
The hypervolume indicator for
multi-objective optimisation: calculation

and use

This thesis is

presented to the

Department of Computer Science & Software Engineering

for the degree of

Doctor of Philosophy

of

The University of Western Australia

By

Lucas Bradstreet

April 2011

c© Copyright 2011

by

Lucas Bradstreet

iii

iv

Abstract

Multi-objective problems, requiring the optimisation of two or more conflict-

ing criteria, abound in the real world. Multi-objective optimisers produce

solution sets that represent the trade-offs between problem criteria. As a result

of computational and space limitations, a multi-objective optimiser is often unable

to retain all generated trade-off solutions and instead must endeavour to keep the

solutions that best cover the trade-off front. Indicators which map these sets into

unary values that can be easily compared are valuable and are used frequently in

multi-objective performance assessment, or as a part of the selection operator of a

multi-objective optimiser.

One indicator which incorporates many mathematical properties favourable for use

in multi-objective optimisation is the hypervolume indicator. Hypervolume is the

n-dimensional space that is “contained” by a set of points. It encapsulates in a

single unary value a measure of the spread of the solutions along the Pareto front,

as well as the closeness of the solutions to the Pareto-optimal front. However,

hypervolume has one serious drawback: calculating hypervolume exactly is NP-

hard and exponential in the number of objectives.

This thesis describes research into improving the performance of hypervolume cal-

culation and techniques for its use.

One major contribution of this thesis is the introduction of two new calculation

algorithms, IIHSO and WFG, which outperform existing hypervolume calculation

algorithms on several forms of test data. The best performing of the two, WFG,

v

greatly outperforms all existing algorithms on tested data sets and represents a

substantial improvement in the feasibility of hypervolume calculation. The thesis

also introduces a number of objective reordering heuristics which improve the typical

performance of several existing hypervolume algorithms that use a dimension sweep

approach.

The use of hypervolume within multi-objective optimisers is a relatively new and

developing area. It is not yet known how to best apply hypervolume as part of the

selection criteria within a multi-objective optimiser. Furthermore, hypervolume’s

high cost can limit its use within optimisers that require many solutions to be

evaluated. However, it has great promise for use in optimisation if the performance

issue can be limited.

In these hypervolume-based selection and archiving schemes, it is typically neces-

sary to determine the solution that contributes the least hypervolume to a set. This

thesis introduces the IHSO algorithm which quickly determines the hypervolume

contributed by a solution. It also describes heuristics designed to improve IHSO’s

typical performance. Additionally, it describes and analyses techniques that reduce

the calculations necessary to find the solution which contributes the least hypervol-

ume.

When using hypervolume as part of a selection or archiving process, one important

goal is to reduce the size of a solution set while maximising the hypervolume of this

set. Finding the subset with the optimal hypervolume using naive schemes, results

in combinatorial explosion in the number of hypervolume calculations required.

For this reason, this thesis introduces and compares several simple meta-heuristic

schemes that attempt to maximise the hypervolume of selected subsets. A local

search and two greedy schemes are proposed in this thesis as means of overcoming

this problem.

vi

Acknowledgements

I would like to express my respect and gratitude to my supervisors and friends Dr.

Luigi Barone and Dr. Lyndon While. They introduced me to research as an honours

student and I thank them for providing me with first class guidance and support

ever since. Their ideas, insights and encouragement were invaluable to me through

my PhD. Thanks for everything, especially encouraging me and sticking with me

when the task felt far too large. Luigi, thanks for all your ideas and readings of this

thesis.

I would also like to thank the School of Computer Science & Software Engineering

at The University of Western Australia for providing me with the infrastructure to

complete this work. I would also like to thank The University of Western Australia

for the financial support provided to me in the form of an Australian Postgraduate

Award and a Postgraduate Travel Grant. The Association for Computing Machin-

ery (A.C.M.) also assisted financially, providing a travel scholarship to present and

attend a conference overseas.

I would also like thank the staff and students of the School of Computer Science

& Software Engineering for their friendship and for providing such an interesting

work environment. I’ve really enjoyed my time at university and I would like to

acknowledge the many postgrads for helping make the time enjoyable — especially

Rasha, Valance, Daniel, Bobby, and Angel.

I would like to thank Katherine Gasmire and Dad for proof reading.

Finally, I would like to thank all of my friends and my family, for listening, help,

vii

patience, and support. I have enjoyed these years and my life wouldn’t be the

same without you all. Special thanks go to Rami, Lara, Tom and Ling. Martin,

thanks for being a good brother and for all the late night chats. Most importantly,

Mum and Dad, thanks for all of the support and encouragement you have provided

throughout my life.

viii

Papers Included in This Thesis

Paper 1 (Refereed)

L. While, L. Bradstreet, L. Barone, and P. Hingston. Heuristics for Optimising

the Calculation of Hypervolume for Multi-Objective Optimization Problems. In

2005 IEEE Congress on Evolutionary Computation (CEC’2005), pages 2225–2232,

Edinburgh, Scotland, September 2005. IEEE Press

Paper 2 (Refereed)

L. Bradstreet, L. Barone, and L. While. Maximising Hypervolume for Selection in

Multi-objective Evolutionary Algorithms. In 2006 IEEE Congress on Evolutionary

Computation (CEC’2006), pages 6208–6215, Vancouver, BC, Canada, July 2006.

IEEE Press

Paper 3 (Refereed)

L. Bradstreet, L. While, and L. Barone. A Fast Incremental Hypervolume Algo-

rithm. IEEE Transactions on Evolutionary Computation, 12(6):714–723, December

2008

Paper 4 (Refereed)

L. Bradstreet, L. While, and L. Barone. Incrementally Maximising Hypervolume

for Selection in Multi-Objective Evolutionary Algorithms. In 2007 IEEE Congress

on Evolutionary Computation (CEC’2007), pages 3203–3210, Singapore, September

2007. IEEE Press

ix

Paper 5 (Refereed)

L. Bradstreet, L. Barone, and L. While. Updating Exclusive Hypervolume Contribu-

tions Cheaply. In 2009 IEEE Congress on Evolutionary Computation (CEC’2009),

pages 538–544, Thronheim, Norway, May 2009. IEEE Press

Paper 6 (Refereed)

L. Bradstreet, L. While, and L. Barone. A Fast Many-objective Hypervolume Al-

gorithm using Iterated Incremental Calculations. In 2010 IEEE Congress on Evo-

lutionary Computation (CEC’2010), pages 179–186, Barcelona, Spain, July 2010.

IEEE Press

Paper 7 (Submitted)

L. While, L. Bradstreet, and L. Barone. A Fast Way of Calculating Exact Hyper-

volumes, 2010. To appear in IEEE Transactions on Evolutionary Computation

x

Contribution By Candidate To

Included Papers

Paper 1 50% contribution.

Developed a high performance implementation of the algorithm, im-

plemented several heuristics, and co-wrote the paper.

Paper 2 90% contribution.

Designed and implemented the algorithms and techniques, wrote and

presented the paper at the Congress on Evolutionary Computation

2006.

Paper 3 70% contribution.

Co-designed the algorithm, heuristics, and application techniques. Im-

plemented the algorithm and performed experiments. Co-wrote the

paper.

Paper 4 90% contribution.

Designed and implemented the algorithms and techniques and wrote

the paper.

xi

Paper 5 90% contribution.

Designed and implemented the algorithms and techniques, wrote and

presented the paper at the Congress on Evolutionary Computation

2009.

Paper 6 60% contribution.

Co-designed the algorithm, heuristics, and application techniques. Im-

plemented the algorithm and performed experiments. Co-wrote and

will present the paper at the Congress on Evolutionary Computation

2010.

Paper 7 50% contribution.

Contributed to the algorithm, implemented some code, and performed

the experiments.

xii

Contents

Abstract v

Acknowledgements vii

Papers Included in This Thesis ix

Contribution By Candidate To Included Papers xi

1 Introduction 1

1.1 Multi-objective Optimisation and Multi-objective Evolutionary Al-

gorithms . 2

1.2 Multi-objective Indicators . 3

1.3 The Hypervolume Indicator . 3

1.3.1 Use of Hypervolume for Performance Assessment 4

1.3.2 Use of Hypervolume in Selection 4

1.4 Contributions . 5

1.5 Organisation of the Thesis . 6

2 Background 7

2.1 Definitions . 7

xiii

2.2 Indicators . 8

2.3 The Hypervolume Indicator . 9

2.4 Hypervolume Metric Algorithms . 10

2.4.1 Hypervolume via Inclusion-Exclusion 10

2.4.2 The LebMeasure Hypervolume Algorithm 11

2.4.3 The HSO Hypervolume Algorithm 12

2.4.4 Optimal 3D Hypervolume Algorithm 15

2.4.5 The FPL Hypervolume Algorithm 16

2.4.6 Hypervolume Using the Overmars and Yap Algorithm 16

2.4.7 Hypervolume Approximation 17

2.5 Use of Hypervolume Within MOOs 20

2.5.1 SMS-EMOA MOEA . 22

2.5.2 Weighted Hypervolume and SIBEA MOEA 22

2.5.3 Objective Reduction Approach Using Hypervolume 23

2.5.4 Selection Using Hypervolume Approximation and the HypE

MOEA . 25

2.5.5 Optimal Hypervolume λ-set Selection 26

3 Overview of Included Papers 29

3.1 Experimental Test Data . 30

3.2 Objective Ordering Heuristics for HSO 34

3.3 Hypervolume Based Selection Techniques 35

3.4 Finding the Least Contributing Point 37

3.5 Local and Greedy Selection Techniques Using IHSO 41

3.6 Updating Hypervolume Contributions 42

xiv

3.7 Hypervolume via Iterated Incremental Calculations 43

3.8 Metric Calculations Using WFG . 45

4 Included Papers 49

4.1 Summary of Papers . 49

4.2 Errata . 51

5 Conclusions 131

5.1 Summary of Main Achievements . 133

5.2 Future Directions . 134

Bibliography 137

xv

List of Tables

1 Domination statistics for all enumerated removed objectives 33

2 Front sizes that IHSO with a BFS can process in one second 40

3 Front sizes that WFG and IIHSO can process in ten seconds 46

xvi

List of Figures

1 Example hypervolume in three dimensions 9

2 Pseudo-code for the inclusion-exclusion algorithm 11

3 The concept of spawning in LebMeasure 12

4 Pseudo-code for the LebMeasure algorithm 13

5 The operation of one step in the HSO algorithm 14

6 Pseudo-code for the HSO algorithm 14

7 Pseudo-code for 3D hypervolume algorithm by Paquete et al. 15

8 Pseudo-code for the HOY algorithm 18

9 Representative test data sets . 31

10 The operation of one step in the IHSO algorithm 39

11 Updating hypervolume contributions using the ∆ technique 44

12 Bounding technique for hypervolume contribution calculations . . . 47

xvii

xviii

Chapter 1

Introduction

This submission is composed of seven papers co-authored by the PhD candidate.

The included papers are the result of research ongoing from 2005. Five are confer-

ence papers accepted at the IEEE Congress on Evolutionary Computation (CEC)

over various years. CEC is very competitive, with an acceptance rate of around

50%, and rated in the top tier of computer science conferences by the Computing

Research and Education Association of Australasia (CORE). One paper was pub-

lished in the IEEE Transactions on Evolutionary Computation (TEC), one of the

top ranked journals in the Artificial Intelligence (AI) discipline. The final paper

has been accepted for publication in TEC.

This thesis investigates the use and calculation of hypervolume, an indicator that

is widely used in multi-objective optimisation. Section 1.1 introduces and moti-

vates the importance of multi-objective optimisation problems and multi-objective

optimisers (MOOs), including multi-objective evolutionary algorithms (MOEAs).

Section 1.2 introduces indicators useful in multi-objective optimisation and ways in

which indicators can be used. Section 1.3 introduces the hypervolume indicator in

more detail. Finally, Section 1.4 discusses the contributions made by this thesis to

the field of multi-objective optimisation.

1

2 CHAPTER 1. INTRODUCTION

1.1 Multi-objective Optimisation and Multi-ob-

jective Evolutionary Algorithms

A multi-objective optimisation problem is one in which potential solutions are as-

sessed by their performance in more than one criterion, or objective [32, 33]. The

result of running MOOs is a set of solutions, with each solution representing a

trade-off between objectives. MOEAs are evolutionary algorithms (EAs) applied to

multi-objective optimisation problems.

An example of an application where MOEAs excel can be found in Barone et al. [7]

with their MOEA for the design of rock crushers. Rock crushers are used to extract

raw materials from rocks and are subject to various tunable parameters. Barone et

al.’s MOEA attempts to simultaneously optimise two objectives: maximising the

capacity of the rock crushers while minimising the size of the crushed product. An

inevitable trade-off is found; reducing the size of the crushed rocks leads to reduced

capacity, and vice versa.

MOEAs produce a range of solutions, each representing a different trade-off in

objectives which could not be anticipated prior to optimisation. As such, MOEAs

allow their users to respond effectively to change (e.g. varying market conditions)

without the need to rerun the optimisation algorithm. As it may take a considerable

period of time to rerun an optimiser to respond to changing conditions, MOEAs

represent a significant advantage for a problem solver who wishes to adapt quickly.

1.2. MULTI-OBJECTIVE INDICATORS 3

1.2 Multi-objective Indicators

MOEAs produce a solution set that represents discovered trade-offs. These trade-

offs result in several issues which are not present in single objective optimisation.

The solution sets produced by MOEAs are difficult to compare against one another

as generally one set is not decidedly superior to another.

The inability to qualitatively compare optimisation results can be extremely limiting

to multi-objective optimisation research. As a result, several unary indicators have

been created to measure the quality of solution sets. These map a solution set

in two or more objectives to a single value that can be used to easily compare the

quality of solutions sets. All indicators have advantages and disadvantages, however

good indicators factor in coverage, diversity, and relative goodness of the solution

set [77].

1.3 The Hypervolume Indicator

One of the most popular indicators for MOOs is hypervolume, otherwise known as

the S-metric [39, 60,69] or Lebesgue measure [52].

If solutions are considered as points in objective space, hypervolume is the n-

dimensional space that is contained by a solution set — i.e. the n-dimensional

volume of the set relative to some reference point. Due to properties of the in-

dicator [77], a set with a larger hypervolume is likely to present a better set of

trade-offs than sets with lower hypervolume. Unfortunately, use of hypervolume

has been greatly limited by the high computation cost of existing hypervolume

calculation algorithms and application techniques [6, 30,36].

4 CHAPTER 1. INTRODUCTION

1.3.1 Use of Hypervolume for Performance Assessment

Indicators are commonly used to compare solution sets produced by MOOs. Through

use of these measures, one can gain a better understanding of how MOOs function,

such as how changes in parameters, selection methods, and other techniques affect

the optimisation process and the resulting quality of the solutions. Indicators are

also used to compare MOOs directly. Indeed, many discussions of MOOs com-

pare their indicator values with those of popular MOOs on benchmark problems

using statistical tests over many runs. The PISA framework [12] simplifies this

kind of analysis for popular indicators and is used widely for benchmarking MOOs

(e.g. [6, 30,61,71]) and new test problems (e.g. [15]).

1.3.2 Use of Hypervolume in Selection

EAs operate via an iterative process emulating natural selection, adaptation, and

genetic inheritance [4]. A key issue for MOEAs, a popular form of multi-objective

optimiser, is that of mating selection.

MOEAs attempt to find the best possible approximation solution set that represent

the trade-offs between conflicting problem criteria. In MOEAs, this occurs via a

process of selection and reproduction. In single objective EAs, selection is relatively

simple: rank the solutions by the objective of interest and select a proportion of the

best solutions. In MOO, this process is more complicated. Many MOOs separate

solutions into many distinct progressively worsening ranks, such that the solutions

of a lower rank are superior to a solution in all higher ranks, and within each rank

there exist no solutions that are superior to each other.

Unfortunately, populations are generally bounded in size and as such it is not always

possible to keep an entire rank of solutions between generations. Therefore, the

optimiser must choose a subset of these incomparable solutions to use in the next

generation. To ensure diversity in the population, it is important that the chosen

solutions are spread over the entire range of possible trade-offs. Additionally, as the

1.4. CONTRIBUTIONS 5

number of criteria increase, the number of potential solutions contained in each rank

can increase exponentially [38, 61]. As such, better selection methods are required

to improve the performance of these optimisers.

In multi-objective optimisation, indicators for performance assessment, such as hy-

pervolume, are usually adaptable for selection. After all, if one set is better than

another under a performance measure, the set should be more desirable during the

course of the run of the EA. Therefore, when reducing the size of a set during

selection, a MOEA could attempt to maximise an indicator over the reduced size

solution set.

1.4 Contributions

The primary contribution of this thesis is in-depth research into hypervolume cal-

culation algorithms and techniques for its use. Hypervolume’s favourable prop-

erties have made it extremely popular in current multi-objective optimisation re-

search. However, hypervolume use has been held back by algorithms that perform

poorly [64] and recent research has proven exact hypervolume calculation to be

NP-hard [21].

This thesis primarily focuses on improving the feasibility of hypervolume use in

multi-objective optimisation.

These contributions fall into three key areas:

• The development of two faster hypervolume calculation algorithms, IIHSO

and WFG, that can be used to calculate higher objective problems considered

infeasible for calculation using previous hypervolume calculation algorithms.

These algorithms are primarily intended for use in performance assessment.

• The development of the IHSO algorithm, a fast exclusive hypervolume contri-

bution calculation algorithm (the individual hypervolume attributable to one

6 CHAPTER 1. INTRODUCTION

particular solution) and a search technique that minimises the computation

required to find solutions that contribute the least hypervolume.

• The introduction and comparison of several hypervolume based set selection

techniques that can be used within MOOs. These techniques aim to improve

the selection operation within an EA by maximising the hypervolume of so-

lution sets of bounded size.

1.5 Organisation of the Thesis

As conference papers often have tight page restrictions, a thesis submission by a

collection of papers is inevitably different to a conventional thesis. Background

material in conference papers is often condensed with only the most relevant and

important concepts and ideas included in the paper. As such, this thesis is struc-

tured to include some of the material omitted from these papers.

Chapter 2 introduces background information explaining why the hypervolume indi-

cator is important to multi-objective optimisation, discusses algorithms to calculate

hypervolume and techniques for hypervolume’s use. Existing hypervolume calcu-

lation algorithms are examined, including their limitations, and their performance

cost. Issues relevant to the use of hypervolume within MOOs are also discussed.

Chapter 3 describes the published papers which make up this dissertation. These are

presented in an order that preserves the logical separation of ideas, not necessarily

in order of publication.

Chapter 4 presents the seven papers that comprise this submission.

Chapter 5 summarises the research discussed in the published papers, highlighting

their significance and contribution to hypervolume use in multi-objective research.

The implications of these contributions in the context of future uses of hypervolume

are examined.

Chapter 2

Background

This chapter presents a review of background material not discussed in the included

papers making up this thesis. The first section introduces multi-objective optimi-

sation and discusses two key areas of research: performance assessment indicators

which are used to compare multi-objective optimiser runs, and selection indicators

which are used during optimisation to choose candidate solutions that drive optimi-

sation toward high quality results. Hypervolume, a popular indicator, can be used

for each of these purposes.

The second part of this chapter examines hypervolume calculation algorithms, with

a primary focus on its use in performance assessment. The final section investi-

gates the calculation and application of hypervolume as a selection indicator within

MOOs.

2.1 Definitions

In a multi-objective optimisation problem, the goal is to find the set of optimal

trade-off solutions known as the Pareto optimal set. Pareto optimality is defined

with respect to the concept of non-domination between points in objective space.

Given two objective vectors x and y, x dominates y iff x is at least as good as

7

8 CHAPTER 2. BACKGROUND

y in all objectives, and better in at least one. A vector x is non-dominated with

respect to a set of solutions X iff there is no vector in X that dominates x. X is a

non-dominated set iff all vectors in X are mutually non-dominating. Such a set of

objective vectors is sometimes called a non-dominated front.

A vector x is Pareto optimal iff x is non-dominated with respect to the set of all

possible vectors. Pareto optimal vectors are characterised by the fact that improve-

ment in any one objective means worsening at least one other objective. The Pareto

optimal set or Pareto optimal front is the set of all possible Pareto optimal vectors.

Relations commonly used to compare these vectors include:

Pareto dominance A ≺ B
Weak Pareto dominance A � B
Comparable A � B||B � A
Incomparable ¬(A � B||B � A)
Indifferent A � B ∧B � A

Pareto dominance occurs when x is better than y in one objective and equal or

better in the remaining objectives. Under weak Pareto dominance, x is not worse

than y in all objectives. Under these definitions, a set is a Pareto optimal set if

no solutions exist that weakly dominate solutions in the set. Precise definitions of

these terms can be found in [4, 77].

Throughout this thesis, m is used to refer to the size of non-dominated fronts, and

n for the number of dimensions (objectives) in vectors contained in the front.

2.2 Indicators

The ultimate goal in multi-objective optimisation is to find the Pareto optimal front

for a problem. However, in practice, MOOs can only aim to find a representative

subset. As this subset typically contains worse solutions than the Pareto optimal

front, or does not contain every possible solution (of which there can be an innumer-

able number for continuous problems), there exists a need to measure the quality of

2.3. THE HYPERVOLUME INDICATOR 9

these fronts. Many indicators, also known as metrics, have been designed for this

purpose. Measuring the quality of these approximation sets is a difficult problem

and any evaluation should factor in the distance of the set from the Pareto optimal

front and the spread of the solutions in the objective space [77].

2.3 The Hypervolume Indicator

The hypervolume indicator [60] or S-metric [69] has become widely used in re-

cent years. Hypervolume is the n-dimensional space that is “contained” by an

n-dimensional set of points. When applied to multi-objective optimisation, the n-

dimensional objective values for solutions can be treated as points. That is, the

hypervolume of a set is the total size of the space dominated by the solutions in the

set (see Figure 1).

Hypervolume encapsulates in a single unary value a measure of the spread of the

solutions along the Pareto front, as well as the distance of the set from the Pareto-

optimal front. Additionally, it has several favourable mathematical properties. It

was the first unary metric to detect when a set of solutions are not worse than

another set for all solution pairings [77]. Additionally, it is maximised if, and only

if, the set of solutions contains all Pareto optimal points [39].

@
@

@

@
@
@

@
@

@t
a

@
@
@
@t
b@

@@

@
@@
@@

@t
c

@@
@@@@ @@t

d
6z

@
@R x

�
y a

b
c
d

x
11
9
5
3

y
4
2
6
3

z
4
5
7
10

Figure 1: Example hypervolume in three dimensions. Points are marked by circles
and labelled with letters. The hypervolume of the set is the volume of the space
covered by points a–d. Figure reproduced from [67].

10 CHAPTER 2. BACKGROUND

The hypervolume of a set is measured relative to a reference point, usually the

anti-optimal point or “worst possible” point for the space. The choice of reference

point is important as it can influence the conclusions resulting from the comparison

of hypervolumes. While still an open problem, one suggestion is to take the worst

known value in each objective and shift it by an appropriate amount [54].

2.4 Hypervolume Metric Algorithms

Though hypervolume has been found to have many favourable properties as a multi-

objective indicator, its high computational complexity limits its use. Indeed, hy-

pervolume calculation has been proven by Bringmann and Friedrich [23] to be #P-

hard (analogous to NP-hard for counting problems) in the number of objectives

and therefore no polynomial time algorithm exists unless NP = P . As a result of

traditionally poor performance, hypervolume algorithms have been used primarily

for performance assessment (as a metric). Typically, these are used to compare

the performance of MOOs using indicator values calculated using resultant solution

sets.

Many algorithms have been created to calculate hypervolume, each with a different

worst-case complexity. This section introduces the main algorithms proposed to

calculate hypervolume, and discusses their time complexity, in the process demon-

strating the evolution of hypervolume calculation algorithms.

2.4.1 Hypervolume via Inclusion-Exclusion

Inclusion-Exclusion is the most obvious and easily understood method for calcu-

lating hypervolume [68]. The Inclusion-Exclusion hypervolume algorithm works by

the inclusion-exclusion principle in combinatorial mathematics: the algorithm adds

volumes of rectangular polytopes (n-dimensional rectangular volumes) dominated

by each point individually, then subtracts volumes dominated by intersections of

2.4. HYPERVOLUME METRIC ALGORITHMS 11

pairs of points, then adds back in volumes dominated by intersections of three

points, and so on.

Pseudo-code for this algorithm is shown in Figure 2. Unfortunately, while simple,

this method has a time complexity of O(n2m) that makes it infeasible on all but

the smallest sets (it is exponential in the number of points!).

InclusionExclusion(ps):

volume = 0

for each non-empty subset s of ps

vol = vol + intersection(s) * (-1)^(|s|+1)

return vol

intersection(ps):

returns the volume of the largest rectangular

polytope that is dominated by all members in ps

Figure 2: Pseudo-code for the inclusion-exclusion algorithm. Code reproduced from
[67].

2.4.2 The LebMeasure Hypervolume Algorithm

The LebMeasure algorithm by Fleischer [39] is based on the observation that for

any space covered by a set of non-dominated points, one can always identify a

rectangular polytope that does not intersect with any other region which can be

“lopped off”. The hypervolume contributions of these lopped off regions are easily

calculated. The hypervolume of the space dominated by these polytopes is added

to a hypervolume accumulator, and new points are spawned to reflect the removal

of this region. This process can then be repeated until the remaining polytopes no

longer dominate any region of space.

Figure 3 demonstrates lopping and spawning in LebMeasure. Pseudo-code for this

algorithm is shown in Figure 4.

LebMeasure was initially thought to have polynomial time performance, however

it was later demonstrated empirically by While [64] to exhibit exponential time

complexity in the number of objectives. While also proves the lower bound for

12 CHAPTER 2. BACKGROUND

3

2.2 The Behaviour of LebMeasure

LebMeasure works by processing the points in a set one at a time. It calculates
the volume that is dominated exclusively by the first point, then it discards
that point and moves on to the subsequent points, until all points have been
processed and all volumes have been summed. This is particularly efficient when
the volume dominated exclusively by a point x is “hyper-cuboid”, but where
this is not the case, LebMeasure lops-off the largest hyper-cuboid volume that
is dominated exclusively by x, and replaces x with a set of up to n “spawned”
points that dominate the remainder of x’s exclusive hypervolume. A spawn is
discarded if it dominates no exclusive hypervolume, either because it has one or
more objective values equal to the reference point, or because it is dominated
by an unprocessed point.

Consider as an example the set of points shown in Fig. 1, with Point A to be
processed first. The largest hyper-cuboid dominated exclusively by A is bounded

A = (6, 9, 4)
B = (9, 7, 5)
C = (1,12, 3)
D = (4, 2, 9)

�
C

�A�
B

�
D

❞
A2 ❞A1

� � � � � ��� � �❞
A3
� � � � � � � � �

✻z

❅
❅❘ y

✛
x

❅❅

❅❅

❅❅

❅

❅

❅

❅
❅
❅❅

❅
❅
❅❅

❅
❅❅

❅

❅ ❅

Fig. 1. Spawning in LebMeasure. The blocks denote the hypervolume dominated by
{A, B, C, D} in a maximisation problem relative to the origin. The filled circles repre-
sent the four points, and the empty circles represent the three potential spawns of A.
Each spawn is generated by reducing one objective to the largest smaller value from
the other points. It is clear that A2 is dominated by B, so A is replaced by A1 and A3.

at the opposite corner by (4,7,3). Thus the three potential spawns of A are

A1 = (4, 9, 4) A2 = (6, 7, 4) A3 = (6, 9, 3)

However, A2 is dominated by B (from the main list of points), so only A1 and A3

dominate exclusive hypervolume of their own, and only those two are added to
the main list to be processed.

Figure 3: Spawning in LebMeasure. The blocks denote the hypervolume dominated
by A, B, C, D in a maximisation problem relative to the origin. The filled circles
represent the four points, and the empty circles represent the three potential spawns
of A. Each spawn is generated by reducing one objective to the largest smaller value
from the other points. It is clear that A2 is dominated by B, so A is replaced by A1
and A3. Picture and caption reproduced from [67].

LebMeasure’s worst case complexity to be O(2n−1), and thus exponential in the

number of objectives.

2.4.3 The HSO Hypervolume Algorithm

Hypervolume by Slicing Objectives (HSO) is a hypervolume calculation algorithm

that processes a front by processing one objective at a time, “slicing” along the

chosen objective [50, 67,70]. This is known as a dimension-sweep algorithm.

HSO is given with a front that is presorted in the first objective. Point values in

this objective are used to create cross-sectional slices along this objective. When

sweeping along an objective, each point in the list is visited in turn. A list of points

is maintained which is sorted in the n− 1th-objective, containing points that have

been processed thus far, i.e. the points contributing to the current slice. As each

slice is an n − 1-objective hypervolume, its hypervolume is calculated recursively

and multiplied by the depth of the slice (the difference between the current point

2.4. HYPERVOLUME METRIC ALGORITHMS 13

LebMeasure (ps):

pl = a list containing the points from ps in some order,

each paired with n, the number of objectives

hypervolume = 0

while pl is not empty

(p, z) = head (pl)

pl = tail (pl)

a = oppositeCorner (p, pl)

hypervolume = hypervolume + volBetween (p, a)

ql = spawns (p, z, a, pl)

prepend ql to pl

return hypervolume

spawns (p, z, a, pl):

return up to z spawn points that collectively

dominate the remainder of ps exclusive hypervolume

oppositeCorner (p, pl):

returns the point that bounds the largest rectangular polytope that is

dominated exclusively by the point p relative to the points on pl

volBetween (p, q):

return the hypervolume between the points p and q

Figure 4: Pseudo-code for the LebMeasure algorithm. Each point on the main stack
is paired with the highest index that it can use to generate a non-dominated spawn.
Code reproduced from [64] with slight modification.

value and the next point value). The point is then added to the n−1-objective slice,

after removing any points that it dominates. This process repeats until every point

in the list has been visited. This slicing process is depicted in Figure 5. Pseudo-code

for HSO is shown in Figure 6.

While et al. [67] prove that HSO is exponential in the number of objectives (roughly

O(mn−1)). This is a significant improvement compared to the inclusion-exclusion

approach (recall, its time performance is exponential in the number of points),

and While et al. show that HSO greatly outperforms LebMeasure for all tested

DTLZ [35] and randomly generated front types. However, HSO still performs poorly

for data sets with high dimensionality.

14 CHAPTER 2. BACKGROUND

@
@

@

@
@
@

@
@

@t
a1

@
@
@
@t
b

2
@

@@

@
@@
@@

@t
c

3

@@
@@@@ @@t

d

4

=
@@

@@@@

@@@@t
dt

c d
a
d
b

Slice 4

+
@

@ @t
c d
a
d
b

Slice 3

+
@
@

@
@
@
@

@
@
@
@t

a
t
b

Slice 2

+
@

@ @t
a

Slice 1

6z

@
@R x

�
y a

b
c
d

x
11
9
5
3

y
4
2
6
3

z
4
5
7
10

Figure 5: One step in HSO for the four 3D points shown. Objective x is processed,
leaving four two-objective shapes in y and z. Points are marked by circles and labelled
with letters: unfilled circles represent points that are dominated in y and z. Slices
are labelled with numbers, and are separated on the main picture by dashed lines.
Figure reproduced from [67].

hso (ps, n):

if n is 2

return hv2D (ps)

ps2 = empty point list

for each p in ps

depth = distance from p to next point in ps

or to the reference point if p is the final point

insert (ps2, p, n-1)

hypervolume = hypervolume + depth * hso (ps2, n-1)

return hypervolume

insert (ps, p, n):

insert p into list ps, maintaining sorting in objective n,

and deleting all points in ps dominated by p

hv2D (ps):

return the 2D hypervolume of ps

Figure 6: Pseudo-code for HSO. HSO assumes list ps is sorted in objective n. Code
reproduced from [67].

2.4. HYPERVOLUME METRIC ALGORITHMS 15

2.4.4 Optimal 3D Hypervolume Algorithm

Paquete et al. [8, 58] describe an optimal algorithm for calculating hypervolume

in three dimensions. It is a dimension sweep algorithm which uses the relationship

between hypervolume computation and the process of finding the maxima of a point

set [51]. The algorithm sweeps along a front sorted in one objective, maintaining

an overall 2D area for the points considered thus far.

For each point, p, in the front, a height balanced binary tree is queried to determine

the position of p in the remaining objectives. If p is dominated, it is discarded. If

p dominates other points, they are deleted from the tree. If needed, the 2D area

is then updated in constant time. The height from p to the next point down (i.e.

the slice depth) is then multiplied by the area and the result added to the overall

volume. Pseudo-code is shown in Figure 7.

Paquete3D (ps):

initialise tree, sort ps in 3rd objective, set volume to 0

p = head (ps)

ps = tail (ps)

area = p[0] * p[1]

z = p

for each p in ps

search tree for point q to the right of p

if p is not dominated

increase volume by slice between z and p

z = p

for each point s in tree dominated by p

remove s from tree

decrease area by contribution of s

increase area by contribution of p

insert p in tree

increase volume by area * z[2]

Figure 7: Pseudo-code for optimal 3D hypervolume algorithm by Paquete et al.
Code derived from [8].

As each tree insertion and deletion has a cost of logm and there are at most m

insertions and deletions, this algorithm has a worst case complexity of O(m logm),

superior to the O(m2) worst case complexity of HSO in 3D.

16 CHAPTER 2. BACKGROUND

2.4.5 The FPL Hypervolume Algorithm

The Fonseca Paquete López-Ibáñez (FPL) hypervolume algorithm is another di-

mension-sweep algorithm [40] which improves upon HSO in three principal ways:

1. It adds a new linked data structure which reduces the work required to main-

tain the fronts built iteratively by HSO. One necessary change that results

from this structure is that dominated points must be retained, as points must

be reinserted in the reverse order of their deletion. Therefore, dominated

points are marked instead of deleted and are skipped over in lower objec-

tives. This data structure improves performance by minimising the number

of comparisons necessary to maintain the sorting within the n−1-dimensional

slices.

2. It reuses previous calculations when a smaller dimensional slice has already

been calculated. Hypervolumes are stored along with the current coordinate

in the current objective. As these values become stale, bound values which

keep track of reusable hypervolumes are updated whenever points are deleted

or reinserted.

3. It uses the 3D algorithm by Paquete et al. [58] as a base case.

Fonseca et al. state that the worst-case complexity of FPL is O(mn−2 logm) [40].

The m
logm

complexity improvement over HSO is due to the new 3D base case.

2.4.6 Hypervolume Using the Overmars and Yap Algorithm

The Hypervolume Overmars and Yap (HOY) algorithm by Beume and Rudolph [11]

adapts an algorithm by Overmars and Yap [56] for a computational geometry prob-

lem that is similar to the hypervolume problem. The Klee’s measure problem

(KMP) [48] occurs in computational geometry: calculate the size of the union of a

set of nD hyper-cuboids. The Overmars and Yap algorithm [56] solves the KMP in

2.4. HYPERVOLUME METRIC ALGORITHMS 17

O(m logm+mn/2 logm) time. By converting each point to a hyper-cuboid anchored

at the reference point, Beume and Rudolph adapt this algorithm to calculate the

hypervolume of a front in O(m logm+mn/2) time. The logm improvement in com-

plexity over the Overmars and Yap algorithm comes from an optimisation resulting

from all hyper-cuboids being anchored at the same place.

HOY starts with the smallest rectangular polytope region anchored at the reference

point which contains all of the points in the front. This region is then split recur-

sively, creating two smaller regions at each step. A point p intersects a region r if p

lies within r for the current splitting objective and in at least one already-processed

objective. Conversely, p non-intersects r if p lies within r in the current splitting

objective and in no already-processed objectives.

The region is split in the current objective at the median of the intersecting points

if any exist; otherwise, it is split at the median of the non-intersecting points if

enough exist; otherwise the splitting objective is increased. HOY recurses with

each sub-region and the points that partially cover that sub-region. Every region

is split until one of the following holds:

• The points completely cover the region.

• The points partially covering the region form a trellis, meaning that the hy-

pervolume covers the region in all objectives bar one; now the size of the

hypervolume in the region can be calculated quickly using the well-known

inclusion-exclusion algorithm.

Figure 8 shows pseudo-code for HOY.

2.4.7 Hypervolume Approximation

Though recent exact hypervolume algorithms [11, 40, 65] have led to improved fea-

sibility or better worst-case time complexities, hypervolume calculation will remain

NP-hard and exponential in the number of objectives [23]. It is therefore likely that

18 CHAPTER 2. BACKGROUND

HOY (ps, region, split):

for each p in ps

if the region is completely covered by p in d-1 objectives

add volume of covered region

remove points from p onwards from ps

return if ps is empty

if points in ps form a trellis over the region

add volume of trellis

else

if at least one member of ps intersects the region

split the region with the median of the list of intersecting points

HOY (ps, region1, split)

HOY (ps, region2, split)

else if at least sqrt(N) members of ps non-intersects the region

split the region with the median of the list of non-intersecting points

HOY (ps, region1, split)

HOY (ps, region2, split)

else

HOY (ps, region, split+1)

intersects (p, region, split):

p intersects region if it is within region’s bounds

for split and one or more dimensions from 0 to split-1

non-intersects (p, region, split):

p non-intersects region if it is within region’s bounds

for split and intersects (p, region, split) is false

Figure 8: Pseudo-code for the Beume and Rudolph’s HOY algorithm. N is the size
of the initial front. Code derived from [11,22].

2.4. HYPERVOLUME METRIC ALGORITHMS 19

exact calculation will remain infeasible for problems with a great number of objec-

tives. Hence, there is merit to approximating a set’s hypervolume if performance

can be significantly improved and accuracy is within tolerable limits. One approxi-

mation approach by Everson et al. [37] uses Monte Carlo sampling to approximate

expensive hypervolume calculations, however this approach does not guarantee a

bound on the error. A recent approach by Bringmann and Friedrich [23] has a

polynomially bounded error and shows promise. Approximation using scalarising

functions, has also been proposed [47].

While hypervolume approximation techniques are an important area of hypervolume

research and use, this thesis primarily focuses on exact calculation algorithms. One

reason is that it is desirable for hypervolume calculations to be accurate when

hypervolume is used for performance assessment as optimiser comparisons require

accurate conclusions.

Hypervolume approximation techniques require a trade-off between accuracy and

performance. However, the accuracy of hypervolumes needed for different problem

instances, and thus the necessary samples and runtime required, is relatively un-

known prior to optimisation. It is thus difficult to know whether the benefits of such

a trade-off is worthwhile ahead of time. Hypervolumes can range greatly depending

on the data, reference point used, point normalisation, and other factors.

The improving performance of exact algorithms has greatly increased their feasibil-

ity for real world multi-objective problems e.g. FPL [40] can calculate hypervolumes

for tested data in approximately 1.5–2 more objectives than HSO [67], and HSO

has a similar additional advantage over LebMeasure [39]. New exact algorithms

may continue to improve the feasibility of exact hypervolume calculation in this

way. Indeed Chapter 3 shows that IIHSO and WFG further improve the feasibility

of hypervolume calculation significantly. Additionally, many of the ideas and algo-

rithms for exact hypervolume calculation may be adaptable for use in approximation

techniques.

20 CHAPTER 2. BACKGROUND

However, as mentioned above, it is still likely that hypervolume approximation tech-

niques will remain necessary for problems in many objectives (although techniques

such as objective reduction are an alternative).

2.5 Use of Hypervolume Within MOOs

While hypervolume has predominantly been used for performance assessment, re-

cent research has investigated its use within MOOs. It is ideally suited for use in

multi-objective optimisation, as it is one of the only indicators that both preserves

dominance and guarantees that only the Pareto-optimal set results in the maximum

potential hypervolume for a problem. As expected, indicators which result in the

mating of solutions that best cover the Pareto front and drive optimisation closer

to the Pareto optimal front are highly desirable within an MOEA [77].

The LebMeasure algorithm introduced the use of hypervolume for bounded archiv-

ing, maintaining an archive of solutions found by the optimisation algorithm during

a run. However, a problem arises when this archive is bounded in size, as eventually

the number of non-dominated points contained in the archive will overflow the size

of the archive. At this point, an indicator is needed to decide which points should

be discarded to maintain a high quality archive.

The Lebesgue Archiving HillClimber (LAHC) approach described by Knowles et

al. [39] locally maximises the hypervolume of the archive by removing the point with

the least exclusive hypervolume contribution whenever the archive is full and a new

point is available. LebMeasure is used for this purpose, as it can directly determine

the exclusive contribution of a single point relative to the overall set of points.

Unfortunately, LebMeasure used this way still suffers from poor performance, as its

computational complexity remains exponential in the number of objectives.

The LAHC archiving approach improves the chance that desirable individuals en-

countered during the search process remain when the optimisation process termi-

nates. Although archiving schemes do not drive the optimisation process itself,

2.5. USE OF HYPERVOLUME WITHIN MOOS 21

LAHC was a precursor to the use of hypervolume within the selection stage of

MOEAs.

Most popular MOEAs employ a Pareto-based ranking scheme for mating selection.

In the non-dominated ranking scheme by Goldberg [41], solutions are ranked higher

(worse) than the highest ranked solution that dominates them. Equally ranked

solutions form a non-dominated set.

Selection using the simple non-dominated ranking scheme above operates as follows:

1. Rank individuals into non-dominated fronts using Pareto dominance.

2. Starting from the best ranked front, iteratively append each front to the

population until a front is too large to fit in its entirety.

3. If the previous front was too large, select a subset of the front by random

selection or use of an indicator.

Many methods have been designed to select from equally ranked solutions, with

some of the most popular being crowding distance (used in NSGA-II by Deb et

al. [34] to measure the spread between solutions), strength (used in SPEA2 by

Zitzler et al. [74]), and the binary hypervolume and binary epsilon indicators (used

in IBEA by Zitzler and Künzli [73]). Some MOEAs, including the commonly used

NSGA-II and SPEA2, perform quite well on two objective problems, however they

often perform badly on problems in additional objectives [46,61]. Therefore, better

selection indicators are needed and hypervolume appears promising for this purpose

as it incorporates aspects of both distance and spread.

Brockhoff et al. [25] provide a theoretical analysis of the selection process within

hypervolume based MOEAs which iteratively remove individual solutions with the

least contribution from fronts. Additionally, these type of MOEAs have been found

to suffer from premature convergence [10,76] which may lead to lower quality solu-

tions to be produced.

