of the instances in each dataset as the training set and the
other 30% as the test set. The instances are selected so that the proportion
of instances from different classes remains the same in both the training
set and the test set. Note that n-fold cross-validation is not used here.
The main reason is that a feature selection process is different from clas-
sification. n-fold cross-validation for classification produces n accuracies
and their average value is the desired result. However, a n-fold cross-
validation feature selection process produces n feature subsets, but the n
feature subsets can not be averaged and the averaged feature subset is not
a meaningful/valid solution for users. Another reason is that the majority

of datasets have a good number of instances and the 70/30 splitting can
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cope well. It is not entirely necessary to use n-fold cross-validation.

As wrapper approaches, the proposed algorithms require a learning/
classification algorithm to evaluate the fitness of the selected feature sub-
sets. Any classification algorithm can be used here. A simple and com-
monly used classification algorithm [93], KNN is used in the experiments
and K=5 (5NN). During the evolutionary training process, the classifica-
tion performance of a selected feature subset is evaluated by 10-fold cross-
validation on the training set. Note that 10-fold cross-validation is per-
formed as an inner loop on the training set to evaluate the classification
performance of a single feature subset and it does not generate 10 fea-
ture subsets. After the evolutionary training process, the selected feature
subset is evaluated on the test set to obtain the testing classification per-
formance. A detailed discussion of why and how 10-fold cross-validation
is applied in this way is given by [5].

The experiments of LFS and GSBS are conducted using Waikato Envi-
ronment for Knowledge Analysis (Weka) [170]. All the settings in LFS and
GSBS are kept to the defaults because they can achieve good performance.
5NN is also used in LFS and GSBS. Both LFS and GSBS are determinis-
tic methods, which produce a unique solution (feature subset) for each
dataset.

The parameters in all the PSO based feature selection algorithms are
selected according to common settings proposed by Clerc and Kennedy
[89]. The common settings are used here because using them can clearly
test whether the improvement of the performance is caused by the newly
proposed mechanisms rather than other factors. The detailed settings are
shown as follows: w = 0.7298, ¢; = c¢; = 1.49618, population size is 30,
and the maximum iteration is 100. The fully connected topology is used.
According to our preliminary experiments, the threshold ¢ is set as 0.6 to
determine whether a feature is selected or not. In the two-stage approach,
i.e. PSO2S, as the maximum number of iteration is 100, the first 50 itera-
tions are set as the first stage and the last 50 iterations are set as the second
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stage. @« = 0.2 and 1 —a = 0.8, which means the classification performance
is more important than the number of features. In PSOInil, all the parti-
cles are initialised using a small number of features, which is around 10%
of the total number of features in the dataset, but the combination of indi-
vidual features for each particle are randomly selected. In PSOIni2, all the
particles are initialised using a large number of features (more than half
of the total number of features), where for one particle, a random number
(e.g. m, where m is between half and the total number of features) is firstly
generated and m features are randomly selected to initialise this particle.
In PSOIni3 and PSOIniPG, a major part of the swarm (2/3) is initialised
using small feature subsets like PSOInil, and the other minor part of the
swarm (1/3) is initialised using more than half of the total number of fea-
tures like PSOIni2.

For each dataset, the experiments of each algorithm has been conducted
for 40 independent runs. Two types of statistical significance tests, pair-
wise Student’s T-test [171] and the non-parametric statistical significance
test, Wilcoxon test [172], are performed between the testing classification
performance of different algorithms. The significance level is selected as
0.05 (or confidence interval is 95%). The results of the Wilcoxon test are
similar (almost identical) to that of T-test. Therefore, only the results of the
T-test are listed in the next section.

3.4 Results and Discussions

The performance of the two-stage algorithm is firstly compared with LFS,
GSBS, and PSOFS. The results are shown in Table 3.1. Table 3.2 compares
the performance of PSO for feature selection using different initialisation
strategies, i.e. PSOFS, PSOInil, PSOIni2 and PSOIni3. Table 3.3 compares
the performance of PSO for feature selection using different pbest and gbest
updating mechanisms, i.e. PSOFS, PSOPG1, PSOPG2, and PSOPG3. Table
3.4 compares the results of the standard algorithm (PSOFS), PSO2S with
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Table 3.1: Results of PSO2S.
*T1: Significance tests against PSOFS. The more “-”, the better PSOFS.
*T2: Significance tests against PSO2S. The more “-”, the better PSO2S.

Dataset Method Size Best Mean StdDev T1 T2|Dataset Method Size Best Mean StdDev T1 T2
All 13 7654 - - All 14 70.05 - -
LFS 7 74.07 - - LFS 4 70.05 - -
Wine GSBS 8 8519 - - |Australian GSBS 12 69.57 - -
PSOFS 8 100 9596 1.83 = PSOFS 3.88 87.44 8548 3.6 =
PSO2S 8 100 9596 183 = PSO2S 342 8744 8424 456 =
All 17 80.95 - - All 18 83.86 - -
LFS 8 79.05 - - LFS 9 83.07 - -
Zoo GSBS 7 80.0 - - |Vehicle GSBS 16 75.79 - -
PSOFS 9.18 97.14 95.5 90.1E-2 = PSOFS 9.52 87.01 84.99 79E-2 =
PSO2S 9.18 97.14 95.5 90.1E-2 = PSO2S 8.65 87.01 84.95 77.8E-2 =
All 24 68.0 - - All 30 9298 - -
LFS 3 6867 - - LFS 10 88.89 - -
German GSBS 18 64.33 - - |WBCD GSBS 25 83.63 - -
PSOFS 1348 72 69.41 1.33 = PSOFS 13.42 94.74 93.39 55.8E-2 =
PSO2S 1192 72 69.15 118 = PSO2S 5 9474 93.54 753E-2 =
All 34 83.81 - - All 56  70.0 - -
LFS 4  86.67 - - LFS 6 90.0 + +
Ionosp  GSBS 30 781 - - |Lung GSBS 33 90.0 +
PSOFS 12.58 93.33 88.4 2.14 = PSOFS 2735 80 72 6 =
PSO2S 12.05 91.43 88.14 189 = PSO2S 2738 90 7225 6.89 =
All 60 76.19 - - All 90 94.81 + +
LFS 3 7778 = = LFS 14 95.06 + +
Sonar GSBS 48 68.25 - - |MoveLib GSBS 80 93.46 - -
PSOFS 25.82 85.71 77.98 3.97 = PSOFS 42.6 95.06 94.49 29.2E-2 =
PSO2S 23.7 8571 78.02 393 = PSO2S 42.18 95.06 94.51 23.7E-2 =
All 100 56.59 - - All 166 83.92 = -
LFS 8 57.69 = = LFS 10 85.31 + +
Hillvalley GSBS 90 49.45 - - |Muskl GSBS 122 76.22 - -
PSOFS 47.32 61.81 57.54 1.52 = PSOFS 86.48 88.81 84.58 2.04 =
PSO2S 47.05 61.81 5757 155 = PSO2S 85.58 88.81 8458 199 =
All 500 70.9 - - All 617 98.45 - -
LFS 7  64.62 - - LFS 24 98.34 - -
Madelon GSBS 489 51.28 - - |Isolet5 GSBS 560 97.16 - -
PSOFS 258.1 79.49 76.55 1.22 = PSOFS 318.7 98.77 98.57 9.98E-2 =
PSO2S 256.48 79.36 76.52 126 = PSO2S 315.62 98.75 98.57 9.65E-2 =

the new fitness function and PSOIniPG with new initialisation and updat-

ing mechanisms.
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3.4.1 Results of the New Fitness Function (PSO2S)

In Table 3.1, “All” shows the total number of features in the dataset. “Size”
represents the number of features selected by LFS and GSBS or the average
number of features selected by PSOFS and PSO2S in the 40 independent
runs. “Best” , “Mean”, and “StdDev” indicate the best, the average, and
the standard deviation of the 40 classification accuracies obtained from the
40 runs on the test set. In order to examine the performance of PSOFS and
PSO2S, the significance tests have been conducted to compare the classi-
fication performance achieved by PSOFS and PSO2S with that of all other
methods. “T1” shows the results of T-test between the classification per-
formance achieved by PSOFS and that of “All”, LFS, GSBS and PSO2S.
“T2” shows the results of T-test between the classification performance
achieved by PSO2S and that of “All”, LFS, GSBS and PSOEFS. In both “T1”
and “T2”, “+” (“-”) means that the classification performance of one algo-
rithm is significantly better (worse) than that of PSOFS or PSO2S with the
confidence interval of 0.95. “=" indicates their classification performances

are similar to each other (not significantly different).

Results of LFS and GSBS. According to Table 3.1, in most cases, LFS se-
lected a smaller number of features and achieved a similar or even higher
classification accuracy than using all available features. GSBS could re-
duce the number of features, but only increased the classification perfor-
mance on a few datasets. In most cases, LFS outperformed GSBS in terms
of both the number of features and the classification performance. The re-
sults suggest that LFS as a forward selection algorithm is more likely to
obtain some optimality of the small feature subsets than GSBS (backward
selection) because of the different starting points. However, on two of the
fourteen datasets (Wine and Zoo), GSBS achieved better classification per-
formance than LFS.
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Results of PSOFS. According to Table 3.1, on almost all datasets, the ba-
sic PSO based algorithm, PSOFS, evolved a feature subset, which only con-
tained around half (less than half on seven datasets) of the available fea-
tures and achieved higher classification accuracy than using all features.

Comparing PSOFS with LFS and GSBS, PSOFS achieved significantly
better classification performance than LFS on 11 out of the 14 datasets and
than GSBS on 12 out of the 14 datasets. On the other two datasets, the best
classification accuracy of PSOEFS is the same or better than LFS and GSBS.
Only on the Lung dataset, LFS and GSBS achieved better classification per-
formance than PSOFS, but this dataset only has 32 instances and it is easy
to get poor classification performance. As the objective functions of LFS,
GSBS and PSOEFS are to minimise the classification error rate (i.e. max-
imise the classification accuracy) only, the results also suggest that PSO as
an evolutionary search technique can obtain a better feature subset than
LFS and GSBS.

Results of PSO2S. According to Table 3.1, PSO2S evolved a feature sub-
set with less than half of the available features on nine of the 14 datasets
and achieved higher classification accuracy than using all features on 13
of the 14 datasets. Only on the MoveLib dataset, the average classification
accuracy of PSO2S is lower than using all features, but the best accuracy
of PSO2S is better than using all features. One possible reason for this is
that the classification performance of using all the original features in this
dataset is already very high (94.81%). Another possible reason is that this
dataset has 90 features, but only 306 instances, which makes it easy for the
features selected from the small training set perform poorly on the unseen
test set. Due to the same reasons, other methods described later show a
similar pattern to PSO2S.

Comparing with LFS, PSO2S achieved higher classification accuracy
than LFS in almost all cases and a smaller number of features in some

cases. PSO2S outperformed GSBS in terms of both the number of features
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and the classification performance on almost all datasets. The results fur-
ther confirm that PSO as an EC technique can better search the solution
space to achieve better performance than LFS and GSBS.

Comparing with PSOFS, the number of features selected by PSO2S is
the same as PSOFS on two datasets and smaller than PSOFS on all the
other 12 out of the 14 datasets. There is no significant difference between
the classification performance of PSOFS and PSO2S. This is consistent with
our hypothesis on PSO2S, which is to further reduce the number of fea-
tures without decreasing the classification performance.

The results in Table 3.1 suggest that PSO with different fitness func-
tions in PSOFS and PSO2S obtain different feature subsets. PSO2S further
improves the feature subset obtained by PSOFS in almost all cases due
mainly to the new two-stage fitness function. In the first stage, the fit-
ness function (Equation 3.3) could guide PSO to search for the feature sub-
set with the minimum classification error rate, then in the second stage,
it guides PSO to search for the smallest feature subset with the already
achieved high classification performance. Therefore, PSO2S can success-
fully remove redundant features without reducing the classification per-

formance.

3.4.2 Results of New Initialisation Strategies

Table 3.2 is mainly used to show the influence of the initialisation strategy
in PSO for feature selection. The results in Table 3.1 has already shown that
the basic PSO based feature selection algorithm (PSOFS) can achieve better
performance than LFS and GSBS. Therefore, the results of LFS and GSBS
are not included in this section. In Table 3.2, “T1” shows the results of the
significance tests between the classification performance of “All” and that
of a PSO based feature selection algorithm. “T2” shows the results of the

significance tests between PSOFS and another algorithm.
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Results of PSOInil. PSOInil uses the proposed small initialisation strat-
egy simulating forward selection. According to Table 3.2, PSOInil further
reduced the number of features selected by PSOFS, which is less than 20%
of the available features. PSOInil achieved similar or better classification
performance than using all features in most cases. The classification per-
formance of PSOInil is similar or better than PSOFS on seven datasets, but
worse than PSOFS on the other seven datasets. The results suggest that
PSOInil has the advantage of the forward selection to select a small num-
ber of features. However, for the datasets in which the best classification
performance was achieved by a large feature subset, PSOInil achieved
worse classification performance than the other three algorithms.

In PSOInil, the number of features was not considered or evolved dur-
ing the evolutionary training process. Accordingly, if two feature subsets
have the same (high) classification performance, but have different num-
bers of features, then PSOInil is more likely to reach the smaller feature
subset first and keep it as pbset or gbest. Even if PSOInil reaches the larger
teature subsets, pbset or gbest will not be replaced. Therefore, the number
of features in PSOInil is usually small, but this may also limit PSOInil to
search for the area containing solutions with a larger number of features,
which results in slightly worse classification performance than PSOFS in
many cases. Increasing the number of iterations may address this limi-
tation in some cases, but a larger number of iterations will increase the

computational cost.

Results of PSOIni2. PSOIni2 uses the proposed large initialisation strat-
egy simulating backward selection. According to Table 3.2, PSOIni2 se-
lected a larger number of features than PSOFS and PSOInil. PSOIni2
achieved similar or better classification performance than using all fea-
tures on 13 of the 14 datasets and similar classification performance to
PSOFS in most cases. The results suggest that PSOIni2 suffers from the
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Table 3.2: Results of New Initialisation Strategies.
*T1: Significance tests against “All”. The more “+”, the better the PSO based algorithm.
*T2: Significance tests against PSOFS. The more “+”, the better PSOInil or PSOIni2 or PSOIni3.
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Dataset Method Size Best Mean StdDev T1 T2|Dataset  Method Size Best Mean StdDev T1 T2
All 13 76.54 All 14 70.05
PSOFS 8 100 95.96 1.83E0 + PSOFS 3.88 87.44 8548 3.6E0 +
Wine PSOInil 355 100 95.86 2.34E0 + = |Australian PSOInil 2.58 86.96 78.03 7.7E0 + -
PSOIni2 9.42 98.77 96.45 2.53E0 + = PSOIni2 4.6 8792 84.67 3.08E0 + =
PSOIni3 89 100 96.64 149E0 + = PSOIni3 3.2 8744 814 8.82E0 + -
All 17 80.95 All 18 83.86
PSOFS 9.18 97.14 955 90.1E-2 + PSOFS 9.52 87.01 8499 79E-2 +
Zoo PSOInil 3.22 97.14 9424 1.33E0 + - |Vehicle PSOInil 3.82 85.24 81.82 1.81E0 - -
PSOIni2 9.92 97.14 95.62 92.1E-2 + = PSOIni2 10.7 87.99 85.37 1.01E0 =
PSOIni3 7.58 97.14 95.26 86.3E-2 + = PSOIni3 9.3 87.8 8522 775E-2 + =
All 24 68.0 All 30 9298
PSOFS 1348 72 6941 1.33E0 + PSOFS 13.42 94.74 93.39 55.8E-2 +
German PSOInil 255 72 6739 557E0 = - |[WBCD PSOInil 3.1 94.74 93.26 23E0 = =
PSOIni2 16.68 71.67 69.18 1.16E0 + = PSOIni2 19.22 94.15 93.01 36.9E-2 = -
PSOIni3 109 7233 68.34 1.99E0 = - PSOIni3 7.28 94.74 93.83 77.5E-2 + +
All 34 83.81 All 56 70.0
PSOFS 12.58 93.33 88.4 2.14E0 + PSOFS 2735 80 72 6E0  +
Ionosp  PSOInil 3.45 92.38 87.83 2.16E0 + = |Lung PSOInil 2.88 90 7875 9E0 + +
PSOIni2 18.25 94.29 86.57 2.02E0 + - PSOIni2 37.25 90 73.75 533E0 + =
PSOIni3 3.18 93.33 87.05 2.23E0 + - PSOIni3 13.15 90 75.75 7.71E0 + +
All 60 76.19 All 90 94.81
PSOFS 25.82 85.71 77.98 3.97E0 + PSOFS 42.6 95.06 94.49 29.2E-2 -
Sonar PSOInil 6.08 85.71 76.95 5.26E0 = = |MoveLib PSOInil 11.8 95.19 94.25 47.5E-2 - -
PSOIni2 32.1 85.71 7841 34E0 + = PSOIni2 50.68 95.06 94.42 259E-2 - =
PSOIni3 12.6 84.13 78.53 3.55E0 + = PSOIni3 25.95 94.94 94.37 26.3E-2 - =
All 100 56.59 All 166 83.92
PSOFS 47.32 61.81 57.54 1.52E0 + PSOFS 86.48 88.81 84.58 2.04E0 =
Hillvalley PSOInil 6.9 60.99 57.05 1.79E0 = = |Muskl PSOInil 16.58 89.51 81.17 3.25E0 - -
PSOIni2 60.12 60.71 57.71 12E0 + = PSOIni2 106.18 90.21 85.51 2.33E0 + =
PSOIni3 9.82 62.09 57.38 2.33E0 + = PSOIni3 68.9 91.61 8554 3.1E0 + =
All 500 70.9 All 617 98.45
PSOFS 258.1 79.49 76.55 1.22E0 + PSOFS 318.7 98.77 98.57 9.98E-2 +
Madelon PSOInil 16.18 88.97 76.9 943E0 + = |Isolet5 PSOInil 115.22 98.69 98.44 14E-2 = -
PSOIni2 332.3 78.85 74.45 147E0 + - PSOIni2 395.6 98.77 98.54 10E-2 + =
PSOIni3 225.22 85.77 77.8 3.19E0 + + PSOIni3 318.88 98.83 98.57 11.1E-2 + =

problem of selecting a relatively large number of features. The main rea-

son is that pbest and gbest in PSOIni2 are firstly assigned by feature subsets

with a large number of features. Even if PSOIni2 reaches a smaller feature

subset with the same classification performance, pbest and gbest will not be



94CHAPTER 3. WRAPPER BASED SINGLE OBJECTIVE FEATURE SELECTION

updated. Therefore, this may limit PSOIni2 to search for the space contain-
ing solutions with a smaller number of features, and also result in slightly
worse classification performance than PSOFS in some cases.

Results of PSOIni3. PSOIni3 uses the proposed mixed initialisation strat-
egy. According to Table 3.2, PSOIni3 achieved better classification perfor-
mance than using all features on 13 of 14 datasets. In most cases, PSOIni3
achieved similar or better classification performance than PSOFS, but se-
lected a smaller number of features. In most cases, the number of features
selected by PSOIni3 is larger than PSOInil but smaller than PSOFS and
PSOIni2. This might be because PSOIni3 was proposed to simulate both
forward and backward selection to utilise their advantages and avoid their
disadvantages. As the number of features selected is smaller, the compu-
tational time of PSOIni3 is usually shorter than PSOFS and PSOIni2.

Generally, all these four methods using different initialisation strate-
gies selected a smaller number of features and achieved better classifica-
tion performance than using all features. Although the classification per-
formance is slightly different, the main difference between the above four
algorithms are the number of features. The main reason is that all these
four algorithms do not consider (or evolve) the number of features during
the evolutionary training process. Therefore, the initialisation of the num-
ber of features can significantly influence the final solutions. PSOIni3 sim-
ulates both forward selection and backward selection in the initialisation
procedure, which results in at least as good classification performance as
PSOFS, but it selected a smaller number of features in most cases and also
reduced the computational time. The results and comparisons suggest that
the initialisation strategy is important in PSO for feature selection, and it

should not be ignored.
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3.4.3 Results of New Updating Mechanisms

Table 3.3 shows the experimental results of PSO using the traditional ini-
tialisation strategy (random initialisation) and different pbset and gbest up-
dating mechanisms for feature selection. “T1” shows the results of the sig-
nificance tests between the classification performance of “All” and that of
a PSO based feature selection algorithm. “T2” shows the results of the

significance tests between PSOFS and another algorithm.

Results of PSOPG1. PSOPGI treats the classification performance as the
first priority when updating pbest and gbest. As can be seen from Table 3.3,
PSOPGT1 selected less than half or even less than one third of the available
features and achieved similar or significantly better classification than us-
ing all features on 13 of the 14 datasets. The only exception is the MoveLib
dataset, where PSOPG1 selected around one third of the available features,
achieved slightly worse average classification performance (94.57%) than
using all features (94.81%), but the best classification performance (95.19%)
of PSOPGI1 is better than using all features.

PSOPG1 outperformed PSOFS in terms of the classification performance
and the number of features on almost all datasets. The main reason is that
PSOPGI1 takes the classification performance as the first priority, which
can firstly guarantee PSOPG1 achieves at least as good classification per-
formance as PSOFS. PSOPGL also considers the number of features if the
classification performance is the same, which can further remove redun-
dant or irrelevant features to reduce the number of features and may fur-

ther improve the classification performance on the unseen test set.

Results of PSOPG2. PSOPG2 aims to improve both the number of fea-
tures and the classification performance when updating pbest and gbest.
According to Table 3.3, PSOPG2 selected around a quarter (or less) of the
available features and achieved significantly better or similar classification

performance than using all features on almost all datasets. The number
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Table 3.3: Results of New Updating Mechanisms.
*T1: Significance tests against “All”. The more “+”, the better the PSO based algorithm.
*T2: Significance tests against PSOFS. The more “+”, the better PSOPG1 or PSOPG2 or PSOPG3.

Dataset Method Size Best Mean StdDev T1 T2|Dataset =~ Method Size Best Mean StdDev T1 T2
All 13 76.54 All 14 70.05
PSOFS 8 100 9596 1.83E0 + PSOFS  3.88 87.44 8548 3.6E0 +
Wine PSOPG1 595 98.77 95.37 2.01E0 + = |Australian PSOPG1 3.82 87.44 85.79 3.71E0 + =
PSOPG2 4.7 100 96.79 2.77E0 + = PSOPG2 2.85 87.44 78.31 10.2E0 + -
PSOPG3 4.65 100 96.79 2.72E0 + = PSOPG3 2.58 87.44 7715 99E0 + -
All 17 80.95 All 18 83.86
PSOFS 9.18 97.14 955 90.1E-2 + PSOFS  9.52 87.01 8499 79E-2 +
Zoo PSOPG1 5.02 97.14 9536 57E-2 + = |Vehicle PSOPG1 9.35 87.01 85.17 84.6E-2 + =
PSOPG2 4.1 96.19 95.19 422E-2 + = PSOPG2 5.48 86.02 84.13 1.27E0 = -
PSOPG3 4.35 96.19 95.24 475E-2 + = PSOPG3 4.45 86.02 83.66 1.26E0 =
All 24 68.0 All 30 9298
PSOFS 1348 72 69.41 1.33E0 + PSOFS  13.42 94.74 93.39 55.8E-2 +
German PSOPG1 11.48 72.33 68.66 2.17E0 = = |WBCD PSOPG1 4.12 94.74 93.74 86.2E-2 + +
PSOPG2 64 72 68.87 2.06E0 + = PSOPG2 3.08 94.74 93.96 1.34E0 + +
PSOPG3 45 72 68.73 2.05E0 + = PSOPG3 2.58 94.74 93.73 1.78E0 + =
All 34 83.81 All 56  70.0
PSOFS 12.58 93.33 884 2.14E0 + PSOFS 2735 80 72 6E0  +
JIonosp  PSOPG1 8.38 92.38 88.74 2.17E0 + =|Lung PSOPG1 1255 90 7575 7.71E0 + +
PSOPG2 3.35 95.24 88.24 2.78E0 + = PSOPG2 5.32 90 7875 5.99E0 +
PSOPG3 3.28 9143 87.95 2.16E0 + = PSOPG3 58 90 785 6.14E0 + +
All 60 76.19 All 90 94.81
PSOFS 25.82 85.71 77.98 3.97E0 + PSOFS  42.6 95.06 94.49 29.2E-2 -
Sonar PSOPG1 17.85 85.71 77.42 3.28E0 + = |MoveLib PSOPG1 36.65 95.19 94.57 30.7E-2 - =
PSOPG2 8.85 87.3 77.82 3.85E0 + = PSOPG2 184 95.19 9447 38.7E-2 - =
PSOPG3 7.52 87.3 77.03 3.35E0 = = PSOPG3 12.35 95.19 9447 34E-2 - =
All 100 56.59 All 166 83.92
PSOFS 47.32 61.81 57.54 1.52E0 + PSOFS 86.48 88.81 84.58 2.04E0 =
Hillvalley PSOPG1 40.5 59.89 58 1.23E0 + = |Muskl PSOPG1 72.58 88.81 84.37 2.06E0 = =
PSOPG2 18.52 60.16 57.94 149E0 + = PSOPG2 38.78 88.11 83.1 2.78E0 = -
PSOPG3 4.52 60.16 56.21 1.85E0 = - PSOPG3 30.45 88.11 83.09 2.86E0 = -
All 500 70.9 All 617 98.45
PSOFS 258.1 79.49 76.55 1.22E0 + PSOFS  318.7 98.77 98.57 9.98E-2 +
Madelon PSOPG1 234.5 80.64 77.1 1.79E0 + = |Isolet5 PSOPG1 281.85 98.85 98.6 9.01E-2 + =
PSOPG2 102.3 85.77 80.15 2.48E0 + + PSOPG2 150.88 98.95 98.55 12.8E-2 + =
PSOPG3 74.15 86.41 81.71 2.05E0 + + PSOPG3 9898 98.8 9859 11.6E-2 + =

of features selected by PSOPG2 is much smaller than that of PSOFS and
PSOPGI. The classification performance of PSOPG2 is similar to that of
PSOFS on eight of the 14 datasets, slightly worse on three datasets and
slightly better on three datasets. This might be because in PSOFS and
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PSOPG]I, if the classification performance was increased, the number of
features was ignored. PSOPG2 aims to ensure that neither the classifica-
tion error rate nor the number of features is increased when updating pbest
or gbest. This can further reduce the number of features without decreas-
ing the classification performance in most cases, but it might also cause the
algorithm missing the feature subsets with high classification performance

and a large number of features.

