
Diversity and Regularization in

Neural Network Ensembles

Huanhuan Chen

School of Computer Science

University of Birmingham

A thesis submitted for the degree of

Doctor of Philosophy

October, 2008

Acknowledgements

First and foremost, my special thanks go to my supervisor, Prof. Xin

Yao for his inspiration, enthusiasm and kindness on me. This thesis

would never have been completed without his continuous help on both

my study and life. I sincerely thank him for leading me into the

interesting field of machine learning, and for his insightful supervision

and encouragement. I have benefited greatly from his encouragement,

wide knowledge, and clarity of thought in conducting this research.

The second thanks are given to Dr. Peter Tiňo for kindly giving many

valuable comments in numerous discussions and for clarification of

ideas, which inspire me to greatly deepen my research work.

I am indebted to all those who have helped me with my work. I would

like to thank my thesis group members, Dr. Peter Tiňo, Dr. Jon Rowe

and Dr. Russell Beale, who kept an eye on my work, took effort in

reading my progress reports and provided me insightful comments.

Special acknowledgement is given to the examiners of the thesis, Prof.

Richard Everson and Dr. Ata Kaban, for agreeing to be the examiners

of my PhD Viva.

Aside of these, I thank the PhD student mates, for the lively discus-

sions and the help along the way: Ping Sun, Arjun Chandra, Shuo

Wang, Fernanda Minku, Conglun Yao, Siang Yew Chong, Pete Duell,

Kata Praditwong and Trung Thanh Nguyen.

Finally, I would like to thank my parents and my wife Qingqing Wang.

My parents always give me unconditional love, encouragement and

support through all my life. My wife Qingqing Wang has provided me

tremendous encouragement during my graduate study and numerous

supports in our life. There are hardly words enough to thank them

for all they have done for me. This thesis is dedicated to them.

Abstract

In this thesis, we present our investigation and developments of neural

network ensembles, which have attracted a lot of research interests in

machine learning and have many fields of applications. More specif-

ically, the thesis focuses on two important factors of ensembles: the

diversity among ensemble members and the regularization.

Firstly, we investigate the relationship between diversity and general-

ization for classification problems to explain the conflicting opinions

on the effect of diversity in classifier ensembles. This part proposes an

ambiguity decomposition for classifier ensembles and introduces an

ambiguity term, which is part of ambiguity decomposition, as a new

measure of diversity. The empirical experiments confirm that ambi-

guity has the largest correlation with the generalization error in com-

parison with other nine most-often-used diversity measures. Then,

an empirical investigation on the relationship between diversity and

generalization has been conducted. The results show that diversity

highly correlates with the generalization error only when diversity is

low, and the correlation decreases when the diversity exceeds a thresh-

old. These findings explain the empirical observations on whether or

not diversity correlates with the generalization error of ensembles.

Secondly, this thesis investigates a special kind of diversity, error diver-

sity, using negative correlation learning (NCL) in detail, and discovers

that regularization should be used to address the overfitting problem

of NCL. Although NCL has showed empirical success in creating neu-

ral network ensembles by emphasizing the error diversity, with the

lack of a solid understanding of its dynamics we observe it is prone

to overfitting and we engage in a theoretical and empirical investi-

gation to improve its performance by proposing regularized negative

correlation learning (RNCL) algorithm. RNCL imposes an additional

regularization term to the error function of the ensemble and then

decomposes the ensemble’s training objectives into individuals’ ob-

jectives.

This thesis provides a Bayesian formulation of RNCL and imple-

ments RNCL by two techniques: gradient descent with Bayesian In-

ference and evolutionary multiobjective algorithm. The numerical

results demonstrate the superiority of RNCL. In general, RNCL can

be viewed as a framework, rather than an algorithm itself, meaning

several other learning techniques could make use of it.

Finally, we investigate ensemble pruning as one way to balance di-

versity, regularization and accuracy, and we propose one probabilistic

ensemble pruning algorithm in this thesis. We adopt a left-truncated

Gaussian prior for this probabilistic model to obtain a set of sparse

and non-negative combination weights. Due to the intractable integral

by incorporating the prior, expectation propagation (EP) is employed

to approximate the posterior estimation of the weight vector, where

an estimate of the leave-one-out (LOO) error can be obtained without

extra computation. Therefore, the LOO error is used together with

Bayesian evidence for model selection. An empirical study shows that

our algorithm utilizes far less component learners but performs as well

as, or better than, the non-pruned ensemble.

The results are also positive when EP pruning algorithm is used to

select the classifiers from the population, generated by multi-objective

regularized negative correlation learning algorithm, to produce effec-

tive and efficient ensembles by balancing the diversity, regularization

and accuracy.