22 CHAPTER 2. BACKGROUND

2.5.1 SMS-EMOA MOEA

The Lebesgue Archiving Hillclimber [39] introduced the use of hypervolume to main-

tain a bounded-size solution archive. Emmerich et al. [36, 54] take this approach

one step further in their SMS-EMOA MOEA by using hypervolume throughout

optimisation as an indicator in selection. SMS-EMOA considers a single offspring

per generation, known as a steady state EA.

In SMS-EMOA, each newly created solution is ranked and a solution is removed

from the worst ranked front in order to maintain the population size. The solution

that contributes the least to the hypervolume of the worst ranked front is discarded.

Due to the expense of calculating hypervolume contributions, SMS-EMOA has only

been applied to 2D and 3D problems but has had success for certain applications [53,

54].

By using a steady state EA, SMS-EMOA circumvents a quality consideration in

hypervolume based MOEAs: how to maximise the hypervolume of a selected front

subset when more than one solution must be discarded? Unfortunately, a steady

state MOEA is not ideal for all problem types and suffers from the issues discussed

in the previous section.

2.5.2 Weighted Hypervolume and SIBEA MOEA

Zitzler et al. [71] also investigate the use of hypervolume within an MOEA. Their

approach uses weighted hypervolume to capture user preferences for desirable re-

gions of the objective space. This is achieved by first defining hypervolume as an

attainment function [42], and then formulating hypervolume as an integral over the

product of the attainment function and a weight distribution function. The use

of weighted hypervolume allows a user to modify the weight function to articulate

preferences for regions of the objective space.

While these techniques may be desirable for performance assessment, they were

2.5. USE OF HYPERVOLUME WITHIN MOOS 23

primarily created to be used within MOOs, allowing user preferences to guide op-

timisation toward desired regions of the objective space. Recent research by Auger

et al. [1] has investigated approaches for articulating these preferences.

To test the use of weighted hypervolumes in optimisation experimentally, Zitzler

et al. introduce a basic weighted hypervolume based MOEA. Unlike the steady

state SMS-EMOA, the Simple Indicator-Based Optimization Algorithm (SIBEA)

generates more than one offspring in each generation. Non-dominated selection is

used via the Goldberg scheme [41] described in Section 2.5, with greedy hypervol-

ume based selection performed inter-rank. The solution with the smallest weighted

hypervolume contribution is removed from the best ranked unselected front until

the reduced front can be added to the population.

Initial proof of principle experiments demonstrate that weighted integration used

within SIBEA achieves the desired bias preferences in guiding optimisation. The

relative performance of SIBEA compared to other MOEAs is not assessed, as SIBEA

was only introduced as a platform to test the weighted hypervolume indicator.

2.5.3 Objective Reduction Approach Using Hypervolume

The complexity and real world performance of hypervolume calculation limits its

use in problems with more than three objectives. Brockhoff and Zitzler [29, 30]

introduce the use of objective reduction [24, 26–29, 31] into hypervolume based

MOEAs. Objective reduction aims to omit the least important problem objec-

tives from consideration. The performance of hypervolume based MOEAs could be

greatly improved by objective reduction, as hypervolume calculation is exponential

in the number of objectives.

However, the omission of objectives can affect the underlying dominance structure

for a problem (i.e. dominance relations between solutions). Brockhoff and Zitzler

find these relations to be affected in two key ways: comparable solutions can be-

come indifferent, and incomparable solutions can become comparable or indifferent.

24 CHAPTER 2. BACKGROUND

Objective reduction schemes should attempt to minimise these effects by finding a

subset of objectives that best preserves the underlying dominance structure for the

solution set.

Brockhoff and Zitzler introduce two methods to determine which objectives should

be omitted:

1. k-EMOSS (Minimum Objective Subset of Size k with Minimum Error) — the

problem of finding an objective subset of predefined size k that minimises

error.

2. δ-MOSS (Minimum Objective Subset Problem) — the problem of finding the

δ-minimum objective set. This is the objective subset with the smallest size

while preserving the original dominance structure with a maximum error of

δ.

For each of these methods, a measure of error is required. Brockhoff and Zitzler

choose the additive ε indicator [77] for this purpose.

These techniques have been tested and incorporated into the SIBEA MOEA [71],

which uses the hypervolume indicator for selection [30]. After dimensionality reduc-

tion is applied, SIBEA operates as described in Section 2.5.2, using hypervolume

contributions to reduce the size of non-dominated fronts. Brockhoff and Zitzler

find that SIBEA can be improved considerably using k-EMOSS objective reduc-

tion, however they find δ-MOSS objective reduction to be relatively ineffectual.

As existing exact hypervolume algorithms exhibit exponential time complexity in

the number of objectives, objective reduction is a compelling approach to reducing

the high cost of using hypervolume within a MOEA. While objective reduction

techniques do not replace the need for faster hypervolume calculation algorithms,

it is evident that they could greatly increase the use of hypervolume on otherwise

infeasible problems.

2.5. USE OF HYPERVOLUME WITHIN MOOS 25

2.5.4 Selection Using Hypervolume Approximation and the

HypE MOEA

Approximation techniques are an alternative to objective reduction techniques for

improving the performance of hypervolume based optimisation algorithms. Bader,

Deb and Zitzler [5] have also developed a sampling method that approximates

the rankings of individuals determined by the hypervolume indicator. Recall that

rankings, rather than actual hypervolume values, are used for selection. Recently,

this hypervolume ranking approximation technique has been incorporated, and im-

proved upon, in the HypE (Hypervolume Estimation Algorithm) MOEA by Bader

and Zitzler [6].

Whereas SIBEA uses a greedy scheme to remove the least contributing point at

each step, HypE approximates the expected loss in contribution resulting from the

removal of a point from a front, i.e. the approximate average contribution loss over

all subset combinations of that size. Bader and Zitzler find that using the expected

loss measure improves the quality of selections substantially compared to a greedy

scheme that only considers the loss resulting from a single point. HypE uses a

partition splitting and aggregation approach to avoid calculating the hypervolume

of all subset combinations. Hypervolume contributions for points in each partition

are considered to equally share the hypervolume for that partition whether they are

non-dominated or not. Using this approach, it possible to calculate the expected

contribution loss with a worst case complexity that remains O(mn + nm logm).

When HypE is used on problems with more than three objectives, expected contri-

bution losses are approximated using the hypervolume Monte Carlo technique by

Bader, Deb, and Zitzler [5]. Initial results on the DTLZ [35] and WFG [43,44] test

problems and the Knapsack problem [75] are extremely promising, with HypE gen-

erally outperforming popular MOEAs, including an implementation which mimics

SMS-EMOA.

26 CHAPTER 2. BACKGROUND

2.5.5 Optimal Hypervolume λ-set Selection

MOOs using greedy subset selection techniques have been shown to suffer from non-

convergence problems [10]. HypE [6] provides a qualitative improvement on greedy

hypervolume selection schemes. However, it is still possible for HypE to make poor

selections as its expected loss measure is only an estimation. Ultimately, MOOs

would perform best if they could determine the optimal subset that maximises

hypervolume.

Auger et al. [3] provide an analysis of optimal subset selections on several 2D

ZDT [72] and DTLZ [35] problems. Additionally, they investigate how the choice

of reference point affects optimal selections as well as extremal solutions. In order

to include extremal points, Auger et al. recommend a reference point much larger

than solution objective values.

Unfortunately, simple algorithms that find optimal subsets by evaluating the hy-

pervolume of every subset combination, are almost always infeasible. Until very re-

cently, no feasible solutions to this problem existed. Additionally, few experiments

had even been performed to compare the performance of simple hypervolume selec-

tion schemes. However, two algorithms have recently been proposed which should

considerably improve the worst-case time complexity of finding the λ-subset with

the optimal hypervolume.

In an another paper, Auger et al. [2] describe an exact algorithm which solves the

2D hypervolume optimal subset selection problem in O(m3) time. Auger et al. use

dynamic programming to build optimal subsets using subsets containing one fewer

point calculated in previous iterations. This optimal subset selection method is

incorporated into an MOEA using weighted hypervolume and shown to perform

well on bi-objective problems [71].

Similarly, Bringmann and Friedrich [22] have introduced a technique which deter-

mines the optimal λ-subset selection. n-dimensions. This technique is implemented

2.5. USE OF HYPERVOLUME WITHIN MOOS 27

within the HOY algorithm with subset contributions calculated in parallel. Calcu-

lating these contributions directly within HOY results in only an additive term of

mλ, where m = µ+λ, to HOY’s worst case complexity of O(m logm+mn/2). This

is a huge improvement in feasibility compared to the multiplicative increase that

results from the calculation of the hypervolumes of every subset combination using

HOY.

Their algorithm operates like HOY, with a few key modifications. At the leaf-

regions the volumes of all λ-subsets are computed. To do so, fully covering points

must be passed to recursive calls as numerous subset volumes are computed. The

hypervolumes of these subsets are calculated in the trellis calculation step and

stored in a dynamic hash table. Finally, λ-subset hypervolumes are determined by

combining their smaller subsets. These exclusively dominate space that no other

subsets dominate.

Whereas HypE relies on an expected loss heuristic, which can result in inferior

front selections, Bringmann and Friedrich’s algorithm will always determine the

optimal subset selection. However, when the number of possible subset combina-

tions is large, finding the optimal subset is usually infeasible. Even moderately

small numbers for m and λ will likely lead to an infeasible computational cost.

This cost is in addition to the expensive mn/2 cost of the HOY algorithm. As HOY

exhibits reasonably poor performance in high numbers of objectives (see Paper 6),

this technique is likely to be infeasible for all but fronts with small m, λ, and n.

However, no performance figures have been published, so the actual performance of

this technique is unknown.

To improve the feasibility of this approach, Bringmann and Friedrich discuss a

compromise between a greedy selection scheme and calculating the optimal subset.

This scheme should improve on the accuracy of a purely greedy scheme without the

full cost of calculating the optimal subset. However, the actual performance of this

hybrid remains unknown.

28 CHAPTER 2. BACKGROUND

Chapter 3

Overview of Included Papers

This chapter presents an overview of the included papers that make up this thesis.

Extra commentary and discussion about each included paper is given, along with a

discussion of the context of the paper within the overall research themes contained

in this thesis.

The hypervolume indicator is an interesting and fertile area due to its useful proper-

ties, increasingly common usage, varied applications, and the computational issues

that prevent its wide-scale use for many-objective problems. The initial focus of

this thesis was on improving hypervolume’s use for performance assessment, and

later on improving its use for selection in MOEAs.

The papers discussed here cover two main themes: improving the performance of

hypervolume when used for performance assessment, and exploring issues relevant

to using hypervolume for selection.

29

30 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

3.1 Experimental Test Data

All papers contained in this thesis compare algorithms using two forms of data:

• Sampled from the linear (DTLZ1), spherical (DTLZ2), degenerate (DTLZ5),

and discontinuous (DTLZ7) problems of the DTLZ test suite [35]. Properties

of these test problems can be found in Deb et al. [35, 44]. For each front, a

representative set of 10, 000 points from the known Pareto optimal set was

generated mathematically. This set was then randomly sampled to form a

front of the required size.

• Randomly-generated fronts, initialised by generating points with random val-

ues 0.1 ≤ x ≤ 10 in all objectives. Mutual non-domination is guaranteed by

initialising S = φ and adding each point x to S only if x∪S is mutually-non-

dominating.

The 3D shape of these fronts is demonstrated in Figure 9. Experiments reported

in this thesis were undertaken on various front sizes and dimensionalities. The test

data used in experiments described in the published papers is available online [62].

Randomly generated fronts do not necessarily provide good approximations of real

world problems. For example, as is evident Figure 9, these fronts exhibit knees near

the optimal point that are atypical for most problems. As a result, random fronts

are not ideal for testing hypervolume based selection techniques where selection

quality is the primary consideration.

However, random fronts can be argued to have reasonable properties when used to

measure hypervolume calculation performance. Random fronts have hypervolumes

that distribute fairly uniformly. Furthermore, in most hypervolume calculation

algorithms, performance varies greatly depending on the domination characteristics

of points in less than n objectives and not the shape of the front. The number of

hypervolume calculations required isn’t dependent on front shape, all other things

being equal. For example, in the FPL and HSO algorithms, dominated points are

3.1. EXPERIMENTAL TEST DATA 31

 0 1 2 3 4 5 6 7 8 9 10 0

 2

 4

 6

 8

 10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Z

X

Y

Z

(a) Random fronts.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0

 2

 4

 6

 8

 10

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

Z

X

Y

Z

(b) Discontinuous fronts.

Figure 9: Three distinct 3D sample fronts for the five different data types used in
the experimental comparisons of this dissertation.

32 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0

 2

 4

 6

 8

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Z

X

Y

Z

(c) Spherical fronts.

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0

 2

 4

 6

 8

 10

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

Z

X

Y

Z

(d) Linear fronts.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0

 2

 4

 6

 8

 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Z

X

Y

Z

(e) Degenerate fronts.

Figure 9: Three distinct 3D sample fronts for the five different data types used in
the experimental comparisons of this dissertation. (continued)

3.1. EXPERIMENTAL TEST DATA 33

ignored or deleted, decreasing the number of points in lower dimensional slices, thus

improving the performance on these slices. For a similar reason, in HOY the region

splitting process may encounter covered or trellis regions more or less often.

To demonstrate the domination characteristics of the test data sets in this disser-

tation, the number of points dominated when various objectives are removed from

fronts have been calculated. Twenty unique fronts are tested on all possible combi-

nations of removed objectives. Table 1 shows the average minimum, average, and

average maximum number of points dominated when 1 to 4 objectives are ran-

domly removed from fronts containing data with six objectives (resulting in 2D to

5D data).

Table 1: Domination statistics: fronts in 6D, 1000 points, 20 unique fronts, all
enumerated removed objectives.

% points dominated
data type # obj removed average min average average max
spherical 1 7.7 58.9 98.8

2 59.8 88.7 99.6
3 92.4 97.6 99.9
4 98.6 99.4 99.9

linear 1 7.4 54.3 97.9
2 61.1 87.3 99.2
3 92.6 97.5 99.6
4 98.8 99.4 99.9

degenerate 1 0.0 16.6 99.9
2 0.0 33.3 99.9
3 0.0 49.9 99.9
4 0.0 66.6 99.9

discontinuous 1 41.1 50.7 79.1
2 75.8 82.8 93.4
3 92.9 95.4 98.4
4 98.6 99.0 99.5

random 1 49.2 59.6 68.9
2 83.8 86.3 89.8
3 94.9 96.1 97.5
4 98.6 99.1 99.5

34 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

Note that over 97% of points in the DTLZ spherical, linear, and degenerate fronts

are dominated when a single best objective is removed. Conversely, certain other

objectives lead to very few dominated points in these sets. The number of points

dominated after removal of particular objectives for these sets can lead to very dif-

ferent performance characteristics for algorithms that filter dominated points. In

contrast, random and discontinuous fronts vary less between the removal of objec-

tives and thus there is less to gain from exploiting these domination characteristics.

Exploiting the characteristics of fronts similar to the linear, spherical, and degen-

erate fronts is clearly desirable. However, it is important to distinguish between

performance improvements that result from an algorithm exploiting properties in-

herent to the data, and those that result from techniques likely to benefit calculation

performance in general, including difficult or unseen problem types. Paper 6 and

Table 1 indicate that discontinuous and random data may provide a better gauge

of complexity of a hypervolume calculation algorithm, as the scope for exploiting

these data-specific characteristics is smaller.

Benchmark test data for hypervolume based selection algorithms require a different

set of considerations. For example, the discontinuity found in discontinuous data

is largely irrelevant for hypervolume calculation. The same number and type of

operations are needed regardless of the discontinuity. However, note that the dis-

continuous shape does influence the subset selection that maximises hypervolume.

Therefore, good benchmark data for hypervolume calculation performance may not

necessarily test important attributes of hypervolume based selection techniques, and

vice versa. This is especially relevant to the random data sets which may include

characteristics atypical for real world problems.

3.2 Objective Ordering Heuristics for HSO

Although the HSO algorithm [67] exhibits better performance than its predecessors

(particularly LebMeasure), its performance quickly becomes infeasible as a result

3.3. HYPERVOLUME BASED SELECTION TECHNIQUES 35

of its exponential time complexity in the number of objectives. Paper 1, shows

that the performance of HSO can be improved greatly by varying the order of

the processed objectives (Paper 6 includes experiments demonstrating performance

variation of hypervolume algorithms enumerated over all ordering permutations).

Paper 1 improves objective ordering with two heuristics designed for HSO.

The first heuristic, Maximising Dominated Points (MDP), finds an objective order-

ing which maximises the number of points dominated after the removal of the first

objective. This results in smaller lower dimensional slices. The second heuristic,

Minimising Worst-case Work (MWW), aims to minimise the cost of calculating hy-

pervolume by estimating the cost of calculating each of the top-most slices for an

objective processing order. Using HSO’s worst case complexity, an estimate of each

top-most slice’s cost is accumulated for a given ordering, and the ordering with the

smallest total cost is chosen.

As shown in Paper 1, these heuristics substantially improve performance on bench-

mark data. On discontinuous DTLZ and random test data, a reduction in running

time of around 25–50% is observed. While for linear and spherical DTLZ test data,

an improvement of 90–98% is observed, due to the domination characteristics of

these fronts. Indeed, Section 3.1 shows that a good objective ordering will result

in up to 99% of the points in the spherical and linear fronts being dominated after

the first objective is removed (See Table 1). The results shown in Paper 1 imply

that in most cases the heuristic is able to determine a valuable objective ordering

that increases the number of dominated points. The resulting reduction in runtime

leads to a modest to large improvement in the feasibility of HSO, particularly for

data sets similar to spherical or linear.

3.3 Hypervolume Based Selection Techniques

The heuristics created in Paper 1 were designed to be applied in HSO, a hypervol-

ume algorithm intended for use as a performance assessment indicator. Although

36 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

hypervolume has been extensively utilised for this purpose, at the time of this re-

search, little attention had been given to its use as a selection measure within the

optimisation process. One prominent issue for when hypervolume is used for selec-

tion, or in an online archiving scheme, is the requirement to reduce the size of the

solution set to a bounded size [39].

Finding the optimal subset of points is a major obstacle and requires many subset

combinations to be evaluated, and as hypervolume calculations are already expen-

sive, finding the optimal subset is usually infeasible for all but the smallest fronts

in few objectives. By 2005, few solutions to this issue had been investigated. One

method, found in SMS-EMOA [36, 54], uses a steady state approach in which a

single solution is optimised in every generation; eliminating the need to reduce the

front or archive by more than one solution and thus avoiding an increase in selection

combinations.

Paper 2 investigates two non-steady state selection techniques for this purpose.

The first is a front selection technique that uses a local search approach to evaluate

possible front selections and find a good local optima selection. This scheme initially

generates a random front subset and evaluates its hypervolume. The chosen front is

then perturbed slightly and if the new subset has a better hypervolume it becomes

the new choice. This process is continued until a time limit is reached.

The second approach consists of a simple greedy selection scheme which is often

used by indicator-based algorithms including IBEA [73], SIBEA [71], and archive

schemes [39], and is the simplest non-steady state basis for use of the hypervol-

ume indicator within an MOEA. Note that hypervolume is only used as a binary

indicator in IBEA (i.e. hypervolumes are calculated for a single point relative to

another). The greedy front reduction method begins with a full front and then

iteratively removes the point that contributes the least to the overall hypervolume

of the front, until the front is the desired size.

Each of the above techniques was evaluated using a range of numbers of objectives,

front sizes, and data types. Each of these algorithms was implemented using HSO

3.4. FINDING THE LEAST CONTRIBUTING POINT 37

with the MWW heuristic from Paper 1.

As shown in Paper 2, the local search scheme finds front selections with as good

or better hypervolumes than the greedy reduction scheme when 80% of the front

is removed. It is able to do so in one second and when given the substantially

longer time of the greedy scheme. When 50% of the front is removed, the local

search tends to perform better than the greedy scheme, finding as good or better

selections than the greedy reduction scheme, for spherical and discontinuous fronts

in under a second. However, local search does not always find an equivalent selection

for random fronts.

In contrast, the greedy reduction technique performs well in cases where a major-

ity of the front is retained. In this situation, the local selection technique is not

effective, as local search requires numerous evaluations to discover good front selec-

tions. However, as hypervolume calculations become increasingly expensive as the

front size increases, local search tends to perform worse than the greedy reduction

approach, as it is performing more evaluations on similar size fronts.

Conversely, the local selection technique works especially well when a small propor-

tion of the front is retained. In this instance, hypervolume calculations for the local

search technique are comparatively cheap as the front sizes are small. In compari-

son, the greedy technique requires many greedy solution removals in this case, and

they are much more expensive than those made by the local search.

3.4 Finding the Least Contributing Point

After investigating the greedy front reduction approach in Paper 2, it is clear that

finding the least contributing point is an expensive operation when calculated using

a metric algorithm such as HSO [67]. Unfortunately, finding the least contribut-

ing point is an important problem for the greedy selection approach and related

approaches [36, 39, 71]. Under the greedy selection approach used in Paper 2, the

least contributing point is determined by calculating the hypervolume of the front

38 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

with each contributing point removed, and this is performed for each point. Using

this method, the front with the largest hypervolume is equivalent to removing the

point with the least individual contribution. However, the basic HSO operation is

very expensive to perform as many slices are unnecessarily calculated.

In Paper 3 introduces an algorithm, Incremental HSO (IHSO), that reduces the

computation required to calculate the contribution exclusively dominated by a single

point. IHSO, while similar to HSO in form, benefits from several customisations

that improve its performance for this purpose. Firstly, it disregards slices which do

not contain the contributing point (i.e. slices above it), as they do not contribute

to the exclusive hypervolume of the point. Secondly, it disregards slices where the

contributing point is dominated in the current number of objectives, as again, these

slices do not contribute to the point’s exclusive hypervolume. Figure 10 shows the

operation of one step in IHSO, demonstrating the slicing of the hypervolume, the

allocation of points to each slice, the elimination of newly-dominated points, and

the disregarding of both a slice above p and a slice below p.

Additionally, in Paper 3 introduces objective reordering heuristics similar to those

in Paper 1 which improve the performance of IHSO. Unlike MWW and MDP of

Paper 1, these new heuristics examine the contributing point in relation to just

the front to which it contributes. The rank heuristic orders objectives by order

of the rank of the contributing point among the fronts. The dominated heuristic

works by finding the point Q which dominates the contributing point P in the most

objectives, and arranges the objectives in which P is better than Q first. The rank

heuristic was found to perform best on the tested data.

Since IHSO is intended for use in selection schemes, it is inefficient to calculate

the contribution of every point and then select the minimum. However, to find

the least contributing point, the selection algorithm need only calculate enough of

every point as is needed to determine that it has a greater contribution than the

least contributing point. An intelligent Best First Search (BFS) technique using

a priority queuing scheme was devised to improve the performance of IHSO when

3.4. FINDING THE LEAST CONTRIBUTING POINT 39

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

a

bp
d

c

=

+

+

+

+

d

b

p

a

c

b

a

p

b

a

c

p

p

a

a

z

xy

x y z
a 17 4 2
b 9 2 9
c 5 512
d 4 9 18
p 13 5 12

Figure 10: One step in IHSO for calculating the exclusive hypervolume of p relative
to {a, b, c, d}, i.e. ExcHyp(p, {a, b, c, d}). Objective x is processed, leaving three
non-empty slices (and two empty slices) in y and z. The volume to be calculated
is indicated by the dashed box on the top diagram and by the shading on the slices
on the bottom diagram. Filled marks indicate non-dominated points, and unfilled
marks indicate points which are dominated in y and z by one of {a, b, c, d}. Figure
and caption reproduced from Paper 3.

40 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

used for this purpose and is also described in Paper 3.

IHSO, when combined with the BFS technique, is able to find a front’s least con-

tributing point very quickly and much more efficiently than the naive approach

using HSO and the MWW heuristic of Paper 2. For example, it takes 79 seconds

to calculate the contribution of a point for the discontinuous data-set in 100 points

in 7D using the naive approach, while in comparison, it takes 0.084 seconds using

IHSO with BFS. The spherical data-set (4.68s for HSO with MWW versus 0.353s

for IHSO with BFS) and randomly generated data (58.59s for HSO with MWW

versus 0.006s for IHSO with BFS) perform similarly. These results point to a great

improvement in the feasibility of hypervolume for online use.

n random discontinuous spherical
5 955 750 700
6 950 280 240
7 940 170 92
8 880 105 47
9 830 75 32
10 490 58 28
11 220 44 24
12 70 36 20
13 42 28 16

Table 2: Front sizes in various numbers of objectives that IHSO with a BFS can
process in one second. Table reproduced from Paper 3.

Table 2 shows the maximum front sizes that IHSO can process in under a second for

each front-type. The IHSO algorithm, IHSO heuristics, and the BFS approach each

significantly improve performance when removing points from fronts or archives.

When combined, these techniques allow MOEAs to use hypervolume inline on much

larger, more complex fronts, in more objectives.

3.5. LOCAL AND GREEDY SELECTION TECHNIQUES USING IHSO 41

3.5 Local and Greedy Selection Techniques Using

IHSO

In Paper 2, two methods are introduced that can be used to select a subset of points

from a front or archive during the optimisation process. With the introduction of

the IHSO algorithm in Paper 3, it is important to reevaluate these front selection

techniques after integrating IHSO, and this is covered in Paper 4.

The results presented in Paper 2 show that the local search technique benefits from

being able to use IHSO to update hypervolumes when points are removed or added.

When a front is perturbed by adding or removing points, IHSO can calculate the

resulting change and update the hypervolume without completely recalculating the

entire front’s hypervolume.

The greedy front reduction technique from Paper 2 is hugely improved by the IHSO

algorithm and BFS. The least contributing point can be found much faster using

IHSO than using the prior naive approach, as IHSO is much faster than calculat-

ing full front hypervolumes. Additionally, the BFS scheme greatly improves the

performance of this operation.

In addition, a new greedy scheme, using IHSO, which instead adds points into

an initially empty set was examined. Rather than iteratively removing the least

contributing point, as in the greedy reduction scheme, the greedy addition scheme

starts with an empty front and iteratively adds the point that contributes the great-

est hypervolume to the front. Unfortunately, unlike the greedy reduction scheme,

the greedy addition scheme cannot benefit from the use of a BFS, as the maximum

contribution can only be known when all contributions are calculated in full. In

greedy addition, contributions are initially calculated quickly as they are calculated

relative to a small front, but as the front becomes bigger, these contributions be-

come more expensive to calculate, and therefore it is well suited for selecting small

proportions of the original front.

42 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

As noted in Paper 2, the local search scheme performs very well compared to the

greedy reduction approach when a small proportion of the front is retained. How-

ever, as shown in Paper 4, the introduction of IHSO and the BFS scheme led to

the greedy schemes outperforming the local search scheme, with local search being

outperformed by one of the greedy schemes in all the tested cases. Additionally, the

algorithms and techniques introduced in Paper 3 allow the greedy schemes using

IHSO to easily outperform the greedy schemes from Paper 2 implemented using

HSO.

3.6 Updating Hypervolume Contributions

MOEAs using exclusive hypervolume contributions as a part of a selection scheme,

as described in Papers 2 and 4, have a major inefficiency: the addition or removal of

points to front subsets may lead to a change in the exclusive contribution of points.

When these contributions are the basis for a selection measure, it is thus necessary

to recalculate these contributions in order to maximise the accuracy of the selection

measure.

As hypervolume calculations can be very expensive, recalculating previously cal-

culated contributions should be minimised. Paper 5 introduces a better technique

to calculate the difference between an exclusive contribution before and after the

addition of a point more quickly than recalculating the full contribution.

The ∆ contribution method calculates the difference between a contributing point

P to a front S, after the addition or subtraction of an independent point R from S.

This is achieved by creating a new point PR that contains the least objective values

from P and R in each objective. The contribution of PR is then calculated relative

to S − {P,R}. PR’s contribution is then added to P ’s contribution to reflect the

removal of point R, or subtracted to reflect the addition of point R.

Figures 11(a)–11(c) show an example contribution calculated using this scheme. In

this case, point C is discarded, increasing the exclusive contribution of point B. In

3.7. HYPERVOLUME VIA ITERATED INCREMENTAL CALCULATIONS 43

order to update B, B is combined with C to form a temporary point BC with the

worst objective values from each. BC’s exclusive contribution is then calculated

and added to B’s contribution, resulting in the correct exclusive hypervolume of B.

As shown in Paper 5, the use of this technique, when compared to full recalculation,

yields a reduction in calculation time of 75%–99% over a range of data types,

number of objectives, and front sizes. Results also show that the reduction in

run-time increases as the number of objectives and front size increases. Since the

recalculation cost is far greater than the cost of updating the contributions using

this new technique, the savings increase as the front size increases. Further, as

the number of objectives increases, the cost of calculating contributions increases

exponentially. Effectively, the update scheme operates on much smaller slices than

the full calculation approach because the update calculation uses a point worse

than both P and R. As a result, its time performance grows much slower than

full calculation as the number of objectives increases. This approach should thus

improve the performance of many techniques which use hypervolume contributions

as part of a selection process.

3.7 Hypervolume via Iterated Incremental Cal-

culations

Section 2.4.2 describes the LebMeasure algorithm which calculates hypervolumes

by adding a series of exclusive contribution calculations. Paper 6 outlines an algo-

rithm that uses the IHSO algorithm from Paper 1 to build hypervolumes in a sim-

ilar manner. Starting with an empty front, the Iterated IHSO algorithm (IIHSO)

successively adds points to the front, accumulating an overall front hypervolume.

Points are initially sorted in the first objective, chosen using the MWW heuristic

of Paper 1. IHSO calculations use the rank heuristic used in Paper 3. Addition-

ally, the IHSO algorithm was improved by the use of a linked list data-structure

44 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

(a) Example front containing points A = (11, 2, 2),
B = (5, 4, 4), C = (4, 6, 3), D = (2, 8, 8).

(b) Exclusive contribution of B for the front shown in 11(a).

(c) Front used to calculate the contribution of BC
(4, 4, 3). The contributing volume of BC reflects the
change in B’s contribution resulting from the removal
of point C.

Figure 11: Updating hypervolume contributions using the ∆ technique. Figures
reproduced from Paper 5.

3.8. METRIC CALCULATIONS USING WFG 45

introduced in the FPL algorithm [40] which is designed to minimise point sorting.

Paper 6 provides a useful comparison between the leading hypervolume calculation

algorithms and IIHSO. This comparison includes a basic analysis of the potential

for performance improvements using objective-reordering heuristics with existing

algorithms, and a performance comparison between HOY, FPL, and IIHSO, which

includes time performance and curve-fitting complexity coefficients.

The results of the objective-reordering analysis in Paper 6, Table 1, shows that

HOY’s performance varies little throughout different objective orderings, and thus

an objective ordering heuristic is probably not likely to be productive for it, as the

time difference between the worst case ordering and the best case is small. However,

being a dimension sweeping algorithm, FPL benefits similarly to HSO and therefore

Paper 6 includes an adaptation of MWW, using FPL’s worst-case time complexity,

that improves its performance significantly.

HOY, despite its much better worst-case complexity, performs poorly on the tested

experimental data. IIHSO performs well, generally outperforming FPL in higher

numbers of objectives.

3.8 Metric Calculations Using WFG

The excellent performance of IIHSO in Paper 6 on higher dimensional data demon-

strates that calculating front hypervolumes using repeated contribution calculations

is a valuable approach. A recently introduced simple bounding technique indepen-

dently discovered by Bringmann and Friedrich [21] and Bradstreet et al. [18], allows

the calculation of exclusive hypervolume contributions using metric hypervolume

algorithms. This technique operates by limiting point values for a front to the region

bounded by the contributing point, subtracting the hypervolume of the resulting

front from the hypervolume dominated by the contributing point alone (see Fig-

ure 12). One benefit of this technique is metric hypervolume calculation algorithms

can be used for exclusive hypervolume calculations without adaptation.

46 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

As demonstrated by IIHSO, metric volumes can be quickly calculated via iter-

ated contribution calculations. Furthermore, contributions can be calculated using

metric calculations using the bounding technique introduced above. By combining

these techniques, the process of calculating both metric hypervolumes and exclusive

contributions can be performed through the mutual application of each technique

(i.e. calculate hypervolume by iteratively adding contributions calculated using the

bounding technique above, which itself applies the iterative contribution method).

Paper 7 introduces a new algorithm, WFG, that calculates hypervolume using this

approach.

Experiments show WFG performs substantially better than all existing exact cal-

culation algorithms. Table 3 shows the size of fronts that WFG can calculate in

ten seconds on average compared to the size of fronts that IIHSO can calculate in

the same timeframe — a very significant improvement. As IIHSO generally outper-

forms existing algorithms, WFG is a large improvement over leading hypervolume

calculation algorithms.

Table 3: Front sizes that WFG and IIHSO can process in ten seconds.

n Random Discontinuous Spherical
IIHSO WFG IIHSO WFG IIHSO WFG

3 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000 > 10,000
4 > 10,000 > 10,000 > 10,000 > 10,000 9,600 > 10,000
5 3,500 > 10,000 4,600 9,600 5,500 7,800
6 900 5,800 900 5,600 1,700 4,400
7 510 2,300 410 2,000 500 2,100
8 190 900 145 600 240 1,300
9 115 450 80 300 135 1,000
10 70 235 50 150 85 700
11 50 185 40 105 65 575
12 42 130 33 105 51 475
13 34 100 26 70 34 450

3.8. METRIC CALCULATIONS USING WFG 47

TRANSACTIONS ON EVOLUTIONARY COMPUTATION, SUBMITTED MARCH 2010 3

Considering Fig. 1 again, this corresponds to calculating
the hypervolume of {a, b, c, d, e} by summing the regions
delineated by the dashed lines, i.e.

H = ExcHyp(a, {b, c, d, e}) +

ExcHyp(b, {c, d, e}) +

ExcHyp(c, {d, e}) +

ExcHyp(d, {e}) +

ExcHyp(e, {}) (4)

This technique is used in IIHSO [12], and we use it again in
our new algorithm WFG, described in Section IV.

III. A NEW METHOD FOR CALCULATING EXACT
EXCLUSIVE HYPERVOLUMES

(1) provides a clear definition for exclusive hypervolume,
but it doesn’t provide an efficient mechanism for its calcula-
tion: it requires two separate hypervolume calculations. IHSO
[24] gets around this by calculating the differences between
the two hypervolumes directly, using two main tricks.

• Slices above the contributing point p (i.e. slices with bet-
ter values than p in the current objective) are discarded:
they contain no hypervolume that is dominated by p, so
clearly they add nothing to the hypervolume dominated
exclusively by p.

• If, in a given slice, p is dominated in the remaining
(unprocessed) objectives, clearly it dominates no more
exclusive hypervolume in that slice, or in any lower slices.
Those slices too are discarded.

Bringmann and Friedrich [13] and Bradstreet et al. [14]
describe a new way of using the first of these tricks pre-
emptively rather than on-the-fly, by modifying the points in
the underlying set. Each point is replaced with one whose
value in each objective is limited to be no better than the
contributing point. Fig. 2 illustrates the principle. For the set
{a, b, c, d, e}, each of their objective values is replaced with
the smaller of that value and the corresponding value from
the contributing point p. The effect is that the hypervolume
dominated by the modified underlying set is a subset of the
inclusive hypervolume of the contributing point, and a simple
subtraction returns the exclusive hypervolume.
This calculation is defined in (5)–(7).

ExcHyp(p, S) = Hyp({p}) − Hyp(S�) (5)

where

S� = {limit(s, p)|s ∈ S} (6)

limit(< s1, . . . , sn >,< p1, . . . , pn >)

=< worse(s1, p1), . . . , worse(sn, pn) > (7)

Note that any point in S� that is dominated by some other point
in S� (for example e� in Fig. 2) has no more relevance to the
result, and it can be discarded before any further calculation
is performed. We can see how crucial this step is to the
efficiency of these calculations by plotting the percentage
of dominated points in S� for various types of data. Fig. 4

f2

✲

✻

f1

�
a

�
b

�
c �

d

�
e

�p
E

H �

�
a�

�
d�

�
e�

Fig. 2. Maximising in both objectives, the exclusive hypervolume of p
relative to {a, b, c, d, e} (i.e. E) = the inclusive hypervolume of p (i.e.
the rectangle with p at the top-right corner) minus the hypervolume of
{a�, b, c, d�, e�} (i.e. H�). Clearly e� is dominated by d� and can be discarded.

shows that the great majority of sets in 4–10D lose over 50%
of their points after being limited by just one contributing
point, and that most sets lose over 80% of their points. And
the optimisations described in Section IV-B increase these
percentages significantly.
Of course not all data has so many points dominated. The

worst case appears to be data of the form shown in Fig. 3, for
which no points are dominated in the largest n−2 underlying
sets. However note that this does not immediately imply that

m m m m 1
m − 1 m − 1 m − 1 1 2
m − 2 m − 2 1 2 3
m − 3 1 2 3 4
m − 4 2 3 4 5
...

...
...

...
...

1 m − 3 m − 2 m − 1 m

Fig. 3. A pathological example for the bounding technique. This pattern
describes sets of m points in five objectives, all being maximised and all
(except the first) increasing monotonically after the first four points. The
pattern can be generalised for other numbers of objectives.

this data will be processed slowly overall, just that the largest
underlying sets will be processed slowly.
Bringmann and Friedrich [13] make the observation that if

the contributing point is poor in several objectives, then more
of the points in the underlying set will tend to be lost. We
use this as a basis for optimising the performance of WFG in
Section IV-B.

Figure 12: Maximising in both objectives, the exclusive hypervolume of p relative
to a, b, c, d, e (i.e. E) = the inclusive hypervolume of p (i.e. the rectangle with p at
the top-right corner) minus the hypervolume of a′, b, c, d′, e′ (i.e. H ′). Clearly e′ is
dominated by d′ and can be discarded. Figure and caption reproduced from Paper 7.

48 CHAPTER 3. OVERVIEW OF INCLUDED PAPERS

Chapter 4

Included Papers

This submission is composed of seven papers co-authored by the PhD candidate.

The included papers are the result of research ongoing from 2005. Five are confer-

ence papers accepted at the IEEE Congress on Evolutionary Computation (CEC)

over various years. CEC is very competitive, with an acceptance rate of around

50%, and rated in the top tier of computer science conferences by the Computing

Research and Education Association of Australasia (CORE). One paper was pub-

lished in the IEEE Transactions on Evolutionary Computation (TEC), one of the

top ranked journals in the Artificial Intelligence (AI) discipline. The final paper

has been accepted for publication in TEC.

4.1 Summary of Papers

The seven papers included in this section discuss areas related to hypervolume and

are presented in an order that preserves the logical progress of the research, not

necessarily in order of publication.

49

50 CHAPTER 4. INCLUDED PAPERS

Paper 1 Introduces heuristics that improve the typical performance of the HSO

algorithm.

Paper 2 Discusses issues that arise when using hypervolume for selection and

introduces a local search based selection scheme which is compared to

a greedy selection scheme.

Paper 3 Introduces a new incremental hypervolume algorithm, IHSO, that cal-

culates the exclusive contribution of a point to a set, a search tech-

nique to find the least contributing point with minimal computation,

and heuristics for IHSO.

Paper 4 Integrates IHSO research from Paper 3 into the selection schemes

used in Paper 2. Further introduces an additional greedy selection

scheme and reevaluates and compares these schemes.

Paper 5 Introduces a new technique to reduce unnecessary recalculation of ex-

clusive point contributions resulting from changes in front composi-

tion.

Paper 6 Uses IHSO to create a new metric hypervolume algorithm using iter-

ated contribution calculations.

Paper 7 Introduces a new hypervolume algorithm, WFG, for metric and con-

tribution calculations. WFG uses a new method of contribution cal-

culations and performs extremely well.

4.2. ERRATA 51

4.2 Errata

Paper 3: There was an error in the pseudo-code for IHSO that might impede its

implementation. The corrected pseudo-code can be found in the published correc-

tion that follows the paper.

Paper 5: The original paper included incorrect results for Table 4. The version in

this thesis has been corrected.

52 CHAPTER 4. INCLUDED PAPERS

53

Paper 1 (Refereed)

L. While, L. Bradstreet, L. Barone, and P. Hingston. Heuristics for Optimising

the Calculation of Hypervolume for Multi-Objective Optimization Problems. In

2005 IEEE Congress on Evolutionary Computation (CEC’2005), pages 2225–2232,

Edinburgh, Scotland, September 2005. IEEE Press

54 CHAPTER 4. INCLUDED PAPERS

Heuristics for Optimising the Calculation of Hypervolume
for Multi-objective Optimisation Problems

Lyndon While, Lucas Bradstreet, Luigi Barone
The University of Western Australia
Nedlands, Western Australia 6009

{lyndon, lucas, luigi}@csse.uwa.edu.au

Phil Hingston
Edith Cowan University

Mount Lawley, Western Australia 6050
p.hingston@ecu.edu.au

Abstract- The fastest known algorithm for calculat-
ing the hypervolume of a set of solutions to a multi-
objective optimisation problem is the HSO algorithm
(Hypervolume by Slicing Objectives). However, the per-
formance of HSO for a given front varies a lot depending
on the order in which it processes the objectives in that
front. We present and evaluate two alternative heuristics
that each attempt to identify a good order for process-
ing the objectives of a given front. We show that both
heuristics make a substantial difference to the perfor-
mance of HSO for randomly-generated and benchmark
data in 5–9 objectives, and that they both enable HSO
to reliably avoid the worst-case performance for those
fronts. The enhanced HSO will enable the use of hyper-
volume with larger populations in more objectives.

1 Introduction

Multi-objective optimisation problems abound, and many
evolutionary algorithms have been proposed to derive good
solutions for such problems, e.g. [1, 2, 3, 4, 5]. How-
ever, the question of what metrics to use in comparing
the performance of these algorithms remains difficult[6, 7,
1]. One metric that has been favoured by many people
is hypervolume[8], also known as the S-metric[9] or the
Lebesgue measure[10]. The hypervolume of a set of solu-
tions measures the size of the portion of objective space that
is dominated by those solutions collectively. Generally, hy-
pervolume is favoured because it captures in a single scalar
both the closeness of the solutions to the optimal set and,
to some extent, the spread of the solutions across objective
space. Hypervolume also has nicer mathematical properties
than many other metrics[11, 12]. Hypervolume has some
non-ideal properties too: it requires the (sometimes arbi-
trary) definition of a reference point on which its calcula-
tions are based, and it is sensitive to the relative scaling of
the objectives, and to the presence or absence of extremal
points in a front.