Results of PSOPG3. InPSOPGS3, the classification performance compro-
mises the number of features. According to Table 3.3, on most datasets,
PSOPGS3 selected around one fifth (or less) of the available features and
achieved similar or even better classification performance than using all
features. PSOPG3 further reduced the number of features selected by
PSOFS, PSOPG1, and PSOPG2. PSOPG3 achieved similar classification
performance to PSOFS in most cases, but worse in three cases. The reason
is that when updating pbest or gbest, the number of features in PSOPG3
was treated as more important than in PSOFS, PSOPG1 and PSOPG?2,
which guides PSOPG3 to search for the feature subsets with a small num-
ber of features. Meanwhile, the classification performance in PSOPG3
compromises the number of features to a very small extent. Therefore,
the classification performance of PSOPG3 was slightly worse than PSOFS,
PSOPG1 and PSOPG2 in some cases.

Generally, all these four methods using different pbset and gbest updat-
ing mechanisms can select a smaller number of features and achieve bet-
ter classification performance than using all features. PSOPGI1 achieved at
least as good classification performance as PSOFS, but selected a smaller
number of features. The results and comparisons show that the pbset and
gbest updating mechanism can significantly influence the performance of
PSO for feature selection in terms of both the classification performance
and the number of features. The results also show that the updating mech-
anism is more important than the initialisation strategy in PSO for feature

selection. Therefore, to improve the performance of PSO for feature selec-



98CHAPTER 3. WRAPPER BASED SINGLE OBJECTIVE FEATURE SELECTION

tion, the pbset and gbest updating mechanism should be naturally consid-
ered first. Meanwhile, since the initialisation strategy is simple and easy
to implement, we should combine them together to further improve the

feature selection performance and reduce the computational cost.

3.4.4 Results of PSOIniPG

Table 3.4 shows the results of PSOFS, PSO2S, and PSOIniPG, where “T”
shows the result of the significance tests between PSOIniPG and others.

According to Table 3.4, PSOIniPG evolved feature subsets that selected
less than half (or even close to 10% on four datasets) of the available fea-
tures, but achieved significantly better classification performance than us-
ing all features on 13 of the 14 datasets. Only on the MoveLib dataset, the
average classification performance obtained by PSOIniPG (94.62%) was
less, by 0.2%, than that of using all features (94.81%), but the best accuracy
(95.19%) is higher than using all features.

Comparing PSOIniPG with PSOFS. According to Table 3.4, PSOIniPG
selected feature subsets with a smaller number of features and achieved
similar or significantly better classification performance than PSOFS on
almost all datasets. This suggests that although PSOFS and PSOIniPG
shared the same fitness function (Equation 3.1), the proposed initialisation
strategy and pbest and gbest updating mechanism can help PSOIniPG to
effectively eliminate/reduce redundant and irrelevant features to obtain
a smaller feature subset with similar or significantly better classification
performance than PSOFS.

Comparing PSOIniPG with PSO2S. According to Table 3.4, PSOIniPG
selected a smaller number of features than PSO2S on 12 of the 14 datasets
and achieved similar or better classification performance on 11 datasets.
On the seven datasets that have a relatively large number of features,
PSOIniPG selected a smaller number of features than PSO2S and achieved
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Table 3.4: Results of PSOIniPG.
*T: Significance tests against PSOIniPG. The more “-”, the better PSOIniPG.

Dataset Method Size Best Mean StdDev T|Dataset = Method Size Best Mean StdDev T
All 13 76.54 - All 14 70.05 -
. PSOFS 8 100 95.96 1.83E0 = . PSOFS 3.88 87.44 8548 3.6E0 +
Wine Australian
PSO2S 8 100 95.96 1.83E0 = PSO2S 342 87.44 8424 4.56E0 +
PSOIniPG 6.78 98.77 95.12 1.87E0 PSOIniPG 3.28 87.44 80.46 9.05E0
All 17 80.95 - All 18 83.86 -
PSOFS 9.18 97.14 95.5 90.1E-2 = . PSOFS 9.52 87.01 84.99 79E-2 =
Zoo Vehicle
PSO2S 9.18 97.14 95.5 90.1E-2 = PSO2S 8.65 87.01 84.95 77.8E-2 =
PSOIniPG 6.58 97.14 95.52 71.1E-2 PSOIniPG 10.28 87.01 85.31 95.5E-2
All 24 68.0 - All 30 9298 -
PSOFS 1348 72 6941 1.33E0 + PSOFS 13.42 94.74 93.39 55.8E-2 -
German WBCD
PSO2S 1192 72 69.15 1.18E0 + PSO2S 5 94.74 9354 75.3E-2 -
PSOIniPG 12.88 70.67 68.53 1.39E0 PSOIniPG 3.45 94.74 94.09 82.8E-2
All 34 83.81 - All 56 70.0 -
PSOFS 12.58 93.33 88.4 2.14E0 + PSOFS 2735 80 72 6E0 -
Ionosp Lung
PSO2S 12.05 91.43 88.14 1.89E0 + PSO2S 27.38 90 7225 6.89E0 -
PSOIniPG 3.2 91.43 87.14 1.88E0 PSOIniPG 622 90 7875 6.4E0
All 60 76.19 - All 90 94.81 +
PSOFS 25.82 85.71 77.98 3.97E0 = . PSOFs 42.6 95.06 94.49 29.2E-2 =
Sonar MoveLib
PSO2S 23.7 85.71 78.02 3.93E0 = PSO2S 42.18 95.06 94.51 23.7E-2 =
PSOIniPG 10.98 84.13 77.82 2.96E0 PSOIniPG 27.75 95.19 94.62 39.7E-2
All 100 56.59 - All 166 83.92 -
. PSOFS 47.32 61.81 57.54 1.52E0 = PSOFS 86.48 88.81 84.58 2.04E0 =
Hillvalley Musk1
PSO2S 47.05 61.81 57.57 1.55E0 = PSO2S 85.58 88.81 84.58 1.99E0 =
PSOIniPG 12.72 60.71 57.95 1.48E0 PSOIniPG 79.35 89.51 84.98 2.55E0
All 500 70.9 - All 617 98.45 -
PSOFS 258.1 79.49 76.55 1.22E0 - PSOFS 318.7 98.77 98.57 9.98E-2 -
Madelon Isolet5
PSO2S 256.48 79.36 76.52 1.26E0 - PSO2S 315.62 98.75 98.57 9.65E-2 -
PSOIniPG 216.4 84.23 78.49 3.23E0 PSOIniPG 281.05 98.87 98.63 11.9E-2

similar or better classification performance than PSO2S in all cases. Al-
though the datasets are commonly used benchmark problems in the liter-
ature, the performance of a feature selection algorithm on datasets with a
larger number of features is clearly more important than on datasets with
a smaller number of features. Therefore, PSOIniPG is clearly better than
PSO2S. The main reason is that the fitness function in the second stage in
PSO2S aims to find a balance between the classification performance and
the number of features. Therefore, further reduction of the number of fea-

tures may also decrease the classification performance. In PSOIniPG, the
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fitness function only includes the classification performance during the
whole evolutionary process. This ensures that the reduction of the num-
ber of features in PSOIniPG will not reduce the classification performance.
Meanwhile, the proposed initialisation strategy and pbest and gbest updat-
ing mechanism can help PSOIniPG further remove irrelevant or redun-
dant features to reduce the number of features, which in turn could in-
crease the classification performance on unseen test set. In addition, com-
pared with PSO2S, another advantage of PSOIniPG is that it does not need
a predefined parameter to balance the relative importance of the classifi-
cation performance and the number of features.

Note that simply increasing the number of iterations cannot help PSOFS
and PSO2S achieve the same performance as PSOIniPG. The main reason
is that PSOFS does not consider the number of features and PSO2S needs
to manually balance the trade-off (using a predefined parameter) between
the classification performance and the number of features. PSOIniPG sim-
ulates both forward and backward selection to duplicate their advantages,
which helps PSOIniPG pay more attention to small feature subsets, but
does not miss the large feature subsets with high classification perfor-
mance. Meanwhile, because of the proposed pbest and gbest updating
mechanism, for two feature subsets with the same classification perfor-
mance, PSOIniPG will select the smaller one as the new pbest or gbest.
PSOFS using the traditional updating mechanism will not always be able
to do this during the evolutionary training process. Therefore, PSOFS and
PSO2S can not achieve as good performance as PSOIniPG.

3.4.5 Analysis on Computational Time

Table 3.5 shows the average computational time used by different meth-
ods in the 40 independent runs. All the algorithms used in the experiments
are wrapper based feature selection approaches. Therefore, most of their

computational time was spent on the fitness evaluation procedure, i.e cal-
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Table 3.5: Computational Time (minutes)
’ Method ‘W'me‘Austra1ian‘Zoo‘Vehicle‘German‘WBCD‘Ionosp‘Lung‘Sonar‘MoveLib‘Hillva‘Muskl‘Madelon‘lsoletS‘

PSOFS |0.25 42 0.11] 813 | 12.76 | 3.97 | 1.36 [0.02|0.75| 3.31 |42.55|10.09 | 866.47 (363.46
PSO25 |0.22 296 |0.09] 587 | 936 | 2.67 | 1.08 |0.02|0.58 2.7 |32.04| 7.66 | 842.01 |239.97
PSOIniPG| 0.21 257 10.07] 6.02 | 9.37 | 2.07 | 0.71 |0.02]0.37| 1.88 | 14.6 | 7.22 | 651.88 [247.12

PSOInil |0.22| 3.42 [0.06] 5.5 567 | 236 | 096 [0.01| 0.3 1.51 |14.24| 2.6 99.3 |142.36
PSOIni2 |0.34| 3.74 |0.1| 8.63 | 1495 | 518 | 1.92 [0.03|0.99 | 3.66 |[47.42|13.78| 1220.3 [580.04
PSOIni3 |0.33| 397 [0.11] 812 | 11.89 | 3.23 | 0.98 |0.02|0.54 2.6 |15.66| 9.28 | 818.33 |402.78
PSOPG1 |0.29| 342 [0.1| 6.69 | 1252 | 296 | 1.35 [0.02|0.71 | 2.81 |34.53|10.54 | 947.91 |424.48
PSOPG2|0.25| 329 [0.07] 537 | 8.08 | 216 | 0.88 [0.01| 042 | 222 |2643| 529 | 437.7 [214.47
PSOPG3|0.25| 3.82 1(0.07] 6.28 | 711 | 2.09 | 1.04 |0.01| 047 | 1.82 |[16.18| 5.41 372 |167.28

culating the classification performance of the selected features.

For the algorithms using a new initialisation strategy, from Table 3.5,
it can be seen that PSOInil with the small initialisation strategy used the
shortest time. PSOIni2 with the large initialisation strategy used the longest
time. PSOIni3 used slightly less time than PSOFS. The main reason for the
time differences is that a larger number of features needs longer time for
classification in each evaluation during the evolutionary training process.
PSOInil (or PSOIni2), which usually selected the smallest (or the largest)
number of features, used the shortest (or the longest) time.

For the algorithms using a new pbest and gbest updating mechanism,
from Table 3.5, it can be seen that PSOIni2 and PSOIni3 used less compu-
tational time than PSOFS and PSOInil. The reason is that they selected
a smaller number of features. The time used by all these four algorithms
also follow the same observations mentioned above, which is the algo-
rithms selecting more features used a longer time.

According to Table 3.5, it can also be seen that PSOIniPG took less time
than PSO2S on most datasets. Comparing PSOIniPG with all other PSO
based algorithms, PSOIniPG used less computational time than all others
except for PSOInil because PSOInil usually selected a small number of
features, but achieved worse classification performance than PSOIniPG.

For the benchmark techniques, LFS usually used less time than the

other methods because the forward selection strategy starts with a small
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number of features. GSBS costs less time than the other PSO based algo-
rithms on datasets with a small number of features, but used more time on
datasets with a large number of features, such as the Madelon and Isolet5
datasets. The reason is that GSBS starts with the full set of features, which
needs much longer time for each evaluation. The number of evaluations
in GSBS substantially increased on such large datasets while the number

of evaluations in the PSO based algorithms still remains the same.

3.5 Chapter Summary

The goal of this chapter was to develop a new PSO based feature selec-
tion approach to investigate and improve the performance of PSO for fea-
ture selection, which is expected to select a smaller number of features
and achieve better classification performance than using all features. To
achieve this goal, we investigated the influence of the fitness function, the
initialisation strategy and the pbest and gbest updating mechanism in PSO
for feature selection. The new algorithms were then developed to success-
tully improve the performance of PSO for feature selection, and to outper-
form the classification performance achieved by using all features and two
traditional feature selection algorithms.

This chapter shows that the fitness function can significantly influ-
ence the performance of PSO for feature selection. A well-designed fit-
ness function can reduce the number of features and/or improve the clas-
sification performance. The newly developed two-stage fitness function
aims to maximise the classification performance in the first stage and con-
siders both the number of features and the classification performance in
the second stage. It can further remove redundancy in the feature sub-
sets evolved by PSO using the fitness fitness considering the classification
performance only. As a result, the number of features is further reduced
without significantly decreasing or even improving the classification per-

formance.
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This chapter shows that the initialisation strategy in PSO for feature
selection can not be ignored. When the number of features is not included
in the fitness function, the initialisation of solutions (starting points) can
influence the size of final feature subsets, which then influences the clas-
sification performance. The results show that the small initialisation usu-
ally selected a small number of features, but the classification performance
was not as good as the large initialisation, which usually selected a large
number of features. The mixed initialisation successfully avoided the lim-
itations to select a small number of features, but maintained the classi-
fication performance achieved by the large initialisation and traditional

random initialisation.

This chapter also shows that the pbest and gbest updating mechanism
can significantly influence the performance of PSO for feature selection.
By considering the number of features when updating pbest and gbest,
which are the leaders of particles, the number of features was significantly
reduced and the classification performance was maintained or even in-

creased.

By combining the best initialisation strategy and pbest and gbest updat-
ing mechanism, the PSO based algorithm simultaneously improved the
classification performance and reduced the number of features, especially
on datasets with a large number of features. By reducing the number of
features, the computational time can also be reduced. The reason is that
the computational time was mainly spent on the classification process in
the fitness evaluation procedure and a smaller number of features cost less

time for each classification process.

The proposed PSO based algorithms in this chapter focus on the single
fittest solution found during the evolutionary search process. Although
both the number of features and the classification performance are consid-
ered, it is unknown whether the obtained solution still have redundancy.
Meanwhile, in real-world applications, it is needed to provide users the
trade-off between the two objectives. To achieve this, it is thought to use
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evolutionary multi-objective algorithms to evolve a set of Pareto front so-
lutions (feature subsets), which allows decision-makers to choose a pre-
ferred solution according to their own requirements. Therefore, the next
chapter will develop a multi-objective feature selection approach based on
multi-objective PSO, where the two objectives are to maximise the classi-

tication performance and to minimise the number of features.



Chapter 4

Wrapper Based Multi-Objective

Feature Selection

4.1 Introduction

Feature selection in nature is a multi-objective problem, which is to max-
imise the classification accuracy (minimise the classification error rate)
and minimise the number of features. These two objectives are usually
conflicting to each other and the optimal decision needs to be made in
the presence of a trade-off between them. Treating feature selection as a
multi-objective problem can obtain a set of non-dominated feature subsets
to meet different requirements in real-world applications. Although PSO,
multi-objective optimisation, and feature selection have been individually
investigated frequently, the use of PSO for multi-objective feature selection
has not been investigated.

4.1.1 Chapter Goals

The overall goal of this chapter is to develop a PSO based multi-objective
feature selection approach to classification with the expectation of achiev-

ing a Pareto front of non-dominated solutions, which hopefully include
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a smaller number of features and achieve a lower classification error rate
than using all available features. In order to achieve this goal, we investi-
gate two Pareto front feature selection algorithms based on multi-objective
PSO, which are NSPSOFS using the idea of non-dominated sorting and
CMDPSOFS using the ideas of crowding, mutation and e-dominance. The
two feature selection algorithms will be examined and compared with
the best single objective algorithm (PSOIniPG) developed in the previous
chapter and three well-known evolutionary multi-objective algorithms (De-
tails can be seen in Section 4.3). Specifically, we will investigate:

o whether NSPSOFS can evolve a Pareto front of non-dominated solu-
tions, which include a smaller number of features and achieve better

classification performance than using all features, and outperform
PSOIniPG,

o whether CMDPSOFS can evolve a Pareto front of non-dominated
feature subsets and outperform PSOIniPG, and

e whether NSPSOFS and CMDPSOFS can achieve better performance
than three well-known multi-objective algorithms, NSGAII, SPEA2
and PAES.

4.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. The second sec-
tion describes the new multi-objective feature selection algorithms. The
third section describes the design of the experiments. The results and dis-
cussions are presented in the fourth section. The fifth section provides a

summary of this chapter.
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4.2 Multi-Objective Feature Selection Algorithms

In this section, we propose two new algorithms for feature selection using
multi-objective PSO. The two objectives in the multi-objective algorithms
are to minimise both the number of features and the classification error

rate (maximise the classification accuracy).

Representations. The representation used in this chapter is the same as
described in Chapter 3, which is a n-bit string, where n is the total number
of features in the dataset. A parameter 6 is used to determine whether a

feature is selected or not.

421 Multi-Objective Feature Selection Algorithm 1: NSP-
SOFS

In this section, we develop a new approach to feature selection using multi-
objective PSO with the two main objectives to explore the Pareto front of
feature subsets. However, standard PSO was originally proposed for sin-
gle objective optimisation and could not directly be used to address multi-
objective problems. In order to investigate a PSO based multi-objective
(Pareto front) feature selection algorithm, one of the most important tasks
is to determine a good leader (gbest) for each particle from a set of potential
non-dominated solutions. NSGAII is one of the most popular evolution-
ary multi-objective techniques [23]. Li [103] introduces the idea of NSGAII
into PSO to develop a multi-objective PSO algorithm and achieves promis-
ing results on benchmark functions optimisation. However, this algorithm
has never been applied to feature selection problems. In this study, we
develop a PSO based multi-objective feature selection algorithm (NSP-
SOFS) based on the idea of non-dominated sorting in NSGAII to inves-
tigate whether a relatively simple multi-objective PSO can achieve good

performance for feature selection problems.
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Algorithm 4 shows the pseudo-code of NSPSOFS. The two most im-
portant ideas in NSPSOFS are to select a good gbest for each particle and
to update the swarm during the evolutionary process. To select a gbest,
in each iteration, the fitness values (i.e. the number of features and the
classification error rate of the selected feature subset) of each particle are
calculated. Then the algorithm identifies the non-dominated solutions in
the swarm according to the fitness values. The crowding distance of each
non-dominated solution is calculated and all the non-dominated solutions
are sorted according to the crowding distance. When updating the swarm
to a new iteration, a gbest for each particle is randomly selected from the
highest ranked non-dominated solutions, which are the least crowded so-

lutions.

To update the swarm, pbest of each particle also needs to update. In
NSPSOFS, pbest of a particle is replaced with the new position only if the
new position dominates the current pbest. After determining the gbest and
pbest, the new velocity and the new position of each particle are calcu-
lated according Equations 2.1 and 2.2. The old positions (solutions) and
the new positions of all particles are firstly combined into one union (the
size of the union is then twice as the swarm size). The non-dominated
solutions in the union are called the first non-dominated front, which are
excluded from the union. Then the non-dominated solutions in the new
union are called the second non-dominated front. The following levels of
non-dominated fronts are identified by repeating this procedure. For the
next iteration, solutions (particles) are selected from the top levels of the
non-dominated fronts to form a new/updated swarm, starting from the
first front (from Line 16 to Line 23). If the number of solutions needed is
larger than the number of solutions in the current non-dominated front, all
the solutions are added into the swarm for the next iteration. Otherwise,
the solutions in the current non-dominated front are ranked according to
the crowding distance and the highest ranked solutions are added into the
next iteration.
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21

22

23

24

25

Input

: A Training set and a Test set;

Output : A set of non-dominated solutions, training and test accuracies.

begin

initialise the position and velocity of each particle in the Swarm;
while M azimum Iterations is not met do

evaluate two objective values of each particle ; /% number of
features and the classification error rate on the
Training set «/

identify the particles (nonDom.S) that are non-dominated solutions;
calculate crowding distance of each particle in nonDom.S;

Sort particles in nonDom.S based on the crowding distance;

copy all the particles in Swarm to a union (Union);

for i=1 to Population Size (P) do

update the pbest of particle i;

randomly selecting a gbest for particle ¢ from the highest ranked
(least crowded) solutions in nonDom.S;

update the velocity and postion of particle ¢

evaluate two objective values of particle ;

add the updated particle i to Union;

identify different levels of non-dominated fronts F' = (F}, F3, F3, ...)
in Union;
empty the current Swarm for the next iteration;
1 =1;
while |Swarm| < P do
if (|Swarm| + |F;| < P) then
L add F; to Swarm; i =1+ 1;

else if (|Swarm| + |F;| > P) then
calculate crowding distance in F; and sort particles in F};
add the (P — |Swarm|) least crowded particles to Swarm;

calculate the classification error rate of the solutions (feature subsets) in
the F; onthetestset; /x F; is the achieved Pareto front =/
return the positions of particles in F}, the training and test classification
error rates of the solutions in Fi;

Algorithm 4: Pseudo-Code of NSPSOFS

109
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4.2.2 Multi-Objective Feature Selection Algorithm 2: CMDP-
SOFS

NSPSOFS can extend PSO to tackle multi-objective feature selection prob-
lems. However, NSPSOEFS has a potential limitation of losing the diversity
of the swarm quickly during the evolutionary process. Specifically, when
using the idea of NSGAII to update the population, many of the particles
in the new iteration may be identical. Because new particles are selected
from the combination of current particles and the updated particles, all
non-dominated particles that share the same position will be added into
the next iteration. Therefore, the diversity of the swarm might be lost fast
during the evolutionary process. In order to better address feature selec-
tion problems, we use another multi-objective PSO to develop a multi-
objective feature selection algorithm, CMDPSOEFS, which is based on the
ideas of crowding, mutation and e-dominance [104]. CMDPSO has never

been applied to feature selection problems to date.

Algorithm 5 shows the pseudo-code of CMDPSOFS. In order to ad-
dress the main issue of determining a good leader (gbest), CMDPSOFS
employs a leader set to store the non-dominated solutions as the potential
leaders for each particle. A gbest is selected from the leader set according
to their crowding distances and a binary tournament selection. Specifi-
cally, a crowding factor is employed to decide which non-dominated solu-
tions should be added into the leader set and kept during the evolutionary
process. The binary tournament selection is used to randomly sample two
solutions from the leader set and the less crowded solution is chosen as
the gbest. The maximum size of the leader set is usually set as the number
of particles in the swarm. Mutation operators are adopted to keep the di-
versity of the swarm and improve the search ability of the algorithm. An
e-dominance factor is adopted to determine the size of an archive, which
is the number of non-dominated solutions that the algorithm reports. The

solutions (feature subsets) in the final archive are used for classification on
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12
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15

16

Input

Output : A set of non-dominated solutions, training and test

begin

: A Training set and a Test set;

classification accuracies.

initialise the swarm;

initialise the set of leaders LeaderSet and Archive

calculate the crowding distance of each member in LeaderSet;
while Mazimum Iterations is not met do

for each particle do

identify the non-dominated solutions (particles) to update
LeaderSet;
send leaders to Archive;

calculate the crowding distance of each member in LeaderSet;

calculate the classification error rate of the solutions in Archive on the
test set;

return the solutions in Archive and their training and test

| classification error rates;

select a leader (gbest) from LeaderSet for each particle by
using a binary tournament selection based on the crowding
distance;

update the velocity and position of particle 4

apply mutation operators;

evaluate two objective values for each particle; /* number
of features and the classification error rate
on the Training set =/

update the pbest of each particle;

Algorithm 5: Pseudo-Code of CMDPSOFS

the test set in each dataset.

Note that CMDPSOFS employs two different mutation operators, uni-

form mutation in which the variability range allowed for each decision

variable is kept constant over generations and non-uniform mutation in

which the variability range allowed for each decision variable decreases

over time. The two mutation operators are used to maintain the diversity
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of the swarm and improve the search ability of the algorithm. In order to
achieve this, CMDPSOFS randomly divides the whole swarm into three
different groups in the initialisation procedure. The first group does not
have any mutation. The second group employs uniform mutation to keep
the global search ability and the third group employs non-uniform muta-
tion to keep the local search ability. Furthermore, the three groups have
the same leader set, which allows them to share their success to take ad-
vantages of different behaviors to improve the abilities to search for the
Pareto non-dominated solutions. Meanwhile, in CMDPSOFS, w is a ran-
dom value in [0.1,0.5], ¢; and ¢, are random values in [1.5, 2.0], which are
different from most of other PSO based algorithms in which these values
are constants. This is a convenient way to address the problem of tuning
these parameters for difficult tasks.

Both NSPSOFS and CMDPSOFS follow the basic update strategies of
standard PSO. As multi-objective algorithms, both NSPSOFS and CMDP-
SOFS employ a crowding distance to the non-dominated solutions (poten-
tial gbest) to keep the diversity of the selected gbest for particles. The main
differences between NSPSOFS and CMDPSOFS are:

1. How to store the non-dominated solutions (potential gbest). In NSP-
SOFS, there is no external set to store non-dominated solutions and
all the non-dominated solutions are kept and updated within the
swarm. CMDPSOFS includes an external leader set, which is used to
store the non-dominated solutions. The leader set is updated from

iteration to iteration.

2. How to choose a gbest for each particle. NSPSOFS ranks all the non-
dominated solutions according to their crowding distance, then a
gbest is randomly selected from the highest ranked (least crowded)
non-dominated solutions. In CMDPSOFEFS, a binary tournament se-
lection is applied to randomly sample two non-dominated solutions

from the leader set and the less crowded solution is selected as gbest.
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3. How to update the swarm. When updating the swarm to a new it-
eration, NSPSOFS combines the new solutions (after applying the
velocity and position updating equations) and the old solutions into
a union. Different levels of non-dominated solutions are identified
from the union to form the new swarm in the next iteration. The
non-dominated solutions in the last iteration are reported by NSP-
SOFS. In CMDPSOEFS, two different mutation operators are applied
together with the velocity and position updating equations to form
the new swarm in the next iteration. The solutions in the archive in

the last iteration are reported as final solutions.

4. How to set the parameters. The parameters, such as w, ¢; and ¢,
in NSPSOFS are constants and in CMDPSOFS are random values

within known ranges.

4.3 Design of Experiments

4.3.1 Benchmark Techniques

In order to examine the performance of the two PSO based multi-objective
feature selection algorithms, the best single objective algorithm (PSOIniPG)
developed in the previous chapter and three well-known evolutionary
multi-objective algorithms are used as benchmark techniques in the exper-
iments. The three multi-objective algorithms are NSGAII, strength Pareto
evolutionary algorithm 2 (SPEA2) and Pareto archived evolutionary strat-
egy (PAES).

