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Abstract

The advent of high-throughput measurement technologies in molecular
biology enabled the determination of cellular parameters like the con-
centration of proteins, mRNAs or metabolites or the binding between
molecules on a genome scale. The resulting data make new types of
analyses possible which focus more on interactions between multiple
elements such as genes, proteins or metabolites. A prominent type of
analysis is to search for modules, i. e., groups of elements which exhibit
similar properties in the measurements. The underlying assumption is
that these similarities relate to common functions of the elements. While
grouping alone does not explain the nature of specific interactions it of-
ten provides interesting hypotheses for further research or it can serve as
preprocessing step for other types of analyses, e. g., the dimensionality of
the data can be reduced by studying representatives for each module or
by focusing on specific modules.

In most cases, such module identification tasks result in complex opti-
mization problems many of which have been shown to be NP-hard. In the
last few years, general module identification methods like k-means clus-
tering or hierarchical clustering methods have been gradually adapted to
the specifics of biological high-throughput data resulting amongst others
in a number of so called biclustering algorithms. In contrast to standard
clustering methods, biclustering algorithms do not require high similarity
over all measurements but, taking gene expression as an example, they
search for groups of genes which are similarly expressed over a subset
of conditions. Despite this large advance, several important issues re-
mained unsolved, such as the problems of integrating multiple data sets
and different types of high-throughput measurements.

As a first step, this thesis confirms the usefulness of the basic biclus-
tering approach in an extensive comparison of various existing heuristic
biclustering approaches, a standard clustering method and a new exact
algorithm based on a simple model. Building on these results, a flexible
framework for biclustering is presented. The optimization algorithm con-
sists of a hybridization of an evolutionary algorithm (EA) and a greedy
local search. Thanks to the black-box scheme of the EA, this combination
provides higher flexibility than most existing approaches. Building on
this framework, the present thesis proposes approaches to three impor-
tant open problems in module identification.

¢ In many biological studies several distinct gene expression data sets
needs to be analyzed simultaneously. However, often measurement
values are not directly comparable across data sets if they stem from
different experiments, different labs or different measurement tech-
nologies. To address this problem, an approach for the joint bicluster



analysis of multiple expression data sets was developed. This al-
lows to identify biclusters extending over multiple expression data
sets even when measurement values are not directly comparable
between the data sets.

An even more challenging problem is the integration of multiple
types of biological high-throughput data. A new data integration
method is introduced which in contrast to existing approaches does
not aggregate similarity measures on the different data sets but
searches for a set of trade-off solution thereby visualizing potential
conflicts between the information contained in the data sets.

Often new measurement technologies require the development of
new analysis methods. Thanks to the flexibility of the framework
presented in this thesis it could be applied to extract information
from a very recent type of measurements where only a few analysis
methods exist, namely fluxome profiles. The resulting method is
able to discriminate bacterial mutant strains based on their fluxome
profiles.



Zusammenfassung

Moderne Messtechnologien in der Molekularbiologie ermoglichen es,
verschiedene zelluldire Grossen wie die Konzentration von Proteinen,
mRNA oder Metaboliten oder die Bindung zwischen Molekiilen nicht
nur fiir einzelne dieser Elemente sondern global zu bestimmen. Solche
Daten erlauben neue Arten von Analysen, welche vermehrt die Inter-
aktionen von verschiedenen Elementen z.B. verschiedenen Genen oder
Proteinen untersuchen. Eine typische Analysemethode in dieser Kate-
gorie ist die Modulidentifikation. Diese sucht nach Gruppen von Ele-
menten, welche Ahnlichkeiten in Thren Messwerten aufweisen. Dieser
Strategie liegt die Annahme zu Grunde, dass solche Ahnlichkeiten auf
eine gemeinsame Funktion hinweisen. Solche Gruppierungen erkldren
zwar die Art der Interaktionen nicht direkt, aber sie helfen Hypothesen
dartiber zu formulieren. Ausserdem konnen sie als Ausgangspunkt fiir
weitere Analysen dienen. Beispielsweise kann die Dimension der Daten
reduziert werden, indem nur die Interaktionen innerhalb einer Gruppe
oder zwischen den Gruppen untersucht werden.

In den meisten Fillen resultieren solche Modulidentifikationen in
komplexen Optimierungsproblemen und fiir viele davon wurde gezeigt,
dass sie NP-schwer sind. In den letzten Jahren wurden allgemeine
Methoden zur Modulidentifikation wie k-means Clustering oder Hier-
archisches Clustering schrittweise den Anforderungen der biologischen
Daten angepasst. Dabei wurden unter anderem so genannte Biclustering-
Verfahren entwickelt, welche im Gegensatz zu klassischen Clustering-
Methoden die Ahnlichkeiten nicht iiber alle Messpunkte bestimmen. Fiir
das Beispiel von Genexpressionsdaten bedeutet dies, Gruppen von Genen
zu suchen, welche iiber einen Teil der untersuchten Bedingungen dhnliche
Profile aufweisen. Trotz dieser grossen Fortschritte sind einige wichtige
Fragen offen geblieben. So ist es z.B. unklar wie man am besten eine
Analyse von mehrere Genexpressions-Datensidtzen vornimmt, oder wie
man verschiedene Typen von Messungen kombinieren kann.

Als erster Schritt in dieser Dissertation, wurde die Nutzlichkeit des
grundsatzlichen Biclustering-Ansatzes mittels eines umfangreichen Ver-
gleichs von mehreren existierenden, heuristischen Biclustering-Methoden,
einem traditionellen Clustering-Verfahren und einem neuen exakten Al-
gorithmus bestétigt. Basierend auf diesen Resultaten wurde ein flexibles
Framework fiir Biclustering entwickelt, welches auf einer Kombination
von einem Evolutiondrem Algorithmus und einer Lokalen Suche basiert.
Diese Kombination ermoglicht eine viel grossere Flexibilitdt in der Prob-
lemformulierung als bestehende Ansitze. Basierend auf diesem neuen
Ansatz wurden drei wichtige offene Probleme im Bereich der Moduliden-
tifikation angegangen.



¢ In vielen biologischen Studien miissen mehrere Genexpressions-
datensitze gemeinsam analysiert werden. Haufig konnen aber die
Messwerte der verschiedenen Datensdtze nicht direkt verglichen
werden, wenn die Daten z.B. aus verschiedenen Experimenten, ver-
schiedenen Labors oder verschiedenen Messverfahren stammen.
Dazu wird in dieser Dissertation ein Verfahren vorgestellt, welches
ein kombiniertes Biclustering von mehreren Datensédtzen ermdglicht.
Damit konnen Bicluster gefunden werden, welche sich iiber mehrere
Datensétze erstrecken.

e Ein noch anspruchsvolleres Problem ist die Integration von ver-
schiedenen Typen von Messungen. Dazu wurde ein Verfahren en-
twickelt, welches im Gegensatz zu bestehenden Methoden nicht die
Ahnlichkeiten auf den verschiedenen Datensitzen in einem Ahn-
lichkeitsmass zusammenfasst, sondern eine so genannte Trade-off
Front berechnet. Diese zeigt auf, in welchem Ausmass die ver-
schiedenen Datentypen die gleiche Information enthalten.

e Haufig machen neue Messmethoden die Entwicklung von neuen
Analysemethoden nétig. Dank der Flexibilitdt des hier vorgestell-
ten Frameworks konnte dieses zur Analyse einer neuen Art von
Messungen iiber den Zellstoffwechsel eingesetzt werden. Dabei
entstand eine Methode, welche anhand dieser Fluxomprofile Ahn-
lichkeiten zwischen verschiedenen Bakterienstimmen identifiziert.



Introduction

1.1 Biological Motivation

An important basis for research in molecular biology consists in the
measurement of cellular parameters like the concentration of proteins,
mRNAs or metabolites or the binding between molecules. Traditionally,
such measurements were labour intensive and thus most experiments
targeted only a few genes, proteins, or metabolites. The advent of high-
throughput measurement methods has created the opportunity to inves-
tigate larger groups of these elements and study their interactions. Such
information is valuable because most cellular events are established or
regulated not by one gene or protein alone but by multiple interacting
elements.

Currently, the most prominent type of such high-throughput technolo-
gies are microarrays with which genome-wide mRNA concentrations can
be easily and reliably measured [KKB03]. However, these gene expression
measurements are by far not the only type of data available. Nowadays,
it is possible to measure other biological parameters such as protein-
protein interactions (PPIs), protein localization or metabolic fluxes using
high-throughput technologies, cf. Section 2.1. These measurements are
performed genome-wide which allows to investigate interactions and
dependencies. At the same time, the multitude of available types of
measurements provide different views on the same underlying biological
processes and thus allow to study cellular behaviour at different levels
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simultaneously.

A range of different questions can be investigated based on these
data. An important goal is the identification of modules, i.e., groups
of elements exhibiting similar properties. Taking genes as an example,
one is interested in groups of genes that share a common function or
regulation mechanism. In essence, the goal is to group the genes based
on observed behaviour like gene expression data. This strategy is based
on the assumption that similar gene expression profiles over a range of
measurements imply a mechanistic relation between two genes. While
grouping alone does not explain the nature of specific interactions it often
provides interesting hypotheses for further research such as a gene with
unknown function appearing within a group of functionally related genes.
Additionally, module identification may serve as preprocessing step for
other types of analyses, e. g., the dimensionality of the data can be reduced
by studying representatives for each module or by focusing on specific
modules.

In its most general form, module identification consists in searching
for aseveral groups of elements, e. g., genes which exhibit similarities over
a subset of the measurements. This scheme is often referred to as bicluster-
ing and can be viewed as a generalization of standard clustering where the
subset of measurements consists of all measurements and an additional
constraint requires each gene to be in exactly one cluster. In general, the
search for modules can be formulated as an optimization problem, e. g,
“find the partition which minimizes the sum of with-in cluster distances”
which defines the objective of some classical clustering methods. Most
of the resulting optimization problems are difficult to solve and some are
known to be NP-hard [Fal98, [CC00, BDCKY02, TSS02,ISMKS03, ENBJ05].
Additionally, the search space is huge: there exist 2" possible groups for
m elements and n measurements where m can easily be in the thousands
for typical biological data sets. Thus, even the basic problem formula-
tion of module identification poses an algorithmic challenge. Additional
challenges arise in adapting the problem formulation to the specific bi-
ological question, e.g., which similarity measure to use or how to deal
with multiple data sets. Due to this, module identification has attracted a
significant interest from the computational biology community and con-
tinues to provide interesting research opportunities.

1.2 Research Questions

A wide variety of problem formulations and corresponding algorithms
addressing module identification from biological high-throughput data
have been proposed, cf. Chapter 2. While most of the concepts are ap-
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plicable to different types of data, module identification has been preva-
lently applied to gene expression data. Starting from standard techniques
like hierarchical clustering [ESBB98|] the methods have been increasingly
adapted to the specifics of biological high-throughput data like the need
for overlapping modules [GE02, WBJ*03| IHTE*00] or the identification
of similarities that span only a subset of the measurements, resulting in
various biclustering techniques [MOO04]. Despite these advances, several
issues in this respect have remained open at the beginning of this thesis
project:

Validation and Comparison of Biclustering Methods

Most publications which introduce new biclustering methods, validate
the basic usefulness of the proposed approach by discussing the bio-
logical meaning of a few example biclusters. In addition, some studies
validate biclustering methods by using synthetic data sets or by assessing
biological relevance based on additional data sets or formalized biological
knowledge. Only few papers provide comparisons to other biclustering
or clustering methods and no extensive empirical comparison of biclus-
tering methods exists. Additionally, no established methodology for the
validation of biclustering methods is available. Thus, it is unclear what
the relative strengths and weaknesses of the different biclustering meth-
ods are and whether the biclustering concept in general provides superior
results compared to standard clustering. To clarify these issues, a system-
atic validation and comparison study is desirable.

Flexibility of Biclustering Algorithms

In most of the existing approaches, the algorithms are tailored to the re-
spective problem formulation and slight changes such as allowing mod-
ules to overlap or using a different similarity measure require the redesign
of the algorithm. This constitutes an important drawback in a setting
where it is often not clear which mathematical formulation best matches
the biological questions and different possibilities need to be tried. For
such a scenario, an algorithmic framework is desirable which is flexible
with respect to the exact problem formulation, e.g., it should be easy
to exchange homogeneity scores or adapt constraints on the overlap of
biclusters.

Joint Analysis of Multiple Gene Expression Data Sets

Often, module identification is performed on gene expression data sets
collected from different experiments in order to identify similarities be-
tween genes that go beyond a few conditions investigated in a single
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experiment. Existing methods usually require the measurements to be
combined into a single data matrix. In many cases, this is problematic as
the measured values are not directly comparable if they stem from differ-
ent experimental setups, different laboratories or even different measure-
ment technologies. It remains open how to identify biclusters that extend
over multiple data sets while avoiding the problem of mixing.

Integrated Analysis of Multiple Types of Measurements

In addition to gene expression measurements, an increasing amount of
genome-wide data such as PPIs or gene ontology (GO) annotations be-
come available. All these sources provide information about the same
cellular processes but on different levels. Some studies propose methods
which integrate multiple types of data for the purpose of module identi-
tication. This integration is based on calculating distances between genes
for each type of data separately and then combining these distance mea-
sures. This approach has two main drawbacks: i) it requires the definition
of comparable distance measures for data sets as diverse as gene expres-
sion and PPI, and ii) it obscures potential conflicts between the similarity
information contained in the different data types, e. g., it is not possible to
determine whether accepting a slightly worse similarity on one data type
could increase the similarity on the other data types substantially.

1.3 Contributions

The present thesis presents new methods and empirical results which
address the questions discussed in the previous section. The specific
contributions comprise:

e An empirical comparison study of various biclustering algorithms
and a standard method demonstrating the usefulness of the biclus-
tering concept. This study includes the development of the un-
derlying comparison methodology and the introduction of an exact
reference algorithm which identifies all maximal biclusters.

e A general EA framework for biclustering which allows to include
existing heuristics into a global search strategy. As a typical black-
box optimization scheme, EAs do not rely on specific properties of
the objective function and thus the algorithm is flexible with respect
to the details of the problem formulation. The resulting framework
is used as basis for the following three methods.

e A method for discovering biclusters from multiple gene expression
data sets which avoids mixing of inhomogeneous data. A detailed
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study demonstrates the advantages of this method compared to the
standard approach of mixing multiple data sets.

¢ A biclustering approach which integrates multiple types of biologi-
cal high-throughput data by means of multiobjective optimization.
Thereby, the agreement or conflict of the information provided by
the different data sources is made explicit.

e A method whichidentifies characteristic differences in fluxome mea-
surements of bacterial mutant strains. Fluxome profiling is a recent
measurement technology for which only few analysis methods exist.
The proposed method seeks groups of mutant which exhibit well
separated fluxome patterns. Identifying the patterns which allow a
good discrimination of the different mutant strains can be used as a
tirst step towards identifying the underlying biological differences.

In a wider context, this thesis makes an additional contribution to the
research in stochastic search algorithms, especially to the field of mul-
tiobjective optimization, by introducing a portable interface for search
algorithms (PISA) which separates the problem specific parts of the op-
timization process from the problem independent ones, thereby creating
reusable modules on both sides.

Results from the research leading to this thesis have been reported
in several publications [BLTZ03|, KBTZ04, ZLB04, BPZ04, WZV*04, BZ05),
PBZ*06, BBP*06,ICBZ06,SBB*07, BZ07]. The concept of using a stochastic
search algorithms for biclustering as proposed with the EA framework
in [BPZ04] has since been taken up by several studies which have in-
vestigated EAs [ARDO5, [(CMO05, MBP06, MB06|, BM06|, DARO06, LZLHO06]
and simulated annealing [BCBO05, BCB06] for biclustering. The compari-
son methodology for biclustering algorithms presented in [PBZ*06] has
been adopted in two recent studies [OFHO07, LWO07] and the bicluster-
ing tool presented in [BBP"06] has been used for algorithm comparisons
[RBBO6,IOFHO07, LW07]. Besides the applications in the present thesis, the
PISA interface for search algorithms has been widely used for different ap-
plications in the field of multiobjective evolutionary optimization [PEP06),
HJRE04, HHJ 05, [HE05, FSWO05|, SHHTO05, HJRE06, KTZ05, Rob05, KTZ06),
RHEO6a), [LLO5, HGT05, HOGTO05, IGLS™07, MSKMO07, HREO06, RHE*06b),
SHTO05|, SGHTO07, SLHT06, ECEP06, MWRO6, SHT06]

1.4 Overview

The following chapter provides background information on the differ-
ent topics of this thesis starting with a compact introduction to high-
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throughput measurements in cell biology, followed by the introduction
of the general problem formulation and a review of existing clustering
and biclustering methods, and finishing with a short discussion of ran-
domized search algorithms in general and EAs in particular. Chapter 3
presents the comparison and validation study of biclustering algorithms
thereby establishing the usefulness of the basic biclustering concept.
Chapter 4 introduces the EA framework for biclustering which is then
used in Chapter 5 to address the problem of jointly analyzing multiple
gene expression data sets, in Chapter 6 for a method that integrates mul-
tiple types of high-throughput data and in Chapter 7 for a new analysis
method for fluxome data. The PISA interface which is used in the EA
framework is introduced in Appendix A. For reference, both a list of
acronyms (Appendix C on Page 155) and a list of symbols (Appendix D
on Page 157) are provided.



Background and Related Work

The classical example of module identification in the field of molecular
biology is clustering of gene expression data but many other approaches
exist. On the one hand, different other data sets have been used to pro-
vide additional information either for validation purposes or by directly
including them in the search for modules. On the other hand, the different
biological scenarios led to a variety of problem formulations and corre-
sponding algorithms. This chapter first discusses a number of different
types of measurements available for such analyses and then provides an
overview of existing methods for module identification with a focus on bi-
clustering approaches. The aim is not to provide a comprehensive review
but to give a broad overview and present the basic concepts relevant to
this thesis. As discussed, this thesis proposes an algorithmic framework
based on EAs. To provide the necessary background information and
motivate this choice, a short introduction to EAs is given in Section 2.4.

2.1 High-Throughput Measurements in Cell Bi-
ology

A variety of technologies exist which provide system-level measurements
on virtually all types of cellular components. Such data sets allow to
study cellular processes and networks on multiple levels from the DNA
sequence to the metabolic pathways. The present section reviews the data
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types most relevant to this thesis. Several more technologies exist, which
capture additional aspects of cellular processes. For a more in-depth
discussion, the reader is referred to [JP06].

2.1.1 Genome

The DNA strands contain different sections, two of which are of particular
interest here: The genes and the cis-regulatory regions. Colloquially
speaking, genes are the blueprints for proteins and the cis-regulatory
regions contain binding sites for so-called transcription factors, which
control the amount of protein produced from the gene.

Thanks to the development of high-throughput sequencing methods,
the DNA sequence of whole genomes can now be determined with rel-
atively high speed and accuracy [Bro02]. Consequently, the genomes of
many organisms have been sequenced and these data not only provide
valuable information about the functioning of an organism and its evolu-
tionary relation to other organisms but they also constitute the basis for
other high-throughput technologies like gene expression measurements
or proteomics experiments which require the DNA sequence of the genes
to be known.

With respect to gene module identification, the cis-regulatory regions
provide additional information on the functional relations between genes
since genes which are regulated by the same transcription factor share
common regulatory sequence element. Identifying such common ele-
ments in the regulatory DNA regions of similarly expressed genes hints
at a common transcription factor regulating these genes [BT04]. This ad-
ditional information can either be used for the evaluation of a module
identification approach or be integrated into the algorithm. Another ap-
proach for extracting information about relations of genes from the DNA
sequence consists in comparing genomes of multiple evolutionary related
organisms. Similarities like conserved spatial closeness or co-occurrence
of multiple genes often indicate a functional relationship [vMH]"03].

2.1.2 Transcriptome

The transcpriptome consists of the entirety of mRNA present in a cell at a
given time. These mRNA molecules are the first intermediate during the
production of any genetically encoded molecule, mostly proteins. The
concentration of a specific mnRNA molecule serves as an indicator of the
amount of end product that is currently being produced. In contrast to
proteins, mRNA levels of thousands of genes, possibly all genes in an
organism can be measured simultaneously in a single experiment using
microarrays [KKBO3].
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Two main microarray technology exist, namely Affymetrix oligonu-
cleotide arrays and spotted cDNA arrays. Both technologies are based
on glass chips on which complementary sequences for all mRNAs are
tixed at specific locations. Then, the sample of mRNA extracted from the
cells is labeled with a fluorescent marker and applied to the chip. The
intensity of the fluorescence of a certain spot on the array then indicates
how many molecules of this specific mRNA have hybridized to their
complementary sequence. With respect to the data produced, the main
difference between the two technologies lies in the relative nature of mea-
surements from cDNA arrays. Here the resulting values represent ratios
of expression levels of two samples, while oligonucleotide arrays produce
absolute expression values by means of spiked in reference mRNA. For
both technologies, the raw intensity values cannot be used directly as they
are far too noisy. How to best extract and normalize the relevant expres-
sion values from the raw measurements is still an area of active research
[Qua02, HHO7]. Alternative methods for measuring mRNA levels which
are based on sequencing have been developed but have not yet reached
the popularity of microarrays [VZVK95, B*00].

Since most cellular processes are regulated by changes in gene expres-
sion, the result of a microarray measurement can be considered as an
indicator of the current state of the cell. In contrast to DNA sequences
expression measurements are dynamic data and often time course mea-
surements are performed to investigate the cellular reactions to a specific
stimulus. Alternatively, measurements are performed under different
conditions and treatments. A condition could for example consist of
knocking out a specific gene or exposing the organism to a chemical. The
outcome of such a series of microarray measurements is usually summa-
rized in terms of an m X n-matrix, E, where m is the number of considered
genes and 7 the number of experimental conditions. A cell ¢;; of E con-
tains a real value that reflects the abundance of mRNA for gene i under
condition j.

2.1.3 Proteome

Proteins take a wide range of roles in cellular processes. Two impor-
tant categories in the context of this thesis are enzymes which catalyze
biochemical reactions and transcription factors which regulate of the ex-
pression of genes by binding to the regulatory DNA elements upstream
of the gene.

Obviously, an interesting research focus is the measurement of protein
concentrations. High-throughput technologies for identifying proteins
and determining their relative abundance are being developed [DAOQ6]
but have not yet reached the advancement of microarrays for mRNA
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measurements. Since many functions are not performed by single pro-
teins but by protein complexes it is interesting to detect protein bindings.
This is achieved on a genome scale by technologies like tandem affinity
purification (TAP) [PCR*01] or yeast two-hybrid [ICO*01]. Figuratively
speaking, TAP identifies the proteins which stick to a bait protein ei-
ther directly or indirectly while yeast two-hybrid constructs a specific
cis-regulatory element such that a marker gene is expressed only if two
proteins bind directly. Another technology tries to elucidate the roles of
transcription factors by measuring binding of proteins to DNA in coupled
chromatin immuno-precipitation and microarray experiments, dubbed
“ChIP-chip” experiments [BLO4].

2.1.4 Metabolome

The metabolic pathways describe the sequence of biochemical reactions
taking place in a cell. The purpose of these pathways is to either yield
energy or synthesize molecules needed in the cell. The intermediates and
products of these reactions are called metabolites. Many of these reactions
are catalyzed by enzymes and their rate is regulated by the concentration
or activation state of the enzymes. Obviously, an informative aspect of
determining the cellular state is the quantification of the metabolites by
metabolic profiling methods [Fie02].

Another focus of research is to study the fluxes through the metabolic
network which characterize the activities of the metabolic pathways. For
an improved understanding of many biological processes, knowledge of
these fluxes is crucial because, unlike gene or protein expression, they
directly determine the cellular phenotype. No suitable method exists for
measuring the fluxes directly but fluxome profiling provides an indirect
measurement. Several methods exist for determining such flux profiles.
The only one which is suitable for high-throughput experiments uses
isotope markers [Sau04]. The basic idea is to provide an organism, e.g.,
Bacillus subtilis bacteria with a labeled substrate such as glucose built of
3C isotopes or alternative heavy isotopes and then determine in which
metabolites the labeled isotopes end up [FS03]. For these measurements,
a number of amino acids are extracted from the metabolites and gas
chromatography mass spectrometry (GC-MS) is used to determine the
proportion of atoms in these amino acids that has been replaced by the
marker isotopes. The resulting data specify for each measured amino
acid what proportion of the molecules contain zero, one, two, etc. marked
atoms. Note that the same amino acid is often contained in multiple
metabolites included in the analysis and can thus not be uniquely linked
to one position in the metabolic network. For a detailed description, the
reader is referred to [ES03].
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2.1.5 Annotations

In addition to the different high-throughput measurements an important
source of data are annotations and databases which formalize existing
biological knowledge. An important source is the GO [AT00] and the
corresponding annotations. The GO provides a well defined hierarchical
vocabulary for the description of genes. It consists of three separate parts
describing the molecular function, the cellular component and the bio-
logical function for a gene product. Such data are often used to validate
module identification approaches since they aim at identifying function-
ally related genes and thus at least one GO category should be strongly
over-represented in the module.

2.2 A General Problem Formulation of Module
Identification

An important goal in the analysis of such high-throughput data sets is to
identify groups of related elements based on the similarity of observed
properties. Typical examples are the identification of groups of genes
which are functionally related or the search for groups of tissue samples
with a similar disease state. The identification of such modules may be
helpful in different respects. The two main benefits are hypothesis gen-
eration and dimensionality reduction. Hypotheses about the underlying
biological relations between the elements in a module can often be gener-
ated, especially when additional biological knowledge about some of the
elements is available. As to dimensionality reduction, the complexity of
other types of analysis can be reduced substantially by either focussing
on the relations within one or a few modules or by studying relations
between the modules .

Based on the different biological scenarios and the different data types
a wide variety of methods for module identification have been proposed.
In general, such an approach consists of two main components: (i) a
mathematical representation reflecting the biological question and (ii) an
algorithm that solves the mathematical problem which in general means
optimizing a score thats describes the quality of a module or a set of
modules. In a basic problem formulation, a module consists of a group
of elements for which the measured properties are similar over a subset
of the measurements. Such modules are often referred to as biclusters.

Definition 1. For a given m X n input matrix E, a bicluster B is defined as a
pair (G,C) where G C {1,...,m} is a subset of rows (genes in the case of gene
expression data) and C C {1, ...,n} a subset of columns (conditions in the case
of gene expression data).
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Often, not a single bicluster but a number of diverse biclusters, a biclus-
tering is sought.

Definition 2. A biclustering D is a multi-set of biclusters; the set of all possible
biclusterings is denoted as D.

Roughly speaking, the goal is to find one or several biclusters that
are optimal with respect to two criteria: (i) their homogeneity, e.g., the
similarity of their expression patterns and (ii) their size.

Definition 3. Given a data set E, the size score f,. of a bicluster B is defined
as the number of contained matrix elements, i.e.,

fsize(B) := G| - |C|

These two objectives are usually conflicting and the way how they are
combined is an important part of the specific problem formulation. In
addition to this issue, the problem formulations proposed in the literature
differ with respect to the definition of similarity, additional constraints
and the relation between biclusters, e.g., whether biclusters should be
allowed to overlap. By varying these elements a wide variety of problem
formulations have been proposed mostly in combination with a specific
optimization algorithm.

Standard clustering can be viewed as a specific type of biclustering
where the number of clusters k is given by the user, all measurements
are taken into account when calculating similarities (C = {1,...,m}) and
additional constraints require each gene to be in exactly one cluster
(GinG;={} Vi,jell,...,kband Uiy 1y Gi = {1,...,m}).

2.3 Methods for Module Identification

In general, methods for module identification belong to the class of unsu-
pervised learning methods in machine learning. Such methods, mostly
in the form of clustering algorithms, have been developed and applied
in other fields before their application to the analysis of biological high-
throughput data [JMF99]. Typical applications include image segmenta-
tion or document clustering. The first application in biology used hier-
archical clustering to analyse gene expression data from yeast [ESBB9S].
Since then, clustering methods have been successfully applied to gene
expression data in many studies and a variety of new approaches have
been proposed.
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Figure 1: Categorization of (bi-)clustering approaches. Schematic view of pos-
sible clustering results for each category. The approaches in the upper half
consider all measurements when calculating the similarity between expression
patterns. Those in the lower half look for genes that are similarly expressed over
a subset of the conditions. Methods in the left half put each matrix element in
exactly one cluster while those in the right half allow clusters to overlap and
elements to be in no cluster.