Contents

Nomenclature xviii

1 Introduction 1

1.1 Supervised learning . 1

1.2 Ensemble of Learning Machines 4

1.3 Research Questions . 5

1.3.1 Diversity in Classifier Ensembles 5

1.3.2 Regularized Negative Correlation Learning 7

1.3.3 Ensemble Pruning Methods 8

1.4 Contributions of the Thesis . 9

1.5 Outline of the thesis . 10

1.6 Publications resulting from the thesis 11

2 Background and Related Work 14

2.1 Ensemble of Learning Machines 14

2.1.1 Mixture of Experts . 14

2.1.2 Bagging . 15

2.1.3 Boosting-type Algorithms 16

2.1.4 Ensemble of Features . 18

2.1.5 Random Forests . 18

2.1.6 Ensemble Learning using Evolutionary Multi-objective Al-

gorithm . 19

2.2 Theoretical Analysis of Ensembles 20

2.2.1 Bias Variance Decomposition 20

2.2.2 Bias Variance Covariance Decomposition 21

vi

CONTENTS

2.2.3 Ambiguity Decomposition for Regression Ensembles 22

2.2.4 Diversity in Classifier Ensembles 23

2.3 Negative Correlation Learning Algorithm 26

2.4 Ensemble Pruning Methods . 28

2.4.1 Selection based Ensemble Pruning 28

2.4.2 Weight based Ensemble Pruning 29

2.5 Summary . 31

3 Diversity in Classifier Ensembles 32

3.1 Introduction . 32

3.2 Ambiguity Decomposition for Classifier Ensembles 34

3.3 A New Diversity Measure . 37

3.4 Correlation Between Diversity and Generalization 38

3.4.1 Visualization of Diversity Measures using Multidimensional

Scaling . 39

3.4.2 Correlation Analysis of Diversity Measures 45

3.5 Summary . 51

4 Regularized Negative Correlation Learning 53

4.1 Introduction . 53

4.2 Regularized Negative Correlation Learning 55

4.2.1 Negative Correlation Learning 55

4.2.2 Regularized Negative Correlation Learning 56

4.3 Bayesian Formulation and Regularized Parameter Optimization . 57

4.3.1 Bayesian Formulation of RNCL 58

4.3.2 Inference of Regularization Parameters 61

4.4 Numerical Experiments . 63

4.4.1 Experimental Setup . 63

4.4.2 Synthetic Experiments . 65

4.4.3 Benchmark Results . 69

4.4.4 Computational Complexity and Running Time 72

4.5 Summary . 74

vii

CONTENTS

5 Multiobjective Regularized Negative Correlation Learning 75

5.1 Introduction . 75

5.2 Multiobjective Regularized Negative Correlation Learning 77

5.2.1 Multiobjective Regularized Negative Correlation Learning 77

5.2.2 Component Network and Evolutionary Operators 79

5.2.3 Multiobjective Evaluation of Ensemble and Rank-based Fit-

ness Assignment . 81

5.2.4 Algorithm Description . 83

5.3 Numerical Experiments . 85

5.3.1 Experimental Setup . 85

5.3.2 Synthetic Data Sets . 85

5.3.3 Experimental Results on Noisy Data 93

5.3.4 Benchmark Results . 93

5.3.5 Computational Complexity and Running Time 96

5.4 Summary . 97

6 Predictive Ensemble Pruning by Expectation Propagation 99

6.1 Introduction . 100

6.2 Sparseness-induction and Truncated Prior 102

6.3 Predictive Ensemble Pruning by Expectation Propagation 103

6.3.1 Expectation Propagation 103

6.3.2 Expectation Propagation for Regression Ensembles 104

6.3.2.1 Leave-one-out Estimation 109

6.3.3 Expectation Propagation for Classifier Ensembles 109

6.3.4 Hyperparameters Optimization for Expectation Propagation111

6.3.5 Algorithm Description . 112

6.3.6 Comparison of Expectation Propagation with Markov Chain

Monte Carlo . 113

6.4 Numerical Experiments . 115

6.4.1 Synthetic Data Sets . 116

6.4.2 Results of Regression Problems 117

6.4.3 Results of Classifier Ensembles 120

6.4.4 Computational Complexity and Running Time 128

viii

CONTENTS

6.5 Summary . 131

7 Conclusions and future research 133

7.1 Conclusions . 133

7.2 Future work . 136

7.2.1 Reduce the Computational Complexity of EP Pruning . . 136

7.2.2 Theoretical Analysis of Ensemble 137

7.2.3 Semi-supervised Regularized Negative Correlation Learning 137

7.2.4 Multi-objective Ensemble Learning 138

A Diversity Measures 140

A.1 Pairwise Diversity Measures . 140

A.2 Non-pairwise Diversity Measures 142

B Further Details of RNCL using Bayesian Inference 145

B.1 Further Details of Gaussian Posterior 145

B.2 Details of Parameter Updates . 146

C Further Details of Hyperparameters Optimization in EP 148

References 162

ix

List of Figures

2.1 Mixture of Experts . 15

2.2 Bagging Algorithm . 16

2.3 Adaboost-type Algorithm (Rätsch et al., 2001) 17

2.4 Negative Correlation Learning Algorithm 25

3.1 In MDS algorithm, residual variance vs. number of dimensions on

credit card problem. The other problems yield similar plots and

are omitted only to save space. 39

3.2 2D MDS plot using normalized scores (left) and standard deviation

scaling (right) for credit card problem. The 10 measures of diver-

sity are: AM-Ambiguity, Q - Q statistics, K - Kappa statistics, CC

- correlation coefficient, Dis - disagreement measure, E - entropy,

KW - Kohavi-Wolpert variance, Diff - measure of difficulty, GD -

generalized diversity, CFD - coincident failure diversity and Err -

generalization error for the six data sets. The x and y axes are

coordinates of these diversity measures in 2D space. 40

3.3 2D MDS plot (10 diversity measures and generalization error) using

normalized method on six data set. The results are averaged on

the 100 run on each data set. The x and y axes are coordinates of

these diversity measures in 2D space. 42

x

LIST OF FIGURES

3.4 2D MDS plot using rank correlation coefficients. This figure is

averaged on six data sets. The 10 measures of diversity are: AM-

Ambiguity, Q - Q statistics, K - Kappa statistics, CC - correlation

coefficient, Dis - disagreement measure, E - entropy, KW - Kohavi-

Wolpert variance, Diff - measure of difficulty, GD - generalized di-

versity, CFD - coincident failure diversity and Err - generalization

error. The x and y axes are coordinates of these diversity measures

in 2D space. 45

3.5 Accuracy, Diversity, Q statistics, Entropy, Generalized Diversity

(GD) and Generalization Error with different sampling rates (from

0.1 to 1) of Bagging for six data sets. The x-axis is the sampling

rate r. The plot interval of sampling rate r from 0.1 to 0.9 is 0.05

and plot the interval between 0.9 and 1 is 0.01. The left y-axis

is to record the values of Accuracy, Diversity and Generalization

Error; the right y-axis is for Q statistics, Entropy and Generalized

Diversity (GD). The results are averaged on 100 runs of 5-fold

cross validation. 47

4.1 Regularized Negative Correlation Learning Algorithm 58

4.2 Comparison of NCL and RNCL on regression data sets: Sinc and

Friedman test. In Figure 4.2(a) and 4.2(b), the lines in green (wide

zigzag), black (dashed) and red (solid) are obtained by RNCL,

NCL and the true function, respectively. Figure 4.2(c) and 4.2(d)

show mean square error (MSE) of RNCL (red solid) and NCL (blue

dashed) on Sinc and Friedman with different noise levels. Results

are based on 100 runs. 64

4.3 Comparison of RNCL and NCL on four synthetic classification

data sets. Two classes are shown as crosses and dots. The sepa-

rating lines were obtained by projecting test data over a grid. The

lines in green (light) and black (dark) are obtained by RNCL and

NCL, respectively. 66

xi

LIST OF FIGURES

4.4 Comparison of RNCL and NCL on two classification data sets.

Two classes are shown as crosses and dots. The separating lines are

obtained by projecting test data over a grid. In Figure 4.4(a) and

4.4(b), the decision boundary in green (light) and black (dark) are

obtained by RNCL and NCL, respectively. The randomly-selected

noise points are marked with a circle. Figure 4.4(c) and 4.4(d)

show the error rate of RNCL (red solid) and NCL (blue dashed)

vs. the noise levels on Synth and banana data sets. The results

are based on 100 runs. 68

5.1 Multiobjective Regularized Negative Correlation Learning Algorithm 83

5.2 Comparison of MRNCL and MNCL on four synthetic classification

data sets. Two classes are shown as crosses and dots. The sepa-

rating lines were obtained by projecting test data over a grid. The

lines in green (thin) and black (thick) are obtained by MRNCL

and MNCL, respectively. 84

5.3 Detailed information in multiobjective algorithm for two data sets,

Banana and Overlap. In Figure 5.3(a) and 5.3(c), the left-y axis

(red line with circles) measures the summation of the mean of

three objectives, training error, regularization and correlation in

different generations. The right-y axis (blue line with triangles)

is the standard deviation of the summation. In Figure 5.3(b) and

5.3(d), the 3D figure records the mean value of these three objec-

tives in different generations. The arrow points from the beginning

(Generation = 1) to end (Generation = 100). The color represents

different generations. Blue points stands for small generations and

red points mean large generations. 86

xii

LIST OF FIGURES

5.4 Detailed information in multiobjective algorithm for two data sets,

bumpy and relevance. In Figure 5.4(a) and 5.4(c), the left-y axis

(red line with circles) measures the summation of the mean of

three objectives, training error, regularization and correlation in

different generations. The right-y axis (blue line with triangles)

is the standard deviation of the summation. In Figure 5.4(b) and

5.4(d), the 3D figure records the mean value of these three objec-

tives in different generations. The arrow points from the beginning

(Generation = 1) to end (Generation = 100). The color represents

different generations. Blue points stands for small generations and

red points mean large generations. 87

5.5 Illustration the trade-off among the three objectives: training er-

ror, regularization and correlation, in the final population for four

synthetic classification data sets. The color represents different cor-

relations. Blue points stands for low correlations and red points

mean large correlations. 88

5.6 2D view of the trade-off between two objectives: training error

and regularization for four synthetic classification data sets. The

color represents different training errors. Blue points stands for

low training errors and red points mean large training errors. . . . 89

5.7 2D view of the trade-off between two objectives: training error and

correlation for four synthetic classification data sets. The color

represents different training errors. Blue points stands for low

training errors and red points mean large training errors. 90

5.8 Comparison of MRNCL and MNCL on two classification data sets.

Two classes are shown as crosses and dots. The separating lines

were obtained by projecting test data over a grid. In Figure 5.8(a)

and 5.8(b), the decision boundary in green (thin) and black (thick)