While et al.[13] have shown that the fastest known
algorithm for calculating hypervolume exactly is HSO
(Hypervolume by Slicing Objectives)[14, 15]. HSO works
by processing the objectives in a front, rather than the
points. It divides thenD-hypervolume to be measured into
separaten− 1D-slices through one of the objectives, then
it calculates the hypervolume of each slice and sums these
values to derive the total. In the worst case HSO is expo-
nential in the number of objectives, but it still easily outper-
forms all other known algorithms for calculating hypervol-

ume exactly[13, 16].
However, the performance of HSO for a given front de-

pends on the order in which it processes the objectives in
that front. The number of points contributing hypervolume
to eachn− 1D-slice depends on how many points are dom-
inated within that slice: more dominated points implies a
smaller set of points to process, which implies less work
for that slice. The principal contribution of this paper is the
presentation and evaluation of two alternative heuristics that
each enhance HSO by trying to select a good order in which
to process the objectives for a given front. We present per-
formance data for basic and enhanced HSO showing that
both heuristics make a substantial difference to the typical
performance of the algorithm. The enhanced HSO will en-
able the use of hypervolume with larger populations in more
objectives.

The rest of this paper is structured as follows. Section 2
defines the concepts and notation used in multi-objective
optimisation and throughout this paper. Section 3 describes
the operation of HSO, and Section 4 discusses its com-
plexity and performance and shows how heuristics might
help. Section 5 defines our two (alternative) heuristics, and
Section 6 gives empirical data for a range of randomly-
generated and benchmark fronts in 5–9 objectives showing
how the heuristics improve the performance of HSO. Sec-
tion 7 concludes the paper and outlines some future work.

2 Fundamentals

In a multi-objective optimisation problem, we aim to find
the set of optimal trade-off solutions known as the Pareto
optimal set. Pareto optimality is defined with respect to
the concept of non-domination between points in objective
space. Given two objective vectorsx andy, x dominatesy
iff x is at least as good asy in all objectives, and better in
at least one. A vectorx is non-dominatedwith respect to
a set of solutionsX iff there is no vector inX that domi-
natesx. X is a non-dominated setiff all vectors inX are
mutually non-dominating. Such a set of objective vectors is
sometimes called anon-dominated front.

A vectorx is Pareto optimaliff x is non-dominated with
respect to the set of all possible vectors. Pareto optimal vec-
tors are characterised by the fact that improvement in any
one objective means worsening at least one other objective.
ThePareto optimal setis the set of all possible Pareto opti-
mal vectors. The goal in a multi-objective problem is to find
the Pareto optimal set, although for continuous problems a
representative subset will usually suffice.

55

@
@

@

@
@
@

@
@

@t
a1

@
@
@

@t
b

2
@

@@

@
@@
@@

@t
c

3

@@
@@@@ @@t

d

4

=
@@

@@@@

@@@@t
dt

c d
a
d
b

Slice 4

+
@

@ @t
c d

a
d
b

Slice 3

+
@

@

@
@
@
@

@
@
@

@t
a
t
b

Slice 2

+
@

@ @t
a

Slice 1

6z

@
@R x

�
y a

b
c
d

x
11
9
5
3

y
4
2
6
3

z
4
5
7
10

Figure 1: One step in HSO for the four three-objective points shown. Objectivex is processed, leaving four two-objective
shapes iny andz. Points are marked by circles and labelled with letters: unfilled circles represent points that are dominated
in y andz. Slices are labelled with numbers, and are separated on the main picture by dashed lines.

Given a setX of solutions returned by an algorithm, the
question arises how good the setX is, i.e. how well it
approximates the Pareto optimal set. One metric used for
comparing sets of solutions is to measure thehypervolume
of each set. The hypervolume ofX is the total size of the
space that is dominated by the solutions inX. The hyper-
volume of a set is measured relative to a reference point,
usually the anti-optimal point or “worst possible” point in
space. (We do not address here the problem of choosing
a reference point, if the anti-optimal point is not known or
does not exist: one suggestion is to take, in each objective,
the worst value from any of the fronts being compared.) If
a setX has a greater hypervolume than a setX ′, thenX is
taken to be a better set of solutions thanX ′.

Precise definitions of these terms can be found in [17].

3 The HSO Algorithm

Givenm mutually non-dominating points inn objectives,
the HSO algorithm is based on the idea of processing the
set of pointsone objective at a time.

Initially, the points are sorted by their values in the first
objective to be processed. These values are then used to
cut cross-sectional “slices” through the hypervolume: each
slice will itself be ann − 1-objective hypervolume in the
remaining objectives. Then − 1-objective hypervolume in
each slice is calculated and each slice is multiplied by its
depth in the first objective, then thesen-objective values are
summed to obtain the total hypervolume.

Each slice through the hypervolume will contain a dif-
ferent subset of the original points. Because the points are
sorted, they can be allocated to the slices easily. The top
slice can contain only the point with the best value in the
first objective; the second slice can contain only the points

with the two best values; the third slice can contain only the
points with the three best values; and so on, until the bottom
slice, which can contain all of the points. However, not all
points “contained” by a slice will contribute volume to that
slice: some points may be dominated in whatever objectives
remain and will contribute nothing. After each step (i.e. af-
ter each slicing action), the number of objectives is reduced
by one, the points are re-sorted in the next objective, and
newly-dominated points within each slice are discarded.

Figure 1 shows the operation of one step in HSO, in-
cluding the slicing of the hypervolume, the allocation of
points to each slice, and the elimination of newly-dominated
points.

The most natural base case for HSO is when the points
are reduced to one objective, when there can be only one
non-dominated point left in each slice. The value of this
point is then the one-objective hypervolume of its slice.
However, in practice, for efficiency reasons, HSO termi-
nates when the points are reduced to two objectives, which
is an easy and fast special case.

Figure 2 gives pseudo-code for HSO. Note that, for ex-
position purposes, the functionhso builds explicitly a set
containing the slices to be processed after each iteration.
We can improve the performance of the algorithm by pro-
cessing these slices on-the-fly, as they are generated.

4 The Complexity and Performance of HSO

While et al.[13] give a recurrence relation that captures the
worst-case complexity of HSO:

f(m, 1) = 1 (1)

f(m,n) =
m∑

k=1

f(k, n− 1) (2)

56 CHAPTER 4. INCLUDED PAPERS

hso (ps):
pl = sort ps worsening in Objective 1
s = {(1, pl)}
for k = 1 to n-1

s’ = {}
for each (x, ql) in s

for each (x’, ql’) in slice (ql, k)
add (x * x’, ql’) into s’

s = s’
vol = 0
for each (x, ql) in s

vol = vol + x * |head (ql)[n] - refPoint[n]|
return vol

slice (pl, k):
p = head (pl)
pl = tail (pl)
ql = []
s = {}
while pl /= []

ql = insert (p, k+1, ql)
p’ = head (pl)
add (|p[k] - p’[k]|, ql) into s
p = p’
pl = tail (pl)

ql = insert (p, k+1, ql)
add (|p[k] - refPoint[k]|, ql) into s
return s

insert (p, k, pl):
ql = []
while pl /= [] && head (pl)[k] beats p[k]

append head (pl) to ql
pl = tail (pl)

append p to ql
while pl /= []

if not (dominates (p, head (pl), k))
append head (pl) to ql

pl = tail (pl)
return ql

dominates (p, q, k):
d = True
while d && k <= n

d = not (q[k] beats p[k])
k = k + 1

return d

Figure 2: Pseudo-code for HSO.

The summation in (2) represents the fact that each slicing
action generatesm slices that are processed independently
to derive the hypervolume of the front.

Furthermore, Whileet al.[13] solve this recurrence rela-
tion to give the following identity:

f(m,n) =

(
m+ n− 2

n− 1

)
(3)

Thus HSO is exponential in the number of objectivesn, in
the worst case (we assume thatm > n).

The “worst case” in this context means we assume that
no (partial) point is ever dominated during the execution of
HSO, thus maximising the number of points in each slice
that is processed. However, this is unlikely to be true for
real-world fronts. The amount of time required to process a
given front depends crucially on how many points are dom-
inated at each stage, and, in addition, on how early in the
process points dominate other points.

From this fact, we can infer that the time to process a
given front varies with the order in which the objectives are
processed. A simple example illustrates how. Consider the
set of points in Figure 3, in a maximisation problem.

5 · · · 5 1
4 · · · 4 2
3 · · · 3 3
2 · · · 2 4
1 · · · 1 5

Figure 3: A pathological example for HSO. This pattern
describes sets of five points inn objectives,n ≥ 3. All
columns except the last are identical. The pattern can be
generalised for other numbers of points.

If we process the first objective (or in fact any objective
except the last): no point dominates any other point
in the list in the remainingn− 1 objectives. Thus we
do indeed have the worst case for HSO, generatingm
slices containing respectively1, 2, . . . ,m points.

If we process the last objective:each point dominates all
subsequent points in the list in the remainingn − 1
objectives. Then we generatem sliceseach contain-
ing only one point. Specifically, the top slice (cor-
responding to the highest value in the last objective)
contains only the point1 · · · 1, the second slice con-
tains only the point2 · · · 2, all the way down to the
bottom slice, which contains only the pointm · · ·m.
This is of course the best case for HSO, and the hy-
pervolume is calculated much more quickly.

Note that, in general, there is a continuum of performance
improvement available: e.g. for the points in Figure 3, the
earlier the last objective is processed, the faster the hyper-
volume will be calculated.

Thus it seems that enhancing HSO with a mechanism to
help the algorithm to identify a good order in which to pro-
cess the objectives in a given front could make a substantial
difference to the real performance of the algorithm.

5 Heuristics

We present and evaluate two alternative heuristics that at-
tempt to derive a good order for HSO to process the objec-
tives in a given front.

5.1 Maximising the number of dominated points

A good order for the objectives is one in which many par-
tial points are dominated by other points early in the pro-
cess. One obvious tactic then is to calculate for each ob-
jective how many points will be dominated immediately if
that objective is processed, and to process first the objec-
tive that will generate the most dominated points. We call
this heuristic MDP: Maximising the number of Dominated
Points.

We can apply this idea in two ways.

57

• We can simply calculate the heuristic once, then sort
the objectives in decreasing order of numbers of dom-
inated points.

• Alternatively, we can calculate the heuristic once,
eliminate the best objective, then re-calculate the
heuristic to identify the next objective, and so on, un-
til all the objectives have been ordered.

Our experience shows that applying the heuristic iteratively
works better, especially for large numbers of objectives, but
that diminishing returns apply to some extent. We therefore
iterate until four objectives remain, at which point we order
those four objectives according to the last calculation.

The complexity of MDP is easy to calculate: at each it-
eration, for each objective, we (nominally) compare each
point with every other point for domination. Thus form
points inn objectives, each iteration of MDP has complex-
ity O(m2n2), and applying MDP iteratively has complex-
ity O(m2n3), While this may sound expensive, remember
that HSO is exponential inn in the worst case, so a good
polynomial-time heuristic is likely to pay large dividends.

5.2 Minimising the amount of worst-case work

For each objective, MDP effectively counts the number of
points that will contribute to the bottomn− 1D-slice of
the hypervolume. However, in some cases, this number
might be misleading: it is theoretically possible to generate
m slices where the firstm − 1 slices contain respectively
1, 2, . . . ,m− 1 points, but the bottom slice contains only1
point. Example data that exhibits this behaviour is given in
Figure 4, for a maximisation problem.

5 1 4
4 2 3
3 3 2
2 4 1
1 5 5

Figure 4: A pathological example for MDP. MDP will
choose to process the first objective, but processing the sec-
ond objective would be faster.

We can avoid this possibility with a slightly more in-
volved heuristic that calculates explicitly for each objective
the number of non-dominated partial points in each slice, es-
timates the amount of work required to process each slice,
and sums these values to estimate the amount of work re-
quired if HSO processes that objective first. This heuristic
effectively models the recurrence relation in (2), by sum-
ming the work required to process each slice individually.
For each slice, we use the worst-case complexity of HSO
given in (3) to estimate the work required to process that
slice. Thus we call this heuristic MWW: Minimising the
Worst-case Work.

Again, we can apply this idea once only, or iteratively,
and again, our experience shows that iteration works better.
As with MDP, we apply MWW iteratively until four objec-
tives remain, at which point we order those four objectives
according to the last calculation.

The complexity of MWW is similar to that of MDP. For
each objective, we sort the points in that objective, then we
build incrementally the sets of points in each slice, much
as in the functionsslice and insert in Figure 2. This
leads to the worst-case complexity for each iteration being
O(n(m logm+m2n)), which again simplifies toO(m2n2).
The need to maintain an explicit set of non-dominated
points during the calculation of MWW may make it more
expensive than MDP in some cases, although any difference
is likely to be small.

6 Empirical Performance Data

We evaluated the performance of the two heuristics vs.
basic HSO on two different types of data: randomly-
generated fronts, and samples taken from the four distinct
Pareto optimal fronts of the problems in the well-known
DTLZ test suite[18].

We evaluated the heuristics (mostly) on data in 5–9 ob-
jectives, so to estimate the best-, average-, and worst-case
timings for each front using basic HSO, we used the follow-
ing procedure.

For n ≤ 5 : we evaluated alln! permutations of the objec-
tives.

For n > 5 : we sampled then! permutations in two ways,
and we combined all of the results in the calculations.

• We evaluated alln(n − 1) permutations of the
first two objectives (with the remaining objec-
tives randomised).

• Additionally, we evaluated 120 randomly-
chosen permutations.

All timings were performed on a dedicated 2.8Ghz
Pentium IV machine with 512Mb of RAM, running Red Hat
Enterprise Linux 3.0. All algorithms were implemented in
C and compiled withgcc -O3. All times include the costs of
calculating the heuristics, where appropriate. The data used
in the experiments are available at

http://wfg.csse.uwa.edu.au/Hypervolume

6.1 Benchmark data

We evaluated the heuristics on the four distinct fronts from
the DTLZ test suite: the spherical front, the linear front,
the discontinuous front, and the degenerate front. For each
front, we generated mathematically a representative set of
10,000 points from the (known) Pareto optimal set: then to
generate a front of sizem, we sampled this set randomly.
Each hypervolume was calculated as a minimisation prob-
lem in every objective, relative to the point1 · · · 1.

Tables 1(a)–1(c) and Figures 5(a)–5(d) and 6 show the
resulting comparisons. Each row of each table is based on
runs with ten different fronts, and it gives the following data.

• For HSO:

wrst is the longest time for any run on any front.

awst is the average of the longest time for each front.

58 CHAPTER 4. INCLUDED PAPERS

basic HSO HSO+MDP HSO+MWW
n m wrst awst avrg abst best wrst avrg best wrst avrg best

5 800 71.45 61.39 11.91 1.18 1.02 1.64 1.30 1.13 1.67 1.31 1.13
6 230 84.68 68.79 10.50 0.43 0.33 1.33 0.74 0.34 0.67 0.46 0.34
7 110 81.45 73.18 10.50 0.25 0.16 4.44 1.15 0.17 0.50 0.25 0.13
8 65 74.07 65.43 10.29 0.21 0.15 4.21 1.00 0.14 0.25 0.17 0.11
9 45 66.68 56.61 10.25 0.19 0.06 0.80 0.30 0.07 0.25 0.13 0.05

(a) The spherical DTLZ front.

basic HSO HSO+MDP HSO+MWW
n m wrst awst avrg abst best wrst avrg best wrst avrg best

5 800 65.16 52.31 11.40 1.06 0.91 1.37 1.18 1.03 1.37 1.21 1.04
6 220 65.74 55.58 9.93 0.41 0.26 1.67 0.77 0.40 0.80 0.46 0.28
7 110 83.76 73.60 10.95 0.23 0.15 2.19 0.57 0.16 0.35 0.25 0.15
8 65 74.81 69.93 10.96 0.25 0.09 1.32 0.52 0.11 0.50 0.20 0.08
9 45 66.59 59.00 10.14 0.22 0.10 1.26 0.48 0.08 0.39 0.19 0.06

(b) The linear DTLZ front.

basic HSO HSO+MDP HSO+MWW
n m wrst awst avrg abst best wrst avrg best wrst avrg best

5 1000 20.68 16.44 9.90 3.40 3.14 4.17 3.78 3.52 3.96 3.66 3.37
6 250 28.64 20.75 10.71 3.38 2.79 4.49 3.88 3.43 5.49 4.12 3.42
7 110 29.36 25.57 13.00 4.28 3.10 7.61 5.77 3.35 7.54 5.16 3.82
8 60 24.20 20.11 10.29 3.54 2.36 6.51 4.67 3.01 7.17 4.40 3.02
9 40 24.69 19.38 9.84 3.82 2.49 6.80 5.00 2.37 5.93 4.38 2.24

(c) The discontinuous DTLZ front.

basic HSO HSO+MDP HSO+MWW
n m wrst awst avrg abst best wrst avrg best wrst avrg best

5 1200 23.20 17.46 11.39 7.97 7.02 16.37 9.87 7.66 10.38 8.32 7.15
6 300 22.97 18.92 11.16 6.24 3.73 12.25 9.11 3.65 12.55 7.03 3.71
7 130 30.89 24.96 13.74 7.50 6.18 15.77 10.47 6.39 13.82 8.17 6.17
8 70 37.44 26.99 12.39 4.47 2.63 6.65 5.31 3.80 8.07 5.26 2.58
9 45 32.63 22.31 9.73 3.59 1.39 9.39 4.76 1.42 8.16 4.12 1.62

(d) Randomly-generated fronts.

Table 1: Comparison of the performance of HSO, HSO+MDP, and HSO+MWW on various fronts. Each datum is based on
ten different data sets: the figures for basic HSO are calculated using the sampling procedure described in Section 6. For
each value ofn, m is chosen so that the HSOavrg ≈ 10s.

59

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

Ti
m

e
(s

ec
on

ds
)

Number of points

6d sample
6d MWW

5d sample
5d MWW

(a) The spherical DTLZ front in 5 and 6 objectives.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 50 100 150 200 250 300 350 400

Ti
m

e
(s

ec
on

ds
)

Number of points

9d sample
7d sample
9d MWW
7d MWW

(b) The spherical DTLZ front in 7 and 9 objectives.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

Ti
m

e
(s

ec
on

ds
)

Number of points

6d sample
6d MWW

5d sample
5d MWW

(c) The discontinuous DTLZ front in 5 and 6 objectives.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140

Ti
m

e
(s

ec
on

ds
)

Number of points

9d sample
9d MWW

7d sample
7d MWW

(d) The discontinuous DTLZ front in 7 and 9 objectives.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

Ti
m

e
(s

ec
on

ds
)

Number of points

6d sample
6d MWW

5d sample
5d MWW

(e) Randomly-generated fronts in 5 and 6 objectives.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100 120 140

Ti
m

e
(s

ec
on

ds
)

Number of points

9d sample
9d MWW

7d sample
7d MWW

(f) Randomly-generated fronts in 7 and 9 objectives.

Figure 5: Comparison of the performance of HSO and HSO+MWW on various fronts. Each datum is based on ten different
data sets: the figures for basic HSO are calculated using the sampling procedure described in Section 6. The plot for the
linear DTLZ front is similar to that for the spherical front and is excluded for space reasons.

60 CHAPTER 4. INCLUDED PAPERS

avrg is the average time for all of the runs.

abst is the average of the shortest time for each front.

best is the shortest time for any run on any front.

• For each heuristic:

wrst is the longest time for any run on any front.

avrg is the average time for all of the runs.

best is the shortest time for any run on any front.

As observed previously by Whileet al.[13], the best-case
objective order for the degenerate front gives performance
that is polynomial in the number of objectives, so for that
front, we plot only the performance of HSO+MWW. Each
other plot compares the performance of HSO+MWW with
the average performance of HSO over the sample of permu-
tations of the objectives.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600 700 800 900 1000

Ti
m

e
(s

ec
on

ds
)

Number of points

13d MWW
11d MWW

9d MWW
7d MWW
5d MWW

Figure 6: The performance of HSO+MWW on the degener-
ate front. Each datum is based on ten different data sets.

6.2 Randomly-generated data

We generated sets ofm mutually non-dominating points in
n objectives simply by generating points with random val-
uesx, 0.1 ≤ x ≤ 10, in all objectives. In order to guarantee
mutual non-domination, we initialisedS = φ and added
each pointx to S only if x ∪ S would be mutually-non-
dominating. We kept adding points until|S| = m. Each
hypervolume was calculated as a maximisation problem in
every objective, relative to the origin.

Table 1(d) and Figures 5(e)–5(f) show the resulting com-
parison.

6.3 Discussion

For each heuristic in each row of each table, we make the
following comparisons.

• We compareavrg for the heuristic with the range
awst . . . avrg . . . abst for basic HSO, to determine
how much improvement the heuristic delivers in typ-
ical cases.

• We comparewrst for the heuristic withwrst and
awst for basic HSO, to determine how well the
heuristic avoids the worst-case ordering.

• We comparebest for the heuristic withabst andbest
for basic HSO, to determine how close the heuris-
tic gets to the best-case ordering. (Note that the best
cases for the heuristics sometimes beat the best case
for basic HSO: this is due to the incomplete nature of
the sampling used for the basic HSO figures.)

We make the following observations.
• For all of the DTLZ fronts, both heuristics deliver ma-

jor performance gains, and MWW in particular deliv-
ers performance that is not far from optimal. The per-
formance gains for the spherical and linear fronts in
particular are spectacular: speed-up factors of 10–80
in the average cases. The performance gain for the
discontinuous front is somewhat less (speed-up fac-
tors of 2–3): no doubt this is due to some property of
the front itself.

• Random fronts may be the worst-case form of data for
the heuristics, but both heuristics still always outper-
form basic HSO in the average case, with speed-up
factors up to 2.5.

• Both heuristics avoid the worst-case objective order-
ing in all cases: in fact, the worst-case for the heuris-
tics is nearly always better than the average case for
basic HSO, usually by a substantial amount.

• The performance gain increases both with increasing
number of objectives, and with increasing number of
points.

• MWW generally out-performs MDP.

• The graphs however highlight the fact that expo-
nential performance makes life tough: although the
heuristics deliver useful speed-ups for processing
fronts of a given size, they do not always greatly im-
prove the sizes of fronts that can be processed in a
given time.

The question arises what size of fronts the enhanced algo-
rithm can process in various times. Table 2 shows this data
for HSO+MWW on the spherical front. We chose ten sec-

n 10 seconds 1 second
5 1,900 700
6 650 320
7 350 170
8 240 110
9 160 80
10 110 60
11 80 50
12 70 40
13 50 30

Table 2: Sizes of fronts in various numbers of objectives that
HSO+MWW can process in the times indicated, for spheri-
cal DTLZ data.

onds as indicative of the performance required to use hyper-
volume in off-line metric calculations after the EA is com-
plete, and one second as indicative of the performance re-
quired to use hypervolume in an on-line diversity or archiv-
ing mechanism during the execution of the EA.

61

We also performed some minor experimentation to esti-
mate the cost of calculating the heuristics themselves. Our
experiments indicate that these calculations usually take less
than 1% of the run-time of the enhanced algorithm, and that
they never exceed about 6% of the run-time, even with pop-
ulations up to 2,000. This is of course to be expected, be-
cause of the exponential complexity of HSO itself.

7 Conclusions and Future Work

We have described two alternative heuristics that each im-
prove the performance of the HSO algorithm for calculating
hypervolume, itself the fastest algorithm described to date.
Each heuristic works by re-ordering the objectives in a front
to reduce the sizes of the sets of points that have to be pro-
cessed during the execution of the algorithm. Both heuris-
tics deliver significant improvement to the performance of
HSO, with reductions in the run-time of the algorithm of
25–98%. The enhanced HSO will enable the use of hyper-
volume with larger populations in more objectives.

We intend to speed-up the calculation of our heuristics,
e.g. by minimising the cost of dominance-checking, al-
though we do not expect this to deliver serious further im-
provements. We also intend to pursue other avenues for
making HSO faster, such as reducing the amount of repeated
work that results from processing slices independently.

We also intend to design an incremental version of HSO,
for use as a diversity or archiving mechanism in an evolu-
tionary algorithm.

Acknowledgments

We thank Simon Huband for discussions on hypervolume
and HSO, and for providing the raw DTLZ data.

This work was supported partly by The University of
Western Australia Research Grants Scheme, and also partly
by an ARC Linkage grant.

Bibliography

[1] S. Huband, P. Hingston, L. While, and L. Barone,
“An evolution strategy with probabilistic mutation for
multi-objective optimization,” inCEC 2003, H. Ab-
bass and B. Verma, Eds., vol. 4. IEEE, 2003, pp.
2284–2291.

[2] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2:
Improving the strength Pareto evolutionary algorithm
for multiobjective optimization,” inEUROGEN 2001,
K. C. Giannakoglouet al., Ed., 2001, pp. 95–100.

[3] R. C. Purshouse and P. J. Fleming, “The MultiObjec-
tive Genetic Algorithm applied to benchmark prob-
lems — an analysis,” The University of Sheffield, UK,
Research Report 796, 2001.

[4] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan,
“A fast and elitist multiobjective genetic algorithm:
NSGA-II,” IEEE Transactions on Evolutionary Com-
putation, vol. 6, no. 2, pp. 182–197, 2002.

[5] J. Knowles and D. Corne, “M-PAES: A memetic algo-
rithm for multiobjective optimization,” inCEC 2000,
vol. 1. IEEE, 2000, pp. 325–332.

[6] T. Okabe, Y. Jin, and B. Sendhoff, “A critical survey of
performance indices for multi-objective optimisation,”
in CEC 2003, H. Abbass and B. Verma, Eds., vol. 2.
IEEE, 2003, pp. 878–885.

[7] J. Wu and S. Azarm, “Metrics for quality assessment
of a multiobjective design optimization solution set,”
Journal of Mechanical Design, vol. 123, pp. 18–25,
2001.

[8] R. Purshouse, “On the evolutionary optimisation of
many objectives,” Ph.D. dissertation, The University
of Sheffield, Sheffield, UK, 2003.

[9] E. Zitzler, “Evolutionary algorithms for multiobjec-
tive optimization: Methods and applications,” Ph.D.
dissertation, Swiss Federal Inst of Technology (ETH)
Zurich, 1999.

[10] M. Laumanns, E. Zitzler, and L. Thiele, “A uni-
fied model for multi-objective evolutionary algorithms
with elitism,” in CEC 2000, vol. 1. IEEE, 2000, pp.
46–53.

[11] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fon-
seca, and V. G. da Fonseca, “Performance assess-
ment of multiobjective optimizers: An analysis and
review,” IEEE Transactions on Evolutionary Compu-
tation, vol. 7, no. 2, pp. 117–132, April 2003.

[12] M. Fleischer, “The measure of Pareto optima: Ap-
plications to multi-objective metaheuristics,” Institute
for Systems Research, University of Maryland, Tech.
Rep. ISR TR 2002-32, 2002.

[13] L. While, P. Hingston, L. Barone, and S. Huband, “A
faster algorithm for calculating hypervolume,”IEEE
Transactions on Evolutionary Computation, 2005.

[14] E. Zitzler, “Hypervolume metric calculation,” 2001,
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c.

[15] J. Knowles, “Local-search and hybrid evolutionary al-
gorithms for pareto optimisation,” Ph.D. dissertation,
The University of Reading, 2002.

[16] L. While, “A new analysis of the Lebmeasure algo-
rithm for calculating hypervolume,” inEMO 2005,
ser. LNCS, C. Coello Coelloet al., Ed., vol. 3410.
Springer-Verlag, 2005, pp. 326–340.

[17] T. Bäck, D. Fogel, and Z. Michalewicz, Eds.,Hand-
book of Evolutionary Computation. Iop Institute of
Physics, 1997.

[18] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scal-
able multi-objective optimization test problems,” in
CEC 2002, D. B. Fogelet al., Ed., vol. 1. IEEE,
2002, pp. 825–830.

62 CHAPTER 4. INCLUDED PAPERS

63

Paper 2 (Refereed)

L. Bradstreet, L. Barone, and L. While. Maximising Hypervolume for Selection in

Multi-objective Evolutionary Algorithms. In 2006 IEEE Congress on Evolutionary

Computation (CEC’2006), pages 6208–6215, Vancouver, BC, Canada, July 2006.

IEEE Press

64 CHAPTER 4. INCLUDED PAPERS

Maximising Hypervolume for Selection in
Multi-objective Evolutionary Algorithms

Lucas Bradstreet Member, IEEE, Luigi Barone, Member, IEEE, and Lyndon While, Senior Member, IEEE

Abstract— When hypervolume is used as part of the selection
or archiving process in a multi-objective evolutionary algorithm,
the basic requirement is to choose a subset of the solutions
in a non-dominated front such that the hypervolume of the
subset is maximised. We describe and evaluate two algorithms to
approximate this process: a greedy algorithm that assesses and
eliminates solutions individually, and a local search algorithm
that assesses entire subsets. We present empirical data which
suggests that a hybrid approach is needed to get the best trade-
off between good results and computational cost.

I. INTRODUCTION

Multi-objective problems are common in the optimisation
field and much of the current research into evolutionary
algorithms revolves around the theory and practice of multi-
objective optimisation. Many evolutionary algorithms have
been created in order to solve these difficult problems, e.g.
SPEA[1], NSGA-II[2]. However, despite recent work, there
remains the question of how to compare the performance
of different multi-objective optimisation (MOO) algorithms.
The result of a multi-objective algorithm is a set of solutions,
or non-dominated front, each representing a trade-off be-
tween objectives. A front generated by one MOO algorithm
is not easily comparable with a front generated by another
algorithm. A popular metric used to compare these fronts is
the hypervolume measure (otherwise known as S-metric[3] or
the Lebesgue measure[4]). Hypervolume is the n-dimensional
space that is “contained” by the points (solutions) in a front.
A front with a larger hypervolume is likely to present a
better set of trade-offs to a user than a front with a smaller
hypervolume.

While most research into hypervolume has revolved
around its use as a metric, recent research has seen it applied
during the operation of Multi-objective Evolutionary Algo-
rithms (MOEAs). An example of a technique used in this way
is Deb’s[2] NSGA-II crowdedness comparison operator, used
to select solutions within a front to minimise solutions crowd-
ing in each objective. Knowles et al. [5] introduce the use
of hypervolume during optimisation and describe a bounded
archiving algorithm that maintains an archive to retain the
‘best’ solutions, or points, found throughout optimisation.
As this archive is potentially of unbounded size, they apply
hypervolume to determine the solutions that maximise the
coverage of the solution set. During optimisation, when a
new solution is added to this bounded archive, the solution

Lucas Bradstreet, Luigi Barone, and Lyndon While are with the School of
Computer Science & Software Engineering, The University of Western Aus-
tralia, Crawley 6009, Australia (phone: +61864881944; fax: +61864881089;
email: {lucas, luigi, lyndon}@csse.uwa.edu.au).

that contributes the least hypervolume is removed in order
to make room.

Emmerich et al. [6] extend this idea to selection in an
MOEA in their optimiser SMS-EMOA. Rather than applying
bounded archiving, during optimisation they apply hyper-
volume to remove the solution that contributes the least
hypervolume from the worst ranked front. By doing so, they
reduce the size of the population in order to provide room
for the next generation.

While this idea has merit, and has achieved excellent
results for tested experiments, it has some limitations. One
such limitation is the use of a steady state MOEA. Emmerich
et al. use a steady state MOEA because finding the optimal
composition that maximises the hypervolume of a reduced
front is a difficult problem and the effectiveness of heuristic
approaches is unknown. However, it is possible in some
cases, a steady state MOEA may not achieve as high quality
results as other MOEAs.

The principal contribution of this paper is the presentation
and evaluation of two algorithms to choose a subset of the
solutions in a non-dominated front such that the hypervolume
of the subset is maximised. To do this exactly is prohibitively
expensive, so the two algorithms use different methods to
approximate the process. The first is a greedy algorithm that
eliminates solutions one-at-a-time based on their perceived
exclusive contribution to the hypervolume of the front, and
the second is a local search algorithm that assesses entire
candidate subsets and tries to improve the current candidate
by perturbing it. Empirical data suggests that each algorithm
out-performs the other in the right circumstances, so a hybrid
approach is suggested to get the best trade-off between good
results and computational cost.

The rest of this paper is structured as follows. Section II
defines the concepts and notation used in multi-objective
optimisation. Section III defines the front reduction tech-
niques that we have created and why we may use them.
Section IV gives empirical data, for a variety of front
types, demonstrating situations where each front reduction
technique is valuable and why. Section V concludes the paper
and outlines future work.

II. FUNDAMENTALS

In a multi-objective optimisation problem, we aim to find
the set of optimal trade-off solutions known as the Pareto
optimal set. Pareto optimality is defined with respect to the
concept of non-domination between points in objective space.
Given two objective vectors x̄ and ȳ, x̄ dominates ȳ iff x̄ is
at least as good as ȳ in all objectives, and better in at least

65

one. A vector x̄ is non-dominated with respect to a set of
solutions X iff there is no vector in X that dominates x̄.
X is a non-dominated set iff all vectors in X are mutually
non-dominating. Such a set of objective vectors is sometimes
called a non-dominated front.

A vector x̄ is Pareto optimal iff x̄ is non-dominated with
respect to the set of all possible vectors. Pareto optimal
vectors are characterised by the fact that improvement in any
one objective means worsening at least one other objective.
The Pareto optimal set is the set of all possible Pareto optimal
vectors. The goal in a multi-objective problem is to find
the Pareto optimal set, although for continuous problems a
representative subset will usually suffice.

Given a set X of solutions returned by an algorithm,
the question arises how good the set X is, i.e. how well
it approximates the Pareto optimal set. One metric used for
comparing sets of solutions is to measure the hypervolume of
each set. The hypervolume of X is the total size of the space
that is dominated by the solutions in X . The hypervolume
of a set is measured relative to a reference point, usually the
anti-optimal point or “worst possible” point in space. (We do
not address here the problem of choosing a reference point,
if the anti-optimal point is not known or does not exist: one
suggestion is to take, in each objective, the worst value from
any of the fronts being compared.) If a set X has a greater
hypervolume than a set X , then X is taken to be a better set
of solutions than X .

Knowles[7] applies hypervolume in order to recast multi-
objective problems as single objective problems with the
single goal of maximising the hypervolume of a set of
solutions, bounded in size. As this set is of finite size,
when adding a solution to this set another must often be
removed to make room. This is achieved by removing the
solution contributing the minimal ‘exclusive hypervolume’
to the front. The exclusive hypervolume contribution, ∆s,
of a solution, p, to a front, f , can be defined as ∆s =
Hypervolume(f∪{p})−Hypervolume(f). Following this
definition, one realises that over the course of operation the
hypervolume of the set of archived solutions is maximised.

Emmerich et al.[6] apply this technique to selection in
a MOEA. Rather than maintain an archive of solutions, as
in Knowles[7], hypervolume is used to determine which
solutions should be allowed to reproduce and while should
be thrown away. When a front is too large to be included
in the population during selection, hypervolume is used to
reduce its size. The solution that contributes the smallest
hypervolume to the worst ranked front is removed from the
front with the aim of maximising the hypervolume of the
population during the lifetime of the MOEA.

III. POINT REMOVAL TECHNIQUES

When using hypervolume as a selection metric, we wish
to reduce the size of non-dominated fronts. Ideally, we wish
to find a front composition that maximises the hypervolume
of the reduced front. However, in order to guarantee an
optimally composed front, it is necessary to calculate all

(
n
m

)

subsets of the front, where n is the size of the front and

m is the size of the reduced front. Calculating all possible
subset combinations can be extremely expensive if even a
small number of solutions are to be removed. In order to
work around this problem, Emmerich et al. use a steady state
MOEA, where only one point is removed at a time. However,
use of steady state MOEAs may not always be desirable.
As a result, alternative approaches to using hypervolume for
selection should be researched.

We present two alternative techniques: a search algorithm
and a greedy algorithm that removes one solution at a time
until a front of the desired size is created. We believe that
each of these algorithms is useful in different scenarios, and
we thus aim to identify these cases so that an informed
decision may be made when designing an MOEA using
hypervolume for selection.

A. Greedy Front Reduction Algorithm

Given a non-dominated front, S, of size m in n objectives,
removing p solutions.

i = 0
while time limit not exceeded and i < p

calculate contribution of each pt in S
remove smallest contributing pt from S
increment i

if i < p
remove p-i solutions from S using
latest contributions calculated

This scheme, which we have generalised from Emmerich
et al.[6]’s MOEA to reduce fronts by more than one solution,
may be computationally expensive in cases in which a large
number solutions are removed. In order to remove a single
solution from a front containing m solutions, m hypervolume
calculations are required. This process must be repeated for
each solution to be removed. Thus, in order to remove p
solutions from the front,

∑p
i=1 m − 1 + 1 hypervolume

evaluations are required. Furthermore, for large fronts the
cost of each hypervolume evaluation may be expensive
due to the exponential complexity of current hypervolume
algorithms, as proved by While [8]. The expensive nature
of this algorithm required us to implement a shortcut, that
allows the algorithm to stop at each iteration if a time
constraint has been reached. In this case, the algorithm sorts
the solutions by the exclusive hypervolume calculations from
the previous iteration and composes the front using the best
ranked solutions. This shortcut was made in order to present
a viable alternative to the local search method.

To implement this algorithm, we apply the Hypervolume
By Slicing Objectives (HSO) algorithm using the Minimising
Worst-case Work (MWW) heuristic described by While et
al[9]. The MWW heuristic reduces the run-time of HSO
by 25-98% on the DTLZ[10] test suite fronts and randomly
generated non-dominated fronts.

B. Front Reduction by Local Search

In contrast to the greedy front reduction method we
propose a local search algorithm. A local search should

66 CHAPTER 4. INCLUDED PAPERS

improve performance of point removal methods in situations
where many solutions are eliminated from a front. Rather
than perform

∑p
i=1 m− 1 + 1 expensive hypervolume eval-

uations, the local search technique performs a larger number
of computationally cheaper hypervolume evaluations. Even
though the local search requires more individual hypervol-
ume evaluations, this method can be faster than the front
reduction method used by Emmerich et al.

1) Benefits of Search for Front Composition: When re-
ducing a front’s size we wish to find the reduced front that
maximises the hypervolume of the front. However, the use of
a greedy front reduction algorithm does not guarantee the op-
timally composed reduced front will be found. Furthermore,
calculating all possible reduced fronts is generally infeasible.
Thus other optimisation algorithms, such as a local search or
evolutionary algorithm, should theoretically achieve a better
hypervolume on some fronts.

z

y
x

a(4,16,2)

b(3,16,3)

c(2,16,4)

e(6,4,6)

d(8,4,4)
f(4,4,8)

Fig. 1. Demonstrates a situation where the greedy point removal scheme
described will fail to achieve the maximum hypervolume obtainable for the
subset of points. If the selection scheme aims to remove two thirds of the
points, then it will keep points A and F, obtaining a hypervolume of 224
rather than keeping points B and E obtaining a hypervolume of 252.

It is easy to generate an example where the greedy front
reduction scheme will not find the reduced front with the
optimal hypervolume. Figure 1 depicts an example where a
local search technique could discover a substantially better
front composition than the greedy scheme.

2) Ability to bound time taken by algorithm: We pro-
pose the use of a local search algorithm to maximise the
hypervolume obtained by a reduced front. One advantage of
this technique is that it is possible to stop the search after
a given time limit. In contrast, it is not possible to reduce
the time taken by the greedy front reduction method to less
than the time taken for one iteration. Using a local search,

a MOEA is able to optimise the composition of a front in a
time-frame that is satisfactory to a user. Additionally, if the
user is willing to allow further computation, the local search
may achieve a better front composition than other techniques
within an equivalent computation time.

3) HV Local Search: Our hypervolume front reduction
local search algorithm operates as follows:

1) Generate initial front composition.
2) Perturb the front (resulting in a modified front of the

same size).
3) Accept the new front composition as the current front

if it has a better hypervolume.
4) Repeat steps 2-4 until run-time constraint is exceeded.
We tested other search algorithms such as Simulated

Annealing and Evolutionary Algorithms and found that they
did not achieve major improvements compared to a local
search in the tested time frames.

IV. EXPERIMENTS

We evaluated the front reduction techniques on two distinct
fronts from the DTLZ[10] test suite: the spherical front
and the discontinuous front. For each front, we generated
mathematically a representative set of 10,000 points from
the (known) Pareto optimal set: then to generate a front of
size m, we sampled this set randomly. The linear front from
DTLZ gives similar results to the spherical front, and the
degenerate front gives anomalous results as its hypervolumes
can be calculated in polynomial time[9].

We also tested these techniques on randomly generated
fronts. For these fronts we generated sets of m mutually
non-dominating points in n objectives simply by generating
points with random values x, 0.1 ≤ x ≤ 10, in all objectives.
In order to guarantee mutual non-domination, we initialised
S = φ and added each point x to S only if x̄ ∪ S would
be mutually non-dominating. We kept adding points until
|S| = m.

We use the method used by Emmerich et al. where the
reference point used is calculated using the smallest indi-
vidual value in the front in each dimension. Discontinuous
and spherical fronts were cast as a minimisation problem, as
in DTLZ, while random fronts were cast as a maximisation
problem.

Firstly the greedy front reduction algorithm was run on
a diverse range of front types (varying objective functions,
numbers of objectives, numbers of points) to determine an
acceptable front composition containing half the individuals
in a front. For each of these front types, we ran the greedy
algorithm and local search on five different fronts. The
hypervolume selection local search was allowed to run for
an duration equivalent to the greedy front reduction method.
The local search was run five times on each front and these
results averaged.

All timings were performed on a dedicated 2.8GHz Pen-
tium IV machine with 512MB of RAM, running Red Hat
Enterprise Linux 3.0. All algorithms were implemented in C
and compiled with gcc -O3.