NSGAII is one of the most popular evolutionary multi-objective algo-
rithms proposed by Deb et al. [23]. The main principle of NSGAII is the
use of fast non-dominated sorting technique and the diversity preserva-
tion strategy. The fast non-dominated sorting technique is used to rank
the parent and offspring populations to different levels of non-dominated
solution fronts. A density estimation based on the crowding distance is
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adopted to keep the diversity of the population. More details can be seen
in the literature [23].

SPEA2 is a popular evolutionary multi-objective algorithm proposed
by Zitzler et al. [24]. The main principle is a fine-gained fitness assignment
strategy and the use of an archive truncation method. In SPEA2, the fit-
ness of each individual is the sum of its strength raw fitness and a density
estimation. A new population is constructed by the non-dominated solu-
tions in both the original population and the archive. When the number
of non-dominated solutions is larger than the population size, the archive
truncation method is applied to determine whether a non-dominated so-
lution should be selected or not according to the distance to its kth nearest
neighbour. More details can be seen in the literature [24].

PAES is an evolutionary multi-objective algorithm proposed by Knowles
and Corne [102], which has never been applied to feature selection prob-
lems. The authours claimed that PAES may represent the simplest possible
non-trival algorithm capable of generating diverse solutions in the Pareto
front. The main idea of PAES is the use of a local search and the use of an
archive of previously found non-dominated solutions. Authours stated
that PAES was proposed as a baseline approach for Pareto multi-objective
algorithms. More details about PAES can be seen in the literature [102].

NSGAII, SPEA2 and PAES are used here for feature selection with the
two objectives of minimising both the number of features and the classifi-

cation error rate.

4.3.2 Datasets and Parameter Settings

Twelve datasets of varying difficulty are used in the experiments, which
can be seen from Table 1.1 in Page 16. The twelve datasets were chosen
from the UCI machine learning repository [25]. Note that fourteen datasets
were used in Chapter 3, but the MoveLib and Sonar datasets are not used

in this chapter. The main reason is that Chapter 3 indicates they are not
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quite appropriate for feature selection.

In the experiments, all the instances in each dataset are randomly di-
vided into two sets: 70% as the training set and 30% as the test set, which
is the same as in Chapter 3. During the training process, each particle (in-
dividual) represents one feature subset. The classification performance of
a selected feature subset is evaluated by 10-fold cross-validation on the
training set. Note that 10-fold cross-validation is performed as an inner
loop in the training process to evaluate the classification performance of a
single feature subset on the training set and it does not generate 10 feature
subsets. After the evolutionary training process, the selected features are
evaluated on the test set to obtain the testing classification error rate. A
detailed discussion of why and how 10-fold cross-validation is applied in
this way is given by [5]. These settings are the same as in Chapter 3 for
consistency and comparison purposes.

All the feature selection algorithms here are wrapper approaches, which
need a learning/classification algorithm in the evolutionary training pro-
cess to evaluate the classification performance of the selected feature sub-
set. Any learning algorithm can be used here. One of the simplest and
commonly used learning algorithms [143, 52], KNN, was chosen in the ex-
periments. We use K=5 in KNN (5NN) to simplify the evaluation process,
which is also the same as in Chapter 3.

In all the PSO based algorithms, the fully connected topology is used,
the maximum velocity v,,,, = 0.6, the population size P = 30 and the max-
imum iteration 7" = 100. In PSOIniPG and NSPSOFS, the inertia weight
w = 0.7298, the acceleration constants ¢; = ¢, = 1.49618. These values
are chosen based on the common settings in the literature [89, 173]. In the
CMDPSO, w is a random value in [0.1,0.5], ¢; and ¢, are random values in
[1.5, 2.0], and the mutation rate is 1/n, where n is the number of available
features (dimensionality) [104]. The threshold 6 in NSPSOFS and CMDP-
SOFS is set as 0.6, which is the same as in PSOIniPG.

In NSGAII, SPEA2 and PAES, the representation of each individual is
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the same as the commonly used representation in GA for feature selection
[134, 153], where each individual is encoded by a n-bit binary string, and
n is the number of available features. The bit with value “1” indicates the
feature is selected in the subset, and “0” otherwise. A bit-flip mutation
operator is applied to all these three methods and a single point crossover
operator is used in NSGAII and SPEA2. The mutation rate is 1/n, where
n is the number of available features (dimensionality) and the crossover
probability is 0.9. For each dataset, all the algorithms have been conducted
for 40 independent runs for comparison purposes.

4.4 Results and Discussions

For each dataset, PSOIniPG obtains a single solution in each of the 40 in-
dependent runs. The multi-objective algorithms, NSPSOFS, CMDPSOFS,
NSGAII, SPEA2 and PAES, obtain a set of non-dominated solutions in each
run. In order to compare these two kinds of results, all the 40 solutions re-
sulted from PSOIniPG in the 40 independent runs are shown in the figures.
On the other hand, the 40 sets of feature subsets achieved by each multi-
objective algorithm are firstly combined into one union set. In the union
set, for the feature subsets including the same number of features (e.g. m),
their classification error rates are averaged. The average classification er-
ror rate is assigned as the average classification performance of the subsets
with m features. Therefore, a set of average solutions is obtained by using
the average classification error rates and the corresponding numbers (e.g.
m). The set of average solutions is called the average front and presented
here. Besides the average front, the non-dominated solutions in the union
set are also presented to compare with the solutions achieved by the sin-
gle objective algorithm, PSOIniPG. Since PAES achieved similar results to
SPEA2, only the results of NSGAII and SPEA2 are shown in this section.
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4.4.1 Results of NSPSOFS and CMDPSOFS

As PSOIniPG achieved better performance than the other single objec-
tive methods, the results of PSOIniPG are included in this section as the
baseline to test the performance of NSPSOFS and CMDPSOFS. Figure 4.1
shows the experimental results of NSPSOFS and PSOIniPG. Figure 4.2
shows the experimental results of CMDPSOEFS and PSOIniPG. In Figures
4.1 and 4.2, each chart corresponds to one of the datasets used in the ex-
periments. On the top of each chart, the numbers in the brackets show the
total number of available features and the classification error rate using all
features. In each chart, the horizontal axis shows the number of features

selected and the vertical axis shows the classification error rate.

In Figures 4.1 and 4.2, “-A” stands for the average front resulted from
NSPSOFS or CMDPSOFS in the 40 independent runs. “-B” represents the
non-dominated solutions resulted from NSPSOFS or CMDPSOFS in the
40 independent runs. “PSOIniPG” shows the 40 solutions of PSOIniPG.
On some datasets, PSOIniPG may evolve the same feature subset in dif-
ferent runs and they are shown in the same point in the chart. Therefore,
although 40 results are presented, there may be less than 40 distinct points
shown in a chart.

(1) Results of NSPSOFS

As can be seen in Figure 4.1, in most cases, the average front of NSP-
SOFS (NSPSOFS-A) includes two or more solutions, which selected a smaller
number of features and achieved a lower classification error rate than us-
ing all features. For the same number of features, there are a variety of
combinations of features with different classification performances. The
feature subsets obtained in different runs may include the same number
of features but different classification error rates. Therefore, although the
solutions obtained in each run are non-dominated, some solutions in the

average front (NSPSOFS-A) may dominate others.
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Figure 4.1: Experimental Results of NSPSOFS and PSOIniPG.

According to Figure 4.1, the non-dominated solutions (NSPSOFS-B)
achieved by NSPSOFS includes one or more feature subsets, which achieved
better classification performance than using all features on all datasets. On
most datasets, NSPSOFS evolved a feature subset that only selected 1 or 2
features, but achieved a lower classification error rate than using all fea-
tures. For example, NSPSOFS selected only around 1.8% of the available
features (1 from 56) on the Lung dataset and selected 2% of the available
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features (2 from 100) on the Hillvalley dataset, but achieved higher classifi-
cation performance than using all features. In almost all cases, the number
of features was reduced to 10% or less, except for around 17.64% in Zoo,
26.4% in Madelon and 21.72% in Isolet5.

Comparing NSPSOFS with PSOIniPG, it can be seen that classification
error rates of PSOIniPG and the average front (NSPSOFS-A) are similar
on many datasets, but NSPSOFS-B outperformed PSOIniPG in most cases.
This shows that NSPSOFS has the potential to achieve better performance
than the single objective algorithm PSOIniPG.

The results suggest that although NSPSOFS shares the same parame-
ter settings with PSOIniPG, NSPSOFS as a multi-objective technique can
effectively explore the Pareto front to obtain a set of solutions (feature sub-
sets) rather a single best solution in each run. The obtained solutions
have the potential to outperform the single best solution resulted from
PSOIniPG in terms of both the classification performance and the number

of features.

(2) Results of CMDPSOFS

According to Figure 4.2, in all cases, CMDPSOFS-A includes two or
more feature subsets, which successfully selected a smaller number of rel-
evant features and achieved a lower classification error rate than using all
features.

As can be seen in Figure 4.2, CMDPSOFS-B includes one or more small
feature subset solutions, which achieved a lower classification error rate
than using all features on all datasets. On most datasets, CMDPSOFS
evolved a feature subset, which only selected 1 or 2 features, but achieved
a better classification performance than using all features. For example,
CMDPSOFS selected only around 1.8% of the available features (1 from
56) on the Lung dataset and selected only 2% of the available features (2
from 100) on the Hillvalley dataset, but achieved a lower classification er-

ror rate than using all features. On almost all datasets, the number of fea-
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Figure 4.2: Experimental Results of CMDPSOEFS and PSOIniPG.

tures selected is less than 10% of the total number of features, except for
around 16.67% on the Vehicle dataset and 10.37% on the Isolet5 dataset.

Comparing CMDPSOFS with PSOIniPG, on all datasets, the classifica-
tion performance of CMDPSOFS-A is similar to that of PSOIniPG, but the
number of features in CMDPSOFS-A is smaller than in PSOIniPG in some
cases. Moreover, CMDPSOFS-B outperformed PSOIniPG in terms of both
the number of features and the classification performance on all datasets.
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The results further show that CMDPSOEFS as a multi-objective tech-
nique guided by the two objectives can effectively explore the Pareto front
and achieve a set of small feature subsets and improve the classification
performance over using all features. By using random parameters (i.e.
w, ¢; and ¢3), CMDPSOFS can further improve the feature selection per-
formance to outperform the single objective algorithm, PSOIniPG, in all

cases.

4.4.2 Comparisons Between NSPSOFS, CMDPSOFS, NS-
GAII and SPEA2

In order to further test the performance of NSPSOFS and CMDPSOFS,
they are compared with three popular evolutionary multi-objective al-
gorithms, NSGAII, SPEA2 and PAES. PAES achieved similar results to
SPEA2 in terms of the number of features and the classification perfor-
mance. Therefore, the results of PAES are not presented in this section.
Comparisons between NSPSOFS, NSGAII and SPEA2 are shown in Fig-
ures 4.3. Comparisons between CMDPSOFS, NSGAII and SPEA2 are shown
in Figure 4.4.

(1) Comparisons Between NSPSOFS, NSGAII and SPEA2

According to Figures 4.3, in most cases, the average results, NSPSOFS-
A, NSGAII-A and SPEA2-A, include two or more feature subsets, which
selected a smaller number of features and achieved better classification
performance than using all features. There are also some dominated solu-
tions in the three average fronts and the reason is the same as discussed in
Section 4.4.1.

Comparing NSPSOFS-A with NSGAII-A and SPEA2-A, in most cases,
the classification performance of three methods are similar. Although in
a few cases the classification error rates of NSPSOFS-A are slightly higher
than that of NSGAII-A and SPEA2-A, the number of features is usually
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Figure 4.3: Comparisons between NSPSOFS, NSGAII and SPEA2.

smaller in NSPSOFS-A than in NSGAII-A and SPEA2-A.

In terms of the non-dominated solutions (NSPSOFS-B, NSGAII-B and
SPEA2-B), the results on different datasets show different patterns. Specif-
ically, on three datasets (Zoo, Vehicle and German), NSPSOFS-B domi-
nated NSGAII-B and SPEA2-B while on two datasets (WBCD and Lung),
NSPSOFS-B was dominated by NSGAII-B and SPEA2-B. On the other datasets,
there are always solutions in NSPSOFS-B, which dominate solutions in
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NSGAII-B and SPEA2-B although there are also solutions in NSPSOFS-B
dominated by solutions in NSGAII-B and SPEA2-B. In most cases, NSGAII-
B outperformed SPEA2-B in terms of both the classification performance

and the number of features.

The results in Figure 4.3 suggest that NSPSOFS, NSGAII and SPEA2
are generally competitive to each other. However, as discussed in Section
4.2.2, NSPSOFS has a potential limitation of quickly losing the diversity
of the swarm because of the updating mechanism. The performance of a
PSO based multi-objective algorithm could be improved if this limitation

can be addressed.

(2) Comparisons Between CMDPSOFS, NSGAII and SPEA2

According to Figure 4.4, the average results, CMDPSOFS-A, NSGAII-A
and SPEA2-A, achieved similar classification performance on all datasets.
However, the number of features in CMDPSOFS-A is usually smaller than
that of NSGAII-A and SPEA2-A, especially on the Madelon and Isolet5

datasets with a large number of features.

Comparing the non-dominated solutions CMDPSOFS-B with NSGAII-
B and SPEA2-B, it can be seen that on almost all datasets, CMDPSOFS-B
achieved better results than NSGAII-B and SPEA2-B in terms of both the
number of features and the classification performance. On datasets with a
large number of features, the number of features selected by CMDPSOFS
is much smaller than that of NSGAII-B and SPEA2-B. For example, on
the Madelon dataset, the number of features in NSGAII-B and SPEA2-
B is around 150 while the number in CMDPSOFS-B is only around 50,
which means CMDPSOFEFS further reduced by two thirds of the number of
features selected.

The results show that CMDPSOFS can address the limitation in NSP-
SOFS and achieve better performance than NSPSOFS, NSGAII and SPEA2

in terms of both the number of features and the classification performance.



124CHAPTER 4. WRAPPER BASED MULTI-OBJECTIVE FEATURE SELECTION

Wine (13, 23.46%) Australian (14, 29.95%) Zoo (17, 19.05%)
204 - CMDPSOFS-A -+ CMDPSOFS-A + -+ CMDPSOFS-A
—e— CMDPSOFS-B —e— CMDPSOFS-B 104 —e— CMDPSOFS-B
-+~ NSGAII-A |-+~ NSGAII-A
—— NSGAII-B |—*— NSGAII-B
- SPEA2-A - SPEA2-A
— 154 . |~ SPEA2-B .
o o o
T T T
04 o« 04
g 5 &
I i u 6
54
2 T “1
1 2 3 4 1 2
Number of features Number of features Number of features
Vehicle (18, 16.14%) German (24, 32.00%) WBCD (30, 7.02%)
-+- CMDPSOFS-A 50 -+ CMDPSOFS-A 114 -+- CMDPSOFS-A
261+ —=— CMDPSOFS-B ~=— CMDPSOFS-B
X —+- NSGAII-A —+- NSGAII-A
1 —— NSGAII-B [~ NSGAII-B
\& - SPEA2-A - SPEA2-A
. 234 —— SPEA2-B . — |—+— SPEA2-B
8 2 2 94
o o o
T © T
i3 20 o4 i3
8 8 8
i i i 71 —t
171
S
14 54
[] 12 1 7
Number of features Number of features Number of features
lonosphere (34, 16.19%) Lung (56, 30.00%) Hillvalley (100, 43.41%)
22 - GMDPSOFS-A 30 e 52 - oMDPSOFs-A
—— CMDPSOFS-B / |—*— CMDPSOFS-B
-+ NSGAII-A -+~ NSGAII-A
—— NSGAII-B 25 [—*— NSGAII-B
- SPEA2-A - SPEA2-A
18 o Sheaes _ 48 -+ sPEn2B
B B 20 B
2 2 2
& 14 - e 15 & 44
5 g A 5
I e & 104% - I
10 -+ CMDPSOFS-A
e o \ —— CMDPSOFS-B 404
5 -+ NSGAII-A
—— NSGAII-B
-+ SPEA2-A
6 0 . —+— SPEA2-B 6
1 3 5 7 [ i 3 3 [ 12 1 10 20 30 40
Number of features Number of features Number of features
Musk1 (166, 16.09%) Madelon (500, 29.1%) Isolet5 (617, 1.55%)
24 t -+- CMDPSOFS-A 28 -+ CMDPSOFS-A 23 |-+- CMDPSOFS-A
—+— CMDPSOFS-B |—— CMDPSOFS-B
26 -+ NSGAII-A |-+ NSGAII-A
—— NSGAIl-B T —— NSGAI-B
-+ SPEA2-A 2.0 |-+~ SPEA2-A
s 204 . —+— SPEA2-B - - |—+— SPEA2-B
g L 3 2
2 2 2
& 164 & & 17
5 5 2 ‘ ‘ 5
i ] { i
i * 14 s
124 17 \‘i e
8- 14 - 1.1+ :
1 20 40 60 2 i 50 100 150 260 180 100 150 200 250 300
Number of features Number of features Number of features

Figure 4.4: Comparisons between CMDPSOFS, NSGAII and SPEA2.

4.4.3 Results of Hyper Volume Indicator

In order to further compare the results of the multi-objective algorithms,
NSPSOFS, CMDPSOFS, NSGAII, SPEA2 and PAES, the hyper volume in-
dicator [174] is used in the experiments. In each run, each method ob-
tained two Pareto fronts, which are a training Pareto front according to the

training classification performance and the number of features, and a test-
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ing Pareto front according to the testing classification performance and the
number of features. Therefore, for each method, we calculated two sets
of hyper volume values based on the Pareto-fronts on the training process
and the testing process, respectively. Therefore, for each method, 40 hy-
per volume values on the training process and 40 hyper volume values
on the testing process were calculated. As the calculation of hyper vol-
ume needs the true Pareto front, which is not available in the datasets, we
firstly combine the training (or testing) Pareto front of these five methods
into a union, then identify the Pareto front in the union as the “true Pareto
front” to calculate the hyper volume values. The hyper volume values
of each Pareto front are normalised to hyper volume ratios, which is the
division of the hyper volume value of a Pareto front and the hyper vol-
ume value of the “true Pareto front”. In order to compare NSPSOFS and
CMDPSOFS with the other three algorithms, NSGAII, SPEA2 and PAES,
the Student’s T-test was performed on their hyper volume ratios, where
the significance level is set as 0.05 (or confidence interval is 95%).

Results of Hyper Volume on Testing Process

Table 4.1 shows the results of the T-test between NSPSOFS, CMDPSOFS,
NSGALII, SPEA2 and PAES on the hyper volume ratios in the testing pro-
cess, where “NS” and “CMD” represent NSPSOFS and CMDPSOEFS. In
Table 4.1, “+” (“-”) indicates that NSPSOFS or CMDPSOEFS is significantly

“__r

better (worse) than another corresponding algorithm. means they are
similar. On the WBCD and Lung datasets, the “?” means the hyper vol-
ume ratio could not be obtained because the extracted “true Pareto front”
only contains two points and its hyper volume value is zero.

Table 4.1 shows that compared with CMDPSOFS, NSGAII, SPEA2 and
PAES, NSPSOFS achieved similar results in most cases, although NSP-
SOFS achieved better results on the Australian dataset and worse results
on the Hillvalley and Musk1 datasets. Table 4.1 also shows that CMDP-

SOFS achieved similar results with other methods in most cases. On the
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Table 4.1: T-test on Hyper Volume Ratios on Testing Accuracy

Dataset Wine Australian Zoo Vehicle German WBCD
NS |CMD |NS| CMD |NS|CMD | NS |CMD | NS |CMD | NS | CMD
NSPSOFS = - = = = ?
CMDPSOEFS | = + = = = ?
NSGAII = = + = = = = = = = ? ?
SPEA2 = = + = = = = = = = ? ?
PAES = = = = = = = = = = ? ?
Dataset Lung |Ionosphere | Hillvalley | Muskl | Madelon | Isolet5
NS |CMD |NS | CMD | NS |CMD | NS |CMD | NS |CMD | NS | CMD
NSPSOFS ? + + + = +
CMDPSOEFES | ? =
NSGAII ? ? = = =
SPEA2 ? ? = + = =
PAES ? ? = = =

datasets with a large number of features, such as Hillvalley, Musk1 and
Isolet5, CMDPSOFS achieved significantly better results than NSPSOFS,
NSGAII, SPEA2, and PAES.

Results of Hyper Volume on Training Process

Table 4.2 shows the results of the T-test between NSPSOFS, CMDPSOEFS,
NSGAII, SPEA2 and PAES on the hyper volume ratios in the training pro-
cess. It can be seen that NSPSOFS achieved slightly worse results than
other methods in most cases, but NSPSOFS achieved better results than
NSGAII and SPEA2 on the Isolet5 dataset, where the number of features
is large. Table 4.2 also shows that on the datasets with a relatively small
number of features, CMDPSOEFS usually achieved similar results to NS-
GAII, SPEA2 and PAES. On the datasets with large numbers of features,
such as Hillvalley, Musk1, Madelon and Isolet5, CMDPSOFS achieved sig-
nificantly better results than NSPSOFS, NSGAII and SPEA2. Although
CMDPSOFS achieved slightly worse results than PAES on the training set,
CMDPSOFEFS achieved similar or better results than PAES on the test set
(shown in Table 4.1), which is considered due to the overfitting problem
in PAES.
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Table 4.2: T-test on Hyper Volume Ratios on Training Accuracy

Dataset Wine Australian Zoo Vehicle German WBCD
NS|CMD |NS| CMD |NS|CMD |NS |CMD | NS | CMD | NS | CMD
NSPSOFS + + + + + +
CMDPSOFS | - - - -
NSGAII - = - = - - _ _ _ — _ _
SPEA2 - = - = - = - = - = - =
PAES - = - = - - B _ _ _ - —
Dataset Lung |Ionosphere | Hillvalley | Muskl | Madelon | Isolet5
NS|CMD |NS| CMD |NS|CMD |NS |CMD | NS | CMD | NS | CMD
NSPSOFS + + + + + +
CMDPSOFS -
NSGAII - - - - - + - + =
SPEA2 - - - - = + _ + —
PAES - - - - - - - - - - - -

From the results of the hyper volume ratios, it can be seen that the hy-
per volume indicator does not seem a good measure for feature selection
problems. Although the results are still consistent, the pattern shown by
the hyper volume indicator is less clear than the previous direct compar-
isons using figures. A possible reason is that the hyper volume indicator
is mainly used for continuous multi-objective algorithms, not for discrete
multi-objective algorithms. This is also the case for other multi-objective
performance indicators/measures. Therefore, in Chapter 6 which presents
the work of multi-objective filter feature selection, only direct comparisons
will be used and the hyper volume indicator will not be used.

4.4.4 Further Discussions

Experimental results show that both NSPSOFS and CMDPSOEFS can be
successfully used for feature selection, but NSPSOFS could not achieve
as good results as CMDPSOFS. The main reasons are that feature selec-
tion tasks are difficult problems with many local optima. CMDPSOEFS em-
ploys different mechanisms to maintain the diversity of both the leader set
and the swarm. Specifically, it selects and filters out crowded leaders and
uses different mutation operators to maintain the diversity of the swarm



128 CHAPTER 4. WRAPPER BASED MULTI-OBJECTIVE FEATURE SELECTION

to avoid stagnation in local optima.

As discussed in Section 4.2, CMDPSOFS has an external leader set to
store the non-dominated solutions, which are used as potential leaders
for each particle. Different from other multi-objective evolutionary tech-
niques, CMDPSOFS employs a crowding factor to maintain and update
the leader set from generation to generation, which helps to filter out some
crowded potential leaders. This mechanism will be more helpful for the
datasets with a large number of features, where most non-dominated so-
lutions in the leader set may have similar numbers of features and slightly
different classification error rates. These crowded non-dominated solu-
tions have a chance to be selected as a leader, which will limit the ex-
ploration ability of the algorithm. Eliminating such solutions helps the
algorithm explore the solution space more effectively to search for better
results.

When selecting a leader for a particle, CMDPSOFS employs a binary
tournament to select two non-dominated solutions from the leader set and
the less crowded one will be selected as the leader. This mechanism at-
tempts to keep the diversity of the swarm in future iterations and further
avoids particles from converging to local optima. Moreover, CMDPSOFS
employs different mutation operators for different groups of particles to
maintain the diversity of the swarm and balance its global and local search
abilities.

By contrast, NSPSOFS is less effective than CMDPSOEFS in terms of
avoiding stagnation in local optima. NSPSOFS employs different levels of
Pareto fronts to store the already found non-dominated solutions. There-
fore, all the non-dominated solutions will be kept in the swarm from gen-
eration to generation. Such non-dominated solutions may be duplicated
and the swarm may lose diversity quickly, which will lead to the problem
of premature convergence. Although NSGAII employs the same mecha-
nism to store the non-dominated solutions, NSGAII also employs muta-
tion and crossover operators to keep the diversity. Therefore, NSPSOFS
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Table 4.3: Comparisons on Computational Time (in minutes)

Wine | Australian | Zoo Vehicle | German | WBCD
NSPSOFS 0.29 | 4.83 0.11 7.77 12.61 434
CMDPSOFS | 0.25 4 0.09 6.59 9.3 2.71
NSGAII 024 | 3.99 0.09 6.59 9.32 2.67
SPEA2 0.2 3.24 0.07 5.53 7.64 213
PAES 0.21 3.95 0.07 6.35 8.85 2.01

Lung | Ionosphere | Hillvalley | Muskl | Madelon | Isolet5
NSPSOFS 0.02 1.79 46.04 10.66 868.75 374.63
CMDPSOFS | 0.01 1.54 23.49 6.02 394.45 200.71
NSGAII 0.01 1.06 28.88 7.46 721.71 338.23
SPEA2 0.01 0.87 30.23 6.69 694.91 331.91
PAES 0.01 1.04 24.88 5.73 560.83 276.97

usually could not achieve as good results as CMDPSOFS and NSGAIIL.

4.4.5 Analysis on Computational Time

Table 4.3 shows the average computational time (in minutes) used by NSP-
SOFS, CMDPSOEFS, NSGAII, SPEA2 and PAES over the 40 independent
runs.

From Table 4.3, it can be seen that for datasets that have a small number
of features and a small number of instances, SPEA2 and PAES generally
use less time than the other three methods. However, all algorithms can
perform one run in a relatively short time, a few minutes or even less than
one minute, such as the Wine, Zoo and Lung datasets. For datasets with
a large number of features and instances, CMDPSOFS and PAES used a
shorter time than the other three methods, especially for the Madelon and
Isolet5 datasets, where CMDPSOFS used much less time than NSPSOFS,
NSGAII and SPEA2. On such large datasets, computational time is more
important than on small datasets. CMDPSOFS can finish the evolutionary
training process in much shorter time and achieve better results, which
suggests that this method is a better choice than the other four methods in
real-world applications in which a large number of features and instances

are involved.
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All the methods have the same number of evaluations as they have
the same number of individuals and iterations during the evolutionary
training process. NSGAII and NSPSOFS generally consumed more time,
which is probably caused by the different levels of non-dominated rank-
ing mechanism and the calculation of crowding distances. CMDPSOFS
also involves ranking, but it only happens in the small leader set. There-
fore, ranking in CMDPSOFS does not cost as much time as NSGAII and
NSPSOFS. More importantly, during the evolutionary training process,
CMDPSOFS selected smaller numbers of features than the other four al-
gorithms, which cost much less time for the 10-fold cross-validation to
calculate the training classification performance in each evaluation, espe-
cially for the datasets with a large number of features.