are obtained by MRNCL and MNCL, respectively. The randomly-

selected noise points are marked with a circle. Figure 5.8(c) and

5.8(d) show classification error of MRNCL (red solid) and MNCL

(blue dashed) vs. noise levels on synth and banana data sets. The

results are based on 100 runs. 92

xiii

LIST OF FIGURES

6.1 The truncated Gaussian Prior . 102

6.2 The posteriors of combination weights calculated by MCMC (30000

sampling points) and EP. The color bar indicates the density (the

number of overlapping points) in each place. 114

6.3 Comparison of EP-pruned ensembles and un-pruned Bagging en-

sembles on sinc data set. The sinc data set is generated by sam-

pling 100 data points with 0.1 Gaussian noise from the sinc func-

tion. The Bagging ensemble consists of 100 neural networks with

random selected hidden nodes (3-6 nodes). 117

6.4 Comparison of EP-pruned ensembles and un-pruned Adaboost en-

sembles on Synth and banana data sets. The Adaboost ensemble

consists of 100 neural networks with random selected hidden nodes

(3-6 nodes). 118

6.5 Comparison of evaluation time of each pruning method averaged. 131

xiv

List of Tables

3.1 Summary of Data Sets . 38

3.2 Rank correlation coefficients (in %) between the diversity measures

based on the average of the six data sets. The measures are: Am

- Ambiguity; Q statistics; K - Kappa statistics; CC - correlation

coefficient; Dis - disagreement measure; E - entropy; KW - Kohavi-

Wolpert variance; Diff - measure of difficulty; GD - generalized

diversity; and CFD - coincident failure diversity. 44

3.3 Rank correlation coefficients (in %) among ambiguity, nine di-

versity measures and Generalization Error in Different Sampling

Range, where G stands for generalization error. 48

3.4 The generalization error of Bagging algorithms with different sam-

pling rates, where r = 0.632 is the performance of Bagging with

bootstrap. The results are averaged over 50 runs of 5 fold cross

validation. 49

4.1 Summary of Regression Data Sets 69

4.2 Summary of Classification Data Sets. 70

4.3 Comparison of NCL, Bagging and RNCL on 8 Regression Data

Sets, by MSE (standard deviation) and t test p value between

Bagging vs. RNCL and NCL vs. RNCL. The p value with a star

means the test is significant. These results are averages of 100 runs. 70

4.4 Comparison of NCL, Bagging and RNCL on 13 benchmark Data

Sets, by % error (standard deviation) and t test p value between

Bagging vs. RNCL and NCL vs. RNCL. The p value with a star

means the test is significant. These results are averages of 100 runs. 71

xv

LIST OF TABLES

4.5 Running Time (in seconds) of RNCL and NCL on Regression Data

Sets. Results are averaged over 100 runs. 72

4.6 Running Time (in seconds) of RNCL and NCL on Classification

Data Sets. Results are averaged over 100 runs. 72

4.7 Comparison of RNCL and NCL with equal time on four regression

problems and four classification problems. NCL is run 10 times in

8 experiments with randomly selected regularization parameters

between 0 and 1. The first row reports the best performance of

NCL in the 10 runs. The results are the average results of 20 runs. 73

5.1 Comparison among the six methods on 13 benchmark Data Sets:

Single RBF classifier, MRNCL, MNCL, Adaboost, Bagging, and

support vector machine. Estimation of generalization error in % on

13 data sets (best method in bold face). The columns P1 to P4 show

the results of a significance test (95% t-test) between MRNCL and

MNCL, Adaboost, Bagging and SVM, respectively. The p value

with a star means the test is significant. The performance is based

on 100 runs (20 runs for Splice and Image). MRNCL gives the

best overall performance. 94

5.2 Running Time of MRNCL and MNCL on 13 Data Sets in seconds.

Results are averaged over 100 runs. 96

6.1 The pruned ensemble size, error rate and computational time of

MCMC, EP and unpruned ensembles. 116

6.2 Average Test MSE, Standard Deviation for seven regression Bench-

mark Data sets based on 100 runs for Bagging. EP, ARD, LS, Ran-

dom stand for EP pruning, ARD pruning, least square pruning and

random pruning, respectively. 118

6.3 Size of Pruned Ensemble with standard deviation for Different Al-

gorithms for Bagging. The results are based on 100 runs. 119

xvi

LIST OF TABLES

6.4 Average Test error, Standard Deviation for 13 classification Bench-

mark Data sets based on 100 runs for Bagging algorithm. EP,

ARD, Kappa, CP, LS, Random stand for EP pruning, ARD prun-

ing, kappa pruning, concurrency pruning, least square pruning and

random pruning. 120

6.5 Size of Pruned Ensemble with standard deviation with Different

Algorithms for Bagging. The results are based on 100 runs. 121

6.6 Average Test error, Standard Deviation for 13 classification Bench-

mark Data sets based on 100 runs for Adaboost algorithm. EP,

ARD, Kappa, CP, LS, Random stand for EP pruning, ARD prun-

ing, kappa pruning, concurrency pruning, least square pruning and

random pruning. 122

6.7 Size of Pruned Ensemble with standard deviation with Different

Algorithms for Adaboost. The results are based on 100 runs. . . . 123

6.8 Average Test error, Standard Deviation for 13 classification Bench-

mark Data sets based on 100 runs for Random forests algorithm.

EP, ARD, Kappa, CP, LS, Random stand for EP pruning, ARD

pruning, kappa pruning, concurrency pruning, least square pruning

and random pruning. 124

6.9 Size of Pruned Ensemble with standard deviation with different

algorithms for random forest. The results are based on 100 runs. . 125

6.10 Average Test error, Standard Deviation for 13 classification Bench-

mark Data sets based on 100 runs for MRNCL algorithm. EP,

ARD, Kappa, CP, LS, Random stand for EP pruning, ARD prun-

ing, kappa pruning, concurrency pruning, lease square pruning and

random pruning. 126

6.11 Size of Pruned Ensemble with standard deviation with different

algorithms for MRNCL. The results are based on 100 runs. 127

6.12 Running Time of EP pruning, ARD pruning and EM pruning on

Regression Data Sets in seconds. Results are averaged over 100 runs.128

6.13 Running Time of EP pruning, ARD pruning, EM pruning, Kappa

pruning and concurrency pruning on Classification Data Sets in

seconds. Results are averaged over 100 runs. 129

xvii

LIST OF TABLES

6.14 Summary of EP, EM, ARD, LS, Kappa, CP, random and other

unpruned ensembles with poker hand problem (Train points 25010

and Test points 1 mil.). The results are averaged over ten runs. . 130

A.1 A 2×2 table of the relationship between a pair of classifiers fi and

fj. 140

xviii

Chapter 1

Introduction

This chapter introduces the problems addressed in this thesis and gives an overview

of subsequent chapters. Section 1.1 describes the problem of supervised learn-

ing and some basic learning theory. In section 1.2, we introduce ensembles of

learning machines and highlight their distinct advantages compared to classical

machine learning techniques. Section 1.3 describes the research questions of the

thesis. Section 1.4 summarizes a selection of the significant contributions made

by the author. Section 1.5 concludes this chapter with an overview of the subjects

addressed in each subsequent chapter.

1.1 Supervised learning

Supervised learning is a machine learning technique for learning a function from

training data. The training data consist of pairs of input variables and desired

outputs. Depending on the nature of the outputs, supervised learning can be

classified as either regression for continuous outputs or classification when outputs

are discrete.

There are many practical problems which can be effectively modeled as the

learning of input-output mappings from some given examples. An example of a

regression problem would be the prediction of house price in one city in which

the inputs may consist of average income of residents, house age, the number of

bedrooms, populations and crime rate in that area, etc. A best known classifi-

1

1.1 Supervised learning

cation example is the handwritten character recognition, which has been used in

many areas.

The task of supervised learning is to use the available training examples to

construct a model that can be used to predict the targets of unseen data, which are

assumed to follow the same probability distribution as the available training data.

The predictive capability of the learned model is evaluated by the generalization

ability from the training examples to unseen data. One possible definition of

supervised learning (Vapnik, 1998) is presented as follows:

Definition 1 (Vapnik, 1998) The problem of supervised learning is to choose

from the given set of functions f ∈ F : X −→ Y based on a training set of

random independent identically distributed (i.i.d.) observations drawn from an

unknown probability distribution P (x, y),

D = (x1, y1), · · · , (xN , yN) ∈ X × Y, (1.1)

such that the obtained function f(x) best predicts the supervisor’s response for

unseen examples (x, y), which are assumed to follow the same probability distri-

bution P (x, y) as the training set.

The standard way to solve the supervised learning problem consists in defin-

ing a loss function, which measures the loss or discrepancy associated with the

learning machine, and then choosing the learning machine from the given set of

candidates with the lowest loss. Let V (y, f(x)) denotes a loss function measuring

the error when we predict y by f(x), then the average error, the so called expected

risk, is:

R[f] =

∫

X,Y

V (y, f(x))P (x, y)dxdy. (1.2)

Based on equation (1.2), the ideal model f0 can be obtained by selecting the

function with the minimal expected risk :

f0 = arg min
f∈F

R[f]. (1.3)

However, as the probability distribution P (x, y) that defines the expected

risk is unknown, this ideal function cannot be found in practice. To overcome

this shortcoming we need to learn from the limited number of training data we

2

1.1 Supervised learning

have. One popular way is to use the empirical risk minimization (ERM) principle

(Vapnik, 1998), which approximately estimates the expected risk based on the

available training data.

Rerm[f] =
1

N

N∑
n=1

V (y, f(xn)). (1.4)

However, straightforward minimization of the empirical risk might lead to

over-fitting, meaning a function that does very well on the finite training data

might not generalize well to unseen examples (Bishop, 1995; Vapnik, 1998). To

address the over-fitting problem, the technique of regularization, which adds a

regularization term Ω[f] to the original objective function Remp[f], is often em-

ployed.