67

TABLE I
SPHERICAL, 80% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 200 7.1939 2.0263 (5 fronts) 1.0014 1.0014 0.9989
6d 150 47.1758 2.6492 (5 fronts) 1.0089 1.0085 1.0009
7d 150 118.4760 5.2322 (5 fronts) 1.0060 1.0049 0.9896
8d 100 59.2300 3.0067 (5 fronts) 1.0033 1.0029 0.9949
9d 90 87.4727 3.2367 (5 fronts) 1.0169 1.0165 1.0049

TABLE II
DISCONTINUOUS, 80% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 300 77.0063 6.6908 (5 fronts) 1.0074 1.0028 0.9629
6d 150 130.7311 3.1080 (5 fronts) 1.0196 1.0148 0.9685
7d 80 116.0004 2.4076 (5 fronts) 1.0125 1.0120 0.9881
8d 45 95.7584 0.2384 (5 fronts) 1.0261 1.0261 1.0247
9d 40 140.9556 0.3205 (5 fronts) 1.0119 1.0118 1.0102

TABLE III
RANDOM, 80% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 200 22.4086 10.3430 (4 fronts) 1.0024 1.0006 0.9567
6d 100 16.3085 8.5742 (5 fronts) 1.0011 1.0002 0.9815
7d 80 83.9302 9.0946 (5 fronts) 1.0005 0.9999 0.9690
8d 45 27.9507 0.5876 (5 fronts) 1.0000 1.0000 0.9992
9d 40 125.4489 0.8926 (5 fronts) 1.0000 1.0000 0.9973

TABLE IV
SPHERICAL, 50% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 200 7.3649 26.0808 (4 fronts) 1.0000 0.9998 0.9923
6d 150 46.8909 89.7693 (2 fronts) 1.0000 0.9986 0.9890
7d 150 118.8479 216.6832 (2 fronts) 1.0000 0.9944 0.9803
8d 100 59.6259 57.8394 (4 fronts) 1.0001 0.9964 0.9790
9d 90 87.9446 84.8738 (3 fronts) 1.0000 0.9963 0.9780

TABLE V
DISCONTINUOUS, 50% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 300 77.0143 211.2232 (4 fronts) 1.0000 0.9880 0.9615
6d 150 131.1641 272.1418 (5 fronts) 1.0001 0.9717 0.9373
7d 80 120.8086 135.4446 (5 fronts) 1.0005 0.9773 0.9170
8d 45 96.0224 40.6998 (5 fronts) 1.0022 0.9885 0.9257
9d 40 139.9397 71.3201 (5 fronts) 1.0018 0.9822 0.8972

68 CHAPTER 4. INCLUDED PAPERS

TABLE VI
RANDOM, 50% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 200 22.4266 N/A (0 fronts) 0.9994 0.9888 0.9158
6d 100 16.3825 N/A (0 fronts) 0.9997 0.9916 0.9058
7d 70 49.6235 N/A (0 fronts) 0.9998 0.9847 0.8672
8d 50 70.4793 99.3908 (3 fronts) 1.0000 0.9838 0.8485
9d 40 125.2400 113.9819 (5 fronts) 1.0000 0.9782 0.8392

TABLE VII
SPHERICAL, 20% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 200 7.2719 N/A (0 fronts) 1.0000 0.9999 0.9975
6d 200 45.0991 N/A (0 fronts) 1.0000 0.9982 0.9954
7d 150 120.7756 N/A (0 fronts) 1.0000 0.9981 0.9938
8d 100 59.4160 N/A (0 fronts) 1.0000 0.9981 0.9934
9d 90 89.0555 N/A (0 fronts) 1.0000 0.9969 0.9921

TABLE VIII
DISCONTINUOUS, 20% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 300 77.1823 N/A (0 fronts) 0.9999 0.9945 0.9884
6d 150 131.4490 N/A (0 fronts) 0.9998 0.9856 0.9779
7d 80 117.8601 N/A (0 fronts) 0.9998 0.9810 0.9672
8d 45 97.8401 N/A (0 fronts) 0.9995 0.9773 0.9534
9d 40 143.4202 451.7484 (3 fronts) 0.9997 0.9653 0.9513

TABLE IX
RANDOM, 20% OF POINTS REMOVED

One iteration, greedy Local Search results
obj # pts Time greedy (s) Time to match greedy (s) HV ratio in equal time HV ratio in 10s HV ratio in 1s

5d 200 22.5636 N/A (0 fronts) 0.9999 0.9971 0.9714
6d 100 16.4245 N/A (0 fronts) 0.9999 0.9959 0.9663
7d 70 50.4603 N/A (0 fronts) 0.9999 0.9853 0.9285
8d 45 28.5857 N/A (0 fronts) 0.9999 0.9941 0.9379
9d 40 128.5325 N/A (0 fronts) 0.9997 0.9608 0.9268

69

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.01 0.1 1 10 100 1000 10000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 2. Discontinuous 6d, 150pts, 80% removed.

 0.955

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0.01 0.1 1 10 100 1000 10000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 3. Spherical 6d, 200pts, 80% removed.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0.01 0.1 1 10 100 1000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 4. Random 6d, 100pts, 80% removed.

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 0.1 1 10 100 1000 10000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 5. Discontinuous 6d, 150pts, 50% removed.

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0.1 1 10 100 1000 10000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 6. Spherical 6d, 200pts, 50% removed.

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.1 1 10 100 1000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 7. Random 6d, 100pts, 50% removed.

70 CHAPTER 4. INCLUDED PAPERS

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1 10 100 1000 10000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 8. Discontinuous 6d, 150pts, 20% removed.

 0.994

 0.996

 0.998

 1

 1.002

 1.004

 1 10 100 1000 10000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 9. Spherical 6d, 200pts, 20% removed.

 0.96

 0.965

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1 10 100 1000

Fr
ac

tio
n

of
 H

yp
er

vo
lu

m
e

re
ta

in
ed

Time (s)

Local Search
Greedy Front Reduction

Fig. 10. Random 6d, 100pts, 20% removed.

A. Experiments reducing front by 80%

Tables I, II and III demonstrate that the local search has a
significant advantage when a large proportion of the front is
removed. In this case the local search quickly converges on
an acceptable selection of points, and the advantage over
the greedy selection algorithm is evident. In every case,
the local search is able to dominate the greedy approach
in both the time taken to find a solution as well as the
solution’s hypervolume. We believe this advantage is due
to the relatively inexpensive cost of hypervolume evaluations
compared to those made by the greedy approach. This allows
the local search to perform more generations to find a better
solution.

In all cases, the local search is able to achieve better
hypervolumes than the greedy method in equivalent time, and
is able to achieve equivalent results anywhere from 0.2% to
52% of the time taken by the greedy method.

Figures 2, 3 and 4 show that local search is able to
dominate the greedy method in all cases. In these cases, when
using only one iteration of the greedy method the solutions
provided by the algorithm may be sub-par as evidenced by
the improvement in hypervolume in later iterations.

We believe that these cases demonstrate a flaw in the
greedy approach which finds it difficult to maximise the
coverage of the front given that many points are removed.

B. Experiments reducing front by 50%

Tables IV, V and VI demonstrate that the local search
achieves similar results to the greedy front reduction tech-
nique when only half of the front is removed. In less than
half of the cases the local search is able to find a better front
compositions than the greedy approach. To find equivalent
results, the local search takes from 42% to 353% of the time
taken by the greedy method. In most cases the local search
takes longer to find equivalent solutions than the greedy
approach. Despite this, use of a local search algorithm may
still be preferable because it can stop at any point while
optimising front composition and will still yield a better front
composition than a random selected reduced front. Figures
5, 6 and 7 demonstrate this concept and show that while the
local search does take a long time to find equivalent answers
to the greedy approach, it is able to find solutions that may
be considered worthwhile in less time while coming close
to the greedy approach in equivalent time. It is also evident
that the local search takes a long time to converge in these
cases.

C. Experiments reducing front by 20%

Tables VII, VIII and IX demonstrate that the local search
is relatively ineffective when only a small proportion of the
points are to be removed. In these cases, the local search’s
hypervolume evaluations are expensive, due to the large
fronts, and the local search is not able to perform many
generations in which to optimise the composure of the front.
In this case the greedy algorithm’s performance is probably
acceptable.

71

D. Experimental Discussion

Keep in mind that small changes in hypervolume may
relate to substantially improved coverage of the front. For
example, while a reduced front with only one solution may
have a hypervolume that is a substantial fraction of the
original front, this is not necessarily a desirable result and we
still wish for the best coverage of the Pareto front possible.

Another consideration is that diminishing hypervolume
improvements are realised as the proportion of the front
increases. Every additional solution will obtain a smaller
exclusive hypervolume due to the improved coverage of the
front. As a result, a front retaining a large proportion of its
solutions, even if these solutions are randomly selected, may
have a hypervolume that appears very close to the entire
front. Despite this, a front with better coverage of the Pareto
front is still desirable and the relative hypervolumes does
not necessarily reflect that an improvement in hypervolume
of the reduced front is not beneficial. However, as a result
of this observation, we believe that the use of hypervolume
as a selection metric is most important when only retaining
a small proportion of a front. In this case it is more difficult
to obtain a good coverage of the Pareto front and thus it is
very important that an algorithm is able to find a reduced
front that best covers the Pareto front.

V. CONCLUSIONS AND FUTURE WORK

We believe the results of the local search algorithm present
a strong case for its use in MOEAs using hypervolume as
a selection mechanism for problems in large numbers of
objectives. The local search results in a large reduction in
computation time over a greedy technique applying HSO to
remove a single point at a time. Furthermore, in cases where
a large proportion of the front is removed, the local search
leads to a front composition with a better hypervolume than
the greedy technique.

Overall, the point reduction algorithm and local search
achieve similar hypervolumes over the test fronts. A more
sophisticated hypervolume algorithm that calculates only the
exclusive hypervolume contribution of a point, given the
remaining front, may achieve better time performance for
many of the tested fronts. Even so, we do not expect such
an algorithm to surpass the local search in cases where a
large number of points are to be removed from a front.

REFERENCES

[1] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm,” in EUROGEN 2001. Evolu-
tionary Methods for Design, Optimization and Control with Applica-
tions to Industrial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux,
P. Papailou, and T. Fogarty, Eds., Athens, Greece, 2002, pp. 95–100.

[2] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective Op-
timization: NSGA-II,” Indian Institute of Technology, Kanpur, India,
KanGAL report 200001, 2000.

[3] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications,” Ph.D. dissertation, Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland, November 1999.

[4] M. Laumanns, E. Zitzler, and L. Thiele, “A Unified Model for Multi-
Objective Evolutionary Algorithms with Elitism,” in 2000 Congress
on Evolutionary Computation, vol. 1. Piscataway, New Jersey: IEEE
Service Center, July 2000, pp. 46–53.

[5] J. D. Knowles, D. W. Corne, and M. Fleischer, “Bounded archiving
using the Lebesgue measure,” in Proceedings of the IEEE Congress
on Evolutionary Computation. IEEE Press, 2003, pp. 2490–2497.

[6] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm using
the hypervolume measure as selection criterion,” in Proc. Evolutionary
Multi-Criterion Optimization: Third Int’l Conference (EMO 2005), ser.
Lecture Notes in Computer Science, C. A. C. Coello, A. H. Aguirre,
and E. Zitzler, Eds., vol. 3410. Berlin: Springer, 2005, pp. 62–76.

[7] J. D. Knowles, D. W. Corne, and M. Fleischer, “Bounded Archiving
using the Lebesgue Measure,” in Proceedings of the 2003 Congress on
Evolutionary Computation (CEC’2003), vol. 4. Canberra, Australia:
IEEE Press, December 2003, pp. 2490–2497.

[8] R. L. While, “A new analysis of the lebmeasure algorithm for
calculating hypervolume.” in EMO, ser. Lecture Notes in Computer
Science, C. A. C. Coello, A. H. Aguirre, and E. Zitzler, Eds., vol.
3410. Springer, 2005, pp. 326–340.

[9] L. While, L. Bradstreet, L. Barone, and P. Hingston, “Heuristics for
optimising the calculation of hypervolume for multi-objective optimi-
sation problems,” in Proceedings of 2005 Congress on Evolutionary
Computation (CEC’2005), 2005.

[10] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Multi-
Objective Optimization Test Problems,” in Congress on Evolutionary
Computation (CEC’2002), vol. 1. Piscataway, New Jersey: IEEE
Service Center, May 2002, pp. 825–830.

72 CHAPTER 4. INCLUDED PAPERS

73

Paper 3 (Refereed)

L. Bradstreet, L. While, and L. Barone. A Fast Incremental Hypervolume Algo-

rithm. IEEE Transactions on Evolutionary Computation, 12(6):714–723, December

2008

74 CHAPTER 4. INCLUDED PAPERS

A Fast Incremental Hypervolume Algorithm
Lucas Bradstreet, Student Member, IEEE, Lyndon While, Senior Member, IEEE, and Luigi Barone, Member, IEEE

Abstract—When hypervolume is used as part of the selection or
archiving process in a multiobjective evolutionary algorithm, it is
necessary to determine which solutions contribute the least hyper-
volume to a front. Little focus has been placed on algorithms that
quickly determine these solutions and there are no fast algorithms
designed specifically for this purpose. We describe an algorithm,
IHSO, that quickly determines a solution’s contribution. Further-
more, we describe and analyse heuristics that reorder objectives to
minimize the work required for IHSO to calculate a solution’s con-
tribution. Lastly, we describe and analyze search techniques that
reduce the amount of work required for solutions other than the
least contributing one. Combined, these techniques allow multiob-
jective evolutionary algorithms to calculate hypervolume inline in
increasingly complex and large fronts in many objectives.

Index Terms—Diversity, evolutionary computation, hyper-
volume, multiobjective optimization, performance metrics.

I. INTRODUCTION

H YPERVOLUME [1], also known as the S-metric [2] or
the Lebesgue measure [3], [4], has recently been finding

favor as a metric for comparing the performance of multiob-
jective evolutionary algorithms (MOEAs). The hypervolume of
a set of solutions measures the size of the portion of objective
space that is dominated by those solutions collectively. Gen-
erally, hypervolume is favored because it captures in a single
scalar both the closeness of the solutions to the optimal set
and, to some extent, the spread of the solutions across objective
space. Hypervolume also has nicer mathematical properties than
many other metrics: Zitzler et al. [5] state that hypervolume is
the only unary metric of which they are aware that is capable of
detecting that a set of solutions is not worse than another set

, and Fleischer [6] has proved that hypervolume is maximized
if and only if the set of solutions contains only Pareto optima.
Hypervolume has some nonideal properties too: it is sensitive
to the relative scaling of the objectives, and to the presence or
absence of extremal points in a front.

A fast algorithm for calculating hypervolume exactly is the
hypervolume by slicing objectives algorithm (HSO) [7]–[9].
HSO works by processing the objectives in a front, rather than
the points. It divides the D-hypervolume to be measured into
separate D-slices through one of the objectives, then it
calculates the hypervolume of each slice and sums these values
to derive the total. In the worst case, HSO is exponential in
the number of objectives, but until recently, it had better com-
plexity than other algorithms. In addition, While et al. [10] have
described good heuristics that optimize the order in which the

Manuscript received December 21, 2006; revised July 30, 2007. First pub-
lished March 28, 2008; current version published December 12, 2008.

The authors are with the School of Computer Science and Software Engi-
neering, University of Western Australia, Nedlands, Western Australia 6009,
Australia (e-mail: lyndon@csse.uwa.edu.au; luigi@csse.uwa.edu.au).

Digital Object Identifier 10.1109/TEVC.2008.919001

objectives should be processed for a given front by estimating
the “worst-case work” required to process the slices remaining
after eliminating each objective. These heuristics reduce the
running time of HSO for representative data by 25%–98%.

Algorithms from the computational geometry field have re-
cently been applied to hypervolume calculation by Beume and
Rudolph and separately by Fonseca et al. Beume and Rudolph
[11] adapt the Overmars and Yap [12] algorithm for solving the
Klee’s measure problem to instead calculate the hypervolume
of a front. Similarly, Fonseca et al. [13] apply the Overmars
and Yap algorithm for the 3-D base case in order to provide a
performance boost to HSO. Beume and Rudolph’s adaptation
boasts an impressive improvement in worst-case complexity,
from to , however, as of yet there
are no performance comparisons between their algorithm and
HSO with heuristics.

Hypervolume is also used inline in some evolutionary algo-
rithms, as part of a diversity mechanism [14], as part of an
archiving mechanism [15], or recently as part of the selection
mechanism [16], [17]. The requirement in such cases is to com-
pare the exclusive hypervolume contributed by different points,
i.e., the amount by which each point increases the hypervolume
of the set. Clearly, if hypervolume calculations are incorporated
into the execution of an algorithm (as opposed to hypervolume
used as a metric after execution is completed), there is a much
stronger requirement for those calculations to be efficient. The
ideal for such uses is an incremental algorithm that minimizes
the expense of repeated invocations.

The principal contributions of this paper are a version of HSO
which is customized for inline incremental hypervolume cal-
culations, and queueing techniques and heuristics that improve
performance for hypervolume algorithms used within a MOEA.

The customized algorithm has two parts.
• The algorithm incremental HSO (IHSO) calculates the ex-

clusive hypervolume of a point relative to a set of points
. The principal optimizations in IHSO are minimizing the

number of slices that have to be processed, and ordering the
objectives intelligently.

• The algorithm performs point selection for diver-
sity, archiving, or fitness. works by repeated appli-
cation of IHSO to calculate the exclusive hypervolume for
each point in a set. The principal optimizations in
are ordering the points intelligently, and calculating as little
hypervolume as possible for each point.

will provide a substantial performance improvement
for evolutionary algorithms that perform inline incremental
hypervolume calculations. We note that although Beume and
Rudolph’s recent work [11] does improve the complexity of
hypervolume algorithms for metric calculations, customized
algorithms are not yet available for incremental hypervolume
calculations.

75

The rest of this paper is structured as follows. Section II de-
fines the concepts and notation used in multiobjective optimiza-
tion and throughout this paper. Section III describes HSO and
the heuristics used to optimize its performance. Section IV de-
scribes how HSO can be customized into IHSO and to
calculate exclusive hypervolume efficiently. Section V reports
on some experiments to determine the fastest incremental al-
gorithm, and to explore some important issues for users of the
algorithm. Section VI concludes this paper and discusses some
possibilities for future work.

II. DEFINITIONS

In a multiobjective optimization problem, we aim to find the
set of optimal tradeoff solutions known as the Pareto optimal
set. Pareto optimality is defined with respect to the concept of
nondomination between points in objective space. Given two
objective vectors and , dominates iff is at least as good
as in all objectives, and better in at least one. A vector is
nondominated with respect to a set of solutions iff there is no
vector in that dominates . is a nondominated set iff all
vectors in are mutually nondominating. Such a set of objec-
tive vectors is sometimes called a nondominated front.

A vector is Pareto optimal iff is nondominated with re-
spect to the set of all possible vectors. Pareto optimal vectors are
characterized by the fact that improvement in any one objective
means worsening at least one other objective. The Pareto op-
timal set is the set of all possible Pareto optimal vectors. The
goal in a multiobjective problem is to find the Pareto optimal
set, although for continuous problems a representative subset
will usually suffice.

Given a set of solutions returned by an algorithm, the ques-
tion arises how good the set is, i.e., how well it approximates
the Pareto optimal set. One metric used for comparing sets of
solutions is to measure the hypervolume of each set. The hyper-
volume of is the total size of the space that is dominated by
the solutions in . The hypervolume of a set is measured rela-
tive to a reference point, usually the anti-optimal point or “worst
possible” point in space. (We do not address here the problem
of choosing a reference point, if the anti-optimal point is not
known or does not exist: one suggestion is to take, in each ob-
jective, the worst value from any of the fronts being compared.)
If a set has a greater hypervolume than a set , then is
taken to be a better set of solutions than .

Precise definitions of these terms can be found in [18].

III. HYPERVOLUME BY SLICING OBJECTIVES

Given a set of mutually nondominating points in objectives,
HSO is based on the idea of processing the points one objective
at a time.

Initially, the points are sorted by their values in the first objec-
tive to be processed. These values are then used to cut cross-sec-
tional “slices” through the hypervolume: each slice will itself
be an -objective hypervolume in the remaining objectives.
The -objective hypervolume in each slice is calculated and
each slice is multiplied by its depth in the first objective, then
these -objective values are summed to obtain the total hyper-
volume. Each slice through the hypervolume will contain a dif-
ferent subset of the original points. The th slice from the top
can contain only the points with the best values in the first

Fig. 1. One step in HSO for the four three-objective points shown. Objective �
is processed, leaving four two-objective shapes in � and �. Points are marked by
circles and labeled with letters: unfilled circles represent points that are domi-
nated in � and �. Slices are labeled with numbers, and are separated on the main
picture by dashed lines. (Figure reproduced from [9].)

objective. However, not all points “contained” by a slice will
contribute volume to that slice: some points may be dominated
in the remaining objectives and will contribute nothing. After
each step, the number of objectives is reduced by one, the points
are resorted in the next objective, and newly dominated points
within each slice are discarded.

Fig. 1 shows the operation of one step in HSO, including the
slicing of the hypervolume, the allocation of points to each slice,
and the elimination of newly dominated points.

The natural base case for HSO is when only one objective
remains, when there can be only one nondominated point left
in each slice. The value of this point is then the one-objective
hypervolume of its slice. However, in practice, for efficiency
reasons, HSO terminates when two objectives remain, which is
an easy and fast special case.

Fig. 2 gives pseudocode for HSO.

A. The Complexity and Performance of HSO

The following recurrence relation captures the worst-case
complexity of HSO [9]:

(1)

(2)

The summation in (2) represents the fact that each slicing action
generates slices that are processed independently to derive the
hypervolume of the front.

Solving this recurrence relation gives the following [9]:

(3)

Thus, HSO is exponential in the number of objectives , in the
worst case (we assume that).

The “worst case” in this context means we assume that no
(partial) point is ever dominated during the execution of HSO,
thus maximizing the number of points in each slice that is pro-
cessed. However, this is unlikely to be true for real-world fronts.
The amount of time required to process a given front depends

76 CHAPTER 4. INCLUDED PAPERS

Fig. 2. Pseudocode for HSO. (Code reproduced from [10].)

Fig. 3. A pathological example for HSO. This pattern describes sets of five
points in � objectives, � � �. All columns except the last are identical. The
pattern can be generalized for other numbers of points. (Example reproduced
from [10].)

crucially on how many points are dominated at each stage and,
in addition, on how early in the process points dominate other
points.

From this fact, we can infer that the time to process a given
front varies with the order in which the objectives are processed.
A simple example illustrates how. Consider the set of points in
Fig. 3, in a maximization problem.

If we process the first objective (or, in fact, any objective ex-
cept the last), no point dominates any other point in the list in
the remaining objectives. Thus, we do indeed have the

worst case for HSO, generating slices containing, respec-
tively, points.

If we process the last objective, each point dominates all sub-
sequent points in the list in the remaining objectives. Then,
we generate slices each containing only one point. Specifi-
cally, the top slice (corresponding to the highest value in the
last objective) contains only the point , the second slice
contains only the point , all the way down to the bottom
slice, which contains only the point . This is of course
the best case for HSO, and the hypervolume is calculated much
more quickly.

Note that, in general, there is a continuum of performance
improvement available: for example, for the points in Fig. 3, the
earlier the last objective is processed, the faster the hypervolume
will be calculated. Thus, enhancing HSO with a mechanism to
identify a good order in which to process the objectives in a
given front can make a substantial difference to its performance.

B. Optimizing the Performance of HSO

While et al. describe and evaluate two heuristics for choosing
the order in which the objectives should be processed for a given
front [10]. They characterize the better heuristic as “minimizing
the amount of worst-case work” (MWW). For each objective,
MWW:

• calculates the number of nondominated partial points that
will be in each slice;

• estimates the worst-case amount of work required to
process each slice, using (3);

• and sums these values to estimate the amount of work re-
quired if HSO processes this objective first.

Then, HSO processes the objective that represents the least
work. MWW is applied at each iteration of HSO until only four
objectives remain.

An empirical comparison of HSO versus HSO+MWW on
randomly generated fronts and on fronts from the well-known
DTLZ test suite [19] shows that MWW can reduce the time to
process fronts in 5–9 objectives by 25%–98%.

IV. RUNNING HSO INCREMENTALLY

Hypervolume is used inline in an evolutionary algorithm in
three ways:

• as part of a diversity mechanism;
• as part of an archiving mechanism;
• as part of the selection mechanism.
In all three contexts, the requirement is to calculate the ex-

clusive hypervolume contributed by a point relative to a set
of points , i.e., how much additional hypervolume we get by
adding to . This can be defined as

(4)

For example, the exclusive hypervolume contributed by Point b
in Fig. 1 is the cuboid bounded by b and by the point (5, 0, 4),
i.e., the long thin cuboid on which b sits. Note that exclusive hy-
pervolumes usually have a much more complicated shape than
this: consider as an example Point c in Fig. 1.

A typical requirement when hypervolume is used in this way
is to calculate the exclusive hypervolume contributed by each of
a set of points , then to discard the point in that contributes

77

Fig. 4. Pseudocode for IHSO. Other functions are defined in Fig. 2. The re-
ordering of the objectives is not shown.

the least exclusive hypervolume. Thus, we return the subset of
of cardinality that has the largest hypervolume. This idea
can be extended to situations where we need to discard multiple
points from [20], [21], but we do not deal with this issue here.

Obviously, we can calculate the exclusive hypervolume con-
tributed by each point in by applications of HSO: one to

itself, and one to each subset of size . However, we can
do far better than this performance-wise by customizing HSO
to calculate exclusive hypervolumes directly. We define a new
algorithm IHSO that takes a point and a set of mutually non-
dominating points and returns . We customize
HSO in three ways to derive IHSO.

1) Disregarding “higher” slices: will not contribute to any
slice above itself in the current objective, therefore, the
hypervolumes of these slices need not be calculated. For
example, in Fig. 1, Point b contributes nothing to Slice 1.

2) Disregarding some “lower” slices: if is dominated by a
point in in the objectives after the current one, then
will not contribute to any slice containing (or any point
that dominates), and the hypervolumes of these slices
need not be calculated. For example, in Fig. 1, Point b
contributes nothing to Slices 3 or 4, because it is dominated
by Point c in and .

3) Processing the objectives in the right order: as with HSO,
we can optimize the performance of IHSO by selecting a
good order in which to process the objectives.

Fig. 4 gives pseudocode for IHSO. The code assumes that
none of the points in dominates , although the converse is
not true: may dominate one or more points in . The principal
differences from HSO in Fig. 2 are in the function .

• A slice is added to only if it is below in the current
objective, i.e., below .

Fig. 5. Outline of the point-ordering scheme in ���� .

• If at any time is dominated in the remaining objectives,
no more slices are added to .

Given IHSO, we can define an algorithm to iden-
tify the point in a set that contributes the least exclusive hy-
pervolume to . We use applications of IHSO to calculate

for each point in , then simply return
the point with the smallest value. Within , it is useful to
order the calculations so that small points are likely processed
first. This enables early termination for subsequent points: if the
exclusive hypervolume for is known, then as soon as the exclu-
sive hypervolume for is known to be bigger, we can eliminate

from consideration as the smallest contributor. Note also that
the order in which the objectives are processed can be different
for different points in .

Thus, there are two questions to be answered in order to derive
an efficient implementation of IHSO and .

A. How Do We Order the Objectives When Calculating
in IHSO?

We have tried several heuristics that can be used to order the
objectives for a point .

1) Rank: process first the objective in which is best, so that
it is more likely to be dominated early.

2) Reverse rank: process first the objective in which is worst,
so that there are fewer slices to calculate.

3) Dominated: find the point that beats in the most ob-
jectives, and first process the slices in which beats .
This method partitions the objectives between those where

beats , and those where beats . Within these parti-
tions, order objectives by the rank heuristic.

4) MWW: as defined in Section III-B.
While these heuristics can be used to reorder objectives for all

calculations [10], we find experimentally that it is more effec-
tive to reorder the objectives for each individual slice recursively
calculated by IHSO. Although this comes at additional cost, sav-
ings are made on slices that are expensive to calculate, for ex-
ample, a slice with a difficult shape, or one with many points or
objectives. One example of where savings are made using this
approach is for the dominated heuristic, where the point used
to reorder the objectives may not even exist in a given slice.

B. How Do We Order the Points When Calculating Their
Exclusive Hypervolumes in ?

We have devised two schemes to improve the performance
of when used to find the worst contributing point. The
first scheme reorders the points with the aim of calculating the
worst point early. Unnecessary calculations are then saved on
subsequent points. This scheme is outlined in Fig. 5.

78 CHAPTER 4. INCLUDED PAPERS

Fig. 6. Outline of the best-first queueing scheme in ���� .

We have defined two measures that can be used to order the
points. Each point can be assessed by the following.

1) Rank: the sum of the number of points that beat in each
objective. Points are sorted in descending order.

2) Volume: the “inclusive hypervolume” of : the product of
its objectives. Points are sorted in ascending order.

The point with the least hypervolume contribution to the set
is more likely to have a large rank value and to have a small
inclusive hypervolume.

We have also defined an alternative “best-first” queueing
(BFQ) scheme that processes the points “concurrently,” to
avoid the question of ordering. This scheme is outlined in
Fig. 6. The principal parameter in the queueing scheme is the
definition of “a bit,” i.e., the granularity of the concurrency. If
the granularity is too coarse, the algorithm will do more calcu-
lation than necessary: if it is too fine, the overhead of managing
the queue will become significant. At present, we use a simple
granularity scheme based on specifying the dimensionality of a
hypervolume to be calculated in each iteration of the loop. A
granularity of means that one slice in objectives is calculated
in each iteration. This dimensionality is set according to (5)

(5)

The application of in (5) means that for low dimension-
alities, we abandon the queueing scheme and just calculate the
complete exclusive hypervolume of each point. This system
works well for the limited range of dimensionalities studied so
far, but it is likely to need updating in the future.

We have implemented the BFQ scheme using a heap based
priority queue. Note that this approach requires the algo-
rithm to be modified to update the overall hypervolume contri-
bution of points whenever a slice is calculated in dimensions.

Section V describes an empirical comparison of the perfor-
mance of these methods.

V. EXPERIMENTS AND EVALUATION

We performed a series of experiments to explore issues with
IHSO and , and to determine the combination of heuris-
tics that offers the best performance. We used two types of data
in the experiments.

• We used randomly generated fronts, initialized by gener-
ating points with random values , , in all
objectives. In order to guarantee mutual nondomination,
we initialized and added each point to only if

would be mutually nondominating.
• We used the discontinuous and spherical fronts from the

DTLZ test suite [19]. For each front, we generated math-
ematically a representative set of 10 000 points from the
(known) Pareto optimal set: then to form a front of a given
size, we sampled this set randomly. We omit the linear front

from DTLZ because it gives very similar performance to
the spherical front, and we omit the degenerate front be-
cause it can be processed in polynomial time [9], [10], and
it is somewhat unrealistic anyway.

The DTLZ fronts may not realistically represent real-world
data, and therefore we believe that random fronts provide a
better performance baseline for most problems. As it is hard to
give performance comparisons for all front shapes and types,
random data may provide a better approximation of ’s
performance on these fronts than specific DTLZ fronts.

The data used in the experiments are available [22]. Source
code for our optimized algorithm is available from the same
site. All timings were performed on a dedicated 2.8 GHz Pen-
tium IV machine with 512 Mb of RAM, running Red Hat En-
terprise Linux 3.0. All algorithms were implemented in C and
compiled with gcc -O3. All times include the costs of calcu-
lating the heuristics, where appropriate.

A. Does Point-Ordering Matter?

We performed a series of experiments to establish whether the
time needed to identify the least-contributing point in a front de-
pends on the order in which the points in the front are processed.
Each graph in Fig. 7 shows five lines, each of which corresponds
to one front with 30 points in nine objectives. Each line plots
a continuous cumulative histogram of the distribution of times
needed to determine the least-contributing point for 50 000 ran-
domly generated point-orderings of that front. No objective-re-
ordering is applied.

Fig. 7 shows clearly that evaluating points in the right order
can make a huge difference to the performance of the algorithm.
The raw data show that typically the best order is processed
300–6000 times faster than the worst order, and 60–200 times
faster than the median order.

Thus, point-ordering will play an important role in optimizing
the performance of .

B. What Is the Best Algorithm?

We performed a series of experiments to identify a good com-
bination of heuristics to use in IHSO and . Each graph in
Figs. 8–10 shows the performance for varying front-sizes of the
six combinations of the following heuristics from Section IV.

• Point-ordering: Rank, volume, and the best-first queueing
scheme.

• Objective-ordering: Rank and dominated.
Other heuristics discussed in Section IV performed consis-

tently worse than those illustrated in the figures. The graphs
plot fronts up to 1000 points that can be processed in 1.5 s: this
should be a reasonable amount of time for an incremental hy-
pervolume calculation for most applications. Figs. 8–10 show
that using the BFQ approach gives the best results other than
in five objectives. Although BFQ loses slightly in five objec-
tives, this is probably as a result of the overhead caused by the
priority queue. If point reordering algorithms make perfect deci-
sions, they will always outperform the BFQ approach. However,
the savings made for more complex fronts outweigh the cost of
maintaining the queue as can be observed for all front types in
8 and 11 objectives. Additionally, using a point-ordering algo-
rithm rather than BFQ introduces a greater uncertainty in the

79

Fig. 7. Variation in processing time for ���� for different point-orderings.
The five lines on each graph each plot a continuous cumulative histogram of
the (log-scale) processing times for 50 000 distinct orderings for one front.
(a) Random fronts: 30 points in nine objectives. (b) Discontinuous fronts: 30
points in nine objectives. (c) Spherical fronts: 30 points in nine objectives.

results. A bad point-ordering decision can, in the worst case,
require the calculation of every point’s entire exclusive hyper-
volume. This effect is evident when comparing the BFQ/rank
algorithm to the rank/rank algorithm for random fronts, shown
in Fig. 9(a). While the results are reasonably close for most of
the data points, large fluctuations are observed.

Fig. 8. Comparison of the performance of ���� with various heuristic com-
binations. Each line plots the average processing time for 200 distinct fronts in
five objectives. The legend on the middle graph applies for all three. (a) Random
fronts in five objectives. (b) Discontinuous fronts in five objectives. (c) Spher-
ical fronts in five objectives.

For all discontinuous and random data, BFQ/rank compares
favorably to or beats all other objective heuristic and point-or-
dering techniques. This dominance increases with the number
of objectives.

For spherical data, the dominated heuristic performs ex-
tremely well. However, we believe spherical data is being
especially exploited by this heuristic. Examination of the data

\

80 CHAPTER 4. INCLUDED PAPERS

Fig. 9. Comparison of the performance of ���� with various heuristic
combinations. Each line plots the average processing time for 200 distinct
fronts in eight objectives. The legend on the middle graph applies for all
three. (a) Random fronts in eight objectives. (b) Discontinuous fronts in eight
objectives. (c) Spherical fronts in eight objectives.

reveals that a large proportion of the points are dominated early
if two particular objectives are processed first. As such, we be-
lieve that spherical data does not very well represent real-world
data. However, the dominated heuristic will, due to its nature,
provide better results for exploitable real-world fronts, where
many of the points contribute in only a small proportion of

Fig. 10. Comparison of the performance of ���� with various heuristic com-
binations. Each line plots the average processing time for 200 distinct fronts in
11 objectives. The legend on the middle graph applies for all three. (a) Random
fronts in 11 objectives. (b) Discontinuous fronts in 11 objectives. (c) Spherical
fronts in 11 objectives.

objectives. Additionally, the spherical data does point out a
reason why the BFQ approach is superior to point-ordering
heuristics. In all cases, BFQ commands a massive lead over
the point heuristics which demonstrates the sensitivity of our
point-ordering heuristics to front shapes. We take this as further
evidence that the BFQ technique is more robust than point-or-
dering techniques.

81

TABLE I
TYPICAL SIZES OF FRONTS IN VARIOUS NUMBERS OF OBJECTIVES THAT

���� CAN PROCESS IN 1 S

Table I shows what size of front optimized (rank
heuristic and BFQ) can process in 1 s, on average, for each
front-type. Average processing time is the most important
consideration, as IHSO will be called many times in a typical
MOEA run.

C. How Does Performance Vary With the Data?

Figs. 8–10 only plot the average performance of the various
algorithms as front size increases. We also performed a series
of experiments to investigate how the performance of optimized

varies for a given front with the nature of a front.
Each graph in Fig. 11 plots a histogram showing the distribu-

tion of times needed to process 50 000 different fronts of the rel-
evant type, and also the cumulative proportions of those fronts
that are processed within a given time.

While the great majority of fronts are processed very quickly,
there are cases where finding the least contributing point takes a
disproportionate amount of time. Such outliers could be due to
several factors. As the fronts become large, in some cases there
are many points that contribute similar hypervolumes and their
contribution may be difficult to calculate. For example, in the
case where every point contributes the same hypervolume, nei-
ther the point-ordering nor BFQ techniques help performance.

Thus, while the average performance of is extremely
good, this performance cannot be guaranteed for complex
fronts.

D. Does the Choice of Reference Point Affect Performance?
and Does Scaling Objective Values Affect Performance?

Choice of reference point can significantly affect perfor-
mance for the BFQ scheme. Fig. 12 illustrates these effects.

Each graph in Fig. 12 shows the performance of optimized
at points in 9-D for the relevant front type, with two

lines: the first plots time to determine the smallest point versus
reference point offset, averaged over 200 fronts, and the second
plots the same with all objectives scaled to . Keep in mind
that reference point offsets are relatively “larger” for the scaled
fronts, for example, compare point with reference point
of to a point with reference point . There-
fore, scaled and unscaled fronts are not necessarily comparable
for a given offset value.

The graphs show the observed results are due to several ef-
fects that result from a change in reference point. First, the
choice of reference point influences which point has the smallest
contribution. Second, regardless of whether a change in refer-
ence point changes which point is the smallest, a change in a

Fig. 11. Variation in processing time for optimized ���� for different fronts.
Each graph plots a histogram of the (log-scale) processing times for 50 000 dis-
tinct fronts, and also the proportion of the fronts that were processed within a
given time. (a) Random fronts: 650 points in nine objectives. (b) Discontinuous
fronts: 65 points in nine objectives. (c) Spherical fronts: 30 points in nine ob-
jectives.

point’s contribution may also require further calculation of other
points to prove that it is the smallest. Similar effects are caused
by scaling objectives.

Although the reference point should not be chosen for perfor-
mance criteria and rather so that the “best” points are retained,

82 CHAPTER 4. INCLUDED PAPERS

Fig. 12. Variation in processing time for optimized ���� for different ref-
erence points. Each graph plots the average (log-scale) processing time for 200
distinct fronts against the offset of the reference point from the worst value in
each objective. The graphs show ���� applied to raw data, and to data scaled
to ��� in each objective. The legend on the middle graph applies for all three.
(a) Random fronts: 650 points in nine objectives. (b) Discontinuous fronts: 65
points in nine objectives. (c) Spherical fronts: 30 points in nine objectives.

the resulting effect on performance should be kept in mind when
evaluating on difficult fronts.

VI. CONCLUSION AND FUTURE WORK

We have described a new algorithm for the calculation of
incremental hypervolume when used within evolutionary algo-
rithms, and techniques to apply this algorithm that minimize its

cost. By applying heuristics to reorder objectives, we are able to
increase the size of the fronts we are able to process. Addition-
ally, by applying a best-first queueing approach we are able to
calculate only as much of a point’s hypervolume as is necessary
to prove that it is not the smallest. We have demonstrated that,
in general, this approach is superior to processing points using
point reordering heuristics.

Through the combination of these techniques, we have de-
scribed a method to effectively deal with very large numbers of
points in many objectives within an EA. In doing so, the use
of hypervolume should be computationally practical in tackling
most complex real-world multiobjective problems. We recom-
mend the BFQ strategy and the rank objective heuristic as a
combination that performs well on a range of problems. How-
ever, better objective heuristics may exist for some particular
front types.

Given the introduction of recent work on hypervolume for
metric calculations, future work will look at adapting solutions
to the Klee’s measure problem to incremental hypervolume
calculations. This would involve an adaptation of ideas from the
Overmars and Yap algorithm to quickly perform incremental
hypervolume calculations, and the application of our BFQ
strategy for worst-point search. This new algorithm may also
benefit from objective reordering heuristics similar to those
described. Ideally, the combination of these works would allow
the use of hypervolume within EA optimization to be not only
practical but relatively inexpensive for all but the most difficult
problems.

ACKNOWLEDGMENT

The authors would like to thank S. Huband for providing the
raw DTLZ data, and K. Murray for advice on statistical issues.

REFERENCES

[1] R. Purshouse, “On the evolutionary optimization of many objectives,”
Ph.D. dissertation, Univ. of Sheffield, Sheffield, U.K., 2003.

[2] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications,” Ph.D. dissertation, Swiss Federal Inst.
Technol. (ETH, Zurich, Switzerland, 1999.

[3] M. Laumanns, E. Zitzler, and L. Thiele, “A unified model for multi-
objective evolutionary algorithms with elitism,” in Proc. Congr. Evol.
Comput., R. Eberhart, Ed., 2000, pp. 46–53.

[4] M. Fleischer and L. E. Thiele, “The measure of Pareto optima: Applica-
tions to multi-objective metaheuristics,” in Proc. Evol. Multi-objective
Opt., C. M. Fonseca, P. J. Fleming, E. Zitzler, and K. Deb, Eds., 2003,
vol. 2632, pp. 519–533.

[5] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fon-
seca, “Performance assessment of multiobjective optimizers: An anal-
ysis and review,” IEEE Trans. Evol. Comput., vol. 7, pp. 117–132, Apr.
2003.

[6] M. Fleischer, The measure of Pareto optima: Applications to multi-
objective metaheuristics Inst. Syst. Res., Univ. Maryland, College Park,
MD, Tech. Rep. ISR TR 2002–32, 2002.

[7] E. Zitzler, “Hypervolume metric calculation.” 2001 [Online]. Avail-
able: ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c

[8] J. Knowles, “Local-search and hybrid evolutionary algorithms for
Pareto optimization,” Ph.D., Univ. Reading, Reading, U.K., 2002.

[9] L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm
for calculating hypervolume,” IEEE Trans. Evol. Comput., vol. 10, pp.
29–38, Feb. 2006.

[10] L. While, L. Bradstreet, L. Barone, and P. Hingston, “Heuristics for op-
timizing the calculation of hypervolume for multi-objective optimiza-
tion problems,” in Proc. Congr. Evol. Comput., B. McKay, Ed., 2005,
pp. 2225–2232.

83

[11] N. Beume and G. Rudolph, “Faster s-metric calculation by considering
dominated hypervolume as Klee’s measure problem,” Univ. Dortmund,
Dortmund, Germany, Tech. Rep. CI 216/06, 2006.

[12] M. H. Overmars and C.-K. Yap, “New upper bounds in Klee’s measure
problem,” SIAM J. Computing, vol. 20, no. 6, pp. 1034–1045, Dec.
1991.

[13] C. M. Fonseca, L. Paquete, and M. López-Ibáñez, “An improved
dimension-sweep algorithm for the hypervolume indicator,” in Proc.
Congr. Evol. Comput., C. L. P. Chen, Ed., 2006, pp. 3973–3979.

[14] S. Huband, P. Hingston, L. While, and L. Barone, “An evolution
strategy with probabilistic mutation for multi-objective optimization,”
in Proc. Congr. Evol. Comput., H. Abbass and B. Verma, Eds., 2003,
pp. 2284–2291.