2.3.1 A Categorization of Approaches

Looking at the development of (bi-)clustering approaches in the last few
years one can clearly see a trend to include more and more biological
considerations in the problem formulation. This section discusses the
development from classical clustering methods to recent biclustering ap-
proaches.

Traditional clustering approaches such as k-means [THC™99, SCSFO0],
hierarchical clustering [ESBB98] and self organizing maps [1799] parti-
tion the set of genes into disjoint groups according to the similarity of
their expression patterns over all conditions as shown in the upper left of
Figure 1. The corresponding algorithms all use heuristics: k-means for
example is based on the expectation-maximization algorithm and hierar-
chical clustering uses a greedy strategy which starts with each gene being
a cluster and then in each step merges the two closest clusters. These
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clustering methods were not developed specifically for biological appli-
cations and were the first to be applied to gene expression data. They are
still widely used and have proven to be useful in many studies.

Frequently, clusters are interpreted as genes that are involved in the
same biological process. Since some genes play a role in more than one
distinct process it can make sense to include a gene in several clusters
simultaneously, i. e., to allow clusters to overlap. Another issue concerns
genes which do not fit well into any cluster; often, the goal of a cluster
analysis is more to find significant groups of co-expressed genes than to
determine for each gene in which cluster it best fits. In such a case some
genes are best not assigned to any cluster. Several approaches have been
proposed which follow one or both of these ideas and thus do not produce
a partition of the matrix (shown in the upper right in Figure 1), among
them are fuzzy k-means [GE02, WBJ*03] and gene shaving [HTE*00].

Most clustering analyses are performed on a number of measurements
from different conditions. In such scenarios, it can be useful not only to
look for groups of genes that have similar expression patterns over all
measurements as traditional clustering algorithms do. Instead, one is in-
terested in groups of genes that are co-expressed under certain conditions
only. These groups potentially reflect genes that are responsible for a cer-
tain process which is not always active. The algorithm needs to select both
a subset of genes and a subset of conditions. A few approaches follow this
scheme while searching for a partition of the matrix [Har72, KBCGO03].
This is conceptually similar to applying a traditional clustering algorithm
in both dimensions. This idea is illustrated in the lower left of Figure 1.

A fourth category of methods combines both of these refinements
leading to problem formulations which are similar to the basic formula-
tion stated in Section 2.2. In these approaches, the focus is on finding
strong local signals in the expression patterns. The goal is to find signifi-
cant submatrices in the expression data containing similar patterns. As a
consequence the user does not have to set the number of clusters as it is
necessary for classical clustering algorithm. Methods in this fourth cate-
gory are usually referred to as biclustering, often the methods in the third
category are included. The following sections provide an overview of ex-
isting biclustering approaches and discuss a few prominent approaches
in this category in more detail.

2.3.2 Overview of Existing Biclustering Methods

Biclustering goes back to the work of Hartigan [Har72|], who presented
an approach which partitions the input matrix according to the third
category in Figure 1 and applied it to the analysis of UN voting data.
The first application of biclustering to gene expression data and the first
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approach in which does not create a partition of the input matrix was
presented in [CCO0] (detailed below). Several other methods followed
using different problem formulations and algorithms. A characteristic
difference is the type of pattern the models focus on. The Cheng and
Church approach [CCO00] and FLOC which uses the same model but an
improved algorithm [YWWYO03] capture coherent patterns which includes
patterns shifted by an additive constant. Several other approaches focus
on patterns where all genes are more or less constantly expressed within
a bicluster [SS502, MKO03, IFB*02, IBB04, [LO02]. In [SMMO03]] expression
values must be more or less constant in each column to form a bicluster but
may vary between the columns. Finally, there exist approaches which do
not take into account the absolute expression values but only the ordering
within each row [BDCKY02, [LWO03| LYWO04].

As a basis for further discussions in other parts of this thesis five
approaches are highlighted in the following. For an extensive review on
biclustering methods the reader is referred to [MOO04].

Cheng and Church Method

The first method of biclustering (as opposed to classical clustering) for
gene expression data was proposed by Cheng and Church in [CCOQ]. The
optimization task in [CCOQ] is to find the largest bicluster that does not
exceed a certain homogeneity constraint 6. The size f,.(G,C) is simply
defined as the number of cells in E covered by a bicluster (G, C), while the
homogeneity g(G, C) is given by the mean squared residue score.

Definition 4. The mean squared residue of a bicluster (G, C) is defined based

as
1 2
g(G,C) = GIcl Z (eij — eic — egj + egc)
i€G,jeC
where . .
éic = ﬁ Zceij/ €Gj = @ ;ezj
j€ i€

are the mean column and row expression values for (G, C) and
1
€GC = = Cij
GIIC] ie;jec
is the mean expression value over all cells contained in the bicluster (G, C).

Roughly speaking the residue expresses how well the value of an
element in the bicluster is determined by the column and row it lies in. A
set of genes whose expression levels change in accordance to each other
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over a set of conditions can thus form a perfect bicluster even if the actual
values lie far apart.

Based on this problem formulation, Cheng and Church proposed a
greedy search heuristics which generates biclusters that meet the homo-
geneity constraints. It starts with the whole matrix E and iteratively cuts
away the row or column which adds most to the inhomogeneity of the
current bicluster, until the threshold is met. In order to find several bi-
clusters, an iterative application of this algorithm was suggested where
after each step the cells of the newly found bicluster are assigned random
numbers; thereby, previously found biclusters are deleted from the matrix
and will not be found again.

Samba

Tanay et al. presented a graph-theoretic approach to biclustering in com-
bination with a statistical data model [IS502]. In this framework, the
expression matrix is modelled as a bipartite graph, a bicluster is defined
as a subgraph, and a likelihood score is used in order to assess the sig-
nificance of observed subgraphs. A corresponding heuristic algorithm
called Samba aims at finding highly significant and distinct biclusters. In
a recent study [ISKS04], this approach has been extended to integrate
multiple types of experimental data.

Iterative Signature Algorithm (ISA)

The authors of [IFB*02, IBB04] consider a bicluster to be a transcription
module, i.e., a set of co-regulated genes together with the associated set
of regulating conditions. Starting with an initial set of genes, all samples
are scored with respect to this gene set and those samples are chosen for
which the score exceeds a predefined threshold. In the same way, all
genes are scored regarding the selected samples and a new set of genes is
selected based on another user-defined threshold. The entire procedure
is repeated until the set of genes and the set of samples converge, i.e.,
do not change anymore. Multiple biclusters can be identified by running
iterative signature algorithm (ISA) on several initial gene sets.

Oder-Preserving Submatrix Method (OPSM)

In [BDCKYO02], a bicluster is defined as a submatrix that preserves the
order of the selected columns for all of the selected rows. In other words,
the expression values of the genes within a bicluster induce an identical
linear ordering across the selected samples. For instance, suppose the
expression values of three genes are constantly increasing over the course
of time, i.e., they follow the same trend. In this case, the order of the ex-



2.3. Methods for Module Identification 17

pression levels is the same for all three genes: the first condition represent
rank 1, while the last condition stands for the highest rank. Nevertheless,
the absolute expression values among the three genes can differ strongly:
the values for one gene may drastically go up, while another gene leads
to small changes in expression only. That means the similarity of the three
genes may be low regarding the absolute expression levels, but perfect
with respect to the order of their expression values.

Definition 5. A submatrix B of E is order preserving if and only if there
is a permutation of its columns (experiments) such that the sequence of (gene
expression) values for each row (gene) is strictly increasing.

Based on this, the optimization problem, which was shown to be
NP-hard [BDCKY02], is to find the OPSM that maximizes a given score
f(G, C). The score f reflects the probability of observing an OPSM of size
|G| - |C| in a randomly chosen matrix of the same dimensions as E. Based
on a stochastic model, the authors developed a deterministic algorithm
to find large and statistically significant biclusters. This concept has been
taken up in a later study by Liu and Wang [LWO3].

xMotif

In the framework proposed by [MKO3], biclusters are sought for which
the included genes are nearly constantly expressed—across the selection
of samples. In a first step, the input matrix is preprocessed by assigning
each gene a set of statistically significant states. These states define the set
of valid biclusters: a bicluster is a submatrix where each gene is exactly
in the same state for all selected samples. To identify the largest valid
biclusters, an iterative search method is proposed that is run on different
random seeds, similarly to ISA.

Note that all these biclustering approaches employ algorithms which
are rather specific for the chosen problem formulation and often small
changes such as adapting the homogeneity measure are not possible with-
out a redesign of the algorithm. Additionally, they all operate on a single
input matrix which requires multiple data sets to be combined into one
data set for the analysis. These two properties lead to the open questions
discussed in the introduction.

2.3.3 Query Gene Methods

A group of methods which is closely related the biclustering algorithms
are the query gene methods. In contrast to general clustering or bicluster-
ing methods which search for the most significant modules in the whole
data set, the query gene approaches focus on identifying genes which
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exhibit similarities to one or several query genes. This is interesting as
the goal in many biological experiments is to identify genes which are
possibly related to the gene currently being studied. Only few exist-
ing approaches allow such directed searches. Both Gene Recommender
[OSM™03] and the Signature algorithm [IEB*02] take a set of user-defined
query genes, determine the conditions in which these query genes are “in-
terestingly” expressed and check whether additional genes show similar
expression patterns in the chosen conditions. The methods differ mainly
in how they choose the conditions: Gene Recommender uses a score
which combines a preference for extreme expression levels with a prefer-
ence for a tight clustering, i. e., a low variation between the genes included
in the module. The Signature Algorithm in contrast, selects conditions
under which the query genes are highly expressed. Both methods work
on single gene expression data sets and do not consider the integration of
multiple data sets.

24 Randomized Search Algorithms

For complex real-world optimization problems such as biclustering there
is often a trade-off between the accuracy of the problem formulation and
the efficiency of the corresponding algorithm. This results in a spectrum
of different approaches. On one end, the problem is simplified such that
an algorithm can be devised which identifies the optimal solution. On
the other end, the problem formulation is as specific as possible and a
general optimization algorithm is applied. A typical example of the latter
are black-box optimization approaches which do not exploit any specific
properties of the problem formulation such as calculating a gradient but
are generally applicable to problems where a “black-box” provides an
evaluation of a potential solution. Randomized search algorithms are
well suited for black-box optimization as they do not rely on specific
properties like the convexity of the problem in order to explore the search
space [MF98|]. A variety of different classes of randomized search al-
gorithms exist including EAs, simulated annealing, tabu search, particle
swarm algorithms and ant colony optimization. All of these approaches
exploit information gathered during the search process by focussing the
search on the neighbourhood of good solutions while maintaining a cer-
tain probability to explore new areas of the search space in order to escape
local optima.

The framework presented in this thesis is based on EAs. EAs are
inspired by natural evolution and maintain a so called population of po-
tential solutions to the optimization problem, cf. Figure 2. These potential
solutions are called individuals. A set of initial individuals are randomly
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Figure 2: Basic scheme of an evolutionary algorithm.

offspring

generated. Each individual is evaluated using the objective function.
Based on the objective values the most promising individuals are selected
to act as parents for the next generation. The recombination operator
generates new solutions from pair of these parents by combining a part of
the solution of one parent with a part of the solution of the second parent.
The idea is, that by chance good elements of each parent can thereby be
combined into a superior offspring. The mutation operator changes each
the recombined solutions sightly and the solutions are evaluated. From
the original population and the resulting offspring population the new
population is chosen based on their objectie values. The optimization
process is stopped when the solutions have reached the desired quality
or after a specified number of generations. For a thorough introduction
see [ESO3].

Since EAs are well suited for complex black box optimization prob-
lems they have been successfully applied in large number of areas. Alsoin
bioinformatics, many problems have been tackled using EAs. These ap-
plications range from protein structure prediction to tumor classification
based on gene expression data (for an overview see [FCO03]).

Also in the area of data clustering, several methods have been pro-
posed which are based on EAs (see [JMF99] for an overview of the early
work). Several studies have extended these approaches. Falkenauer,
for example, has proposed a general clustering framework in which the
focus is on a effective representation and variation operators and arbi-
trary optimization criteria can be applied [Fal98]. Another prominent
approach in the area of partitioning was introduced in [Han06]]. It builds
on the observation that current clustering methods are either targeted to
elongated clusters by optimizing measures like the connectedness or to
compact sphere-shaped clusters by minimizing within-cluster distance.
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The proposed method is based on multiobjective optimization where both
the connectedness and the compactness are optimized simultaneously. In
combination with an adjacency based encoding this technique is able to
identify clusters of both categories in the same data set and automatically
choose the right number of clusters.

All these methods target a classical clustering model, i. e., they parti-
tion the input matrix. Biclustering models, in contrast, have not received
the same attention. At the time of the first publication of the EA frame-
work presented in this thesis, no EA-based approaches for biclustering
had been proposed.



Empirical Validation of the
Biclustering Concept

3.1 Motivation

With the large selection of biclustering approaches available, an important
question is how the different methods relate to each other, whether certain
types of problem formulations or algorithms have significant advantages
over others. A related question is whether the biclustering conceptin gen-
eral has advantages over standard clustering approaches. These questions
are of particular interest in the context of the present thesis where one goal
is to present a framework for biclustering. In order to an answer these
questions both a systematic evaluation and a comparison of biclustering
methods and comparisons to standard clustering methods are crucial.
With respect to the former, most papers which introduce new bicluster-
ing methods validate the basic usefulness of the proposed method by
discussing the biological meaning of a few example biclusters. But only a
few studies provide an evaluation on synthetic data or assess the biclus-
ters based on additional biological information such as known sample or
gene classifications. As to comparison studies, empirical comparisons of
multiple biclustering methods are rare [TSS02, YWWY03, IBB04] and they
focus on validating a new algorithm with regard to one or two existing
biclustering methods usually considering a specific objective function.

Comparing clustering methods in general is difficult as the formaliza-



22

Chapter 3. Empirical Validation of the Biclustering Concept

tion in terms of an optimization problem strongly depends on the scenario
under consideration and accordingly varies for different approaches. In
the end, biological merit is the main criterion for validation, though it can
be intricate to quantify this objective. Another difficulty in assessing the
usefulness of biclustering methods is introduced by the high complexity
of the resulting optimization problems. As a consequence, existing bi-
clustering methods are heuristic in nature and for the evaluation it may
be difficult to separate the effects of the specific problem formulation from
the interfering effects due to the approximate algorithms.

The present chapter addresses these two issues by (i) providing a sys-
tematic comparison and evaluation of prominent biclustering methods in
the light of gene classification and by (ii) introducing a simple bicluster-
ing model in combination with a fast and exact algorithm (Bimax) which
serves as a reference method in the comparison. In particular, this chapter
focuses on the following questions:

e What comparison and validation methodology is adequate for the
biclustering context?

e How meaningful are the biclusters selected by existing methods?
e Can a simple model like Bimax capture meaningful biclusters?

e How do different methods compare to each other: do some tech-
niques have advantages over others or are there common properties
that all approaches share?

In order to answer these questions, a number of salient biclustering
methods were selected, implemented, and tested on both synthetic and
real gene expression data sets. An in silico scenario has been chosen to
(i) investigate the capability of the algorithms to recover implanted tran-
scription modules [IEB*02], i.e., sets of co-regulated genes together with
their regulating conditions, and to (ii) study the influence of regulatory
complexity and noise on the performance of the algorithms. To assess
the biological relevance of biclusters on gene expression data for Saccha-
romyces cerevisiae and Arabidopsis thaliana, multiple quantitative measures
are introduced that relate the biclustering outcomes to GO annotations
[A™00], metabolic pathway maps, and protein-interaction data.

3.2 Related Work

There exist several studies that address the issue of comparing and
validating one-dimensional clustering methods [KCO01, YHRO1, [Azu02,
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DDO03| GVSS03, HKKO05a]. All of them make use of different quantitative
measures or validity indices, which can be divided into three categories
[HBVOI1]: internal, external, and relative indices. Internal indices solely
rely on the input data—examples are the two measures of homogeneity
and separation [GVSS03]. In contrast, external criteria are based on addi-
tional data in order to validate the obtained results. In the context of gene
expression data, these would correspond to prior biological knowledge
of the systems being studied; alternatively, a validation can be done by
referring to other types of genomic data representing similar aspects of
the regulation mechanisms being investigated. The third category of rel-
ative indices measures the influence of the input parameter settings on
the clustering outcome. As discussed in [HKKO05a], external indices are
preferable in order to assess the performance of an algorithm on a given
data set, while internal indices can be used to investigate why a particular
method does not perform well.

In the context of biclustering, mainly external validation has been
used. Biological analyses and interpretations by human experts are most
common for the evaluation of a single, newly proposed biclustering algo-
rithm [CCO00,GLD00, BDCKY02, MK03, BIB03, GGK*03, IBB04]; they are
usually descriptive and qualitative only, and therefore not suited for com-
paring multiple methods. In terms of quantitative measures, many papers
rely on known classifications and categorizations given by tumor types
[TSS02, KBCGO03, MKO03]], GO annotations [TSS02, TSKS04], metabolic
pathways [IFB*02], or promoter motifs [IBB04], which are closely re-
lated to the specific data sets under consideration. Some authors also
investigate in silico data sets with implanted biclusters where the optimal
outcome is known beforehand [IFB*02, BDCKY02, BIB03, YWWP02].

Most biclustering papers are concerned with the introduction and
validation of a new approach, while only a few contain quantitative com-
parisons to existing methods. [CCO00], and [KBCGO03]], validate the biclus-
tering results in comparison to hierarchical clustering and singular value
decomposition respectively. [TSS02], and [YWWP02, YWWYO03], provide
a comparison to the Cheng and Church method [CCO00], regarding syn-
thetic data respectively the problem formulation introduced in [CCOQ]. In
[IBB04], two biclustering techniques [CC00, GLDOO] as well as five classi-
cal clustering methods are tested with respect to the problem formulation
used by the iterative signature algorithm proposed in [IEB*02]. In most of
the studies, the comparison has been carried out with regard to the gene
dimension.
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3.3 Biclustering Methods
3.3.1 Selected Algorithms

Five prominent biclustering methods have been chosen for this compara-
tive study according to three criteria: (i) to what extent the methods have
been used or referenced in the community, (ii) whether their algorithmic
strategies are similar and therefore better comparable, and (iii) whether
an implementation was available or could be easily reconstructed based
on the original publications. The selected algorithms, which all are based
on greedy search strategies, are: Cheng and Church’s algorithm, CC,
[CCOO0I; Samba, [TSS02]]; Order Preserving Submatrix Algorithm, OPSM,
[BDCKYQ2]; Iterative Signature Algorithm, ISA, [IEB*02, IBB04]; xMotif,
[MKO3]. A brief description of the corresponding approaches was given
in Section 2.3.2.

3.3.2 Reference Method (Bimax)

The above methods use different models which are all too complex to be
solved exactly; most of the corresponding optimization problems have
shown to be NP-hard. Therefore, advantages of one method over an-
other can be due to a more appropriate optimization criterion or a better
algorithm.

To decouple these two aspects, this chapter proposes a reference
method, namely Bimax, that uses a simple data model reflecting the fun-
damental idea of biclustering, while allowing to determine all optimal
biclusters in reasonable time. This method has the benefit of provid-
ing a basis to investigate (i) the usefulness of the biclustering concept
in general, independently of interfering effects caused by approximate
algorithms, and (ii) the effectiveness of more complex scoring schemes
and biclustering methods in comparison to a plain approach. Note that
the underlying binary data model, which is described below, is only used
by Bimax and does not represent the platform on the basis of which the
different algorithms are compared. All methods under consideration are
employed using their specific data models.

3.3.2.1 Model

The model assumes two possible expression levels per gene: no change
and change with respect to a control experiment.! Accordingly, a set of
m microarray experiments for n genes can be represented by a binary
matrix E, where a cell ¢;j is 1 whenever gene i responds in the condition j

!To this end, a preprocessing step normalizes log expression values and then trans-
forms matrix cells into discrete values, e. g., by using a twofold change cutoff.
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and otherwise it is 0. A bicluster (G, C) corresponds to a subset of genes
that jointly respond across a subset of samples. In other words, the pair
(G, C) detines a submatrix of E for which all elements equal 1. Note that,
by definition, every cell ¢;; having value 1 represents a bicluster by itself.
However, such a pattern is not interesting per se; instead, one would like
to find all biclusters that are inclusion-maximal, i. e., that are not entirely
contained in any other bicluster.

Definition 6. The pair (G, C) € 21~ x 211~ js called an inclusion-maximal
bicluster if and only if (1) Vi € G,j € C : ¢j = 1 and (2) A(G,C) €
2MLemh s 2Ll oith () ¥ " € G, j € C - epp = land (i) G C G ANC C
C' A (G,C) % (G, C).

This model is similar to the one presented in [TSS02] where a bicluster
can also contain 0-cells.

3.3.2.2 Algorithm

Since the size of the search space is exponential in n and m, an enumerative
approach is infeasible in order to determine the set of inclusion-maximal
biclusters. In [ACET02] Alexe et al. proposed an algorithm in a graph-
theoretic framework that can be employed in this context, if the matrix E
is regarded as an adjacency matrix of a graph. By exploiting the fact that
the graph induced by E is bipartite, their incremental algorithm can be tai-
lored to this application which reduces the running-time complexity from
O(n? m*B) to @(nmplog f), where f is the number of all inclusion-maximal
biclusters in E™" (see Appendix B). However, the memory requirements
of this algorithm are of order Q(nmp) which causes practical problems,
especially for larger matrices.

In this chapter, a fast divide-and-conquer approach is proposed, the
binary inclusion-maximal biclustering algorithm (Bimax) that requires
much less memory resources (O(nm min{n, m})), while providing a worst-
case running-time complexity that for matrices containing disjoint bi-
clusters only is of order O(nmp) and for arbitrary matrices is of order
O(nmp min{n, m}). The complete algorithm and the proof of the general
upper bound for the running-time complexity are given in Appendix B.
Bimax tries to identify areas of E that contain only Os and therefore can
be excluded from further inspection. This strategy is especially beneficial
for the purposes followed here as E is, depending on the cutoff threshold,
sparse; in all data sets used in this chapter, the proportion of 1-cells over
O-cells never exceeded 6% when considering a twofold change cutoff.

More specifically, the idea behind the Bimax algorithm, which is illus-
trated in Figure 3, is to partition E into three submatrices, one of which
contains only 0-cells and therefore can be disregarded in the following.
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Cu Cy

rearrange rows

Vv

Figure 3: Illustration of the Bimax algorithm. To divide the input matrix into
two smaller, possibly overlapping submatrices U and V, first the set of columns
is divided into two subsets Ci; and Cy, here by taking the first row as a template.
Afterwards, the rows of E are resorted: first come all genes that respond only
in conditions given by Cy, then those genes that respond to conditions in Cy
and in Cy, and finally the genes that respond to conditions in Cy only. The
corresponding sets of genes Gy;, Gw, and Gy then define in combination with Cy;
and Cy the resulting submatrices U and V which are decomposed recursively.

The algorithm is then recursively applied to the remaining two submatri-
ces U and V; the recursion ends if the current matrix represents a bicluster,
i.e., contains only 1s. If U and V do not share any rows and columns of
E, i.e., Gy is empty, the two matrices can be processed independently
from each other. However, if U and V have a set Gy of rows in common
as shown in Figure 3, special care is necessary to only generate those
biclusters in V that share at least one common column with Cy.

3.3.2.3 Limitations

Theoretically, the number of inclusion-maximal biclusters can be expo-
nential in n and m and therefore generating the entire set can become
infeasible. For real data, though, the actual number lies within reason-
able bounds as the number of 1-cells is small. This is exemplified by
Table 1: For instance, for a 6000 x 50-matrix with a density of 5%, around
6500 biclusters are returned by the algorithm, while the theoretical bound
is 1.13¢*">. The running time for such a matrix is below 1 second on

a 3 GHz Intel Xeon machine, and about 10 minutes for corresponding
6000 x 450-matrices.

Furthermore, a secondary filtering procedure, similarly to other bi-
clustering approaches such as [I'SS502, IBB04], can be applied to reduce
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Table 1: Average number of inclusion-maximal biclusters for random matrices
with 6000 genes and varying number of columns and densities, i. e., proportion of
1-cells to O-cells. Each number gives the average over 100 matrices. The last row
comprises the theoretical upper bounds for the number of inclusion-maximal
biclusters.

density | number of samples m
E6000%- | 50 150 250 350 450

1% 530.0 3475.5 7594.2 12405.5 17919.9
2% 1468.7 11829.2  28938.8  53438.2 86657.3

3 % 2490.1 21693.7  62005.3  132435.8  238598.5
4 % 3933.7 44463.7  155929.8 367228.8 694202
5% 6554.9 100213.8 390835 956255 1838979.7

‘1.13e+15 1.43e+45 1.81e+75 2.29e+105 2.91e+135

the number of biclusters to the desired size; this issue will be discussed
in the next section. Another possibility is to constrain the minimal size
of the biclusters during the search process. The advantage of the Bimax
algorithm over the incremental procedure is that such size constraints can
be naturally integrated—thereby, further speed-ups are achievable.

3.4 Comparison Methodology

In general, a fair comparison of clustering and biclustering approaches is
inherently a difficult task because every method uses a different problem
formulation and algorithm which may work well in certain scenarios
and fail in others. Here, the main goal is to define a common setting
that reflects the general basis of the majority of the biclustering studies
available and in particular of those techniques considered in this chapter.

First, the comparison focuses on the identification of (locally) co-
expressed genes as in [CCO0, TSS02, BDCKY02, 1IFB*02, IBB04, TSKS04].
Classification of samples or inference of regulatory mechanisms may be
other tasks for which biclustering can be used; however, considering
mainly the gene dimension has the advantage of various available annota-
tions and of the possibility to compare the results with classical clustering
techniques.

Second, external indices are used to assess the methods under consid-
eration as in most biclustering papers. The reasons are: (i) it is not clear
how to extend notions such as homogeneity and separation [GVSS03] to
the biclustering context (to the authors best knowledge, no general in-
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ternal indices have been suggested so far for biclustering), and (ii) there
are some issues with internal measures, due to which [GVSS03], and
[HKKO5a], recommend external indices for evaluating the performance
of (bi)clustering methods. Both synthetic and real data sets are considered
for the performance assessment. Only the latter allow reliable statements
about the biological usefulness of a specific approach, and further bio-
logical data, namely GO annotations, as in [ISS02, TSKS04], metabolic
pathways maps, similarly to [IFBT02], and protein-protein interactions,
are used here. In contrast, the former data sets inherently reflect only
certain aspects of biological reality, but they have the advantage that the
optimal solutions are known beforehand and that the complexity can be
controlled and arbitrarily scaled to different levels.

Finally, various biclustering concepts and structures can be consid-
ered when using in silico data; [MOO4], propose several categories on the
basis of which they classify existing biclustering approaches. This study
investigates two types of bicluster concepts: biclusters with constant ex-
pression values and biclusters following an additive model where the
expression values are varying over the conditions. The former type can
be used to test methods designed to identify—according to the terminol-
ogy in [MOO04]—Dbiclusters with constant and coherent values, while the
latter type, where the expression values show the same trend for all genes
included, serves as a basis to validate algorithms tailored to biclusters
with coherent values and coherent evolutions. Concerning the bicluster-
ing structure, two scenarios are considered: (i) multiple biclusters without
any overlap in any dimension and (ii) multiple biclusters with overlap.

3.4.1 Validation Using Synthetic Data
3.4.1.1 Data Sets

The artificial model used to generate synthetic gene expression data is
similar to an approach proposed in [IFBT02]. In this setting, biclusters
represent transcription modules; these modules are defined by (i) a set G
of genes regulated by a set of common transcription factors, and (ii) a
set C of conditions in which these transcription factors are active. More
specifically, the model consists of

e A set of t transcription factors;

e A binary activation matrix A”" where a;; = 1 iff transcription factor
i is active in condition j;

e A binary regulation matrix R™" where r;; = 1 iff transcription factor
i regulates gene j;
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on the basis of which two scenarios have been created.