4.4.6 How to Choose a Single Solution

In multi-objective problems, a set of Pareto front (non-dominated) solu-
tions are obtained, which are trade-offs between different objectives. How-
ever, selecting a single solution from these solutions is an important is-
sue. In feature selection problems, the two main objectives are minimis-
ing the number of features and maximising the classification performance,
and the decision is a trade-off between these two objectives. If the Pareto
front was “smooth” in that adding each additional feature would reduce
the classification error rate by a small, but significant margin, users could
weight the trade-off criteria to determine their preferred solutions. How-
ever, the results produced show that this is usually not the case. Adding
features beyond a certain number does not increase the classification per-
formance. For example, the Musk1 dataset in Figure 4.2, the subset with
the lowest classification error rate in CMDPSOFS-B has 40 features. Adding
more features does not further increase the classification performance be-
cause it does not increase the relevance, but increases the redundancy and

the dimensionality. Meanwhile, removing features may not lead to a de-
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crease in classification error rate as relevant features may be removed. On
the Musk1 dataset, the solution that stands in the “elbow” of CMDPSOFS-
B would be a good choice. Therefore, visually seeing these possible solu-
tions in the Pareto front assists users in determining their preferred com-
promises. This is actually the main reason why solving feature selection

problems as multi-objective tasks is important.

4.5 Chapter Summary

This chapter conducted the first study on multi-objective PSO for feature
selection. Specifically, we investigated two PSO based multi-objective fea-
ture selection algorithms, NSPSOFS and CMDPSOFS. Experimental re-
sults show that both NSPSOFS and CMDPSOFS can achieve more and
better feature subsets than PSOIniPG, which is the best single objective
algorithm developed in the previous chapter. NSPSOFS achieved similar
(or slightly worse in some cases) results to other three well-known evolu-
tionary multi-objective algorithms based approaches, i.e. NSGAII, SPEA2
and PAES in most cases. CMDPSOFS outperformed all other methods
mentioned above in terms of both the classification performance and the
number of features. In particularly, for the datasets with a large number
of features, CMDPSOFS achieved better classification performance using
fewer features and shorter computational time than the other four multi-
objective algorithms.

This chapter finds that as multi-objective algorithms, NSPSOFS and
CMDPSOFS can search the solution space more effectively to obtain a set
of non-dominated solutions instead of a single best solution. Examin-
ing the Pareto front achieved by the multi-objective algorithms can assist
users in choosing their preferred solutions to meet their own requirements.
Meanwhile, this chapter also discovers that the potential limitation of los-
ing the diversity of the swarm quickly in NSPSOFS limits its performance
for feature selection. More importantly, this chapter highlights the bene-
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fits of the strategies of maintaining the diversity of the swarm in CMDP-
SOFS. A crowding factor together with a binary tournament selection can
effectively filter out some crowded non-dominated solutions in the leader
set. Different mutation operators in different groups of particles can ef-
fectively keep the diversity of the swarm and balance its global and local
search abilities. These strategies accounts for the superior performance of
CMDPSOEFS over NSPSOFS, NSGAII, SPEA2 and PAES, especially on the
datasets with a large number of features.

This chapter and the previous chapter (Chapter 3) have shown that
PSO can be successfully used for feature selection in classification. How-
ever, these two chapters mainly focus on wrapper approaches and no filter
approaches are involved. Therefore, in order to further investigate and im-
prove the performance of PSO for feature selection, the next two chapters
will focus on using PSO to develop new filter feature selection approaches

in classification.



Chapter 5

Filter Based Single Objective

Feature Selection

5.1 Introduction

Most of the existing PSO based feature selection algorithms are wrapper
approaches, which are argued to be computationally more expensive and
less general than filter approaches. However, there are very few studies
on using PSO for filter feature selection. In filters, the evaluation measure,
which determines the goodness of the selected features, is a key factor in-
fluencing the classification performance. Information theory is one of the
most important theories that are capable of measuring the relevance be-
tween features and class labels [1]. However, no work has been conducted

to investigate the use of information theory in PSO based feature selection.

5.1.1 Chapter Goals

The overall goal of this chapter is to investigate the use of information
theory in PSO for feature selection. To achieve this goal, we develop two
new filter feature selection algorithms based on PSO and two information

measures with the expectation of selecting a small number of features and

133
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maintaining or even improving the classification performance over using

all features. Specifically, we will investigate:

e whether PSO using a mutual information based fitness function can
reduce the number of features and achieve similar or even better
classification performance than using all features, and can outper-

form traditional feature selection algorithms;

e whether PSO using an entropy based fitness function can select a
smaller number of features and obtain similar or even better classi-
fication performance than using all features, and achieve better per-
formance than the above mutual information based algorithm, and

e whether the feature subsets selected by the two new algorithms are
general in that they enable high classification performance in differ-

ent classification algorithms.

5.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. The second section
describes the two new filter feature selection algorithms. The third section
describes the design of the experiments. The results and discussions are
presented in the fourth section. The fifth section provides a summary of
this chapter.

5.2 Proposed Algorithms

In this section, two new PSO based filter feature selection methods are
proposed, which are PSOMI using mutual information and PSOE using
entropy to evaluate the relevance and the redundancy of the selected fea-
ture subset.

The overall structure of the training and testing processes in the two
proposed filter methods, PSOMI and PSOE, is similar to that of wrapper
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methods, which was shown by Figure 3.1 in Chapter 3 (Page 73). The
evolutionary training process of PSOMI and PSOE is shown by Figure
5.1, which is different from the evolutionary training process of wrappers
(shown by Figure 3.2 on Page 74) in the fitness evaluation procedure. In
wrappers, a learning/classification algorithm is used to evaluate the clas-
sification performance of the selected features in the fitness function. In
PSOMI and PSOE (filters), mutual information and entropy are used to
form the fitness functions to evaluate the goodness of the selected feature
subset and the classification performance is not involved in their fitness

functions.

Representations. The representation used in this chapter is a n-bit bi-
nary string, where n is the total number of available features in the dataset.
n is also the dimensionality of the search space. In the binary string, “1”
represents that the corresponding feature is selected and “0” otherwise.

5.2.1 PSO with Mutual Information for Feature Selection

Mutual information is defined as the information shared between two ran-
dom variables, which can be used to measure the relevance between a fea-
ture x and the class labels ¢ [130]. For a feature subset X with m features,
X = (x1, 22,23, ..., Tm), the relevance between X and ¢ can be shown by
Equation 5.1. Filter feature selection aims to maximise the relevance be-
tween X and ¢, which is expected to maximise the classification accuracy

(minimise the classification error rate).

Relpmi(X, ¢) = maz( Z I(x;c)) (6.1)
zeX

where I(z; c) means the mutual information between x and ¢, which was
defined by Equation 2.14 in Chapter 2 (Page 49).
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Figure 5.1: The evolutionary training process of a PSO based filter feature
selection algorithm.

To maximise the relevance between X and ¢, a feature selection algo-
rithm with Equation 5.1 as the fitness function will always select the m fea-
tures that have the largest /(z, ¢), i.e. the top m features if all the individual
features are ranked in a descent order according to I(z, c). However, due
to the interactions between features, the combination of m individually
good features may not be the best combination of m features. They may
have rich redundancy (i.e. including features that contain similar infor-
mation). The removal of some features may not reduce their classification

performance, but might even increase the performance due to the reduc-
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tion of the dimensionality. Therefore, it is necessary to reduce the redun-
dancy among features. Based on mutual information, the redundancy in
X can be shown by Equation 5.2.

Redpi(X) = min( Z I(xi, xj)) (5.2)

i, ;€X

where I(z;, ;) means the mutual information between feature z; and fea-
ture ;.

To maximise the relevance and minimise the redundancy, both Rel,,;
and Red,,; should be considered when evaluating the goodness of the se-
lected features. Therefore, a new filter feature selection algorithm, PSOMI,
is proposed by using Rel,,; and Red,,; to form the fitness function, which
is shown by Equation 5.3. Equation 5.3 is used in PSOMI to guide the
evolutionary process of PSO to search for the optimal feature subsets.

Fit,,; is a maximisation function aiming to maximise the relevance
Rel,,; and simultaneously minimise the redundancy Red,,; in the selected
feature subset. The maximisation of Rel,,; is to maximise the classification
performance while the minimisation of Red,,; is to remove redundant fea-
tures to reduce the number of features. The detailed calculation of (z, ¢)
and I(z;, x;) is shown by Equation 2.14 in Section on Page 49.

5.2.2 PSO with Entropy for Feature Selection

Feature interaction is one of the reasons that make feature selection a chal-
lenging problem. Feature interaction can be two-way or multi-way. There-
fore, the relevance and redundancy among features can also be two-way
or multi-way. F'it,,; evaluates the two-way relevance and redundancy by
evaluating mutual information between each pair of features. The multi-

way relevance and redundancy should be evaluated in groups of features.
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Therefore, we propose a new relevance and redundancy measure by eval-
uating the information gain between features based on entropy, which is
an important measure in information theory. The relevance of the selected
features is shown by Equation 5.4 while the redundancy is shown by Equa-
tion 5.5.

Rele = max((IG(c| X)) (5.4)
Red, = min(— 3 IG(x|{X/}) (5.5)
’X’ zeX

Rel, evaluates the information gain of the class label c given informa-
tion of the features in X, which shows the relevance between X and c.
Red, evaluates the redundancy contained in X by summing up the infor-
mation gained for each x € X by giving X/x, where X/x means all the
features in X except for feature . Both Rel. and Red, involve the calcu-
lation of a single feature given information about a set of features. Taking
IG(c|X) in Rel, as the example,

IG(c|X) = H(c) — H(c|X)
() = (H(cUX) — H(X))
= H(c)+ H(X)—-H(cUX)

where H(X) is the joint entropy of all the features in X. If X = {W,Y, Z}
(WY, Z are the selected features), then

HW,Y,Z) == > 3> plwyz)logy p(wyz).

weW yeY zeZ

Based on Equations 5.4 and 5.5, a new fitness function is developed

and shown in Equation 5.6.

Fit, = Rel, — Red, (5.6)
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Fit. is also a maximisation function aiming to maximise the relevance
Rel, (classification performance) and simultaneously minimise the redun-
dancy Red,. (the number of features selected). Equation 5.6 evaluates the
selected features as a whole rather than evaluating each pair of features
like in Equation 5.3. The aim here is to select a subset of features, all of
which working together can perform well. A new filter feature selection
method is then proposed based on PSO and Equation 5.6. For presentation
convenience, we call the new method PSOE.

5.2.3 Different Weights for Relevance and Redundancy in
PSOMI and PSOE

The relevance and redundancy are equally important in the two fitness
functions (Equations 5.3 and 5.6) in PSOMI and PSOE. In order to inves-
tigate how the weightings in the fitness functions (i.e. the relative im-
portances for the relevance and redundancy) influence the feature selec-
tion performance, a parameter is introduced into Equation 5.3 in PSOMI
(shown as a,,;) and Equation 5.6 in PSOE (shown as «.). The two fitness

functions are then re-defined as Equations 5.7 and 5.8.
Fitmi = Qump; * Relmi — (1 — ami) * Redmi (57)

Fite = e * Rele — (1 — o) * Red, (5.8)

where «,,,; and «, are constant values in [0, 1], which represent/reflect the
relative importance of the relevance in two fitness functions. (1 — a,;) and
(1 — a.) show the relative importance of the reduction of the redundancy:.
Since the classification performance is usually more important than the
number of features, we assume the relevance is more important than the
redundancy (i.e. the number of features). Therefore, a,,; or a. is set to
be larger than (1 — a,,;) or (1 — ), i.e. greater than 0.5. When «,,;, =
(1 — ;) =0.5and a. = (1 — a.) = 0.5, Equations 5.7 and 5.8 are the same
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as Equations 5.3 and 5.6, where the relevance and redundancy are equally

important.

5.2.4 Pseudo-code of PSOMI and PSOE.

Algorithm 6 shows the pseudo-code of PSOMI and PSOE, where the main
difference between PSOMI and PSOE is the fitness evaluation procedure
shown in Line 4. Since the performance of continuous PSO for feature
selection has been investigated in Chapter 3 and Chapter 4, which show
that continuous PSO can be successfully used to address feature selection
problems. In this Chapter, binary PSO is used in PSOMI and PSOE to
investigate its performance for feature selection, but continuous PSO can
be easily implemented by changing the position updating equations in
Line 11 of Algorithm 6.

5.3 Design of Experiments

5.3.1 Benchmark Techniques

In order to examine the performance of the proposed algorithms, two con-
ventional filter feature selection methods (CfsF and CfsB) and a traditional
wrapper method (GSBS) are used for comparison purposes in the experi-
ments.

Hall [127] proposed a correlation based filter feature selection measure
named (Cfs). Cfs evaluates the correlation between each feature and the
class labels and between each pair of features using mutual information.
Cfs is implemented in Weka [175] and it needs a search technique. Greedy
stepwise search [168] in Weka is selected as the search technique to per-
form feature selection using Cfs to evaluate the goodness of the selected
feature subsets, which is used as a representative sample of a traditional

information theory based algorithm to test the performance of the pro-
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Input : A Training set and a Test set;
Output : gbest (selected feature subset);
Training and test classification accuracies.

1 begin

2 initialise the position and velocity of each particle;

3 while Mazimumiterations is not reached do

4 evaluate fitness of each particle; /» according to Equation

5.7 in PSOMI or Equation 5.8 in PSOE «*/

5 for i=1 to PopulationSize do

6 update the pbest of particle i;

7 update the gbest of particle ¢;

8 for i=1 to PopulationSize do

9 for d=1 to Dimensionality do
10 update the velocity of particle ¢ according to Equation 2.2;
1 update the position of particle i according to Equations

24and 2.5;
12 calculate the classification accuracy of the selected feature subset on
the test set;
13 return the position of gbest (the selected feature subset), the training
| and test classification accuracies;

Algorithm 6: Pseudo-code of PSOMI and PSOE

posed PSO and information theory based methods. Cfs with greedy step-
wise forward selection is named as CfsF and with backward selection is
named as CfsB.

The Greedy stepwise search can also be used in wrapper feature selec-
tion. GSBS, which has already been used in Chapter 3 to test the perfor-
mance of the wrapper algorithms, is also used to in this chapter. GSBS
starts with all available features and stops when the deletion of any re-
maining feature results in a decrease in evaluation, i.e. the classification
accuracy. GSBS is used here to test whether the new PSO based filter al-
gorithms can achieve better performance than a traditional wrapper algo-

rithm, which is argued to be better than filter approaches in terms of the
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classification performance. Note that this chapter is not intended to thor-
oughly compare the new filter methods with all wrapper methods devel-
oped in the previous chapters. More comparisons and discussions will be
provided in Chapter 7.

All the three traditional methods are deterministic methods, which
produce a unique feature subset for each dataset. So each of them has

a single result for each test set.

5.3.2 Datasets and Parameter Settings

Ten datasets of varying difficulty are used in the experiments, which can
be seen from Table 1.1 on Page 16. The ten datasets were chosen from the
UCI machine learning repository [25] and they are used as representative
samples of the problems that the proposed algorithms can address. Note
that all the data in the selected datasets are categorical values because mu-
tual information and entropy are mainly used for discrete variables.

In the experiments, all the instances in each dataset are randomly di-
vided into two sets: 70% as the training set and 30% as the test set, which
is the same as in Chapters 3 and 4. The filter feature selection algorithms
(except for GSBS) are firstly run on the training set to select feature sub-
sets and then the classification performance of the selected features will be
evaluated on the test set by a classification algorithm. In filter approaches,
the training process is independent of any classification algorithm. In the
testing process, any algorithm can be used here. To evaluate the claim that
filter approaches are general to different classification algorithms, three
commonly used algorithms, DT, NB, and KNN with K=5, are used to eval-
uate the classification performance of the selected features.

GSBS is a wrapper method, where a learning/classification algorithm
is used during the training process to evaluate the classification perfor-
mance (the goodness) of the selected features. The same classification al-

gorithm is then used during the testing process to evaluate the testing clas-
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sification performance of the selected features. All the three classification
algorithms, i.e. DT, NB, and KNN, are used in GSBS.

The parameters of binary PSO in PSOMI and PSOE are set as follows:
inertia weight w = 0.7298, acceleration constants c¢,,; = ¢, = 1.49618, max-
imum velocity vy,,, = 6.0, population size P = 30, the maximum num-
ber of iterations 7" = 500. The fully connected topology is used in both
PSOMI and PSOE. These values are chosen based on the common settings
in the literature [84, 89]. Five different values for «,,; in PSOMI and «, in
PSOE are used in the experiments to investigate the influence of different
weights for relevance and redundancy. They are 0.9, 0.8, 0.7, 0.6 and 0.5,
where the classification performance is treated most important when the
value of a,,; and «, is 0.9. When the value of «a,,; and «, is 0.5, the rele-
vance and redundancy are treated as equally important. Since the results
of o, = a. = 0.6 or 0.8 have a similar pattern to other values, their results

are not presented in the next section.

The settings for CfsF, CfsB and GSBS follow the default settings in
Weka because they produce good results. For each dataset, PSOMI and
PSOE have been conducted for 40 independent runs. In order to examine
the classification performance of PSOMI (PSOE), a statistical significant
test, Student’s T-test, is performed with a significance level of 0.05 (95%
confidence interval) between the 40 classification accuracies achieved by
PSOMI (PSOE) and the classification accuracy obtained by using all fea-
tures.

5.4 Results and Discussions

This section firstly discussed the results of PSOMI and PSOE, which are
shown in Tables 5.1 and 5.2. The performance of PSOMI and PSOE are
then compared with that of the three traditional feature selection methods
(shown in Table 5.5).
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5.4.1 Results of PSOMI

Table 5.1 shows the experimental results of PSOMI with three different
i in PSOMLI. In table 5.1, “All” means that all of the available features
are used for classification. “Size” represents the average size of the feature
subsets evolved by each algorithm in the 40 independent runs. “Best” and
“Mean” show the best and the average of the 40 classification accuracies.
“StdDev” shows the standard deviation of the 40 test accuracies. Since
the standard deviation values for all the three classification algorithms are
small, only the values for DT are given and that of KNN and NB are not
listed in the table to save space. “T” shows the result of the T-tests, where

“ 4

+” (”-”) indicates that the classification performance of PSOMI is signif-

“__r

icantly better (worse) than that of using all features. means they are
similar.

Table 5.1 shows that PSOMI with mutual information as the evaluation
criterion can usually reduce the number of features and maintain or even
increase the classification performance over using all features. In most
cases, the number of features selected by PSOMI is less than 40% of the
total number of features. On nine of the ten datasets, PSOMI evolved a
smaller number of features and maintained or even increased the classifi-
cation performance overing using all features on at least one of the three
classification algorithms, DT, KNN and NB. For example, on the Spect
dataset, PSOMI with the three «,,; values selected 3, 4 or 6 features from
the original 22 features and increased the classification performance of all
the three classification algorithms over using all features. Although in
some cases the overall classification performance of PSOMI is worse than
that of using all features, its best result is better than using all features.

On all the ten datasets, PSOMI with a large a,,,; evolved a subset with
more features than with a small a,,;. In most cases, a large o, led to better
classification performance than a small o,,;. This is because when «,,; is
large, the relevance is treated as more important than when «,,; is small.

By contrast, the redundancy, which indirectly influences the number of
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Table 5.1: Results of PSOMI with Different a,,;.
. DT KNN NB
Dataset Qi Size
Best | Mean Std T Best | Mean | T Best | Mean
All 18 82.22 82.22 80
Lymph 0.9 14 8222 | 8222 | 5.68E-14 | - || 86.67 | 86.67 | + || 8222 | 8222
0.7 7778 | 77.78 | 5.68E-14 | - || 8222 | 8222 | - || 77.78 | 77.78
0.5 77.78 | 77.78 | 5.68E-14 | - || 51.11 | 51.11 | - || 73.33 | 73.33
All 22 100 100 95.98
0.9 9.1 99.59 | 9954 | 8.04E-2 | - || 9959 | 9954 | - || 98.11 | 97.94
Mushroom
0.7 4.48 9787 | 97.87 | 853E-14 | - || 97.87 | 97.87 | - || 97.76 | 97.76
0.5 2 9787 | 97.87 | 853E-14 | - || 97.87 | 97.87 | - || 97.76 | 97.76
All 22 66.25 63.75 70
Spect 0.9 6 71.25 | 71.19 39E-2 66.25 | 66.19 73.75 | 73.72
0.7 4 71.25 71 1.56E0 + || 7375 | 7375 | + 725 725
0.5 3 7125 | 7119 | 272E-2 | + 70 6844 | + 67.5 | 59.12
All 24 100 81 100
. 09 | 23.98 100 100 0EO = || 8267 | 81.04 | = 100 100
Leddisplay
0.7 17 100 100 0EO = | 92.33 | 91.09 | + 100 100
05 | 11.92 100 100 0EO = 100 99.08 | + 100 100
All 34 90 96.36 97.27
09 | 30.12 90 90 0EO = || 98.18 | 95.77 98.18 | 97.07
Dermatology
0.7 | 11.62 || 93.64 | 88.16 1.33E0 - || 9636 | 9398 | - || 96.36 | 93.7
0.5 6.38 91.82 | 86.34 6.11E0 - || 92.73 | 86.27 | - || 93.64 | 8743
All 35 90.73 88.29 88.29
09 | 22.78 || 90.73 | 89.8 974E-2 | - || 90.73 | 89.26 | + || 90.24 | 89.21
Soybeanlarge
0.7 9.68 88.78 | 84.11 2.49E0 - || 8439 | 8026 | - || 88.78 | 86.49
0.5 5.72 84.39 | 76.89 3.97E0 - || 7854 | 66.57 | - 839 | 77.06
All 36 98.44 95.62 89.78
Chess 09 | 13.95 952 | 95.19 6.4E-2 - 951 | 9476 | - || 93.22 | 92.12
0.7 8.18 95.1 9449 | 68.2E-2 | - 952 | 9422 | - || 9499 | 93.89
0.5 6.1 9499 | 93.32 1.66E0 - || 9499 | 9319 | - || 9499 | 93.36
All 42 74.62 73.48 72.23
Connectd 0.9 9.68 70.36 | 69.4 60.7E-2 | - || 65.09 | 6041 | - 69.6 | 68.87
0.7 7 68.73 | 67.6 542E-2 | - || 6493 | 57.81 | - || 68.61 | 67.49
0.5 5.12 67.52 | 66.55 | 50.6E-2 | - || 66.79 | 57.27 | - || 67.53 | 66.55
All 56 90 70 90
Lung 09 | 12.22 90 89.75 1.56E0 = 90 76 + 90 80.75
0.7 7.7 90 81.25 12.9E0 - 90 825 | + 90 82
0.5 6.68 90 80.75 13.9E0 - 90 79.25 90 77.5
All 166 71.33 83.92 42.66
Muskl 0.9 423 79.02 | 71.68 3.68E0 = || 8392 | 79.14 | - || 7552 | 70.23
0.7 | 4212 || 8392 | 72.12 3.77E0 = || 86.01 | 79.69 | - || 75.52 | 70.1
05 | 42.02 || 83.92 | 71.99 3.63E0 = || 86.01 | 79.63 | - || 79.02 | 70.33
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features, is treated as less important with a large a,,,; than with a small
one. Note that in some cases, e.g. the Lymph, Mushroom and Leddisplay
datasets, PSOMI using different «,,,; values selected a different numbers of
tfeatures, but achieved the same classification performance, which means
the larger feature subsets still have redundancy. This is consistent with
our hypothesis that redundant features can be further removed without
reducing the classification performance.

Table 5.1 also shows that the results of PSOMI are basically general to
the three classification algorithms. For example, on the Connect4 dataset,
all the three algorithms did not perform well using the selected features.
However, on the Spect and Leddisplay datasets, all the three algorithms
achieved similar or better classification performance than using all fea-
tures. Only on the Mushroom and Chess datasets, the results of the signif-
icant tests for NB are “+” in all cases, and for DT and KNN are “-” in all
cases. One of the possible reasons is that the classification performance of
DT or KNN using all features is already very high. This makes it difficult to
improve the classification performance by using a very small feature sub-
set, although the classification accuracy of DT and KNN using the small
number of selected features is also high (around 95% or higher).

The results show that PSOMI using PSO as the search technique and
mutual information as the evaluation criterion can reduce the number of
features without decreasing or even increasing the classification perfor-
mance. Meanwhile, the selected feature subsets are sufficiently general to
the three classification algorithms.