[15] J. Knowles, D. Corne, and M. Fleischer, “Bounded archiving using the
Lebesgue measure,” in Proc. Congr. Evol. Comput., H. Abbass and B.
Verma, Eds., 2003, pp. 2490–2497.

[16] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Proc. Parallel Problem Solving from Nature VIII, X. Yao,
E. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervos, J. A. Bullinaria,
J. Rowe, P. Tino, A. Kaban, and H. Schwefel, Eds., 2004, vol. 3242,
pp. 832–842.

[17] M. Emmerich, N. Beume, and B. Noujoks, “An EMO algorithm using
the hypervolume measure as selection criterion,” in Proc. Evol. Multi-
Objective Opt., M. Emmerich, N. Beume, B. Naujoks, C. A. C. Coello,
A. H. Aguirre, and E. Zitzler, Eds., 2005, vol. 3410, pp. 62–76.

[18] , T. Bäck, Ed., Handbook of Evolutionary Computation. Oxford,
U.K.: Oxford Univ. Press, 1997.

[19] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-ob-
jective optimization test problems,” in Proc. Congr. Evol. Comput., R.
Eberhart, Ed., 2002, pp. 825–830.

[20] L. Bradstreet, L. Barone, and L. While, “Maximizing hypervolume for
selection in multi-objective evolutionary algorithms,” in Proc. Congr.
Evol. Comput., C. L. P. Chen, Ed., 2006, pp. 1744–1751.

[21] L. Bradstreet, L. Barone, and L. While, “Incrementally maximizing
hypervolume for selection in multi-objective evolutionary algorithms,”
in Proc. Congr. Evol. Comput., A. Tay, Ed., 2007, pp. 3203–3210.

[22] Hypervolume Test Data “Walking fish group”, 2006. [Online]. Avail-
able: http://wfg.csse.uwa.edu.au/Hypervolume

Lucas Bradstreet (S’06) received a BCM degree
in computer and mathematical sciences from the
University of Western Australia, Nedlands, in 2004.
He is currently working towards the Ph.D. degree
at the School of Computer Science and Software
Engineering, University of Western Australia.

His research interests include multiobjective evo-
lutionary algorithms and metrics and benchmarks for
assessing their performance.

Lyndon While (M’01–SM’04) received the
B.Sc.(Eng) and Ph.D. degrees from the Imperial
College of Science and Technology, London, U.K.,
in 1985 and 1988, respectively.

He is currently a Senior Lecturer in the School of
Computer Science and Software Engineering, Uni-
versity of Western Australia. His research interests
include evolutionary algorithms, multiobjective opti-
mization, and the semantics and implementation of
functional programming languages.

Luigi Barone (M’01) received the B.Sc. and Ph.D.
degrees from the University of Western Australia,
Nedlands, in 1994 and 2004, respectively.

He is currently an Associate Lecturer in the School
of Computer Science and Software Engineering, Uni-
versity of Western Australia. His research interests
include evolutionary algorithms and their use for op-
timization and opponent modeling, and the modeling
of biological systems.

84 CHAPTER 4. INCLUDED PAPERS

85

Paper 3 Errata (Refereed)

L. Bradstreet, L. While, and L. Barone. Incremental Hypervolume by Slicing Ob-

jectives: a Correction to the Pseudo-code. IEEE Transactions on Evolutionary

Computation, 13(5):1193–1193, November 2009

86 CHAPTER 4. INCLUDED PAPERS

Incremental Hypervolume by Slicing Objectives:
a Correction to the Pseudo-code

Lucas Bradstreet, Student Member, IEEE, Lyndon While, Senior Member, IEEE, and Luigi Barone, Member, IEEE,

Abstract—This letter describes a correction to the pseudo-
code of the IHSO algorithm published in A Fast Incremental
Hypervolume Algorithm in IEEE TEC in December 2008.
Index Terms—Multi-objective optimisation, evolutionary com-

putation, diversity, performance metrics, hypervolume.

BRADSTREET et al. [1] describes the IHSO (Incremen-
tal HSO) algorithm for calculating and comparing the

exclusive hypervolumes [2]–[4] of a set of nD points. IHSO
is a variant of the HSO (Hypervolume by Slicing Objectives)
algorithm [5]–[7], fine-tuned for minimising the calculations
required for incremental use and for finding the point in a
set that contributes the least exclusive hypervolume. IHSO is
the fastest exact incremental hypervolume algorithm known to
date.
However, the pseudo-code for IHSO given in Fig. 4 of [1]

contains an error that might prevent its easy implementation.
A corrected version of the pseudo-code is given in Fig. 1
opposite. The corrected part is the body of the final loop of the
first procedure ihso: the three relevant lines are marked with
a *. For completeness, Fig. 1 also contains some procedures
that were given in Fig. 2 of [1].
We apologise for this error and for any difficulties that it

may have caused. We are grateful to Louis-Claude Canon of
Nancy University and Kiyoharu Tagawa of Kinki University
for bringing the error to our attention, and to the latter for
suggesting a correction.

REFERENCES
[1] L. Bradstreet, L. While, and L. Barone, “A fast incremental hypervolume

algorithm,” IEEE Transactions on Evolutionary Computation, vol. 12,
no. 6, pp. 714–723, December 2008.

[2] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications,” Ph.D. dissertation, Swiss Federal Institute of
Technology (ETH) Zurich, Switzerland, 1999.

[3] M. Laumanns, E. Zitzler, and L. Thiele, “A unified model for multi-
objective evolutionary algorithms with elitism,” in Congress on Evolu-
tionary Computation, R. Eberhart, Ed. IEEE, 2000, pp. 46–53.

[4] M. Fleischer, “The measure of Pareto optima: Applications to multi-
objective metaheuristics,” in Evolutionary Multi-objective Optimisation,
ser. Lecture Notes on Computer Science, C. M. Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, and L. Thiele, Eds., vol. 2632. Springer-Verlag, 2003,
pp. 519–533.

[5] E. Zitzler, “Hypervolume metric calculation,” 2001. [Online]. Available:
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c

[6] J. Knowles, “Local-search and hybrid evolutionary algorithms for Pareto
optimisation,” Ph.D. dissertation, The University of Reading, United
Kingdom, 2002.

[7] L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm for
calculating hypervolume,” IEEE Transactions on Evolutionary Computa-
tion, vol. 10, no. 1, pp. 29–38, February 2006.

The authors are with The University of Western Australia.

ihso (z, ps):
pl = sort ps worsening in Objective 1
s = {(1, pl)}
for k = 1 to n-1
s’ = {}
for each (x, ql) in s
for each (x’, ql’) in slice (z, ql, k)
add (x * x’, ql’) into s’

s = s’
vol = 0
for each (x, ql) in s

* if ql = []
* then vol = vol + x * |z(n) - refPoint[n]|
* else vol = vol + x * |z(n) - head(ql)[n]|

return vol

slice (z, pl, k):
ql = []
s = {}
v = z[k]
dominated = false
while pl /= [] and not dominated
p = head (pl)
pl = tail (pl)
if v beats p[k]
then add (|v - p[k]|, ql) into s

v = p[k]
ql = insert (p, k+1, ql)
dominated = dominates (p, z, k+1)

if not dominated
then add (|v - refPoint[k]|, ql) into s

return s

insert (p, k, pl):
ql = []
while pl /= [] && head (pl)[k] beats p[k]
append head (pl) to ql
pl = tail (pl)

append p to ql
while pl /= []
if not (dominates (p, head (pl), k))
then append head (pl) to ql

pl = tail (pl)
return ql

dominates (p, q, k):
d = True
while d && k <= n
d = not (q[k] beats p[k])
k = k + 1

return d

Fig. 1. Pseudo-code for IHSO.

87

88 CHAPTER 4. INCLUDED PAPERS

89

Paper 4 (Refereed)

L. Bradstreet, L. While, and L. Barone. Incrementally Maximising Hypervolume

for Selection in Multi-Objective Evolutionary Algorithms. In 2007 IEEE Congress

on Evolutionary Computation (CEC’2007), pages 3203–3210, Singapore, September

2007. IEEE Press

90 CHAPTER 4. INCLUDED PAPERS

Incrementally Maximising Hypervolume for Selection in
Multi-objective Evolutionary Algorithms

Lucas Bradstreet, Student Member, IEEE, Lyndon While, Senior Member, IEEE, and Luigi Barone, Member, IEEE

Abstract— Several multi-objective evolutionary algorithms
compare the hypervolumes of different sets of points during
their operation, usually for selection or archiving purposes. The
basic requirement is to choose a subset of a front such that
the hypervolume of that subset is maximised. We describe and
evaluate three new algorithms based on incremental calculations
of hypervolume using the new Incremental Hypervolume by
Slicing Objectives (IHSO) algorithm: two greedy algorithms
that respectively add or remove one point at a time from a
front, and a local search that assesses entire subsets. Empirical
evidence shows that using IHSO, the greedy algorithms are
generally able to out-perform the local search and perform
substantially better than previously published algorithms.

I. INTRODUCTION

Multi-objective problems are common in the optimisation
field and much of the current research into evolutionary
algorithms revolves around the theory and practice of multi-
objective optimisation. Many evolutionary algorithms have
been created in order to solve these difficult problems, e.g.
SPEA [1], NSGA-II [2]. However, despite recent work, there
remains the question of how to compare the performance
of different multi-objective optimisation (MOO) algorithms.
The result of a multi-objective algorithm is a set of solutions,
a non-dominated front, representing a trade-off between
objectives. A popular metric used to compare these fronts
is the hypervolume measure (otherwise known as the S-
metric [3] or the Lebesgue measure [4]). Hypervolume is
the n-dimensional space that is “contained” by the points
(solutions) in a front. A front with a larger hypervolume is
likely to present a better set of trade-offs to a user than one
with a smaller hypervolume.

While most research into hypervolume has revolved
around its use as a metric, recent research has seen it
applied during the operation of Multi-objective Evolutionary
Algorithms (MOEAs). An example of a technique used in
this way is Deb’s [2] NSGA-II crowdedness comparison
operator, used to select solutions within a front to minimise
solutions crowding in each objective. Knowles et al. [5]
introduced the use of hypervolume during optimisation. They
describe a bounded archiving algorithm that retains the ‘best’
solutions found throughout optimisation. As this archive is
potentially of unbounded size, they apply hypervolume to
determine the solutions that maximise the coverage of the

The authors are with the School of Computer Science & Software
Engineering, The University of Western Australia, Crawley 6009, Aus-
tralia (phone: +61864881944; fax: +61864881089; email: {lucas, lyndon,
luigi}@csse.uwa.edu.au).

solution set. During optimisation, when a new solution is
added to this bounded archive, the solution that contributes
the least hypervolume is removed.

Emmerich et al. [6] extend this idea to selection in a 2
dimensional MOEA in their optimiser SMS-EMOA. Rather
than applying bounded archiving, in selection they apply
hypervolume to remove the solution that contributes the least
hypervolume from the worst ranked front. By doing so, they
reduce the size of the population in order to provide room
for the next generation. This concept has been extended by
Naujoks et al. [7] for 3 objective MOEAs.

While this idea has merit and has achieved excellent
experimental results, it has some limitations. One such lim-
itation is the use of a steady state MOEA. Emmerich et
al. use a steady state MOEA because finding the optimal
composition that maximises the hypervolume of a reduced
front is a difficult problem and the effectiveness of heuristic
approaches is unknown. However, in some cases a steady
state MOEA may not achieve as high quality results as
other MOEAs. Furthermore, these MOEAs do not apply
hypervolume selection for more than 3 objectives.

The main contribution of this paper is a comparison
between front selection algorithms based on hypervolume,
using recent incremental hypervolume algorithms designed
for this task. A previous paper by Bradstreet et al. [8]
compared two front reduction algorithms: a greedy approach
and a local search algorithm that each attempt to max-
imise the hypervolume of reduced fronts. New incremental
hypervolume techniques that calculate a point’s exclusive
hypervolume, due to Bradstreet et al. [9], are easily incorpo-
rated into these algorithms and warrants a new comparison
between front selection algorithms.

The use of an incremental hypervolume approach, in lieu
of the metric method used in [8], reduces the cost of point
removal using the greedy method. We introduce two greedy
front selection techniques using an incremental approach.
These approaches iteratively reduce or increase the size of
the selected front until it reaches the desired size. Use of an
incremental hypervolume algorithm also benefits the local
search front selection technique. It does so by reducing
the cost of evaluating new front selections that result from
changing relatively few points. The presence of these new
techniques merits revisiting the comparison between these
approaches in order to determine which technique should
be recommended for general use. We find that new greedy
selection techniques provide effective for front selection

91

when retaining a various proportions of a front.
The rest of this paper is structured as follows. Section II

defines the concepts and notation used in multi-objective
optimisation. Section III defines the front reduction tech-
niques that we have created and why we may use them.
Section IV gives empirical data, for a variety of front
types, demonstrating situations where each front reduction
technique is valuable and why. Section V concludes the paper
and outlines future work.

II. FUNDAMENTALS

In a multi-objective optimisation problem, we aim to find
the set of optimal trade-off solutions known as the Pareto
optimal set. Pareto optimality is defined with respect to the
concept of non-domination between points in objective space.
Given two objective vectors x̄ and ȳ, x̄ dominates ȳ iff x̄ is
at least as good as ȳ in all objectives, and better in at least
one. A vector x̄ is non-dominated with respect to a set of
solutions X iff there is no vector in X that dominates x̄.
X is a non-dominated set iff all vectors in X are mutually
non-dominating. Such a set of objective vectors is sometimes
called a non-dominated front.

A vector x̄ is Pareto optimal iff x̄ is non-dominated with
respect to the set of all possible vectors. Pareto optimal
vectors are characterised by the fact that improvement in any
one objective means worsening at least one other objective.
The Pareto optimal set is the set of all possible Pareto optimal
vectors. The goal in a multi-objective problem is to find
the Pareto optimal set, although for continuous problems a
representative subset will usually suffice.

Given a set X of solutions returned by an algorithm, the
question arises how good the set X is, i.e. how well it
approximates the Pareto optimal set. One metric used for
comparing sets of solutions is to measure the hypervolume
of each set. The hypervolume of X is the size of the space
that is dominated by the solutions in X . The hypervolume
of a set is measured relative to a reference point, usually the
anti-optimal point or “worst possible” point in space. (We do
not address here the problem of choosing a reference point,
if the anti-optimal point is not known or does not exist: one
suggestion is to take, in each objective, the worst value from
any of the fronts being compared.) If a set X has a greater
hypervolume than a set X , then X is taken to be a better set
of solutions than X .

Knowles [5] applies hypervolume in order to recast
multi-objective problems as single objective problems with
the single goal of maximising the hypervolume of a set
of solutions, bounded in size. As this set is of finite size,
when adding a solution to this set another must often be
removed to make room. This is achieved by removing the
solution contributing the minimal ‘exclusive hypervolume’
to the front. The exclusive hypervolume contribution,
∆s, of a solution, p, to a front, f , can be defined
as ∆s = Hypervolume(f ∪ {p})−Hypervolume(f).
Following this definition, one realises that over the course of
operation the hypervolume of the set of archived solutions
is maximised.

Emmerich et al. [6] apply this technique to selection in
a MOEA. Rather than maintaining an archive of solutions,
hypervolume is used to determine which solutions should
be allowed to reproduce and which should be thrown away.
When a front is too large to be included in the population
during selection, hypervolume is used to reduce its size. The
solution that contributes the smallest hypervolume to the
worst ranked front is removed from the front with the aim
of maximising the hypervolume of the population during the
lifetime of the MOEA.

III. POINT REMOVAL TECHNIQUES

When using hypervolume as a selection metric, we wish
to reduce the size of non-dominated fronts. Ideally we wish
to find a front composition that maximises the hypervolume
of the reduced front. However, in order to guarantee an
optimally composed front, it is necessary to calculate all

(
n
m

)

subsets of the front, where n is the size of the front and m is
the size of the reduced front. Calculating all possible subset
combinations is extremely expensive if even a small number
of solutions are to be removed. In order to work around
this problem, Emmerich et al. use a steady state MOEA,
where only one point is removed at a time. However, use of
steady state MOEAs may not always be desirable. Therefore
alternative approaches to using hypervolume for selection
should be researched.

We present three new techniques: a search algorithm,
and two greedy algorithms that either add or remove a
single solution until a front of the desired size is created.
These algorithms are each useful in different front selection
scenarios, and we thus aim to identify these so the algorithms
can be incorporated effectively into an MOEA that uses
hypervolume for selection.

These algorithms have been adapted from [8] to use an
incremental hypervolume algorithm, IHSO, that provides
performance benefits for front selection. The Incremental
Hypervolume by Slicing Objectives (IHSO) algorithm, due
to Bradstreet et al. [9] is able to quickly calculate the
hypervolume exclusively contributed by a point, p, relative
to a set of points.

A. Greedy Front Reduction Algorithms

Greedy front reduction schemes remove or add a single
point at a time without regard for whether that choice will
lead to a worse overall front selection. Bradstreet et al. [8]
previously used the HSO hypervolume algorithm for metric
calculations to reduce the number of points. This was done
by calculating the hypervolume of the entire front missing a
single point. The point chosen is the one that maximises the
hypervolume of the front when it is removed. Unfortunately,
this method is very slow as HSO is not designed for this
kind of use and will make many unnecessary calculations.
We present two alternative greedy techniques that quickly
select a subset of the points using IHSO.

92 CHAPTER 4. INCLUDED PAPERS

Evaluate each point a bit
Identify the smallest point
while the smallest point is not completed

Evaluate the smallest point a bit more
Identify the new smallest point

return the smallest point

Fig. 1. Outline of the best-first queuing scheme in IHSO*.

1) Greedy Front Reduction Algorithm using IHSO: In
order to remove the worst point from a front we use the
following scheme described in Bradstreet et al. [9].

This algorithm in Fig. 1 is applied iteratively until the front
is pruned to the desired size. The algorithm is considered
greedy as the removal of a single point in each iteration may
not result in an optimal front selection when additional points
are removed.

After each iteration, in which a single point is eliminated
from the front, the hypervolume contributions calculated in
the last iteration will be discarded. The removal of the point
means that contributions calculated thus far may be incorrect
due to the removed point sharing contributions exclusively
with other points.

However, it is possible to significantly optimise perfor-
mance in cases where one ore more point contributions are
not affected. These contributions can be retained for the next
iteration. We use a simple scheme that improves run-time
considerably. This scheme examines the slices calculated by
IHSO thus far. If the removed point has not been used in
any slice yet it is removed from all slices. In this case, the
point has not influenced the contribution of the point and the
hypervolume is retained. If the removed point has already
been examined (i.e. may have had an effect on the contributed
hypervolume so far) the point’s contributed hypervolume
is set to zero and hypervolume contribution calculation is
restarted.

2) Greedy Front Addition Algorithm using IHSO: An
alternative approach builds up the the reduced size front from
an empty front.

Given a non-dominated front, S, with n solutions, retain-
ing m solutions.

SS = S
RS = {}
Repeat until RS contains m solutions

Find the solution s in SS that contributed
the maximum hypervolume to RS

Move s from SS to RS
return RS

This approach should have performance advantages when
only a small proportion of the front is retained. Under
this algorithm, the hypervolume contributions of each point
will need to be calculated entirely, however each evaluation
should be computationally cheap when the front is small.
When a small proportion of the front is removed this algo-
rithm will be very slow as it does not benefit from best first
search and will require more iterations than the reduction
method.

3) Greedy Algorithm Discussion: Unfortunately, this
scheme may be computationally expensive in cases in which
a large number solutions are removed. In order to remove
a single solution from a front containing m solutions, m
hypervolume contribution calculations are required.

Thus, in order to remove m solutions from the front using
algorithm 2, up to

∑p
i=1 m − 1 + 1 IHSO evaluations are

required. Furthermore, for large fronts the cost of each hyper-
volume evaluation may be expensive due to the exponential
complexity of current hypervolume algorithms, as proved by
While et al. [10], [11]. As a result of this computational
complexity, a local search may be more desirable for large
fronts or many objectives.

To implement the greedy algorithms above, we apply
the Incremental Hypervolume By Slicing Objectives (IHSO)
algorithm using the rank heuristic and best first search
described by Bradstreet et al. [9]. Use of this algorithm and
search strategy allows us to determine the worst point from
large fronts very quickly. While IHSO still has exponential
complexity, these techniques improve run-time substantially
compared to the naive greedy scheme that uses HSO [8].

B. Front Reduction by Local Search

In contrast to the greedy front reduction method, Brad-
street et al. propose a local search algorithm [8]. Local
search achieves good performance in cases where a large
proportion of solutions are eliminated from a front. Rather
than perform numerous expensive hypervolume evaluations,
using the entire front in early calculations, the local search
technique performs a larger number of computationally
cheaper hypervolume evaluations on reduced size fronts. As a
result, even though the local search requires more individual
hypervolume evaluations, this method can be faster than the
front reduction method if a large number of points is removed
(see Bradstreet et al. [8]).

Additionally, the local search scheme has the following
benefits:

• One can bound the time taken by the algorithm and still
achieve useful results.

• Use may result in higher quality fronts than the greedy
approach. This is due to cases where the greedy algo-
rithm removes solutions that may be desirable in the
reduced front but that contribute little in the full front.
This effect is due to regions covered by other points
that do not exist in the optimal reduced front.

1) HV Local Search: Bradstreet et al.’s [8] hypervolume
front reduction local search algorithm operates as follows:

1) Generate initial front composition.
2) Perturb the front (resulting in a modified front of the

same size).
3) Accept the new front composition as the current front

if it has a better hypervolume.
4) Repeat steps 2-4 until run-time constraint is exceeded.

We compared other search methodologies, such as Sim-
ulated Annealing and Evolutionary Algorithms, and found

93

that they did not achieve major improvements compared to
a local search in the tested time frames.

The local search algorithm adapted from [8] uses IHSO
to evaluate the hypervolume of new front compositions
that differ from the previous front by a small number of
points. Using IHSO to remove and add a small proportion of
points will be faster than completely recalculating the entire
hypervolume of the front using HSO.

IV. EXPERIMENTS

We evaluated the front reduction techniques on two distinct
fronts from the DTLZ [12] test suite: the spherical front and
the discontinuous front. For each front, we mathematically
generated a representative set of 10,000 points from the
(known) Pareto optimal set: then to generate a front of size
m, we sampled this set randomly. The linear front from
DTLZ gives similar results to the spherical front, and the
degenerate front gives anomalous results as its hypervolumes
can be calculated in polynomial time [13].

We also tested the techniques on randomly generated
fronts. For these fronts we generated sets of m mutually
non-dominating points in n objectives simply by generating
points with random values x, 0.1 ≤ x ≤ 10, in all objectives.
In order to guarantee mutual non-domination, we initialised
S = φ and added each point x to S only if x̄ ∪ S would
be mutually non-dominating. We kept adding points until
|S| = m.

Reference points are determined by the method used by
Naujoks et al. [7], where the reference point takes the worst
value in each dimension in the front shifted by 1.0 in each
dimension. Discontinuous and spherical fronts were cast as
minimisation problems, while random fronts were cast as a
maximisation problem.

Firstly the greedy front reduction algorithm was run on
a diverse range of front types (varying objective functions,
numbers of objectives, numbers of points) to determine an
acceptable front composition containing half the individuals
in a front. For each of these front types, we ran the greedy
algorithm and local search on five different fronts. The local
search was allowed to run for twice as long as the greedy
front reduction method. We gave the local search additional
run-time in order to determine whether it can achieve better
selections when computation time is not a high priority. The
local search was run five times on each front and these results
averaged.

Results relating to hypervolumes are shown as a ratio of
the hypervolume of the selected front and the hypervolume
of the full front. This ratio is intended to give an assessment
of how closely the reduced front covers to space covered by
the full front.

All timings were performed on a dedicated Apple iMac
with Intel 2.16GHz Core 2 Duo processor and 3GB of RAM,
running Mac OS X 10.4.8. All algorithms were implemented
in C and compiled using gcc 4.0.1 using the -O3 compiler
flag.

A. Experiments retaining 80% of the front

Tables I, II and III demonstrate that the performance of
the greedy reduction algorithm using IHSO is superior to
local search when 80% of the front is retained. For all front
types the local search is unable to achieve front selections
with hypervolumes as good as the greedy reduction approach
when given comparable time.

The greedy addition method results in front selections that
are equivalent to the reduction approach. However, it takes
much longer to do so in a majority of cases (28 times longer
in the case of random 5d). This partially results from the
fact that greedy addition does not benefit the use of best first
search and must calculate every contribution in its entirety.
Furthermore, it requires more iterations than the reduction
approach which only has to remove a small proportion of
the front when most of the front is retained. Consequently,
we do not recommend the addition method in cases where a
large proportion of the front is retained.

B. Experiments retaining 50% of the front

Tables IV, V and VI demonstrate that the performance
of the greedy algorithms using IHSO is superior to local
search when half of the front is removed. Unlike the previous
results in Bradstreet et al. [8], local search is unable to
provide a competitive solution when given twice as much
computation time. While the local search gains performance
improvements as a result of the incorporation of IHSO, the
greedy algorithms used in this paper are many times faster
than the naive greedy approach.

In most cases both greedy algorithms find front selections
that have equivalent hypervolumes. While they differ for
several fronts, each approach does have situations in which
they obtain better selections. As far as run-time is concerned,
the reduction approach has superior performance for ran-
dom fronts. However, the addition approach has superior
performance for spherical fronts. For discontinuous data,
Each is competitive for different front sizes and numbers of
objectives. We believe that the performance of each approach
is very dependent on the type of data. This effect is possibly
increased by the overall effect of heuristics and the best-first
search used by the reduction approach. For example, as the
heuristics do not perform well on spherical fronts, the fact
that the addition approach performs hypervolume evaluations
on small fronts is a great advantage. In contrast, for random
data, where best-first search and heuristics improve IHSO’s
performance greatly (see Bradstreet et al. [9]), the reduction
approach performs very well.

C. Experiments retaining 20% of the front

Bradstreet et al. [8] previously showed that local search is
very competitive with other techniques when a majority of
the front is removed. However, that paper only compares
the naive greedy reduction approach to local search. The
new greedy reduction approach, using IHSO, compares more
favourably to the local search, and finds better front selec-
tions in the majority of cases (see Tables VII-IX).

94 CHAPTER 4. INCLUDED PAPERS

TABLE I
SPHERICAL DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 80% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 200 6.93 0.999983 52.54 0.999983 0.999520 0.999785 0.991415
6 120 8.00 0.999963 56.95 0.999962 0.997878 0.998907 0.990084
7 80 28.78 0.999869 48.08 0.999869 0.998483 0.999405 0.988738
8 60 32.24 0.999867 62.90 0.999867 0.997379 0.998599 0.984024
9 40 13.73 0.999748 10.92 0.999748 0.995567 0.997278 0.979463

TABLE II
DISCONTINUOUS DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 80% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 300 5.54 0.999866 97.43 0.999866 0.997916 0.998854 0.984556
6 150 4.58 0.999175 90.01 0.999175 0.989416 0.993200 0.972714
7 80 2.03 0.997814 30.05 0.997814 0.936433 0.982418 0.956477
8 45 1.01 0.994320 6.17 0.994320 0.958196 0.972569 0.937695
9 40 3.12 0.989953 12.38 0.989953 0.882196 0.969089 0.928322

TABLE III
RANDOM DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 80% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 200 0.17 0.999901 5.05 0.999901 0.976755 0.988297 0.950789
6 100 0.16 0.999781 1.96 0.999781 0.946305 0.973519 0.923245
7 70 0.37 0.999795 2.03 0.999795 0.906626 0.968238 0.895972
8 50 0.76 0.999649 2.17 0.999649 0.830657 0.928200 0.868234
9 40 1.09 0.999644 2.62 0.999644 0.689511 0.916466 0.861498

TABLE IV
SPHERICAL DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 50% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 200 19.89 0.999664 17.37 0.999664 0.999474 0.999574 0.973390
6 120 20.53 0.999307 15.04 0.999302 0.998291 0.998843 0.966192
7 80 60.48 0.998518 7.11 0.998515 0.997897 0.998231 0.960005
8 60 70.17 0.997905 5.81 0.997897 0.996700 0.997493 0.947553
9 40 23.69 0.996841 1.06 0.996771 0.995490 0.996382 0.932470

TABLE V
DISCONTINUOUS DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 50% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 300 14.15 0.997429 32.49 0.997421 0.994376 0.996100 0.947237
6 150 9.59 0.988378 19.07 0.988371 0.972854 0.980517 0.909812
7 80 3.74 0.975898 4.83 0.975903 0.939631 0.956333 0.863012
8 45 1.41 0.944419 0.69 0.944419 0.907395 0.925562 0.800250
9 40 4.09 0.937734 1.02 0.937800 0.906253 0.924329 0.771831

95

TABLE VI
RANDOM DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 50% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 200 0.57 0.995742 2.62 0.995742 0.941199 0.971844 0.845316
6 100 0.28 0.993940 0.87 0.993940 0.873711 0.930382 0.767120
7 70 0.26 0.993271 0.67 0.993271 0.839151 0.893817 0.720372
8 50 0.21 0.990495 0.48 0.990495 0.720431 0.862161 0.653691
9 40 0.28 0.983387 0.44 0.983387 0.744885 0.860619 0.621136

TABLE VII
SPHERICAL DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 20% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 200 21.36 0.996655 0.58 0.996654 0.996581 0.996635 0.920630
6 120 23.18 0.991394 0.26 0.991358 0.991308 0.991381 0.899922
7 80 61.78 0.985356 0.08 0.985331 0.985415 0.985441 0.883446
8 60 72.00 0.979722 0.05 0.979637 0.979780 0.979780 0.857163
9 40 23.51 0.968414 0.01 0.968315 0.968565 0.968565 0.816699

TABLE VIII
DISCONTINUOUS DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 20% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 300 16.98 0.976898 1.95 0.976738 0.975666 0.976295 0.859237
6 150 11.01 0.925353 0.59 0.924692 0.921766 0.923866 0.768118
7 80 4.11 0.876777 0.09 0.876301 0.875112 0.876464 0.665712
8 45 1.54 0.770361 0.01 0.769618 0.769024 0.769943 0.556917
9 40 4.27 0.756236 0.01 0.756325 0.756673 0.756773 0.501841

TABLE IX
RANDOM DATA: TIMINGS AND HYPERVOLUME COMPARISON FOR GREEDY ALGORITHMS AND LOCAL SEARCH, RETAINING 20% OF THE FRONT.

Pt Reduction Pt Addition Local Search HV ratios Random front selections
obj # pts Time (s) HV ratio Time (s) HV ratio Equivalent time Twice time HV ratio

5 200 0.94 0.946104 0.32 0.946104 0.933146 0.940626 0.636039
6 100 0.40 0.937245 0.06 0.937219 0.914438 0.927559 0.502814
7 70 0.31 0.914051 0.03 0.914081 0.886285 0.898815 0.405025
8 50 0.21 0.895494 0.01 0.895494 0.866009 0.886169 0.342082
9 40 0.26 0.859679 0.01 0.859679 0.848643 0.854726 0.295887

Furthermore, the new greedy addition approach is particu-
larly suited for front selection retaining small proportions of
the front. In these cases, only a small number of iterations
of the addition algorithm are required – many less than
the reduction approach. Additionally, IHSO evaluations will
be performed on much smaller fronts, which is a boon
given IHSO’s exponential complexity. Experiments show that
greedy addition reduces run-time, compared to reduction, by
63.6% (Random 5d 200pts) to 99.96% (Spherical 9d 40pts).
Each approach finds fronts with similar hypervolumes, but
for some cases the reduction approach does result in slightly
better front selections than addition. Addition achieves fronts

with better hypervolumes in a minority of cases.

That the reduction approach finds better front selections
may be due to the fact that during the first few iterations of
the addition algorithm, IHSO has little context when adding
points to the front. For example, the selection of the first
point added will be due to a hypervolume contribution that
is the outright hypervolume of that point.

In contrast, cases where large numbers of points are
removed can also result in the greedy reduction approach
performing badly. One possible cause is due to the result of
removing points during the early iterations of the algorithm.
As these point contributions are based on the current selected

96 CHAPTER 4. INCLUDED PAPERS

front they are based on fronts containing points that are
removed later. As only 20% of the front is retained the
current state of the selected front is very dissimilar to the
final front selection.

Ignoring these flaws in the greedy algorithms, the greedy
addition approach is able to generate good selections much
quicker than the reduction approach. As the addition ap-
proach only has to add 20% of the points, and all of
the IHSO calculations operate on small fronts it is able
to quickly select a front. In the case of spherical data in
9d, the reduction approach takes 2500 times longer than
the addition approach and the produced fronts have the
same hypervolume. Furthermore, the results achieved when
the local search is given equivalent computation time to
reduction approach are always worse than either greedy
algorithm.

D. Experimental Discussion

The results achieved by the new greedy approach are
generally favourable in comparison to the local search in
terms of the run-time and hypervolumes of selected fronts.
In the case where 80% and 50% of the front is retained, the
new greedy reduction approach gives superior results to the
local search. Similarly, when 20% of the front is retained the
greedy addition approach is recommended.

Bear in mind that small changes in hypervolume may
relate to substantially improved coverage of the front. For
example, while a reduced front with only one solution may
have a hypervolume that is very close to that of the original
front, this is not a desirable result and we still wish for
the best possible coverage of the Pareto front. Given a
particular choice of reference point, front selections may
result in hypervolumes that are similar to many decimal
places, however differ greatly in terms of quality. As such,
whether one algorithm outperforms another algorithm in
terms of hypervolume is perhaps more important than the
magnitude of difference.

We have included figures in Tables I-IX that show the
hypervolume averages obtained for 100 random front se-
lections. These are intended to be used as a gauge of the
importance of any difference in hypervolumes obtained by
the different techniques. For example, if a random selection
obtains a hypervolume ratio close to 1 then a small difference
between the hypervolumes obtained by different techniques
may be very important. For example, random front selec-
tions for Spherical 5d 200pts in Table I average a ratio of
0.991415, and therefore the 0.00046 difference between the
greedy approaches and local search is probably significant.

V. CONCLUSIONS AND FUTURE WORK

The overall conclusion given in the comparison between
local search and greedy selection in Bradstreet et al. [8] was
that local search is competitive in most cases except for when
a majority of a front is retained. Results for 50% and 80%
of front removal showed that local search is a candidate for
use in a hypervolume selection based MOEA.

However, the use of IHSO and other new techniques in
this paper leads to different conclusions. Local search is
now competitive with the greedy techniques only when a
majority of the front is removed. In all other cases the
new greedy reduction algorithm finds good front selections
quicker and more reliably. Furthermore, when comparing the
greedy addition method to the local search algorithm, the
local search is unable to give comparable front selections
in equivalent computation time for the 20% retained fronts.
As the addition method gives similar front selections to the
reduction method in a greatly reduced time, we believe that
a combination of the reduction method and addition method
provide an excellent overall solution for reducing a front to
any size within an MOEA.

The introduction of recent work by Beume and
Rudolph [14] that uses the Overmars and Yap algorithm [15]
for the Klee’s Measure Problem to quickly perform hyper-
volume metric calculations means that this work will require
revision in the future. Future work will look at adapting this
algorithm to calculate exclusive hypervolume contributions.
Such an algorithm may provide improvements to both the
greedy approaches and local search.

REFERENCES

[1] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm,” in EUROGEN 2001. Evolu-
tionary Methods for Design, Optimization and Control with Applica-
tions to Industrial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux,
P. Papailou, and T. Fogarty, Eds., Athens, Greece, 2002, pp. 95–100.

[2] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective Op-
timization: NSGA-II,” Indian Institute of Technology, Kanpur, India,
KanGAL report 200001, 2000.

[3] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications,” Ph.D. dissertation, Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland, November 1999.

[4] M. Laumanns, E. Zitzler, and L. Thiele, “A Unified Model for Multi-
Objective Evolutionary Algorithms with Elitism,” in 2000 Congress
on Evolutionary Computation, vol. 1. Piscataway, New Jersey: IEEE
Service Center, July 2000, pp. 46–53.

[5] J. D. Knowles, D. W. Corne, and M. Fleischer, “Bounded Archiving
using the Lebesgue Measure,” in Proceedings of the 2003 Congress on
Evolutionary Computation (CEC’2003), vol. 4. Canberra, Australia:
IEEE Press, December 2003, pp. 2490–2497.

[6] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm using
the hypervolume measure as selection criterion,” in Proc. Evolutionary
Multi-Criterion Optimization: Third Int’l Conference (EMO 2005), ser.
Lecture Notes in Computer Science, C. A. C. Coello, A. H. Aguirre,
and E. Zitzler, Eds., vol. 3410. Berlin: Springer, 2005, pp. 62–76.

[7] B. Naujoks, N. Beume, and M. Emmerich, “Multi-objective opti-
misation using S-metric selection: Application to three-dimensional
solution spaces,” in Proc. 2005 Congress on Evolutionary Computa-
tion (CEC’05), Edinburgh, Scotland, B. McKay et al., Eds., vol. 2.
Piscataway NJ: IEEE Press, 2005, pp. 1282–1289.

[8] L. Bradstreet, L. Barone, and L. While, “Maximising hypervolume for
selection in multi-objective evolutionary algorithms,” in Proceedings
of the 2006 IEEE Congress on Evolutionary Computation, G. G.
Yen, S. M. Lucas, G. Fogel, G. Kendall, R. Salomon, B.-T. Zhang,
C. A. C. Coello, and T. P. Runarsson, Eds. Vancouver, BC, Canada:
IEEE Press, 16-21 July 2006, pp. 1744–1751. [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=11108

[9] L. Bradstreet, L. While, and L. Barone, “A fast incremental
hypervolume algorithm,” The University of Western Australia,
Technical Report UWA-CSSE-07-001, 2007. [Online]. Available:
http://web.csse.uwa.edu.au/ data/page/58425/UWA-CSSE-07-001.pdf

97

[10] R. L. While, P. Hingston, L. Barone, and S. Huband, “A faster
algorithm for calculating hypervolume.” IEEE Trans. Evolutionary
Computation, vol. 10, no. 1, pp. 29–38, 2006.

[11] R. L. While, “A new analysis of the LebMeasure algorithm for
calculating hypervolume.” in EMO, ser. Lecture Notes in Computer
Science, C. A. C. Coello, A. H. Aguirre, and E. Zitzler, Eds., vol.
3410. Springer, 2005, pp. 326–340.

[12] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Multi-
Objective Optimization Test Problems,” in Congress on Evolutionary
Computation (CEC’2002), vol. 1. Piscataway, New Jersey: IEEE
Service Center, May 2002, pp. 825–830.

[13] L. While, L. Bradstreet, L. Barone, and P. Hingston, “Heuristics for

optimising the calculation of hypervolume for multi-objective optimi-
sation problems,” in Proceedings of 2005 Congress on Evolutionary
Computation (CEC’2005), 2005.

[14] N. Beume and G. Rudolph, “Faster s-metric calculation
by considering dominated hypervolume as klee’s mea-
sure problem,” University of Dortmund, Technical Re-
port CI 216/06, 2006. [Online]. Available: http://sfbci.uni-
dortmund.de/Publications/Reference/Downloads/21606.pdf

[15] M. H. Overmars and C.-K. Yap, “New upper bounds in klee’s
measure problem (extended abstract),” in IEEE Symposium on
Foundations of Computer Science, 1988, pp. 550–556. [Online].
Available: citeseer.ist.psu.edu/article/overmars88new.html

98 CHAPTER 4. INCLUDED PAPERS

99

Paper 5 (Refereed)

L. Bradstreet, L. Barone, and L. While. Updating Exclusive Hypervolume Contribu-

tions Cheaply. In 2009 IEEE Congress on Evolutionary Computation (CEC’2009),

pages 538–544, Thronheim, Norway, May 2009. IEEE Press

100 CHAPTER 4. INCLUDED PAPERS

Updating Exclusive Hypervolume Contributions Cheaply

Lucas Bradstreet, Student Member, IEEE, Luigi Barone, Member, IEEE, and Lyndon While, Senior Member, IEEE

Abstract— Several multi-objective evolutionary algorithms
compare the hypervolumes of different sets of points during
their operation, usually for selection or archiving purposes.
The basic requirement is to choose a subset of a front such
that the hypervolume of that subset is maximised. We describe
a technique that improves the performance of hypervolume
contribution based front selection schemes. This technique
improves performance by allowing the update of hypervolume
contributions after the addition or removal of a point, where
these contributions would previously require full recalculation.
Empirical evidence shows that this technique reduces runtime
by up 72-99% when compared to the cost of full contribution
recalculation on DTLZ and random fronts.

I. INTRODUCTION

Multi-objective problems are common in the optimisation
field and much of the current research into evolutionary
algorithms revolves around the theory and practice of multi-
objective optimisation. Many evolutionary algorithms have
been created in order to solve these difficult problems, e.g.
SPEA [1], NSGA-II [2]. However, despite recent work, there
remains the question of how to compare the performance
of different multi-objective optimisation (MOO) algorithms.
The result of a multi-objective algorithm is a set of solutions,
a non-dominated front, representing a trade-off between
objectives. A popular metric used to compare these fronts
is the hypervolume measure (otherwise known as the S-
metric [3][4] or the Lebesgue measure [5]). Hypervolume
is the n-dimensional space that is “contained” by the points
(solutions) in a front. A front with a larger hypervolume is
likely to present a better set of trade-offs to a user than one
with a smaller hypervolume.

While most research into hypervolume has revolved
around its use as a metric, recent research has seen it
applied during the operation of Multi-objective Evolutionary
Algorithms (MOEAs). An example of a technique used in
this way is Deb’s [2] NSGA-II crowdedness comparison
operator, used to select solutions within a front to minimise
solutions crowding in each objective. Knowles et al. [6]
introduced the use of hypervolume during optimisation. They
describe a bounded archiving algorithm that retains the ‘best’
solutions found throughout optimisation. As this archive is
potentially of unbounded size, they apply hypervolume to
determine the solutions that maximise the coverage of the
solution set. During optimisation, when a new solution is

The authors are with the School of Computer Science & Software
Engineering, The University of Western Australia, Crawley 6009, Aus-
tralia (phone: +61864881944; fax: +61864881089; email: {lucas, lyndon,
luigi}@csse.uwa.edu.au).

added to this bounded archive, the solution that contributes
the least hypervolume is removed.