In the first scenario, 10 non-overlapping transcription modules, each
extending over 10 genes and 5 conditions, emerge. Each gene is regu-
lated by exactly one transcription factor and in each condition only one
transcription factor is active. The corresponding data sets contain 10 im-
planted biclusters and have been used to study the effects of noise on the
performance of the biclustering methods. For the second scenario, the
regulatory complexity has been systematically varied: here, each gene
can be regulated by z transcription factors and in each condition up to
z transcription factors can be active. As a consequence, the original 10
biclusters overlap where z is an indicator for the overlap degree; overall,
nine different levels have been considered withz =0,1,...,8.2

Moreover, two types of biclusters have been investigated for each
scenario : (i) constant biclusters and (ii) additive biclusters. In the first
case, the corresponding gene expression matrix E is defined by setting
the expression value ¢;; of gene i at condition j to e;; = maxy<x< 4 - d;j; E is
a binary matrix where the cells contained in biclusters are set to 1. In the
second case, E is constructed as follows

_fm+(G-1) if maxjcge i ak # 0
T Ul0,m—1] else
where U[], u] is a uniformly randomly chosen integer in the interval [/, u].
In the resulting matrix, all cells belonging to an implanted bicluster have a
value greater than or equal to m, while the background contains random
numbers in the range of 0 to m — 1. Within each bicluster, the values
increase column-wise by one.

3.4.1.2 Match Scores

In order to assess the performance of the selected biclustering approaches,
a score is used that describes the degree of similarity between the com-

?In detail, activation and regulation matrices were created as follows:

1 G-l < in b4z
Hi=) 0 else

for1<i<t,1<j<n +zand

1 - t+1<j<im'[t+d
=1 0 else

for1<i<t,1<j<m +d. Forscenario 1, the parameters were n’ = 100, m’ = 50, = 10,
and z = 0. For scenario 2, the parameter setting was n’ = 100,m" = 100,¢ = 10 in
combination with different overlap degrees d € {0, ..., 8}.
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puted biclusters and the transcription modules implanted in the synthetic
data sets.
The following score is designed to compare two biclusters.

Definition 7. Let G1,G, C {1, ..., n} be two sets of genes. The match score of
G1 and G, is given by the function

IG1 N Gy

5¢(G1,Gy) = Gy UGl

which characterizes the correspondence between the two gene sets.

This match score, which resembles the Jaccard coefficient, cf. [HBVO1]],
is symmetric, i. e., S¢(G1, G2) = Sg(Gz, G1), and its value ranges from 0 (the
two sets are disjoint) to 1 (the two sets are identical). A match score Sc
for sample sets can defined by analogy.

On this basis, a score for comparing two sets of biclusters can be
introduced as follows.

Definition 8. Let M;, M, be two sets of biclusters. The gene match score of
M, with respect to M, is given by the function

2(G,Cr)eM; MAX(G,,cem, Sc(G1, G2)
|Mi|

Sc(My, My) =

which reflects the average of the maximum match scores for all biclusters in M;
with respect to the biclusters in M.

The gene match score is not symmetric and usually yields different
values when M; and M, are exchanged; accordingly, both S7.(M;, M>)
and S;.(M,, M) need to be considered. Although, this comparative study
takes only the gene dimension into account, an overall match score can
be defined as S*(M1, M,) = \/SE(M1,M2) - §7.(M;, M) where S{. is the cor-
responding condition match score.

Now, let M, denote the set of implanted biclusters and M the out-
put of a biclustering method. The average bicluster relevance is defined as
St (M, Mopt) and reflects to what extent the generated biclusters represent
true biclusters in the gene dimension. In contrast, the average module recov-
ery, given by S7.(Mypt, M), quantifies how well each of the true biclusters is
recovered by the biclustering algorithm under consideration. Both scores
take the maximum value of 1, if My, = M.

3.4.2 Validation Using Prior Knowledge

Prior biological knowledge in the form of natural language descriptions
of functions and processes that genes are related to has become widely
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available. One of the largest organized collection of gene annotations is
currently provided by the Gene Ontology Consortium [A*00]. Similarly
to the idea pursued in [IS502], this validation step investigates whether
the groups of genes delivered by the different algorithms show significant
enrichment with respect to a specific GO annotation. In detail, biclusters
are evaluated by computing the hypergeometric functional enrichment
score, cf. [BKB*03], based on Molecular Function and Biological Process
annotations; the resulting scores are adjusted for multiple testing by using
the Westfall and Young procedure [WY93, BKB"03]. This analysis is
performed for the model organism Saccharomyces cerevisiae, since the yeast
GO annotations are more extensive compared to other organisms. The
gene expression data set used is the one studied in [GSK*00], which
contains a collection of 173 different stress conditions and a selection of
2993 genes.

In addition to GO annotations, the validation scheme considers spe-
cific biological networks, namely metabolic and protein-protein interac-
tion networks, that have been derived from other types of data than
gene expression data. Although each type of data reveals other as-
pects of the underlying biological system, one can expect to a certain
degree that genes that participate in the same pathway respectively form
a protein complex also show similar expression patterns as discussed in
[ZKRLOO, I0SS02, IEB02]. The question here is whether the computed
biclusters reflect this correspondence.

To this end, both pathway information as well as protein interactions
are modelled in terms of an undirected graph where a node stands for a
protein and an edge represents a common reaction in that the two con-
nected proteins participate respectively a measured interaction between
the two connected proteins. In order to verify whether a given bicluster
(G, C) is plausible with respect to the metabolic respectively protein in-
teraction graph, two scores are considered: (i) the proportion of pairs of
genes in G for which there exists no connecting path in the graph, and
(ii) the average path length of pairs of genes in G for which such a path
exists. One may expect that both the number of disconnected gene pairs
and the average distance between two connected genes is significantly
smaller for genes in G than for randomly chosen genes. For both scores,
a resampling method is applied where 1000 random gene groups of the
same size as G are considered; a Z-test is used to check whether the scores
for the bicluster (G, C) are significantly smaller or larger than the average
score for the random gene groups.

As to the metabolic level, a pathway map is used that describes the
main bio-synthetic pathways at the level of enzymatic reactions for the
model organism Arabidopsis thaliana [WZV*04]. As this map has been
manually assembled at the Institute for Plant Science at ETH Zurich by an
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extensive literature search, the resulting graph represents a high level of
confidence. The gene expression data set used in this context are publicly
available at http://nasc.nott.ac.uk/| and comprise 69 experimental
conditions and a selection of 734 genes.

To investigate the correspondence of biclusters and protein-protein
interaction networks, again Saccharomyces cerevisiae is considered because
the amount of interaction data available is substantially larger than for
Arabidopsis thaliana. Here, the aforementioned gene expression data set
for yeast [GSK*00] is combined with corresponding protein interactions
stored in the DIP database [SMS'04], resulting in 11498 interactions for
3665 genes overall.

3.4.3 Implementation Issues

All of the selected methods have been re-implemented according to the
specifications in the corresponding papers, except of Samba for which a
publicly available software tool, Expander [SMKSO03], has been used. The
OPSM algorithm has been slightly extended to return not only a single
bicluster but the d largest biclusters among those that achieve the optimal
score; d has been set to 100. Furthermore, the standard hierarchical clus-
tering method (HCL) in MATLAB has been included in the comparison,
which uses single linkage in combination with Euclidean distance. The
parameter settings for the various algorithms correspond to the values
that the authors have recommended in their publications, cf. Table 2. For
the reference method, Bimax, the discretization threshold has been set to
e+ (e —e)/2 where e and e represent the minimum respectively maximum
expression values in the data matrix.

As the number of generated biclusters varies strongly among the con-
sidered methods, a filtering procedure, similarly to [TSS02, IFB*02], has
been applied to the output of the algorithms to provide a common ba-
sis for the comparison. The filtering procedure adopted here follows a
greedy approach: in each step, the largest of the remaining biclusters is
chosen that has less than w percent of its cells in common with any pre-
viously selected bicluster; the algorithm stops if either d biclusters have
been selected or none of the remaining ones fulfills the selection criterion.
For the synthetic data sets, d equals the number of optimal biclusters,
which is known beforehand, and for the real data sets, d is set to 100; in
both cases, a maximum overlap of w = 0.25 is considered.
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Table 2: Parameter settings used for different biclustering methods. Default
settings (i. e., the parameter values recommended/used by the authors of original
papers) were occasionally changed in order to force the methods to output at
least a single bicluster. The changed values are reported in the third column (an
empty third column cell indicates the default values have always been used).
For the meaning of different parameters, please refer to the original papers.

Algorithm ‘ Default Settings ‘ Changed values
Samba D=40,N1=4,N, =6
k=20, L =30
ISA te = 1.8 —4.0 (step 0.1) te = 2.0, nr. seeds = 500
tc = 2.0, nr. seeds = 20000
CC a =1.2, 6: lower end of the 6 < 0.5, for biclusters with
range of expression values increasing values 6 = 0.1
OPSM I =100
xMotifs | ng =10, ny = 1000, s; = [7,10] si=7,a=01
a not given, p-value = 10710 max_length = 0.7m
max_length not given noise scenario: p-value = 1077

3.5 Results
3.5.1 Synthetic Data

The data derived from the aforementioned artificial model enables us to
investigate the capability of the methods to recover known groupings,
while at the same time further aspects like noise and regulatory com-
plexity can be systematically studied. The data sets used in this context
are kept small, i.e., n = 100,m = 50 for scenario 1 and n = 100,m =
100, ..., 108 for scenario 2, in order to allow a large number of numerical
experiments to be performed—for a 100 X 100-matrix, the running-times
of the selected algorithms varied between 1 and 120 seconds. The size
of the considered data sets, though, does not restrict the generality of the
results presented in the following, since the inherent structure of the data
matrix, i. e., the overlap degree, is the main focus of this validation.

Note that the input matrices have not been discretized beforehand,
e.g., converted into binary matrices as required by the reference method
Bimax. Instead, for each algorithm the corresponding preprocessing pro-
cedures have been employed as described in the relevant papers.

3.5.1.1 Effects of Noise

The first artificial scenario, where all biclusters are non-overlapping,
serves as a basis to assess the sensitivity of the methods to noise in the
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Effect of Noise: Relevance of BCs
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Figure 4: Results for the artificial scenario where the implanted biclusters are
characterized by constant expression values and non-overlapping modules with
increasing noise levels.
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Effect of Noise: Relevance of BCs
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Figure 5: Results for the artificial scenario where the implanted biclusters follow
the additive model and non-overlapping modules with increasing noise levels.
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data. It is to be expected that hierarchical clustering works well in such a
scenario as the implanted gene groups are clearly separated in the condi-
tion dimension.

Noise is imitated by adding random values drawn from a normal dis-
tribution to each cell of the original gene expression matrix. The noise
level, i.e., the standard deviation o, is systematically increased, and for
each noise value, 10 different data matrices have been generated from the
original gene expression matrix E. The performance of each algorithm
is averaged over these 10 input matrices. Figure 4 summarizes the per-
formances of the considered methods with respect to constant biclusters,
while Figure 5 depicts the results for the matrices where the implanted
biclusters represent trends over the conditions.

In the absence of noise, ISA, Samba, and Bimax are able to identify
a high percentage (> 90%) of implanted transcription modules; as ex-
pected, the same holds for the hierarchical clustering approach, if the
number k of clusters to be generated corresponds to the actual number
of implanted modules. In contrast, the scores obtained by Cheng and
Church biclustering method (CC) and xMotif are substantially lower. In
the case of constant biclusters, this phenomenon can be explained by the
fact that the largest biclusters found by these two methods mainly contain
O-cells, i.e., the algorithms do not focus on changes in gene expression,
but consider the similarity of the selected cells as the only clustering cri-
terion. This problem has been discussed in detail in [CCO0]. For the
specific scenario with the particular type of additive biclusters consid-
ered here, CC tends to find large groups of genes extending over a few
columns only, which is due to the used greedy heuristic; theoretically,
the implanted biclusters achieve the optimal mean residue score. Since
xMotif is mainly designed to find biclusters with coherent row values,
the underlying bicluster problem formulation is not well suited for the
second bicluster type. A similar argument applies to OPSM which seeks
clear trends of up- or down-regulation and cannot be expected to perform
well in the scenarios with constant biclusters. The high average bicluster
relevance in Figure 4a is rather an artifact of the implementation used in
this chapter which keeps the order of the columns when identical expres-
sion values are present; however, as soon as noise is added, this artificial
order is destroyed, which in turn leads to considerably lower gene match
scores. In contrast, biclusters following an additive model with respect to
the condition dimension represent optimal order-preserving submatrices.
In this setting, the correspondence between the implanted biclusters and
those found by OPSM is about 50%, cf. Figure 5. A potential reason for
the unexpectedly low scores is the way the heuristic algorithm works: per
number of columns, only a single bicluster is considered—however, the
implanted biclusters all extend over the same number of columns.



3.5. Results 37

Concerning the influence of noise, ISA is only marginally affected by
either type of noise and still recovers more than 90% of all implanted
modules even for high noise levels. The same holds for Bimax in the con-
stant bicluster case, but for the other bicluster type a substantial decrease
in the relevance score can be observed in Figure 5. This reveals a potential
problem with discretization approaches: as noise blurs the differences be-
tween background and biclusters, many small submatrices emerge that
not necessarily are meaningful. With HCL, noise has no observable ef-
fects in the constant bicluster scenarios, while for the second bicluster
type increasing noise leads to a decrease in performance. The latter ob-
servation is due to the fact that background and biclusters are not that
clearly separated in the data sets with biclusters exhibiting trends. Samba
seems to be sensitive to noise in the constant bicluster case as the average
gene match scores decrease by 40% to 50% for a medium noise level; still,
the scores are significantly larger than for CC and xMotif. In the case
of additive biclusters, noise has only little effect on the performance of
Samba. Concerning OPSM, noise affects the outcome; the scores slightly
decrease. Remarkably, the performance of CC on the constant bicluster
matrices appears to improve with increasing noise. This phenomenon,
though, is again a result of the adopted algorithmic strategy, cf. [CCOO]:
the largest biclusters may mainly cover the background, i. e., O-cells. With
noise, the biclusters found in the matrix background tend to be smaller,
and this results in an improved gene match score, cf. Figure 6.

3.5.1.2 Regulatory Complexity

The focus of the second artificial scenario is to study the behavior of
the chosen algorithms with respect to increased regulatory complexity.
Here, a single gene may be activated by a set of transcription factors,
and accordingly the implanted transcription modules may overlap. This
setting is expected to reveal the advantages of the biclustering approach
over traditional clustering methods such as hierarchical clustering.
Figure 7 (constant biclusters) as well as Figure 8 (additive biclusters)
depict the results for different overlap degrees in the absence of noise, cf.
the description of the data sets on Page 28. The only method that fully
recovers all hidden modules in the data matrix is—by design—the refer-
ence method, Bimax. Among the remaining methods, Samba provides
the best performance: most of the biclusters found (> 90%) represent hid-
den modules®; however, not all implanted modules are recovered. While
OPSM is not significantly affected by the overlap degree (only the non-
constant bicluster data sets have been considered as OPSM cannot handle

3As to the outlier in Figure 8b at overlap degree 7, repeated applications of Samba on
the same matrix yielded similar scores.
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Figure 6: This graph shows for the first artificial scenario with constant biclusters
what proportion of computed biclusters contain over-expressed cells. As argued
in the article, the two methods CC and xMotif tend to produce large biclusters
covering the background area of the input matrix, i. e., the cells containing 0).

identical expression values), ISA appears to be more sensitive to increased
regulatory complexity, especially with the second bicluster type. An ex-
planation for this is the normalization step in the first preprocessing step
of the algorithm. With increasing overlap, the expression value range af-
ter normalization becomes narrower. As a result, the differences between
unchanged and up- or down-regulated expression values blur and are
more difficult to separate based on the gene and chip threshold param-
eters to,t.. These parameters have a strong impact on the performance
as shown in Figure 9. As to CC, the performance increases with larger
overlaps degrees, but the gene match scores are still lower than the ones
by Bimax, Samba, and ISA; again, this is due to the fact that the number of
background cells diminishes with larger overlaps. xMotif shows the same
behavior on the data matrices with constant biclusters. Comparing the
biclustering methods with HCL, one can observe that already a minimal
overlap causes a large decrease in the performance of HCL—even if the
optimal number of clusters is used. The reason is that clusters obtained by
HCL form a partition of genes, i. e., are non-overlapping, and this implies
that not every planted transcription module can be possibly recovered.
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Figure 7: Results for the artificial scenario where the implanted biclusters are
characterized by constant expression values. Overlapping modules with in-
creasing overlap degree and no noise.
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Figure 8: Results for the artificial scenario where the implanted biclusters follow
the additive model and overlapping modules with increasing overlap degree
and no noise.
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Figure 9: Variability of the average bicluster relevance score with respect to the
parameter settings (constant biclusters with increasing overlap). The plotted
values represent averages over the biclusters obtained by ISA, xMotif and CC.
(a) ISA: 1.0 < t; < 2.4 and t; = t.; the value recommended by authors is (2.0, 2.0).
(b) xMotif: size of seeds s; € [1,50]; values recommended by the authors are
in the range 7 — 10. (c) CC: the homogeneity threshold, 6 € [0, 1]; the red bold
line in shows the results obtained for 6 = 0, i. e., when only perfect biclusters are
sought.
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Enrichment with GO Biological Process Category
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Figure 10: Proportion of biclusters significantly enriched by any GO Biological
Process category (Saccharomyces cerevisiae) for the six selected biclustering meth-
ods as well as for hierarchical clustering with k € {15,30,50,100}. The columns
are grouped method-wise, and different bars within a group represent the results
obtained for five different significance levels a.

3.5.2 Real Data

Any artificial scenario inevitably is biased regarding the underlying model
and only reflects certain aspects of biological reality. Therefore, the al-
gorithms are tested in the following on real data sets, normalized using
mean centering, and the biological relevance of the obtained biclusters is
evaluated with respect to GO annotations, metabolic pathway maps, and
protein-protein interaction data.

3.5.2.1 Functional Enrichment

The histogram in Figure 10 reflects for each method the proportion of
biclusters for which one or several GO categories are overrepresented—at
different levels of significance. Best results are obtained by OPSM. Given
that this approach only returns a small number of biclusters, here 12 in
comparison to 100 with the other methods, it delivers gene groups that
are highly enriched with the GO Biological Process category. This result
is insofar interesting as the effect of the noise observed in the artificial
setting does not seem to be a problem with the considered real data
set. Bimax, ISA, and Samba also provide a high portion of functionally
enriched biclusters, with a slight advantage of Bimax and ISA (over 90%
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at a significance level of 5%) over Samba (over 80% at a significance level
of 5%). In contrast, the scores for CC are considerably lower (around
30%) due to the same problem as discussed in the previous section. In
[CCO0] the authors mention that the first few biclusters should probably
be discarded, but the practical issue remains that it is not clear which
biclusters are meaningful and should be considered for further analysis.

Except for xMotif, though, all biclustering methods achieve higher
scores than HCL with different values for k, the number of clusters to
be sought. This can be explained in terms of the data set used: Since it
refers to different types of stresses, it is likely that local, stress-dependent
expression patterns emerge that are hard to find by traditional cluster-
ing techniques. This hypothesis is also supported by the fact that most
functionally enriched biclusters only contain one or two overrepresented
GO categories and that there is no clear tendency towards any of the
categories.

3.5.2.2 Comparison to Metabolic and Protein Networks

Under the assumption that the structure of a metabolic pathway map
respectively a protein-protein interaction network is somehow reflected
in the gene expression data, the degree of connectedness of the genes
associated with a bicluster can be used to assess its biological relevance.
In particular, one may expect that both the number of disconnected gene
pairs and the average shortest distance between connected gene pairs
tend to be smaller for the biclusters found than for random gene groups.

Table 3 shows that this holds for the data set and the metabolic pathway
map used for Arabidopsis thaliana. 1If there exists a path between two
genes of a bicluster in the metabolic graph, then with high probability
the distance between these genes is significantly smaller than the average
shortest distance between randomly chosen gene pairs. Although for
most methods, the biclusters are better connected than random gene
groups, the differences to the random case are not as striking as for the
average gene pair distance. This indicates that combining gene expression
data with pathway maps within a biclustering framework can be useful to
focus on specific gene groups. Note that also hierarchical clustering with
k € {15,30,50,100} has been applied to these expression data; however,
a single cluster usually contains almost all the genes of the data set,
while the remaining clusters comprise only few genes. Accordingly, no
significant differences to random clusters can be observed.

The results for the corresponding comparison for the PPI, though, are
ambiguous, cf. Table 3. As to the degree of disconnectedness, there is
no clear tendency in the data which can be attributed to the fact that
not all possible protein pairs have been tested for interaction. Focusing
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Table 3: Biological relevance of biclusters with respect to a metabolic pathway
map (MPM) for Arabidopsis thaliana and a PPInetwork for Saccharomyces cerevisiae.
For each bicluster, a Z-test is carried out to check whether its score is significantly
smaller or greater than the expected value for random gene groups; the table
gives for each method the proportion of biclusters with statistically significant
scores (significance level o = 1073). The results for HCL are omitted as all scores
equal 0%.

Method proportion of average shortest distance
disconnected gene pairs in the graph
smaller greater smaller greater

MPM | PPI | MPM | PPI || MPM | PPI | MPM | PPI

Bimax 58.9 | 14.0 195 | 64.0 85.3 | 58.0 34 | 16.0
CC 70.0 | 52.0 150 | 26.0 70.0 | 42.0 15.0 | 34.0
OPSM 42.8 | 18.8 28.6 | 50.0 929 | 56.3 0.0 | 43.8
Samba 416 | 0.0 37.5 | 100.0 75.6 | 25.6 13.1 | 46.2
xMotif 49.0 | 2.0 17.0 | 920 84.0 | 4.0 3.0 72.0
ISA 25.0 | 58.0 25.0 | 22.0 50.0 | 70.0 25.0 | 22.0

on connected gene pairs only, ISA and Bimax seem to mostly generate
gene groups that have a low average distance within the protein network
in comparison to random gene sets; for xMotif, the numbers suggest
the opposite. Overall, the differences between the biclustering methods
demonstrate that special care is necessary when integrating gene expres-
sion and protein interaction data: not only the incompleteness of the
data needs to be taken into consideration, but also the confidence in the
measurements has to be accounted for, see, e. g., [GSWO04].

3.6 Summary

The present chapter compares five prominent biclusterings methods with
respect to their capability of identifying groups of (locally) co-expressed
genes; hierarchical clustering and a baseline biclustering algorithm, Bi-
max, proposed in this chapter serve as a reference. To this end, different
synthetic gene expression data sets corresponding to different notions of
biclusters as well as real transcription profiling data are considered. The
key results are:

e In general, the biclustering concept allows to identify groups of
genes that cannot be found by a classical clustering approach that
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always operates on all experimental conditions. On the one hand
side, this is supported by the observation that with increased regu-
latory complexity the ability of hierarchical clustering to recover the
implanted transcription modules in an artificial scenario decreases
substantially. On the other hand side, on real data the groups out-
putted by hierarchical clustering for different similarity measures
and parameters do not exhibit any significant enrichment according
to GO annotations and metabolic pathway information. In con-
trast, most biclustering methods under consideration are capable
of dealing with overlapping transcription modules and generate
functionally enriched clusters.

e There are significant performance differences among the five biclus-
tering methods. On the real data sets, ISA, Samba, and OPSM pro-
vide similarly good results: a large portion of the resulting biclusters
is functionally enriched and indicates a strong correspondence with
known pathways. In the context of the synthetic scenarios, Samba
is slightly more robust regarding increased regulatory complexity,
but also more sensitive regarding noise than ISA. While Samba and
ISA can be used to find multiple biclusters with both constant and
coherently increasing values, OPSM is mainly tailored to identify a
single bicluster of the latter type. Extensions like the one presented
in Chapter 5 or in [LWO03] try to resolve these issues. Another
extension will be presented in Chapter 5. The remaining two algo-
rithms, CC and xMotif, both tend to generate large biclusters that
often represent gene groups with unchanged expression levels and
therefore not necessarily contain interesting patterns in terms of,
e.g., co-regulation. Accordingly, the scores for CC and xMotif are
significantly lower than for the other biclustering methods under
consideration.

e The Bimax baseline algorithm presented in this chapter achieves
similar scores as the best performing biclustering techniques in this
study. This may be explained by the rather global evaluation ap-
proach pursued here, and a more specific analysis may lead to dif-
ferent results. Nevertheless, the reference method can be useful as a
preprocessing step by which potentially relevant biclusters may be
identified; later, the chosen biclusters can be used, e. g., as an input
for more accurate biclustering methods in order to speed up the
processing time and to increase the bicluster quality. An advantage
of Bimax is that it is capable of generating all optimal biclusters,
given the underlying binary data model.
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Obviously, no method is ideal for all biclustering tasks and identifying
the best one for a problem at hand often requirey several methods to
be tried out. In order to ease comparisons of biclustering algorithms
and make various algorithms available to the community, user-friendly
biclustering tool, named BicAT [BBP*06], was developed which includes
all methods investigated in this chapter (except Samba) and additional
pre- and post-processing tools.

With respect to the following parts of this thesis, two main conclusions
can be drawn from this validation and comparison study: i) The useful-
ness of the basic biclustering concept and its advantages over standard
clustering methods have been confirmed. Thus, both the algorithmic
framework and the method for analysing multiple gene expression sets
should follow a biclustering model instead of a standard clustering for-
mulation. ii) The ranking scheme of order-preserving submatrix (OPSM)
seems to yield gene modules of high biological relevance.



An Evolutionary Algorithm
Framework for Biclustering

4,1 Motivation

As shown in the previous chapter biclustering is a useful concept and
has some advantages over standard clustering methods. However, a
disadvantage of existing biclustering algorithms in relation to cluster-
ing algorithms is that they are highly specific to the respective problem
formulations. Often, small changes like adaptations of the similarity mea-
sure require a redesign of the algorithm. One possibility to overcome this
limitation is to reduce the different biological questions to a very gen-
eral problem formulation like the binary model (bimax) discussed in the
previous chapter and apply an algorithm specifically developed for this
model. An alternative approach is to develop a more general algorithm
which can be easily adapted to various problem formulations. In this
context, the present chapter proposes a general framework for bicluster-
ing based on a hybrid evolutionary algorithm. This framework serves a
basis for the studies reported in Chapters 5-7.

The concept for this framework was motivated by the following ob-
servation: Among the various biclustering methods proposed in the lit-
erature, most approaches are based on greedy heuristics that iteratively
refine a set of biclusters. These algorithms can be considered as local
search methods which are fast but often yield suboptimal results. One
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has to take into account, though, that the time to compute a certain biclus-
tering is often less critical than the quality of the outcome: In comparison
to the amount of work required to perform the measurements, run-times
of several minutes up to a couple of hours may be still acceptable if it
can be justified by a substantial improvement in quality. The idea is now
to include such biclustering methods into a global search strategy which
in turn identifies good starting points for the greedy methods. In this
hybridization scheme, each intermediate solution of the global search
method is used as input for a local search method which tries to improve
the quality of the solution by applying a heuristic. Then, this improved
solution is evaluated.

This strategy provides flexibility in several respects: (i) any local search
method which starts with a given bicluster and returns an improved
bicluster can be used in this hybridization scheme, (ii) additional con-
straints or optimization criteria can be integrated into the algorithm as
demonstrated in Chapters 5-7, and (iii) the user can decide how much
computation time he is willing to spend in order to improve the biclus-
tering outcome. Additionally, the framework includes a general method
for optimizing a whole biclustering, i. e., identify a set of well distributed
biclusters.

In order to demonstrate the effectiveness of the framework, this chap-
ter presents an implementation for the Cheng and Church method [CC00]
(see Section 2.3 for a description) and compares the hybrid algorithm to
the original Cheng and Church method on data sets from yeast and Ara-
bidopsis thaliana. The goal is to find out whether the framework is able to
improve the performance of the local search method within reasonable
running times. An additional question is how the framework performs
when a whole biclustering is sought.