Rreg[f] = Rerm[f] + λΩ[f]. (1.5)

The regularization term Ω[f] controls the smoothness or simplicity of the

function and the regularization parameter λ > 0 controls the trade-off between

the empirical risk Remp[f] and the regularization term Ω[f].

The generalization ability of the leaner depends crucially on the parameter

λ, especially with small training sets. One approach to choose the parameter

is to train several learners with different values of the parameter and estimate

the generalization error for each leaner and then choose the parameter λ that

minimizes the estimated generalization error.

Fortunately, there is a superior alternative to estimate the regularization pa-

rameter: Bayesian inference. Bayesian inference makes it possible to efficiently es-

timate the regularization parameters. Compared with the traditional approaches,

Bayesian approach is attractive in being logically consistent, simple, and flexi-

ble. The application of Bayesian inference to single neural network, introduced

by MacKay as a statistical approach to avoid overfitting (MacKay, 1992a,b),

was successful. Then, the Bayesian technique has been successfully applied in

Least Squares Support Vector Machine (Gestel et al., 2002), RBF neural net-

works (Husmeier and Roberts, 1999), sparse Bayesian Learning, i.e., Relevance

Vector Machine (Tipping, 2001).

3

1.2 Ensemble of Learning Machines

1.2 Ensemble of Learning Machines

An ensemble of learning machines is using a set of learning machines to learn

partial solutions to a given problem and then integrating these solutions in some

manner to construct a final or complete solution to the original problem. Us-

ing f1, . . . , fM to denote M individual learning machines, a common example of

ensemble for regression problem is

fens (x) =
M∑
i=1

wifi (x) , (1.6)

where wi > 0 is the weight of the estimator fi in the ensemble.

This method is sometimes called committee of learning machines. In classifi-

cation case, it is also called multiple classifier systems (Ho et al., 1994), classifier

fusion (Kuncheva, 2002), combination, aggregation, etc. We will refer to an indi-

vidual learning machine as the base learner. Note that there are some approaches

using a number of base learners to accomplish a task in a style of divide-and-

conquer . In those approaches, the base learners are in fact trained for different

sub-problems instead of for the same problem, which makes those approaches

usually be classified into mixture of experts (Jordan and Jacobs, 1994). However,

in the ensemble, base learners are all attempting to solve the same problem.

Ensemble methods have been widely used to improve the generalization per-

formance of the single learner. This technique originates from Hansen and Sala-

mon’s work (Hansen and Salamon, 1990), which showed that the generalization

ability of a neural network can be significantly improved through ensembling a

number of neural networks.

Based on the advantages of ensemble methods and increasing complexity

of real-world problems, ensemble of learning machines is one of the important

problem-solving techniques. Since the last decade, there have been much litera-

ture published on ensemble learning algorithms, from Mixtures of Experts (Jor-

dan and Jacobs, 1994), Bagging (Breiman, 1996a) to various Boosting (Schapire,

1999), Random Subspace (Ho, 1998), Random Forests (Breiman, 2001) and Neg-

ative Correlation Learning (Liu and Yao, 1997, 1999b), etc.

The simplicity and effectiveness of ensemble methods take the role of key

selling point in the current machine learning community. Successful applications

4

1.3 Research Questions

of ensemble methods have been reported in various fields, for instance in the

context of handwritten digit recognition (Hansen et al., 1992), face recognition

(Huang et al., 2000), image analysis (Cherkauer, 1996) and many more (Diaz-

Uriarte and Andres, 2006; Viola and Jones, 2001).

1.3 Research Questions

This thesis focuses on two important factors of ensembles: diversity and regular-

ization. Diversity among the ensemble members is one of the keys to the success

of ensemble models. Regularization improves the generalization performance by

controlling the complexity of the ensemble.

In the thesis, firstly, we investigate the relationship between diversity and

generalization for classification problems and then we investigate a special kind

of diversity, error diversity, using negative correlation learning (NCL) in detail,

and discover that regularization should be used to address the overfitting problem

of NCL. Finally, we investigate ensemble pruning as one way to balance diversity,

regularization and accuracy and we propose one probabilistic ensemble pruning

algorithm.

The details are presented in the following.

1.3.1 Diversity in Classifier Ensembles

It is widely believed that the success of ensemble methods greatly depends on cre-

ating diverse sets of learner in the ensemble, demonstrated by theoretical (Hansen

and Salamon, 1990; Krogh and Vedelsby, 1995) and empirical studies (Chandra

and Yao, 2006b; Liu and Yao, 1999a).

The empirical results reveal that the performance of an ensemble is related to

the diversity among individual learners in the ensemble and better performance

might be obtained with more diversity (Tang et al., 2006). For example, Bagging

(Breiman, 1996a) relies on bootstrap sampling to generate diversity; Random

forests (Breiman, 2001) employ both bootstrap sampling and randomization of

features to produce more diverse ensembles, and thus the performance of random

forests is better than that of Bagging (Breiman, 2001).

5

1.3 Research Questions

In some other empirical results (Garćıa et al., 2005; Kuncheva and Whitaker,

2003), diversity did not show much correlation with generalization when varying

the diversity in the ensemble. These findings are counterintuitive since ensem-

bles of many identical classifiers perform no better than a single classifier and

ensembles should benefit from diversity.

Although diversity in an ensemble is deemed to be a key factor to the per-

formance of ensembles (Brown et al., 2005a; Darwen and Yao, 1997; Krogh and

Vedelsby, 1995) and many studies on diversity have been conducted, our under-

standing of diversity in classifier ensembles is still incomplete. For example, there

is less clarity on how to define diversity for classifier ensembles and how diversity

correlates with the generalization ability of ensemble (Kuncheva and Whitaker,

2003).

As we know, the definition of diversity for regression ensembles originates from

the ambiguity decomposition (Krogh and Vedelsby, 1995), in which the error of

regression ensemble is broken into two terms: the accuracy term measuring the

weighted average error of the individuals and the ambiguity term measuring the

difference between ensemble and individual estimators. There is no ambiguity

decomposition for classifier ensembles with zero-one loss. Therefore, it is still an

open question on how to define an appropriate measure of diversity for classifier

ensembles (Giacinto and Roli, 2001; Kohavi and Wolpert, 1996; Partridge and

Krzanowski, 1997).

Based on these problems, the thesis focuses on the following questions:

1. How to define the diversity for classifier ensembles?

2. How does diversity correlate with generalization error?

In chapter 3, we propose ambiguity decomposition for classifier ensembles

with zero-one loss function, where the ambiguity term is treated as the diversity

measure. The correlation between generalization and diversity (with 10 different

measures including ambiguity) has been examined. The relationship between

ambiguity and other diversity measures has been studied as well.

6

1.3 Research Questions

1.3.2 Regularized Negative Correlation Learning

This thesis studies one specific kind of diversity, error diversity, using Negative

Correlation Learning (NCL) (Liu and Yao, 1999a,b), which emphasizes the in-

teraction and cooperation among individual learners in the ensemble and has

performed well on a number of empirical applications (Liu et al., 2000; Yao et al.,

2001).

NCL explicitly manages the error diversity of an ensemble by introducing a

correlation penalty term into the cost function of each individual network so that

each network minimizes its MSE error together with the correlation with other

ensemble members.

According to the definition of NCL, it seems that the correlation term in the

cost function acts as the regularization term. However, we observe that NCL

corresponds to training the ensemble as a single learning machine by considering

only the empirical training error. Although NCL can use the penalty coefficient

to explicitly alter the emphasis on the individual MSE and correlation portion of

the ensemble, setting a zero or smaller coefficient corresponds to independently

training the estimators and thus loses the advantages of NCL. In most cases NCL

sets the penalty coefficient to be or close to the particular value which corresponds

to training the entire ensemble as a single learning machine.

By training the entire ensemble as a single learner and minimizing the MSE

error without regularization, NCL only reduces the empirical MSE error of the

ensemble, but pays less attention to regularizing the complexity of the ensemble.

As we know, neural network and other machine learning algorithms which only

rely on the empirical MSE error are prone to overfitting the noise (Krogh and

Hertz, 1992; Vapnik, 1998). Based on the above analysis, the formulation of NCL

leads to over-fitting. In this thesis, we analyze this problem and provide the

theoretical and empirical evidences.