5.4.2 Results of PSOE

According to Table 5.2, it can be seen that PSOE with entropy as the eval-
uation criterion can usually select a small number of features and achieve
similar or even better classification performance than using all features.
The number of features selected by PSOE is often less than half of the total
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Table 5.2: Results of PSOE with Different c..

i DT KNN NB
Dataset Qe Size
Best ‘ Mean ‘ Std ‘ T Best ‘ Mean ‘ T Best ‘ Mean ‘ T
All 18 82.22 82.22 80
L h 0.9 9.58 80 78.72 1.1E0 - 80 77.45 - 77.78 77.28 -
m;
ymp 0.7 8.08 80 79.89 69.3E-2 | - 77.78 76.61 - 77.78 77.5 -
0.5 5.35 8222 | 81.05 2.53E0 - 64.44 | 63.66 - 77.78 77 -
All 22 100 100 95.98
09 | 592 100 99.73 | 746E-2 | - 99.88 | 99.72 | - 9563 | 91.35 | -
Mushroom
0.7 2.52 99.7 97.88 | 44.5E-2 | - 99.7 97.88 - 97.76 | 97.39 +
0.5 2.12 97.76 | 97.66 | 45.8E-2 | - 97.76 | 97.66 - 97.76 | 97.44 +
All 22 66.25 63.75 70
Spect 0.9 | 17.02 71.25 70.88 1.32E0 + 72.5 70.16 + 73.75 72.56 +
pec 07| 13 || 7125 | 68 | 27580 | + || 7125 | 6775 | + || 75 | 7275
0.5 7.42 71.25 | 68.56 3.53E0 + 72.5 64.22 = 73.75 72.41 +
All 24 100 81 100
X 0.9 9 100 100 0EO = 100 100 + 100 100 =
Leddisplay
0.7 9 100 100 0EO = 100 100 + 100 100 =
0.5 9 100 100 0EO = 100 100 + 100 100 =
All 34 90 96.36 97.27
0.9 9.42 95.45 | 90.84 1.98E0 + 96.36 | 89.02 - 9545 | 92.16 -
Dermatology
0.7 7.68 93.64 | 90.27 1.31E0 = 9455 | 86.34 - 93.64 | 90.57 -
0.5 6.28 92.73 | 89.16 2.94E0 = 93.64 83.3 - 93.64 | 89.73 -
All 35 90.73 88.29 88.29
0.9 | 20.72 88.29 | 82.94 2.88E0 - 82.44 76.55 - 87.32 | 81.71 -
Soybeanlarge
0.7 | 17.28 87.8 80.51 3.65E0 | - 86.83 | 77.89 | - 86.83 | 81.84 | -
0.5 | 13.68 89.27 | 83.74 3.28E0 - 86.34 78.83 - 88.29 | 82.11 -
All 36 98.44 95.62 89.78
Ch 09 | 2582 || 99.06 | 98.91 27E-2 + || 9812 | 96.61 | + || 9458 | 93.22 | +
ess
0.7 | 21.38 || 99.37 | 98.81 | 31.1E-2 | + || 9833 | 9748 | + || 9541 | 93.88
05 | 16.82 || 98.54 | 98.01 | 63.2E-2 | - 9823 | 9733 | + || 9593 | 9434 | +
All 42 74.62 73.48 72.23
0.9 | 37.92 75.9 74.66 | 739E-2 | = 74.5 7317 | = 72.75 71.99 -
Connect4
0.7 | 38.12 76.89 74.63 1.05E0 = 74.2 72.9 - 72.55 71.73 -
0.5 | 36.75 || 78.38 | 74.48 1.28E0 | = || 7461 | 72.78 | - 72.4 71.64 | -
All 56 90 70 90
L 09 | 13.05 90 83.25 13.1E0 | - 90 8425 | + 90 86 -
un
8 0.7 | 13.05 90 83.5 12.8E0 - 90 83.75 + 90 86.25 -
0.5 | 12.85 90 83.5 13.9E0 - 90 83.75 + 90 86.5 -
All 166 71.33 83.92 42.66
Muskl 09 | 6055 || 76.58 | 69.11 442E0 | - 81.98 76.4 - 68.17 | 64.04
us
0.7 | 60.55 76.58 | 69.11 4.42E0 - 81.98 76.4 - 68.17 | 64.04 +
0.5 | 60.55 76.92 71.98 3.03E0 = 85.31 78.85 - 77.62 71.92 +
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number of features. In almost all cases, with the selected features, at least
one of the three classification algorithms achieved similar or significantly
higher accuracy than using all features. In some cases, the overall classifi-
cation performance is lower than using all features, but the best accuracy

is the same or higher than using all features.

In general, the number of features selected by PSOE decreased when
a. became smaller. The reason is that a smaller o, means the redundancy
measure, which indicates the number of features, was treated more impor-
tant than a larger a.. A smaller o, also means that the relevance measure
is treated as less important and accordingly, the classification performance
decreased when a. became smaller. There are many cases, where the num-
ber of features is reduced, but the classification performance is increased.
This is because the larger feature subsets still have redundancy. The re-
moval of redundant features does not decrease the classification perfor-
mance, but may even increase the classification performance due to the
reduction of the dimensionality and complexity.

In terms of the generality, the performance of the three classification al-
gorithms is usually consistent. For some datasets, such as Spect and Led-
display, all of the three algorithms using the selected features achieved
similar or better performance than using all features. On the Dermatology
dataset, DT using the selected features increased the classification perfor-
mance, but KNN and NB did not. One possible reason is that KNN and
NB using all features achieve very high classification accuracy and it is
difficult to increase the performance with a very small number of features,
which is the same case for the Mushroom and Lung datasets.

The results suggest that by using entropy as the evaluation criterion,
PSOE can effectively search the solution space to obtain small feature sub-
sets and maintain or even increase the classification performance over us-
ing all features. As a filter approach, the feature subsets selected by PSOE
are sufficiently general to DT, KNN and NB.
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5.4.3 Comparisons Between PSOMI and PSOE

Both PSOMI and PSOE are based on information theory. The fitness func-
tion in PSOMI is based on mutual information of each pair of features (or
a feature and the class labels). The fitness function in PSOE is based on
the information gain of a group of features (including the class labels). The
fitness function is the main difference between PSOMI and PSOE, which
leads to different performances in terms of the number of features and the
classification performance.

Comparing Table 5.1 with Table 5.2, it can be seen that the (smallest)
number of features is smaller in PSOMI on eight of the ten datasets and
smaller in PSOE on the other two datasets. A possible reason is that the
redundancy measure Red, in PSOE is based on a group of features, which
is less sensitive to the number of features than the pair-wise evaluation
in the redundancy measure Red,,; of PSOMI. Adding more features will
always increase (worse) Red,,; because Red,,; sums the mutual informa-
tion between each pair of features. According to the calculation of Red,,
adding more features may not increase (worse) Red.. However, since more
features may increase the value of the relevance measure Rel., PSOE has a
higher probability to obtain large feature subsets than PSOMI.

According to the results of the significance tests in Table 5.1, with the
feature subsets selected by PSOMI, the total number of “+” and “="is 11
for DT, 11 for KNN and 17 for NB, which indicate the number of cases,
where the classification algorithm using the selected features achieved
similar or better performance than using all features. According to Table
5.2, the numbers are 15, 13 and 14 for DT, KNN and NB, respectively. The
total number in PSOE (42) is slightly larger than PSOMI (39). Meanwhile,
it can be noticed that the numbers are more even in PSOE than in PSOMI,
which means the performance of the three classification algorithms is more
consistent in PSOE than in PSOMI. The reason may be that the relevance
measure (Rel.) in PSOE treats the feature subset as a whole, which might

consider the interaction between them to select a subset of complementary



150CHAPTER5. FILTER BASED SINGLE OBJECTIVE FEATURE SELECTION

Table 5.3: Computational Time used by PSOMI and PSOE (In seconds).

Dataset |Lymph|Mushroom |Spect|Leddisplay |Dermatology |Soybeanlarge | Chess |Connect4 |Lung|Musk1
PSOMI
am; = 0.9 0.13 0.67 0.27 0.23 0.24 0.38 0.57 | 10257 |0.34 | 15.17
am; = 0.7| 013 0.66 0.26 0.22 0.24 0.36 0.56 | 10259 |0.25 | 14.85
omi = 0.5| 0.12 0.65 0.25 0.22 0.22 0.35 0.56 | 102.6 |0.26 | 14.86
PSOE
ae=09]| 38 149.88 |12.21| 35.13 17.51 55.31 358.04| 19243.5 | 3.14 | 508.01
ae =0.7| 3.62 113.62 |10.21| 33.11 16.77 51.78 297.21| 19793.3 | 3.08 | 497.01
ae =0.5| 3.19 121.51 8 34.31 15.42 48.66 256.17| 18443.4 | 3.09 | 280.97

features, and does not bias to any classification algorithm. In contrast, the
relevance measure (Rel,,;) in PSOMI evaluates the feature subsets by sum-
ming the mutual information between a single feature and the class labels,
which treats features individually. So PSOMI is more likely to select fea-
tures that individually work well, which better fits NB that assumes fea-
tures are conditionally independent to each other. Therefore, NB performs
much better than KNN and DT in PSOMI while there are no significant
differences among the three algorithms in PSOE.

5.4.4 Comparisons on Computational Time
Table 5.3 shows the average computational time used by PSOMI and PSOE

over the 40 independent runs for the evolutionary training process, where
the time is expressed in seconds.

According to Table 5.3, it can be seen that on average, PSOMI can finish
the evolutionary training process within 20 seconds except for the Con-
nect4 dataset. PSOE can finish the evolutionary training process within 10
minutes (i.e. 600 seconds) except for the Connect4 dataset. Both PSOMI
and PSOE used a much longer time on the Connect4 dataset than on all
other nine datasets. The reason is that the Connect4 dataset has a much
larger number of instances (44473), at least ten times or even a few hun-
dreds more than the other datasets, which can be seen from Table 1.1 on
Page 16.

PSOE clearly used a longer time than PSOMI. There are two main rea-
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Table 5.4: Number of Appearance of Each Feature for the Chess Dataset.

Feature |1 |2 |3 |4 |5|6 |7 |8 [9]10{11|12|13|14|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32|33(34|35

36

PSOMI
ami=0.919 |8 |22(16(6|24|5 (27|6]40|5 |10|5 [18|30|31|17|14|19|5 |40|16|14|15|21|0 |17|17|25|14|8 |28|40(3 |9
am;=0.7|2 |2 |11|3 6|19|3 |6 |5]40|3 |8 |8 [14|7 |24|9 |5 |7 |4 |40|7 (2 |9 |18|1 |7 |19]10|7 |4 |17|39|2 |2
am;=0.5(3 |7 |109 [1]|6 |1 (3 4393 |7 |8 |7 |1 |13|5 |6 |7 |5 |40|0 (3 |8 [11|1 |2 |15]6 |3 |2 |11|31]0 |1

= 1

PSOE
ae=0.9 [40(29|40(40|1|40(40|1
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sons why PSOE took a much longer running time than PSOMI. The first
reason is that each calculation of the fitness function F'it,,; (according to
Equation 5.7) in PSOMI needs a much shorter time than that of F'it, (ac-
cording to Equation 5.8) in PSOE. The second reason is that the number
of calculations in terms of both the relevance measure and the redundant
measure in PSOE is much larger than that of PSOMI. In PSOM], the cal-
culation of the possible mutual information between each feature and the
class labels, i.e. I(x;c) for Red,,;, and the possible mutual information
between each pair of features, i.e. I(z;,z;) for Red,,;, only needs to be
performed once for each dataset before the evolutionary process. During
the evolutionary training process, the calculation of Rel,,; and Red,,; only
needs to refer to the values of I(z;c) and I(x;, x;), and then sums them.
However, for Rel. = 1G(c|X) and Red, = min(g Loex IG(x|[{X/x})) in
PSOE, during the evolutionary training process, each particle has a dif-
ferent X. Therefore, each calculation of Rel. or Rel; needs to perform
Equation 5.6, which takes a longer time than just calculating the sum in
Rel,,; and Red,,;. Although PSOE took a longer time than PSOMI, both of
them are relatively fast compared with the algorithms in Chapters 3 and 4
(wrappers).

5.4.5 Selected Features

Experimental results show that both PSOMI and PSOE are quite stable
across different independent runs, where the most important feature is
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always selected by all the algorithms in different runs. In order to show
the stability of the proposed algorithms, we take the Chess dataset as an

example as the other datasets show a similar pattern.

Both PSOMI and PSOE evolved one single feature subset in each run
and thus 40 feature subsets were obtained from the 40 independent runs.
Table 5.4 shows the number of appearance of each feature in the 40 feature
subsets (40 runs) evolved by PSOMI and PSOE with «,,,; and a. as 0.9, 0.7
and 0.5. Note that PSOMI with a,,; = 0.5 usually selected a small number
of features (around 6 features, see Table 5.1), so the corresponding num-
bers in Table 5.4 are usually small. PSOE with o, = 0.9 usually selected a
relatively large number of features (see Table 5.2) and the corresponding
numbers in Table 5.4 are usually large.

According to Table 5.4, it can be seen that for the same relevance mea-
sure, in PSOMI with the three different «,,; values, Features 10 and 21 are
the most frequently selected features. The results show that although dif-
ferent o,,,; values lead to different results, Features 10 and 21 always have
the largest chances to be selected by PSOMI. The most frequently selected
features in PSOE with different o, values are also the same, i.e. Features
6,10, 17, 21, 23, 33 and 35. This indicates that both PSOMI and PSOE are
reasonably stable algorithms.

Although the number of features selected by PSOE is much larger (al-
most twice) than that of PSOMI, not all of the features selected by PSOMI
are included in PSOE. Due to different relevance and redundancy mea-
sures, some features that are selected frequently by PSOMI are not selected
by PSOE. For example, Feature 8 is frequently selected by PSOMI with
ami = 0.9, but it is selected only once by PSOE with a. = 0.9 and never
selected by PSOE with a. = 0.7 and 0.5. One possible reason is that Fea-
ture 8 is an individually relevant feature, but when combined with other
features it brings redundancy to the feature subset. Therefore, Feature 8 is
frequently selected by PSOMI using the relevance measure based on each

individual feature, but not selected by PSOE using the relevance measure
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based on a group of features.

5.4.6 Comparisons with Traditional Methods

Experiments have been conducted on the three traditional methods, CfsF,
CfsB and GSBS. All the three classification algorithms have been used in
the experiments and their results show a similar pattern. Therefore, the
results of using KNN and NB as the classification algorithms are not listed
here and only the results of DT are listed in Table 5.5.

Comparing Table 5.5 with Tables 5.1 and 5.2, it can be seen that both
PSOMI and PSOE outperformed CfsF in most cases and outperformed
CfsB in almost all cases in terms of both the classification performance and
the number of features. Although on the Connect4 and Lung datasets, the
average classification performance of PSOMI and PSOE is slightly worse
than CfsF and CfsB, the best accuracies of them are better than CfsF and
CfsB.

Note that it is not entirely fair to directly compare filter methods with
wrapper methods since the wrapper methods use a classification/learning
algorithm within the evaluation process. However, it does provide evi-
dence to show that the filter methods are successful if they can outper-
form a wrapper method. Table 5.5 shows that GSBS as a wrapper method
usually achieved better classification performance than the two filter algo-
rithms (CfsF and CfsB). Comparing GSBS with PSOMI and PSOE, it can
be seen that the number of features selected by GSBS is smaller than that
of PSOMI on eight out of the 10 datasets and smaller than that of PSOE on
five datasets. In terms of the classification performance, the best accuracy
of PSOMI is better than GSBS on seven datasets and PSOE is better than
GSBS on eight datasets, which shows that PSOMI and PSOE as filter meth-
ods have the potential to achieve better classification performance than a
traditional wrapper method.

In terms of the computational cost, CfsF, CfsB and PSOMI are faster
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Table 5.5: Results of CfsF, CfsB and GSBS.

Lymph Mushroom Spect Leddisplay Dermatology

Method | All CfsF CfsB GSBS| All CfsF CfsB GSBS| All CfsF CfsB GSBS|All CfsF CfsB GSBS| All CfsF CfsB GSBS

Size 18 8 8 2 |22 3 3 5 122 4 4 6 |24 13 13 5 |33 17 17 7
Accuracy|82.2 73.3 73.3 77.8|100 97.7 97.7 100 |66.3 70 70 67.5(100 100 100 100 | 90 87.3 87.3 90

Soybean Large Chess Connect4 Lung Musk1

Method | All CfsF CfsB GSBS| All CfsF CfsB GSBS| All CfsF CfsB GSBS|All CfsF CfsB GSBS| All CfsF CfsB GSBS

Size |35 12 14 12 {36 5 5 17 |42 6 6 28 |56 6 11 33 (166 36 41 122
Accuracy|90.7 80.5 85.4 90.2 (98.4 78.1 78.1 99.1 |74.6 70.3 70.3 788 |90 90 90 90 (71.3 71.3 70.6 74.8

than PSOE because PSOE involves a relative complex fitness function, but
all of them can finish the feature selection process very fast. Since each
evaluation in GSBS involves a training and a testing processes, GSBS is
usually slower than all the other four algorithms, especially on the large
datasets.

5.5 Chapter Summary

The goal of this chapter was to investigate the use of information theory in
PSO for filter feature selection to reduce the number of features and main-
tain or even increase the classification performance of using all features.
The goal was successfully achieved by developing two new PSO based
tilter algorithms using mutual information (PSOMI) and entropy (PSOE)
in the fitness functions to evaluate the goodness of the selected features.
PSOMI and PSOE successfully reduced the number of features and main-
tained or even improved the classification accuracy. They outperformed
two traditional filter feature selection algorithms and even achieved slightly
better performance than a traditional wrapper feature selection method.
Meanwhile, the feature subsets selected by PSOMI and PSOE are general
to the three classification algorithms, i.e. DT, KNN and NB.

This chapter shows that both PSOMI and PSOE are fast algorithms due
to the filter fitness functions, which do not need a learning/classification
process for each evaluation (like in wrappers). PSOMI based on mutual
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information of each pair of features is faster and selects a smaller number
of features than PSOE using the information gain of a group of features.
However, the pair evaluation in PSOMI considers less feature interaction
than the group evaluation in PSOE. PSOMI has a higher probability to se-
lect individually good features while PSOE is more likely to select a group
of complementary features. Therefore, the classification performance of
the PSOE is slightly better than PSOMI. The features selected by PSOMI
were noticed to slightly favour to NB, which is based on the assumption
that features are (conditionally) independent to each other.

In PSOMI and PSOE, the classification performance is indicated by the
relevance of the features and the number of features is indirectly shown
by the redundancy among the feature subset. A weight was used to bal-
ance the relative importance of the relevance and redundancy in the fitness
function. A large weight for redundancy in PSOMI or PSOE can further
reduce the number of features, but it does not always reduce the classifi-
cation performance, and may even increase the classification performance
due to the removal of unnecessary complexity. However, it is difficult to
pre-determine the best value of the weight.

This problem can be avoided if they are treated as two separate ob-
jective functions rather than combining them into a single fitness func-
tion. Meanwhile, treating the relevance and redundancy (or the number
of features) as two separate objectives in multi-objective feature selection
is hypothesised to better solve the task to obtain a set of non-dominated
solutions instead of a single solution, where the obtained Pareto front can
assist users in choosing their preferred solutions to meet their own require-
ments. However, evolutionary computation techniques, including multi-
objective PSO, NSGAII and SPEA2, have never been applied to filter based
multi-objective feature selection. Therefore, in the next chapter, we will in-
vestigate the use of evolutionary computation techniques and information

theory in filter based multi-objective feature selection.
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Chapter 6

Filter Based Multi-Objective
Feature Selection

6.1 Introduction

Feature selection, by its nature, is a multi-objective task, which aims to
maximise the classification performance and minimise the number of fea-
tures. However, there are only a few works treating it as a multi-objective
problem and almost all of them are wrapper approaches. Filter approaches
are argued to be computational less expensive and more general than
wrapper approaches, but no work has been conducted on multi-objective
filter feature selection.

To develop a multi-objective filter feature selection algorithm, two key
factors are needed. The first one is an evaluation measure, which de-
termines the goodness of the selected feature subsets. The second one
is a search technique, which searches the solution space to find the op-
timal feature subsets. In Chapter 5, mutual information and entropy in
information theory have been shown to be effective evaluation measures
in filter feature selection. Multi-objective EC techniques, such as non-
dominated sorting based multi-objective genetic algorithm II (NSGAII)
[23], strength Pareto evolutionary algorithm 2 (SPEA2) [24] and multi-

157
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objective PSO, have been widely used in many areas [176]. In Chapter 4,
we have shown that the two multi-objective PSO algorithms (i.e. NSPSO
[103] and CMDPSO [104]), and the NSGAII and SPEA2 algorithms can be
successfully used in multi-objective wrapper feature selection. However,
the use of such multi-objective EC algorithms in filter feature selection has

not been investigated to date.

6.1.1 Chapter Goals

The overall goal of this chapter is to use EC techniques and information
theory to develop a multi-objective, filter feature selection approach to
searching for a set of non-dominated solutions (feature subsets). The se-
lected feature subsets are expected to include a smaller number of features
and achieve similar or even better classification performance than using all
features.

To achieve this goal, four multi-objective feature selection frameworks
are developed based on four multi-objective EC algorithms, which are
NSPSO, CMDPSO, NSGAII and SPEA2. Two information measures, which
are the mutual information measure and entropy measure, are used in
each framework to develop two filter multi-objective algorithms. Thus
eight multi-objective feature selection algorithms will be proposed by ap-
plying the two information measures to the four frameworks. These pro-
posed algorithms will be examined and compared with the single objec-
tive algorithms developed in Chapter 5 on eight benchmark problems of
varying difficulty. Specifically, we will investigate:

e whether NSPSO based multi-objective feature selection algorithms
can evolve a set of good feature subsets, which include a smaller
number of features and achieve better classification performance than
using all features, and can outperform PSO based single objective al-

gorithms;

e whether CMDPSO based multi-objective feature selection algorithms
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can evolve a set of good feature subsets, and can achieve better per-
formance than PSO based single objective algorithms and NSPSO
based algorithms;

e whether NSGAII based multi-objective feature selection algorithms
can evolve a set of good feature subsets, and can achieve better per-

formance than the PSO algorithms above, and

e whether SPEA2 based multi-objective feature selection algorithms
can evolve a set of good feature subsets, and can outperform all other

methods mentioned above.

Note that this thesis mainly focuses on the use of PSO for feature se-
lection. The NSGAII and SPEA2 based approaches to feature selection are
mainly proposed to investigate whether NSGAII and SPEA2 can be di-
rectly applied to feature selection and can achieve better results than the

PSO based approaches.

6.1.2 Chapter Organisation

The remainder of this chapter is organised as follows. The second section
describes the proposed filter based multi-objective feature selection algo-
rithms. The third section describes the design of the experiments. The
results and discussions are presented in the fourth section. The fifth sec-

tion provides a summary of this chapter.

6.2 Proposed Algorithms

This section presents the multi-objective filter feature selection algorithms,
which starts from the fitness functions, and the representation used in this
chapter, then describes the proposed multi-objective algorithms, which are
based on NSPSO, CMDPSO, NSGAII and SPEA2.
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Fitness functions. In filter approaches, the classification performance is
represented by a relevance measure. Generally, a multi-objective filter
teature selection algorithm aims to maximise the relevance measure (i.e.
representing the classification performance) and minimise the number of
features. In this chapter, the relevance of the selected features will be eval-
uated by the two measures developed in Chapter 5, which are the mutual
information measure (Rel,,;) shown by Equation 5.1 (Page 135), and the
entropy measure (Rel.) shown by Equation 5.4 on Page 138.

When using the mutual information based measure (Rel,,;), the fitness
function of a filter, multi-objective feature selection algorithm is shown by

Equation 6.1.

Fni(X) = [Relmi(X, ¢), Size(X)] (6.1)

where

Relyi (X, c) = maa:(z I(z;c)),
zeX

Size(X) = min(|X|)

where X means a subset of features, X = (z1, 23, x3,...). ¢ shows the class
labels. | X| represents the number of features in X. The detailed explaina-
tion and calculation of Rel,,; are shown by Equation 5.1 on Page 135.

When using the entropy based measure (Rel.), the fitness function of a
tilter, multi-objective feature selection algorithm is shown by Equation 6.2.
The detailed explaination and calculation of Rel. are shown by Equation
5.4 on Page 138.

Fo(X) = [Rel.(X,c), Size(X)] (6.2)

where
Rel.(X,c) = max((IG(c|X))

Size(X) = min(]X])
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Representations. In the proposed algorithms, each individual in the pop-
ulation/swarm, i.e. a particle in NSPSO and CMDPSO or a chromosome
in NSAGAII and SPEA?2, is represented by a n-bit binary string, where n is
the total number of available features in the dataset. n is also the dimen-
sionality of the search space. In the binary string, “1” represents that the
corresponding feature is selected and “0” otherwise.

6.2.1 New Algorithms: NSMI and NSE

PSOMI and PSOE in Chapter 5 with the mutual information measure and
the entropy measure can be successfully used for filter feature selection.
However, the weights in the fitness functions of PSOMI and PSOE need
to be predefined. This problem is avoid by using multi-objective fea-
ture selection. NSPSO [103] is a simple multi-objective PSO based on the
idea of fast non-dominated sorting in NSGAIIL Based on NSPSO, a multi-
objective filter feature selection framework is investigated in this section.
Two multi-objective filter feature selection algorithms are then proposed
based on NSPSO and the mutual information measure and the entropy mea-
sure, which are named as NSMI and NSE, respectively.

NSMI is based on the mutual information measure and aims to opti-
mise the objective function shown by Equation 6.1. NSE is based on the
entropy measure and aims to optimise the objective function shown by
Equation 6.2. Their main difference is the fitness function, which is also
the main difference between the two filter algorithms, NSMI or NSE, and
the multi-objective wrapper feature selection algorithm (NSPSOFES) devel-
oped in Chapter 4 on Page 107. Figure 6.1 shows the flow chart of both
NSMI and NSE. In Figure 6.1, the key steps are coloured in gray. The main
idea is to use a non-dominated sorting mechanism (Step 7) to select a gbest
for each particle and update the swarm during the evolutionary process.

As shown in Figure 6.1, in each iteration, the algorithms select a gbest

for each particle from the non-dominated solutions in the swarm (Step 2).
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S1

Initialise the Swarm, Calculate the two
objective values of each particle

>
»

S2

Select a gbest for each particle from non-
dominated solutions based on crowding distance

)

If pbest is dominated by current position of a
particle, update the pbest

S3

¥

Copy all particles (solutions) in Swarm
to a Union

Y

S5 Update the velocity and position of
each particle and copy them to Union

y

S10 S S6 Evaluate the two objective values of

Return solutions in the each particle
first level of Pareto front P
4
T 57 Identify diff levels of f
Yes entify different levels of Pareto fronts

in Union

|

Update Swarm based on the top
levels of Parto fronts

Termination ?

Figure 6.1: The flowchart of NSMI and NSE (showing Steps (S) 1-10).

Specifically, the algorithms identify the non-dominated solutions in the
swarm and calculate the crowding distance, then all the non-dominated
solutions are sorted according to the crowding distance. Then a gbest is
randomly selected from the least crowded solutions (the highest ranked
part) of the sorted non-dominated solutions. pbest of each particle is then
determined in Step 3. To update the swarm for the next iteration, all the
particles in the swarm are firstly copied to a union in Step 4. The velocity

and the position of each particle are updated according the Equations 2.2
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and 2.4 on Page 38 and the updated particles are also added into the union
(Step 5). The two objective values of each particle are evaluated in Step
6. Step 7 shows the non-dominated sorting of the solutions in the union.
Specifically, the non-dominated solutions in the union are called the first
non-dominated front, subsequently excluded from the union. Then the
non-dominated solutions in the new union are called the second non-
dominated front. The following levels of non-dominated fronts are iden-
tified by repeating this procedure. Step 8 shows the process of updating
the swarm for the next iteration. Specifically, particles are selected from
the top levels of the non-dominated fronts, starting from the first front. If
the number of solutions needed is larger than the number of solutions in
the current non-dominated front, all the solutions are added into the next
iteration. Otherwise, the solutions in the current non-dominated front are
ranked according to the crowding distance and the highest ranked solu-
tions are added into the next iteration. Steps 2 to 8 are repeated until the
termination criteria is met. The algorithms return the non-dominated so-
lutions in the union, which are also the first level of Pareto front achieved
by the non-dominated sorting in Step 7.