4.2 Related Work

This framework employs an EA for biclustering. An overview of the ex-
isting biclustering methods was given in Section 2.3 and the Cheng and
Church method used in the sample application of the framework was
discussed in Section 2.3.2. Concerning EAs, an introduction was given
in Section 2.4 which also discusses EA approaches to standard clustering
problems. However, these partitioning problems require an architecture
of to the EA which is significantly different from the one for a bicluster-
ing approach. Thus, the existing EA approaches for clustering cannot be
applied here. As to biclustering approaches, at the time of the first pub-
lication of the framework presented in this chapter no general black-box
optimization methods including EAs were available, cf. Section 1.3.
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4.3 Model

In general, the goal is to identify large biclusters exhibiting a high sim-
ilarity of the expression patterns. Usually not a single bicluster but a
biclustering, a number of diverse biclusters is sought. The task of identi-
tying such a biclustering can be formalized as an optimization problem in
various ways depending on the biological scenario. For the present frame-
work the problem formulation depends on the local search method which
is integrated. Here, a rather general model is employed, which captures
several existing biclustering models such as the Cheng and Church model
[CCO0], the OPSM model [BDCKY02] or the bimax model. It transforms
the homogeneity criterion into a constraint by a user defined threshold
which specifies the maximal inhomogeneity allowed in a bicluster and
optimizes bicluster size. With respect to the optimization of a whole
biclustering the goal is to identify diverse biclusters which are not just
variants of the same large bicluster. The diversity of the biclusters can for
example be assessed by the coverage of a biclustering D.

Definition 9. The coverage score f., of a biclustering D denotes the overall
number of different matrix cells covered by the union of the biclusters contained
in D, formally:

fuo(D) == 1{(G, j); HG,C)eD:ieG A jeC

Now, given the two objectives of bicluster size and biclustering cov-
erage, the overall optimization problem can be formulated as finding a
biclustering that maximizes coverage and the sizes of the biclusters in-
cluded. Again, these objectives are conflicting which is resolved in the
following by ranking the objectives: first, f., is to be maximized, and
then f;,. is considered.

Definition 10. Let d be the maximum number of biclusters to be found and 6
the corresponding homogeneity threshold; then, the biclustering problem with
homogeneity constraint is defined as follows:

lex max  (fi, f2)
with fi = feo(D)
f2 = ZBED fSize(B)
subject to YB € D : fyon(B) <6
De?D
ID| <d

While the algorithm presented in the following can operate also on
other problem formulations, even within this model a large number of
variations are possible by changing the homogeneity score or by adding
additional constraints.
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4.4 Evolutionary Algorithm

In order to achieve the aforementioned flexibility the optimization al-
gorithm should not make use of specific properties of the homogeneity
score. Stochastic search algorithms are well suited for such black-box
optimization problems and EAs are often used if a set of solutions is
sought as they maintain a whole population of solutions. The main idea
is to use the evolutionary algorithm to explore the space of all possible
biclusterings. One possible strategy is to represent a whole biclustering
in one individual. However, in such a scheme it is unclear how to define
an appropriate neighborhood for the mutation operator and it probably
entails a high number of calls of the local search function since evaluating
one individual requires the application of the local search function to each
bicluster in this biclustering. Here, an alternative approach is considered
where an individual represents one bicluster and a special mechanism
ensures that diversity is preserved in the population, i. e., the biclusters
are spread out over the matrix E. A closely familiar strategy has become
the standard in evolutionary multiobjective optimization where each in-
dividual represents a single point and a trade-off front of well distributed
points is sought [Zit99, Deb01].

Besides this optimization of a whole biclustering, the EA can also
improve the performance of the greedy strategy with respect to the op-
timization of a single cluster. The greedy strategy is likely to get stuck
in local optima and can thus profit from the global search which chooses
suitable biclusters for the greedy method to start with. In the following
paragraphs discuss the details of the hybrid evolutionary algorithm.

Representation

Two alternatives for the encoding have been considered. One possibility
is to use two variable length lists, one for the genes and one for the
conditions included in the bicluster. An alternative solution uses bit
representation with one bit string of length m for the genes and a second
one of length n for the conditions. Since lists are more complex to handle
than bit strings especially for large data matrices the binary representation
was chosen. A bit is set to one when the corresponding gene or condition
is contained in the bicluster. Biclusters containing only one gene or one
condition are not interesting and are repaired whenever they appear by
randomly adding a second gene or condition.

Initialization

The initial population should be generated such that a high diversity of
biclusters is attained. A simple strategy for example which sets each
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Figure 11: Histograms of the number of genes in the biclusters of the initial
population with standard initialization (setting each bit to 1 with probability 0.5)
and with uniform initialization.

e

n +e o o
o ° o
o o o

» | G

Figure 12: Schematic drawing of the distribution of an initial population of nine
biclusters. m and n are the total number of genes and conditions, respectively.
|G| and |C| are the numbers of genes and conditions included in the bicluster.

bit to 1 with a probability of 0.5 produces a set of biclusters containing
diverse genes and conditions but all biclusters will have similar sizes
as shown in Figure 11. To avoid this problem, the proposed procedure
deterministically chooses the number of genes and conditions to include
in each bicluster such that the biclusters are uniformly distributed in the
plane spanned by the number of genes and the number of conditions
contained in a bicluster (see Figure 12). Which of the genes or conditions
are included is then randomly chosen. This strategy also assures that the
tull matrix is always part of the initial population.
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Variation

The mutation operator performs independent bit mutation, i.e., it flips each
bit in both bit strings with probability p,... The mutation rates are chosen
such that the expected number of bits flipped is the same for both strings.
For recombination uniform crossover is applied which for each bit picks
the value of either of the parents with equal probability. In contrast
to alternative methods like one-point crossover this method does not
depend on the order of the bits in the bit string, e. g., neighboring bits are
not conserved more often than bits which are far apart. The crossover rate
Peross Specifies the probability for an individual to undergo recombination.

Selection

For mating selection, a tournament selection is used, i.e., T individuals
are chosen from the population with replacement and the fittest one is
copied to the pool of parents. In choosing the value of 7 the selection
pressure can be influenced: A higher 7 results in more pressure towards
tit solutions.

As described, this chapter introduce a specific environmental selection
to maintain diversity in the population. The goal is to maximize the cov-
erage and the general idea of the algorithm is as follows: First the biggest
bicluster is selected and the elements which are contained in this biclus-
ter are marked. In each following step the algorithm selects the bicluster
which contains the largest number of unmarked cells. These steps are
iterated until enough individuals have been selected (cf. Algorithm 1). If
even more diverse biclusters are sought, a variant of this algorithm can be
applied which minimizes the overlap instead of maximizing the number
of new cells. This modification is achieved easily by replacing line 24 in
Algorithm 1 with “if level® < level"*" then”.

Fitness Assignment

Before the evaluation of anindividual it is subjected to the greedy heuristic
described in the next section. An individual is evaluated based on the
size of the resulting bicluster, i. e., the fitness is calculated as the inverse

of its size
1

fsize (B)

which leads to a minimization problem.

Two different strategies can be adopted for the local search procedure:
Either the solution found by the local search is used only to determine
the objective value of the individual or the original solution is updated.
The latter one is often called Lamarckian evolution because Jean-Baptiste

F(i) =
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Algorithm 1 Environmental Selection
1: » Input:

2:  P: Population of biclusters.

3:  ng: number of individuals to select (1, < |P]).

4:  m,n: dimensions of the input data set.

5: > Output:

6

7

8

9

S: Set of selected individuals.
taken;; <0 VY (ij),1<i<m1<j<n
: S « argmaxp fsiz(B) > Select largest bicluster.
: while |5] < ng,; do
10: forall B € Pdo

11: levellf —0 VO0<r<ng

12: forallie G,je Cdo

13: temp « taken; ;

14: levelltgemp — leve1]t3emp +1

15: end for

16: end for

17: T«P\S > Biclusters not yet selected.
18: best « first element of T

19: forall Be T do

20: re20

21: while level® = level®® and r < 1, do

22: re—r+1

23: end while

24: if fiize(B) — level® > f.i.(best) — level?®! then

25: best — B

26: end if

27 end for

28: S « S U {best} > Select the best bicluster.
29:  taken;; « taken;j+1 V(i j),i€ G, je CPest

30: end while

Lamarck argued in 1801 that an animal could inherit characteristics which
were acquired by it’s parents during their live time. The theory of Bald-
winian evolution, in contrary, claims that acquired properties cannot be
passed on to the next generation.

If the EA operates alone without any local search method the following
titness function is used:

—L_ ifg(B) <6
o-{ 57

«®) (4.1)
B

else

Note that fitness is to be minimized here. This function assigns a fitness
smaller than 1 to all individuals which fulfill the residue constraint while
those violating it are assigned a fitness greater than 1.
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Implementation

The EA framework was implemented in C++ using PISA. PISA is a
portable interface for search algorithms which was developed during
this thesis project. It reduces the implementation effort by separating the
problem specific parts of a search algorithm from the problem indepen-
dent elements and thereby creating reusable modules on both sides. For
a detailed description the reader is referred to Appendix A.

4.5 Local Search Algorithm

While the EA described in the previous section can be applied directly
to the biclustering problem with homogeneity constraint it is useful to
integrate a local search method specifically developed for this problem
formulation. Here, the application of the framework is exemplified by
integrating the popular Cheng and Church method. Thus, the corre-
sponding biclustering model is used in which the inhomogeneity of the
expression patterns is given by the mean squared residue (see Definition 4
on Page 15). Note, that the Cheng and Church algorithm is chosen here
as an example despite its bad performance in some of the evaluations in
the previous chapter. However, these performance issues are mainly due
to the large biclusters with low expression values which can be solved by
looking for patterns with higher variance as discussed in [CC00] and in
the previous chapter. Additionally, the Cheng and Church algorithm is
well-suited for the problem addressed in Chapter 5.

As mentioned, [CC00] describes a greedy strategy for identifying a
single bicluster compliant with the mean squared residue constraint. This
chapter makes minor change to the original algorithm which is explained
below. The adapted algorithm starts with the full matrix and consists of
three steps:

1. In the first step multiple nodes (genes or conditions) are removed in
each iteration. This step is only performed if the number of genes
or conditions in the bicluster is above a certain threshold (default =
100). It works as follows: First calculate e;c for all i € G, eg; for all
j € C, egc and g(G, C). If g(G,C) < 6 return (G, C). Then remove all
genes i € G with

1
E Z(eij —eic —egj t+ ecc)’ > ag(G, C).
jeC

Recalculate all means and perform the corresponding operation on
the conditions. Iterate until no improvement is possible any more.
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2. The second step performs single node deletion. In each iteration the
one node is removed with the largest

) 1
d(i) = il Z(eij — eic — e + ec)’.

jeC

The equation for the conditions is analogous. This step is iterated
until the mean squared residue drops below 6.

3. In the last step all genes and conditions which are not contained
in the bicluster are tested and whenever one can be added without
increasing the mean squared residue it is added. This is iterated
until no node can be added anymore.

Note that there is a small difference to the implementation in [CCO0].
In step three the original algorithm tries to add each row or it’s inverse
where each element is multiplied with —1 while here the inverse is not
considered.

Beside 6 there is one additional parameter to set for this algorithm: «
determines how often multiple node deletion is used. A higher a leads to
less multiple node deletion and thus in general requires more CPU time.
Ideally the size of the resulting bicluster should increase with increasing «
since the single node deletion is more accurate. In some tests, however, the
size varied a lot and sometimes it decreased significantly with increasing
a. For the present study o was set to 1.2, the value which was used in
[CCOO0].

4.6 Simulation Results

The EA framework is targeted to be effective in two areas: (i) to identify
a good biclustering, i.e,., a number of well distributed biclusters and
(ii) to aid the local search procedure to overcome local optima. The
latter should lead to improvements with regard to the quality of single
biclusters as well. In the simulation runs the following two questions
were investigated both for the task of finding one bicluster as well as for
tinding a set of biclusters: How does the EA compare to the Cheng and
Church algorithm? Are there any synergy effects when combining the
two?

4.6.1 Data Sets and Experimental Setup

In this study two different data sets have been used:
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Table 4: Default parameter settings for this study.

) 300
a 1.2
Pmut (relative to string length I) | 3/I
Pcross 0.5
T 3
d 100
number of generations 50

e The yeast expression data set from Cho et al. [C*98] that was used
in [CCOO0].

o A set of expression values from Arabidopsis thaliana, a small plant.
This data set was compiled from several biological studies [LEC*03,
HMMGO03, MHGMO3].

The yeast data set contains 2884 genes and 17 conditions and the expres-
sion values denote relative abundance. The data have been used directly
in the preprocessed form as provided by the authors of [CC00]. All values
are integers in the range between 0 and 600. Following the procedure in
[CCO0] missing values are replaced by sampling a random number from
a uniform distribution between 0 and 800.

The Arabidopsis data set contains 153 conditions and 1000 selected
genes. The data contain absolute values which have been acquired using
Affymetrix GeneChips and thus no missing values need to be handled.
The data have been transformed in a similar fashion to the yeast data
ejj < 100log(e;j + 1) which results in real values in the range between 0
and 1165.

The standard parameter settings used in the following simulations
are described in Table 4. For the parameters of the Cheng and Church
algorithm whenever possible the same values as in [CCO0] have been
chosen, i.e., §, a and the number of clusters d which corresponds to the
population size in the EA. Crossover and mutation rates were set to
the values which yielded the best results in a few preliminary runs. If
not noted otherwise, ten replicate runs with different random number
generator seeds have been performed for the EA.

4.6.2 Finding One Bicluster

This section analyses the results of the simulation runs with respect to
the goal of identifying single high-quality biclusters. Here, the goal is to
verity the ability of the EA framework to improve the performance of the
greedy heuristics with respect to the task of identifying single biclusters.



4.6. Simulation Results 57

4.6.2.1 Comparison of Basic Algorithms

In order to determine whether the pure EA without any local search
procedure is able to find good biclusters candidate solutions are scored
based on the fitness function given in Equation (4.1) which includes a
penalty term for biclusters with mean squared residue scores above the
threshold. The application of this simple evolutionary algorithm results
in very small biclusters compared to the solution generated by the Cheng
and Church algorithm. While the latter one finds a bicluster of size
10523 in the yeast data matrix the maximal bicluster found by the EA is
between 342 and 4036 for 10 runs. This discrepancy is even bigger on
the Arabidopsis data where the pure EA sometimes fails to find a bicluster
which meets the residue constraint.

The hybrid EA integrates the Cheng and Church algorithm as local
search procedure as described above and updates each individual using
the corresponding bicluster found by the local search (see Section 4.6.2.2
for a discussion of this approach). As shown in Figure 13 (the additional
curves in the plots will be explained later) this method significantly im-
proves the size of the biggest bicluster compared to the solution found
by the Cheng and Church algorithm alone which measure 4485 elements
for yeast and 10523 elements for Arabidopsis. Note that in the case of the
yeast data set a larger bicluster is already found in the initial population.

A next step in the analysis investigates whether maintaining a popu-
lation of potential solutions is necessary. To this end the hybrid EA was
compared to the corresponding (1+1) strategy where in each generation
one new individual is generated from one parent and the better of the
two is designated as parent for the next generation. As depicted in Fig-
ure 13 the (1+1) strategy improves the size of the bicluster substantially
in some cases and fails to do so in others. Maintaining a population of
100 individuals produces better results on both data sets.

Since the Cheng and Church algorithm is deterministic it always yields
the same result when applied to the same data. As shown this result
is often not optimal. This raises the question whether it is possible to
improve the performance of the Cheng and Church algorithm by making
it more flexible. This is attained by a randomized version of the Cheng
and Church algorithm. It performs the deletion and addition operations
in step 1 and step 3 only with a certain probability p. In step 2 it does not
always remove the best node (row or column) but removes the best one
with probability p, the second best with probability (1 — p)p and the k-th
best node with probability (1-p)¥~!p. Figure 14 shows the histogram of 100
runs for the yeast data using a probability of p = 0.7. Some improvement
is possible although not as high as with the hybrid EA. Similar results
are obtained for the Arabidopsis data. Whether the hybrid EA could be
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Figure 14: Randomized Cheng and Church algorithm: Histogram of 100 runs
on the yeast data set. Dashed line indicates the size of the bicluster found by the
original algorithm.

further enhanced by incorporating the randomized version of the local
search remains to be verified although some preliminary investigations
indicate that this is not necessarily the case.

4.6.2.2 Baldwinian vs. Lamarckian Evolution

Figure 15 compares the two available update strategies discussed in Sec-
tion 4.4. Lamarckian evolution leads to substantially lower sizes of the
best biclusters on the yeast data, it performs better than the Baldwinian
strategy on the Arabidopsis data. Considering that the Lamarckian evo-
lution keeps the average size of the individuals small by reducing each
individual to a bicluster which fulfills the residue constraint it comes as
no surprise that the running time® is higher for Baldwinian evolution
compared to Lamarckian evolution: 631 s vs. 404 s on the yeast data and
4500 s vs 814 s on the Arabidopsis data. This effect can be expected to
get stronger with an increasing difference between the size of the input
matrix and the average size of biclusters that fulfill the residue threshold.
Based on these considerations the following simulations are performed
using Lamarckian evolution.

1Al running times were measured on a Pentium 4 2.8 GHz CPU.
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Figure 15: Comparison of Lamarckian (update) and Baldwinian (not update)
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4.6.2.3 Diversity Preservation

The diversity maintenance mechanism which consists of a particular en-
vironmental selection as presented in Section 4.4 has some strong effects
on the size of the biggest biclusters found in the data (see Figure 13).
While this strategy clearly outperforms the standard hybrid EA with the
yeast data set it fails to improve the best bicluster from the initial popula-
tion in the case of the Arabidopsis data. In contrast, the average size in the
population even decreases slightly. A potential explanation for this effect
is the following: probably there exists one big bicluster in the yeast data
and a lot of minor variations of it that still have non overlapping regions
of considerable size. As a consequence the EA might focus on the same re-
gion in the matrix despite the strong selection pressure for diversity while
in the Arabidopsis data set the diversity maintenance feature hinders the
EA from improving the biggest bicluster. An increased pressure towards
large biclusters was introduced by using a tournament size of 20 instead
of three in the mating selection. This results in significant increase of the
resulting bicluster size. However, compared to the hybrid EA without
the diversity maintenance mechanism the best size after 50 generations
is considerably smaller. Note that on the one hand, optimization runs
using the diversity mechanism can increase the CPU time by a factor of
ten or more. On the other hand, diversity maintenance enables the EA to
improve the size of the best individual for much longer than the hybrid
EA without diversity maintenance (see Figure 16).

4.6.3 Finding a Set of Biclusters

The original algorithm by Cheng and Church uses an iterative approach
for finding a set of d biclusters. Each time a bicluster is found the corre-
sponding elements in the data matrix are replaced by random numbers
using the same method as for missing values.? Thereby, the resulting
biclusters are non-overlapping except for the inclusion of random data.
The EA framework, in contrast, allows biclusters to overlap while prefer-
ring diverse biclusters in order to avoid generating only minor variations
of a single bicluster. The coverage is used as measure of how well the
biclusters in a biclustering are distributed, cf. Definition 9 on Page 49.

In Figure 17 the coverage is depicted, i.e., the number of cells that
are covered by the first k biclusters. The sequence of biclusters is chosen
as follows: first pick the largest bicluster, then in each iteration pick
the bicluster which contains the largest number of uncovered cells. It
can be clearly seen that the hybrid EA with the diversity maintenance

2For the Arabidopsis data random numbers are chosen uniformly between 0 and
1200.
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Figure 16: Higher number of generations: Size of the best bicluster found up to
the current generation for the yeast data set. (Mean over 5 runs with different
random number generator seeds. The error bars have a total length of twice the
standard deviation.)

mechanism covers the largest part of the matrix while the EA without
this pressure on diversity covers the smallest part. The set of biclusters
found by the Cheng and Church algorithm lies in between. Note that
the tradeoff between diversity in the population and the size of the best
bicluster is nicely visible in the case of the EA with diversity mechanism
on the Arabidopsis data: A higher tournament size in the mating selection
which increases the selection pressure with respect to bicluster size leads
to increased size of the best individual but decreased coverage.

While Figure 17 shows the increase of coverage the average size of
the first k biclusters is given in Figure 18. For the hybrid EA without
any diversity maintenance all biclusters have similar size while the non-
overlapping area quickly decreases. The Cheng and Church algorithm
on the other extreme finds biclusters whose size rapidly decreases with
the number of biclusters found.
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4.7 Summary

With respect to the two main goals of finding one large bicluster and of
tinding a set of biclusters which cover a maximal part of the input matrix
the results can be summarized as follows:

e The evolutionary algorithm without a local search procedure cannot
in general find biclusters of a similar size as the Cheng and Church
algorithm.

e The EA in combination with the local search method manages to
significantly increase the size of the largest bicluster compared to
the results of the Cheng and Church algorithm alone.

e A randomized version of the Cheng and Church algorithm can find
larger biclusters than the original version but it does not perform as
well as the hybrid EA.

e The hybrid EA with the diversity maintenance mechanism finds set
of biclusters which cover a substantially larger part of the matrix
than the biclusters found by the Cheng and Church algorithm.

e In contrary to the yeast data set, a tradeoff between diversity and
the size of the best bicluster is clearly visible on the Arabidopsis data
set.

These results demonstrate the effectiveness of the proposed global
search framework for the example of the Cheng and Church method. The
EA achieves both main goals: (i) by optimizing the starting points of the
local search heuristics it is able to improve the quality of single biclusters
identified by the local search and (ii) based on the diversity mechanism
the EA is able to identify biclusterings with good coverage scores. Based
on these results, it can be concluded that the proposed hybrid EA is a
suitable algorithmic framework to address the open problems targeted
in this thesis. The following chapters will show that based on the in-
herent flexibility of the framework, it is possible to adapt the algorithm
to problems of analyzing multiple gene expression data sets, integrating
multiple types of data and analyzing new types of high-throughput data
such as fluxome profiles.
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Biclustering of Multiple Gene
Expression Data Sets

5.1 Motivation

The black-box optimization scheme of the framework presented in the
previous chapter allows to address questions that are beyond the scope
of existing biclustering methods. One such issue, is the joint analysis of
multiple gene expression data sets. In many biological studies several
distinct data sets needs to be analyzed simultaneously — data sets from
different experiments, different labs, different measurement technologies,
etc.. Inprinciple, three different strategies can be pursued in such a setting:
i) to combine the data sets into one expression matrix, ii) to analyze each
data set separately and then combine the results, and iii) to integrate these
two strategies in a method that performs a joint analysis without directly
comparing measurement values between data sets.

The majority of studies follows the first strategy by combining all data
sets into a single data matrix [ESBB98, GSK*00, SSR*03]. This approach is
applicable in cases where the measured values from several experiments
can be compared directly. However, recent studies have found that the
measured values can often be compared more reliably within one data set
than between data sets. Irizarry et al. [I*05] found significant differences
in the expression values measured from the same mRNA sample not only
between different technologies but also between different laboratories us-
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ing the same technology. Goldstein et al. [GDLCS06] reported that even
for a replicate study performed by the same laboratory using the same
protocols a significant batch effect was present. In such cases where the
expression values cannot be reliably compared between data sets combin-
ing them into one data matrix is obviously not a favorable approach. This
problem of mixing can be avoided using the second strategy where data
sets are analyzed separately. However, it is unclear how to combine such
results in order to find groups of genes that are similarly expressed over
all data sets since looking for the intersections of the resulting modules
is often too restrictive. Thus, in many cases the analysis should follow
the third strategy and search for modules that exist across all data sets
without mixing incomparable measurements.

Existing clustering and biclustering methods do not provide such an
analysis as they operate on a single data matrix. As an exception, a few
approaches in the context of the integration of multiple data types address
the issue of jointly analyzing multiple data sets. These clustering methods
combine distance on gene expression data with distance on a second type
of data, e. g., distance in the metabolic network [HZZL02] or distance in
the GO classification [SSZ04]. While these methods are concerned with
the integration of two different data types, a similar approach could be
chosen for the combination of multiple expression data sets. However, the
combination of the distance measures into one distance has the potential
problem of compensation, i.e., a high similarity in one data set could
compensate for low similarities in other data sets.

With respect to the problem of module identification from multiple
gene expression data sets, this chapter makes two main contributions:

e Based on the framework described in Chapter 4, a biclustering
method is presented which avoids mixing of the data sets, and

e the effects mixing data sets are investigated for the analysis of vari-
ous time course measurements from Arabidopsis thaliana.

The simulation runs investigate the effects of keeping data sets sepa-
rate as opposed to combining them into one expression matrix. To this
end, the analysis compares the modules for a first set of time courses
where the experimental setup was very similar for all measurements to
the outcome for a second case where the data sets are more diverse. The
biological significance of the modules is demonstrated by searching for
new promoter motifs in the groups of co-expressed genes.

The flexibility of the proposed framework allows to easily adapt the
method to alternative problem formulations. An especially interesting
variantis to identify groups of genes that show similar expression patterns
in some data sets and dissimilar patterns in other data sets which allows
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to investigate condition specific co-expression. This type of analysis was
tirst proposed in [KS04] in the context of cancer studies where a break-
down in the co-regulation of specific genes can be observed in tumor
tissue. The proposed method is applied to look for condition specific
co-regulation in a set of stress experiments on Arabidopsis thaliana and
possible biological meanings of the corresponding results are discussed.

5.2 Model
5.2.1 A Homogeneity Score for Trends

Identifying biclusters for which the expression patterns follow the same
trend seems to lead to meaningful results as suggested by the high bi-
ological relevance of the gene modules identified by the OPSM method
in Chapter 3. Correspondingly, this chapter focusses on this promising
concept for defining the homogeneity of expression patterns. The aim is
to adapt the concept of order preserving biclusters to the joint analysis of
multiple data sets. In principle, one could search for groups of genes that
are included in OPSMs in all data sets. However, the requirement for per-
fect ordering within each bicluster is too restrictive in the given context
of multiple data sets and leads to OPSMs including only few conditions.
This section proposes a formulation that relaxes the constraint on perfect
ordering.

In order to accept slight disagreements between the order of the ex-
pression values, the problem formulation needs to be adapted. The goal
is to make the error adjustable by the user; then it is possible to account for
errors in the measurements and to adapt the cluster criterion to the current
biological data set. To quantify such deviations from perfect ordering one
needs to express the total difference in the orderings of multiple vectors
on a continuous scale. Several measures that quantify the unsortedness
of a sequence of integers have been suggested in the literature, see, e. g.,
[STWO2]. One potential measure is to compare all possible pairs of the se-
quence elements and count the number of pairs that appear in the wrong
order. When extending this concept to a submatrix, one could consider
the total number of mismatches over all rows. However, the correspond-
ing number strongly depends on the actual order of the selected columns
and finding the order that minimizes this scores is itself an NP-hard prob-
lem [Rei85]. Therefore, this chapter proposes a scoring scheme that is
independent of the actual order of the columns.

In a first step, the expression values are transformed into ranks—for
each data set and gene separately. In principle, the rank of a value cor-
responds to its position in the sorted list of all values for the conditions
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under consideration; however, here the ranks are normalized to the inter-
val [0, 1] to make data sets with different number of columns comparable.

Definition 11. Let E be a data sets. The rank of gene i at condition j is given by
rk(i, j) :=1+s.+(s=+1)/2

with s. := |{ei,j’; ey <é€j A ]', € CYland s- := |{ei,j’/' ey =¢€j N j’ € C}|. The
normalized rank is defined as

rk(i, ) — 1

nrk(i, ) = =

To quantify differences in the order of the expression values for a given
bicluster, the rank variance over the selected genes is computed for each
selected condition in a second step. Finally, the average rank variance
over the conditions gives the rank-homogeneity score.

Definition 12. The rank-homogeneity score fo, of a bicluster B in a data set

E is defined as
1 1
om(B) == — — ¥ rd(i, j,G,C)>
fuon(B) ICI;[IQZ (i, )]

ieG
where the rank deviation rd is

(i, j,G, C) == nrk(i, j,C) — 2ee ) ;Zlk(z 2l
It can be easily seen that fi,, = 0 if and only if the ranks for each
selected conditions are the same for all selected genes, i.e., rk(i;, j) =
rk(iy, j) for any two genes ij,1; in the bicluster, i.e., the bicluster is an
OPSM; this is illustrated in Figure 19 for a collection of two data sets.
Furthermore, this score corresponds to the mean squared residue [CCOOQ]
when the ranks and not the absolute expression values are considered.