Another issue of NCL is that there is no formulated approach to select the

penalty parameter, though it is crucial for the performance of NCL. Optimiza-

tion of the parameter usually involves cross validation, whose computation is

extremely expensive.

7

1.3 Research Questions

In order to address these problems, the regularization should be used to ad-

dress the overfitting problem of NCL and the thesis proposes regularized negative

correlation learning (RNCL) by including an additional regularization term in the

cost function of the ensemble. RNCL is implemented by two techniques, gradient

descent with Bayesian inference and evolutionary multiobjective algorithm, in

this thesis. Both techniques improve the performance of NCL by regularizing the

NCL and automatically optimizing the parameters. The details are discussed in

chapters 4 and 5.

In general, regularization is important to other ensemble methods as well. For

example, the boosting algorithm, Arcing, generates a larger margin distribution

than AdaBoost but performs worse (Breiman, 1999). This is because Arcing

does not regularize the complexity of the base classifiers and thus degrades its

performance (Reyzin and Schapire, 2006). Similarly, Bagging prefers combining

simple or weak learners than complicated learners to succeed (Breiman, 1996a;

Buhlmann and Yu, 2002).

Based on the analysis, regularization controls the complexity of ensembles and

is another important factor for ensembles besides diversity.

1.3.3 Ensemble Pruning Methods

Most existing ensemble methods generate large ensembles. These large ensembles

consume much more memory to store all the learning models, and they take much

more computation time to get a prediction for a fresh data point. Although these

extra costs may seem to be negligible with a small data set, they may become

serious when the ensemble method is applied to a large scale real-world data set.

In addition, it is not always true that the larger the size of an ensemble, the

better it is. Some theoretical and empirical evidences have shown that small

ensembles can be better than large ensembles (Breiman, 1996a; Yao and Liu,

1998; Zhou et al., 2002).

For example, the boosting ensembles, Adaboost (Schapire, 1999) and Arcing

(Breiman, 1998, 1999), pay more attention to those training samples that are

misclassified by former classifiers in the training of next classifier and finally

reduce the training error to zero. In this way, the former classifiers, with large

8

1.4 Contributions of the Thesis

training error, may under-fit the data, while the latter classifiers, with low training

error and weak regularization, are prone to overfitting the noise in the training

data. The trade-off among diversity, regularization and accuracy in the ensemble

is unbalanced and thus Boosting ensembles are prone to overfitting (Dietterich,

2000; Opitz and Maclin, 1999) . In these circumstances, it is necessary to prune

some individuals to achieve better generalization.

The evolutionary ensemble learning algorithms often generate a number of

learners in the population. Some are good at accuracy; some have better di-

versity and others pay more attention to regularization. In this setting, we had

better select a subset of learners to produce an effective and efficient ensemble by

balancing diversity, regularization and accuracy.

Motivated by the above reasons, this thesis investigates ensemble pruning as

one way to balance diversity, regularization and accuracy and the thesis proposes

one probabilistic ensemble pruning algorithm.

1.4 Contributions of the Thesis

The thesis includes a number of significant contributions to the field of neural

network ensembles and machine learning.

1. The first theoretical analysis of ambiguity decomposition for classifier en-

sembles, in which a new definition of diversity measure for classifier en-

sembles has been given. The superiority of the diversity measure has been

verified against nine other diversity measures (chapter 3).

2. Empirical work demonstrating the correlation between diversity (with ten

different diversity measures) and generalization, which exhibits that diver-

sity highly correlates with the generalization error only when diversity is

low, but the correlation decreases when the diversity exceeds a threshold

(chapter 3).

3. The first theoretical and empirical analysis demonstrating that negative

correlation learning (NCL) is prone to overfitting (chapter 4).

9

1.5 Outline of the thesis

4. A novel cooperative ensemble learning algorithm, regularized negative cor-

relation learning (RNCL), derived from both NCL and Bayesian inference,

which generalizes better than NCL. Moreover, the coefficient controlling

the trade-off between empirical error and regularization in RNCL can be

inferred by Bayesian inference (chapter 4).

5. An evolutionary multiobjective algorithm implementing RNCL, which searches

for the best trade-off among the three objectives, to design effective ensem-

bles. (chapter 5).

6. A new probabilistic ensemble pruning algorithm to select the component

learners for more efficient and effective ensembles. Moreover, we have con-

ducted a thorough analysis and empirical comparison of different combining

strategies. (chapter 6).

1.5 Outline of the thesis

This chapter briefly introduced some preliminaries for subsequent chapters: su-

pervised learning and ensemble of learning machines. We also described the

research questions of this work and summarized the main contributions of this

thesis.

Chapter 2 reviews the literature on some popular ensemble methods and their

variants. Section 2.2 introduced three important theoretical results for ensemble

learning, the bias-variance decomposition, bias-variance-covariance decomposi-

tion and ambiguity decomposition. We also review the current literature on the

analysis of diversity in classifier ensembles. In section 2.3 we briefly describe

negative correlation learning (NCL) algorithm and further review its board ex-

tensions and applications. After that, we move to investigate the most commonly

used techniques for selecting a set of learners to generate the ensemble.

Chapter 3 concentrates on analyzing the generic classifier ensemble system

from the accuracy/diversity viewpoint. We propose an ambiguity decomposition

for classifier ensembles with zero-one loss and introduce the ambiguity term,

which is part of ambiguity decomposition, as the definition of diversity. Then,

10

1.6 Publications resulting from the thesis

the proposed diversity measure together with other nine diversity measures have

been employed to study the relationship between diversity and generalization.

In chapter 4, we study one specific kind of diversity, error diversity, using

negative correlation learning (NCL) and discover that regularization should be

used. The chapter analyzes NCL in-depth and explains the reasons why NCL is

prone to overfitting the noise. Then, we propose regularized negative correlation

learning (RNCL) in Bayesian framework and provide the algorithm to infer the

regularization parameters based on Bayesian inference. The numerical experi-

ments have been conducted to evaluate RNCL, NCL and other ensemble learning

algorithms.

Chapter 5 extends the work in chapter 4 by incorporating evolutionary multi-

objective algorithm with RNCL to design regularized and cooperative ensembles.

The training of RNCL, where each individual learner needs to minimize three

terms: empirical training error, correlation and regularization, is implemented

by a three-objective evolutionary algorithm. The numerical studies have been

conducted to evaluate this algorithm with many other approaches.

Chapter 6 investigates ensemble pruning as one way to balance diversity, reg-

ularization and accuracy, and proposes a probabilistic ensemble pruning algo-

rithm. This chapter evaluates this algorithm with many other strategies. The

corresponding training algorithms and empirical analysis have been presented.

Chapter 7 summarizes this work and describes several potential studies for

future research.

1.6 Publications resulting from the thesis

The work resulting from these investigations has been reported in the following

publications:

Refereed & Submitted Journal Publications

[1] (Chen et al., 2009b) H. Chen, P. Tiňo and X. Yao. Probabilistic Clas-

sification Vector Machine. IEEE Transactions on Neural Networks,

vol.20, no.6, pp.901-914, June 2009.

11

1.6 Publications resulting from the thesis

[2] (Chen et al., 2009a) H. Chen, P. Tiňo and X. Yao. Predictive Ensemble

Pruning by Expectation Propagation. IEEE Transactions on Knowl-

edge and Data Engineering, vol.21, no.7, pp.999-1013, July 2009.

[3] (Yu et al., 2008) L. Yu, H. Chen, S. Wang and K. K. Lai. Evolving

Least Squares Support Vector Machines for Stock Market Trend Min-

ing. IEEE Transactions on Evolutionary Computation. Vol 13, No. 1,

Feb 2009.

[4] (Chen and Yao, 2009b) H. Chen and X. Yao. Regularized Negative

Correlation Learning for Neural Network Ensembles. IEEE Transac-

tions on Neural Networks, In Press, 2009.

[5] (Chen and Yao, 2009a) H. Chen and X. Yao. Multiobjective Neural

Network Ensembles based on Regularized Negative Correlation Learn-

ing. IEEE Transactions on Knowledge and Data Engineering, In Press,

2009.