Emmerich et al. [7] extend this idea to selection in a
MOEA in their optimiser SMS-EMOA, and demonstrate
an example 2-D optimiser. Rather than applying bounded
archiving, in selection they apply hypervolume to remove
the solution that contributes the least hypervolume from the
worst ranked front. By doing so, they reduce the size of the
population in order to provide room for the next generation.
This concept has been extended by Naujoks et al. [8] for 3
objective MOEAs.

Bradstreet et al. [9][10] have looked into front reduction
techniques using both greedy front addition and reduction
techniques as well as a local search techniques. The greedy
techniques have a lot of merit, however still suffer from
IHSO’s exponential complexity in the number of objectives.
Thus, techniques to improve their performance are hugely
beneficial. One area in which their performance could be
improved lies in reusing previously calculated results, which
are even though they may only differ slightly. As these
contributions become outdated due to changes in the front, a
technique to quickly update their hypervolume to reflect the
addition or removal of a point would be hugely beneficial to
these selection algorithms.

The principal contribution of this paper is a a technique to
update these contributions and then compare the performance
of this technique to a method that requires the recalculation
of these hypervolume contributions. This technique utilises
current incremental hypervolume algorithms to calculate
the contribution of a generated point that represents the
change in contribution. We find that performance of this
technique greatly improves performance of front reduction
algorithms using incremental hypervolume when compared
to algorithms that recalculate contributions in full.

The rest of this paper is structured as follows. Section II
defines the concepts and notation used in multi-objective
optimisation. Section III introduces existing front reduction
techniques that benefit from the work introduced in this
paper. Section IV introduces a simple method to find the
change in point contributions resulting from the removal or
addition of a point. Section V gives empirical data, for a vari-
ety of front types, demonstrating performance improvements
resulting from the contribution update technique described
within this paper.

II. FUNDAMENTALS

In a multi-objective optimisation problem, we aim to find
the set of optimal trade-off solutions known as the Pareto

101

optimal set. Pareto optimality is defined with respect to the
concept of non-domination between points in objective space.
Given two objective vectors x̄ and ȳ, x̄ dominates ȳ iff x̄ is
at least as good as ȳ in all objectives, and better in at least
one. A vector x̄ is non-dominated with respect to a set of
solutions X iff there is no vector in X that dominates x̄.
X is a non-dominated set iff all vectors in X are mutually
non-dominating. Such a set of objective vectors is sometimes
called a non-dominated approximation front or set.

A vector x̄ is Pareto optimal iff x̄ is non-dominated with
respect to the set of all possible vectors. Pareto optimal
vectors are characterised by the fact that improvement in any
one objective means worsening at least one other objective.
The Pareto optimal set is the set of all possible Pareto optimal
vectors. The goal in a multi-objective problem is to find
the Pareto optimal set, although for continuous problems a
representative subset will usually suffice.

Given a set X of solutions returned by an algorithm, the
question arises how good the set X is, i.e. how well it
approximates the Pareto optimal set. One metric used for
comparing sets of solutions is to measure the hypervolume
of each set. The hypervolume of X is the size of the space
that is dominated by the solutions in X . The hypervolume
of a set is measured relative to a reference point, usually the
anti-optimal point or “bounding” point in space. (We do not
address here the problem of choosing a reference point, if
the anti-optimal point is not known or does not exist: one
suggestion is to take, in each objective, the worst value from
any of the fronts being compared.) If a set X has a greater
hypervolume than a set X , then X is taken to be a better set
of solutions than X .

Knowles [6] applies hypervolume in order to recast multi-
objective problems as single objective problems with the
single goal of maximising the hypervolume of a set of
solutions, bounded in size. As this set is of finite size,
when adding a solution to this set another must often be
removed to make room. This is achieved by removing
the solution contributing the minimal ‘exclusive hypervol-
ume’ to the front. The exclusive hypervolume contribu-
tion, s, of a solution, p, to a front, f , can be defined as
s = Hypervolume(f ∪ {p})−Hypervolume(f). Follow-
ing this definition, one realises that over the course of
operation the hypervolume of the set of archived solutions is
maximised.

Emmerich et al. [7] apply this technique to selection in
a MOEA. Rather than maintaining an archive of solutions,
hypervolume is used to determine which solutions should
be discarded. When a front is too large to be included
in the population during selection, hypervolume is used to
reduce its size. The solution that contributes the smallest
hypervolume to the worst ranked front is removed from the
front with the aim of maximising the hypervolume of the
population during the lifetime of the MOEA.

III. POINT REMOVAL TECHNIQUES

When using hypervolume as a selection metric, we wish
to reduce the size of non-dominated fronts. Ideally we wish

to find a front composition that maximises the hypervolume
of the reduced front. However, in order to guarantee an
optimally composed front, it is necessary to calculate all

(
n
m

)

subsets of the front, where n is the size of the front and m is
the size of the reduced front. Calculating all possible subset
combinations is extremely expensive if even a small number
of solutions are to be removed.

We have previously experimented with various meth-
ods for composing the front that work around this prob-
lem [9][10]. To help motivate how performance can be
improved, we will first introduce greedy front composition
algorithms that either add or remove a single point at a
time until the front is the desired size, using exclusive
hypervolume contributions as a selection method.

These selection algorithms were researched by Bradstreet
et al. [9][10] and use an incremental hypervolume algorithm,
IHSO, that high performance hypervolume contribution cal-
culations. The Incremental Hypervolume by Slicing Objec-
tives (IHSO) algorithm, due to Bradstreet et al. [11] is able to
quickly calculate the hypervolume exclusively contributed by
a point, p, relative to a set of points. All of these algorithms
are based around greedy front selection methods.

Fig. 1. Example front containing points A = (11, 2, 2), B = (5, 4, 4),
C = (4, 6, 3), D = (2, 8, 8).

Fig. 2. Exclusive contribution of B to example front shown in Figure 1.

102 CHAPTER 4. INCLUDED PAPERS

The greedy front selection techniques use IHSO to calcu-
late the exclusive hypervolume contributions of every point
contained in a front. An example of a front is shown in
Figure 1 and contains the points A = (11, 2, 2), B =
(5, 4, 4), C = (4, 6, 3), D = (2, 8, 8). In this example, the
exclusive contribution for each point is calculated so that the
least contributing point can be removed to reduce the size
of the front. An example shape, representing the exclusive
contribution of B, is shown in Figure 2. The exclusive
contributions of points contained in this front relative to
reference point (0, 0, 0), under a maximisation problem, are
cA = (6∗2∗2) = 24, cB = (4∗4−2∗2)∗1+(4∗4−3∗4)∗2 =
20, cC = (2∗3)∗2 = 12, cD = (8∗8−4∗4−2∗3)∗2 = 84.

Greedy front reduction schemes remove or add a single
point at a time without regard for whether that choice will
lead to a worse overall front selection. These schemes have
been evaluated by Bradstreet et al. [9][10]. These algorithms
find the point that contributes the most or least to the
hypervolume of the front and add or remove that point. This
process is repeated until the front is the desired size.

In the example in Figure 1 and using the greedy point
reduction method, the point C would be removed from the
front as it contributes the least hypervolume. The contribu-
tions of A, B and D would then require recalculation.

A. Greedy Front Reduction Algorithm using full IHSO cal-
culations

We will first introduce the simplest front composition
algorithm. In every iteration exclusive contributions are cal-
culated in full and the point with the smallest hypervolume is
removed. The algorithm is considered greedy as the removal
of a single point in each iteration may not result in an optimal
front selection when additional points are removed. This
algorithm is shown in Figure 3.

Repeat until front contains m solutions
Calculate the entire contribution of each point
Delete the point with the smallest from the front

Fig. 3. Outline of the greedy reduction algorithm using full IHSO
calculations.

After each iteration, resulting in the elimination of a point,
the hypervolume contributions calculated in the last iteration
will be discarded. The removal of the point means that
partially calculated contributions may be incorrect due to the
removed point sharing contributions exclusively with other
points.

B. Greedy Front Reduction Algorithm using IHSO and pri-
ority queue

The front reduction algorithm using IHSO and a priority
queue as described in Bradstreet et al. [11] is an improvement
on the previous scheme. It allows only as much of each
point’s contribution to be calculated as is necessary to prove
that it does not have the smallest contribution to the front.
This algorithm is shown in Figure 4.

Repeat until front contains m solutions
Partially evaluate each point
Identify the smallest point
while the smallest point is not completed

Evaluate the smallest point a bit more
Identify the new smallest point

remove the smallest point

Fig. 4. Outline of the reduction algorithm using the best-first queuing
scheme in IHSO.

A priority queue is used to quickly identify the smallest
point. Another slice is then calculated at a particular depth
and the priority queue is updated and then returns the
current smallest partially calculated hypervolume. As with
the previous scheme, the contributions from slices calculated
in the previous iteration must be discarded before beginning
the process to remove the next point. The number of partial
calculations made in each iteration depend on the chosen
granularity. In the case of [11], a single slice at a the chosen
depth (granularity) would be fully calculated.

C. Greedy Front Addition Algorithm using IHSO

An alternative approach builds up the the reduced size
front from an empty front.

Given a non-dominated front, S, with n solutions, retain-
ing m solutions.

SS = S
RS = {}
Repeat until RS contains m solutions

Find the solution s in SS that contributes
the maximum hypervolume to RS

Move s from SS to RS
return RS

Fig. 5. Outline of the greedy reduction algorithm using full IHSO
calculations.

This algorithm, outlined in Figure 5, has performance
advantages when only a small proportion of the front is
retained. Under this algorithm, the hypervolume contribu-
tions of each point are calculated entirely, however each
evaluation should be computationally cheap when the front is
small. When a small proportion of the front is removed this
algorithm will be very slow as it does not benefit from best
first search and will require more iterations than the reduction
method. As with the other algorithms, contributions will be
recalculated in full for each iteration.

D. Greedy Algorithm Discussion

While these techniques are very effective, it becomes
evident that in most cases previously calculated hypervolume
contributions are wasted. They are discarded to ensure accu-
racy of the contributions with the aim of best maximising
the hypervolume of the overall front. The priority queue
algorithm suffers from this the least, as the entire contribution
is not calculated in each iteration. However, this waste should
be proportion to the cost to calculate the volumes initially.
This waste occurs despite the fact that contributions may not
change much from iteration to iteration.

103

The algorithms tested in [9][10] used a simple scheme
to improve this case. When the contribution of a point
has not been affected by a point removal the contributions
are retained for the next iteration. This scheme works by
examining the slices calculated by IHSO thus far. If the
removed point has not been used in any slice yet, it is
removed from all slices. In this case, the point has not
influenced the point’s removal and the previously calculated
contribution is retained. If the removed point has already
been examined (i.e. may have had an effect on the contributed
hypervolume so far) the point’s contributed hypervolume
is set to zero and hypervolume contribution calculation is
restarted. However, we shall show that it is possible to greatly
improve on this scheme.

IV. ∆ HYPERVOLUME CONTRIBUTION CALCULATION

It is clear that a fast technique that updates the previ-
ously calculated contributions would be beneficial. Such a
technique would reflect any change in a point’s contribution,
due to an addition or removal of a point. If the technique
were quicker than recalculation, the performance of the
point selection techniques could be improved. In the case
of the priority queue, only updates to IHSO slices already
calculated would be required. Similarly, the greedy front
addition technique would benefit from a similar approach.
Instead the addition of a point would bring about a decrease
in the contribution of the list of points yet to be added to the
front.

We have formulated a simple method for these update cal-
culations that utilises the existing hypervolume contribution
calculation functions (IHSO). As we know, the contribution
of a point, P , is the space exclusively dominated by that point
and no other point. Therefore, when point R is removed any
increase in the contribution to P will be about due to the
space exclusively dominated by either P and R, relative to
the front containing neither P or R. Therefore, this difference
in the contribution of the point P after the removal of R can
be viewed as the contribution of the point resulting from the
intersection of the space dominated by both P and R. This
point can be generated by taking the worst value from either
P and R in each objective. Where S is the front and P the
contributing point, and PR is the point generated using P
and the removed point R, this can be generalised to the form:

c(P, S) = c(P, S ∪ {R}) + c(PR, S)

Under this definition, the calculation of a contribution of a
point is still required. However, this contributing point should
be quicker to calculate, as it is generated from a combination
of the previous worst point (which is usually less complex
to calculate as it covers a smaller space), and the point being
updated. PR should cover a less complex space than P , as
it only contains regions covered by P , but not all.

Using the example in Figure 1, we wish to update the
contributions of A, B and D after the removal of point C.
For example, in order to update the contribution of C, we
generate a new point BC which contains the least values

Fig. 6. Front used to calculate the contribution of AC, (4, 2, 2). Contribut-
ing volume of AC reflects the change in A’s contribution resulting from the
removal of point C. As AC is dominated by point B, AC’s contribution is
0.

Fig. 7. Front used to calculate the contribution of BC, (4, 4, 3). Contribut-
ing volume of BC reflects the change in B’s contribution resulting from the
removal of point C.

of B and C in each objective. Under the above form, the
updated volume of B is:

c(B, {A,D}) = c(B, {A,C,D}) + c(BC, {A,D})

The front used to determine the contribution of BC is
shown in Figure 7. The contribution of the point BC is
c(BC, {A,D}) = (4 ∗ 3− 2 ∗ 2) ∗ 2 = 16. Using the contri-
bution, c(B, {A,C,D}) = 20 calculated earlier, the updated
contribution of B is therefore c(B, {A,D}) = 20+ 16 = 36
The contributions of A and D would then be updated in a
similar manner, using the fronts shown in Figure 6 and 8.
Note that when updating A, AC has no contribution as it is
dominated by B, so the volume of A remains the same.

The technique can also be used within the priority queue
approach, however care must be taken so that contribution
updates can be correctly performed on partially calculated
slices at each depth of suspended IHSO calculations.

104 CHAPTER 4. INCLUDED PAPERS

Fig. 8. Front used to calculate the contribution of DC, (2, 6, 3). Contribut-
ing volume of DC reflects the change in D’s contribution resulting from the
removal of point C.

V. EXPERIMENTS

A. Performance Comparison of Recalculation vs ∆ Update

In order to compare the performance of the update tech-
nique, we decided to evaluate the cost of full contribution
recalculation, compared to the cost of merely updating
contributions. We have done so by comparing the greedy
reduction algorithm, described in Section III-B, to a modified
version that updates contributions. In both algorithms the
contributions of every point is first calculated in its entirety
and a point is removed. In the full calculation version,
each remaining point’s exclusive contribution is recalculated
for each iteration. In update mode, these contributions are
updated instead. For these experiments, we chose to reduce
the front size by half. The cost of calculating the first set
of contributions is not included in the comparison as these
experiments are intended to compare the cost of an update
to full recalculation.

B. Experimental setup

We evaluated the front reduction techniques on several
distinct fronts from the DTLZ [12] test suite: spherical,
discontinuous, linear and degenerate fronts. For each front,
we mathematically generated a representative set of 10,000
points from the (known) Pareto optimal set: then to generate
a front of size m, we sampled this set randomly.

We also tested the techniques on randomly generated
fronts. For these fronts we generated sets of m mutually
non-dominating points in n objectives simply by generating
points with random values x, 0.1 ≤ x ≤ 10, in all objectives.
In order to guarantee mutual non-domination, we initialised
S = φ and added each point x to S only if x̄ ∪ S would
be mutually non-dominating. We kept adding points until
|S| = m.

Reference points are determined by the method used by
Naujoks et al. [8], where the reference point takes the worst
value in each dimension in the front shifted by 1.0 in each
dimension. All fronts were cast as as minimisation problems.

All timings were performed on an Intel 2.4GHz Core 2
Duo processor with 2GB of RAM, running Ubuntu Linux
7.04. All algorithms were implemented in C and compiled
with gcc -O3 -funroll-all-loops (version 4.1.2). Calculations
operated only on a single core as we have not written
the algorithm in a parallel manner although improvements
in this area would be relatively simple to achieve as
each point requires an independent contribution calcula-
tion. The code used for these experiments is available at
http://www.wfg.csse.uwa.edu.au.
The front reduction algorithm was run on a diverse range

of front types (varying objective functions, numbers of
objectives, numbers of points). Front sizes were increased
until the full contribution calculation algorithm took a total
of 20 seconds to remove half of the points from a given front.
Timings were averaged over 20 runs.

C. Experimental Results & Discussion

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250 300

R
un

tim
e

re
du

ct
io

n
(%

)

Number of points

9d
8d
7d
6d
5d
4d

Fig. 9. Spherical data: Runtime reduction achieved by update technique
when removing 50% of the front.

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250 300

R
un

tim
e

re
du

ct
io

n
(%

)

Number of points

9d
8d
7d
6d
5d
4d

Fig. 10. Random data: Runtime reduction achieved by update technique
when removing 50% of the front.

Figures 9-13 show the average computation saved using
the update approach for the different front front types.
Observe that computation savings improve as the complexity
of the hypervolume calculations increase i.e. increasing either
the size of front or number of objectives. Savings from

105

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250 300

R
un

tim
e

re
du

ct
io

n
(%

)

Number of points

9d
8d
7d
6d
5d
4d

Fig. 11. Discontinuous data: Runtime reduction achieved by update
technique when removing 50% of the front.

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250 300

R
un

tim
e

re
du

ct
io

n
(%

)

Number of points

9d
8d
7d
6d
5d
4d

Fig. 12. Linear data: Runtime reduction achieved by update technique
when removing 50% of the front.

 75

 80

 85

 90

 95

 100

 0 50 100 150 200 250 300

R
un

tim
e

re
du

ct
io

n
(%

)

Number of points

9d
8d
7d
6d
5d
4d

Fig. 13. Degenerate data: Runtime reduction achieved by update technique
when removing 50% of the front.

72% to 99% can be observed. Results show that random
data appears to benefit the most from the delta approach,
saving up to 99% of the run time compared to recalculation,
compared to around 95% for the other fronts.

This could be due to the least contributing point being
less complex to compute than the average point. This hy-
pothesis seems reflected by the results found in Bradstreet

et al. [11] which showed that random data requires the
least computation to find the least contributing point under
the best first search based priority queue approach. This
would likely result from the contribution of the smallest point
requiring little computation and only minimal calculation of
other contributions being necessary to determine the least
contributing point. For the update technique, if the point
with the least contribution does not exclusively cover a large
(and therefore usually complex) space, the combination of
that point and each of the remaining points (e.g. Figure 6)
is likely to cover an even smaller region of space that is
calculated even quicker than the contribution of the removed
point which contributed least in the last iteration.

TABLE I
SPHERICAL DATA: TIME REQUIRED TO REMOVE 50% OF THE FRONT

USING UPDATES OR RECALCULATION.

obj # pts Delta time (s) Full time (s)
4 300 1.68 29.64
5 220 1.10 29.74
6 110 0.82 21.25
7 72 0.72 19.17
8 52 0.63 18.57
9 42 1.03 20.07

TABLE II
RANDOM DATA: TIME REQUIRED TO REMOVE 50% OF THE FRONT USING

UPDATES OR RECALCULATION.

obj # pts Delta time (s) Full time (s)
4 300 1.83 33.63
5 180 0.63 21.50
6 140 0.43 23.81
7 84 0.195 19.53
8 58 0.171 18.63
9 44 0.220 21.98

TABLE III
DISCONTINUOUS DATA: TIME REQUIRED TO REMOVE 50% OF THE

FRONT USING UPDATES OR RECALCULATION.

obj # pts Delta time (s) Full time (s)
4 300 1.88 30.59
5 200 1.13 29.32
6 130 1.04 24.66
7 80 0.94 21.70
8 54 1.00 19.02
9 42 1.14 21.14

TABLE IV
LINEAR DATA: TIME REQUIRED TO REMOVE 50% OF THE FRONT USING

UPDATES OR RECALCULATION.

obj # pts Delta time (s) Full time (s)
4 300 1.76 29.67
5 220 1.23 29.84
6 120 1.19 27.10
7 74 1.09 19.34
8 54 1.25 21.14
9 42 1.20 20.31

106 CHAPTER 4. INCLUDED PAPERS

TABLE V
DEGENERATE DATA: TIME REQUIRED TO REMOVE 50% OF THE FRONT

USING UPDATES OR RECALCULATION. TIMES DO NOT INCLUDE INITIAL

CONTRIBUTION CALCULATION REQUIRED TO REMOVE THE FIRST POINT.

obj # pts Delta time (s) Full time (s)
4 300 1.60 21.43
5 240 3.08 20.52
6 110 1.35 22.95
7 74 1.05 19.26
8 60 1.37 23.38
9 50 2.17 27.18

Differences in the maximum time required for recalcu-
lation compared to update can be assessed in Tables I-V.
Typical time savings range from 22 seconds compared to 0.22
seconds to 20.5 seconds compared to 3.08 seconds. These
timings do not include the initial full contribution calculation
required to remove the first point.

These experiments were intended to determine an approx-
imate cost of full calculation to the cost of contribution
update, and to show that updating hypervolume contributions
to reflect changes in a front can be done much quicker
than the full recalculation of those contributions. While the
update technique will work correctly for front reduction
using IHSO and the priority queue approach or the front
addition technique, we have only evaluated recalculation of
full contributions to updates. We believe that improvements
achievable with this technique should be similar using the
other techniques. In the priority queue case, less contribu-
tions are required for each point removal, and therefore the
calculations necessary to update these contributions should
also be minimised, as only the already calculated slices
will require updating. Normally, these slices would require
recalculation, and therefore the number of updated slices
should be in proportion to the number of slices that would
have required recalculation. Large savings are also expected
when the technique is used on the front addition algorithm.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a simple technique to update hy-
pervolume contributions quickly to reflect the addition or
removal of points to a front. This technique has been shown
to improve the performance of front selection methods that
calculate contributions entirely in order to remove a point.
Typical improvements range from 75% runtime reduction to
99% under the range of data types, front sizes and number
of objectives tested.

In the future, we will implement this technique for use
in the front addition algorithm and under the front reduction

technique using the best first search priority queue. We expect
the performance of each of these techniques to be improved
greatly as we hope contribution recalculation in each of these
methods has a high cost as with the greedy full contribution
method that we have evaluated.

REFERENCES

[1] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm,” in EUROGEN 2001. Evolu-
tionary Methods for Design, Optimization and Control with Applica-
tions to Industrial Problems, K. Giannakoglou, D. Tsahalis, J. Periaux,
P. Papailou, and T. Fogarty, Eds., Athens, Greece, 2002, pp. 95–100.

[2] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan, “A Fast Elitist
Non-Dominated Sorting Genetic Algorithm for Multi-Objective Op-
timization: NSGA-II,” Indian Institute of Technology, Kanpur, India,
KanGAL report 200001, 2000.

[3] E. Zitzler, “Evolutionary Algorithms for Multiobjective Optimization:
Methods and Applications,” Ph.D. dissertation, Swiss Federal Institute
of Technology (ETH), Zurich, Switzerland, November 1999.

[4] N. Beume, C. M. Fonseca, M. L.-I. nez, L. Paquete,
and J. Vahrenhold, “On the complexity of computing the
hypervolume indicator,” University of Dortmund, Technical
Report CI 235/07, 2007. [Online]. Available: http://sfbci.uni-
dortmund.de/Publications/Reference/Downloads/23507.pdf

[5] M. Laumanns, E. Zitzler, and L. Thiele, “A Unified Model for Multi-
Objective Evolutionary Algorithms with Elitism,” in 2000 Congress
on Evolutionary Computation, vol. 1. Piscataway, New Jersey: IEEE
Service Center, July 2000, pp. 46–53.

[6] J. D. Knowles, D. W. Corne, and M. Fleischer, “Bounded Archiving
using the Lebesgue Measure,” in Proceedings of the 2003 Congress on
Evolutionary Computation (CEC’2003), vol. 4. Canberra, Australia:
IEEE Press, December 2003, pp. 2490–2497.

[7] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm using
the hypervolume measure as selection criterion,” in Proc. Evolutionary
Multi-Criterion Optimization: Third Int’l Conference (EMO 2005), ser.
Lecture Notes in Computer Science, C. A. C. Coello, A. H. Aguirre,
and E. Zitzler, Eds., vol. 3410. Berlin: Springer, 2005, pp. 62–76.

[8] B. Naujoks, N. Beume, and M. Emmerich, “Multi-objective opti-
misation using S-metric selection: Application to three-dimensional
solution spaces,” in Proc. 2005 Congress on Evolutionary Computa-
tion (CEC’05), Edinburgh, Scotland, B. McKay et al., Eds., vol. 2.
Piscataway NJ: IEEE Press, 2005, pp. 1282–1289.

[9] L. Bradstreet, L. Barone, and L. While, “Maximising hypervolume for
selection in multi-objective evolutionary algorithms,” in Proceedings
of the 2006 IEEE Congress on Evolutionary Computation, G. G.
Yen, S. M. Lucas, G. Fogel, G. Kendall, R. Salomon, B.-T. Zhang,
C. A. C. Coello, and T. P. Runarsson, Eds. Vancouver, BC, Canada:
IEEE Press, 16-21 July 2006, pp. 1744–1751. [Online]. Available:
http://ieeexplore.ieee.org/servlet/opac?punumber=11108

[10] L. Bradstreet, L. While, and L. Barone, “Incrementally maximising
hypervolume for selection in multi-objective evolutionary algorithms,”
Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pp.
3203–3210, Sept. 2007.

[11] L. Bradstreet, L. While, and L. Barone, “A fast incremental hypervol-
ume algorithm,” Evolutionary Computation, IEEE Transactions on,
vol. 12, no. 6, pp. 714–723, Dec. 2008.

[12] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Multi-
Objective Optimization Test Problems,” in Congress on Evolutionary
Computation (CEC’2002), vol. 1. Piscataway, New Jersey: IEEE
Service Center, May 2002, pp. 825–830.

107

108 CHAPTER 4. INCLUDED PAPERS

109

Paper 6 (Refereed)

L. Bradstreet, L. While, and L. Barone. A Fast Many-objective Hypervolume Al-

gorithm using Iterated Incremental Calculations. In 2010 IEEE Congress on Evo-

lutionary Computation (CEC’2010), pages 179–186, Barcelona, Spain, July 2010.

IEEE Press

110 CHAPTER 4. INCLUDED PAPERS

A Fast Many-objective Hypervolume Algorithm
using Iterated Incremental Calculations

Lucas Bradstreet, Student Member, IEEE, Lyndon While, Senior Member, IEEE, and Luigi Barone, Member, IEEE

Abstract— Three fast algorithms have been proposed for
calculating hypervolume exactly: the Hypervolume by Slicing
Objectives algorithm (HSO) optimised with heuristics designed
to improve the average case; an adaptation of the Overmars
and Yap algorithm for solving the Klee’s measure problem;
and a recent algorithm by Fonseca et al. We propose a
fourth algorithm IIHSO based largely on the Incremental HSO
algorithm, a version of HSO adapted to calculate the exclusive
hypervolume contribution of a point to a front. We give a
comprehensive analysis and performance comparison of these
algorithms, and conclude that IIHSO outperforms the others
on most important and representative data in higher numbers
of objectives.

I. INTRODUCTION

THE hypervolume indicator [1] (also known as the S-
metric [2] or the Lebesgue measure [3], [4]) is a popular

metric for comparing the performance of multi-objective evo-
lutionary algorithms (MOEAs). The hypervolume of a set of
solutions measures the size of the portion of objective space
that is dominated by those solutions collectively. Hypervol-
ume captures in one scalar both the closeness of the solutions
to the optimal set and the spread of the solutions across
objective space. Hypervolume also has nicer mathematical
properties than other metrics: it was the first unary metric
that detects when a set of solutions X is not worse than
another set X ′ [5], and it is maximised if and only if the set
of solutions contains all Pareto optimal points [6]. Wagner
et al. [7] have shown that hypervolume based selection is
valuable for many-objective selection based optimisation.
However, hypervolume is sensitive to the relative scaling of
the objectives, and to the presence or absence of extremal
points in a front. While fast approximation algorithms exist,
such as Everson et al. [8] and Bader et al. [9], this paper will
focus on exact hypervolume calculation algorithms.

Three fast algorithms have been proposed for calcu-
lating hypervolume exactly. The Hypervolume by Slic-
ing Objectives algorithm (HSO) [10]–[12] processes the
objectives in a front, rather than the points. HSO di-
vides the nD-hypervolume to be measured into separate
(n− 1)D-slices through the values in one of the objectives,
then it calculates the hypervolume of each slice and sums
these values to derive the total. HSO’s worst-case complexity
is O(mn−1) [12] (m being the number of points in the

The authors are with the School of Computer Science & Software
Engineering, The University of Western Australia, Western Australia
6009, Australia (e-mail: lucas@csse.uwa.edu.au; lyndon@csse.uwa.edu.au;
luigi@csse.uwa.edu.au).

front), but While et al. have described good heuristics
for re-ordering objectives [13] that typically deliver better
performance.

In addition, algorithms from the computational geometry
field have recently been applied to hypervolume calcula-
tion. Beume and Rudolph adapt the Overmars and Yap
algorithm [14] for solving the Klee’s measure problem to
instead calculate the hypervolume of a front [15]. We refer
to their adapted algorithm as HOY. HOY recursively splits
the space into smaller and smaller regions, until every region
is either completely covered by the hypervolume, or it is
covered in all objectives bar one, in which case the size of
the hypervolume in the region can be calculated quickly by a
simple inclusion-exclusion algorithm. HOY’s region splitting
procedure gives it a worst-case complexity of O(m logm+
mn/2), far better than HSO.

Paquete et al. [16] use a geometry-inspired algorithm to
calculate the maxima of a point set in 3D which has shown
to be optimal by Beume et al. [17]. Fonseca et al. [18]
combine this 3D algorithm, a specialised data structure and
other improvements to provide a performance boost to a
HSO-like dimension sweep to calculate hypervolume in n-
dimensions. We refer to Fonseca et al.’s algorithm as FPL.
Fonseca et al. state that the worst-case complexity of FPL is
O(mn−2 logm) [18].

Another recent development is the Incremental HSO algo-
rithm [19] (IHSO). This is an adaptation of HSO to calculate
the exclusive hypervolume contribution of a point to a front.
IHSO is especially useful where hypervolume is used in-line
within a MOEA, either for diversity calculations [20], or for
archiving purposes [21], or in selection [22], [23]. However,
as we will demonstrate, IHSO can applied iteratively to create
a new method for hypervolume metric calculations.

This paper makes four principal contributions.
• We describe a new algorithm IIHSO (Iterated IHSO) for

calculating hypervolume exactly. IIHSO applies IHSO
iteratively, starting with an empty set and adding one
point at a time until the entire front has been processed.
The idea of calculating hypervolume as a summation
of exclusive hypervolumes was introduced by LebMea-
sure [4].
IIHSO also incorporates ideas from FPL, principally its
linked data structure for optimising dominance calcula-
tions.

• We describe heuristics designed to optimise the typical
performance of IIHSO, mainly for choosing a good

111

order for adding the points to the set and a good order
for processing the objectives.

• We show that while HOY has by far the best worst-case
complexity of these algorithms, its performance varies
little with different fronts or front types, or with different
objective order, and thus it may be difficult to improve
HOY’s performance significantly via use of heuristics
or manipulation of the data.

• We give a comprehensive performance comparison of
IIHSO, HOY, and FPL with heuristics on a range
of front types and sizes, and we show that IIHSO
outperforms the other algorithms on a number of multi-
objective test problems.

The rest of this paper is structured as follows. Section II
defines the concepts and notation used in multi-objective
optimisation and throughout this paper. Section III describes
our new algorithm IIHSO and associated optimisations. Sec-
tion IV describes our experiments and analyses the results,
and Section V concludes the paper.

II. DEFINITIONS

In a multi-objective optimisation problem, we aim to find
the set of optimal trade-off solutions known as the Pareto
optimal set. Pareto optimality is defined with respect to the
concept of non-domination between points in objective space.
Given two objective vectors x and y, x dominates y iff x is
at least as good as y in all objectives, and better in at least
one. A vector x is non-dominated with respect to a set of
vectors X iff there is no vector in X that dominates x. X is
a non-dominated set iff all vectors in X are mutually non-
dominating. Such a set of objective vectors is sometimes
called a non-dominated front.

A vector x is Pareto optimal iff x is non-dominated with
respect to the set of all possible vectors. Pareto optimal
vectors are characterised by the fact that improvement in any
one objective means worsening at least one other objective.
The Pareto optimal set is the set of all possible Pareto optimal
vectors. The goal in a multi-objective problem is to find
the Pareto optimal set, although for continuous problems a
representative subset usually suffices.

Given a set X of solutions returned by an algorithm,
the question arises how good the set X is, i.e. how well
it approximates the Pareto optimal set. One metric used for
comparing sets of solutions is to measure the hypervolume of
each set. The hypervolume of X is the total size of the space
that is dominated by the solutions in X . The hypervolume
of a set is measured relative to a reference point, usually the
anti-optimal point or “worst possible” point in space. (We do
not address here the problem of choosing a reference point,
if the anti-optimal point is not known or does not exist: one
suggestion is to take, in each objective, the worst value from
any of the fronts being compared.) If a set X has a greater
hypervolume than a set X ′, then X is taken to be a better
set of solutions than X ′.

Precise definitions of these terms can be found in [24].

A. Incremental HSO

IHSO is an adaptation of HSO created to calculate the
exclusive hypervolume contribution of a point to a front
[19]. That is, given a point p and a front S, IHSO calculates
ExcHyp(p, S), defined as

ExcHyp(p, S) = Hyp(S ∪ {p})−Hyp(S)

This is important when hypervolume is used in-line within a
MOEA, either for diversity calculations, or for archiving pur-
poses, or in selection. Our new algorithm IIHSO (described
in Section III) uses IHSO in metric calculations too.

The operation of IHSO is substantially similar to HSO,
differing in two important ways:

• It disregards all slices “higher” than p: p will not con-
tribute to any slice above itself in the current objective,
therefore the hypervolumes of these slices need not be
calculated.

• It disregards some slices “lower” than p: if p is domi-
nated by a point q in S in the objectives after the current
one, then p will not contribute to any slice containing q
(or any point that dominates q), and the hypervolumes
of these slices need not be calculated.

As with HSO, the typical performance of IHSO can be
improved substantially by selecting a good order in which
to process the objectives. Bradstreet et al. [19] evaluate
a range of objective-reordering heuristics for IHSO: they
conclude that the best heuristic is one which processes first
the objective in which a point is best, so that the point is
likely to be dominated early in the process and the number
of iterations is minimised.

III. THE IIHSO ALGORITHM

The IIHSO (Iterated IHSO) algorithm uses IHSO to cal-
culate the hypervolume of a front by breaking it up into a
series of exclusive hypervolumes, one for each point in the
front. Specifically, it calculates the exclusive hypervolume of
each point p relative to the points which have better values
than p in the first objective. Thus, we calculate the exclusive
hypervolume of the best point relative to the empty set, then
the exclusive hypervolume of the second point relative to
the first, then the exclusive hypervolume of the third point
relative to the first two, etc. The sum of these is the collective
hypervolume of the whole front.

Fig. 1 shows the operation of IIHSO. The hypervolume is
calculated as the sum of the exclusive hypervolumes of each
point p relative to the set of points with better values than p
in the first objective. Fig. 2 gives pseudo-code for IIHSO.

Fig. 1 shows the significance of sorting the points in
the first objective: IIHSO calculates only the bottom slice
in each n − 1-objective hypervolume. However, as usual
with HSO-based algorithms, we can employ heuristics to
select the first objective to be processed in order to improve
the typical performance of IIHSO. Additionally, within each
application of IHSO, we can employ heuristics to re-order the
objectives for that calculation. Note that this second heuristic
can exploit the properties of the point whose exclusive

112 CHAPTER 4. INCLUDED PAPERS

hypervolume is being calculated, so the objectives can be
re-ordered differently for each application of IHSO.

We have found through experiments that the following
combination of heuristics works well for IIHSO:

• we use the MWW heuristic of HSO [13] to select the
first objective;

• we use the Rank heuristic of IHSO [19] to process first
the objectives in which a point is best, so that is more
likely to be dominated early. Rank is applied only if
five or more objectives remain: in our experience, with
fewer objectives, the performance improvement does not
recoup the cost of the heuristic calculation.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������
������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

+

+

+

=

d

b

a

c

c

b

a

a

b

a

d

c

b

a

z

xy

x y z
a 17 4 2
b 9 2 9
c 5 512
d 4 9 18

Fig. 1. Using IIHSO to calculate the hypervolume of {a, b, c, d},
equal to ExcHyp(a, {}) + ExcHyp(b, {a}) + ExcHyp(c, {a, b}) +
ExcHyp(d, {a, b, c}). Marks indicate points. Note that in each two-
objective volume, we need to calculate only the bottom slice.

IIHSO’s other principal improvement from HSO is a
change to the way that IHSO itself operates. We denote
as IHSO† our modification to IHSO that uses a new linked
data structure based on the data structure used in FPL [18].
The structure contains a linked list for each objective, with

IIHSO(ps):
Order the objectives by the MWW heuristic
pl = sort ps by worsening value of Objective 1
vol = 0
ql = []
for i = 1 to m

vol = vol + ihso (pl[i], ql)
ql = insert (pl[i], ql)

return vol

insert (p, pl) adds p into pl, deleting any points
from pl which are dominated by p in Objectives 2..n

Fig. 2. Pseudo-code for IIHSO.

the points in each linked list sorted by their values in that
objective. IHSO† operates differently to IHSO in four ways:

• When a point is deleted from a front, it is deleted
from the linked lists for unprocessed objectives, but it
is retained within the data structure so that it can be
reinserted quickly later.

• When a previously-deleted point is reinserted into the
linked lists, existing points are not checked to see
whether they are dominated by the new point. Instead,
whenever IHSO† calculates a slice which has a hyper-
volume equal to the previous slice, the newly added
point is flagged as dominated at the current depth so
that it can be skipped in lower objectives. These points
are reset (marked as non-dominated) at the conclusion
of processing the slice.

• Unlike in HSO or FPL, where the addition of a non-
dominated point always increases the hypervolume of
a front, the addition of a point in IHSO does not
necessarily change the exclusive hypervolume of the
contributing point. The exclusive hypervolume of the
new point may be disjoint from that of the contributing
point. Therefore, the domination-flag check discussed
in the previous bullet point also improves performance
by skipping points that do not influence the contributing
point’s hypervolume, even when they are non-dominated
within the front.

• IHSO† can re-order the objectives upon the addition of
any point to a slice. Previously the front would already
be sorted in the next objective, and additional points
would be inserted into the correct position in the front.
As fronts are now ordered in all objectives, there is
no additional cost to switching the next objective to be
processed on-the-fly.

IV. EXPERIMENTAL COMPARISON

In this section we compare the performance of the three
hypervolume algorithms: IIHSO, HOY and FPL.

We used the HOY algorithm implementation from [25]
and the FPL implementation from [26]. Source code for
IIHSO is available from [27]. All timings were performed
on an Intel 2.4GHz Core 2 Duo processor with 2GB of
RAM, running Ubuntu Linux 7.04. All algorithms were com-
piled with gcc/g++ -O3 -march=nocona -funroll-all-loops
(version 4.1.2).

113

For these experiments, a value of 100 was used for each
reference point objective. Note that unlike searching for the
least contributing point (e.g. as in [19]) where only the
minimum necessary work is completed to determine which
point contributes the least, the choice of reference point for
calculating entire hypervolumes (all slices) does not affect
time peformance as the algorithm will perform the same
operations regardless.

A. Test data
We compare the performance of the three algorithms on

two different types of data.
• We used randomly-generated fronts, initialised by gen-

erating points with random values x, 0.1 ≤ x ≤ 10,
in all objectives. In order to guarantee mutual non-
domination, we initialised S = φ and added each point
x to S only if x∪S would be mutually-non-dominating.

• We used the spherical (DTLZ2), degenerate (DTLZ5)
and discontinuous (DTLZ7) from the DTLZ test suite
[28]. Properties of these test problems can be found in
[28], [29]. For each front, we generated mathematically
a representative set of 10, 000 points from the (known)
Pareto optimal set; then to form a front of a given
size, we sampled this set randomly. The degenerate
front can be processed in in polynomial time [13] and
we have omitted performance results in Figs. 3- 8 for
these fronts for brevity. Experiments also show that the
linear (DTLZ1) data behaves almost identically to the
spherical data set and is thus omitted completely.

The test data used in the experiments are also available
online [30].

B. Variation in HOY’s performance
In order to compare the three algorithms, we first need

to consider whether HOY’s performance can be improved
using similar methods to those we use with FPL and IIHSO.
We performed a series of experiments to measure how the
processing time of HOY varies with different fronts of a
given type and size, and with different objective orders
used to process a given front. We examined all 720 unique
objective orderings for a unique 6D front containing 640
points. Table I shows these results.

We can see from the last column of Table I, that the
ratio between the “average” objective ordering and the op-
timal ordering is significantly larger for HOY than for FPL
and IIHSO. In particular, for the degenerate and spherical
data types where the dimension-sweep algorithms benefit
enormously from objective reordering, an optimal objective
reordering for HOY offers little benefit. This limits the
benefit that can be realised by optimising HOY using an
objective reordering approach. Seemingly, the region splitting
procedure that guarantees HOY its worst-case complexity
may also limit the variation in processing time that could
be exploited to improve its typical performance.

Therefore objective reordering heuristics, even one that
guarantees an optimal ordering, could only provide a mi-
nor performance improvement for HOY. In the subsequent

performance comparison, we thus use HOY without the use
of heuristics.

C. Performance comparison

We optimised the FPL algorithm by re-ordering objectives
in the data using the MWW heuristic from [13] prior to
applying the baseline algorithm. We found that MWW did
not in general improve the performance of FPL in less
than 5 objectives, therefore we only applied the heuristic
when calculating 5 or more objectives. Similar behaviour
was noted for IIHSO using the MWW or Rank heuristics
(the Rank heuristic is not applicable for FPL since it is
only usable with contribution algorithms), and hence these
heuristics were also only applied when calculating 5 or more
objectives. As detailed above, no heuristics are applied for
the HOY algorithm. Results below are the average of 20
independent runs on unique fronts. All timings include the
cost of calculating heuristics.

Figures 3-8 plot performance timings for the three different
algorithms on varying numbers of points and objectives using
a log-log scale. Note that for a small number of points in
few objectives, the resolution in timings can lead to erratic
performance measurements.

We observe the following:

• In 4-11D, both IIHSO and FPL always outperform HOY,
usually by a substantial amount. As we discussed in
Section IV-B, the difference is unlikely to be covered
by optimising HOY.

• For 3 objectives, the performance of IIHSO and FPL is
always less than 0.01 seconds in up to 1000 points and
the performance of all three algorithms is more than fast
enough such that that any difference is insignificant.