6.2.2 New Algorithms: CMDMI and CMDE

Multi-objective PSO (CMDPSO [104]) using the ideas of crowding, mu-
tation and dominance is able to keep the diversity of the swarm, which
is particularly important for feature selection problems, since they have
many local optima in the search space. To further investigate the use of
PSO in feature selection, a multi-objective feature selection framework is
investigated based on CMDPSO. Two multi-objective filter feature selec-
tion algorithms are then proposed based on this framework and the mu-
tual information measure and the entropy measure, which are named as
CMDMI and CMDE, respectively. CMDMI using the mutual information

measure aims to optimise the objective function shown by Equation 6.1.
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Figure 6.2: The flowchart of CMDMI and CMDE.

CMDE using the entropy measure and aims to optimise the objective func-
tion shown by Equation 6.2. The main difference between CMDMI and
CMDE is the fitness function, which is also the main difference between
these two filter algorithms and the multi-objective wrapper feature selection
algorithm (CMDPSOEFS) developed in Chapter 4 on Page 110.

Figure 6.2 shows the flow chart of both CMDMI and CMDE. Basically,
CMDMI and CMDE follow the basic steps of the PSO algorithm except

for the steps related to the selection of gbest, mutation and dominance,
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which are shown in gray colour. In order to address the main issue of
determining a good leader (gbest), CMDMI and CMDE employ a leader
set to keep the non-dominated solutions as the potential leaders for each
particle. A crowding factor (Step 2) is employed to decide which non-
dominated solutions should be added into the leader set and kept during
the evolutionary process. Step 3 shows the selection of gbest for each par-
ticle. Specifically, a binary tournament selection is performed to choose
two solutions from the leader set and the less crowded one is selected as
gbest. After updating pbest in Step 4, CMDMI and CMDE update the po-
sition and velocity of each particle in Step 5 and mutation operators are
applied in Step 6 to maintain the diversity of the swarm. CMDMI and
CMDE identify the non-dominated solutions and then update the leader
set in Step 8 and update the archive in Step 9. Steps 2 to 9 are repeated un-
til the termination criterion is met. The algorithms return the solutions in
the archive, where the number of non-dominated solutions is determined

by the dominance factor.

6.2.3 New Algorithms: NSGAIIMI and NSGAIIE

NSGAII has been successfully used in many areas [176]. However, it has
never been directly applied to filter based feature selection. In this section,
we develop a multi-objective, filter feature selection framework based on
NSGAII. Further, two new multi-objective, filter feature selection algo-
rithms, NSGAIIMI and NSGAIIE, are proposed by applying the mutual
information measure and the entropy measure. NSGAIIMI using the mu-
tual information measure aims to optimise the objective function shown by
Equation 6.1. NSGAIIE using the entropy measure aims to optimise the
objective function shown by Equation 6.2.

The main principle of NSGAII is the use of fast non-dominated sorting
technique and the diversity preservation strategy. The fast non-dominated

sorting technique is used to rank the parent and child populations to dif-
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Input : A Training set and a Test set;

Output: A set of non-dominated solutions, training and test accuracies.
1 begin
2 Initialise Population based on S (Population size) and D (Dimensionality,
number of features);
3 Evaluate two objectives of each individual ; /* number of features
and the relevance (Rel,,; in NSGAIIMI and Rel. in
NSGAIIE) on the Training set =*/

4 Generate Child (new population) by conducting selection, crossover and
mutation operators;
5 while Mazimum Number of Generations is not reached do
6 Evaluate two objectives of each individual in new Child;
7 Merge Child and Population to Union;
8 Empty Population and Child for new generation;
9 Identify different levels of non-dominated fronts F' = (F, Fs, F3, ...)
in Union ; /* Fast non-dominated sorting =*/
10 while |Population| < S do
1 if | Population| + |F;| < S then
12 Calculate crowding distance of each individual in F};
13 Add F; to Population;
14 1=14+1;
15 else
16 Calculate crowding distance of each particle in F;;
17 Sort particles in F};
18 Add the (S — | Population|) least crowded particles to
| Population;
19 Generate Child (new population) by conducting selection, crossover
| and mutation operators;

20 Calculate the number of features in each solution in Fi;

21 Calculate the classification error rate of the solutions (feature subsets) in
F1 on the test set ; /+* Fi1 is the achieved Pareto front x/

22 Return the solutions in Fy;

23 Return the number of features and the test classification error rate of each

solution in FYy;

Algorithm 7: Pseudo-Code of NSGAIIMI and NSGAIIE
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ferent levels of non-dominated solution fronts. A density estimation based
on the crowding distance is adopted to keep the diversity of the popula-
tion. More details can be seen in the literature [23]. Algorithm 7 shows
the pseudo-code of NSGAIIMI and NSGAIIE. After the intilisation and
the evaluation of individuals, a child population is generated by apply-
ing selection, crossover and mutation operators. Line 7 shows the idea
of merging the parent and child populations into a union. Then, the fast
non-dominated sorting is performed to identify different levels of Pareto
fronts in the union (in Line 9), which is the same as described in Step 7
in NSMI and NSE. In this procedure, the non-dominated solutions in the
union are called the first non-dominated front, which are then excluded
from the union. Then the non-dominated solutions in the new union
are called the second non-dominated front. The following levels of non-
dominated fronts are identified by repeating this procedure. For the next
generation, solutions (individuals) are selected from the top levels of the
non-dominated fronts, starting from the first front (from Line 10 to Line
18). When selecting individuals for the new generation, crowding dis-
tance is adopted to keep the diversity of the population, which can be
seen in Lines 12 and 16. The algorithms repeat the procedures from Line 5
to Line 19 until the predefined maximum generation has been reached.

6.2.4 New Algorithms: SPEA2MI and SPEA2E

In order to further investigate the use of multi-objective EC techniques
for filter based feature selection, we propose another multi-objective fea-
ture selection framework based on SPEA2, which has never been directly
applied to filter based feature selection. Further, the mutual information
measure and the entropy measure are applied to this framework to pro-
pose two new filter multi-objective algorithms, SPEA2MI and SPEAZ2E.
SPEA2MI using the mutual information measure aims to optimise the objec-
tive function shown by Equation 6.1. SPEA2E using the entropy measure
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Input : A Training set and a Test set;
Output: A set of non-dominated solutions, training and test accuracies.

1 begin

2 Initialise the Population based on S (Population size) and D
(Dimensionality, number of features);

3 Create the Archive (empty);

4 while Mazximum Number of Generations is not reached do

5 Evaluate two objectives of each individual ; /* number of
features and the relevance (Rel,,; in SPEA2MI and

Rel, in SPEA2E) on the Training set =/

6 Merge Population and Archive to Union;

7 Calculate the raw fitness of each individual in Union;

8 Calculate the density of each individual in Union;

9 Calculate the fitness of each individual in Union; /x fitness is

the sum of the raw fitness and the density value =/

10 Identify the non-dominated solutions in Union and add them to
Archive;
11 if |Archive| < Maximum Archive Size then
12 Add the non-dominated solutions from the remaining Population
to Archive ; /* Remaining Population excludes the

non-dominated solutions that have already been
added to Archive x/

13 else if |Archive| > Maximum Archive Size then
14 L Remove similar solutions to reduce the size of Archive;
15 Generate new Population by performing crossover and mutation

operators based on Archive and Population;

16 Calculate the number of features in each solution in Archive;

17 Calculate the classification error rate of the solutions in Archive on the
test set;

18 Return the solutions in Archive;

19 Return the number of features and the test classification error rate of each

solution in Archive;

Algorithm 8: Pseudo-Code of SPEA2MI and SPEA2E
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aims to optimise the objective function shown by Equation 6.2.
Algorithm 8 shows the pseudo-code of SPEA2MI and SPEA2E. The
main principle of SPEA2 is the fine-gained fitness assignment strategy and
the use of an archive truncation method. The fine-gained fitness assign-
ment is shown from Line 7 to Line 9, where the fitness of each individ-
ual is the sum of its raw fitness and a density estimation. Line 3 shows
the intilisation of the archive. The updating process of the archive can be
seen from Line 10 to Line 13. When the number of non-dominated so-
lutions is larger than the predefined maximum archive size, the archive
truncation method is applied to determine whether a non-dominated so-
lution should be included in the archive (Line 14). This archive truncation
method is based on a similarity measure, which is the distance between
each solution and its neighbours. A new population is constructed by the
non-dominated solutions in both the original population and the archive
(Line 15). The algorithms will repeat the procedures from Line 4 to Line

15 until the predefined maximum number of generations is reached.

6.3 Design of Experiments

6.3.1 Benchmark Techniques

To test the performance of the proposed multi-objective algorithms, the
single objective algorithms developed in Chapter 5, i.e. PSOMI and PSOE,
are used as benchmark techniques. In PSOE and PSOMI, a weight (o,
and «.) is used to balance the relative importance of the classification per-
formance (relevance measure) and the number of features (redundancy
measure). o, and a. are in [0.5, 1.0) because the classification perfor-
mance is usually more important (at least the same) than the number of
features.

In Chapter 5, five different values of a,,; and a. were used in the ex-

periments, which are 0.5, 0.6, 0.7, 0.8, and 0.9. Among these five val-
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ues, the classification performance is treated as the most important when
i = o = 0.9 and the number of features is treated as the most important
when a,,,; = o, = 0.5. Therefore, PSOMI with «,,,; = 0.5 and 0.9, and PSOE
with a. = 0.5 and 0.9 are chosen in this chapter to test the performance of
the multi-objective feature selection approaches.

6.3.2 Datasets and Parameter Settings

Eight datasets [25] of varying difficulty are used in the experiments, which
can be seen from Table 1.1 on Page 16 and they are the same as in Chap-
ter 5 for comparisons purposes. The Muskl and Lung datasets are not
used here because these two datasets have a relatively small number of in-
stances and can not sufficiently show the capability of the algorithms for
teature selection. All the data in the selected datasets are categorical val-
ues because mutual information and entropy are mainly used for discrete

variables.

In the experiments, all the instances in each dataset are randomly di-
vided into two sets: 70% as the training set and 30% as the test set, which
is the same as in the previous chapters. The filter feature selection algo-
rithms firstly run on the training set to select feature subsets and then the
classification performance of the selected features will be evaluated on the
test set by a classification algorithm. In the filter approaches, the train-
ing process is independent of any classification algorithm. In the testing
process, any algorithm can be used here. To evaluate the claim that filter
approaches are general to different classification algorithms, three com-
monly used algorithms, DT, NB, and KNN with K=5, are used to evaluate
the classification performance of the selected features. Since the results of
all the three classification algorithms show a similar pattern, only the re-
sults of DT are presented in the next section. These settings are the same

as in Chapter 5 for consistency and comparison purposes.

A library named jMetal [177] is used in the experiments. The parame-
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ters of NSPSO based algorithms, NSMI and NSE, are set as follows: inertia
weight w = 0.7298, acceleration constants ¢; = ¢, = 1.49618, maximum ve-
locity vy,4, = 6.0, population size is 30, the maximum number of iterations
is 500. The fully connected topology is used. These values are chosen
based on the common settings in the literature [84, 89]. In CMDMI and
CMDE, w is a random value in [0.1,0.5], ¢; and ¢, are random values in
[1.5, 2.0], and the mutation rate is 1/n, where n is the number of avail-
able features (dimensionality). These values are based on the settings of
CMDPSO [104].

In the NSGAII and SPEA2 based algorithms, NSGAIIMI, NSGAIIE,
SPEA2MI and SPEAZ2E, the population size and the maximum number
of generations are set the same as the PSO based algorithms for compar-
ison purposes. A bit-flip mutation operator and single point crossover
operator are applied. The mutation rate is the same as in the PSO based
algorithms, i.e. 1/n, where n is the total number of features in the dataset.
The crossover probability is 0.9. Other parameters are set as the default
values in the jMetal library since they can lead to good results. For each

dataset, all the algorithms have been conducted for 40 independent runs.

6.4 Results and Discussions

In this section, we firstly discuss the results of multi-objective algorithms
using the mutual information measure, which are NSMI, CMDMI, NS-
GAIIMI and SPEA2MI. Then the performance of the entropy measure based
algorithms are discussed, which are NSE, CMDE, NSGAIIE and SPEA2E.
Finally, the computational time and further discussions are given.

For each dataset, PSOMI and PSOE obtain a single solution in each
of the 40 independent runs. The multi-objective algorithms obtain a set
of non-dominated solutions in each run. In order to compare these two
kinds of results, 40 sets of feature subsets achieved by a multi-objective

algorithm are firstly combined into an union set. In the union set, for the
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feature subsets including the same number of features (e.g. m), their clas-
sification error rates are averaged. The average classification error rate is
assigned as the average classification performance of the subsets with m
teatures. Therefore, a set of average solutions are obtained by using the
average classification error rates and the corresponding numbers (e.g. m).
The set of average solutions is called the average front and presented here.
Besides the average front, the non-dominated solutions in the union set
are also presented to compare with the solutions achieved by the single
objective algorithms. This is the same as the comparisons conducted in
Chapter 4.

6.4.1 Results of NSMI and CMDMI

Figure 6.3 compares the results of NSMI, CMDMI, and PSOMI with «,,; =
0.5 and o, = 0.9, which employ the mutual information measure to eval-
uate the relevancy and redundancy between a pair of features. In filter
feature selection approaches, the performance of the solutions are evalu-
ated by its classification performance on the unseen test data. The results
in Figure 6.3 are the Pareto front solutions obtained in the mutual infor-
mation measure space, but their classification performances shown in the
tigure were evaluated by DT on the test set in each dataset.

In Figure 6.3, on the top of each chart, the numbers in the brackets
show the number of the available features and the classification error rate
using all features. In each chart, the horizontal axis shows the number of
features selected and the vertical axis shows the classification error rate
evaluated by DT. In Figure 6.3, “NSMI-A” stands for the average front
resulting from NSMI in the 40 independent runs. “NSMI-B” represents
the non-dominated solutions resulting from NSMI in the 40 independent
runs. «,,; = 0.5 means the 40 solutions of PSOMI with «,,; = 0.5 and
am; = 0.9 means the 40 solutions of PSOMI with «,,,; = 0.9.

In some datasets, PSOMI and PSOE may evolve the same feature sub-
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Figure 6.3: Experimental Results of PSOMI, NSMI and CMDML
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set in different runs and they are shown in the same point in the chart.
Therefore, although 40 results are presented, there may be less than 40
distinct points shown in a chart. For “NSMI-B” and “CMDMI-B”, each of
these non-dominated solution sets may also have duplicate feature sub-
sets. They are also shown in the same point in the chart. This is also the
case for other multi-objective algorithms. For the same number of fea-
tures, there are a variety of combinations of features with different classifi-
cation performances. In different runs, NSMI or NSE may select the same
number of features with the same fitness evaluated by mutual information
(Equation 5.1), but the same (or better) goodness does not necessarily re-
sult in the same (or better) classification performance. Therefore, they may
have different classification error rates. Although NSMI or CMDMI ob-
tained a set of non-dominated solutions in each run, the average solutions
in NSMI-A or CMDMI-A may dominate each other (This also happens in
other multi-objective algorithms).

Results of NSMI

According to Figure 6.3, on the Mushroom and Spect datasets, the average
fronts of NSMI (NSMI-A) contain two or more solutions that selected a
smaller number of features and achieved the same or a lower classification
error rate than using all features. In almost all datasets, the non-dominated
solutions (NSMI-B) include one or more feature subsets, which included
less than 50% of the available features and achieved better classification
performance than using all features. For example, on the Spect dataset,
one non-dominated solution selected 11 features from the 22 available fea-
tures and the classification error rate was decreased from 33.75% to 25%.

The results suggest that NSMI as a multi-objective algorithm can effec-
tively search the solution space and automatically evolve a set of feature
subsets to reduce the number of features and improve the classification

performance.
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Results of CMDMI

According to Figure 6.3, the average fronts of CMDMI (CMDMI-A) in-
clude two or more solutions that selected a smaller number of features
and achieved better classification performance than using all features on
all datasets (or similar classification performance only on the Connect4
dataset). On almost all datasets (except for the Soybean Large dataset),
CMDMI-B evolved feature subsets including less than one third of the
available features and achieved better classification performance than us-
ing all features.

Figure 6.3 also shows that achieving better classification performance
usually needs more features, but there are occasionally some feature sub-
sets that include a smaller number of features and achieve better classifica-
tion performance. For example, on the Spect dataset, CMDMI-B selected
only one feature and decreased the classification error rate from 33.75% to
28.75%.

The results suggest that as a multi-objective algorithm, CMDMI can
effectively explore the Pareto front of a feature selection problem to reduce
both the classification error rate and the number of features needed for

classification.

Comparisons between PSOMI, NSMI, and CMDMI

Comparing NSMI with PSOM], as can be seen in Figure 6.3, in most cases,
NSMI (NSMI-B) achieved lower classification error rates than PSOMI with
Qi = 0.5, although the number of features is slightly larger. In most cases,
NSMI (NSMI-B) outperformed PSOMI with «,,; = 0.9 in terms of both the
number of features and the classification performance.

Comparing CMDMI with PSOM]I, in almost all cases, feature subsets
evolved by CMDMI (CMDMI-B) achieved better performance than feature
subsets evolved by PSOMI with «,,; = 0.5 and with «,,; = 0.9 in terms

of both the number of features and the classification performance. The
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comparisons show that NSMI and CMDMI as multi-objective algorithms
could better explore the solution space than the single objective algorithm,
PSOMI. Both NSMI and CMDMI can obtain non-dominated feature sub-
sets that use a smaller number of features and achieve better classification
performance.

In all datasets, CMDMI achieved better performance than NSMI in
terms of both the classification performance and the number of features.
The main reasons are that feature selection tasks are difficult problems
with many local optima. CMDMI employs different mechanisms to main-
tain the diversity of both the leader set and the swarm. Specifically, it
selects and filters out crowded leaders and uses different mutation oper-
ators to maintain the diversity of the swarm to avoid stagnation in local
optima. By contrast, NSMI is less effective than CMDMI in terms of avoid-
ing stagnation in local optima. NSMI employs different levels of Pareto
fronts to store the already found non-dominated solutions. Therefore, all
the non-dominated solutions will be kept in the swarm from iteration to it-
eration. Such non-dominated solutions may be duplicated and the swarm
may lose diversity quickly, which will lead to the problem of premature

convergence.

6.4.2 Results of NSGAIIMI and SPEA2MI

Figure 6.4 compares the results of NSGAIIMI, SPEA2MI and PSOMI with
Qi = 0.5 and a,,,; = 0.9, which employ the mutual information measure to

evaluate the relevancy of the selected features.

Results of NSGAIIMI

According to Figure 6.4, in all datasets, the average front of NSGAIIMI,
NSGAIIMI-A, contained one or more solutions that selected a smaller num-
ber of features and achieved similar or even better classification perfor-

mance than using all features. In all cases, feature subsets in NSGAIIMI-B
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Figure 6.4: Experimental Results of PSOMI, NSGAIIMI and SPEA2MI.
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selected less than half of the available features and achieved similar or bet-
ter classification performance than using all features. For example, on the
Spect dataset, NSGAIIMI-B selected only one feature and improved the
classification performance over using all features. The results show that
NSGAIIMI can be successfully used to address feature selection problems.

Results of SPEA2MI

According to Figure 6.4, in all datasets, SPEA2MI-A includes one or more
feature subsets that selected a small number of features with which DT
achieved better classification performance than with all features. In all
datasets, SPEA2MI-B achieved better classification performance than us-
ing all features by selecting only less than half of the available features.
The results show that SPEA2MI can be successfully used to address fea-

ture selection problems.

Comparisons Between PSOMI, NSGAIIMI and SPEA2MI

Comparing NSGAIIMI and SPEA2MI with PSOMI in Figure 6.4, it can
be seen that in most cases, feature subsets in NSGAIIMI-A, NSGAIIMI-B,
SPEA2MI-A and SPEA2MI-B outperformed PSOMI with «,,; = 0.5 and
ami = 0.9 in terms of both the number of features and the classification
performance.

On the Lymph, Mushroom, Spect and Leddisplay datasets, similar re-
sults (almost the same results) are shown for NSGAIIMI and SPEA2MI in
terms of both the number of features and the classification performance.
The main reason is that all these four datasets have a relatively small num-
ber of features and both NSGAIIMI and SPEA2MI can obtain the good so-
lutions. However, NSGAIIMI and SPEA2MI also obtained other different
solutions which are not shown in the figure because they are dominated
by the solutions presented in the figure.

The results in Figure 6.4 suggest that NSGAIIMI and SPEA2MI with

mutual information as the evaluation criterion can automatically evolve a
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Pareto front of feature subsets that can reduce the number of features
needed for classification and improve the classification performance over
using all features. As multi-objective algorithms, NSGAIIMI and SPEA2MI
achieved better performance than the single objective algorithm PSOMIL

6.4.3 Comparisons on CMDMI, NSGAIIMI and SPEA2MI

The performance of the multi-objective algorithms using the mutual in-
formation measure are compared with each other in this section. Since
the performance of CMDMI is better than that of NSMI (shown in Sec-
tion 6.4.1), only CMDMI is used here to compare with NSGAIIMI and
SPEA2MILI. Figure 6.5 shows the results of CMDMI, NSGAII and SPEA2ML.

According to Figure 6.5, it can be seen that on the four datasets with
a relatively small number of features, the performance of the three algo-
rithms are generally similar to each other in terms of both the average re-
sults shown by “-A” and the non-dominated results shown by “-B”. This
might be because using mutual information as the evaluation criterion the
objective space is relatively easy, all the three algorithms can find the good
results, but they also obtained other different results that are not plotted in
the figures. Since they may achieve different combinations of individual
features, the classification error rates evaluated by DT are different.

On the other four datasets with a relatively large number of features,
NSGAIIMI achieved slightly better results than SPEA2MI in terms of both
the number of features and the classification performance, especially on
the Dermatology dataset. CMDMI achieved better results than NSGAI-
IMI and SPEA2MI on the Dermatology and Soybean Large datasets, but
slightly worse results on the Chess and Connect4 datasets. However, on
all these four datasets, CMD-B achieved slightly better classification per-
formance than NSGAIIMI and SPEA2MI, which shows that CMDMI has
a potential to evolve better solutions than NSGAIIMI and SPEA2MI.
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6.4.4 Results of NSE and CMDE

Figures 6.6 compares the results of NSE, CMDE, and PSOE with o, = 0.5
and a. = 0.9, which employ the entropy measure to evaluate the relevancy
of the selected features.

Results of NSE

According to Figure 6.6, in most cases, the average fronts of NSE (NSE-
A) contained more than one solution that selected a smaller number of
features and achieved better classification performance than using all fea-
tures. In almost all datasets, NSE-B reduced the classification error rate
by only selecting around half of the available features. Taking the Spect
dataset as an example, NSE reduced the classification error rate from 33.75%
to 25% by selecting only 9 features from the 22 available features.

The results suggest that the proposed NSE with the entropy measure
can automatically evolve a set of feature subsets to simultaneously reduce
the number of features and improve the classification performance over

using all features.

Results of CMDE

According to Figure 6.6, on all datasets, the average front of CMDE (CMDE-
A) evolved feature subsets that selected a smaller number of features (less
than half in most cases) and achieved better classification performance
than using all features. In most cases, CMDE-B maintained or even in-
creased the classification performance by selecting less than 25% of the
available features.

The results in Figure 6.6 suggest that as a multi-objective algorithm,
CMDE can automatically evolve a Pareto front of feature subsets, which
decrease the classification error rate and substantially reduce the number

of features needed for classification.
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Figure 6.6: Experimental Results of PSOE, NSE and CMDE.
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Comparisons Between PSOE, NSE, and CMDE

Comparing NSE with PSOE, in most cases, NSE (NSE-B) achieved better
classification performance than PSOE with both o, = 0.5 and a. = 0.9
although the number of features is slightly larger in some cases. One can
conclude that NSE outperformed PSOE when increasing the classification
performance is considered more important than minimising the number

of features.

Comparing CMDE with PSOE, in almost all datasets, CMDE evolved a
smaller number of features and achieved better classification performance
than PSOE with both o, = 0.5 and c, = 0.9. Only on the Connect4 dataset,
CMDE achieved similar results to PSOE with o, = 0.5, but better results
than PSOE with o, = 0.9.

CMDE outperformed NSE in terms of both the classification perfor-
mance and the number of features. The main reasons are the same as
discussed in Section 6.4.1. The comparisons show that with the entropy
measure, the proposed multi-objective feature selection algorithms (NSE
and CMDE) can better explore the solution space and achieve better fea-
ture subsets than the single objective feature selection algorithm (PSOE).

6.4.5 Results of NSGAIIE and SPEA2E

According to Figure 6.7, in seven of the eight datasets (the exception be-
ing the Soybean Large dataset), NSGAIIE-A contains one or more feature
subsets that selected a smaller number of features and achieved similar or
even better classification performance than using all features. In almost
all cases, NSGAIIE-B achieved better classification performance by select-
ing around one third of the available features. Figure 6.7 shows that the
performance of SPEA2E is similar to that of NSGAIIE in terms of both the

classification error rate and the number of features in all datasets.
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Figure 6.7: Experimental Results of PSOE, NSGAIIE and SPEA2E.
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Comparisons Between PSOE, NSGAIIE, and SPEA2E

Comparing NSGAIIE and SPEA2E with PSOE, in many cases, the average
fronts, NSGAIIE-A and SPEA2E-A outperformed PSOE with «a,,; = 0.5
in terms of the number of features and the classification performance.
In most cases, NSGAIIE-A and SPEA2E-A achieved similar results with
PSOE with «,,; = 0.5 and a,,,; = 0.9, but NSGAIIE-B and SPEA2E-B out-
performed PSOE.

The results in Figure 6.7 suggest that NSGAIIE and SPEA2E with the
entropy measure can automatically evolve a Pareto front of feature sub-
sets that can reduce the number of features needed for classification and

improve the classification performance over using all features.

6.4.6 Comparisons on CMDE, NSGAIIE and SPEA2E

The performances of the multi-objective algorithms using the entropy mea-
sure are compared with each other in this section. Since the performance
of CMDE is better than that of NSE (shown in Section 6.4.4), only CMDE
is used here to compare with NSGAIIE and SPEA2E. Figure 6.8 shows the
results of CMDE, NSGAIIE and SPEA2E.

According to Figure 6.8, it can be seen that the performance of the
three algorithms are generally similar to each other in terms of both the
average results shown by “-A” and the non-dominated results shown by
“-B”.In all cases, CMD-B slightly outperformed (or achieved the same per-
formance as) NSGAIIE and SPEA2E in terms of the classification perfor-
mance, which shows that CMDE has a potential to evolve better solutions
than NSGAIIE and SPEA2E.
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Figure 6.8: Comparisons Between CMDE, NSGAIIE and SPEA2E.
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Table 6.1: Computational Time (In seconds).