[6] (Chen and Yao, 2008) H. Chen and X. Yao. When Does Diversity in

Classifier Ensembles Help Generalization? Machine Learning Journal,

2008. In Revise.

Book chapter

[7] (Chandra et al., 2006) A. Chandra, H. Chen and X. Yao. Trade-off

between Diversity and Accuracy in Ensemble Generation. In Multi-

objective Machine Learning, Yaochu Jin (Ed.), pp.429-464, Springer-

Verlag, 2006. (ISBN: 3-540-30676-5)

Refereed conference publications

[8] (He et al., 2009) S. He, H. Chen, X. Li and X. Yao. Profiling of mass

spectrometry data for ovarian cancer detection using negative correla-

tion learning. In Proceedings of the 19th International Conference on

Artificial Neural Networks (ICANN’09), Cyprus, 2009.

12

1.6 Publications resulting from the thesis

[9] (Chen and Yao, 2007a) H. Chen and X. Yao. Evolutionary Random

Neural Ensemble Based on Negative Correlation Learning. In Proceed-

ings of IEEE Congress on Evolutionary Computation (CEC’07), pages

1468-1474, 2007

[10] (Chen et al., 2006) H. Chen, P. Tiňo and X. Yao. A Probabilistic

Ensemble Pruning Algorithm. Workshops of Sixth IEEE International

Conference on Data Mining (WICDM’06), pages 878-882, 2006.

[11] (Chen and Yao, 2007b) H. Chen and X. Yao. Evolutionary Ensemble

for In Silico Prediction of Ames Test Mutagenicity. In Proceedings of

International Conference on Intelligent Computing (ICIC’07), pages

1162-1171, 2007.

[12] (Chen and Yao, 2006) H. Chen and X. Yao. Evolutionary Multiobjec-

tive Ensemble Learning Based on Bayesian Feature Selection. In Pro-

ceedings of IEEE Congress on Evolutionary Computation (CEC’06),

volume 1141, pages 267-274, 2006.

13

Chapter 2

Background and Related Work

This chapter reviews the literature related to this thesis. In section 2.1, we

summarize some major ensemble methods. Section 2.2 describes some common

approaches to analyze ensemble methods. Section 2.3 investigates the existing

applications and developments of negative correlation learning algorithm in the

literature. This is followed by a review of techniques specifically for combining

and selecting ensemble members in section 2.4.

2.1 Ensemble of Learning Machines

Neural network ensemble, which originates from Hansen and Salamon’s work

(Hansen and Salamon, 1990), is a learning paradigm where a collection of neural

networks is trained for the same task. There have been many ensemble methods

studied in the literature. In the following, we review some popular ensemble

learning methods.

2.1.1 Mixture of Experts

Mixture of Experts (MoE) is a widely investigated paradigm for creating a com-

bination of learners (Jacobs et al., 1991). The principle of MoE is that certain

experts will be able to “specialize” to particular parts of the input space by adopt-

ing a gating network who is responsible for learning the appropriate weighted

combination of the specialized experts for any given input. In this way the input

14

2.1 Ensemble of Learning Machines

Figure 2.1: Mixture of Experts

space is divided and conquered by the gating network and these experts. Figure

2.1 illustrates the basic architecture of MoE.

Since the original paper on MoE (Jacobs et al., 1991), a huge number of vari-

ants of this paradigm have been developed (Ebrahimpour et al., 2007). In (Jordan

and Jacobs, 1994) the idea was extended with a hierarchical mixture models. The

Expectation-Maximization (EM) algorithm was employed for adjusting the pa-

rameters of MoE. Recent work on MoE included theoretical development on MoE

(Ge and Jiang, 2006) and quadratically gated mixture of experts for incomplete

data (Liao et al., 2007).

2.1.2 Bagging

Bagging (short for Bootstrap Aggregation Learning) is proposed by Breiman

(Breiman, 1996a) based on bootstrap sampling. In a Bagging ensemble, each

base learner is trained with a set of n training samples, drawn randomly with re-

placement from the original training set of size n with a uniform distribution. The

resampled sets are often called bootstrap replicates of the original set. Breiman

(Breiman, 1996a) showed that on average 63.2% of the original training set will

15

2.1 Ensemble of Learning Machines

Algorithm Bagging

Input: the training set D = {xn, yn}
N
n=1

, integer M specifying size of en-
semble.

For i = 1, · · · , M do:

1. Bootstrap uniformly the original training set with replacement and gen-
erate a new training set with N items.

2. Train a learner fi with the new training set and include it to the ensemble.

Output: Bagging ensemble

f(x) =
1

M

∑

i

fi(x).

Figure 2.2: Bagging Algorithm

present in each replicate. Predictions on new samples are made by simple aver-

aging. The algorithm of Bagging is presented in Figure 2.2.

For unstable base learners such as decision trees, Bagging works very well,

but the explanation for its success remains unclear. Friedman (Friedman, 1997)

suggested that Bagging succeeded by reducing the variance and leaving the bias

unchanged, while Grandvalet (Grandvalet, 2004) showed experimental evidence

that Bagging stabilized prediction by equalizing the influence of training exam-

ples.

2.1.3 Boosting-type Algorithms

Bagging resamples the dataset randomly with a uniform probability distribution

while Boosting (Schapire, 1990) has a non-uniform distribution. There are a large

family of Boosting algorithms in the literature, including cost-sensitive version

(Fan et al., 1999) and Arcing-type algorithms (Breiman, 1999) that do not weigh

the votes in the combination of classifiers.

We take the most widely investigated variant AdaBoost (Schapire, 1999) for

an example. In the context of classification, the main idea of AdaBoost is to

introduce weights on the training set. They are used to control the importance of

each single sample for learning a new classifier. Those training samples that are

16

2.1 Ensemble of Learning Machines

Algorithm AdaBoost-type

Input: the training set D = {xn, yn}
N
n=1, integer M specifying number of

iterations.
Initialize w1(xn) = 1/N for all n = 1, · · · , N .
For i = 1, · · · , M do:

1. Train classifier with respect to the weighted sample set {D,wi} and obtain
classifier fi.

2. Calculate the training error ei of fi:

ei =

N∑

n=1

wi(xn)I(fi(xn) 6= yi),

abort if ei = 0 or ei ≥ φ, where φ is a constant.

3. Set

bi = log
φ(1 − ei)

ei(1 − φ)
.

4. Update the weights wi:

wi+1 = wi exp{−biI(fi(xn) = yi)}/Zi,

where Zi is a normalization factor to ensure that
∑N

n=1
wi+1(xn) = 1.

Output: Booting ensemble

f(x) =

M∑

i=1

cifi(x), where ci =
bi∑M

i=1
|bi|

.

Figure 2.3: Adaboost-type Algorithm (Rätsch et al., 2001)

misclassified by former classifiers will play a more important role in the training of

next classifier. After the desired number of base classifiers has been trained, they

are combined by a weighted vote, based on their training error. The Adaboost-

type algorithm is presented in Figure 2.3.

It is widely believed (Breiman, 1999; Rätsch et al., 2001) that Adaboost ap-

proximately maximizes the hard margins of the training samples. Thus, the

classical Adaboost algorithm is prone to overfitting the noise (Dietterich, 2003).

To overcome this shortcoming, the soft-margin Adaboost (Rätsch et al., 2001) is

implemented by maximizing the soft margins of the training samples, which al-

17

2.1 Ensemble of Learning Machines

lows a particular level of noise in the training set and exhibits better performance

than hard margin Adaboost.

For the regression case, relatively few papers have addressed boosting-type

ensembles. The major difficulty is rigorously defining regression problem in an

infinite hypothesis space. Rätsch proposed a novel approach based on a semi-

infinite linear program that has an infinite number of constraints and a finite

number of variables. They also provided some beautiful theoretical results and

promising empirical results (Rätsch et al., 2002). The drawbacks of this algorithm

come from the use of sophisticated linear programming techniques and costly

computations.

2.1.4 Ensemble of Features

Apart from randomly sampling the training points, ensemble of features (Ho,

1998) samples different subsets of features to train ensemble members (Ho, 1998;

Optiz, 1999).

Liao et al. built ensembles based on different feature subsets (Liao and Moody,

1999). In their approach, all input features are firstly grouped based on mutual

information. Statistically similar features are assigned to the same group. Each

base learner’s training set is then formed by input features extracted from different

groups. Some feature boosting algorithms (Song et al., 2006; Yin et al., 2005)

have been proposed as well. Ensemble of features have been applied to drug

design (Mamitsuka, 2003) and medical diagnosis (Tsymbal et al., 2003).

Most of the existing ensemble feature methods claim better results than tra-

ditional methods (Oliveira et al., 2005; O’Sullivan et al., 2000), especially when

the data set has a large number of features and not too few samples (Ho, 1998).