• On random and discontinuous fronts, IIHSO outper-
forms FPL in five or more objectives, and for random
data usually by a substantial amount (recall that the plots
use a log-log scale).

• In contrast, FPL outperforms IIHSO on spherical and
linear fronts in more than seven objectives, and the dif-
ference appears to increase as the number of objectives
increases. Experiments confirm that this is largely due
to the use of MWW to order the objectives for FPL. We
believe that:

– MWW works especially well for spherical and
linear data [13];

– Moreover, we believe that truly spherical data will
be rare in real world problems with a large number
of objectives.

• HOY, despite the fact that it has the best worst case
complexity, performs significantly worse than the other
algorithms in four or more objectives for all data types.

Table II shows the sizes of fronts that IIHSO using MWW
and rank can process in ten seconds, for each front-type. The
table shows that IIHSO can process substantial fronts in all
types up to 8–9 objectives.

114 CHAPTER 4. INCLUDED PAPERS

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(a) Random fronts in 3 objectives.

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(b) Discontinuous fronts in 3 objectives.

 0.0001

 0.001

 0.01

 0.1

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(c) Spherical fronts in 3 objectives.

Fig. 3. Comparison of the performance of IIHSO, HOY, and optimised FPL on 3-objective data. Each line plots the mean processing time for twenty
distinct fronts.

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(a) Random fronts in 4 objectives.

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(b) Discontinuous fronts in 4 objectives.

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(c) Spherical fronts in 4 objectives.

Fig. 4. Comparison of the performance of IIHSO, HOY, and optimised FPL on 4-objective data. Each line plots the mean processing time for twenty
distinct fronts.

 0.01

 0.1

 1

 10

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(a) Random fronts in 5 objectives.

 0.01

 0.1

 1

 10

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(b) Discontinuous fronts in 5 objectives.

 0.01

 0.1

 1

 10

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(c) Spherical fronts in 5 objectives.

Fig. 5. Comparison of the performance of IIHSO, HOY, and optimised FPL on 5-objective data. Each line plots the mean processing time for twenty
distinct fronts.

 0.01

 0.1

 1

 10

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(a) Random fronts in 7 objectives.

 0.01

 0.1

 1

 10

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(b) Discontinuous fronts in 7 objectives.

 0.01

 0.1

 1

 10

 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(c) Spherical fronts in 7 objectives.

Fig. 6. Comparison of the performance of IIHSO, HOY, and optimised FPL on 7-objective data. Each line plots the mean processing time for twenty
distinct fronts.

115

TABLE I
TIME PERFORMANCE VARIATION FOR FPL, HOY AND IIHSO ON DIFFERENT DATA TYPES. FRONTS CONTAIN 640 POINTS IN 6D: ALL 720 UNIQUE

OBJECTIVE ORDERINGS ARE EVALUATED.

Data type Algorithm mean (s) std dev (s) std dev/mean (s) min time/mean (s)
random FPL 25.957228 4.9649713 0.1912751 0.6768480

HOY 25.584465 1.7647406 0.0689770 0.8490057
IIHSO 4.4998702 0.7968367 0.1770799 0.5884983

discontinuous FPL 39.576657 14.488473 0.3660863 0.3207141
HOY 28.267166 2.3920060 0.0846214 0.8732939
IIHSO 8.8341855 3.8786478 0.4390498 0.3418752

spherical FPL 44.5003587 52.2093637 1.1732347 0.0316421
HOY 35.0217941 10.1819085 0.2907306 0.5068018
IIHSO 9.05977176 10.9557998 1.2092799 0.0737372

degenerate FPL 0.80086665 1.21764017 1.5204031 0.0199796
HOY 157.441001 31.2628222 0.1985685 0.6721160
IIHSO 0.03517998 0.01340135 0.3809368 0.2274021

TABLE II
SIZES OF FRONTS THAT IIHSO CAN PROCESS IN TEN SECONDS.

n Random Discontinuous Spherical
3 > 10,000 > 10,000 > 10,000
4 > 10,000 > 10,000 9,600
5 3,500 4,600 5,500
6 900 900 1,700
7 510 410 500
8 190 145 240
9 115 80 135
10 70 50 85
11 50 40 65
12 42 33 51
13 34 26 34

D. Complexity analysis

In order to better compare performance, we have cal-
culated the regression coefficients for the three hypervol-
ume algorithms. A linear least squares fit was applied to
the mean run time for each front size. Regression was
performed on models using the stated complexities: HOY
O(nd/2) [15], FPL O(nd−2 log n) [18] and IIHSO O(nd−1).
Following Fonseca et al. [18] we use the regression model
log10(t/ log2 n) = α log10 n + log10 c for FPL. For IIHSO
and HOY we use the regression model log10 t = α log10 n+
log10 c. Base 10 was used for the log factors to be consistent
with Fonseca et al. In order to provide a better fit, only
data points with a mean greater than 0.1s were used for
best fit regression. Table III shows the results of regressional
analysis. It should be noted that the complexity coefficients
for IIHSO and FPL cannot be directly compared due to the
additional log2 factor in the theoretical time complexity for
FPL.

For this reason, we have calculated the point at which
each algorithm will be perform equally using the complexity
coefficients and shown the range of front sizes where an
algorithm outperforms the others. For all data types tested,
IIHSO algorithm outperforms HOY for all (at this time)
feasible front sizes. For example, for 9D discontinous data
HOY outperforms IIHSO only on front sizes of 9145 points
or more. A front of this size and dimensionality would
take an astronomical time to compute. IIHSO fares very
well in most cases. The key exceptions are for 3D data,

where FPL’s clear complexity advantage due to its superior
3D basecase becomes evident in the complexity exponents.
Additionally, FPL outperforms IIHSO on spherical data with
high dimensionality.

V. CONCLUSIONS

We have described a new algorithm IIHSO for computing
exactly the hypervolume of a set of solutions returned by
a multi-objective evolutionary algorithm. IIHSO works by
repeated application of the incremental algorithm IHSO:
starting from the empty set, it adds the solutions to the
set one at a time, adding to an accumulator the extra
volume contributed by each solution relative to those added
previously. IIHSO also incorporates some ideas from the FPL
algorithm, principally its linked data structure for optimising
dominance calculations.

We have shown empirically that although the HOY al-
gorithm for calculating hypervolume has by far the best
worst-case complexity, IIHSO always outperforms HOY
and usually outperforms FPL on the tested data in higher
numbers of objectives. We have also shown empirically that
it may be difficult to improve the typical performance of
HOY. As demonstrated in Section IV-B, limited performance
improvements can be made by objective reordering and it
remains to be seen whether HOY can be improved further
by achievements made possible by removing complexity in
the Overmars and Yap algorithm that is not required when
the Klee’s measure problem is reduced to the special case of
the hypervolume problem.

Our future work in this area is likely to focus on improving
the performance of our incremental algorithm IHSO, for in-
line use in a MOEA. In particular we plan to investigate
the elimination of repeated work between slices at different
stages of the algorithm. Any improvements in IHSO should
improve the performance of IIHSO too.

ACKNOWLEDGMENTS

We thank Simon Huband for generating the raw DTLZ
data.

116 CHAPTER 4. INCLUDED PAPERS

 0.01

 0.1

 1

 10

 1 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(a) Random fronts in 9 objectives.

 0.01

 0.1

 1

 10

 1 10 100

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(b) Discontinuous fronts in 9 objectives.

 0.01

 0.1

 1

 10

 1 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(c) Spherical fronts in 9 objectives.

Fig. 7. Comparison of the performance of IIHSO, HOY, and optimised FPL on 9-objective data. Each line plots the mean processing time for twenty
distinct fronts.

 0.01

 0.1

 1

 10

 1 10 100

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(a) Random fronts in 11 objectives.

 0.01

 0.1

 1

 10

 1 10 100

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(b) Discontinuous fronts in 11 objectives.

 0.01

 0.1

 1

 10

 1 10 100 1000

T
im

e
(s

ec
on

ds
)

Number of points

HOY
FPL

IIHSO

(c) Spherical fronts in 11 objectives.

Fig. 8. Comparison of the performance of IIHSO, HOY, and optimised FPL on 11-objective data. Each line plots the mean processing time for twenty
distinct fronts.

TABLE III
CURVE FITTING COEFFICIENTS AND INTERCEPTS FOR VARIOUS DATA TYPES.

Data type d IIHSO FPL HOY
α log10 c Best (pts) α log10 c Best (pts) α log10 c Best (pts)

random 3 1.770704 -7.240801 1-106 0.558358 -5.611359 107+ 0.935127 -4.967349 –
4 1.810152 -7.060932 29-80263 1.849852 -7.801893 1-28 1.445007 -5.270071 80263+
5 2.227268 -7.104002 9-43210 2.340898 -7.710544 1-8 1.935844 -5.461041 434211+
7 3.089519 -7.247319 10-2.09829e8 3.609284 -8.267449 1-9 2.887177 -5.563456 2.09829e8+
9 4.175577 -7.635535 10-2.40306e13 4.690582 -8.629039 1-9 4.033135 -5.729552 2.40306e13+
11 5.463075 -8.408977 1-367 4.827081 -7.708278 368-2.85651e9 4.702927 -5.037208 2.85651e9+

discontinuous 3 1.603184 -6.764715 – 1.262008 -7.542020 1-1.92965e6 1.161358 -5.589658 1.92965e6+
4 1.651665 -6.660594 5-7.00165e11 1.558649 -6.943409 1-4 1.555121 -5.517011 7.00165e11+
5 2.068377 -6.644558 16-7.7891e10 2.201865 -7.391492 1-15 1.957164 -5.433283 3971+
7 3.067595 -6.868993 26-1.68843e9 3.856289 -8.657011 1-25 2.922631 -5.531340 1.68843e9+
9 4.650604 -7.950299 18-9144 5.168483 -9.204628 1-17 4.095770 -5.752515 9145+
11 5.841080 -8.483601 11-1231 6.003370 -9.187951 1-10 4.716577 -5.008529 1232+

spherical 3 1.636459 -6.860508 1-48 0.665682 -5.973973 49+ 1.184615 -5.607789 –
4 1.777519 -7.025577 16+ 1.880756 -7.729189 1-15 1.585746 -5.493311 –
5 1.988159 -6.679650 46+ 2.222188 -7.806057 1-45 2.152739 -5.764965 –
7 3.046349 -7.232591 1-90 2.611195 -7.194956 89+ 3.143627 -5.823398 –
9 3.635945 -6.864695 – 2.833817 -6.703751 1+ 4.171840 -5.856814 –
11 4.453226 -7.154271 – 3.395058 -7.051992 1+ 4.805196 -5.147425 –

degenerate 3 1.755361 -7.243959 1-99 0.414296 -5.388624 100+ 1.352020 -5.994287 –
4 1.584132 -6.725340 5+ 1.680270 -7.152688 1-4 1.925496 -6.191779 –
5 1.794844 -6.847725 1-6, 1.63438e13+ 1.697024 -7.197598 7-1.63438e13 2.408819 -6.092468 –
7 1.910468 -6.697617 1-6, 5.96077e6+ 1.757720 -7.015022 7-5.96077e6 3.660178 -6.490656 –
9 1.884317 -6.362168 4379+ 1.551482 -6.232864 1-4378 4.545753 -6.178759 –
11 1.788522 -5.912601 1-30, 1.75216e15+ 1.715111 -6.498032 31-1.75216e15 5.828428 -6.297117 –

117

REFERENCES

[1] R. Purshouse, “On the evolutionary optimisation of many objectives,”
Ph.D. dissertation, The University of Sheffield, United Kingdom, 2003.

[2] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications,” Ph.D. dissertation, Swiss Federal Institute
of Technology (ETH) Zurich, Switzerland, 1999.

[3] M. Laumanns, E. Zitzler, and L. Thiele, “A unified model for multi-
objective evolutionary algorithms with elitism,” in Congress on Evo-
lutionary Computation, R. Eberhart, Ed. IEEE, 2000, pp. 46–53.

[4] M. Fleischer, “The measure of Pareto optima: Applications to multi-
objective metaheuristics,” in Evolutionary Multi-objective Optimisa-
tion, ser. Lecture Notes on Computer Science, C. M. Fonseca, P. J.
Fleming, E. Zitzler, K. Deb, and L. Thiele, Eds., vol. 2632. Springer-
Verlag, 2003, pp. 519–533.

[5] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da
Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,” IEEE Transactions on Evolutionary Computa-
tion, vol. 7, no. 2, pp. 117–132, April 2003.

[6] M. Fleischer, “The measure of Pareto optima: Applications to multi-
objective metaheuristics,” Institute for Systems Research, University
of Maryland, Technical Report ISR TR 2002-32, 2002.

[7] T. Wagner, N. Beume, and B. Naujoks, “Pareto-, aggregation-, and
indicator-based methods in many-objective optimization,” Lecture
Notes in Computer Science, vol. 4403, p. 742, 2007.

[8] R. Everson, J. Fieldsend, and S. Singh, “Full elite sets for multi-
objective optimisation,” in Proceedings of the 5th International Con-
ference on Adaptive Computing in Design and Manufacture, 2002, pp.
87–100.

[9] J. Bader, K. Deb, and E. Zitzler, “Faster Hypervolume-based Search
using Monte Carlo Sampling,” in Conference on Multiple Criteria
Decision Making (MCDM 2008). Springer, 2008, pp. 313–326.

[10] E. Zitzler, “Hypervolume metric calculation,” 2001. [Online].
Available: ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c

[11] J. Knowles, “Local-search and hybrid evolutionary algorithms for
Pareto optimisation,” Ph.D. dissertation, The University of Reading,
United Kingdom, 2002.

[12] L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm
for calculating hypervolume,” IEEE Transactions on Evolutionary
Computation, vol. 10, no. 1, pp. 29–38, February 2006.

[13] L. While, L. Bradstreet, L. Barone, and P. Hingston, “Heuristics
for optimising the calculation of hypervolume for multi-objective
optimisation problems,” in Congress on Evolutionary Computation,
B. McKay, Ed. IEEE, 2005, pp. 2225–2232.

[14] M. H. Overmars and C.-K. Yap, “New upper bounds in Klee’s measure
problem,” SIAM Journal on Computing, vol. 20, no. 6, pp. 1034–1045,
December 1991.

[15] N. Beume and G. Rudolph, “Faster S-metric calculation by considering
dominated hypervolume as klee’s measure problem,” University of
Dortmund, Technical Report CI 216/06, 2006.

[16] L. Paquete, C. M. Fonseca, and M. López-Ibáñez, “An optimal
algorithm for a special case of Klee’s measure problem in three
dimensions,” CSI, Universidade do Algarve, Tech. Rep. CSI-RT-I-
01/2006, 2006.

[17] N. Beume, C. Fonseca, M. López-Ibáñez, L. Paquete, and J. Vahren-
hold, “On the complexity of computing the hypervolume indicator,”
2007.

[18] C. M. Fonseca, L. Paquete, and M. López-Ibáñez, “An im-
proved dimension-sweep algorithm for the hypervolume indicator,” in
Congress on Evolutionary Computation, C. L. P. Chen, Ed. IEEE,
2006, pp. 3973–3979.

[19] L. Bradstreet, L. While, and L. Barone, “A fast incremental hypervol-
ume algorithm,” Evolutionary Computation, IEEE Transactions on,
vol. 12, no. 6, pp. 714–723, Dec. 2008.

[20] S. Huband, P. Hingston, L. While, and L. Barone, “An evolution
strategy with probabilistic mutation for multi-objective optimization,”
in Congress on Evolutionary Computation, H. Abbass and B. Verma,
Eds. IEEE, 2003, pp. 2284–2291.

[21] J. Knowles, D. Corne, and M. Fleischer, “Bounded archiving using
the Lebesgue measure,” in Congress on Evolutionary Computation,
H. Abbass and B. Verma, Eds. IEEE, 2003, pp. 2490–2497.

[22] E. Zitzler and S. Künzli, “Indicator-based selection in multiobjective
search,” in Parallel Problem Solving from Nature VIII, ser. Lecture
Notes on Computer Science, X. Yao, E. Burke, J. A. Lozano, J. Smith,
J. J. Merelo-Guervos, J. A. Bullinaria, J. Rowe, P. Tino, A. Kaban, and
H.-P. Schwefel, Eds., vol. 3242. Springer-Verlag, 2004, pp. 832–842.

[23] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm
using the hypervolume measure as selection criterion,” in Evolutionary
Multi-objective Optimisation, ser. Lecture Notes on Computer Science,
C. A. Coello Coello, A. H. Aguirre, and E. Zitzler, Eds., vol. 3410.
Springer-Verlag, 2005, pp. 62–76.

[24] T. Bäck, D. Fogel, and Z. Michalewicz, Eds., Handbook of Evolu-
tionary Computation. Institute of Physics Publishing and Oxford
University Press, 1997.

[25] N. Beume, “HOY source code,” 2006. [Online]. Available: http://ls11-
www.cs.uni-dortmund.de/people/beume/publications/hoy.cpp

[26] C. M. Fonseca, M. López-Ibáñez, and L. Paquete, “Computation
of the hypervolume indicator,” 2007. [Online]. Available:
http://sbe.napier.ac.uk/ manuel/hypervolume

[27] Walking Fish Group, “IIHSO code,” 2009. [Online]. Available:
wfg.csse.uwa.edu.au/Hypervolume

[28] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” in Congress on Evolutionary
Computation, R. Eberhart, Ed. IEEE, 2002, pp. 825–830.

[29] S. Huband, P. Hingston, L. Barone, and L. While, “A review of
multi-objective test problems and a scalable test problem toolkit,”
Transactions on Evolutionary Computation, vol. 10, no. 5, pp. 477–
506, 2006.

[30] Walking Fish Group, “Hypervolume test data,” 2009. [Online].
Available: wfg.csse.uwa.edu.au/Hypervolume

118 CHAPTER 4. INCLUDED PAPERS

119

Paper 7 (Refereed)

L. While, L. Bradstreet, and L. Barone. A Fast Way of Calculating Exact Hy-

pervolumes, 2010. To appear in IEEE Transactions on Evolutionary Computation

120 CHAPTER 4. INCLUDED PAPERS

A Fast Way of Calculating Exact Hypervolumes
Lyndon While,Senior Member, IEEE,Lucas Bradstreet,Student Member, IEEE,Luigi Barone

Abstract— We describe a new algorithm WFG for calculating
hypervolume exactly. WFG is based on the recently-described
observation that the exclusive hypervolume of a pointp relative
to a set S is equal to the difference between the inclusive
hypervolume of p and the hypervolume of S with each point
limited by the objective values inp. WFG applies this technique
iteratively over a set to calculate its hypervolume. Experiments
show that WFG is substantially faster than all previously-
described algorithms that calculate hypervolume exactly.

Index Terms— Multi-objective optimisation, evolutionary com-
putation, diversity, performance metrics, hypervolume.

I. I NTRODUCTION

H YPERVOLUME [1], also known as the S-metric [2]
or the Lebesgue measure [3], is a popular metric for

comparing the performance of multi-objective optimisers. The
hypervolume of a set of solutions measures the size of the
portion of objective space that is dominated by those solu-
tions collectively. Hypervolume captures in one scalar both
the closeness of the solutions to the optimal set and their
spread across objective space. Hypervolume also has nicer
mathematical properties than other metrics [4], [5]: however
it is sensitive to the relative scaling of the objectives, and to
the presence or absence of extremal points. Hypervolume is
also increasingly used in-line in multi-objective evolutionary
algorithms, either to promote diversity [6], or as part of an
archiving mechanism [7], or as part of the selection process
[8], [9]. Here the requirement is usually to determine which
point in a set contributes least to the hypervolume of the set.

The principal problem with hypervolume is that it is ex-
pensive to calculate. Several algorithms have been proposed:
significant recent developments include

• the HOY algorithm [10], that has by far the best worst-
case complexity of any algorithm (O(m logm +mn/2),
wherem is the number of points andn is the number of
objectives);

• a provably optimalO(m logm) algorithm [11] for the 3D
case;

• the IIHSO algorithm [12], currently the fastest algorithm
on much typical benchmark data in many objectives.

We describe a new approach to calculating hypervolume
exactly, based on a recently-described technique [13], [14] for
calculating exclusive hypervolumes. To calculate the exclusive
hypervolume of a pointp relative to a setS, replace each point
q in S with a point that dominates the intersection ofq’s and
p’s volumes, then the resulting set dominates a subset ofp’s
inclusive hypervolume, andp’s exclusive hypervolume is sim-
ply the difference between them. This modification ofS often

The authors are with The University of Western Australia.

leads to a large proportion of its points becoming dominated,
leading to a very fast calculation overall. Applied iteratively
with only minor optimisations, this bounding technique gives a
new and very simple algorithm WFG that is far faster than any
previously-published algorithm for calculating hypervolumes
exactly.

The remainder of the paper is structured as follows.
Section II describes the necessary background material in
multi-objective optimisation and hypervolume, including a
brief description of previous exact hypervolume algorithms.
Section III describes the new technique for calculating exclu-
sive hypervolumes, including some analysis of its benefits.
Section IV describes the new algorithm WFG, some ways in
which WFG can be optimised, an experimental comparison
of WFG with other recent hypervolume algorithms, and an
analysis of WFG’s complexity. Section V concludes the paper
and suggests some future work, including a discussion of using
the bounding technique in-line in evolutionary algorithms.

II. BACKGROUND MATERIAL

A. Multi-objective Optimisation

In a multi-objective optimisation problem, we aim to find
the set of optimal trade-off solutions known as the Pareto
optimal set. Pareto optimality is defined with respect to the
concept of non-domination between points in objective space.
Given two objective vectorsx and y, x dominatesy iff x is
at least as good asy in all objectives, and better in at least
one. A vectorx is non-dominatedwith respect to a set of
solutionsX iff there is no vector inX that dominatesx. X
is a non-dominated setiff all vectors inX are mutually non-
dominating. Such a set of objective vectors is sometimes called
a non-dominated front.

A vector x is Pareto optimaliff x is non-dominated with
respect to the set of all possible vectors. Pareto optimal vectors
are characterised by the fact that improvement in any one
objective means worsening at least one other objective. The
Pareto optimal setis the set of all possible Pareto optimal
vectors. The goal in a multi-objective problem is to find
the Pareto optimal set, although for continuous problems a
representative subset will usually suffice.

Precise definitions of these terms can be found in [15].

B. Hypervolume

Given a set of solutions returned by a multi-objective
optimiser, the question arises how well it approximates the
Pareto optimal set. One metric used widely for comparing sets
of solutions is theirhypervolume[1]–[3]. The hypervolume
of a setS is the size of the part of objective space that is
dominated collectively by the solutions inS. The hypervolume
of a set is measured relative to a reference point, usually the

121

anti-optimal point or “worst possible” point in space. (We do
not address here the problem of choosing a reference point,
if the anti-optimal point is not known or does not exist: one
suggestion is to take, in each objective, the worst value from
any of the sets being compared.) If a setS has a greater
hypervolume than a setS′, S is taken to be a better set of
solutions thanS′.

The exclusive hypervolumeof a pointp relative to a setS
is the size of the part of objective space that is dominated
by p but is not dominated by any member ofS. Exclusive
hypervolume is used widely in multi-objective optimisers,
either to promote diversity [6], or as part of an archiving
mechanism [7], or as part of the selection process [8], [9]:
the requirement is usually to determine which point in a set
contributes least to the hypervolume of the set. Exclusive
hypervolume can be defined in terms of hypervolume, i.e.

ExcHyp(p, S) = Hyp(S ∪ {p})−Hyp(S) (1)

We shall also use the terminclusive hypervolumeof a pointp
to mean the size of the part of objective space dominated by
p alone, i.e.

IncHyp(p) = Hyp({p}) (2)

All of these concepts are illustrated in Fig. 1.

f2

-

6

f1

t
a

t
b

t
c t

d

t
e

tp
E

H

Fig. 1. Maximising in both objectives relative to the origin, the hypervol-
ume of {a, b, c, d, e} is the solid-bordered shape labeledH, the exclusive
hypervolume ofp relative to{a, b, c, d, e} is the shape labeledE, and the
inclusive hypervolume of any point is the rectangle bounded by that point and
the origin. The dashed lines indicate the sub-parts ofH used in (4).

C. Previous Algorithms for Calculating Exact Hypervolumes

Several algorithms have been proposed for calculating hy-
pervolumes and exclusive hypervolumes exactly.

The inclusion-exclusion algorithm for calculating the size
of a set union has been adapted for hypervolume calculation
[16], but its complexity isO(n2m) as it examines every subset
of the set of points, so it is unusable in practice.

LebMeasure [17] processes the points one at a time, cal-
culating the exclusive hypervolume dominated by one point
relative to the rest of the set, then discarding that point and
processing the others in turn (this idea is discussed further
in Section II-D). LebMeasure was originally believed to have
polynomial complexity, but it has since been proved to be
exponential [18] and even when optimised it is very slow [19].

HSO (Hypervolume by Slicing Objectives) [19]–[21] pro-
cesses the objectives one at a time. It slices thenD-
hypervolume into separaten− 1D-hypervolumes through the
values in one of the objectives, then it calculates the hypervol-
ume of each slice and sums these values. HSO’s worst-case
complexity isO(mn−1) [19] , but good heuristics have been
described for re-ordering objectives [22] that deliver much
better performance for typical data.

FPL (Fonseca, Paquete, López-Ib́añez) [23] optimises HSO
further, mainly through the use of an advanced data structure
to optimise repeated domination checks and the recalculation
of partial hypervolumes. It also incorporates a recent optimal
algorithm for the 3D case [11], that works by maintaining a
sorted 2D front in a balanced tree structure as it descends in
the third objective. The key to the 3D algorithm is that this
front can be updated in logarithmic time.

IHSO (Incremental HSO) [24] is a version of HSO cus-
tomised for incremental calculations. It uses various ideas
and heuristics to reduce the cost of calculating exclusive
hypervolumes (discussed more fully in Section III), and it
uses a novel “best-first” queuing mechanism to determine very
efficiently the least-contributing point in a set.

IIHSO (Iterated IHSO) [12] combines the efficient incre-
mental calculations of IHSO with the point-wise processing of
LebMeasure, again with heuristics to optimise the performance
for a given data set. The resulting algorithm is the fastest yet
known on much typical benchmark data in many objectives.

HOY (Hypervolume by Overmars and Yap) [10] adapts
an algorithm for solving Klee’s measure problem [25] to
hypervolume calculation. Objective space is divided into re-
gions, each one containing the points that overlap that region.
Regions are broken up recursively until the hypervolume
within each region can be measured trivially. HOY’s worst-
case complexity (O(m logm+mn/2)) is by far the best of any
algorithm, but experiments reported in [12], [26] and in this
paper show that its performance on realistically-sized fronts is
not great.

An obvious alternative to calculating hypervolume exactly
is to use an approximation algorithm (for example [26]–[28]).
Using such algorithms introduces a trade-off between precision
and performance, and much improvement has been reported
recently on understanding this trade-off [26]. However, we do
not compare with approximation algorithms here.

D. Calculating Hypervolume Point-wise

LebMeasure [17] introduced the idea of calculating hyper-
volume as a summation of exclusive hypervolumes, i.e.

Hyp({p1, . . . , pm})

=
m∑

i=1

ExcHyp(pi, {pi+1, . . . , pm}) (3)

122 CHAPTER 4. INCLUDED PAPERS

Considering Fig. 1 again, this corresponds to calculating
the hypervolume of{a, b, c, d, e} by summing the regions
delineated by the dashed lines, i.e.

H = ExcHyp(a, {b, c, d, e}) +
ExcHyp(b, {c, d, e}) +
ExcHyp(c, {d, e}) +
ExcHyp(d, {e}) +
ExcHyp(e, {}) (4)

This technique is used in IIHSO [12], and we use it again in
our new algorithm WFG, described in Section IV.

III. A N EW METHOD FORCALCULATING EXACT

EXCLUSIVE HYPERVOLUMES

(1) provides a clear definition for exclusive hypervolume,
but it doesn’t provide an efficient mechanism for its calcula-
tion: it requires two separate hypervolume calculations. IHSO
[24] gets around this by calculating the differences between
the two hypervolumes directly, using two main tricks.

• Slices above thecontributing pointp (i.e. slices with bet-
ter values thanp in the current objective) are discarded:
they contain no hypervolume that is dominated byp, so
clearly they add nothing to the hypervolume dominated
exclusively byp.

• If, in a given slice,p is dominated in the remaining
(unprocessed) objectives, clearly it dominates no more
exclusive hypervolume in that slice, or in any lower slices.
Those slices too are discarded.

Bringmann and Friedrich [13] and Bradstreetet al. [14]
describe a new way of using the first of these tricks pre-
emptively rather than on-the-fly, by modifying the points in
the underlying set. Each point is replaced with one whose
value in each objective is limited to be no better than the
contributing point. Fig. 2 illustrates the principle. For the set
{a, b, c, d, e}, each of their objective values is replaced with
the smaller of that value and the corresponding value from
the contributing pointp. The effect is that the hypervolume
dominated by the modified underlying set is a subset of the
inclusive hypervolume of the contributing point, and a simple
subtraction returns the exclusive hypervolume.

This calculation is defined in (5)–(7).

ExcHyp(p, S) = Hyp({p})−Hyp(S′) (5)

where

S′ = {limit(s, p)|s ∈ S} (6)

limit(< s1, . . . , sn >,< p1, . . . , pn >)

=< worse(s1, p1), . . . , worse(sn, pn) > (7)

Note that any point inS′ that is dominated by some other point
in S′ (for examplee′ in Fig. 2) has no more relevance to the
result, and it can be discarded before any further calculation
is performed. We can see how crucial this step is to the
efficiency of these calculations by plotting the percentage
of dominated points inS′ for various types of data. Fig. 4

f2

-

6

f1

t
a

t
b

t
c t

d

t
e

tp
E

H ′

t
a′

t
d′

t
e′

Fig. 2. Maximising in both objectives, the exclusive hypervolume ofp
relative to {a, b, c, d, e} (i.e. E) = the inclusive hypervolume ofp (i.e.
the rectangle withp at the top-right corner) minus the hypervolume of
{a′, b, c, d′, e′} (i.e.H′). Clearlye′ is dominated byd′ and can be discarded.

shows that the great majority of sets in 4–10D lose over 50%
of their points after being limited byjust one contributing
point, and that most sets lose over 80% of their points. And
the optimisations described in Section IV-B increase these
percentages significantly.

Of course not all data has so many points dominated. The
worst case appears to be data of the form shown in Fig. 3, for
which no points are dominated in the largestn−2 underlying
sets. However note that this does not immediately imply that

m m m m 1
m− 1 m− 1 m− 1 1 2
m− 2 m− 2 1 2 3
m− 3 1 2 3 4
m− 4 2 3 4 5

...
...

...
...

...
1 m− 3 m− 2 m− 1 m

Fig. 3. A pathological example for the bounding technique. This pattern
describes sets ofm points in five objectives, all being maximised and all
(except the first) increasing monotonically after the first four points. The
pattern can be generalised for other numbers of objectives.

this data will be processed slowly overall, just that the largest
underlying sets will be processed slowly.

Bringmann and Friedrich [13] make the observation that if
the contributing point is poor in several objectives, then more
of the points in the underlying set will tend to be lost. We
use this as a basis for optimising the performance of WFG in
Section IV-B.

123

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 300 500 700 900
Number of points

Pe
rc
en

ta
ge

 o
f d

om
in
at
ed

 p
oi
nt
s

Degenerate nD

Random 4D

Discontinuous 4D

Spherical 4D

Random 7D

Spherical 7D

Spherical 10D

Discontinuous 7D

Random 10D

Discontinuous 10D

Fig. 4. Percentage of dominated points in a front after it has been limited by
one of its points. Each datum is the average of twenty distinct fronts, where
for each point in each front we calculate the number of dominated points after
the front is limited by that point, then we average those figures. The data is
described in Section IV-C.

IV. WFG: A FAST ALGORITHM FOR CALCULATING EXACT

HYPERVOLUMES

A. Basic Algorithm

The basic WFG algorithm is a mutually recursive com-
bination of the point-wise calculation from Section II-D,
and the technique from Section III for calculating exclusive
hypervolumes. The hypervolume of a set of points is calculated
as a sum of exclusive hypervolumes, and each exclusive
hypervolume is calculated by limiting the underlying set with
the contributing pointp, and subtracting the hypervolume of
the modified set from the inclusive hypervolume ofp. The
result is a kind of inclusion-exclusion algorithm that uses
domination to reduce the number and sizes of sets that have
to be examined.

The base case for the basic algorithm is when it is applied
to an empty set. Fig. 5 gives pseudo-code for WFG.

B. Optimisations

There are two obvious optimisations that can be applied to
WFG.

1) Sorting the points:WFG calculates the exclusive hyper-
volume of every point in a set, but note that each point is
processed relative to a different-sized underlying set. Specifi-
cally, the last point is processed relative to the empty set, the
penultimate point relative to a set with one element, etc, up to
the first point, which is processed relative to a set withm− 1
elements.

wfg(pl):
return sum {exclhv(pl, k) | k in {1 .. |pl|}}

exclhv(pl, k):
return inclhv(pl[k]) - wfg(nds(limitset(pl, k)))

inclhv(p):
return product {|p[j] - refPoint[j]| | j in {1 .. n}}

limitset(pl, k):
for i = 1 to |pl| - k

for j = 1 to n
ql[i][j] = worse(pl[k][j], pl[k+i][j])

return ql

nds(pl) returns the non-dominated subset of pl

Fig. 5. Pseudo-code for WFG.n is the number of objectives.

In addition, contributing points with worse objective values
will limit the points in their underlying set more, so they will
tend to generate a higher proportion of dominated points and
consequently a smaller set in the recursive call.

Putting these two features together tells us that we should
process contributing points with better objective values rel-
ative to smaller underlying sets. This means that the larger
underlying sets will tend to have more dominated points that
can be discarded, and the calculation will be faster overall.

The simplest way to implement this optimisation is to
sort the points so that they are improving monotonically in
one of the objectives. Early experiments suggest that more-
complicated sorting orders can generate even more dominated
points, but sorting in a single objective is cheap, it is effective
(see Fig. 6, and compare with Fig. 4), and it allows us to
incorporate a further significant optimisation.

2) Slicing the points:Once the points are sorted in an
objective, we can optimise WFG further by also slicing the
hypervolume in that objective, as in HSO. This makes subse-
quent processing of the points cheaper (as they are smaller),
and also it allows us to incorporate a new base case when the
points are reduced to two objectives. This is a fast simple case
with complexityO(m) when the points are already sorted.

The alternative base case for a slicing algorithm is when
the points are reduced to three objectives, when we can use
the optimal 3D algorithm of Beumeet al. [11]. This algorithm
has complexityO(m logm), but of course it saves one level
of recursion in the main algorithm.

Other optimisations are clearly possible, the most obvious
being a heuristic to select which objective should be used to
sort and slice the points. We discuss some options briefly in
Section V.

C. Experimental Comparison

We performed a series of experiments to investigate the
performance of WFG and its optimisations, and to compare
its performance with other recent hypervolume algorithms. We
used three types of data.

• Randomly-generated fronts, initialised by generating
points with random valuesx, 0.1 ≤ x ≤ 10, in all
objectives. In order to guarantee mutual non-domination,

124 CHAPTER 4. INCLUDED PAPERS

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 300 500 700 900

Number of points

Pe
rc
en

ta
ge

 o
f d

om
in
at
ed

 p
oi
nt
s

Degenerate nD

Spherical 4D

Random 4D

Discontinuous 4D

Spherical 7D

Spherical 10D

Random 7D

Discontinuous 7D

Random 10D

Discontinuous 10D

Fig. 6. Percentage of dominated points in a front after it has been limited
by the worst point in the last objective. Each datum is the average of twenty
distinct fronts. The degenerate line is 100% everywhere. The data is described
in Section IV-C.

we initialisedS = φ and added each pointx to S only
if {x} ∪ S would be mutually-non-dominating.

• The discontinuous, spherical, and degenerate fronts from
the DTLZ test suite [29]. For each front, we generated
mathematically a representative set of10, 000 points from
the (known) Pareto optimal set: then to form a front of
a given size, we sampled this set randomly. We omit
the linear front from DTLZ because it gives very similar
performance to the spherical front.

• The “worst-case data” for the bounding technique, from
Fig. 3.

The data used in the experiments is available from
wfg.csse.uwa.edu.au/hypervolume/hv8 , and the
code is available as follows.

• HOY: ls11-www.cs.uni-dortmund.de/
people/beume/publications/hoy.cpp .

• FPL: iridia.ulb.ac.be/˜manuel/
hypervolume (version 1.2).

• IIHSO and WFG:wfg.csse.uwa.edu.au/
hypervolume/hv8 .

All timings were performed on an Intel 2.4GHz Core 2
Duo processor with 2GB of RAM, running Ubuntu Linux
8.04.3. All algorithms were compiled withgcc/g++ -O3
-funroll-loops -march=nocona (version 4.2.4).

Figs. 7–12 are all available in log-log format at
wfg.csse.uwa.edu.au/hypervolume/hv8 .

1) Comparing the optimisations:Fig. 7 reports experi-
ments on fronts of various sizes and types comparing the
performance of WFG using the optimisations discussed in

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 200 400 600 800 1000

Number of points

Ti
m

e
(s

ec
on

ds
)

(a) Random fronts in 7 objectives.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 200 400 600 800 1000
Number of points

Ti
m

e
(s

ec
on

ds
)

basic WFG
with sorting
plus slicing to 2D
plus slicing to 3D

(b) Discontinuous fronts in 7 objectives.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 200 400 600 800 1000
Number of points

Ti
m

e
(s

ec
on

ds
)

(c) Spherical fronts in 7 objectives.

Fig. 7. Comparison of the performance of WFG using various optimisations.
Each datum is the average processing time for twenty distinct fronts in 7
objectives. The legend on the middle graph applies for all three. On 7(a) and
7(b), the two “slicing” lines almost coincide.

125

Section IV-B. The graphs show clearly that simply sorting the
points so that they are improving in one objective provides a
substantial speed-up for WFG: slicing the points to either a
2D or 3D base case provides an additional speed-up that is
relatively small by comparison.

2) Comparing with other algorithms:Figs. 8–12 report
experiments on fronts of various sizes and types comparing the
performance of optimised WFG with FPL [23], HOY [10], and
IIHSO [12]. FPL was optimised by using the MWW heuristic
[22] (adapted for FPL’s complexity model) to re-order the
objectives, if there are more than four. HOY was run as is:
no-one has yet published any useful optimisations for this
algorithm. The graphs show clearly that WFG outperforms by
a significant margin all of the previous algorithms in almost all
of the experiments, especially at higher numbers of objectives.
The only exception is that IIHSO beats WFG for the 4D data
in Fig. 8, but the actual difference in the timings is very small.

3) Performance on the degenerate front:Fig. 13 reports
experiments on the degenerate front-type. Most modern hy-
pervolume algorithms can process the degenerate front-type
in polynomial time, and this is confirmed by these results.
However, degenerate appears to be the worst-case data for
HOY: it can process only around 10–15 points in 13D in a
reasonable time frame. Although WFG is the fastest of the
other algorithms, the actual differences are minor.

4) Performance on the “worst-case data”:Fig. 14 reports
experiments on the “worst-case data” for the bounding tech-
nique, from Fig. 3. Even though the largestn − 2 sets will
have no dominated points for this front in each iteration, it is
clear that the data poses no problem for the algorithm as a
whole. We have yet to identify any data that troubles WFG.

5) Overall usability of WFG:Table I shows the sizes of
fronts that WFG can process in ten seconds, for each front-
type. The table shows that WFG can process substantial fronts
in all types up to eleven objectives, and probably a lot more
objectives in spherical.

TABLE I

SIZES OF FRONTS THATWFG CAN PROCESS IN TEN SECONDS.

n IS THE NUMBER OF OBJECTIVES.

n Random Discontinuous Spherical
3 > 10,000 > 10,000 > 10,000
4 > 10,000 > 10,000 > 10,000
5 > 10,000 9,600 7,800
6 5,800 5,600 4,400
7 2,300 2,000 2,100
8 900 600 1,300
9 450 300 1,000
10 235 150 700
11 185 105 575
12 130 85 475
13 100 70 450

D. Complexity

The complexity of basic WFG form points inn objectives
can be modelled by the following recurrence relations.

f(m,n) =
m−1∑

i=0

g(i, n) (8)

g(m,n) = 1 + f(m′, n) (9)

0.00

0.02

0.04

0.06

0.08

0.10

0 200 400 600 800 1000

Number of points

Ti
m

e
(s

ec
on

ds
)

(a) Random fronts in 4 objectives.

0.00

0.02

0.04

0.06

0.08

0.10

0 200 400 600 800 1000

Number of points

Ti
m

e
(s

ec
on

ds
)

HOY
FPL
IIHSO
WFG

(b) Discontinuous fronts in 4 objectives.

0.00

0.04

0.08

0.12

0.16

0.20

0 200 400 600 800 1000
Number of points

Ti
m

e
(s

ec
on

ds
)

(c) Spherical fronts in 4 objectives.

Fig. 8. Comparison of the performance of WFG with FPL, HOY, and IIHSO
in 4 objectives. Each datum is the average processing time for twenty distinct
fronts. The legend on the middle graph applies for all three.

126 CHAPTER 4. INCLUDED PAPERS

0.0

0.5

1.0

1.5

2.0

2.5

0 200 400 600 800 1000
Number of points

Ti
m

e
(s

ec
on

ds
)

(a) Random fronts in 5 objectives.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 200 400 600 800 1000

Number of points

Ti
m

e
(s

ec
on

ds
)

HOY
FPL
IIHSO
WFG

(b) Discontinuous fronts in 5 objectives.

0

1

2

3

4

5

0 200 400 600 800 1000
Number of points

Ti
m

e
(s

ec
on

ds
)

(c) Spherical fronts in 5 objectives.

Fig. 9. Comparison of the performance of WFG with FPL, HOY, and IIHSO
in 5 objectives. Each datum is the average processing time for twenty distinct
fronts. The legend on the middle graph applies for all three.

0

2

4

6

8

10

0 200 400 600 800 1000
Number of points

Ti
m

e
(s

ec
on

ds
)

(a) Random fronts in 7 objectives.

0

2

4

6

8

10

0 200 400 600 800 1000
Number of points

Ti
m

e
(s

ec
on

ds
)

HOY
FPL
IIHSO
WFG

(b) Discontinuous fronts in 7 objectives.

0

2

4

6

8

10

0 200 400 600 800 1000
Number of points

Ti
m

e
(s

ec
on

ds
)

(c) Spherical fronts in 7 objectives.