Dataset | Lymph | Mushroom | Spect | Leddisplay | Dermatology | Soybeanlarge | Chess | Connect4
am; =0.9] 013 0.67 0.27 0.23 0.24 0.38 0.57 | 102.57
m; = 0.5 012 0.65 0.25 0.22 0.22 0.35 0.56 102.6

NSMI 0.43 0.95 0.57 0.51 0.56 0.7 0.86 | 102.89

CMDMI | 0.13 0.65 0.25 0.21 0.22 0.34 0.55 | 102.57
NSGAIIMI| 0.18 0.69 0.29 0.26 0.25 0.37 0.58 | 102.64
SPEA2MI | 0.32 0.84 0.43 0.41 0.38 0.48 0.73 | 102.93

ae =0.9 3.8 149.88 [12.21 35.13 17.51 55.31 358.04 | 19243.5

ae =05 | 3.19 121.51 8 34.31 15.42 48.66 256.17 | 18443.4

NSE 0.84 36.62 1.89 6.32 2.68 5.79 26.32 | 1395.02

CMDE 0.77 32.46 17 6.24 2.48 5.35 23.57 | 1463.54
NSGAIIE | 0.93 36.02 2.06 4.36 1.71 5.53 17.78 | 1540.08

SPEA2E | 0.84 27.41 1.73 5.63 2.14 4.36 22.79 | 1779.22

6.4.7 Comparisons Between Mutual Information and En-

tropy

Comparing the mutual information measure with the entropy measure, the
figures show that NSE, CMDE, NSGAIIE and SPEA2E using the entropy
measure usually achieved better classification performance than NSMI,
CMDMI, NSGAIIMI and SPEA2MI using the mutual information mea-
sure. The main reason is that the entropy measure can discover the multiple-
way relevancy and redundancy among a group of features to search for a
subset of complementary features.

The number of features selected by entropy based algorithms is rela-
tively large because the evaluation is based on a group of features (instead
of a pair of features in mutual information based algorithms “-MI”). How-
ever, the number of features in the proposed multi-objective algorithms is
always smaller than the single objective algorithms, which shows that they
can explore the search space more effectively to minimise the number of
features. The algorithms using the entropy measure can utilise their search
ability and the discover multiple-way relevancy to reduce the number of

features and simultaneously increase the classification performance.
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6.4.8 Comparisons on Computational Time

Table 6.1 compares the average computational time used by the two single
objective algorithms (PSOMI with «,,; = 0.5 and «,,; = 0.9 and PSOE with
a. = 0.5 and a. = 0.9), and the eight multi-objective algorithms for the
evolutionary training process, where the time is expressed in seconds.

According to Table 6.1, it can be seen that on average, all the mutual
information based multi-objective algorithms, NSMI, CMDMI, NSGAIIMI,
and SPEA2M]I, can finish the evolutionary training process within 1 sec-
onds except for the Connect4 dataset. The multi-objective algorithms and
the single objective algorithms (PSOMI with «,,,; = 0.5 and o,,,; = 0.9) have
a similar computational cost. The Connect4 dataset usually used much
longer time than other datasets because it has a much larger number of
instances (44473) than other datasets.

According to Table 6.1, when using the entropy measure, all the multi-
objective algorithms, NSE, CMDE, NSGAIIE, and SPEA2E, can finish the
evolutionary training process within 40 seconds except for the Connect4
dataset. There is no much difference between the time used by the multi-
objective algorithms. The single objective algorithm (PSOE with a, = 0.5
and a,. = 0.9) used much longer time than the multi-objective algorithms,
which is more than 10 times longer on the Chess dataset. The reason is
that the number of features in the multi-objective algorithms is directly
counted as one objective, which needs a much shorter time than the re-
dundancy measure Red. in the fitness function in PSOE. Clearly, the en-
tropy based algorithms used a longer time than the mutual information
based algorithms. The main reasons are the same as discussed in Chapter
5 on Page 151.

6.4.9 Selected Features

In order to show the stability of the multi-objective algorithms, it is nec-

essary to analyse the features selected by each algorithm in different runs.
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Table 6.2: Percentage of Appearance for the Chess Dataset.

SPEA2E |68|12(31(48|27|79|61(0 [10(94|53|6 |7 |4 |75|49|55(32]0 (29|99 [10(58|24|14|8 (350 |0 |39|23(22|88

65|78

Feature 12314156 |7 (8|9 |10|11|12{13|14|15|16(17|18|19|20|21 (22|23|24|25|26(27|28|29|30(31|32|33|34|35|36
NSMI 53|54|53|50(52(43|52|47|55(50(52|46|52|50(50(58|50|47 |57 (49|50 |47|45|42|46|52|46|47|45(51|47|51|51|51(56|42
CMDMI [19|19(30{20|21|58|54(81{29|91|30|17|37|26|74|64|18|63|23|18|95 |38(30(25|20|20|45(19|59|22|47|75(90|25|56|17
NSGAIIMI|14|10(30{14|15|52|52|80(31|93|33|11|36(32|67|59|16(59(22|14|100|39(37|22|18|19 |43 |18|54|24|47|73|87|26|50|14
SPEA2MI |7 |1 (39]3 |5 |69|66(89(36|96]42|1 |49(32|82|76|5 |79]19|1 |100|52(46|22|12|14|56(2 |72|26|59|86(92|29|62|1

NSE 52|48|52|43(55|50(53|52|58(52|48|46|50(42154|50|51|53|55|53|49 |51|49(49|48|55|51|55(49|52|46|52(49(54|50(51
CMDE 65(27|25|43|34(78|60(18|28|92(46|26|30|21|77|45|42|39|16|35(95 |27|57|34(18|28|35|17|19(29|25|42|91|60(79|31
NSGAIIE |60(5 [34|41|29|73(51|1 |4 |93|52(12|12|5 |69|40{44|35|2 |28|100(6 [49|26|17|16(30|4 |1 |33|21|26|87|54|73|22

13

In the 40 independent runs, each algorithm returns a number of feature
subsets, which usually include different individual features. We take the
Chess dataset as an example to analyse the selected features and the other
datasets show a similar pattern. Table 6.2 shows the appearance percent-
age of each feature, where 100 means the corresponding feature appear-
ances in all the solutions achieved over the 40 runs and 0 means the corre-
sponding feature has never been selected by the algorithm.

Table 6.2 shows that the multi-objective algorithms (except for NSMI
and NSE) are quite stable across different independent runs, where the
most important feature is always selected. For the mutual information
based algorithms, Features 21, 33, 10 and 8 are the most frequently se-
lected features and have much higher percentages than other features, e.g.
Feature 12. For the entropy based algorithms, Features 21, 10, 33 and 6
are the most frequently selected features. There are no such features in
NSMI and NSE, which indicates that NSMI and NSE are not as stable as
other algorithms. This is consistent with the results shown in the previous
sections, where the performance of other multi-objective algorithms are
better than that of NSMI and NSE.

6.4.10 Further Discussions

In the figures, the solutions used in the charts are the Pareto front solu-

tions obtained using the filter evaluation criteria, but their classification
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performances shown in the figures was evaluated by DT on the test sets.

As can be seen in the figures, some solutions in the average front (rep-
resented by “-A”) dominate others although they are non-dominated so-
lutions in the filter evaluation criterion space. This shows that the Pareto
front in the filter evaluation criterion space does not necessarily involve
the same subsets as the Pareto front in the DT-based evaluation space.
Even the true Pareto front achieved by exhaustive search in the two filter
evaluation criteria objective space may not correspond to the true Pareto
front of using DT-based evaluation space.

The main reason is that the goodness of a feature subset evaluated by
mutual information or entropy on the training set does not necessarily show
its exact classification performance. Feature subsets with the same (bet-
ter or worse) filter goodness do not necessarily achieve exactly the same
(better or worse) classification performance evaluated by DT. For example,
two feature subsets may have the same number of features, but different
combinations of individual features. These two feature subsets may have
the same goodness values evaluated by the filter evaluation criterion on
the training set. So they are non-dominated to each other. However, when
using DT (or any other learning/classification algorithm) to evaluate their
classification performances on the unseen test set, their classification per-
formances may be (slightly) different. The feature subset with better classi-
tication performance will dominate the other one. This is also the case for
other filter criteria and other learning/ classification algorithms. There-
fore, the Pareto front in the filter evaluation criterion space are usually not
the same as the Pareto front in the DT-based evaluation space.

6.5 Chapter Summary

This chapter presents the first study on using PSO, NSGAII and SPEA2 for
filter based multi-objective feature selection. Two multi-objective PSO (i.e.
NSPSO and CMDBPSO), NSGAII and SPEA2 were investigated to pro-
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pose four multi-objective feature selection frameworks. Based on the mu-
tual information measure and the entropy measure, eight multi-objective
filter feature selection algorithms were developed by using the two mea-
sures in each of the four frameworks.

This chapter shows that all the multi-objective algorithms successfully
evolved a set of feature subsets with a smaller number of features and bet-
ter classification performance than using all features, and outperformed
the single objective algorithms, PSOMI and PSOE. The NSPSO based al-
gorithms achieved slightly worse performance than other multi-objective
algorithms. The main reason is the updating mechanism in NSPSO is less
effective in terms of maintaining the diversity of the population and avoid-
ing premature convergence, which are particularly important in feature
selection tasks. The algorithms based on CMDPSO, NSGAII and SPEA2
achieved similar results, especially on the datasets with a relative small
number of features. On the datasets with a relative large number of fea-
tures, the CMDPSO based algorithms obtained the best classification per-
formance, which shows that it has a potential to achieve better perfor-
mance than other algorithms.

From Chapter 3 to Chapter 6, we have investigated four different types
of feature selection algorithms, which are wrapper based single objective
approaches, wrapper based multi-objective algorithms, filter based single
objective algorithms, and filter based multi-objective algorithms. In the
next chapter, we will further compare and investigate different types of
feature selection algorithms to examine their advantages and disadvan-

tages.
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Chapter 7

Discussions

7.1 Introduction

Chapters 3-6 present four different types of feature selection algorithms,
which are single objective wrapper algorithms, multi-objective wrapper
algorithms, single objective filter algorithms, and multi-objective filter al-
gorithms. In this chapter, we will further compare and discuss these four
types of feature selection algorithms. The structure of this chapter is shown
by Figure 7.1.

Wrapper and filter approaches are argued to have their own advan-
tages and disadvantages. Wrappers can achieve better classification per-
formance than filters, but filters are computationally less expensive and
more general than wrappers. However, no thorough investigations have
been made on how much difference there probably is between the two
approaches in terms of the classification performance and the computa-
tional cost. Therefore, we will compare wrapper algorithms with filter al-
gorithms in terms of the classification performance and the computational
cost.

Wrapper approaches employ a learning/classification algorithm dur-
ing the feature selection process. Therefore, they are argued to be less
general than filter approaches, i.e. the features selected by a wrapper al-

193
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Introduction
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Figure 7.1: Overall Structure of Chapter 7.

gorithm can not achieve good performance when used with other classifi-
cation algorithms. However, no investigation has been conducted to test
this statement. In Section 7.3, we will investigate the generality of wrapper
algorithms.

In Chapters 4 and 6, direct comparisons have been made between sin-
gle objective algorithms and multi-objective algorithms. In Section 7.4,
further discussions will be conducted to investigate the advantages of
a multi-objective approach compared with a single objective approach.
Meanwhile, the results of the multi-objective algorithms were presented
in two ways, which are the “average front” and the non-dominated front.

The difference between these two ways will be discussed in Section 7.5.

7.2 Wrappers VS Filters

Design of Experiments.

Four wrapper approaches and four filter approaches are used as exam-
ples to compare the computational time and the classification performance

of wrappers and filters. The four wrapper algorithms are shown as “W-
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SVM”, “W-KNN”, “W-DT”, and “W-NB” and the four filter algorithms are
shown as “F-M1”, “F-E”, “F-RS”, and “F-PRS”.

“W-SVM”, “W-KNN”, “W-DT”, and “W-NB” use SVM, KNN, DT and
NB to evaluate the classification performance (goodness) of the selected
features during the evolutionary feature selection (training) process, re-
spectively. The fitness function of the four wrapper algorithms contains
the classification performance only (W-KNN is the same as PSOFS in Chap-
ter 3). The settings of the four wrapper algorithms are the same as PSOFS
described in Section 3.3 on Page 83. F-MI and F-E represent PSOMI and
PSOE proposed in Chapter 5 without any weights in the fitness functions
(Equations 5.3 and 5.6 on Page 137). The settings of F-MI and F-E are also
the same as described on Page 142. F-RS and F-PRS are two PSO and rough
set theory based filter feature selection algorithms, which were proposed
in our recent paper [178]. F-RS is based on PSO and standard rough set
theory and F-PRS is built on PSO and probabilistic rough set theory [179].
The fitness function aims to maximise the relevance measure, which rep-
resents the classification performance. The settings of F-RS and F-PRS are
similar to that of F-MI and F-E and more detailed description can be seen
in [178].

All the four filter algorithms only work for discrete / categorical datasets
and the available discrete datasets have a relatively small number of fea-
tures. Therefore, the Hillvalley and Madelon datasets, which are contin-
uous datasets, were discretised in the experiments and used as the repre-
sentative examples of datasets with a large number of features to test the
classification performance and computational time of wrapper approaches
and filter approaches. In total, 12 datasets chosen from UCI machine learn-
ing repository [25] were used in the experiments, where the details of the
datasets can be seen in Table 1.1 on Page 16. All the algorithms are firstly
run on the training set to obtain a good feature subset. Note that during
the evolutionary feature selection (training) process, each evaluation in a

wrapper approach involves a classification process that needs a training
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set and a test set [5]. Therefore, for all the wrapper algorithms, the train-
ing set is further split into a sub-training set and a sub-test set. The reason
for this is described in detail in [5]. Note that the results of W-SVM on the
Madelon dataset is not available because it could not finish the running
process within one week, which is shown as “N/A” in the figures.

7.2.1 Computational Time

Figure 7.2 shows the computational time of the four wrapper algorithms
and the four filter algorithms. Each chart in the figure corresponds to one
of the twelve datasets used in the experiment. The numbers in the bracket
shows the number of features and the number of instances included in the

dataset.

Computational Time of Wrappers

W-SVM. According to Figure 7.2, it can be seen that W-SVM used longer
time than other methods in most cases. As a wrapper approach, each eval-
uation in W-SVM needs a training and testing classification process of a
SVM to evaluate the goodness of the selected features. The SVM used here
is the library (LIBSVM) developed by Chang and Lin [180], which involves
anumber of iterations and a cache method during the training of LIBSVM.
The time complexity of LIBSVM is between O(n * p*) and O(n x p*), where
n is the number of features and p is the number of instances. The computa-
tional time depends on how efficiently the cache method is used (dataset
dependent) and the number of iterations. There is no theoretical analysis
on the number of iterations needed in LIBSVM. Empirically, the number
of iterations may be higher than linear to the number of training instances
[180]. Therefore, LIBSVM may take very long time for large datasets. For
the Madelon dataset with 500 features, W-SVM could not finish the evolu-
tionary feature selection (training) process within one week. The possible
reason is that on Madelon with a large number of features, the number of
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iterations needed for LIBSVM is huge and the cache method was not able
to be used efficiently. Another reason for LIBSVM using longer time than
other wrapper algorithms is that W-SVM selected a larger number of fea-
tures than the other algorithms. A large number of features need longer
computational time for each evaluation/classification than a smaller num-
ber of features.

W-KNN. Inmost cases, the computational time used by W-KNN is shorter
than W-SVM, but longer than other algorithms, especially on the datasets
with a large number of instances. The main reason is that in the classifi-
cation process of KNN, each instance in the sub-testing set is compared
with all the instances in the sub-training set to determine its class label.
The time complexity for each testing instance is around O(n * p) [181]. If
there are ¢ instances in the sub-testing set, the time complexity of KNN is
O(n * p x q). Therefore, the increase of the number of instances causes a
significant increase in the computational time of W-KNN.

From Figure 7.2, it can be observed that the computational time used
by W-KNN is significantly influenced by the number of instances while
that of W-SVM is significantly influenced by the number of features in
the datasets. For example, the Mushroom and the Spect datasets have
the same number of features, but different numbers of instances. W-KINN
spent a shorter time than W-SVM on the Spect dataset with a smaller num-
ber of instances, but spent a longer time than W-SVM on the Mushroom
dataset with a larger number of instances. By contrast, the Chess and
Splice datasets have a similar number of instances, but different numbers
of features. W-SVM spent a shorter time than W-KNN on the Chess dataset
with a smaller number of features, but W-SVM spent a longer time than
W-KNN on the Splice dataset with a larger number of features. On the
Madelon dataset with the largest number of features, W-SVM even could

not finish the feature selection process within one week.
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W-DT and W-NB. According to Figure 7.2, the computational time of
W-DT and W-NB is shorter than that of W-SVM and W-KNN in almost all
cases. The main reason is that the time complexity of DT and NB, which
are around O(n? x p) [actually for C4.5] [182] in DT and O(n x p) in NB, is
less than that of KNN and SVM on these datasets. The number of features
influences more in W-DT than in W-NB. Therefore, on the datasets with a
large number of features, i.e. Hillvalley and Madelon, W-NB is faster than
W-DT.

Computational Time of Filters

F-MI. As can be seen from Figure 7.2, the computational time used by
F-MI is the shortest in all datasets. F-MI as a filter approach does not in-
volve any classification process during the evolutionary feature selection
process. The mutual information based fitness function of F-MI (shown
by Equation 5.7 on Page 139) takes very short time to calculate. Mean-
while, the calculation of the possible mutual information between each
feature and the class labels, and the possible mutual information between
each pair of features, only needs to be performed once for each dataset
before the evolutionary process. During the evolutionary feature selection
process, the calculation of the fitness only needs to refer to these values.
Therefore, F-MI is fast for all the datasets used in the experiments.

F-E. As can be seen from Figure 7.2, the computational time used by F-E
is longer than F-MI in all cases and longer than F-RS and F-PRS on datasets
with a large number of features. The main reason is that the fitness func-
tion (Equation 5.8 in Page 139) of F-E is more complex than the fitness
function used in F-MI. The complexity of the fitness function in F-E in-
creases rapidly along with the number of features selected. Therefore, on
the datasets with a relatively small number of features, F-E is often faster
than F-PR and F-PRS, but on the datasets with a large number of features,
F-E is usually slower than F-RS and F-PRS.
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F-RS and F-PRS. According to Figure 7.2, there is no much difference
between the time used by F-RS and F-PRS. The main reason is that the
calculation of the standard rough set based measure in F-RS is similar to
that of the probabilistic rough set based measure in F-PRS. The only differ-
ence is that probabilistic rough set (F-PRS) determines equivalent classes
based on a threshold while the standard rough set (F-RS) does not have
any threshold. F-PRS used a shorter time than F-RS on some datasets be-
cause F-PRS selected a smaller number of features than F-RS. The calcula-
tion of the measures in both F-RS and F-PRS is significantly influenced by
the number of instances. Therefore, on the datasets with a relatively small
number of instances, F-RS and F-PRS is faster than F-E, but on the datasets
with a large number of instances, F-RS and F-PRS is slower than F-E.

Comparisons Between Filters and Wrappers

According to Figure 7.2, it can be seen that wrapper algorithms using SVM
and KNN spent longer time than all other algorithms. Wrappers using DT
and NB used similar or even shorter time than filter algorithms in some
cases, such as on the Chess dataset and the Madelon dataset. When the
number of features increases, the computational time used by W-SVM, W-
DT and F-E increased more than other algorithms. When the number of
instances increases, the computational time used by W-KNN, F-RS and
F-PRS increased more than other algorithms. Overall, F-MI (filter) is al-
ways the fastest algorithm regardless of the number of features and the
number of instances. For wrapper algorithms, when the number of fea-
tures is large, the fastest wrapper algorithm is W-NB. When the number
of instances is small, one can choose the wrapper algorithm W-DT.

7.2.2 Classification Performance

Figure 7.3 shows the classification performance of the four wrapper al-

gorithms and the four filter algorithms. In the wrapper approaches, the



201

WRAPPERS VS FILTERS

7.2.

Mushroom

Lymph

raN-M

ria-m

r NNM-M

rWAS—-M

100 -

T T
0 o
» &

T T T T
v 9 W O W
¥ ® N K ©

(%) Aoeinooy

raN-m
rlda-m
r NNM-M

r NAS—-M

754

o
o

901
851

(%) Aoeinooy

Leddisplay

Spect

rSdd—d

°FSd—d

ra—d

AR

raN-M

rld-m

r NNM-M

rWAS—-M

100

T T T T
© © < [
> =3 =3 >

(%) Aoeinooy

T
=
&

rSdd—d

rsd-d

ra—d

AR

b
[T}

-

raN-m
rla-m
r NNM-M

rNAS—-M

o
@

') o 0
N~ ~ ©

(%) Aoeinooy

o
@

Statlog

Dermatology

irsdd—4
- sd-d
t3-4 i

rIN-d

4 rsdd—d

ESERE]
rad

rInN-d

A._ raN-m

Soybeanlarge

Fia-m
] F NNS-M
| F WAS—M

—_—

—_——

raN-M

rid-m

r NNM-M

rWNAS—M

T T T T T
¥ 9 9 @ @
> o & ®© ®

96
100

(%) Aoeinooy

854

T T
[t} =3
o &

(%) Aoeinooy

rSdd—d
S E]
: ra-d

rIN-4

rSdd—d

S RE]

ra-d

rin-4

Waveform

raN-m
rla-m

-~ F NNM-M

F NAS-m |

raN-m
rla-m
r NNM-M

r WAS-M

90

© © <
3 > o

(%) Aoeinooy

751

0 o
@ o

(%) Aoeinooy

Splice

Chess

rSdd—d
SERE]

ra-d

rInN-d

raN-M

rid-m

r NNM-M

rWAS—M

T
o
&

60
504

T T
= o
@ ~

(%) Aoeinooy

4 - Sdd—d

4 - Sd-d

ra-d

rInN-d

4 FaN-M

rla-m
r NNM-M

r WAS-M

(%) Aoeinooy

Madelon

Hillvalley

804

= =3 o
@ <+ [

(%) Aoeunooy

=

==

rSdd—d
rsd-d
ra-d

AR

raN-Mm
rld-m
r NNX-M

rWAS—-M

rSdd—d
rsd-d
ra-d

AR

raN-m
rla-m
r NNM-M

rWAS—-M

100

=}
>

=3 o
@ ~

(%) Aoeinooy

=3
@

=}
0

Classification Performance.

1SONs on

Compar

Figure 7.3



202 CHAPTER 7. DISCUSSIONS

classification performance is evaluated by the internal classification algo-
rithm used during the evolutionary feature selection process, e.g. the clas-
sification performance of the features selected by W-KNN is evaluated by
KNN. All the classification algorithms can be used to evaluate the classifi-
cation performance of the four filter algorithms. Filter approaches do not
involve any classification process during the evolutionary feature selec-
tion process. Therefore, SVM with which W-SVM achieved better perfor-
mance than others is used to test the classification performance to slightly
bias the four filter algorithms. The performance of using other classifica-
tion algorithms is often similar or slightly worse than that of SVM, which

is not presented here.

As can be seen in Figure 7.3, in almost all cases, the best classification
performance is achieved by one of the wrapper approaches. The worst
classification performance is achieved by one of the filter approaches. For
the four filter algorithms, the performance of F-MI and F-E are better than
that of F-RS and F-PRS. F-E is slightly better than F-MI because the fitness
function of F-E considers the selected features as a whole group rather
than each pair of features in F-MI. All the four wrapper algorithms achieved
almost the same performance on the Leddisplay dataset. W-SVM achieved
better performance than the other three algorithms on 5 of the 11 datasets
(except for Leddisplay). This number is 2 for W-KNN, 2 for W-DT, and
2 for W-NB. Clearly, different classification algorithms perform better on
different datasets, depending on characteristics of the algorithm and the
data itself. The choice of the best classification algorithm for a certain type
of data is beyond the scope of this thesis, but the results here show that
any of the four wrapper algorithms can be used for feature selection to

obtain reasonable good classification performance.

Overall, considering both the classification performance and the com-
putational cost, if users have enough time, wrapper approaches W-SVM
and W-KNN are good choices. If the demand of users is more on the com-

putational time than the classification performance, it is better to use a
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filter algorithms, such as F-MI. Meanwhile, if users need to avoid poor
classification performance, fast wrapper algorithms, such as W-DT and
W-NB, are good choices.

7.2.3 Further Comparisons

This section further investigates the individual features selected by the
eight different algorithms (i.e. W-SVM, W-KNN, W-DT, W-NB, F-MI, F-
E, F-RS and F-PRS) to test their consistency. Figure 7.4 takes the Chess
dataset as an example to show the number of appearance of each individ-
ual feature over the 40 independent runs in the eight algorithms, where
each chart corresponds to one of the eight algorithms. In each chart, the
vertical axis shows the frequency of the feature being selected, where 40
means that the feature was selected in all the 40 independent runs while 0
means the feature was never been selected. The horizontal axis shows the
index of all the 36 features in the Chess dataset.

Figure 7.4 shows that the eight algorithms selected different numbers
of features. For example, W-NB and F-MI usually selected a relatively
small number of features while F-RS and F-PRS usually selected a rela-
tively large number of features. This is mainly because they used different
criteria to evaluate the quality of the feature subsets, where the best feature
subset for one criterion may not be the best feature subset for another cri-
terion. Meanwhile. Figure 7.4 also shows that all the eight algorithms con-
sistently selected Features 10, 21 and 33 on all their 40 independent runs.
These three features may be the “core” features of the Chess dataset and
all the eight algorithms selected them. The detailed results also reveal that
they selected other different individual features. This is due mainly to the
feature interaction problem, where some other different (complementary)
features are needed to work together with such “core” features to optimise
their fitness functions, which are based on different criteria.

The other datasets show a similar pattern to the Chess dataset, i.e.
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there are always some “core” features selected by all the eight algorithms
and also some different complementary features selected by different algo-
rithms. The further investigation of “core” features and feature interaction
in different datasets may require domain knowledge and we will work on

it in future.

7.3 Generality

This section tests the generality of four wrapper algorithms, i.e. W-SVM,
W-KNN, W-DT, and W-NB. The classification performance of the features
selected by a wrapper algorithm is tested using all the four classification
algorithms, i.e. SVM, KNN, DT and NB. The datasets that were used in
Chapters 3 and 4 (i.e. wrapper approaches) are used in the experiments in
this section.

The experimental results are shown in Table 7.1. In order to make the
results easy to observe, the detailed classification performance are not pre-
sented. Only the results of the statistical significance tests between the
classification performance of the selected features and that of all features
are shown in the table. The pairwise Student’s T-test [171] with a signifi-
cance level of 0.05 (or confidence interval of 95%) was performed here. In
the table, “+” (or “-”) means the classification performance of the selected
feature subsets is significantly better (or worse) than using all features. “="
means they are similar to or not significantly different from each other. The
last row summaries the total number of datasets where the classification
performance of a classification algorithm is similar or significantly better
than using all features. In a few cases, the classification algorithm could
not obtain any results because of either the code threw a no pointer er-
ror or the dataset is too big and the evolutionary feature selection process
could not finish within two days, which happens more when using SVM.
These cases are indicated by empty cells in the table.