2.1.5 Random Forests

Random forests (Breiman, 2001) combine Bootstrap sampling and random sub-

space method to generate decision forests. It consists of a number of decision

trees, of which each tree is trained with the examples bootstrap sampled from

the training set. In training each tree, a randomly-selected subset of features is

18

2.1 Ensemble of Learning Machines

used to split each node. Random forests perform similarly as Adaboost in terms

of error rate, and it is more robust with respect to noise.

Due to its simple characteristic and good generalization ability, random forests

have a lot of applications, such as protein prediction (Chen and Liu, 2005) and

classification of geographic data (Gislason et al., 2006).

2.1.6 Ensemble Learning using Evolutionary Multi-objective

Algorithm

The success of ensemble methods depends on a number of factors, such as ac-

curacy, diversity, generalization, cooperation and so on. Most of the existing

ensemble algorithms implicitly encourage these terms. The recent research has

demonstrated (Chandra and Yao, 2004; Garćıa et al., 2005; Oliveira et al., 2005)

that the explicit encouragement of these terms by an evolutionary multiobjec-

tive algorithm is beneficial to ensemble design. The related work is reviewed as

follows.

Diverse and accurate ensemble learning algorithm (DIVACE) (Chandra and

Yao, 2006a,b) is an approach that emerges evolving neural network and multi-

objective algorithm. In this paper, adaptive Gaussian noise on weights was used

to generate the offspring and mimetic pareto neural network algorithm (Abbass,

2000) was used to evolve neural networks. Finally, diverse and accurate ensembles

can be achieved through these procedures.

Then, Oliveira et al. (Oliveira et al., 2005) incorporated ensemble of feature

and multi-objective algorithm. This algorithm can be divided to two levels. The

first is to create a set of classifiers which have small number of features and low

error rate, which is achieved by evolving these classifiers with randomly-chosen

features. In the second level, the combination weights of ensemble are obtained by

a multi-objective algorithm with two different objectives: diversity and accuracy.

Cooperative coevolution of neural network ensembles (Garćıa et al., 2005)

combined both the coevolution and evolutionary multiobjective algorithm to de-

sign neural network ensembles. In this algorithm, the cooperation terms were

defined as objectives. Every network was evaluated by a multi-objective method.

19

2.2 Theoretical Analysis of Ensembles

Thus, the algorithm encourages the collaboration among ensemble and improves

the combination schemes of ensembles.

2.2 Theoretical Analysis of Ensembles

Developing theoretical foundations for ensemble learning is a key step towards

understanding and applying it. Till now, there are many works that try to tackle

this problem, such as bias-variance decomposition, bias-variance-covariance de-

composition and ambiguity decomposition. The section reviews these techniques.

As the error diversity, which can be directly or indirectly derived from these de-

compositions, is an important component in ensemble models, this section also

reviews the analysis and application of diversity for classifier ensembles.

2.2.1 Bias Variance Decomposition

In the last decade, machine-learning research preferred more sophisticated repre-

sentations than simple learners. However, more powerful learners do not guaran-

tee better performance, and sometimes very simple learners outperform sophisti-

cated ones, e.g., (Domingos and Pazzani, 1997; Holte, 1993).

The reason for this phenomenon has become clear after the bias-variance

decomposition is proposed. In the decomposition, the predictive error consists of

two components, bias and variance, and while more powerful learners reduce one

(bias) they increase the other (variance). As a result of these developments, the

bias-variance decomposition has become a cornerstone for our understanding of

supervised learning.

The original bias-variance decomposition is proposed by Geman et al. (Geman

et al., 1992). It applies to quadratic loss error functions, and states that the

generalization error can be broken down into bias and variance terms. The bias-

variance decomposition can be obtained as follows if we assume a noise level of

zero in the testing data

E{(f(x)− y)2} = (E{f(x)} − y)2 + E{(f(x)− E{f(x)})2}, (2.1)

where the expectation E{·} is with respect to all possible training sets.

20

2.2 Theoretical Analysis of Ensembles

The first term, (E{f(x)}− y)2, is the bias component, measuring the average

distance between the output of the learner and its target. The variance term,

E{(f(x)−E{f(x)})2} is the average squared distance of its possible values from

the expected values. There is a trade-off between these two terms and attempt-

ing to reduce the bias term will cause an increase in variance, and vice versa.

The optimal trade-off between the bias and variance varies from application to

application. Machine learning approaches are often evaluated on how well they

can optimize the trade-off between these two components (Wahba et al., 1999).

However, different tasks may require different loss functions and lead several

decomposition schemes. As a result, several authors have proposed bias-variance

decompositions with zero-one loss for classification problems (Domingos, 2000;

James, 2003; Kohavi and Wolpert, 1996). However, each of these decompositions

has significant shortcomings. In particular, none has a clear relationship to the

original decomposition for squared loss. Since in the original decomposition, the

decomposition is purely additive (i.e., loss = bias + variance). But none has

provided the similar result for zero-one loss using definitions of bias and variance

that both have the intuitive meanings.

2.2.2 Bias Variance Covariance Decomposition

The bias-variance decomposition is mainly applicable to a single learner. In the

following work (Brown et al., 2005b; Islam et al., 2003; Liu and Yao, 1999a,b;

Ueda and Nakano, 1996), the decomposition is extended to take account of the

possibility that the estimator could be an ensemble of estimators. The bias-

variance-covariance decomposition states that the squared error of ensemble can

be broken into three terms, bias, variance and covariance. The bias-variance-

covariance decomposition is presented as follows:

E{(fens − y)2} = bias +
1

M
var + (1− 1

M
)covar, (2.2)

21

2.2 Theoretical Analysis of Ensembles

where

bias =

(
1

M

∑
i

(Ei{fi} − y)

)2

, var =
1

M

∑
i

Ei

{
(y − Ei{fi})2

}
,

covar =
1

M(M − 1)

∑
i

∑

j 6=i

Ei,j {(fi − Ei{fi})(fj − Ej{fj})} ,

and fens = 1
M

∑
i fi. The expectation Ei is with respect to the training set Ti

that is used to train the learner fi.

The error of an ensemble not only depends on the bias and variance of the

ensemble members, but also depends critically on the amount of error correlation

among these base learners, quantified in the covariance term. This bias-variance-

covariance decomposition also provides the theoretical grounding of negative cor-

relation learning which takes amount of correlation together with the empirical

error in training neural networks.

2.2.3 Ambiguity Decomposition for Regression Ensembles

Based on the bias-variance decomposition, Krogh and Vedelsby (Krogh and Vedelsby,

1995) gave the ambiguity decomposition which proved that at a single data point

the quadratic error of the ensemble estimator is guaranteed to be less than or

equal to the average quadratic error of the component estimators.

Ensemble is a variance-reduction technique. The amount of reduction in the

variance term is proportional to the correlation among individual estimators’

error, commonly referred to as diversity. Ambiguity decomposition is a significant

technique to quantify the diversity term for regression ensembles (Brown et al.,

2005b).

The ambiguity decomposition of regression ensembles proves that for a sin-

gle arbitrary data point, the quadratic error of the ensemble estimator can be

decomposed into two terms:

(fens(x)− y)2 =
M∑
i

ci(fi(x)− y)2 −
M∑
i

ci(fi(x)− fens(x))2, (2.3)

where y is the target output of a data point, ci are the combination weights which

satisfy ci ≥ 0,
∑M

i=1 ci = 1, and fens(·) is a convex combination of the component

22

2.2 Theoretical Analysis of Ensembles

estimators:

fens(x) =
M∑
i=1

cifi(x). (2.4)

The first term,
∑

i ci(fi(x)− y)2, is the weighted average error of the individ-

uals. The second,
∑

i ci(fi(x) − fens(x))2 is the ambiguity term, measuring the

amount of variability among ensemble members, which is treated as diversity. As

this ambiguity term is always positive, the error of ensemble is guaranteed lower

than the average individual error.

The ambiguity decomposition is an encouraging result for regression ensem-

bles. However, it is not applicable to classifier ensembles with zero-one loss. In

this thesis, we propose an ambiguity decomposition with zero-one loss for classi-

fier ensembles and derive a new measure of diversity for classifier ensembles from

the proposed ambiguity decomposition.

2.2.4 Diversity in Classifier Ensembles

The success of ensemble methods depends on generating accurate yet diverse

individual learners, because ensemble of many identical learners will not perform

better than a single learner.