5.2.2 A Biclustering Model for Multiple Data Sets

As discussed in Section 5.1, this chapter considers the combined analysis
of multiple gene expression sets. To this end the definitions given in
Section 2.2 need to be extended to multiple data sets. For this extension,
the obvious assumption is that the observed genes are the same for all
data sets.

Definition 13. A collection E of | gene expression data sets is a vector E =
(E',E?,...,E') where EF := (ei.‘j)mxnk. The combined gene expression data set
of a collection E is the matrix EE := (efj)mxna with n® := Y, . 1y where the ith

‘o dof; 1 12 2 I
row is defined as (e;, ..., e e e

!
e e e, e ).
Ying? i1 7 Ying’ 771 7 i
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a) | 034|001| | 023|021
0.43 | 069 | | 049 | 0.58
0.10 | 0.12 | | 0.19| 0.30
0.13| 022 | | 0.34| 0.52
0.71| 0.19 | | 0.77 | 0.34

ranking

b) | 034 001 | 023] 021
0.43 | 0.69 | 0.49 | 0.58
0.10 | 0.12 | 0.19 | 0.30
0.13 | 0.22 | 0.34 | 0.52
0.71 | 0.19 | 0.77 | 0.34

ranking

EE

Figure 19: a) On the left hand side, a collection E = (E!, E?) of two gene expression
data sets is shown, on the right hand side, the corresponding expression levels
are replaced by their (unnormalized) ranks within each row; the shaded area
marks the largest bicluster with f,| = fZ = 0. b) The same is shown for the
combined gene expression data set of the collection E; here, the resulting largest
bicluster contains fewer genes as an effect of mixing E! and E2.

In general, the biclustering model is the same as the one presented
in Chapter 4. Adapting the biclustering model to multiple data sets, a
bicluster can now contain conditions from each data set in the collection
and the size and the coverage scores are calculated by including all data
sets in the collection.

Definition 14. Let E be a collection of | gene expression data sets. A bicluster
B is a vector B = (G,Cy,Cy,...,C)) where G C{1,...,m}and C, C{1,...,mn}
for 1 <k <; the set of all possible biclusters is denoted as B.

Definition 15. Given a data set collection E, the size score f,. of a bicluster B
is defined as the number of contained matrix elements, i.e.,

fi(B) := Gl - ) ICA

1<k<I

Definition 16. The coverage score f., of a biclustering D denotes the overall
number of different matrix cells covered by the union of the biclusters contained
in D, formally:

fCOU(D) = |{ (l/]/k)/
A(G,Cy,...,C)ED A 1<k <I:
i€eGANjeCy Nk=kK}
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As in Chapter 4, the size f;,. is taken as an objective function and the
homogeneity fi.,, defined in the previous section is transformed into a
constraint in order to resolve the conflicts between the two criteria. In the
case of a collection of data sets, for each data set k a separate threshold
6* can be specified, but due to the normalization of the ranks the same
threshold can be used for all k. In addition, a constraint on the number
of contained conditions per data set is introduced; the reason is that it is
usually much harder to find biclusters with a large number of conditions
and a few genes only in comparison to biclusters with many genes but
only a few conditions.

Definition 17. The width f*. . of a bicluster B gives the portion of conditions
that B comprises for each distinct data set EX in a collection E:

|Cxl
Fuoian(B) = .
Ny

The resulting optimization problem is similar to the biclustering prob-
lem with homogeneity constraint, cf. Definition 10 in Chapter 4; the homo-
geneity is calculated with the rank-based similarity score, an an additional
constraint limits the minimal number of conditions included for each data
set and all definitions have been adapted to collections of gene expression
data sets.

Definition 18. Let d be the maximum number of biclusters to be found and
Yk the minimum portion of conditions that each bicluster should comprise with
reqard to data set k, and 6" the corresponding homogeneity threshold; then, the
rank-based biclustering problem is defined as follows:

lex max  (fi, f2)

with fl = fcov(D)
fo= YBeD Jsize(B)

subjectto YBeD:V1<k<lI:ff (B) <o
VBED:VlSkﬁl:ff}idth(B)Zyk
DeD
ID| < d

Note that this model assumes that the number of biclusters sought is
small compared to the number of measurements, i.e., d < m - n¥; other-
wise, the coverage and size objectives need to be combined differently.

5.3 Optimization Algorithm

The EA framework presented in Chapter 4 is used to tackle the rank-
based biclustering problem. The global search method can be applied as
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Algorithm 2 Multiple Gene Deletion
1: > Input: B, E, o to, a

2: » Output: B
3: while |G| > tgand ff (B)>&"V1<k<Ido
4: r « FALSE > Gene removed?
5: forallie G do
7: if pi.‘ >a f;l‘om(B) then
8: G« G\ {1} > Remove gene.
9: 1 < TRUE
10: end if

11: end for

12: if r = FALSE then

13: switch to Single Node Deletion
14: end if

15: end while

described. As to the local search method, the greedy algorithm uses the
same principle strategy as the one proposed in [CCO0] since the homo-
geneity score fj,m(B) corresponds to the mean squared residue score for
ranked expression values. However, adaptations to the current optimiza-
tion problem are necessary.

The proposed procedure differs from the algorithm in Chapter 4 in
two central aspects: First, the adaptation to the rank-based problem for-
mulation requires to calculate the exact inhomogeneity for each candidate
when removing conditions. As opposed to removing genes, this requires
a re-ranking of the expression values (compare Step 14 to Step 5 in Algo-
rithm 3). Second, the algorithms were extended work on collections of
gene expression data sets. Additionally, the removal of columns is lim-
ited to enforce the constraint f* . (B) > y* given that the input bicluster
satisfied the same constraint as well. Note that the proposed procedure
also guarantees that the resulting bicluster satisfies the homogeneity con-
straint f{ (B) < 6" for any 6F > 0 as it is always possible to reduce the
bicluster to one gene and thereby reducing f (B) to zero. The resulting
algorithms are given in Algorithms 2-4.

5.4 Experimental Results

The experimental validation serves two main goals: (i) to assess the per-
formance of the hybrid evolutionary algorithm by comparing it to two
alternative methods and (ii) to compare the proposed strategy for the
analysis of a collection of gene expression data sets to the standard ap-
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Algorithm 3 Single Node Deletion
1: > Input: B, E, o, yk
2: » Output: B
3: while 3 f;’fom(B) > 0Oy for any data set k do

4 forallie Gdo
5 }’Jf<— %szeck(eij—ecjﬁ V1<k<lI
6: si— 1Yk p;‘
7 end for
8 Imay < argmax(s;)
9: fork — 1toldo
10: if S > ) then
k
11: forall j € C; do
12: Cl’:] —Ce\ {j}
13: B* —{G,C1,Cy,...,C/,...,C))
14 75 < Flon(® = 0, (B)
15: end for
16: else
17 q’}f(——oo Vje Ck
18: end if
19: end for
20: (Kiax, jmax) — arg max(qlf)
21: if max(s;) > max(q’;) then
22: G «— G\ {imax} > Remove gene.
23: else ,
24: Choar < CZZZ;" > Remove condition.
25: end if

26: end while
27: continue with Node Addition

proach of combining multiple data sets. Based on these results, a detailed
discussion of some exemplary biclusters demonstrates that the proposed
method can extract interesting biological information. Additionally, the
simulation runs highlight the flexibility of the optimization framework
by solving a related problem where biclusters are sought that exhibit
co-expression in one data set but differential expression in other data sets.

5.4.1 Experimental Setup
5.4.1.1 Alternative Algorithms included in the Empirical Comparison
OPSM

The goal of the strategy proposed in [BDCKY02] is to identify the largest
OPSM containing a given number of columns, cf. 2.3.2 This algorithm is
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Algorithm 4 Node Addition
1: > Input: B, E, o

2: » Output: B
3: repeat
4: a < FALSE > Gene or condition added?
5: fork — 1toldo
6: forall j¢ Cr, 1 <j<mndo
7 C, < G U ij}
8: B" —{G,C,Cy,..., G, ..., G
9: if flfom(B*) < 6F then
10: B « B* > Add condition j.
11: a < TRUE
12: end if
13: end for

14: end for
15: foralli¢ G, 1<i<mdo

16: pf — IClm ZjECk(eij - eG]')Z V1<k<lI

17: ifpr < ff (B) V1<k<Ithen

18: G« GU{i} > Add gene i.
19: a < TRUE

20: end if

21: end for
22: until 4 = FALSE

run iteratively to search OPSMs with increasing number of columns. As
this approach does not allow to relax the strict order preserving criterion,
one can only compare it to the proposed method for the case of OPSMs
which correspond to biclusters with fy.,,(B) = 0.

Adapted Cheng and Church Method

In [CCO0] Cheng and Church proposed a method for finding a biclustering
with multiple diverse bicluster by identifying single biclusters iteratively
and removing them form the data set by replacing the corresponding
expression values with random data, cf. 2.3.2. As mentioned, the multi-
matrix greedy algorithm is an adaptation of the greedy strategy used in
[CCO0]. Thus, the proposed method is compared to an adapted version of
the Cheng and Church algorithm which applies the multi-matrix greedy
algorithm iteratively and uses random values sampled uniformly from
the range of expression values for the replacement:

ef’]. «— uniform(min(e*), max(e")) Vi, jeB
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Table 5: Default parameter settings for this study.

a 1.2
probability of 1 in initialization | 0.001
Pmut 0.001
Pcross 0.1
T 3
population size 100
number of generations 100

5.4.1.2 Algorithm Parameters

The EA parameter settings used in the following simulations are described
in Table 5. The crossover rate refers to the percentage of parents involved
in crossover. The mutation rate is the probability for bit flips in the
independent bit mutation. Unless stated otherwise, 11 replicates with
different random number generator seeds were performed for each run of
the evolutionary algorithm and the adapted Cheng and Church method.

The OPSM algorithm takes a parameter / describing how many candi-
date solutions should be further investigated during the greedy search for
OPSMs, see [BDCKYO02] for the details. Consistent with the value used in
[BDCKY02] ! is set to 100.

5.4.1.3 Data Set Preparation

The simulation runs were performed on gene expression data from a small
plant named Arabidopsis thaliana. Two collections of genes expression data
sets are used: a first collection in which all data sets stem from similar
experimental setups and a second one which is more diverse. All data sets
measure gene expression in time course experiments using the Affymetrix
GeneChip platform.

Homogeneous Data Sets

The first collection investigates the response of Arabidopsis to different
kinds of stresses (cold, salt, osmotic, drought). For each stress experiment
gene expression was measured in leaves and roots. The data was provided
by the AtGenExpress consortium! and consists of 8 time series with 6 time
points each. The total expression matrix thus contains 22746 genes and 48
conditions. This data set represents a case where the expression values are
well comparable across the different time courses; the experimental setup
was identical for all different kind of stresses, all measurements were
performed by the same laboratory using the same microarray technology

1See http://web.uni-frankfurt.de/fb15/botanik/mcb/AFGN/atgenex.htm
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and the expression values were normalized with RMA [BIAS03] a state-of-
the-art method and logratios were calculated using measurements from
an untreated control plant. This reference time course was the same for
all stress experiments.

Diverse Data Sets

The second collection contains time courses that are much more diverse
than those in the first data set. Like the first data set it consists of 8
time courses with a total of 48 conditions but the number of time points
varies. The experiments include different type of treatments such as heat
stress, infection with Pseudomonas syringae, and measurements of diur-
nal changes. These experiments were performed by different labs using
different organs such as roots, leaves, and cell cultures. All measurements
were performed using Affymetrix GeneChips and all expression values
were normalized using RMA. In contrast to the first data set absolute
expression values are used.

5.4.2 Comparison to Alternative Algorithms

For the special case of OPSMs that extend over all columns, i.e., 6 = 0 and
y¥ =1 V1 <k <, the problem of finding the largest OPSM becomes
tractable with a time complexity of O(m?). Thus, the results of the EA and
the OPSM algorithm can be compared to the true optimum. In the first
experiment both algorithms were run on each of the eight time courses
of the homogeneous data sets (cf. Section 5.4.1.3) separately. The largest
bicluster found by both the EA and the OPSM algorithm equaled the
optimal one in all cases?. Often this optimal bicluster was found by the
EA after only a few generations.

In a second set of experiments, the minimum number of columns in
a bicluster was reduced, leading to a search for “real” biclusters. The
data set used consisted of the concatenation of the two “cold stress” time
courses resulting in a matrix with 12 conditions. The largest bicluster
found by the EA equaled the size of those found by the OPSM algorithm
for all tested settings (cf. Table 6) and they were substantially better than
results of the adapted Cheng and Church methods. Figures 20 (a) and
(b) summarize the quality of the biclusterings. The first version of the
environmental selection which maximizes coverage is better suited to
achieve high values for the average size of the biclusters as well as high
coverages than the version focusing on small overlaps. The former clearly

ZFor seven of the eight data sets the EA found the optimal bicluster in all of 30
replicate runs. For the “osmotic roots” data set 5 of the 11 EA runs identified only the
second largest bicluster.
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Table 6: Size of the largest bicluster (max(fsi.(B))) found in the combined “cold
stress” data set by the OPSM, the adapted Cheng and Church method (CC) and
the EA with the two variants of the environmental search focusing on coverage
(EA 1) and overlap (EA 2). For the randomized methods, values denote median
and (standard deviations).

|

| y [OPSM]| CC | EA1 | EA2 |
6/12 [ 3888 [ 2142 (1.8) | 3888 (0) | 3888 (0)
7/12 || 1295 861 (0) | 1295 (0) | 1295 (8.5)
8/12 512 352 (0) 512 (0) 512 (0)
9/12 216 162 (0) 216 (0) 216 (0)

O OO

outperforms the alternative methods while the latter one is in some cases
inferior to the adapted Cheng and Church method.

A more difficult problem setting consists in searching the concate-
nation of all eight homogeneous data sets resulting in a matrix with 48
conditions. When requiring perfectly ordered biclusters (6 = 0) the EA
variants were in some cases able to identify larger biclusters than the
OPSM method while in general the performance was similar (cf. Table 7).
The comparison of the biclusterings identified by the two EA variants
and the adapted Cheng and Church method reveals a similar situation as
for the smaller data set: the overlap version of the environmental search
performs similarly as the adapted Cheng and Church method while the
coverage version clearly outperforms both other methods (cf. Figures 21
(a) and (b)).

In the first part of the simulation runs, only perfectly ordered biclusters
(6 = 0) were considered. In two experiments on the same data set,
the restrictions on perfect order were removed by setting 6 to 0.001 and
0.005, respectively. As expected, the size of the biclusters increases when
increasing 6 from 0 to 0.001 for the same value of y. However, the relation
between the performance of the different methods basically remains the
same (cf. Table 7 and Figures 21(a) and (b)).

A considerable advantage of the EA optimization framework is that it
can analyze multiple data sets simultaneously. The adapted Cheng and
Church method was compared to the two EA variants on four pairs of
expression data sets by searching for perfectly ordered biclusters (6 = 0)
which extend over all six columns of each data set (y¥ = 1). The results
are summarized in Figures 22(a) and (b). As for the single data sets,
the EA results show substantially larger average sizes and coverage than
the adapted Cheng and Church method. However, for this setup both
variants of the environmental search lead to similar results.

As an additional advantage, the iterative scheme of the EA allows to
explicitly choose the trade-off between running time and solution quality



5.4. Experimental Results

79

average bicluster size

1500

1000

500

coverage

N ]
=
=
%I% % -
60y6 60y7 60y8 60y9
CC EALEA2 CC EALEA2 CC EALEA2 CC EA1EA?2
(a)
x 10"
=

- |
L e 4
I % = = _ |
- = -

- -+ —
’50y6 8=0,y=7 | 8=0,y=8 60y9A

CC EAlEA2 CC EAlEA2 CC EAlEA2 CC EAlEAZ

(b)

Figure 20: Analysis of the combination of the two “cold” data sets. Average size
(a) and coverage (b) of the biclusters for the adapted Cheng and Church method
(CC), the EA using the coverage version of the environmental search (EA 1) and
the EA with the overlap version of the environmental search (EA 2).
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Figure 21: Analysis of the combination of all eight homogeneous data sets. Aver-
age size (a) and coverage (b) of the biclusters for the adapted Cheng and Church
method (CC), the EA using the coverage version of the environmental search
(EA 1) and the EA with the overlap version of the environmental search (EA 2).
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Figure 22: Analysis of four pairs of data sets. Average size (a) and coverage (b)
of the biclusters for the adapted Cheng and Church method (CC), the EA using
the coverage version of the environmental search (EA 1) and the EA with the
overlap version of the environmental search (EA 2).
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Table 7: Size of the largest bicluster (max( f;i..(B))) found in the combined homo-
geneous data set by the OPSM, the adapted Cheng and Church method (CC) and
the EA with the two variants of the environmental search focusing on coverage
(EA 1) and overlap (EA 2). For the randomized methods, values denote median

and (standard deviations).

| 6 | y | OPSM | CC | EA1 [ EA2 |
0 8/48 1992 | 1528 (183) [ 2144 (2.4) | 1984 (82.7)
0 10/48 520 400 (0) 630 (22.1) | 550 (52.0)
0.001 | 10/48 - 670 (42.0) | 1140 (71.0) | 920 (91.4)
0.005 | 20/48 - 4980 (0) | 4980 (18.1) | 4980 (36.2)

while most alternative methods have fixed running times. Figures 23 and
24 show how the size of the largest bicluster and the coverage evolves
over a typical run. The user can stop the algorithm when the desired
quality is achieved or after a given amount of time.

5.4.3 Effects of Combining Data Sets

As discussed in Section 5.1 it is often not desirable or not possible to con-
catenate several data sets into one expression matrix. However, existing
clustering and biclustering algorithms require this and thereby the in-
formation about which measurements belonged to the same experiment
and which did not is lost. The following simulation runs investigate the
effects of mixing different data sets in the context of the rank-based bi-
clustering problem. A first part of the following analysis is based on the
assumption that a difference between two expression values stemming
from two different time data sets need not be relevant and contrarily dif-
ferences between values within one data set always are meaningful. A
second part does not use this assumption but investigates the biological
significance of the biclusters for both the combined and the separate data
sets.

In a first set of analyses the algorithm searched for perfect order pre-
serving biclusters (6 = 0) which extend over all columns in the matrix.
The EA was run on 4 pairs of time courses: first with the data combined
into one matrix and then with keeping the two time courses separately.
As expected (cf. Table 8) the resulting biclusters are much larger when the
time courses are kept separate. Often it is not possible to find a bicluster
with more than a minimal number of genes when mixing the time courses
but keeping them separate results in useful biclusters. A characteristic
example is the pair of the two “cold stress” experiments where the largest
bicluster for the concatenated matrix consists of 2 genes and 32 genes for
the simultaneous biclustering of the two data sets.
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Table 8: Number of genes in the largest biclusters for two time courses with
6 = 0 which corresponds to searching for OPSMs. Results for mixing of the data
sets, joint analysis, and separate analysis with intersection of the best biclusters
found.

| stress | combined | separate | overlap independent |
cold 2 32 20
osmotic 6 118 65
salt 4 12 3
drought 2 6 0

The same comparison can be made for relaxed constraints on the
ordering (6 > 0). However, setting a certain value for 6 is not equally
restrictive for two time courses with ranks 1-6 as for one combined data
set with ranks 1-12. To ensure a fair comparison, the analysis of the
two separate data sets was transformed into the analysis of one data
set by ranking the expression values in the first time course experiment
with ranks 1-6 and those in the second experiment with ranks 7-12.
This corresponds a version of the simultaneous biclustering where the
constraint is put on the sum of the 6 values for both data sets. For the
same pair of time courses (“osmotic”) and 6 = 1 the number genes in the
largest bicluster was 21 on average for the concatenated data sets and 474
for the separate time courses. This demonstrates that mixing the time
courses results in an unnecessarily restrictive optimization problem and
most large biclusters are missed.

An alternative strategy to mixing multiple data sets is to perform the
bicluster analysis separately on each data set and then combine the results
by looking for overlaps. The third column of Table 8 shows the size of
the overlap of the optimal biclusters in each data set. For none of the
four pairs of data sets the best bicluster from the joint analysis could be
recovered by this procedure. For the special case of 6 = 0 the largest
bicluster could theoretically be recovered by determining the set of all
biclusters for each data set and then calculating the intersection of all
combination of biclusters. However, this is only practical in the case of
y = 1. Correspondingly, a separate bicluster analysis combined with the
search for overlaps is not a valid alternative to avoid mixing of data sets.

The previous simulation runs have investigated the effects of mixing
data sets on the level of the bicluster size and homogeneity score. This
analysis was based on the assumption that comparing measurement val-
ues across different data sets is not meaningful. This assumption is now
dropped and the two strategies are compared with respect to the biolog-
ical relevance of the resulting biclusters. To this end, 100 biclusters were
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Figure 25: Sum of motif score for biclusters with significant motifs (s > 3) for
different similarity thresholds delta. Analysis of the homogeneous stress data
set (a) and the diverse data set (b). Biclusters for low values of 0) are too small
to contain significant motifs while biclusters for high values of ¢ are too big and
too diverse. Data from 5 runs per setting. The line represents the mean and the
error-bars have a length of 2 standard deviations.
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sought that extend over all eight time courses for a range of different 6 val-
ues. In each module, the upstream DNA regions were then searched for
new promoter motifs using the method described in [EvRGO05]. A highly
significant motif is an indicator of a functional relationship between the
genes in the bicluster. Many highly significant promoter motifs were dis-
covered in the resulting biclusters. Figures 25(a) and (b) show the sum of
motif scores of the modules with a score® above 3. For the homogeneous
data sets (Figure 25(b)) both mixing of the time courses and keeping the
time courses separate in the analysis result in biclusters with highly sig-
nificant motifs. Mixing leads to slightly more biclusters with significant
motifs. For the diverse data sets (Figure 25(b)) mixing of the time course
prevents the detection of more then few motifs that have scores just above
the threshold. However, keeping the time courses separate leads to the
identification of many modules with highly significant motifs. In the case
of combined analysis of diverse data sets, it is thus detrimental to mix
data sets into one matrix while in the case of highly homogeneous data
sets mixing of the time courses has a slightly positive effect on the results.
However, for many biological studies it is desirable or even necessary to
include data from different experiments, different labs or even different
technologies.

5.4.4 Differential Coexpression

As mentioned above, with the proposed framework one can not only
search for co-expression but also look for differential co-expression, i.e.,
groups of genes that are similarly expressed in some data sets but show
diverging expression patterns in others. This problem formulatino is
actually a special case of a joint analysis of separate data sets. The goal of
tinding differences in co-regulation is far less often pursued than looking
for co-regulation but has some potentially interesting applications since
it allows to investigate condition specific co-regulation. This type of
analysis was first proposed in [KS04] in the context of cancer studies
where a break-down in the co-regulation of specific genes can be observed
in tumor tissue. While the method in [KS04] was specifically designed for
the case of two data sets the approach proposed here can more generally
be applied to multiple data sets.

Using this problem formulation, the algorithm identified groups of
genes that are co-expressed in one type of stress but show inhomogeneous
expression patterns in response to the other stresses. This was done by
maximizing the dissimiliarities for some data sets (Siunom) instead of the
bicluster size while maintaining the homogeneity constraints for other

3The score is calculated as the distance (measured in standard deviations) from the
mean of the distribution of randomly chosen biclusters.



5.4. Experimental Results 87

expr. value

5 10 15 20 25 30 35 40
timepoint index

Figure 26: Expression profiles of the 106 genes in cluster 1 in the cold, osmotic,
salt and drought stress time courses. For each stress green tissue is displayed
first and roots as second.
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Figure 27: Expression profiles of the 35 genes from cluster 2 in the cold, osmotic,
salt, and drought stress time courses. For each stress green tissue is displayed
first and roots as second. The cluster was conditioned on similarity in osmotic
stress and dissimilarity in the other treatments.
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data sets: fo = Y.gcp fr (B) for k € Sippom.

A typical example is shown in Figure 27 where the cluster whas con-
ditioned on similarity in osmotic stress (third and fourth data set) and
dissimilarities in all other treatments. All genes included in the bicluster
exhibit perfectly ordered expression profiles for the two osmotic stress
data sets while their profiles in the other data sets are much more diverse.

5.4.5 Biological Content of Exemplary Biclusters

The identification of significant promoter motifs is a good indicator for the
general biological relevance of the clustering results. In order to further
confirm the validity of the approach, two typical biclusters were analyzed
in more detail.

The first bicluster was identified in the stress data set by mixing the
time courses but similar biclusters containing the same promoter motifs
were identified in the second data set when keeping the time courses
separate. This first module (cf. Figure 26) comprises 106 genes, of which
63 have been annotated as encoding 40S and 60S ribosomal proteins. 16
of the remaining genes are related to RNA metabolism, protein synthesis
and protein folding (nascent polypeptide associated complex alpha chain
protein, nuclear RNA-binding protein, eukaryotic translation initiation
factor, phenylalanyl-tRNA synthetase, and chaperonins). This module
comprises genes that are strongly downregulated in response to salt and
osmotic stress. Results from Genevestigator [ZHHHGO04, ZHGO05] show
that it is additionally downregulated in senescing cell culture, genotoxic
stress, and cycloheximide. In contrast, it is consistently upregulated
by isoxaben, lovastatin and norflurazon. A similar cluster with strong
downregulation in response to stress was described in Eisen et al. (1998).
Clusters enriched with ribosomal proteins have also previously been de-
scribed in yeast and were generally associated with environmental stress
responses [GSK™00, GE02]. An analysis of promoter sequences using the
MAP scoring function [FvRGO05] applied to the data set of interest and
to 100 random data sets (z-score), revealed a highly significant sequence
motif (AAACCCT). [TGB*03] show that the ACCCTA motif (telo-box) is
found in the majority of Arabidopsis genes encoding ribosomal proteins
and is related to their expression. Additionally, this motif often appears
together with a second motif TGGGCC or TGGGCT.

As mentioned, the proposed framework is able not only to look for
co-expression but also to look for differential co-expression, i.e., groups
of genes that are similarly expressed in some time courses but show
diverging expression patterns in others. Using this problem formulation,
the algorithm identified groups of genes that are co-expressed in one type
of stress but show inhomogeneous expression patterns in response to the
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other stresses.

The module shown in Figure 27 contains several genes that have pre-
viously been associated with osmotic, drought, and pathogen stress re-
sponses:

1. microtubule associated protein (MAP65/ASE1) family protein [THO4]
2. drought-responsive protein / drought-induced protein (Di21)

3. dehydrin, putative similar to dehydrin Xero 1 [RMP96]

4. strictosidine synthase genes [vdEZM™00]

Osmotic stress is a common component of drought, salt and cold
stress and coordinates cross-talk in the regulatory network between these
stresses [BLO5]. Both ABA-dependant and ABA-independent pathways
have been associated with osmotic stress. In compliance with this model,
most genes of this module, which was conditioned for co-expression in the
osmotic stress treatment, are upregulated strongly in response to osmotic
stress, but also (with lower intensity) in the salt stress and ABA treatments,
as well as partially in the cold stress treatments cf. Figure 27. To further
investigate the expression regulation of genes from this module, stimu-
lus response and anatomy profiles were retrieved from Genevestigator
[ZHHHGO04] (see Figure 28). As obtained in the biclustering approach,
genes were consistently upregulated in osmotic and salt stress, but also
to nitrogen deficiency, treatment with ABA, with the elicitor syringolin,
and with Pseudomonas syringae. The responses to other treatments were
not similar for all genes, revealing that these genes are conditionally co-
regulated and could only be identified using an approach that specifically
searches for differences in co-expression. This differential pattern of ex-
pression is also seen at the organ-level: two larger modules appear, one
with genes preferentially expressed in senescent leaves, and the other with
seed-specific gene expression. The remaining genes show strong expres-
sion in tissues with reduced or no photosynthetic activity (silique, seed,
stamen, sepal, petal, roots). It is known that ABA signalling pathways,
which are regulated in response to osmotic changes, are also particu-
larly active in these responses and tissues, where they regulate several
metabolic and developmental processes.