According to Table 7.1, when using KNN during the evolutionary fea-
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ture selection process, KNN itself using the selected feature subsets in-
creased or maintained the classification performance on 13 out of the 14
datasets. On 7 of the 14 datasets, the classification performance of NB, DT
and SVM were maintained or improved overing using all features. The
results show that W-KNN benefits KNN itself more, but it also benefits
other classifiers. The main reason is that KNN is very simple, which has a
small probability to overfit the problem.

When using NB during the feature selection process, NB itself using the
selected feature subsets increased or maintained the classification perfor-
mance on 8 of the 13 datasets (no results obtained for the Isolet5 dataset).
The classification performance of KNN, DT and SVM were maintained
or increased overing using all features on 8, 9 and 6 out of the 13 cases,
respectively. The results show that W-NB benefits NB itself more than oth-
ers. Although the total number of “+” and “=" for DT is 9 and larger than
that of NB (8), 7 of these 9 cases is “=", which means the classification
performance of DT using the feature selected by W-NB is similar to that
of all features. The possible reason is that NB assumes the features are
conditionally independent to each other and it is easy to select a group of
individually good features but not complementary features. Such features
usually contains most of the useful information of the original features,

but may also have redundancy.

When using DT during the feature selection process, as can be seen
from Table 7.1, the classification performance of DT, KNN, NB and SVM
were the similar or increased over using all features on 6, 7, 7 and 6 of the
13 datasets, respectively. When using SVM during the feature selection
process, the classification performance of SVM, KNN, NB and DT were the
same or increased over using all features on 4, 7, 5 and 4 of the 9 datasets

with available results, respectively.

Overall, the results show that wrapper approaches can be reasonably
general. Wrappers using a relatively simple classification algorithms, e.g.
KNN and NB, can be general to different classification algorithms. Wrap-
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Table 7.1: Classification Performance Compared with All Features
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pers using a relatively complicated classification algorithm, e.g. DT and
SVM, are less general than using KNN and NB. The possible reason is
that the complicated classification process of DT and SVM may select fea-
tures that are particularly suit themselves. The classification performance
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of SVM can be increased by features selected resulted from W-KNN and
W-NB, which is faster and even better classification performance than W-
SVM. Meanwhile, SVM as a complicated algorithm using either all fea-
tures or the selected features usually obtains high classification perfor-
mance and the best classification performance is often achieved by SVM.
Therefore, if users want to reduce the number of features but still achieve
high classification performance, it is good to use W-KNN and W-NB to

select features and use SVM for classification on the unseen test set.

7.4 Single Objective VS Multi-Objective

Chapters 4 and 6 have presented the direct comparisons between single
objective algorithms and multi-objective algorithms. The results show that
the multi-objective approaches can discover multiple and better solutions
than the single objective algorithms. In this section, we further compare
the evolutionary feature selection process of single objective and multi-
objective algorithms. The best wrapper based single objective algorithm
PSOIniPG developed in Chapter 3 and the best multi-objective algorithm
CMDPSOFS developed in Chapter 4 are used as the representative meth-
ods for analysis.

Table 7.2: Computational Time (In minutes)
Method |Wine|Australian|Zoo|Vehicle| German| WBCD |Ionosp |Lung|Hillvalley|Musk1|Madelon|Isolet5
PSOIniPG | 0.21 257 10.07| 6.02 9.37 2.07 | 0.71 |0.02 14.6 722 | 651.88 |247.12
CMDPSOEFS| 0.25 4 0.09| 6.59 9.3 271 | 1.54 [ 0.01 | 2349 6.02 | 394.45 (200.71

7.4.1 Computational Time.

Table 7.2 shows the computational time used by PSOIniPG and CMDP-
SOFS. As wrapper approaches, most of the computational time is spent on
the evaluation of the selected feature subsets, which involves a classifica-

tion process and depends mainly on the number of features in a certain
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dataset. From Table 7.2, it can be observed that on the datasets with a
relatively small number of features, both PSOIniPG and CMDPSOEFS fin-
ished the evolutionary training (feature selection) process within 25 min-
utes. CMDPSOFS often used slightly longer time than PSOIniPG on such
datasets. The main reason is that there is no significant difference between
the evaluation time (depending on the number of selected features) used
by PSOIniPG and CMDPSOFS. Meanwhile, CMDPSOEFS involves addi-
tional procedures related to the multi-objective mechanism, which takes
a slightly longer time than PSOIniPG. However, on the large datasets,
i.e. Madelon and Isolet5, CMDPSOFS used a much shorter time than
PSOIniPG. The main reason is that CMDPSOFS selected a much smaller
number of features than PSOIniPG on these datasets, which needs a much
shorter time for each evaluation during the evolutionary feature selection

process.

7.4.2 Evolutionary Process.

The number of features selected by PSOIniPG is larger than CMDPSOFS
due mainly to its single objective updating mechanism. Although PSOIniPG
considers both the classification performance and the number of features
during the evolutionary process, the classification performance is treated
as the priority. When available, PSOIniPG will search toward the area
of the solution space with a low classification error rate regardless of the
number of features.

Figure 7.5 shows the change of the classification error rate and the
number of features selected by gbest during a single evolutionary process
of PSOIniPG on the Madelon dataset. The horizontal axis show the num-
ber of iterations from 1 to 100. Since the total number of features is 500,
which is much larger than the error rate in [0, 100], the numbers of features
are divided by 5 to scale the range to [0, 100] and shown by the vertical

axis.
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Figure 7.5: The number of features and the classification error rate of gbest

in PSOINiPG during the evolutionary feature selection process.

According to Figure 7.5, it can be seen that the error rate of gbest al-
ways became smaller and smaller since the classification performance is
the fitness function (the priority). The number of features fluctuated be-
cause gbest was updated whenever the error rate became smaller, but the
number of features might be larger. The blue points in the red line shows
the solutions that are non-dominated to each other and dominate all other
solutions of gbest during the evolutionary process. Since the single ob-
jective mechanism only keeps one single solution, only the solution with
the lowest classification error rate was returned by PSOIniPG. Note that
PSOIniPG selected smaller feature subsets than other single objective algo-
rithms (see Chapter 3 on Page 99) because PSOIniPG considers the number
of features in the pbest and gbest updating procedure. For other single ob-
jective algorithms, there are more (non-dominated) solutions like the blue
points found during the evolutionary process, but none of them were kept
and reported by the algorithm.

Figure 7.6 shows the non-dominated solutions found by CMDPSOFS
and all the non-dominated solutions found by PSOIniPG (i.e. the blue
points in Figure 7.5). It can be seen that the solutions of CMDPSOFS have
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Figure 7.6: The solutions obtained by CMDPSOFS and PSOIniPG.

a smaller number of features and a lower classification error rate than
that of PSOIniPG. This is due mainly to the multi-objective mechanism
in CMDPSOEFS, where the non-dominated solutions obtained during the
evolutionary process are kept as potential leaders (gbest) to guide the al-
gorithm to search around to find better solutions with smaller numbers of
features and higher classification performance. Meanwhile, CMDPSOFS
returns multiple solutions, which provide more choices than PSOIniPG.

7.5 “Average Front” VS Non-dominated Front.

In Chapters 4 and 6, the results of the multi-objective algorithms were pre-
sented in two ways, which are the “average front” and the non-dominated
front, see the results in Figure 4.2 on Page 120 and Figure 6.3 on Page
173. As stated previously, the results from the 40 sets of feature subsets
achieved by one multi-objective algorithm from the 40 independent runs
are firstly combined into one union set. The classification error rates of the
feature subsets with the same number of features (e.g. m) are averaged
and presented as the “average front”. The non-dominated solutions in the
union set are presented as the non-dominated front.
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Both the “average front” and the non-dominated front can show the
performance of a multi-objective algorithm, but the non-dominated front
is a more appropriate way to present the results in feature selection tasks.
There are two main reasons. The first reason is that a solution in the “aver-
age front” is not necessarily a complete/meaningful solution for a feature
selection task. Each average solution is formed by the number m and the
average classification error rate of all feature subsets of size m in the union
set. However, feature selection problems do not only involve the number
of features and the classification performance, but also involve the selected
individual features. There can be many feature subsets with m features,
but with different combinations of m features. So strictly speaking, the
combinations of different individual features can not be averaged. There-
fore, the solutions in the “average front” is not a complete solution and
should not send to users. The second reason is that the non-dominated
front involves a simple further selection process, which provides a bet-
ter set of non-dominated solutions to users. By selecting only the non-
dominated solutions from the union set, the non-dominated front usually
has a small number of solutions and the solutions usually have a smaller
number of features than the “average front” solutions. It therefore pro-
vides fewer but better solutions to the users and reduces their cost for se-
lecting a single solution. Meanwhile, each solution in the non-dominated
front is a complete solution of a feature selection problem. Multiple so-
lutions with the same number of features and the same classification per-
formance are presented at the same point in the figures, but all of them
are complete/meaningful solutions. Therefore, for a certain feature num-
ber m, the non-dominated front could provide different combinations of
individual features to users.

Accordingly, the non-dominated front is more appropriate than the
“average front” to show the performance of a multi-objective feature se-
lection algorithm.



7.6. SUMMARY 213

7.6 Summary

This chapter investigated four issues in feature selection. The first one
is the comparisons on the classification performance and computational
time of wrapper approaches and filter approaches. The second one is the
generality of wrapper approaches. The third one is the discussions on the
advantages of multi-objective feature selection algorithms over single ob-
jective algorithms. The fourth one is the difference between the “average”
front and the non-dominated front.

Wrapper approaches are argued to be computationally more expensive
and can achieve better classification performance than filter approaches.
This chapter shows that when using NB or DT in a wrapper algorithm,
it can be computationally cheaper than a filter algorithm with a complex
measure such as rough set based measures. Meanwhile, because of the in-
teraction between features and a certain classification algorithm, wrapper
algorithms are often reasonable good in terms of the classification perfor-

mance, although not always better than filter approaches.

Wrapper approaches are also argued to be lack of generality. This chap-
ter shows that wrappers using a simple classification algorithm, e.g. KNN
and NB, during the feature selection process are often general to other
classification algorithms. Wrappers using a relatively complicated classifi-
cation algorithm, e.g. SVM, are usually not general to other algorithms be-
cause SVM involves a complicated classification process and the features
selected are more specifically suitable to itself rather than other classifica-
tion algorithms.

This chapter also shows that the multi-objective mechanism is a more
appropriate way than the single objective mechanism for feature selection
tasks. Single objective algorithms only keep one single solution gbest to
guide the search, which is more likely to become stuck in a local optima.
Multi-objective algorithms keep the non-dominated solutions found dur-
ing the evolutionary process, which are used as potential leaders to guide
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the algorithm to search around and find better solutions.

Finally, this chapter discusses the differences between the “average”
front and the non-dominated front in multi-objective algorithms. It shows
that the non-dominated front is a better way to present the results of a
multi-objective feature selection approach because it has a further selec-
tion process and all solutions it provides are complete/meaningful solu-
tions.

Overall, this chapter shows that wrapper algorithms can be faster than
(some) filter approaches and general to different classification algorithms.
If users have a high demand on the computational time and also need to
avoid poor classification performance, a filter algorithm (like F-MI) and
a fast wrapper algorithm (W-DT or W-NB) can be good choices. If users
have a high demand on the classification performance, a fast classifica-
tion algorithm (i.e. NB) can be used in a wrapper to select features, and
the selected features can be used with SVM for classification. Meanwhile,
a multi-objective algorithm is a better choice than a single objective al-
gorithm and it is better to examine the performance of a multi-objective

algorithm using the non-dominated front than the “average” front.



Chapter 8
Conclusions

This thesis focuses on PSO for feature selection in classification problems.
The overall goal was to investigate and improve the capability of PSO for
feature selection by developing a new PSO based approach to feature se-
lection for reducing the number of features and achieving similar or even
better classification performance than using all the original features. This
goal was successfully achieved by developing a number of new meth-
ods using PSO to automatically evolve one or more feature subsets with
a small number of features and maintain or even increase the classifica-
tion performance. The proposed methods were examined and compared
with existing methods on a range of classification problems of varying dif-
ficulty. The results show a clear pattern that PSO can be effectively used
for feature selection and dimensionality reduction in classification.

The rest of this chapter provides conclusions for each of the research
objectives of this thesis and gives main findings and highlights from each
individual chapter, and then presents potential research areas for future

work.

8.1 Achieved Objectives

This thesis has achieved the following research objectives:
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e Proposes new initialisation and new updating mechanisms in PSO

for single objective wrapper feature selection. The proposed initiali-
sation method simulates both the traditional forward and backward
tfeature selection methods to utilise their advantages and avoid their
disadvantages. The proposed pbest and gbest updating mechanism
considers the number of features, which avoids the limitation of the
original updating mechanism, i.e. missing the small feature subset
with high classification performance. By combining the new ini-
tialisation and updating mechanisms, the proposed PSO based al-
gorithm can significantly reduce the number of features, improve
the classification performance over using all features, and reduce the
computational time. It also outperforms two traditional methods, a
standard PSO based method and a new PSO based two-stage feature

selection method.

Proposes a new PSO based approach to wrapper multi-objective fea-
ture selection. Different from existing PSO based feature selection al-
gorithms, the proposed multi-objective approach treats the two main
objectives separately during the evolutionary process, which aims
to maximise the classification performance and simultaneously min-
imise the number of features. By considering the trade-off between
the two main objectives, the proposed approach can successfully find
a set of non-dominated solutions, which have a smaller number of
features and achieve better classification performance than using all
features. The proposed multi-objective approach can obtain more

and better feature subsets than single objective algorithms.

Introduces information theory based measures to PSO for feature se-
lection to propose a filter based single objective approach. Two new
PSO based algorithms were developed, where the first one measures
the relevance and redundancy between a pair of features while the

second algorithm considers all the selected features as a group to
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evaluate their relevance and redundancy. Both two proposed algo-
rithms can reduce the number of features and maintain or even in-
crease the classification performance in most cases, and outperform
two traditional filter methods. The second algorithm achieves bet-
ter classification performance than the first algorithm, but selects a
larger number of features and uses longer computational time. The
feature subsets selected by both two methods are general to three

different classification algorithms.

e Proposes a multi-objective filter feature selection approach using PSO
and information theory based measures. The proposed multi-objective
approach aims to minimise the number of features and the maximise
the relevance between the selected features and the class labels. The
proposed approach can successfully evolve a set of non-dominated
feature subsets with a smaller number of features and better clas-
sification performance than using all features, and outperform the
above PSO based single objective filter algorithms.

o Investigates the difference between wrapper and filter approaches in
terms of the classification performance and the computational time,
and also examines the generality of different wrappers. It is found
that wrapper approaches generally achieve better or similar (but not
worse) classification performance than filters, but wrapper approaches
do not necessarily always need longer computational time than filter
approaches. Wrapper approaches were claimed not general to differ-
ent classification algorithms, but this thesis finds that wrappers built
with a simple classification algorithm can be general to other classi-

fication algorithms.
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8.2 Main Conclusions

This thesis finds that PSO can effectively address feature selection prob-
lems in filter or wrapper, single objective or multi-objective ways.

This section discusses the main conclusions for the five research ob-
jectives drawn from the five contribution chapters (Chapter 3 to Chapter
7).

8.2.1 Initialisation and Updating Mechanisms in PSO for

Feature Selection

Chapter 3 proposes a new PSO based single objective wrapper feature se-
lection algorithm based on a new initialisation strategy and a new updat-

ing mechanism.

Initialisation Mechanisms

It is found that the initialisation mechanism can significantly influence the
performance of a PSO based algorithm to reduce the number of features
and the computational time (Chapter 3).

Initialisation determines where the algorithm starts the search process.
A Dbetter starting point can help the algorithm find better solutions and
converge faster. This is particularly important in PSO based feature se-
lection algorithms due to two main reasons. The first reason is that the
evolutionary process of a PSO algorithm is led by the personal best (pbest)
and global best (gbest). A better starting point means that a better leader
appears earlier, which can then benefit the whole evolutionary process.
The second reason is that one of the two main objectives in feature selec-
tion can be easily controlled, i.e. the number of features, which provides a
chance to specify the initial positions of particles to have a small number of
features. Meanwhile, a small number of features uses less computational

time than a large number of features.
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Updating Mechanism

It is found that the pbest and gbest updating mechanism can significantly
influence the performance of PSO for feature selection.

pbest and gbest updating is one of the most important components in
a PSO algorithm. The standard updating mechanism is not suitable for
feature selection problems because it may select a feature subset with high
classification performance but a large number of features. By consider-
ing the size of pbest and gbest, the number of features can be significantly
reduced while the classification performance is maintained or even in-
creased due to the removal of the redundant features.

By combining the initialisation strategy and pbest and gbest updating
mechanism, the PSO based algorithm simultaneously improves the clas-
sification performance and reduces the number of features, especially on
datasets with a large number of features. By reducing the number of fea-

tures, the computational time can also be reduced.

8.2.2 Multi-objective Wrapper Feature Selection

The first PSO based multi-objective feature selection approach is proposed
in this thesis (Chapter 4). From Chapter 4, it is found that PSO can be suc-
cessfully used for multi-objective feature selection to select a set of non-
dominated feature subsets, which have a smaller number of features and
achieve better classification performance than using all features. Examin-
ing the Pareto front achieved by the multi-objective algorithms can assist
users in choosing their preferred solutions to meet their own requirements.

Feature selection is a complex problem with a large search space and
many local optima. This thesis finds that a good PSO based multi-objective
feature selection approach needs two important factors, which are a good
method to select a good gbest for each particle and an effective strategy to

maintain the swarm diversity.



220 CHAPTER 8. CONCLUSIONS

Selection of gbest

This thesis finds that the selection of gbest in a PSO based multi-objective
teature selection approach can significantly influence its performance. A
good gbest selection method can filter out crowded (similar) non-dominated
solutions, i.e. potential gbest. It will then select good leaders for particles,
which leads the algorithm to better explore the search space to obtain a
better set of feature subsets. CMDPSOFS achieved better performance due
partly to the use of a crowding factor together with a binary tournament
selection to select gbest, which can effectively select and filter out some

crowded non-dominated solutions as potential leaders.

Swarm Diversity

This thesis finds that a PSO based multi-objective feature selection ap-
proach needs a good strategy to maintain the diversity of the swarm. The
search space of a feature selection problem usually has many local op-
tima. This requires a high diversity in the swarm to avoid being stuck into
local optima. CMDPSOEFS employs different mutation operators in differ-
ent groups of particles to keep the diversity of the swarm. It contributes
the superior performance of CMDPSOFS, especially on the datasets with
a large number of features, where the search space is larger and more
complex than datasets with a smaller number of features. By contrast,
NSPSOFS, which has the potential limitation of losing the diversity of the
swarm quickly, can not achieve as good performance as CMDPSOFS.

8.2.3 PSO and Information Theory for Feature Selection

This thesis proposes the first PSO and information theory based feature
selection approach (Chapter 5). It is found that information theory based
measures can be successfully used with PSO to select a small number of
features and maintain the classification performance. In filter approaches,

the classification performance of the selected features is reflected by its
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relevance to the class labels and the number of features is measured by the
redundancy amongst the selected features. Two different relevance and
redundancy measures were developed (Chapter 5), which are a pair-wise
measure based on mutual information and a group based measure using

the concept of entropy.

Pair-wise Measure

It is found that PSOMI using the pair-wise measure is faster and selects
a smaller number of features, but the classification performance is not as
good as the group based measure (PSOE). The main reason is that the pair-
wise measure does not involve complex relevance or redundancy calcu-
lation and the optimal fitness value usually includes a small number of
features. It only considers the relationship between two features and can
not deal with complex interactions amongst a group of features, which is

a challenge in feature selection.

Group Based Measure

It is found that PSOE using the group based measure can achieve better
classification performance, but it is slower and selects more features than
PSOMI. The main reason is that the group measure involves a much more
complicated calculation than the pair-wise measure. Since it considers
the selected features as a whole, it can better deal with feature interaction

problems and accordingly achieve better classification performance.

8.2.4 Multi-objective Filter Feature Selection

This thesis proposes the first PSO based multi-objective filter feature selec-
tion approach (Chapter 6). It also proposes the first NSGAII and SPEA2
based multi-objective filter approaches to feature selection.

Chapter 6 further confirms the findings for multi-objective feature se-
lection approaches concluded from Chapter 4, i.e. the diversity of the pop-
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ulation/swarm and the selection of gbest can significantly influence the

performance of a multi-objective feature selection algorithm.

Filter Measures and Classification Performance

It can be found that the goodness of a feature subset evaluated by a filter
evaluation criterion (e.g. mutual information) does not necessarily show
its exact classification performance. Feature subsets with the same (better
or worse) filter goodness do not necessarily achieve exactly the same (bet-
ter or worse) classification performance. Therefore, the Pareto fronts in the
tilter evaluation criterion space are usually not the same as the true Pareto
front in the classification accuracy space. This is not only for the proposed
information based measures, but also for many other filter evaluation cri-
teria. A good filter evaluation should reflect the classification performance
as close as possible.

8.2.5 Wrappers VS Filter

This thesis investigates the differences between wrapper and filter ap-
proaches in terms of the classification performance and the computational

time.

Classification performance

This thesis finds that in general wrappers achieve better classification per-
formance than filters. For a certain dataset, the best classification perfor-
mance is always achieved by a wrapper method, but a wrapper method
does not necessarily always achieve better classification performance than

all filter approaches.

Computational Time

This thesis finds that wrapper approaches do not necessarily always need

longer computational time than filter approaches. Most of the computa-
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tional time of a wrapper algorithm is spent on the learning/classification
process in the evaluation procedure. If a complicated classification algo-
rithm (e.g. SVM) is applied, the wrapper algorithm usually needs longer
computational time. However, if a computationally cheap classification
algorithm (e.g. NB) is applied, the wrapper algorithm may be faster than
a complex filter algorithm, especially on large datasets.

8.2.6 Generality of Wrappers

This thesis finds that wrappers can be general to different classification
algorithms, which is different from the existing common view point on
wrappers. The generality of wrappers depends much on the classification
algorithm used during the feature selection process. Wrappers using a
simple classification algorithm (e.g. NB and KNN) can be general to other
classification algorithmes, i.e. the features selected can increase the classifi-
cation performance of other classifiers over using all features. On the other
hand, a wrapper using a complicated classification algorithm (e.g. SVM)

is usually not general to other (simple) classification algorithms.

8.3 Future Work

This section highlights key areas of future work.

8.3.1 Feature Selection on Large-scale Problems

This thesis focuses mainly on the classification problems with less than
one thousand features. In many problems, such as biological datasets, the
number of features can be a few thousands or more than ten thousands.
Those tasks belong to the category of large-scale problems. Feature se-
lection is almost a necessary step before conducting classification because

most classification algorithms perform poorly on such datasets. PSO has
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shown its ability on datasets tested in this thesis. In future, it is interest-
ing to investigate the capability of PSO for feature selection on large-scale
datasets.

8.3.2 Evaluation Methods for Discrete Multi-objective Al-

gorithms

There are many metrics or measures to evaluate the performance of a
multi-objective algorithm or compare the performance of two or more
multi-objective algorithms. However, almost all of those measures are de-
signed for continuous multi-objective algorithms. There is no well defined
metrics or measures for comparing the performance of discrete multi-objective
algorithms. Therefore, it is needed to investigate evaluation methods to
test the performance of discrete multi-objective algorithms before devel-
oping novel multi-objective feature selection approaches.

8.3.3 PSO for Multi-objective Feature Selection

This thesis proposed the first multi-objective feature selection approach,
which has shown that a multi-objective algorithm can provide better so-
lutions than a single objective algorithm. The capability of PSO for multi-
objective feature selection has not been fully investigated, such as the use
of the preference on the objective of minimising the number of features
during the evolutionary process. Therefore, it is interesting and necessary
to further investigate the use of PSO for multi-objective (filter or wrapper)

feature selection to better address the problems.

8.3.4 PSO for Feature Construction

Feature construction aims to construct a new high-level feature, which
is usually a function of the original low-level features and mathemati-

cal/expression operators. The selection of the original features is one of
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the key aspects.

This thesis has shown that PSO can successfully select a subset of orig-
inal features to increase the classification performance, which motivates
the idea of using PSO for feature construction. We proposed the first PSO
based feature construction algorithm, which can be seen in [183]. The
method in [183] is an initial work on PSO for feature construction, but has
shown that PSO has the potential to address feature construction prob-
lems.

A major limitation in [183] is that PSO was only used to select origi-
nal low-level features. The selection of function operators were achieved
by an inner loop. This is mainly because the standard representation in
PSO is not able to evolve nominal/categorical variables. Therefore, a new
representation scheme is needed to use PSO for feature construction. Of
course, there will be more other works needed to further investigate the

capability of PSO for feature construction.

8.3.5 New PSO Algorithms

Most of the PSO applications, including feature selection, use continu-
ous PSO. Only a small part of applications use discrete PSO, i.e. BPSO.
BPSO preserves the fundamental concept of the PSO algorithm, that is,
the knowledge is optimised by social interactions within the population.
However, not all important characteristics of the PSO algorithm are com-
pletely present in BPSO. Therefore, from both the application point of view
and the development of PSO itself, it is needed to proposed new discrete or
binary PSO algorithms. New PSO algorithms can be developed by propos-

ing new representations, new topologies and updating mechanisms.

Representation

In current BPSO, the dimensionality of the search space is the number of
variables/features. A binary string is used to encode the potential solu-

tion. This encoding scheme makes a feature selection task a high-dimensional
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complex problem if the number of available features is large. A good en-
coding scheme to avoid such a situation needs to be investigated. Mean-
while, the binary string representation only shows the selection of each
individual feature. To better address feature selection, it would be help-
tul to show the relationship/interaction between different features in the
representation. In addition, a new representation scheme is also needed to
use PSO for feature construction.

There is only one discrete PSO, i.e. binary PSO (BPSO), but not all dis-
crete problems are binary problems. A new representation scheme, which
can deal with other types of discrete problems, is needed to extend the use
of the PSO algorithm.

Search Mechanisms

The limitation of current BPSO is mainly because of the velocity and po-
sition updating mechanisms. Therefore, it is needed to develop new up-
dating mechanisms to show all important characteristics of the PSO al-
gorithm. Meanwhile, new representation schemes may also require new

search mechanisms.

Topology

Topology structure is one of the key elements that influence the perfor-
mance of PSO. Research has shown the effects of topology on the perfor-
mance of the original continuous PSO, but the influence of topology on
discrete PSO has not been investigated. Meanwhile, discrete or binary
problems have different characteristics from continuous problems. There-
fore, it is needed to develop new topologies to improve the performance
of discrete PSO.
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