Fig. 10. Comparison of the performance of WFG with FPL, HOY, and IIHSO
in 7 objectives. Each datum is the average processing time for twenty distinct
fronts. The legend on the middle graph applies for all three.

127

0

2

4

6

8

10

0 50 100 150 200 250 300
Number of points

Ti
m

e
(s

ec
on

ds
)

(a) Random fronts in 10 objectives.

0

2

4

6

8

10

0 20 40 60 80 100 120 140 160
Number of points

Ti
m

e
(s

ec
on

ds
)

HOY
FPL
IIHSO
WFG

(b) Discontinuous fronts in 10 objectives.

0

2

4

6

8

10

0 100 200 300 400 500 600 700
Number of points

Ti
m

e
(s

ec
on

ds
)

(c) Spherical fronts in 10 objectives.

Fig. 11. Comparison of the performance of WFG with FPL, HOY, and IIHSO
in 10 objectives. Each datum is the average processing time for twenty distinct
fronts. The legend on the middle graph applies for all three.

0

2

4

6

8

10

0 20 40 60 80 100
Number of points

Ti
m

e
(s

ec
on

ds
)

(a) Random fronts in 13 objectives.

0

2

4

6

8

10

0 10 20 30 40 50 60 70
Number of points

Ti
m

e
(s

ec
on

ds
)

HOY
FPL
IIHSO
WFG

(b) Discontinuous fronts in 13 objectives.

0

2

4

6

8

10

0 100 200 300 400 500
Number of points

Ti
m

e
(s

ec
on

ds
)

(c) Spherical fronts in 13 objectives.

Fig. 12. Comparison of the performance of WFG with FPL, HOY, and IIHSO
in 13 objectives. Each datum is the average processing time for twenty distinct
fronts. The legend on the middle graph applies for all three.

128 CHAPTER 4. INCLUDED PAPERS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

3 4 5 6 7 8 9 10 11 12 13
Number of objectives

Ti
m

e
(s

ec
on

ds
)

HOY
FPL
IIHSO
WFG

Fig. 13. Comparison of the performance of WFG with FPL and IIHSO
on the degenerate front-type. Each datum is the average processing time for
twenty distinct fronts, each with 1,000 points.

0.0

0.1

0.2

0.3

0.4

0.5

3 4 5 6 7 8 9 10 11 12 13
Number of objectives

Ti
m

e
(s

ec
on

ds
)

HOY
FPL
IIHSO
WFG

Fig. 14. Comparison of the performance of WFG with FPL, HOY, and IIHSO
on the data from Fig. 3. Each front has 1,000 points.

(8) returns the number of inclusive hypervolumes that are
calculated in an application of WFG: it models the cost as
a sum of exclusive hypervolumes over smaller sets.m′ in (9)
represents the size of the non-dominated set after it has been
limited by one point.

Under the worst-case assumption that no points are ever
dominated, i.e.m′ = m, we can easily prove that

f(m,n) = 2m − 1 (10)

i.e. that WFG is exponential in the number of points in the
worst case.

Proof: The proof is by induction onm.
Base case:m = 0.

0−1∑

i=0

g(i, n) = 0 = 20 − 1

Inductive step:suppose (10) holds form = j, i.e.

j−1∑

i=0

g(i, n) = 2j − 1 (11)

Then
j+1−1∑

i=0

g(i, n) =

j∑

i=0

g(i, n)

= g(j, n) +

j−1∑

i=0

g(i, n)

= 1 + f(j, n) +

j−1∑

i=0

g(i, n), by (9)

= 1 +

j−1∑

i=0

g(i, n) +

j−1∑

i=0

g(i, n), by (8)

= 1 + 2

j−1∑

i=0

g(i, n)

= 1 + 2(2j − 1), by (11)

= 2j+1 − 1

It is clear from the experimental results in Section IV-C that
the real performance of WFG is totally unrelated to this worst-
case complexity. It is instructive to plot (8) for various values
of m′/m, to see the effect that the proportion of dominated
points has on the complexity of WFG. Fig. 15 shows that even
relatively small percentages of dominated points make a huge
difference to the algorithm’s performance. Fig. 6 shows what
percentages might be realised for typical real-world data.

1.E+00

1.E+05

1.E+10

1.E+15

1.E+20

1.E+25

1.E+30

0 20 40 60 80 100
Number of points (m)

f(m
, 7

)

0%

10%

20%

50%

70%

90%

Fig. 15. Plot of the complexity of WFG in 7 objectives, for various consistent
percentages of dominated points. 0% corresponds to the theoretical worst case
for the algorithm.

We do not include here complexity coefficients for
WFG, because of the difficulty in applying the worst-
case model when it is clearly not appropriate. How-
ever the performance data in Section IV-C demonstrate

129

strongly that the algorithm is a significant develop-
ment. Figs. 7–12 are all available in log-log format at
wfg.csse.uwa.edu.au/hypervolume/hv8 .

V. CONCLUSIONS

We have described a new algorithm WFG that can calculate
exact hypervolumes far faster than any previously-described
algorithm. WFG is based on the recently-described observation
that the exclusive hypervolume of a pointp relative to a setS
is equal to the difference between the inclusive hypervolume
of p and the hypervolume ofS with each point limited by
the objective values inp. Limiting the points inS in this way
leads to many points being dominated, which leads to very fast
calculations. WFG applies this technique iteratively over a set
to calculate its hypervolume. We also describe some minor but
effective optimisations for WFG.

Future work on WFG will include investigating further
optimisation by

• using heuristics to select a good objective for sorting and
slicing;

• using different sorting rules to generate smaller underly-
ing sets;

• re-organising the domination calculations in WFG.

Another obvious idea is to use the bounding technique directly
to calculate exclusive hypervolumes. However, the most com-
mon use of exclusive hypervolume is to identify the point
from a set that contributes the least to the hypervolume of
the set. We do not need to know the exclusive hypervolume
of each point — once we know that pointp is bigger than
point q, we ignorep — so a crucial part of this process is
that we calculate as little as possible about each point. This is
easy using HSO, which calculates the exclusive hypervolume
of a point as a series of additions. However, WFG uses both
additions and subtractions, so breaking up the calculation is
more complicated, and we have not yet found a decomposition
that gives good results. This also is future work.

ACKNOWLEDGEMENTS

We thank Simon Huband for generating the raw DTLZ data.

REFERENCES

[1] R. Purshouse, “On the evolutionary optimisation of many objectives,”
Ph.D. dissertation, The University of Sheffield, United Kingdom, 2003.

[2] E. Zitzler, “Evolutionary algorithms for multiobjective optimization:
Methods and applications,” Ph.D. dissertation, Swiss Federal Institute
of Technology (ETH) Zurich, Switzerland, 1999.

[3] M. Laumanns, E. Zitzler, and L. Thiele, “A unified model for multi-
objective evolutionary algorithms with elitism,” inCongress on Evolu-
tionary Computation, R. Eberhart, Ed. IEEE, 2000, pp. 46–53.

[4] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da
Fonseca, “Performance assessment of multiobjective optimizers: An
analysis and review,”IEEE Transactions on Evolutionary Computation,
vol. 7, no. 2, pp. 117–132, April 2003.

[5] M. Fleischer, “The measure of Pareto optima: Applications to multi-
objective metaheuristics,” Institute for Systems Research, University of
Maryland, Technical Report ISR TR 2002-32, 2002.

[6] S. Huband, P. Hingston, L. While, and L. Barone, “An evolution
strategy with probabilistic mutation for multi-objective optimization,”
in Congress on Evolutionary Computation, H. Abbass and B. Verma,
Eds. IEEE, 2003, pp. 2284–2291.

[7] J. Knowles, D. Corne, and M. Fleischer, “Bounded archiving using
the Lebesgue measure,” inCongress on Evolutionary Computation,
H. Abbass and B. Verma, Eds. IEEE, 2003, pp. 2490–2497.

[8] E. Zitzler and S. K̈unzli, “Indicator-based selection in multiobjective
search,” inParallel Problem Solving from Nature VIII, ser. Lecture Notes
on Computer Science, X. Yao, E. Burke, J. A. Lozano, J. Smith, J. J.
Merelo-Guervos, J. A. Bullinaria, J. Rowe, P. Tino, A. Kaban, and H.-P.
Schwefel, Eds., vol. 3242. Springer-Verlag, 2004, pp. 832–842.

[9] M. Emmerich, N. Beume, and B. Naujoks, “An EMO algorithm using
the hypervolume measure as selection criterion,” inEvolutionary Multi-
objective Optimisation, ser. Lecture Notes on Computer Science, C. A.
Coello Coello, A. H. Aguirre, and E. Zitzler, Eds., vol. 3410. Springer-
Verlag, 2005, pp. 62–76.

[10] N. Beume and G. Rudolph, “Faster S-metric calculation by considering
dominated hypervolume as Klee’s measure problem,” University of
Dortmund, Technical Report CI 216/06, 2006.

[11] N. Beume, C. M. Fonseca, M. López-Ib́añez, L. Paquete, and J. Vahren-
hold, “On the complexity of computing the hypervolume indicator,”
vol. 13, no. 5, October 2009, pp. 1075–1082.

[12] L. Bradstreet, L. While, and L. Barone, “A faster many-objective hyper-
volume algorithm using iterated incremental calculations,” inCongress
on Evolutionary Computation. IEEE, 2010.

[13] K. Bringmann and T. Friedrich, “Approximating the least hypervolume
contributor: NP-hard in general, but fast in practice,”CoRR, vol.
abs/0812.2636, 2008.

[14] L. Bradstreet, L. While, and L. Barone, “A new way of calculating exact
exclusive hypervolumes,” The University of Western Australia, School
of Computer Science & Software Engineering, Technical Report UWA-
CSSE-09-002, 2009.

[15] T. Bäck, D. Fogel, and Z. Michalewicz, Eds.,Handbook of Evolutionary
Computation. Institute of Physics Publishing and Oxford University
Press, 1997.

[16] J. Wu and S. Azarm, “Metrics for quality assessment of a multiobjective
design optimization solution set,”Journal of Mechanical Design, vol.
123, pp. 18–25, 2001.

[17] M. Fleischer, “The measure of Pareto optima: Applications to multi-
objective metaheuristics,” inEvolutionary Multi-objective Optimisation,
ser. Lecture Notes on Computer Science, C. M. Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, and L. Thiele, Eds., vol. 2632. Springer-Verlag,
2003, pp. 519–533.

[18] L. While, “A new analysis of the LebMeasure algorithm for calculating
hypervolume,” inEMO 2005, ser. LNCS, C. Coello Coelloet al., Ed.,
vol. 3410. Springer-Verlag, 2005, pp. 326–340.

[19] L. While, P. Hingston, L. Barone, and S. Huband, “A faster algorithm
for calculating hypervolume,”IEEE Transactions on Evolutionary Com-
putation, vol. 10, no. 1, pp. 29–38, February 2006.

[20] E. Zitzler, “Hypervolume metric calculation,” 2001. [Online]. Available:
ftp://ftp.tik.ee.ethz.ch/pub/people/zitzler/hypervol.c

[21] J. Knowles, “Local-search and hybrid evolutionary algorithms for Pareto
optimisation,” Ph.D. dissertation, The University of Reading, United
Kingdom, 2002.

[22] L. While, L. Bradstreet, L. Barone, and P. Hingston, “Heuristics for op-
timising the calculation of hypervolume for multi-objective optimisation
problems,” inCongress on Evolutionary Computation, B. McKay, Ed.
IEEE, 2005, pp. 2225–2232.

[23] C. M. Fonseca, L. Paquete, and M. López-Ib́añez, “An improved
dimension-sweep algorithm for the hypervolume indicator,” inCongress
on Evolutionary Computation, C. L. P. Chen, Ed. IEEE, 2006, pp.
3973–3979.

[24] L. Bradstreet, L. While, and L. Barone, “A fast incremental hypervolume
algorithm,” IEEE Transactions on Evolutionary Computation, vol. 12,
no. 6, pp. 714–723, December 2008.

[25] M. H. Overmars and C.-K. Yap, “New upper bounds in Klee’s measure
problem,” SIAM Journal on Computing, vol. 20, no. 6, pp. 1034–1045,
December 1991.

[26] K. Bringmann and T. Friedrich, “Approximating the least hypervolume
contributor: NP-hard in general, but fast in practice,” inEMO 2009, ser.
LNCS, vol. 5467. Springer-Verlag, 2009, pp. 6–20.

[27] R. Everson, J. Fieldsend, and S. Singh, “Full elite sets for multi-objective
optimisation,” in Proceedings of the 5th International Conference on
Adaptive Computing in Design and Manufacture, 2002, pp. 87–100.

[28] J. Bader, K. Deb, and E. Zitzler, “Faster hypervolume-based search using
Monte Carlo sampling,” inProceedings of MCDM-08. Springer, 2008.

[29] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable multi-
objective optimization test problems,” inCongress on Evolutionary
Computation, R. Eberhart, Ed. IEEE, 2002, pp. 825–830.

130 CHAPTER 4. INCLUDED PAPERS

Chapter 5

Conclusions

Assessment of multi-objective optimisers is a difficult problem and many metrics

have been proposed for this purpose. Hypervolume, as one of the most promising,

has lead to a large volume of research relating to both its calculation and its use.

This thesis examined the computation and application of hypervolume in multi-

objective optimisation and introduced several new calculation algorithms and tech-

niques which improve hypervolume’s use.

Research was focused on three distinct areas:

• metric hypervolume calculations for performance assessment,

• exclusive hypervolume contribution calculations, and

• hypervolume based selection techniques.

In the first area, this thesis focused on hypervolume metric algorithms and heuristics

with a view to improving hypervolume calculation performance. Paper 1 introduced

the use of heuristics in the HSO dimension-sweep hypervolume algorithm, improv-

ing the typical run-time performance of the HSO algorithm substantially. A better

hypervolume calculation algorithm, IIHSO, was introduced in Paper 6 that utilises

the IHSO hypervolume contribution algorithm. Further improving on this, Pa-

per 7 introduced the WFG algorithm, an algorithm which combines the iterative

131

132 CHAPTER 5. CONCLUSIONS

contribution based approach used by LebMeasure and IIHSO with an inclusion-

exclusion approach.

In the second focus, Paper 3 introduced IHSO, an HSO adaptation that directly cal-

culates exclusive hypervolume contributions. IHSO eliminates operations from HSO

which are unnecessary for exclusive hypervolume contribution calculations. Paper 3

also introduced performance improving heuristics designed for IHSO. As IHSO can

be used within steady-state MOEAs, or MOEAs using greedy front selection, Pa-

per 3 also introduced a BFS technique to minimise the calculations necessary to

find the least contributing point.

Exclusive hypervolume contributions become inaccurate when a front changes. Pa-

per 5 introduced a technique to quickly update the difference in contribution that

reflects the addition or removal of a solution. This technique can greatly re-

duce run-time in MOEAs that use hypervolume contributions in selection, such

as SIBEA [30,71] or SMS-EMOA [36,54].

In the third area of contribution, this thesis investigated and benchmarked some

simple selection techniques that can be used within multi-objective optimisers, fo-

cusing on techniques for maximising the hypervolume of front selections. Tech-

niques for using hypervolume for this purpose are rapidly improving and are only

now becoming viable for real world use [6, 9, 21, 22,71].

Paper 2 introduced two basic selection techniques for use within a non-steady state

MOEA. A greedy front reduction technique and a local search algorithm were com-

pared and each were shown to be useful depending on the proportion of the front

selected. The greedy reduction selection technique in Paper 2 calculated the exclu-

sive contribution of solutions using a naive application of HSO. Paper 4 reevaluated

these selection techniques after incorporating the IHSO algorithm and the BFS

scheme, offering performance improvements to both the greedy and local search se-

lection schemes. As these techniques allow the calculation of the least contributing

point with a much smaller overhead, they improve the performance of MOOs using

greedy selection techniques. Paper 4 also introduced a greedy addition scheme,

5.1. SUMMARY OF MAIN ACHIEVEMENTS 133

useful when small proportions of a front are selected.

5.1 Summary of Main Achievements

The main achievements of this work are:

1. The introduction of two fast metric algorithms, IIHSO and WFG, that can

be used to calculate higher objective problems considered infeasible for many

existing hypervolume algorithms.

IIHSO is based on iterative applications of IHSO and builds front hypervol-

umes using exclusive hypervolume contributions. Given similar front sizes

and equivalent time, IIHSO can calculate hypervolumes of fronts in roughly

two more objectives than HSO.

WFG combines iterative calculation of exclusive hypervolume contributions

with a technique to calculate contributions using a metric hypervolume al-

gorithm. WFG outperforms all existing hypervolume algorithms, including

IIHSO, on tested front types.

2. The introduction and evaluation of objective reordering heuristics. These

heuristics improve the typical performance of many hypervolume algorithms

based on a dimension-sweep approach, such as HSO, IHSO, and FPL.

3. The introduction of a fast incremental exclusive contribution calculation al-

gorithm, IHSO, and a search technique to minimise the computation required

to find the least contributing solution.

Exclusive hypervolume contributions can be used as part of a multi-objective

selection scheme and represent the change in the hypervolume of a set that

results when a solution is removed. The removal of a solution that contributes

the least to the hypervolume of a set maximises the hypervolume of the set

with one fewer solution. For this purpose, this thesis also introduced a search

134 CHAPTER 5. CONCLUSIONS

scheme to minimise the work necessary to determine the least contributing

point. Additional objective ordering heuristics were also created to improve

the typical performance of IHSO.

The operation to find the least contributing point may be used to repeatedly

reduce the size of a set. Contributions calculated in one iteration may not be

correct in the next, but completely recalculating contributions is an expensive

proposition. This thesis also introduced a technique to greatly reduce the

computation required to update previously calculated contributions.

4. The introduction and comparison of several hypervolume based solution se-

lection techniques that can be used in multi-objective optimisation. These

are intended to be used in MOEAs as part of a hypervolume-based selection

measure and aim to maximise the hypervolume of reduced size front subsets.

They do so without resorting to the calculation of the hypervolume of every

selection combination, an operation which is usually infeasible. A search based

approach and two greedy methods for selection are introduced and compared.

While these are relatively simple methods they were some of the first to al-

low hypervolume to be used to select more than one solution per generation.

They provide a performance and quality baseline for comparison with newer

hypervolume selection techniques.

5.2 Future Directions

Recent research into algorithms with the best worst case time complexity has con-

centrated on application of the Overmars and Yap algorithm for the Klee’s Measure

Problem, an old problem in computational geometry. The HOY algorithm [11] is

one such adaptation and improves slightly upon the complexity of the Overmars

and Yap algorithm by taking advantage of the fact that hypervolume calculations

are a restricted case of the Klee’s Measure Problem. It is possible that further

similar improvements could also be made. Additionally, heuristics which improve

5.2. FUTURE DIRECTIONS 135

the performance of the HOY algorithm may be possible, however results in Paper 6

(see Table 1) and in Palm [57] show that they may be non-trivial in practice. As

also described in Paper 6, algorithms with the best worst case complexity may not

perform well in practice. Therefore, algorithms with seemingly unfavourable worst

case complexities which perform well on real world problems should not necessarily

be discarded in favour of those with a lower upper bound which may in fact perform

relatively poorly on common problems.

Papers 2 and 4 described selection methods, such as the local search approach and

greedy reduction and addition approaches, intended to be used in the selection op-

erators of MOEAs. The update method discussed in Paper 5 further improves the

performance of these methods by quickly updating contributions as front composi-

tion changes. However, the full effectiveness of these selection methods when used

within actual MOEAs is unknown. Future research should evaluate these techniques

within MOEAs on test problems and real world problems.

A recent approach by Bringmann and Friedrich [22] is able to calculate the optimal

front selection without calculating all subset combinations individually, and without

a multiplicative combinatorial explosion in run-time. For problems in few objectives,

this scheme is likely to find favour in the future. For problems with many-objectives,

where HOY (the algorithm from which it was derived) has been shown to perform

poorly, this algorithm is likely infeasible even ignoring the additional mλ term.

Furthermore, problems with additional objectives generally lead to larger front sizes

and fewer unique ranks [38,61], increasing the size of m. Therefore this, algorithm

could be extremely infeasible for many-objective problems most of the time. Further

research is required to improve the feasibility of this approach. A combination of

greedy and optimal approaches is one suggestion, albeit at the cost of an optimal

selection.

Hypervolume based selection can also benefit from further research into objective

reduction techniques. Objective reduction reduces the cost of calculating hypervol-

ume greatly by removing objectives which do not affect selection decisions greatly.

136 CHAPTER 5. CONCLUSIONS

The removal of a single objective can hugely improve the cost of hypervolume calcu-

lation. For example, calculating a random 5D front with 1000 points using IIHSO

takes roughly 17 times longer than a random 4D front of identical size.

While the WFG algorithm, described in Paper 7 , performs extremely well on tested

experimental data, it could benefit from additional work to improve its performance.

Possible optimisations for WFG include:

• heuristics to select a good objective for sorting and slicing,

• different sorting rules to generate smaller underlying sets, and

• reorganising the domination calculations in WFG.

Additionally, WFG’s performance for exclusive hypervolume contribution calcula-

tions should be tested. When used to find the least contributing point, it may be

possible to apply the BFS scheme used with IHSO in Paper 3. Judging by WFG’s

excellent performance as a metric, it is possible that WFG, when used with a BFS

scheme, will outperform IHSO with BFS when used for this purpose.

Recent approximation techniques, such as those used in HypE by Bader et al. [5,6]

and Bringmann and Friedrich [21, 23], are another promising area of study. While

recent research into exact hypervolume algorithms has led to greatly improved per-

formance, it is likely that sampling techniques will remain necessary for many-

objective problems as hypervolume calculation is NP-hard. It may be possible to

adapt some of the calculation algorithms and selection techniques discussed in this

thesis to incorporate sampling techniques, and this is an area worthy of further

investigation.

Bibliography

[1] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Articulating User Prefer-

ences in Many-objective Problems by Sampling the Weighted Hypervolume.

In 2009 Genetic and Evolutionary Computation Conference (GECCO’2009),

pages 555–562, Montreal, Canada, July 8–12 2009. ACM Press. ISBN 978-1-

60558-325-9.

[2] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Investigating and Exploit-

ing the Bias of the Weighted Hypervolume to Articulate User Preferences.

In 2009 Genetic and Evolutionary Computation Conference (GECCO’2009),

pages 563–570, Montreal, Canada, July 8–12 2009. ACM Press. ISBN 978-1-

60558-325-9.

[3] A. Auger, J. Bader, D. Brockhoff, and E. Zitzler. Theory of the Hypervolume

Indicator: Optimal {µ}-Distributions and the Choice Of The Reference Point.

In FOGA ’09: Proceedings of the tenth ACM SIGEVO workshop on Foun-

dations of genetic algorithms, pages 87–102, Orlando, Florida, USA, January

2009. ACM.

[4] T. Bäck, D. Fogel, and Z. Michalewicz, editors. Handbook of Evolutionary

Computation. Institute of Physics Publishing and Oxford University Press,

1997.

[5] J. Bader, K. Deb, and E. Zitzler. Faster Hypervolume-based Search Using

Monte Carlo Sampling. In Conference on Multiple Criteria Decision Making

137

138 BIBLIOGRAPHY

(MCDM 2008), pages 313–326. Springer, 2008.

[6] J. Bader and E. Zitzler. HypE: An Algorithm for Fast Hypervolume-Based

Many-Objective Optimization. Evolutionary Computation, 2009.

[7] L. Barone, L. While, and P. Hingston. Designing Crushers with a Multi-

Objective Evolutionary Algorithm. In W. Langdon, E. Cantú-Paz, K. Mathias,

R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. We-

gener, L. Bull, M. Potter, A. Schultz, J. Miller, E. Burke, and N. Jonoska,

editors, Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO’2002), pages 995–1002, San Francisco, California, July 2002. Morgan

Kaufmann Publishers.

[8] N. Beume, C. Fonseca, M. Lopez-Ibanez, L. Paquete, and J. Vahrenhold. On

the Complexity of Computing the Hypervolume Indicator. Evolutionary Com-

putation, IEEE Transactions on, 13(5):1075–1082, Oct. 2009.

[9] N. Beume, B. Naujoks, and M. Emmerich. SMS-EMOA: Multiobjective se-

lection based on dominated hypervolume. European Journal of Operational

Research, 181(3):1653–1669, 16 September 2007.

[10] N. Beume, B. Naujoks, M. Preuss, G. Rudolph, and T. Wagner. Effects of 1-

Greedy S-Metric-Selection on Innumerably Large Pareto Fronts. In M. Ehrgott,

C. M. Fonseca, X. Gandibleux, J.-K. Hao, and M. Sevaux, editors, Evolutionary

Multi-Criterion Optimization. 5th International Conference, EMO 2009, pages

21–35. Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France,

April 2009.

[11] N. Beume and G. Rudolph. Faster S-Metric Calculation by Considering Dom-

inated Hypervolume as Klee’s Measure Problem. In B. Kovalerchuk, editor,

Computational Intelligence, pages 233–238. IASTED/ACTA Press, 2006.

[12] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—A Platform and

Programming Language Independent Interface for Search Algorithms. In C. M.

BIBLIOGRAPHY 139

Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary

Multi-Criterion Optimization. Second International Conference, EMO 2003,

pages 494–508, Faro, Portugal, April 2003. Springer. Lecture Notes in Com-

puter Science. Volume 2632.

[13] L. Bradstreet, L. Barone, and L. While. Maximising Hypervolume for Selection

in Multi-objective Evolutionary Algorithms. In 2006 IEEE Congress on Evolu-

tionary Computation (CEC’2006), pages 6208–6215, Vancouver, BC, Canada,

July 2006. IEEE Press.

[14] L. Bradstreet, L. Barone, and L. While. Updating Exclusive Hypervolume

Contributions Cheaply. In 2009 IEEE Congress on Evolutionary Computation

(CEC’2009), pages 538–544, Thronheim, Norway, May 2009. IEEE Press.

[15] L. Bradstreet, L. Barone, L. While, S. Huband, and P. Hingston. Use of

the WFG Toolkit and PISA for Comparison of MOEAs. In Proceedings of the

2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision

Making (MCDM’2007), pages 382–389, Honolulu, Hawaii, USA, April 2007.

IEEE Press.

[16] L. Bradstreet, L. While, and L. Barone. Incrementally Maximising Hypervol-

ume for Selection in Multi-Objective Evolutionary Algorithms. In 2007 IEEE

Congress on Evolutionary Computation (CEC’2007), pages 3203–3210, Singa-

pore, September 2007. IEEE Press.

[17] L. Bradstreet, L. While, and L. Barone. A Fast Incremental Hypervolume

Algorithm. IEEE Transactions on Evolutionary Computation, 12(6):714–723,

December 2008.

[18] L. Bradstreet, L. While, and L. Barone. A New Way Of Calculating Exact Ex-

clusive Hypervolumes. Technical Report, The University of Western Australia,

2009.

140 BIBLIOGRAPHY

[19] L. Bradstreet, L. While, and L. Barone. Incremental Hypervolume by Slicing

Objectives: a Correction to the Pseudo-code. IEEE Transactions on Evolu-

tionary Computation, 13(5):1193–1193, November 2009.

[20] L. Bradstreet, L. While, and L. Barone. A Fast Many-objective Hypervolume

Algorithm using Iterated Incremental Calculations. In 2010 IEEE Congress

on Evolutionary Computation (CEC’2010), pages 179–186, Barcelona, Spain,

July 2010. IEEE Press.

[21] K. Bringmann and T. Friedrich. Approximating the Least Hypervolume Con-

tributor: NP-Hard in General, But Fast in Practice. In M. Ehrgott, C. M. Fon-

seca, X. Gandibleux, J.-K. Hao, and M. Sevaux, editors, Evolutionary Multi-

Criterion Optimization. 5th International Conference, EMO 2009, pages 6–20.

Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April

2009.

[22] K. Bringmann and T. Friedrich. Don’t Be Greedy When Calculating Hy-

pervolume Contributions. In FOGA ’09: Proceedings of the tenth ACM

SIGEVO workshop on Foundations of genetic algorithms, pages 103–112, Or-

lando, Florida, USA, January 2009. ACM.

[23] K. Bringmann and T. Friedrich. Approximating the Volume of Unions and

Intersections of High-dimensional Geometric Objects. Algorithms and Compu-

tation, pages 436–447, 2010.

[24] D. Brockhoff, T. Friedrich, N. Hebbinghaus, C. Klein, F. Neumann, and E. Zit-

zler. Do Additional Objectives Make a Problem Harder? In D. Thierens, edi-

tor, 2007 Genetic and Evolutionary Computation Conference (GECCO’2007),

volume 1, pages 765–772, London, UK, July 2007. ACM Press.

[25] D. Brockhoff, T. Friedrich, and F. Neumann. Analyzing Hypervolume In-

dicator Based Algorithms. In G. Rudolph, T. Jansen, S. Lucas, C. Poloni,

and N. Beume, editors, Parallel Problem Solving from Nature–PPSN X, pages

BIBLIOGRAPHY 141

651–660. Springer. Lecture Notes in Computer Science Vol. 5199, Dortmund,

Germany, September 2008.

[26] D. Brockhoff and E. Zitzler. Are All Objectives Necessary? On Dimensionality

Reduction in Evolutionary Multiobjective Optimization. In T. P. Runarsson,

H.-G. Beyer, E. Burke, J. J. Merelo-Guervós, L. D. Whitley, and X. Yao,

editors, Parallel Problem Solving from Nature - PPSN IX, 9th International

Conference, pages 533–542. Springer. Lecture Notes in Computer Science Vol.

4193, Reykjavik, Iceland, September 2006.

[27] D. Brockhoff and E. Zitzler. Dimensionality Reduction in Multiobjective Opti-

mization with (Partial) Dominance Structure Preservation: Generalized Min-

imum Objective Subset Problems. TIK Report 247, Institut für Technische

Informatik und Kommunikationsnetze, ETH Zürich, April 2006.

[28] D. Brockhoff and E. Zitzler. On Objective Conflicts and Objective Reduction

in Multiple Criteria Optimization. TIK Report 243, Institut für Technische

Informatik und Kommunikationsnetze, ETH Zürich, February 2006.

[29] D. Brockhoff and E. Zitzler. Dimensionality Reduction in Multiobjective Opti-

mization: The Minimum Objective Subset Problem. In K. H. Waldmann and

U. M. Stocker, editors, Operations Research Proceedings 2006, pages 423–429,

Saarbücken, Germany, 2007. Springer.

[30] D. Brockhoff and E. Zitzler. Improving Hypervolume-based Multiobjective

Evolutionary Algorithms by Using Objective Reduction Methods. In 2007

IEEE Congress on Evolutionary Computation (CEC’2007), pages 2086–2093,

Singapore, September 2007. IEEE Press.

[31] D. Brockhoff and E. Zitzler. Offline and Online Objective Reduction in Evo-

lutionary Multiobjective Optimization Based on Objective Conflicts. TIK Re-

port 269, Institut für Technische Informatik und Kommunikationsnetze, ETH

Zürich, April 2007.

142 BIBLIOGRAPHY

[32] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont. Evolutionary

Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,

New York, May 2002. ISBN 0-3064-6762-3.

[33] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John

Wiley & Sons, Chichester, UK, 2001. ISBN 0-471-87339-X.

[34] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A Fast Elitist Non-

Dominated Sorting Genetic Algorithm for Multi-Objective Optimization:

NSGA-II. KanGAL report 200001, Indian Institute of Technology, Kanpur,

India, 2000.

[35] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable Multi-Objective

Optimization Test Problems. In Congress on Evolutionary Computation

(CEC’2002), volume 1, pages 825–830, Piscataway, New Jersey, May 2002.

IEEE Service Center.

[36] M. Emmerich, N. Beume, and B. Naujoks. An EMO Algorithm Using

the Hypervolume Measure as Selection Criterion. In C. A. Coello Coello,

A. Hernández Aguirre, and E. Zitzler, editors, Evolutionary Multi-Criterion

Optimization. Third International Conference, EMO 2005, pages 62–76, Gua-

najuato, México, March 2005. Springer. Lecture Notes in Computer Science

Vol. 3410.

[37] R. M. Everson, J. E. Fieldsend, and S. Singh. Full Elite Sets for Multi-Objective

Optimisation. In I. Parmee, editor, Proceedings of the Fifth International Con-

ference on Adaptive Computing Design and Manufacture (ACDM 2002), vol-

ume 5, pages 343–354, University of Exeter, Devon, UK, April 2002. Springer-

Verlag.

[38] M. Farina and P. Amato. On the Optimal Solution Definition for Many-criteria

Optimization Problems. In Proceedings of the NAFIPS-FLINT International

BIBLIOGRAPHY 143

Conference’2002, pages 233–238, Piscataway, New Jersey, June 2002. IEEE

Service Center.

[39] M. Fleischer. The Measure of Pareto Optima. Applications to Multi-objective

Metaheuristics. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and

L. Thiele, editors, Evolutionary Multi-Criterion Optimization. Second Inter-

national Conference, EMO 2003, pages 519–533, Faro, Portugal, April 2003.

Springer. Lecture Notes in Computer Science. Volume 2632.

[40] C. M. Fonseca, L. Paquete, and M. López-Ibáñez. An Improved Dimension-

Sweep Algorithm for the Hypervolume Indicator. In 2006 IEEE Congress

on Evolutionary Computation (CEC’2006), pages 3973–3979, Vancouver, BC,

Canada, July 2006. IEEE Press.

[41] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Publishing Company, Reading, Massachusetts,

1989.

[42] V. Grunert da Fonseca, C. M. Fonseca, and A. O. Hall. Inferential Perfor-

mance Assessment of Stochastic Optimisers and the Attainment Function. In

E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, and D. Corne, editors, First In-

ternational Conference on Evolutionary Multi-Criterion Optimization, pages

213–225. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.

[43] S. Huband, L. Barone, L. While, and P. Hingston. A Scalable Multi-objective

Test Problem Toolkit. In C. A. Coello Coello, A. Hernández Aguirre, and

E. Zitzler, editors, Evolutionary Multi-Criterion Optimization. Third Interna-

tional Conference, EMO 2005, pages 280–295, Guanajuato, México, March

2005. Springer. Lecture Notes in Computer Science Vol. 3410.

[44] S. Huband, P. Hingston, L. Barone, and L. While. A Review of Multiobjective

Test Problems and a Scalable Test Problem Toolkit. IEEE Transactions on

Evolutionary Computation, 10(5):477–506, October 2006.

144 BIBLIOGRAPHY

[45] S. Huband, P. Hingston, L. While, and L. Barone. An Evolution Strategy

with Probabilistic Mutation for Multi-Objective Optimisation. In Proceedings

of the 2003 Congress on Evolutionary Computation (CEC’2003), volume 3,

pages 2284–2291, Canberra, Australia, December 2003. IEEE Press.

[46] E. J. Hughes. Evolutionary Many-Objective Optimisation: Many Once or One

Many? In 2005 IEEE Congress on Evolutionary Computation (CEC’2005),

volume 1, pages 222–227, Edinburgh, Scotland, September 2005. IEEE Service

Center.

[47] H. Ishibuchi, N. Tsukamoto, Y. Sakane, and Y. Nojima. Hypervolume Ap-

proximation Using Achievement Scalarizing Functions for Evolutionary Many-

Objective Optimization. In 2009 IEEE Congress on Evolutionary Computation

(CEC’2009), pages 530–537, Thronheim, Norway, May 2009. IEEE Press.

[48] V. Klee. Can the Measure of ∪ [ai, bi] be Computed in Less Than O(n log n)

Steps? American Mathematical Monthly, 84(4):284–285, 1977.

[49] J. Knowles and D. Corne. M-PAES: A Memetic Algorithm for Multiobjective

Optimization. In 2000 Congress on Evolutionary Computation, volume 1, pages

325–332, Piscataway, New Jersey, July 2000. IEEE Service Center.

[50] J. D. Knowles. Local-Search and Hybrid Evolutionary Algorithms for Pareto

Optimization. PhD thesis, The University of Reading, Department of Com-

puter Science, Reading, UK, January 2002.

[51] H. T. Kung, F. Luccio, and F. P. Preparata. On Finding the Maxima of a Set

of Vectors. J. ACM, 22(4):469–476, 1975.

[52] M. Laumanns, E. Zitzler, and L. Thiele. A Unified Model for Multi-Objective

Evolutionary Algorithms with Elitism. In 2000 Congress on Evolutionary Com-

putation, volume 1, pages 46–53, Piscataway, New Jersey, July 2000. IEEE

Service Center.

BIBLIOGRAPHY 145

[53] B. Naujoks, N. Beume, and M. Emmerich. Metamodel-assisted SMS-EMOA

Applied to Airfoil Optimization Tasks. In Proceedings EUROGEN, volume 5,

2005.

[54] B. Naujoks, N. Beume, and M. Emmerich. Multi-objective Optimization Using

S-metric Selection: Application to Three-dimensional Solution Spaces. In 2005

IEEE Congress on Evolutionary Computation (CEC’2005), volume 2, pages

1282–1289, Edinburgh, Scotland, September 2005. IEEE Press.

[55] T. Okabe, Y. Jin, and B. Sendhoff. A Critical Survey of Performance Indices

for Multi-Objective Optimization. In Proceedings of the 2003 Congress on

Evolutionary Computation (CEC’2003), volume 2, pages 878–885, Canberra,

Australia, December 2003. IEEE Press.

[56] M. H. Overmars and C.-K. Yap. New upper bounds in Klee’s measure problem.

SIAM Journal on Computing, 20(6):1034–1045, December 1991.

[57] J. Palm. A Look at the Characteristics of the HOY Algorithm and a Generic

Approach to Incremental Hypervolume Calculation. Honours dissertation, De-

partment of Computer Science, The University of Western Australia, 2009.

[58] L. Paquete, C. M. Fonseca, and M. López-Ibáñez. An Optimal Algorithm for

a Special Case of Klee’s Measure Problem in Three Dimensions. Technical

Report CSI-RT-I-01/2006, CSI, Universidade do Algarve, 2006.

[59] R. Purshouse and P. Fleming. The Multi-Objective Genetic Algorithm Applied

to Benchmark Problems—An Analysis. Technical Report 796, Department of

Automatic Control and Systems Engineering, University of Sheffield, Sheffield,

UK, August 2001.

[60] R. C. Purshouse. On the Evolutionary Optimisation of Many Objectives. PhD

thesis, Department of Automatic Control and Systems Engineering, The Uni-

versity of Sheffield, Sheffield, UK, September 2003.

146 BIBLIOGRAPHY

[61] T. Wagner, N. Beume, and B. Naujoks. Pareto-, Aggregation-, and Indicator-

Based Methods in Many-Objective Optimization. In S. Obayashi, K. Deb,

C. Poloni, T. Hiroyasu, and T. Murata, editors, Evolutionary Multi-Criterion

Optimization, 4th International Conference, EMO 2007, pages 742–756, Mat-

shushima, Japan, March 2007. Springer. Lecture Notes in Computer Science

Vol. 4403.

[62] Walking Fish Group. Hypervolume Test Data. http://wfg.csse.uwa.edu.

au/Hypervolume.

[63] Walking Fish Group. IIHSO Source Code. http://wfg.csse.uwa.edu.au/

Hypervolume.

[64] L. While. A New Analysis of the LebMeasure Algorithm for Calculating Hyper-

volume. In C. A. Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors,

Evolutionary Multi-Criterion Optimization. Third International Conference,

EMO 2005, pages 326–340, Guanajuato, México, March 2005. Springer. Lec-

ture Notes in Computer Science Vol. 3410.

[65] L. While, L. Bradstreet, and L. Barone. A Fast Way of Calculating Exact

Hypervolumes, 2010. To appear in IEEE Transactions on Evolutionary Com-

putation.

[66] L. While, L. Bradstreet, L. Barone, and P. Hingston. Heuristics for Optimising

the Calculation of Hypervolume for Multi-Objective Optimization Problems. In

2005 IEEE Congress on Evolutionary Computation (CEC’2005), pages 2225–

2232, Edinburgh, Scotland, September 2005. IEEE Press.

[67] L. While, P. Hingston, L. Barone, and S. Huband. A Faster Algorithm for

Calculating Hypervolume. IEEE Transactions on Evolutionary Computation,

10(1):29–38, February 2006.

BIBLIOGRAPHY 147

[68] J. Wu and S. Azarm. Metrics for Quality Assessment of a Multiobjective Design

Optimization Solution Set. Transactions of the ASME, Journal of Mechanical

Design, 123:18–25, 2001.

[69] E. Zitzler. Evolutionary Algorithms for Multiobjective Optimization: Methods

and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH),

Zurich, Switzerland, November 1999.

[70] E. Zitzler. Hypervolume Metric Calculation. ftp://ftp.tik.ee.ethz.ch/

pub/people/zitzler/hypervol.c, 2001.

[71] E. Zitzler, D. Brockhoff, and L. Thiele. The Hypervolume Indicator Revisited:

On the Design of Pareto-compliant Indicator Via Weighted Integration. In

S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, and T. Murata, editors, Evo-

lutionary Multi-Criterion Optimization, 4th International Conference, EMO

2007, pages 862–876, Matshushima, Japan, March 2007. Springer. Lecture

Notes in Computer Science Vol. 4403.

[72] E. Zitzler, K. Deb, and L. Thiele. Comparison of Multiobjective Evolution-

ary Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195,

Summer 2000.

[73] E. Zitzler and S. Künzli. Indicator-based Selection in Multiobjective Search. In

X. Y. et al., editor, Parallel Problem Solving from Nature - PPSN VIII, pages

832–842, Birmingham, UK, September 2004. Springer-Verlag. Lecture Notes

in Computer Science Vol. 3242.

[74] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the Strength

Pareto Evolutionary Algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux,

P. Papailou, and T. Fogarty, editors, EUROGEN 2001. Evolutionary Methods

for Design, Optimization and Control with Applications to Industrial Problems,

pages 95–100, Athens, Greece, 2002.

148 BIBLIOGRAPHY

[75] E. Zitzler and L. Thiele. Multiobjective Optimization Using Evolutionary

Algorithms—A Comparative Study. In A. E. Eiben, editor, Parallel Problem

Solving from Nature V, pages 292–301, Amsterdam, September 1998. Springer-

Verlag.

[76] E. Zitzler, L. Thiele, and J. Bader. On Set-Based Multiobjective Optimization.

Technical Report 300, Computer Engineering and Networks Laboratory, ETH

Zurich, February 2008.

[77] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca. Per-

formance Assessment of Multiobjective Optimizers: An Analysis and Review.

IEEE Transactions on Evolutionary Computation, 7(2):117–132, April 2003.