The cytoskeleton has previously been implicated in abiotic stress re-
sponses such as in osmotic regulation and is known to modulate the
activity of ion channels. Additionally, both plant-pathogen and symbi-
otic interactions involve changes in cell polarity and cellular trafficking
in plants and thus are intimately associated with the reorganization of
the cytoskeleton. The dehydrin gene Xero2 from Arabidopsis has been
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shown to respond to ABA, wounding, cold and dehydration. Promoter-
GUS studies revealed the presence of several motifs involved in theses
responses [RMP96].

Interestingly, although several genes within this module have been
annotated as drought-related, the effects of the stresses considered on
genes from this module are most intense in osmotic stress, followed by
salt and cold stresses, whereas the effect of drought is minimal. This result
suggests that these genes are controlled rather by osmotic stress, which is
a subcomponent of drought stress, and less by drought-specific signaling
pathways. The use of this clustering technique therefore allows to allo-
cate genes much more precisely to subnetworks of signaling pathways,
especially when cross-talk exists between those pathways.

5.5 Summary

Current clustering and biclustering algorithms generally operate on one
data matrix. In contrast many studies of gene expression involve multiple
sets of experiments between which measurements cannot be compared
reliably, e. g., the measurements were performed in different laboratories
or even using different microarray technologies. With respect to this
discrepancy, this chapter proposed a biclustering method based on the
EA framework presented in Chapter 4 that can jointly analyze multiple
expression data sets without comparing measurement values between the
different data sets and compared this approach to the standard method
of mixing different data sets. The flexibility of the framework allows to
easily adapt the problem formulation and investigate different properties
such as differential co-expression.

While the proposed method is flexible with respect to the homogene-
ity score used, this chapter has focused on a specific one, namely the rank
based biclustering problem. To this end, a new scoring scheme was intro-
duced that allows to arbitrarily scale the degree of orderedness required
for a bicluster and integrated it into the biclustering framework.

In an empirical comparison on various data sets the proposed hy-
brid EA showed similar performance to the OPSM algorithm [BDCKY02]
when considering the largest bicluster. To verify the EAs ability to find
diverse biclusterings, the coverage and the average bicluster size of the
results for two variants of EA have been compared to an adaptation of
the Cheng and Church method [CCOQ]. With the first variant of the en-
vironmental search which optimizes for high coverage the EA clearly
outperformed the adapted Cheng and Church method over a range of
different problem setting. The alternative environmental search which
minimizes overlap of the biclusters is able to produce even more diverse
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sets of biclusters. However, thereby also the average size and the coverage
are reduced.

A second set of experiments, has investigated the effects of combining
different time courses into one data matrix for bicluster analysis. To this
end, two different expression data sets for Arabidopsis thaliana have been
analyzed, each one including 8 time course measurements. The biological
relevance of the biclustering results has been assessed by an analysis of
the promoter motifs common to the genes in the biclusters. This analysis
showed that combining different data sets into one matrix is feasible or
even advantageous in a setting where all time courses measurements are
highly homogeneous but can be detrimental to the results when the data
sets are more diverse. The proposed method of a combined analysis does
not suffer from this problem.



Biclustering of Multiple Types of
Biological High-Throughput Data

6.1 Motivation

The previous chapter has presented a method for the joint bicluster anal-
ysis of multiple gene expression data sets. A related question is how to
integrate multiple types of measurements. As discussed in Section 2.1, an
increasing number of high throughput measurement technologies become
available besides gene expression. Each type of measurements quantifies
a different aspect of the cellular behavior such as gene expression, protein-
protein interactions or metabolic fluxes and thereby provides a different
view of the same underlying biological processes. Thus, for many bio-
logical questions it is interesting to integrate multiple of these data in the
analysis. However, data integration represents a major challenge as the
relation between the different data types are often complex (for a review
see [1ro05]).

This chapter investigates module identification from multiple types of
biological data. Several methods exist which integrate gene expression
data with additional information in order to identify more relevant mod-
ules, cf. 6.2. Most of these methods aggregate similarities on different
data types into one distance function. This strategy has two main draw-
backs: i) it is often difficult to define a suitable aggregation function as
similarity relates to completely different properties in the different data
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types such as distance on a protein-protein interaction graph and simi-
larity of gene expression patterns; ii) the resulting modules do not give
information about the relation of the data types, e. g., it is not possible to
determine whether accepting a slightly worse similarity on one data type
could increase the similarity on the other data types substantially. The
method presented in the previous chapter could be applied to multiple
data types in the same way it was applied to multiple gene expression
data sets. This would address the first of the two problems mentioned
above but it would not solve the problem of conflicting data.

Therefore, this chapter presents a multiobjective optimization ap-
proach to the problem of module identification from multiple data types.
Despite the multiobjective nature of this problem formulation, it is similar
to the biclustering problem of Chapter 4. Thus, the algorithm proposed
here is based on the EA framework presented in Chapter 4. Besides the
multiobjective nature, there is a second major difference to the methods
presented in the two previous chapters: Instead of searching globally
for high quality modules in the whole data set, the approach proposed
here follows the query gene concept as presented in [OSM*03| IFB*02]
for single data types; here a module is sought which contains one or sev-
eral user-specified genes, cf. 2.3.3. The basic goal is to identify groups
of genes which are similar to one or several query genes with respect to
different data types. Potentially, these data types provide conflicting in-
formation about which genes are most similar. Thus, instead of searching
for one module the goal is to find multiple modules which represent this
trade-off. The advantages of the proposed approach are the following;:

e The method does not require any aggregation function as each data
type is associated with a distinct objective function.

e It allows to explore the trade-offs between different data types.

e The method is applicable to arbitrary data types and similarity mea-
sures.

The application of the proposed method to combinations of three dif-
ferent data types, namely protein-protein interaction networks, metabolic
pathways and gene expression data in Arabidopsis and yeast reveals that
the amount of conflict between two data types depends heavily on both
the specific data types as well as the query genes chosen. Thus, visual-
izing the trade-off provides additional insight compared to aggregation
strategies. Furthermore the proposed multiobjective method can produce
better results than multiple runs of a single objective optimizer and the
classical k-means algorithm on the considered data set.
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6.2 Related Work
6.2.1 Data Integration

A common strategy is to use additional data types for the validation of
the clustering results. Several methods exist which directly include such
additional information in the process of module identification. Thereby
different data types and strategies for aggregating the information are
used.

Some approaches use GO annotations to guide to clustering process.
The study presented in [CCM™04] defines a distance function on the GO
graph and applies hierarchical clustering to the weighted sum of the
GO and the gene expression distances. A similar approach proposed
in [SSZ04] combines distances on the GO graph with gene expression data
and applies a memetic algorithm for identifying high scoring clusters.
Another idea is to use the GO graph to constrain the search for clusters
based on gene expression data [FYL"06]. In [HP06], the authors propose
an algorithm for the integration of gene expression data with annotations
which explicitly distinguishes between pairs of genes which have different
annotations and pairs where the annotation is missing for at least one of
the genes. An alternative to aggregating two distance measures into one
is to use the similarities on one data type as priors in a model-based
clustering of the second data type [Pan06].

In [HZZL02], Hanisch et al. propose a co-clustering approach of bio-
logical networks and gene expression data in which a combined distance
function is defined which in turn is used in hierarchical clustering. This
approach works with arbitrary networks but was tested on a metabolic
network. A further data type that has been used in a joint analysis is
sequence data; the method presented in [SJL"04] aggregates three types
of distances, namely similarity of gene expression, operon membership,
and intergenic distance, into one distance function and applies hierarchi-
cal clustering.

A different approach was presented in [ISKS04]. Arbitrary data types
are modelled as binary relations between a gene and a condition and
SAMBA [TSS02] is applied to the resulting binary matrix.

In all of these methods the relative importance of the different data
types needs to be fixed before the application of the algorithm. Thus, they
do not provide the possibility to determine and visualize the potential
conflict between the data types.

6.2.2 Multiobjective Clustering

The use of muliobjective methods for module identification from gene
expression data has been proposed in a few studies. The basic approach
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followed in [HKO04, HKO05, HKO07] uses two clustering criteria in a mul-
tiobjective setting: one criterion is targeted to identify compact sphere
shaped clusters while the second criterion focusses on highly connected
but potentially elongated clusters. An EA is used to identify several parti-
tionings which represent this trade-off. Another approach [MB06] builds
on the study presented in Chapter 4 of this thesis and applies a multi-
objective EA to optimize both the mean squared residue score and the
bicluster size simultaneously. However, non of these studies considers
multiobjective optimization for module identification from different type
of data.

6.3 Model

Given a small set of user defined query genes Q and a target size s, for the
resulting modules, the goal is to identify the best module containing the
query gene(s) with respect to the n datasets Z, ..., Z;. In order to evaluate
the modules a homogeneity score or a distance measure between pairs of
genes needs to be defined for each data type. Based on these measures,
the quality of a module with respect to a specific data set Z; can be defined
in multiple ways: a first strategy uses a cluster or bicluster homogeneity
score, with the additional constraint that the query genes be included
in the module. A simple example of such a homogeneity score is the
mean distance of the module genes to the cluster centroid. An alternative
possibility is to calculate the mean distance of the module genes to the
query genes. While the latter places the query genes in the “middle” of
the module the former allows query genes to be placed on the “border”
of a tight module. The framework and the algorithms proposed in the
following are compatible with both formulations but for the simulation
runs presented here latter approach is used. Note that in the case of a
single data set and correspondingly a single objective function (k = 1) this
score provides a trivial way of identifying the optimal module by sorting
the genes according to their distance to the query genes. In contrast, in
the case of multiple data sets (k > 1) genes that are close on one data set
will in general not also be close on the other data set(s). This results in
a multiobjective optimization problem where the score on each data set
represents one objective.

Definition 19. The multiobjective module identification problem is to
identify genes subsets G C {1,...,m} which solve the following minimization
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where £ (G, Q) is the mean distance from all genes to the query gene(s) Q on
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data set i.

In many cases these objectives are conflicting. Thus in general, it is
not possible to find one set of genes that optimizes all objectives simulta-
neously. In contrast, multiple modules can be optimal in the sense that
no other module exists which is at least equal in all objectives and strictly
better in one. Arbitrarily many of these Pareto optimal modules can ex-
ist [Deb01]. The goal is to identify a good approximation of this Pareto
optimal front.

For data types like gene expression which measure concentrations
under different conditions it is possible to use a biclustering scheme where
only a subset of conditions is chosen for the distance calculation. This
results in an extended optimization problem where not only a set of genes
needs to be selected but also a subset of conditions for each data set. Both
the problem formulation and the algorithm presented in Section 6.4 can
be applied to this biclustering setup. However, in the simulation runs
for this study the focus is on the multiobjective approach and thus the
modules are restricted to contain all conditions of the gene expression
data sets.

In general, arbitrary types of biological data can be used as long as it
is possible to define a useful measure of distance between genes based on
them. This study includes three different types of biological data in the
analysis: gene expression, PPI and metabolic pathway data.

For gene expression data similarity measures that focus on similar
trends seem effective as the results achieved with a rank based homo-
geneity in Chapters 3 and 5 indicate. This study uses the same rank based
scoring scheme based on Definition 11 on Page 70.

11 1
gene expr - - N “\2
qeg 0<j<n
g€

A PPI data set can be expressed as a symmetrical interaction matrix P €
{0, 1} where m denotes the number of proteins and p;; = 1 indicates that
the proteins i and j interact. By relating the proteins to their coding genes
Pis used to specify relations between genes. For metabolic pathway maps
a similar graph representation can be used. By linking enzymes that are
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active in neighboring reactions, the reaction network can be transformed
into a network of enzymes which in turn can be regarded as a network of
the corresponding genes. Based on these interaction matrix, distances are
calculated similarly to [HZZL02]. P can be represented by a graph: there
is one node per gene and an edge if P is indicating an interaction. The
straightforward measure for the distance between two genes on the graph
is the number of hops that lie between them, or the maximum occurring
distance if they are not connected. The corresponding homogeneity score
is defined as

PG, 0) = =2 Y S(s,4), 61)
1QIG
q€Q
g€G
S |95 if ¢ and g are connected
(89 =\ max ogq+1 else ’
q€Q,8€G

where 0, is the shortest path from g to g in the interaction graph.

6.4 Optimization Algorithm

The goal for the optimization algorithm is to identify a good approxima-
tion of the Pareto optimal front. EAs have proved to be effective at this
task [Zit99, Deb01]. Despite the multiobjective formulation, the problem
is similar to the biclustering problem in Chapters 4 and 5. Correspond-
ingly, the algorithm is based on the framework presented in Chapter 4
with some modification in the selection scheme. The adaption to multiple
objectives only concerns the selection and the local search. Since the se-
lection process only depends on the objective values and is independent
of the specific optimization problem general multiobjective evolutionary
algorithms (MOEAs) were developed. Here the indicator-based evolu-
tionary algorithm (IBEA) is used, a multiobjective optimizer that com-
pared favorably to other state-of-the-art algorithms [ZK04]. IBEA selects
those individuals which contribute most to a good Pareto front approxi-
mation as measured by an indicator. Among the different applicable in-
dicator, this study employs the additive e-indicator which measures how
much the objective values of a current approximation must be improved
for the front to dominate a reference front. IBEA is coupled to the problem
specific parts of the optimization process through PISA, cf. Appendix A.

As for the single-objective case, a local search may be included in
the EA. The local search greedily removes those genes which are most
distant to the query genes in the mean over all data sets until number of
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genes reaches s,;,. Then all those genes are added which do not increase
the inhomogeneity with respect to any data set. While the inclusion of
this greedy procedure can reduce the time needed to identify modules
it also requires to define a preferred search direction; here all objectives
are weighted equally for calculating the mean distance. Section 6.5.2.1
investigates the effect of this local search.

The other parts of the EA framework in Chapter 4 can be applied to
the multiobjective module identification directly. However, independent
bit mutation turned out to be problematic as many more genes are added
than removed from the module. To prevent this, a two bit flip mutation
is used where one gene is removed from the module and another gene is
added to the module.

6.5 Results

Several simulation runs have been carried out in order to evaluate the
performance of the proposed algorithm and the capabilities of the pro-
posed methodology in general by applying it to different biological data.
As to the first aspect, it was investigated whether a local search strategy
improves the overall performance and how the multiobjective approach
compares to a scalarization approach with multiple independent runs.
Concerning the second aspect, the characteristics of the trade-off fronts
resulting from different data type combinations were studied and the out-
comes were compared to the results of a classical clustering algorithm,
namely k-means.

6.5.1 Experimental Setup

For the simulation runs, three different combinations of data types were
analyzed: two diverse time course gene expression (GE) data sets on
Arabidopsis provided by the ATGenExpress consortium (containing 6
and 11 time points and 22746 genes each), the first of these gene expression
data sets in combination with a manually curated metabolic pathway map
[WZV™04] (986 genes) and a yeast gene expression data set [GSK™00] (3665
genes) in combination with PPI data [SMS™04].

Table 9 summarizes the parameter settings used for this study. All
simulations were run on one Intel Xeon 3.06 GHz CPU with 2 GB RAM.
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Table 9: Default parameter settings for this study.

Smin 15

use local search false

Pmut 0.1
mutation type two bit flips
Pcross 0.1

T 2
population size 100
number of generations | 100

6.5.2 Performance of the Proposed Algorithm
6.5.2.1 Local Search

This section addresses the question whether the incorporation of a local
search heuristic could improve the performance of the EA. The local
search proceeds in two steps: first it reduces the size of the module
until the minimum number of genes constraint is reached. Then it adds
those genes which are closest to the query gene(s) based on the average
distance over all objectives and do not increase the mean dissimilarity
value of the module at the same time. For a minimum number of genes
of 15, this is typically zero to three genes. The effect of the local search
is clearly visible in Figure 29: obviously, a preferred search direction is
introduced by averaging over the different objectives. This inhibits the EA
in settling individuals in the lower f, region. This behavior is reflected in a
much faster convergence for the optimization runs with local search than
without local search. Since it is not advantageous to impose such strong
preference for a specific direction, this type of local search procedure is
inappropriate for the present multiobjective problem.

6.5.2.2 Comparison to Chebyshev Scalarization

purpose of validating the multiobjective approach, several single-objective
runs were use that follow the idea of a Chebyshev scalarization. To gen-
erate an approximation of the Pareto set, the single-objective optimizer
was run subsequently for 21 weight combinations (5% steps) that were
uniformly distributed over the range of all possible weight combinations.
The results of these runs were combined into a single non-dominated
front. For both the single- and multiobjective runs the number of genera-
tions was held constant, i. e., the run time of the single-objective approach
was accordingly longer’. The input data for this evaluation was the gene

!The multiobjective EA took about 16 sec to complete where the single-objective EA
needed about 18 times longer (289 sec).
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Figure 29: Effects of local search. The two bold dots (e) indicate the extreme
values.

expression/PPI pairing. The simulation was run for 5 randomly chosen
query genes (one query gene per run) and 10 different random number
generator seeds were used for each query gene. Figure 30 shows the result
for two different query genes. On the left, the two algorithms produced
comparable fronts. In contrast, the right plot shows a rare case for a query
gene where both algorithms encounter problems in advancing towards
low f, values. This problem is alleviated when the number of generations
is increased. The outcomes for the other query genes are somewhere in
between these extrema. One would expect the Chebyshev approach to
find nearly as many non-dominated points as there are weight combina-
tions, namely 21. This is obviously not the case and the results show that
the multiobjective EA yiels many intermediate points of the Pareto set
approximation that the single-objective algorithm did not find.

In order to do a statistical assessment, the e-indicator was used to
compare the quality of the fronts, cf. [ZK04]. Roughly speaking, this
measure calculates a reference front by collecting all non-dominated so-
lutions from both fronts and then determines the distance by which each
front needs to be shifted such that no solution from this front is dominated
by the reference front anymore. Based on the Kruskal-Wallis test, the ¢
values for the multiobjective approach are significantly lower than those
of the Chebyshev approach for all query genes with a p-value of 107 or
less. This provides evidence for a superiority of the multiobjective ap-
proach over the single-objective algorithm with respect to the e-indicator,
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cf. Figure 30(a). The high variance in the single-objective case results
from the above mentioned difficulties to advance into the lower f, re-
gion which mainly appeared in the single-objective approach. The fronts
for the outlier for the multiple objective case in Figure 30(a) is shown
Figure 30(c).

6.5.3 Application to Different Biological Scenarios
6.5.3.1 Exploring the Trade-offs

For all of the three pairings of input data (GE/GE, GE/PPI, GE/metabolic)
the trade-offs are quantified and it is shown that they widely vary for
the different data by comparing them against each other. All runs in
this section comply with the default configuration of Figure 30 (a) and
each simulation was run for a single query gene. Five query genes were
randomly chosen for this analysis and ten runs with different seeds were
performed for each query gene, leading to a total of 50 runs.

a) GE vs. GE data (Arabidopsis). For this pairing only little trade-off
exists; the front closest to the origin in Figure 32 corresponds to
this case. In none of the runs more conflict was encountered than
indicated by this plot. The absence of conflict is also reflected in the
diversity of the modules: Figure 31 (a) shows that more than half of
all genes occur in 90% of the modules.

b) GE vs. PPI data (Yeast). In the case of a GE/PPI pairing a much
stronger trade-off between the two objectives is visible, compared
to the preceding case. Figure 32 again depicts the resulting front
(the middle one). This can be clearly verified from Figure 31 (b) that
reveals a much larger diversity among the modules: less than 10%
of the genes occur in 90% of the modules.

c) GE vs. metabolic data (Arabidopsis). Between these two data types
the largest trade-off was observed, as shown in Figure 32 (b).

Figure 32 (a) shows the statistical distribution of the hyper-volume
indicator [Zit99] for each of the three fronts on the left and 10 different
random generator seeds 2. Again, this clearly documents that the most
conflict is found in GE/metabolic data pairs as the plot on the left would
imply. These differences demonstrate clearly the advantage of the mul-
tiobjective approach compared to an aggregation based method where
only one point on the front is generated.

2The objective values are scaled to [1,2] and the reference point is (2.1,2.1)
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Figure 31: Comparing the trade-off of GE/GE (a) vs. GE/PPI data (b). The plots
show in how many of the non-dominated modules each gene is contained, e. g.
in the left case, Gene number 10 occurs in about 90% of all modules that the
algorithm found.
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6.5.3.2 Comparison to k-means

This section substantiates the usefulness of an evolutionary approach
compared to a standard clustering method by comparing the proposed
algorithm to the well-known k-means algorithm.

The GE/PPI data set pair was selected as for this evaluation which
proceeds in four steps: i) k-means is run on the GE data set. ii) A query
gene is randomly selected. For the cluster that contains the query gene,
both objective values, on the GE and PPI data are calculated. Thereby the
k-means “front” is generated which consists of only one point. iii) The
same query gene is used as input to the EA and the minimum number of
genes is set to the size of the k-means cluster. iv) The front produced by the
EA is compared to the one point resulting from the k-means algorithm
by calculating the ¢ indicator value and this procedure is repeated 50
times, varying seeds and query genes. The application of the two-sided
Wilcoxon signed rank test showed that the EA performs significantly
better in this respect than k-means with a p-value of 1.1 -10™°. Thus, k-
means is not able to produce results that compare well to the evolutionary
approach, not even when comparing on the GE objective only.

6.6 Summary

Several approaches exist for co-clustering of multiple biological data types
[HZZ1.02, 155704, SJL*04, CCM™04, HPO06, Pan06, FYL*06]. All these ap-
proaches fix the relative importance of the different data types thereby
obscuring potential conflict between the data types. In order to overcome
these shortcomings, this chapter presented a flexible framework for mod-
ule identification that is based on multiobjective optimization which does
not need any aggregation function to be defined and additionally makes
potential conflicts between data types visible. The second main differ-
ence is that the proposed approach provides a way to guide the search by
specifying one or a few query genes which are contained in the resulting
modules.

The effectiveness of the suggested approach was demonstrated on
gene expression, PPI and metabolic pathway data sets from Arabidopsis
and yeast. The key results of these simulation runs are the following;:

e The proposed multiobjective algorithm is well suited for the pro-
posed problem as it clearly outperforms a scalarization approach
and a k-means clustering algorithm.

e The amount of conflict between two data types varies largely de-
pending on the data sets and the specific query genes.
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The latter point demonstrates that by defining a single aggregation
function important information about the resulting modules may be
missed. Thus, it can be concluded that the proposed multiobjective ap-
proach has advantages over existing methods which combine the distance
functions on multiple data sets and is also better suited for multiple di-
verse data types than the method presented in Chapter 5 for multiple
gene expression data sets.
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Identification of Characteristic
Differences in Fluxome
Measurements

7.1 Motivation

The previous two chapters have used the EA framework for devising
methods for the analysis of multiple gene expression data sets and the
integration of multiple data types. The present chapter now investigates
how the framework can be adapted to the analysis of a recent data type,
namely fluxome profiles, for which very few analysis methods exist. For
a given organism the metabolic network describes the set of biochemical
reactions and their connections. Often, information about the structure
of the metabolic network is available but in order to understand biologi-
cal phenotypes knowledge about the activities in the metabolic network
is important [Sau04]. These activities are typically characterized by the
molecular fluxes through the network. No suitable method exists for
measuring the fluxes directly but fluxome profiling provides an indirect
measurement. This is achieved by measuring the accumulation of labeled
inputs at different nodes in the network. Abstracting from the underly-
ing biology, the resulting data can be described as a real valued vector
representing the flux profile of the respective organism, see Section 2.1.4
for more details.
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Recent advances in measurement technology enable metabolism-wide
determination of fluxome profiles in relatively short time [FS03]. Such
experiments can be used to study the effects of mutations in bacteria.
In such a scenario, a large number (several ten to several hundred) of
different mutants are subjected to fluxome profiling [ES03, 2S04, [FS05].
The corresponding goal for the analysis of the measurements is to identify
distinct groups of mutants and determine the characteristic differences
in their flux profiles. Or, from an opposite point of view, to identify
characteristic features in the flux profiles that exhibit a good separation
of groups of mutants.

Since this measurement technology has become available only re-
cently, very few analysis methods exist. The approach followed in [2504]
is to search for features in the flux profiles which can be directly related
the biological differences between the mutants. To this end, principal
component analysis (PCA) and independent component analysis (ICA)
have been used and it was found that in some cases these components
could be related to the underlying flux ratios. However, such strong re-
lations cannot be reliably inferred in general. This study takes a different
approach which consists of identifying groups of mutants that have dis-
tinct flux profiles. More specifically, one is searching for various pairs of
mutant groups that are well separated with respect to their flux profiles.
In contrast to the methods proposed in [£504], here the goal is not identify
specific features in the flux profiles but one tries to discriminate the mu-
tants based on their flux profiles directly. The resulting mutant groups
can then direct the further investigations of the biologist experimenter
towards potentially interesting biological differences.

While the goal of grouping mutants is similar to clustering or biclus-
tering formulations, existing methods cannot be applied to this problem
directly as the goal here is to identify pairs of groups that are well sepa-
rated. To this end, this chapters proposes i) a general problem formulation
for this separation which is independent of the distance measure used and
ii) an optimization framework specifically adapted to this problem. The
method is a combination of an evolutionary algorithm used for global
search and a greedy heuristic used for locally optimizing solutions. The
simulation runs verify the ability of the method to find diverse sets of
well separated mutant groups and show that these groups are better sep-
arated than those found by heuristics based on PCA or ICA. Additionally,
the validity of the approach is demonstrated by showing that well sepa-
rated mutants also have distinct flux ratios on a set of simulated fluxome
measurements.
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7.2 Related Work

Basically, two different approaches exist for the analysis of such data sets.
If detailed knowledge of the metabolic reaction network, the substrate
uptake, etc. is available flux ratios can be calculated directly [ES03]. In
the general case, techniques from multivariate statistics can be applied to
discriminate different mutant strains. From this category, two methods
have been applied to the analysis of fluxome profiles, namely PCA and
ICA, which are now discussed in some more detail.

PCA is a method mainly used for dimensionality reduction. The first
principle component represents the direction in which the variance of the
data is highest. The following principle components are chosen such that
each captures the largest amount of remaining variance in the data. All
principle components are orthogonal. A recent study which investigated
the effectiveness of different methods found that the principle components
do not correspond to the underlying fluxes [£2504]. This is probably due
to the fact that high variance does in general not coincide with good group
discrimination [Hyv99] and PCA was designed to maintain the variance
of the data in a reduced dimensionality.

ICA, in contrast, was developed for the discrimination of independent
signals, a task also known as blind source separation [Hyv99]. It consid-
ers the inputs as different additive mixtures of the unknown signals. The
data model requires that the source signals be mutually independent
and non-Gaussian. Given that, any mixture of the source signals are
more Gaussian than the source signals themselves. The ICA algorithm
thus tries to identify non-correlated components that are maximally non-
gaussian. By itself, ICA does not change the number of dimensions but
an additional method like PCA can be used to achieve a dimensionality
reduction. In [£2504] the projections of the isotope profiles on the inde-
pendent components were correlated to the flux ratios at critical points in
the network. A few combinations of independent components and flux
ratios exhibited high correlations. However, in general it is not possible
to extract the flux ratios by means of ICA as these flux ratios at different
points in the network are connected and thus not independent.

7.3 Model

In contrast to ICA, which performs a coordinate transform, in this study
the goal is to identify well discriminated groups of mutants in the original
space of isotope profiles. The underlying idea is that two groups of
mutants showing distinct isotope profiles probably exhibit two different
characteristic flux distributions. The association of mutants with the two
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Figure 33: A hypothetical isotope profile for one mutant. Amino acid A contains
3 carbon atoms and amino acid B contains 2 carbon atoms. The values in the array
specify the proportion of amino acid molecules containing the given number of
heavy isotopes

groups can serve as a starting point for further biological investigation
of the characteristic differences and similarities of the mutant strains.
Correspondingly, one is not only interested in finding two well separated
groups but multiple diverse pairs of mutant groups. In the following, the
criteria for these two levels of optimization are described more formally
by specifying when two groups are well separated and how to define
diversity of multiple pairs of groups.

Given m mutants and c amino acids which are included in the mea-
surements, the fluxome profiles are given by the m X n matrix F where
each row represents the measurements for one mutant. Such a row vector
contains 3-9 elements né.for each amino acid j according to the number of
carbon atoms it contains, i.e., i € {0,1,2,...,n;} where 7; is the number of
carbon atoms in amino acid j. These values specify what proportion of
the total amino acid contained i heavy isotopes, c. f. Figure 33. It follows

that '
Z nl=1Vj. (7.1)

ZZOT]]

The current study considers each mutant as a point in euclidean space
given by the corresponding row of F.

A first step investigates the problem of selecting two groups from the
set of m mutants such that the isotope profiles are similar within the two
groups but clearly distinct between them. This selection corresponds to
a partitioning of mutants into three parts: the mutants in each group and
the mutants not included in either group. It can be defined as a pair of
sets (X1, X3) where X1, X, € {1,...,m} and X; N X, = (. The size of the
induced search space is 3" as there are three possible assignments for each
mutant. A solution (Xj, X,) is evaluated based on two criteria, namely
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the separation with respect to the isotope profiles and the total size of the
two groups.

The separation of two sets of points can be defined as the silhouette
width [Rou87]. This is a measure often used in the validation of clustering
methods, as it combines information about the intra-cluster distances and
the inter-cluster distances into a scalar [HKKO05b]. The silhouette width
w is defined as the mean silhouette value over all points. The silhouette
value for each point measures the confidence in the point’s assignment to
the group and is calculated as

bi —a;
max(b;, a;)’

s(i) = (7.2)

where a; denotes the mean distance between i and all points in the same
group and b; denotes the mean distance between i and all points in the
opposite group. Due to the scaling factor in (7.2) the silhouette width w
isin [-1, 1]. Note that higher values of w correspond to better separation.
The silhouette width calculation can be applied to arbitrary distance mea-
sures and the present chapter has focussed on euclidean distance since
large euclidean distances in the isotope space corresponds to a reasonable
degree to large distances in the space of flux ratios as will be shown in
Section 7.5.3.

In general, choosing small groups of mutants leads to better separa-
tion values then choosing larger groups. To counterbalance this tendency
when evaluating the quality of a pair of groups one needs to take into
account the total size of the two groups. In summary, one pair of mutant
groups H = (Xj, Xy) is evaluated by two criteria: it’s silhouette width
w(H) and its size f..(H) = |Xi| + |X2|. Based on these two criteria, size
and separation, different optimization problems can be formulated. They
could be aggregated into one objective function or a Pareto-based multi-
objective approach could be used. But as solutions are interesting where
the groups are highly separated, a user defined constraint is imposed ¢,
on the separation w and maximize the group size f;i..(H).

The previous discussion in this section has considered the problem of
identifying two distinct groups of mutants. However, for the biological
analysis one is interested in several pairs of well separable groups in
order to capture the major biological differences in the set of mutants
under investigation. To this end, the different pairs should not be highly
similar to each other. The extended problem is to identify a set of k group
pairs {H;, Hy, ..., Hi} for which the average group size should be high and
the overlap between the group pairs should be low. For the present study,
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the overlap between H; and H; is defined as follows.

o(H;, H;) = max(0normal (Hi, H;), 0gip (H;, H})) (7.3)
X1, N Xl X2 N Xl
Onorma Hi/H' = : — . - . 74
) =T Tl 74
1Xo, N X1 X1, N X
0115 Hl',H' = . — . . - 7.5
o B Vo 79)

The multiplication of the overlaps of the single groups reduces the total
overlap to zero if either of the groups have no overlap. Three non-
overlapping groups for example can form two pairs where one group is
identical in both pairs and nevertheless have an overlap of zero.

As only solutions with low overlap are interesting, a constraint ¢, is set
on the maximal pairwise overlap. This leads to the following optimization
problem:

k
Y foelH)

i=1
s.t. wH;) >t Yie{l,...k}

maxo(H;, H)) <t Yi#j i,j€{l,...k}
ij

=

arg max

(7.6)

Note that the described problem formulation is general in the fol-
lowing sense: arbitrary distance measures can be used and any feature
selection method or coordinate transform deemed appropriate can be
applied to the isotope data as a preprocessing step.

7.4 Optimization Algorithm

The task of identifying well distributed pairs of mutant groups is similar
to the biclustering optimization problem presented in Chapter 4. The
main difference is that a basic solution now consists of a pair of mutant
groups instead of a single group of genes. Thus, the EA framework
proposed in Chapter 4 can be used here with some adaptations.

Representation

Each individual represents a pair of mutant groups. The binary encoding
is extended to a ternary representation with a string of length m. An
element is set to 1 or 2 if the corresponding mutant is assigned to the first
or the second group, respectively. Unassigned mutants are represented
by a 0.
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Initialization

As for the biclustering optimization, the initial population should be gen-
erated such that a high diversity of groupings is attained. A simple strat-
egy, for example, which randomly assigns each mutant to either group or
leaves it unassigned with equal probability produces groups containing
different mutants but all groups will be of similar sizes. To avoid this,
the initialization method does not use equal probabilities but for each
individual randomly choose the probabilities of assigning mutants to the
different groups. This is done, by first randomly sampling the probability
for a mutant to be in any of the two groups from a uniform distribution
and in a second step sampling the probability for a selected mutant to be
in the first of the two groups from a uniform distribution.

Variation

Each element of the string undergoes mutation with a certain probability
pmut- Mutation changes a 0 into a 1 or 2 with equal probability and vice
versa. As for the biclustering problem, uniform crossover is used as
recombination operator.

Selection

The goal of maintaining a diverse population is the same as for the biclus-
tering problem and the corresponding environmental selection is concep-
tually similar. However, the algorithm needs to be adapted to the group
discrimination scheme. Specifically, the algorithm proceeds as follows.
First the individuals are sorted by the total size of their groups fsi..(H).
Starting with the largest one all individuals are selected which do not
overlap more than a user-defined threshold f,,; with any of the previ-
ously selected individual. The overlap o(H;, H;) is calculated as defined
in Equation (7.3). If not enough non-overlapping individuals are found
the new population is filled using the largest of the previously omitted
individuals. Note that in this process the constraint ¢,,; on the maximal
overlap is used as a soft constraint, i. e., solutions cannot be guaranteed
to fulfill the constraint. The entire procedure is detailed in Algorithm 5.

Local Search and Fitness

Before the evaluation of an individual, a local search is performed to
improve the solution. If the separation w is above the user specified
threshold t., mutants are added to the groups in a greedy strategy which
in each step adds the mutant with the maximal silhouette value s(i).
The algorithm terminates when no more mutant can be added without
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Algorithm 5 Environmental Selection
> Input:
P: Population of group pairs H to select from.
nee: number of individuals to select (ng; < |P|).
m,n: dimensions of the input data set.
> Output:
S: Set of selected individuals.
S<0
sort P in decreasing order of f;;,.(H)
fork < 0to|P|do
if max(0(Py,s) <ty ¥ s € S then
S« SuUP;
end if
end for
k<0
while |S| < ng,; do
if P, ¢ S then
S« SUP;
k—k+1
end if
end while

violating the constraint. Conversely, if w < t,, mutants are removed
applying the opposite greedy strategy, i.e., in each step the mutant with
the lowest silhouette value s(i) is removed. Note that the local search
guarantees constraint satisfaction with respect to the separation w as it is
always possible to reduce the groups to one mutant each and thus reach
the maximal w.

Anindividual is evaluated based on the result of the local search. Since
the objective is to find large groups the fitness f(H) of an individual H is
calculated as the inverse of the total number of mutants included in the
two groups f(H) = m This fitness is to be minimized. In this study
Baldwinian evolution is used since it is able to generate a more diverse
set of solutions.

7.5 Results

In the simulation runs mainly two questions were investigated: (i) Is the
proposed EA effective compared to random search and two grouping
methods based on PCA and ICA, respectively, and (ii) do the mutant
groups which have well separated isotope profiles identify any biological
differences?
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Table 10: Default parameter settings for this study:.

tsep 0.8 (0.5 for real data)
tovl 0.2
Pmut 0.01
Pcross 0.1
T 2
population size 100
number of generations 100

7.5.1 Data Preparation and Experimental Setup

The proposed approach was evaluated on a large-scale measurement of
fluxome profiles for the central carbon metabolism of the microorganism
Bacillus subtilis [FS03] and on two artificial data sets attained by simulating
the same metabolism [DBS01]. For this simulation, random flux maps
were generated by random sampling within the polytope constrained by
the carbon stoichiometry with glucose as unique substrate and CO, and
acetoin as unique allowed products. Carbon labeling experiments were
simulated for each flux map using a Matlab-based implementation of the
algorithm described in [WMI™99].

The EA parameter settings used in the following simulations are de-
scribed in Table 10. The crossover rate refers to the percentage of parents
involved in crossover. The mutation rate is the probability for an element
in the ternary string to undergo mutation. Eleven replicates with differ-
ent random number generator seeds were performed for each parameter
setting.

7.5.2 [Evaluation of the Evolutionary Algorithm

As a first step in the evaluation, the EA results were compared to ran-
domly chosen groups. For each of the individuals in the final population
100 randomly chosen pairs of groups of the same size were generated.
Figure 34 shows a histogram of the resulting separation values w for the
randomly chosen groups in comparison to the threshold set for the EA
(tep = 0.8). As expected, the optimization leads to far better separation
for the same group size than randomly choosing groups.

As an alternative to optimization with the EA, one can focus on a di-
rection in the isotope space in which the mutants are known or thought
to be well separated and form two groups by picking mutants on the two
extremes of this direction. This strategy was used to compare the EA re-
sults to ICA, PCA and random components. More specifically, the isotope
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Figure 34: Comparison of the silhouette widths for the EA results and those for
random groups of the same size.

data have been projected on each component and then greedily picked
mutants from the extremes of this projection as long as the constraint on
separation (w > t,;,) on the original data was satisfied.

Basically, ICA and PCA both produce the same number of components
as the dimension of the input data. But in most applications the number of
components is restricted to a few, e. g., ten in the present study. In order to
compare these results to the EA an additional postprocessing is necessary
to pick the same number of individuals from the final EA population. This
is done by the same algorithm as used for the environmental selection,
i.e, by picking the largest ones as long as they do not overlap more than a
specified amount with any of the previously selected individuals. In this
procedure one can either choose the same overlap constraint as during the
optimization or be more or less restrictive. Thus, itis possible to adjust the
selection of the final set within the trade-off between larger groups and
larger overlap on the one hand and smaller groups but smaller overlap
on the other hand.

The resulting pairs of mutant groups all satisfy the separation con-
straint t,,, and an equal number of pairs has been chosen for each method.
Thus, the different methods can be directly compared by comparing the
respective group sizes, the overlaps or the number of mutants that are
included in any of the groupings, in the following referred to as coverage.
Figures 35-37 show the histogram of group sizes, overlap and coverage
for random components and the corresponding results for PCA, ICA and
the EA. For both the random components and the ICA, which is also a
stochastic method, 1000 sets of ten components were sampled to build
the histograms. It can be clearly seen that the EA achieves higher group
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size, higher coverage and lower overlap than the other methods. While
the EA results are not necessarily significantly better for each run on each
criterion separately, they are highly significant with respect to the combi-
nation of all criteria. In the whole analysis no random set of components
was found to be superior or equal to any EA result in all three criteria
simultaneously. It is interesting to note that the relative performance of
the EA is much better on the real data set than on the synthetic data sets.
Whether this difference is due to general characteristics of synthetic and
real data sets remains to be seen.

These results demonstrate that the proposed hybridization of an EA
and a local search heuristic is successful in solving the optimization prob-
lem of finding a diverse set of well separated group pairs.

7.5.3 Validation using Flux Ratios

The last section provided results which demonstrated that the proposed
method is successful in identifying mutant groups which are well sepa-
rated with respect to the isotope data. While this is the main focus of this
study, the use of synthetic data enables us to test whether the similarities
of the fluxome profiles are representative for the underlying fluxes. For
the synthetic data sets flux ratios can be calculated exactly. For the analy-
sis, the silhouette width for the EA solutions was calculated based on the
flux ratios and compared them to the corresponding silhouette widths
for random groups of the same size. As Figure 38 shows, the groups that
were optimized for separation on the isotope values are far better sepa-
rated on the flux ratios than random groups of the same size. It is thus
possible, using the proposed problem formulation, to extract information
about biological differences and similarities without calculating the exact
flux ratios.

7.6 Summary

Fluxome profiles provide indirect information about the molecular fluxes
through a metabolic network. Extracting the real fluxes or flux ratios
from these data is often not possible. Thus, this chapter proposes the
identification of distinct groups of profiles as a possible first step in the
fluxome analysis. To this end, this chapter has

e formalized the problem in terms of the separation of two groups as
measured by the silhouette width,

e proposed a flexible optimization method for this problem based on
the EA framework presented in Chapter 4, and
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Figure 35: Real world data sets: Comparison of the EA results to mutant groups
extracted from predefined directions given by random directions, ICA and PCA.
The results are compared with respect to the three criteria: average size of mutant
groups, number of mutants included in any of the groups (coverage) and average
overlap of all pairs of mutant groups. EA results are given by the median (solid

line) of 11 runs and the width of 2 standard deviations (dotted lines).
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Figure 36: Synthetic data set 1:Comparison of the EA results to mutant groups
extracted from predefined directions given by random directions, ICA and PCA.
The results are compared with respect to the three criteria: average size of mutant
groups, number of mutants included in any of the groups (coverage) and average
overlap of all pairs of mutant groups. EA results are given by the median (solid
line) of 11 runs and the width of 2 standard deviations (dotted lines).
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Figure 38: Comparison of EA groups to random groups on with respect to
separation on the true flux ratios.

e verified both the usefulness of the problem formulation with respect
to the actual flux ratios and the effectiveness of the evolutionary
algorithm for this optimization problem.

The problem formulation and the optimization method are flexible
with respect to the actual distance measure used. While euclidian dis-
tance was used in this study any other distance measure could be used
instead and even feature selection methods can be easily included in
the flow of the analysis. However, the present analysis of an artificial
data set simulating fluxes in Bacillus subtilis mutants showed that even
euclidean distance leads to a good correspondance between highly sepa-
rated groups on the profiles and distinct flux ratios. Further simulations
using both artificial and real-world data sets showed that the proposed
approach compares favorably to alternative heuristics based on PCA or
ICA. The EA is able to identify multiple pairs of mutant groups where
the individual groups are larger (for a fixed separation) and the different
pairs are more diverse than those found by the alternative methods.

These positive results demonstrate that the EA framework presented
in Chapter 4 is both flexible enough to be adapted to new problem for-
mulations and thanks to the hybridization with a local search powerful
enough to reach good quality solutions for such a problem formulation.
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Conclusions

8.1 Key Results

In the last few years, general module identification methods like stan-
dard clustering approaches have been gradually adapted to the specifics
of biological high-throughput data. Despite this large advance, several
important issues remained unsolved, such as the need for high flexibility
in the problem formulation or the integration of multiple data sets and
different types of measurements. The goal of this thesis was to develop
new methods for module identification which address these issues and
thus increase the applicability of the module identification approach as
well as the biological relevance of the results.

As a first step in this direction, an extensive comparison of biclustering
approaches has been presented which included a reference method based
on a simple model and an exact algorithm. This study provided two main
insights: i) The biclustering concept is useful and has advantages over a
classical hierarchical clustering algorithm. Even a simple binary model is
able to identify biologically relevant modules. ii) Significant differences
exist between prominent biclustering algorithms.

A central contribution of this thesis is a flexible framework for biclus-
tering which not only searches for one high quality bicluster but tries
to identify a biclustering, a set of diverse biclusters. The optimization
algorithm consists of a hybridization of an evolutionary algorithm (EA)
and a greedy local search. Thanks to the black-box scheme of the EA, this
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combination provides higher flexibility than most existing approaches
with respect to the similarity measure and additional constraints. This
flexibility is beneficial since the translation of a biological question into
a mathematical problem formulation is often the most difficult part of
the analysis and multiple variants need to be tried out. Additionally,
the biclustering framework allows the user to trade-off solution quality
and running time which is particularly interesting in situations where the
high effort for the acquisition of the data justifies longer analysis times.
Building on this framework, the present thesis proposed approaches to
three important open problems in module identification.

e An approach for the joint bicluster analysis of multiple expression
data sets was presented. This allows to identify biclusters extend-
ing over multiple expression data sets even when measurement
values are not directly comparable between the data sets. The cor-
responding study on two collections of data sets from Arabidopsis
thaliana has demonstrated that mixing of homogeneous data sets is
unproblematic while for diverse data sets mixing is detrimental to
the biological relevance of the resulting modules despite the use of
a state-of-the-art normalization procedure.

¢ A new data integration method for multiple types of biological data
was introduced. As a key difference to existing approaches, the
proposed method does not aggregate similarity measures on the
different data sets but searches for a set of trade-off solution thereby
visualizing potential conflicts between the information contained in
the data sets. The analysis results on data from yeast and Arabidopsis
thaliana have shown that these conflicts vary strongly depending on
the data types analyzed and the query genes the method focuses on.

e A method for the discrimination of bacterial mutant strains based
on fluxome profiles was proposed. This approach is able to identify
multiple pairs of mutant groups where in each pair one group has
highly different profiles than the other group of mutants. Thereby, it
provides an approach for extracting information from a very recent
type of measurements where only a few analysis methods exist.

The diversity of these applications demonstrate the flexibility of the
underlying framework. It can be easily adapted to new problem for-
mulations by changing objective functions, constraints or local search
algorithms. Despite this general applicability, the EA framework has
shown good effectiveness compared to alternative algorithms in each of
the applications studied. For some of these problem formulations, it
is probably possible to devise specific algorithms which outperform the
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EA framework particularly in terms of running times. However, such
tailored methods are likely to be much less flexible.

8.2 Outlook

Based on the flexibility of the EA framework and the hybridization scheme
the proposed approach should be applicable for a range of other module
identification problems in biology as well as in other disciplines. Some
specific topics for future research which are based on the results of this
thesis are given below.

e The performance differences revealed in the comparison study in
Chapter 3 demonstrate the importance of thorough comparisons.
There are several directions in which the benchmarks used in this
study could be extended, e. g., text mining, recovery of sets of related
conditions like tumor samples or additional synthetic data sets with
different expression patterns. The goal would be to provide an
extensive set of benchmarks for biclustering methods.

e A central aspect in biclustering is the trade-off between bicluster
size and pattern homogeneity. In the methods presented here, this
conflict is resolved by setting constraints on either one of the two
measures. In principle, it is possible to resolve this conflict by esti-
mating the statistical significance of a bicluster, i. e., by determining
the probability of a bicluster of at least the same size and at least
the same homogeneity to appear by chance. A few approaches
use this concept, e.g., [15502, BDCKY02]. However, in practical
applications several difficulties arise: i) Finding a closed form for
this significance is difficult for many models. ii) Using sampling
to estimate the significance is challenging as usually all interest-
ing biclusters are highly significant. iii) If the significance or an
approximation of it can be calculated the resulting p-values for all
high-quality biclusters often equal zero within machine precision
as it is the case for the method presented in [BDCKY02]. If these
problems can be overcome, such a significance measure could be
integrated into the EA framework. It would then be interesting to
investigate to what extent the most significant biclusters also define
the modules with the highest biological relevance.

e A characteristic property of biclustering is that biclusters may over-
lap. This is often mentioned as an advantage over standard clus-
tering methods. However, the nature of such overlaps has not been
studied in detail, both in terms of the appropriate model as well
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as their biological significance. For gene expression data biclusters
are often associated with biological processes. Thus, overlaps cor-
respond to genes being activated by two processes simultaneously.
In such an overlap, the resulting expression may follow different
models like an additive or multiplicative cumulation or the expres-
sion of a gene may be triggered by either process in which case the
expression pattern would be similar to a boolean “OR” function. It
is an open question which model best describes the biological pro-
cesses and it would be interesting to investigate whether bicluster
overlaps can be attributed to biological phenomena.

The analysis in Chapter 5 demonstrated strong negative effects of
mixing of heterogeneous gene expression data sets for a rank-based
homogeneity score. As discussed, this observationis consistent with
other studies that show the difficulty of comparing measurement
values from different data sets. Nevertheless, further investigations
using other similarity measures and data sets are necessary to assess
the general importance of this effect. If this problem is wide spread
than it would be interesting to develop a method which automat-
ically determines whether a collection of data sets is homogenous
and can be mixed or whether it is diverse and mixing should be
avoided.

With respect to the algorithmic framework, several directions for
possible improvements exist. Two interesting extensions are dis-
cussed:

- In the EA framework each individual represents one bicluster.
As discussed, an alternative is to represent a complete biclus-
tering in one individual. On the one hand, many issues are
open, such as how to represent and variate such a biclustering,
how to include the bicluster diversity in the optimization or
how to set the right number of biclusters. On the other hand,
such an approach could provide a more fine grained control of
the diversity of the biclusters than the current algorithm.

— In the multiobjective approach presented in Chapter 6, the
module size is mainly determined by the user-defined thresh-
old on the minimal module size. For a single data set it is
possible to automatically determine a meaningful module size
by sorting the genes according to their similarity to the query
genes and then look for a large decrease in similarity. An exten-
sion of this scheme to multiple data sets may result in a method
that automatically focusses on interesting module sizes.
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For all the applications presented here, studies on additional data sets
and different biological scenarios will lead to a better understanding of
the shortcomings of the current algorithms and problem formulations and
thus allow to adjust and extend the current methods in order to increase
applicability and yield biologically more relevant results.
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A Portable Interface for Search
Algorithms

This appendix introduces PISA, a portable interface which allows to split
optimization processes into two parts: a problem specific one and a prob-
lem independent one, thereby enabling the creation of freely reusable
modules on both sides. This interface was developed in the frame of
this thesis and the EA framework presented in Chapter 4 is based on
it. However, PISA has a broad applicability which extends far beyond
the biclustering applications in this thesis. It can be generally applied to
population based stochastic search algorithms and its main advantages
lie in the area of multiobjective optimization.

A.1 Motivation

In the area of multiobjective optimization, mainly two types of researchers
are active:

e The application engineers who face difficult real-world problems
and therefore would like to apply powerful optimization methods.

e The algorithm developers who aim at devising optimization algo-
rithms that can be successfully applied to a wide range of problems.
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Since modern optimization methods have become increasingly com-
plex the work in both areas requires a considerable programming effort.
Often code for optimization methods and test problems is available, but
the usage of these implementations is restricted to one programming
language. A thorough understanding of the code is needed in order to in-
tegrate it with own work. This raises the question whether it is possible to
divide the implementation into an application part and an optimizer part
reflecting the interests of the two groups mentioned. An ideal separation
would provide ready-to-use modules on both sides and these modules
would be freely combinable.

The application engineer would like to couple his implementation of
the optimization problem to an existing optimizer. However, it is ob-
viously not possible to provide a general optimizer which works well
for all problems since many parts of an optimization method are highly
problem specific such as representation and variation. Consider for ex-
ample discrete optimization problems which involve network and graph
representations combined with continuous variables and specific repair
mechanisms. In addition, the neighborhood structure induced by the
variation operator (either explicitly like in simulated annealing or tabu
search or implicitly like in evolutionary algorithms) strongly influences
the success of the optimization. As a consequence, the representation
of candidate solutions and the definition of the variation operator com-
prise the major locations where problem specific and a priori knowledge
can be inserted into the search process. Clearly, there are cases where
standard representations such as binary strings and associated variation
operators are adequate. For these situations, standard libraries are avail-
able to ease programming, e.g. [EH00, TLKKOI]. In summary, it is the
task of the application engineer to define appropriate representations and
neighborhood structures.

In contrary, most optimizers in the multiobjective field work with a se-
lection operator which is only based on objective values of the candidate
solutions and are thus problem independent.! This allows to separate
the selection mechanism from the problem-specific parts of the optimiza-
tion method. Due to the difficulty of multiobjective optimization, a lot
of research has been performed on selection mechanisms and the cor-
responding algorithms have become highly sophisticated and complex
to implement. Freely combinable modules for selection algorithms on
one side and applications with appropriate variation operators on the
other side would thus be beneficial for application engineers as well as
algorithm developers.

!Nevertheless, PISA is extensible and allows for transmitting additional information
needed to consider e. g. niching strategies in selection.
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Figure 39: Illustration of the concept underlying PISA. The applications on the
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This appendix proposes an approach to realize such a separation into
an application-specific part and a problem-independent part as shown in
Figure 39. The latter contains the selection procedure, while the former
encapsulates the representation of solutions, the generation of new solu-
tions, and the calculation of objective function values. Since the two parts
are realized by distinct programs that communicate via a text-based in-
terface, this approach provides maximum independence of programming
languages and computing platforms. It even allows to use pre-compiled,
ready-to-use executable files, which, in turn, minimizes the implemen-
tation overhead and avoids the problem of implementation errors. As a
result, an application engineer can easily exchange the selection method
and try different variants, while an algorithm designer has the opportu-
nity to test a selection method on various problems without additional
programming effort (cf. Figure 39). Certainly, this concept is not meant
to replace programming libraries. It is a complementary approach that
allows to build collections of selection methods and applications includ-
ing variation operators, all of them freely combinable across computing
platforms.
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A.2 Design Goals and Requirements

The goal was to design a standardized, extendible and easy to use frame-
work for the implementation of multiobjective optimization algorithms.
The development of such a framework followed several design goals:

Separation of concerns. The algorithm-specific and the problem-specific
component should have a maximum independence from each other.
It should be possible to implement only the part of interest, while
the other part is treated as a ready-to-use black box.

Small overhead. The additional effort necessary to implement interfaces
and communication mechanisms has to be as small as possible. The
extra running time due to the data exchange between the compo-
nents of the system should be minimized.

Simplicity and flexibility. The approach should have a simple and com-
prehensible way of handling input and output data and setting
parameters, but should hide all implementation details from the
user. The specification of the flow control and the data exchange
format should state minimal requirements for all implementations,
but still leave room for future extensions and optional elements.

Portability and platform independence. The frameworkitself, and hence
the possibility to embed any existing algorithm into it, should not
depend on machine types, operating systems or programming lan-
guages. The different components must interconnect seamlessly. It
is obvious that running a module on a different operating system
might require re-compilation, but porting an existing program to
another operating system or machine type should not be compli-
cated by the interface implementation. Furthermore, when porting
is difficult, it must be possible to run the two processes on different
machines with possibly different operating systems, letting them
communicate over a network link.

Reliability and safety. A reliable and correct execution of the different
components is very important for the broad acceptance of the sys-
tem. For instance, unusual parameter settings must not cause a
system failure.

Given these design goals, the development of a programming framework
becomes a multiobjective problem itself, and it is impossible to reach a
maximum satisfaction in all design aspects. Therefore, a compromise
solution is sought. Here, the focus is on simplicity and small overhead
and one may accept less flexibility. The motivation behind this is that the
system will only be employed by many people if it is easy to use and does
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not require excessive programming work. To compensate for the lack of
flexibility, the format will be made extendible to a certain degree so that it
will still be possible for interested users to adapt it to specific needs and
features. How all these design goals are realized will be described in the
next section.

A.3 Architecture

The proposed architecture is characterized by the following main features:

e Separation of selection on the one hand and variation and calcula-
tion of objective function values on the other.

e Communication via file system which allows for platform, program-
ming language and operating system independence.

e Correct communication under weak assumptions about shared file
system.

e Small communication overhead by avoiding to transmit decision
space data.

The interface considers optimization methods that generate an initial
set of candidate solutions and then proceed by an iterative cycle of eval-
uation, selection of promising candidates and variation. The selection
is assumed to operate only in objective space. Nevertheless, the final
specification of PISA is extensible and allows for transmitting additional
information needed to consider e. g. niching strategies in selection.

Based on these assumptions, a formal model for the framework can
be established. This model is based on Petri nets, because in contrast to
state machines, Petri nets allow to describe the data flow and the control
flow within a single computational model. The resulting architecture
is depicted in Figure 40, where the term variator is used to denote the
problem-dependent part and selector the problem-independent part. A
transition (rectangular boxes) can fire if all inputs are available. On firing
a transition performs the stated operations, consumes the input data and
provides all outputs.

A.3.1 Control Flow

The model ensures that there is a consistent state for the whole optimiza-
tion process and that only one module is active at any time. Whenever a
module reads a state that requires some action on its part, the operations
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Figure 40: The control flow and data flow specification of PISA using a Petri net.
The transitions (rectangular boxes) represent the operations by the processes
implementing the variator and the selector. The places in the middle represent
the data flow and correspond to the data files which both processes read and
write. The places at the left margin represent reading and writing of the state
variable that is stored in a common state file and hence direct the control flow.
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Table 11: Stop and reset states.

State Action Next State
State4 | Variator terminates. State 5
State 6 Selector terminates. State 7

State 8 | Variator resets. (Getting ready to start in state 0) | State 9
State 10 | Selector resets. (Getting ready to start in state 0) | State 11

are performed and the next state is set. The implementation of the flow
control is discussed in Section A.4.1.

The core of the optimization process consists of state 2 and state 3: In
each iteration the selector chooses a set of parent individuals and passes
them to the variator. The variator generates new individuals on the
basis of the parents, computes the objective function values of the new
individuals, and passes them back to the selector.

In addition to the core states two more states are shown in Figure 40.
State 0 and state 1 trigger the initialization of the variator and the selector,
respectively. In state 0 the variator reads the necessary parameters (the
common parameters are shown in Figure 40 and local parameters are not
shown). For more information on parameters refer to Section A.4.3. Then,
the variator creates an initial population, calculates the objective values
of the individuals and passes the initial population to the selector. In state
1, the selector also reads the required parameters, then selects a sample
of parent individuals and passes them to the variator.

The above mentioned states provide the basic functionality of the
optimization. To improve flexibility in the use of the modules states for
resetting and stopping are added (see Table 11). The actions taken in
states 5,7, 9 and 11 are not defined. This allows a module to react flexibly,
e.g., if the selector reads state 5, which signals that the variator has just
terminated, it could choose to set the state to 6 in order to terminate as
well. Another selector module could instead set the state to 10, thus,
causing itself to reset.

A.3.2 Data Flow

The data transfer between the two modules introduces some overhead
compared to a traditional monolithic implementation. Thus, the amount
of data exchange for each individual should be minimized. Since all
representation-specific operators are located in the variator, the selector
does not have to know the representation of the individuals. Therefore,
it is sufficient to convey only the following data to the selector for each
individual: anindex, which identifies the individual in both modules, and
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its objective vector. In return, the selector only needs to communicate the
indices of the parent individuals to the variator. The proposed scheme
allows to restrict the amount of data exchange between the two modules
to a minimum. The rest of the text will refer to passing the essential
information as passing a population or a sample of individuals.

As to objective vectors the following semantics is used: An individual
is superior to another with regard to one objective, if the corresponding
element of the objective vector is smaller, i. e., objective values are to be
minimized. Furthermore, the two modules need to agree on the sizes
of the three collections of individuals passed between each other: the
initial population, the sample of parent individuals, and the offspring
individuals. These sizes are denoted as a, u and A in Figure 40. Instead
of using some kind of automatic coordination, which would increase the
overhead for implementing the interface it was decided to specify the
sizes as parameter values. Setting u and A as parameters requires that
they are constant during the optimization run. Most existing algorithms
comply with this requirement. Nevertheless, dynamic population sizes
could be implemented using the facility of transferring auxiliary data
(cf. Section A .4.2).

As described in Section A.3.1, a collection of parent individuals is
passed from the selector to the variator and a collection of offspring indi-
viduals is returned. The actual representation of the individuals is stored
on the variator side. Since the selector might use some kind of archiving
method, the variator would have to store all individuals ever created,
because one of them might be selected as a parent again. This can lead to
unnecessary memory exhaustion and can be prevented by the following
mechanism: the selector provides the variator with a list of all individ-
uals that could ever be selected again. This list is denoted as archive in
Figure 40. The variator can optionally read this list, delete the respective
individuals and re-use their indices. Since most individuals in a usual
optimization run are not archived, the benefit from this additional data
exchange is much larger than its cost. Section A.4.2 describes how the
data exchange is implemented.

A4 Implementation Aspects

A.4.1 Synchronization

In order to reach the necessary separation and compatibility, the selector
and the variator are implemented as two separate processes. These two
processes can be located on different machines with possibly different op-
erating systems. This complicates the implementation of a synchroniza-
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tion method. Most common methods for interprocess communication are
therefore not applicable.

Closely following the Petri net model (cf. Figure 40), a common state
variable which both modules can read and write is used for synchroniza-
tion. The two processes regularly read this state variable and perform
the corresponding actions. If no action is required in a certain state, the
respective process sleeps for a specified amount of time and then rereads
the state variable.

Coherent with the decision for simplicity and ease of implementation,
the common state variable is implemented as an integer number written
to a text file. In contrast to the alternative of using sockets, file access is
completely portable and familiar to all programmers. The only require-
ment is access to the same file system. On a remote machine this can
for example be achieved through simple ftp put and get operations. As
another benefit of using a text file for synchronization it is possible for the
user to manually edit the state file. The underlying assumptions about
the file system and the correctness of this approach will be discussed in
Section A.4.4.

A.4.2 Data Exchange

Another important aspect of the implementation is the data transfer be-
tween the two processes. Following the same reasoning as for synchro-
nization, all data exchange is established through text files. Using text
tiles with human readable format allows the user to monitor data ex-
change easily, e. g., for debugging. For the same reason, a separate file is
used for each collection of individuals shown in Figure 40. The resulting
set of files used for communication between the two modules and for
parameters is shown in Figure 41. Simple examples of possible contents
are shown as well to illustrate to file format.

To achieve a reliable data exchange through text files, the receiving
module should be able to detect corrupted files. For instance, a file could
be corrupted because the receiving process tries to read the file before it is
completely written. The detection of corrupted files is enabled by adding
two control elements to the data elements: The first element specifies the
number of data elements following. After the data elements an END tag
ensures that the last element has been completely written. The receiving
module can read the specified number of elements without looking for a
END and then check if the END tag is at the expected place.

Additionally, the reading process is expected to replace a file’s content
with ‘0" after reading it and the writing process must check if no old data
remains that would be overwritten. This represents the production and
consumption of the data as shown in the Petri net in Figure 40 and it
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Figure 41: Communication between modules through text files. Four files for
the data flow: The initial population in ini, the archive of the selector in arc, the
sample of parent individuals in sel and the offspring in var. The cfg file contains
the common parameters and sta contains the state variable. Additionally two
examples for local parameter files are shown.

prevents re-reading of old data which could happen if the writing of the
new state can be seen earlier by the reading process then the writing of the
data. For additional information on the requirements for the file system
see Section A.4.4.

Between the two control elements blocks of data are written, describ-
ing one individual each. In this example, such block consists of an index
and two objective values for the files written by the variator and only one
index for the files written by the selector.

The file format described so far provides the exchange of the data
necessary for all optimization methods. This might not be sufficient
for every module since some techniques, e.g. mating restrictions and
constraint handling, require the exchange of additional data. Therefore,
the specification allows for optional data blocks after the first END tag.
A module which expects additional data can read on after the first END,
whereas a simple module is not disturbed by data following after the first
END. A block of optional data has to start with a name. Providing a name
for blocks of optional data allows to have several blocks of optional data
and therefore makes one module compatible with many other modules
which require some specific data each. The exact specifications of the file
formats are given in Box 1 on Page 146 and following.
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A.4.3 Parameters

Several parameters are necessary to specify the behavior of both modules.
Following the principle of separation of concern, each module specifies its
own parameter set (examples are shown in Figure 41). As an exception,
parameters that are common to both modules are given in a common
parameter file. This prevents users from setting different values for the
same parameter on the variation and the selection side. The set of common
parameters consists of the number of objectives (dim) and the sizes of the
three different collections of individuals that are passed between the two
modules (see Figure 40).

The author of a module must specify, which «, 4 and A combinations
and which dim values the module can handle. A module can be flexible in
accepting different settings of these parameters or it can require specific
values. To ensure reliable execution, each module must verify the correct
setting of the common parameters.

Two parameters, however, are needed in the part of each module
which implements control flow shown in Figure 40: i) the filename base
specifying the location of the data exchange files as well as the state file
and ii) the polling interval specifying the time for which a module in idle
state waits before rereading the file. The values of these parameters need
to be set before the variator and the selector can enter state 0 and state 1,
respectively, for example as command line arguments.

A.4.4 Correctness

It is not obvious that the proposed method for synchronization and data
transfer works correctly. One problem arises for example from the fact
that on a ordinary file system it cannot be assumed that the two successive
write operations by one process to different files can be read in the same
order by another process, i. e., changes in files can overtake each other. It
is therefore necessary to state the necessary assumptions made about the
tile system and to show that the proposed system works correctly under
these assumptions.

It is assumed that the file system is used by two processes P1 and P2
and has the following properties :

A) Writing of characters to a file is serial.
B) Writing of a character to a file is atomic.

C) A read by a process P1 from a file F that follows a write by P1 to
F with no writes of F by another process P2 occurring between the
write and the read by P1, always returns the data written by P1.
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D) A read by a process P1 from a file F that follows a write by another
process P2 to F after some sufficiently long time, returns the data
written by P1 if there are no writes of F in between.
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Figure 42: Memory model for the file system. Two processes P1 and P2 commu-
nicate through the file system modeled by two local memories C1 and C2 and
a global memory M. On some paths it takes zero time for the data to propagate
from one element to the next. On others it takes a time x which is a positive
bounded random variable.

A possible underlying scenario is presented in Figure 42. Two Pro-
cesses P1 and P2 execute blocks of operations and communicate through a
tile system which can be modeled by two caches C1 and C2 and a memory
M (see Figure 42). The time x needed to copy a file from a local memory
to M is arbitrary but bounded. It may be different for each file access and
for each distinct file.

There are two major properties that can be proven and which guar-
antee the correctness of the protocol with respect to the algorithm in
Figure 40.

The data transfer using the data files (archive, sample and offspring) is atomic.
This property is a consequence of the properties A and B and the particular
protocol used. The writer of a file puts a special END tag at the end of its
data which can be recognized uniquely (see property B). As the writing of
characters is serial, the reader of a file can determine when all data have
been read. In addition, the reader starts reading if the file contains any
data and it deletes all data after having read them. This way, there is a
definite start and end time of the read process and all data are transmitted
because of property A.

The sequence of operations according to Figure 40 is guaranteed by the pro-
tocol. As shown in Figure 40 two conditions are necessary for a process to
resume operation: The presence of the respective state and the availability
of the data. As a consequence of properties C and D the waiting process
can only resume execution after the state has been changed by the other
process. Property B then ensures that this state is unambiguously read.
Access to the correct data is assured by the requirement that the reader
deletes the data after reading it and the writer checks that the old data has
been deleted before writing new data. Together with properties C and D
this guarantees that no old data from the previous iteration can be read.
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A.5 Experimental Results

The interface specification has been tested by implementing sample vari-
ators and selectors on various platforms.

In a first set of experiments, an interface has been written in the pro-
gramming language C and extended with the simple multi-objective op-
timizer SEMO (selector) and the LOTZ problem (variator), see [LIZ*02].
They have been tested on various platforms (Windows, Linux, Solaris)
where the two processes have been residing as well on different machines
as on the same machine.

In a second experiment, a large application written in Java was tested
with the well known multiobjective optimizer SPEA2 [ZLT02] written
in C++ using the library TEA [EHOO]. The purpose of the optimization
was the design space exploration of a network processor including ar-
chitecture selection, binding of tasks and scheduling, see [TCGKO02]. The
interface worked reliably again, even if the application program and the
optimizer ran on two different computing platforms, i.e., Windows and
Solaris.

In a final set of experiments, the intention was to estimate the expected
run-time overhead caused by the interface. Based on the cooperation
between the two processes variator and selector, one can derive that the
overhead caused by the interface for each generation can be estimated as

Tyort + Teomm + (N + A(L + dim) + (1)Keopm

where T, denotes the polling interval chosen as well in the variator
as in the selector, N, A and u denote the size of the archive, sample
and offspring data sets, respectively, and dim denotes the number of
objectives. The rationale behind this estimation is that the time overhead
consists of three parts, namely the average time to wait for a process
to recognize a relevant state change, the overhead caused by opening
and closing all relevant files including the state file, and a part that is
proportional to the number of tokens in the data files. Note that besides
the polling for a state change, the two processes do not compete for the
processor, as the variation and selection are executed sequentially, see
Figure 40. It is not considered that in the variator as well as in the selector
one needs to store and process the population. On the other hand, the
corresponding time overhead can be expected to be much smaller than
the time to communicate via a file-based interface.

The parameters of this estimation formula have been determined for
a specific platform and a specific interface implementation and good
agreement over a large range of polling times and archive sizes has been
found. In order to be on the pessimistic side, the interface written in Java
was chosen. The underlying platform for both processes was a Pentium
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Laptop (600 MHz) running Linux and the following parameters were
obtained

Teomm = 10ms Keomm = 0.05ms/token

For example, if one takes an optimization problem with two objectives
dim = 2, a polling interval of T,,;; = 100ms, a population size of N =
500, and a sample and offspring size of A = u = 250, then one obtains
185ms time overhead for each generation. For any practically relevant
optimization application, this time is much smaller than the computation
time within the population-based optimizer and the application program.
Note that for each generation, at least the 250 new individuals must be
evaluated in the variator.

Clearly, these values are very much dependent on many factors such as
the platform, the programming language and other processes running on
the system. Nevertheless, one can summarize that the overhead caused
by the interface is negligible for any practically relevant application.

A.6 Summary

In this appendix, a platform and programming language independent
interface for search algorithms (PISA) has been presented which uses a
well-defined text file format for data exchange. By separating the se-
lection procedure of an optimizer from the representation-specific part,
PISA allows to maintain collections of precompiled components which
can be arbitrarily combined. That means on the one hand that appli-
cation engineers with little knowledge in the optimization domain can
easily try different optimization strategies for the problem at hand; on the
other hand, algorithm developers have the opportunity to test optimiza-
tion techniques on various applications without the need to program the
problem-specific parts. This concept even works on distributed files sys-
tems across different operating systems and can also be used to implement
application servers using the file transfer protocol over the Internet.

This flexibility certainly does not come for free. The data exchange via
files increases the execution time, and the implementation of the interface
requires some additional work. As to the first aspect, it was shown in Sec-
tion A.5 that the communication overhead can be neglected for practically
relevant applications; this also holds for comparative studies, indepen-
dent of the benchmark problems used, where one is mainly interested in
relative run-times. Also concerning the implementation aspect, the over-
head is small compared to the benefits of PISA. The interface is simple to
realize, and most existing optimizers and applications can be adapted to
the interface specification with only few modifications. Furthermore, the
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file format leaves room for extensions so that particular details such as
diversity measures in decision space can be implemented on the basis of
PISA.
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Box 1: Formal Specification of File Formats

The formats of all files used in the interface are specified in the following.
Note that the stated limits (e. g. largest integer) give minimal requirements for
all modules. It is possible to state larger limits in the documentation of each
module.

Common Parameter File (cfg)
All elements (parameter names and values) are separated by white space.

cfg := ’alpha’ WS PosInt WS 'mu’ WS PosInt WS ’lambda’ WS PosInt
WS ’dim’ WS PosInt

State File (sta)

An integer i with 0 <7 < 11.
Statefile := Int

Selector Files (sel and arc)

The first element specifies the number of data elements following be-
fore the first END. The data contains only white space separated indices.
Optional data blocks start with a name followed by the number of data
elements before the next END.

SelectorFiles := PosInt WS SelData 'END’ SelOptional*
SelOptional := Name WS PosInt WS SelData ’END’
SelData := (Int WS)*

Variator Files (ini and var)

The first element specifies the number of data elements m following be-
fore the first END. The data consists of one index and dim objective values
(floats) per individual. If n denotes the number of individuals: m = (dim +1)-n.
Optional data blocks start with a name followed by the number of data
elements before the next END.

VariatorFiles := PosInt WS VarData ’END’ VarOptional*
VarOptional := Name WS PosInt WS VarData ’END’
VarData := (Int WS (Float WS)*)*

Names for optional data

Names for optional data consist of maximally 127 characters, digits and
underscores.

Name := Char (Digit | Char)*
Char : ’a-z’ | 'A-Z’ | '’
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White space
WS := (Space | Newline | Tab)+

Integers

The largest integer allowed is equal to the largest positive value of a
signed integer in a 32 bit system: maxint = 32767

Int := ’0’ | PosInt
PosInt: ’1-9’ Digits*

Floats

Floats are non-negative floating point numbers with optional exponents.
The total number of digits before and after the decimal point can maximally be
10. The largest possible float is: maxfloat = 1e37. For the exponent value exp
applies: —=37 < exp <37

Float := (Digit+ ’'.’ Digit*) | (’.’ Digit+ Exp?) | (Digit+ Exp)
Exp := CCE’|’e’) (’+’? | ’-’?) Digit+
Digit

Digit := ’0-9’
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Running-Time Analyses for Chapter 3

B.1 Bimax (Reference Method)

B.1.1 Algorithm

The following algorithm realizes the divide-and-conquer strategy asillus-
trated in Figure 3. Note that special operations are required for process-
ing the V submatrices. As mentioned in the discussion of the reference
model, the algorithm needs to guarantee that only optimal, i.e., inclusion-
maximal biclusters are generated. The problem arises because V contains
parts of the biclusters found in U, and as a consequence one needs to
ensure that the algorithm only considers those biclusters in V' that extend
over Cy. The parameter Z serves this goal. It contains sets of columns
that restricts the number of admissible biclusters. A bicluster (G, C) is
admissible, if (G, C) shares one or more columns with each column set C*
inZ,ie,YCTeZ:CNC#0.

1: procedure Bimax(E)

2 Z<0

3: M « conquer(E,({1,...,n},{1,...,m}),Z)
4 return M

5: end procedure

o

: procedure conquer(E, (G, C), Z)
7: if Vie G,j€ C:ej=1then
8: return {(G, C)}
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10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

23

24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44.

45

end if
(Gu, Gv, Gw, Cu, Cv) = divide(E, (G, C), Z)
Mu — @, MV —0
if Gy # 0 then

My « conquer(E, (Gy U Gw, Cu), Z)
end if
if Gy # 0 A Gy = 0 then

My « conquer(E, (Gy,Cy),Z)
else if Gy # 0 then

7 — ZU{Cy}

My « conquer(E,(Gw U Gy, Cy U Cy), Z’)
end if
return MyUMy

end procedure

: procedure divide(E, (G, C), Z)

G’ « reduce(E, (G,C), Z)

choosei € G’ with 0 < Y jeceij < |Cl

if such an i € G’ exists then
Cu<—{j|j€CA€ij=1}

else

Cu=C
end if
CV «—C \ Cu

Gu<—0, Gy«<0,Gy<20
foralli e G’ do
C*(—{j|j€C/\€,‘j=1}
if C* C Cy then
Gy <« Gy u {1}
else if C* C Cy then
Gy « Gy U {i}
else
GW — GW U {l}
end if
end for
return (Gy, Gy, Gw, Cy, Cy)

end procedure

: procedure reduce(E, (G, C), Z)
46:
47:
48:
49:
50:
51:
52:
53:

G <0

forallie Gdo
C*<_{j|j€C/\€jj:1}
ifC*£#0AVYCte€Z:CtNC* # 0 then

G =G Ui}

end if

end for

return G’

54: end procedure
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B.1.2 Running-Time Analysis

Theorem 1. The running-time complexity of the Bimax algorithm is O(nmp min{n, m}),
where B is the number of all inclusion-maximal biclusters in E™™.

Proof of Theorem 1. To derive an upper bound for the running-time com-
plexity, at first the number of steps is calculated which are required to
execute the procedure conquer once, disregarding the recursive procedure
calls. Afterwards, the maximum number of invokations of conquer will
be determined, which then leads to the overall running-time complexity.

As to the procedure reduce, one can observe that the number of column
sets stored in Z is bounded by the number of rows, 1, and each column
set contains at most m elements. If Z is implemented as a list and C*
is represented by an array, the if statement in line 49 can be executed
in O(nm) time. Accordingly, one call to reduce takes O(n*m) steps resp.
O(m?n) steps, if n > m and the transposed matrix is considered. Overall,
the running time complexity is of order O(nm min{n, m}).

The partitioning of a submatrix is accomplished by the procedure
divide. It is assumed that all sets except of C* are implemented using
list structures, while C is stored in an array. Thereby, the inclusion-tests
can be performed in time O(m), and the entire loop takes O(nm) steps.
Overall, the running time of the procedure amounts to O(nm).

The main procedure conquer requires O(nm) steps to check whether
(G, C) represents a valid bicluster (lines 7 to 9), and O(1) steps to perform
the union operations at lined 18 and 21, again assuming a list implemen-
tation. Altogether, one invokation of conquer takes O(nm) time.

The question now is how many times congquer is executed. Taking into
account that every invokation of conquer returns at least one inclusion-
maximal bicluster, there are at maximum f procedure calls that do not
perform any further recursive calls. In other words, the corresponding
recursion tree, where each node represents one instance of conquer and
every directed edge stands for a recursive invokation, has at most  leafs.
Each inner node of the recursion tree has an outdegree of 1 or 2, on
whether Gy and Gy are empty (Gy is always non-empty except of the
special case that E contains only 0-cells). Suppose an instance of conquer
in the tree that only has one child to which the submatrix U is passed.
U has at least one row that contains a 1 in all columns of U; this is the
row according to which the partitioning in the parent is performed. Now,
either there is another row in U that contains both 0s and 1s (line 25) or
all remaining rows only contain 1s. In the former case, the partitioning of
U produces a non-empty set G and therefore the outdegree of the child
is two. In the latter case, the submatrix resulting from the partitioning
contains only 1s, which in turn, means that the following invokation of
conquer is a leaf in the recursion tree. Therefore, at least one half of all
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inner nodes have an outdegree greater than 1.

In a first step, one can give an upper bound for the number of inner
nodes with more than one child, and for this purpose disregard all nodes
with outdegree 1. Consider a tree where all inner nodes have an outdegree
of 2 and the number of leafs equals . Then the number of inner nodes is
less than 2°8:A*1 = 28. For the recursion tree, this means that there are at
maximum 2 - 2f inner nodes, and as a consequence the overall number of
nodes and invokations of conguer is of order O(p).

By combining the two main results, (i) one conquer callneeds O(nm min n, m)
steps and (ii) there are at maximum O(p) invokations of conquer, one ob-
tains the upper bound for the running-time of the Bimax algorithm. O

B.2 Incremental Procedure

B.2.1 Algorithm

The incremental procedure, see below, is based on work by Alexe et
al. [ACE*02], who propose a method to find all inclusion-maximal cliques
in general graphs. Shortly summarized, each node in the input graph is
visited, and all maximal cliques are found that contain that node. A visit-
to-a-node operation comprises an iteration through all other nodes of the
graph as well, and each newly found bicluster is globally extended to its
maximality. For the special class of bipartite graphs considered here, it is
important to notice that several steps of the above method are redundant:
it suffices to iterate through only one partition of the graph nodes—in
matrix terminology this means one will have to iterate either through the
set of rows or columns, but not both. Moreover, extending new biclusters
can be avoided with a guarantee that no bicluster will be missed this way.

1: procedure Incremental Algorithm(E)
2 M0
3 fori — 1tondo
4: C*<—{j|ei]-=1/\1stm}
5: for all (G,C) e M do
6: Ce<CncC*
7 if A(G”,C") e MwithC” = C’ then
8: M« M\{(G”,C"}U{(G” Ui}, C")}
9: else
10: M~ MU{G” Ui}, C)
11: end if
12: end for
13: if A(G”,C”) e M with C” = C* then
14: M — MU {{i},C*)}
15: end if

16: end for
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17: return M
18: end procedure

B.2.2 Running-Time Analysis

Theorem 2. The running-time complexity of the Incremental Algorithm is

O(nmplog ), where B is the number of all inclusion-maximal biclusters in
Enxm.

Lemma 1. Given the binary matrix E™™, a duplicate row or column in E does
not contribute to the total number of all inclusion-maximal biclusters in E.

Lemma 2. Given the binary matrix E™", the upper bound on the number of all
inclusion-maximal biclusters in E is (2mnvm — 1),

Proof of Theorem 2. The incremental algorithm proceeds in stages: at
stage i, a row/gene i of the matrix is considered and the steps within
the outer for instruction are performed. The set of instructions within
steps 5 to 12 amounts to: i) computing an intersection of the sets of
samples (having value 1) corresponding to gene i and a currently con-
sidered bicluster, which takes ®(m), and ii) the search through the list
M, followed by a set equality comparison operations, which costs fur-
ther ©(mlog, ), assuming that binary search through the list M is made.
This inner cycle (steps 5 - 12) is performed f times, and the outer one n
times, where 1 is the number of rows of the matrix E. One then obtains
O(n B (m +mlog,p)) = O(n m B log, f). Note that the worst-case running
time complexity amounts to O(n m?p) in the case that m < n, because the
upper bound on f is then exponential in m, hence, log, f < m.

In the algorithm proposed in [ACE*02], the main differences to the in-
cremental approach described here is an additional step that is performed
within the steps 7 to 11 of globally extending newly created biclusters to
their maximality, and an additional “absorption check” operation is made
which costs ©(n m log, ). Hence, the difference in the running-time com-
plexities. m|
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List of Acronyms

CC Cheng and Church biclustering method
cDNA complementary DNA

DNA desoxyribonucleic acid

EA evolutionary algorithm

GO gene ontology

HCL hierarchical clustering method

IBEA indicator-based evolutionary algorithm
ICA independent component analysis

ISA iterative signature algorithm

MOEA multiobjective evolutionary algorithm
MRNA messenger RNA

OPSM order-preserving submatrix

PCA principal component analysis

PPI protein-protein interaction

TAP tandem affinity purification
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List of Symbols

R

threshold for multiple node deletion in CC or

size of the initial population in PISA

total number of inclusion-maximal biclusters

threshold for minimum proportion of conditions in a bicluster
inhomogeneity threshold

number of carbon atoms in amino acid j

number of offspring in PISA

number of parents in PISA

proportion of molecules for amino acid j with i heavy carbon isotopes
standard deviation for noise in comparison study
length of shortest path between genes g and g
tournament size in the EA

overlap threshold in bimax postprocessing

activation matrix

bicluster

bicluster over a collection of expression data sets

set of conditions/columns included in a bicluster
number of amino acids investigated in a fluxome profile
biclustering

set of all possible biclusterings

maximum number of biclusters to be identified

number of objectives in PISA

AT =3 O™

BU° OmW® e 2.9

SN
3
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Appendix D. List of Symbols

fi, fa, .-
fcov

,f;ize
fsize(H)
G

g(B)
H

Kcomm

k

I

E

S =

Nsel
nrk(i,j)
O(Hi/ H])
P

pmut

Peross

R

expression data set

expression of gene 7 under condition j

collection of expression data sets

combined expression data set

fluxome profile matrix

objective functions in multiobjective problem
coverage of a biclustering

bicluster size

total size of the two mutant groups in a pair

set of genes/rows included in a bicluster

mean squared residue of bicluster B

a pair of mutant groups

communication time per token in PISA

number of clusters in hierarchical clustering or
number of data sets/objectives in the multiobjective approach
number expression data sets in a collection

set of biclusters

number of rows (genes) in a data set

number of columns (conditions) in a data set

total number of conditions in a combined expression data set
number of individuals to select in environmental selection
normalized rank of gene i at condition j

overlap of two pairs of mutant groups

population of biclusters in environmental selection
mutation probability

crossover probability

set of query genes

regulation matrix

rank deviation

rank of gene i at condition j

set of selected individuals in environmental selection
match score for two sets of biclusters

gene match score of two biclusters

condition match score of two biclusters

network distance between genes g and g

threshold for minimum number of genes in a module
silhouette value of point i

communication setup time in PISA

polling interval in PISA

overlap threshold

threshold on silhouette width

random variable with uniform distribution in [/, u]
silhouette width
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set of mutants
data set in multiobjective approach
overlap degree for synthetic data
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