The empirical results reveal that the performance of ensemble is related with

the diversity among individual learners in the ensemble and better performance

might be achieved with more diversity (Tang et al., 2006). For example, Bagging

(Breiman, 1996a) relies on bootstrap sampling to generate diversity; Random

forests (Breiman, 2001) employ both bootstrap sampling and randomization of

feature to produce more diverse ensembles, and the performance of random forests

is better than that of Bagging (Breiman, 2001).

Based on these empirical results, some researchers try to improve the perfor-

mance of ensemble by increasing the diversity of ensemble (Liu and Yao, 1999a,b;

Liu et al., 2000). Some research reports the positive results (Chandra and Yao,

2006a; Oliveira et al., 2005). For example, Chandra and Yao (Chandra and Yao,

2006a) reported positive results by encouraging diversity in their multi-objective

evolutionary algorithms. However, some other studies cannot confirm the benefits

of more diversity in the ensemble (Garćıa et al., 2005; Kuncheva and Whitaker,

23

2.2 Theoretical Analysis of Ensembles

2003). For example, in order to examine the relationship between diversity and

generalization, Kuncheva et al. (Kuncheva and Whitaker, 2003) varied the di-

versity of ensemble to observe the change of the generalization of ensemble, and

stated that it was not clear that the use of diversity terms had a beneficial effect on

the ensemble. This observation was partially supported by (Garćıa et al., 2005),

in which the experimental results showed that the performance of their algorithm

was not clearly improved when the defined diversity objectives: correlation, func-

tional diversity, mutual information and Q statistics, were considered in their

evolutionary multi-objective algorithm. These contradictory results raise a lot of

interest in exploring the relationship between the generalization and diversity in

the ensemble.

In general, although diversity is deemed as an important factor of ensemble,

there is less clarity on how to define the diversity for classifier ensembles and

how diversity correlates with the generalization of ensembles.

In order to analyze the relationship between generalization and diversity,

firstly we need to define and quantify diversity for classifier ensembles. This is

straightforward for regression ensembles since ambiguity decomposition (Krogh

and Vedelsby, 1995) gives the most acceptable definition of diversity for regression

ensembles.

As the zero-one loss function employed in classifier ensembles is different from

the mean-square error (MSE), there is no ambiguity decomposition for classifier

ensembles. How to define an appropriate measure of diversity for classifier ensem-

bles is still in debate. Until now, there are many proposals of diversity measures

for classifier ensembles. These definitions could be grouped into two categories:

pairwise diversity measures, which are based on the measurement of any pairwise

classifiers, e.g. Q statistics (Yule, 1900), Kappa statistics (Dietterich, 2000), cor-

relation coefficient (Sneath and Sokal, 1973), disagreement measure (Ho, 1998)

and non-pairwise diversity measures, e.g. entropy measure (Cunningham and

Carney, 2000) , Kohavi-Wolpert variance (Kohavi and Wolpert, 1996), measure

of difficulty (Hansen and Salamon, 1990), generalized diversity (Partridge and

Krzanowski, 1997) and coincident failure diversity (Partridge and Krzanowski,

1997). These diversity measures have been detailed in appendix A.

24

2.3 Negative Correlation Learning Algorithm

Algorithm Negative Correlation Learning (NCL)
Input: the training set D = {xn, yn}

N
n=1

, integer M specifying size of en-
semble, the learning rate η in backpropagation (BP) algorithm and integer T

specifying the number of iterations.
For t = 1, · · · , T do:

1. Calculate fens(xn) = 1

M

∑M

i=1
fi(xn).

2. For each network from i = 1 to M do: for each weight wi,j in network i,
perform a desired number of updates,

ei =

N
∑

n=1

(fi(xn) − yn)2 − λ

N
∑

n=1

(fi(xn) − fens(xn))2,

∂ei

∂wi,j

= 2
N

∑

n=1

(fi(xn) − yn)
∂fi

∂wi,j

− 2λ

N
∑

n=1

(fi(xn) − fens(xn))(1 −
1

M
)

∂fi

∂wi,j

,

∆wi,j = −2η

{

N
∑

n=1

(fi(xn) − yn)
∂fi

∂wi,j

− λ

N
∑

n=1

(fi(xn) − fens(xn))(1 −
1

M
)

∂fi

∂wi,j

}

.

Output: NCL ensemble

f(x) =
1

M

∑

i

fi(x).

Figure 2.4: Negative Correlation Learning Algorithm

Although these diversity measures could be used to represent the relation-

ship among a group of classifiers, most of them do not have exact mathematical

form in relation to the ensemble error, and this makes it difficult to analyze the

relationship between generalization and diversity. As there are many diversity

measures, it is not easy to select an appropriate one without knowing the rela-

tionship among them. Inspired by regression ensembles, this thesis proposes an

ambiguity decomposition for classifier ensembles and takes the ambiguity term as

the diversity measure for classifier ensembles. Then, ten diversity measures have

been employed to study the relationship between generalization and diversity.

25

2.3 Negative Correlation Learning Algorithm

2.3 Negative Correlation Learning Algorithm

In this section, we briefly describe negative correlation learning (NCL) algorithm

and review the related literature on the applications and developments of NCL

algorithm. Finally, we present the potential problems of NCL algorithm.

Negative Correlation learning (Liu and Yao, 1997, 1999a,b; Liu et al., 2000) is

a successful neural network ensemble learning algorithm, which is different from

the previous work such as Bagging or Boosting. It emphasizes interaction and

cooperation among the base learners in the ensemble, and uses an unsupervised

penalty term in the error function to produce biased learners whose errors tend

to be negatively correlated. NCL explicitly manages the error diversity in the

ensembles.

Given the training set {xn, yn}N
n=1, NCL combines M neural networks fi(x)

to constitute the ensemble.

fens(xn) =
1

M

M∑
i=1

fi(xn). (2.5)

To train network fi, the error function ei of network i is defined by

ei =
N∑

n=1

(fi(xn)− yn)2 + λpi, (2.6)

where λ is a weighting parameter on the penalty term pi:

pi =
N∑

n=1

{
(fi(xn)− fens(xn))

∑

j 6=i

(fj(xn)− fens(xn))

}

= −
N∑

n=1

(fi(xn)− fens(xn))2 . (2.7)

The first term in the right-hand side of (2.6) is the empirical training error of

network i. The second term pi is a correlation penalty function. The purpose of

minimizing pi is to negatively correlate each network’s error with errors of the rest

ensemble members. The λ parameter controls a trade-off between the training

error term and the penalty term. With λ = 0, we would have an ensemble with

each network training with plain back propagation, exactly equivalent to training

26

2.3 Negative Correlation Learning Algorithm

a set of networks independently of one another. If λ is increased, more and more

emphasis would be placed on minimizing the penalty. NCL is implemented by a

gradient descent method. The algorithm is summarized in Figure 2.4.

Since the original paper on NCL, a large number of applications and devel-

opments of this paradigm have been developed. Islam et al. (Islam et al., 2003)

took a constructive approach to build the ensemble, starting from a small group

of networks with minimal architecture. The networks are all partially trained

using negative correlation learning.

In the following work, Brown et al. (Brown et al., 2005b) formalized this

technique and provided a statistical interpretation of its success. Furthermore,

for estimators that are linear combinations of other functions, they derived an

upper bound on the penalty coefficient, based on properties of Hessian matrix.

In (Garćıa et al., 2005), negative correlation learning is combined with co-

evolution and evolutionary multiobjective algorithm to design neural network

ensembles. In this algorithm, the cooperation term with the rest of the networks

were defined as objectives. Every network was evaluated in the evolutionary

process using a multi-objective method. Thus, the algorithm encourages the col-

laboration among ensemble and improves the combination scheme of ensemble.

Chen et al. (Chen and Yao, 2007a) proposed to incorporate bootstrap of data,

random feature subspace (Ho, 1998) and evolutionary algorithm with negative

correlation learning to automatically design neural network ensembles. The idea

promotes the diversity within the ensemble and simultaneously emphasizes the

accuracy and cooperation in the ensemble.

In (Dam et al., 2008), NCL was employed in the learning classifier systems to

train neural network ensembles, where NCL was shown to improve the general-

ization of the ensemble.

Although NCL takes the correlation of the ensemble into consideration and

succeeds in the practical problems, it has potential risk of over-fitting (Chen and

Yao, 2009a,b). It is observed that NCL corresponds to training the ensemble as a

single learning machine by considering only the empirical training error without

regularization.

The thesis analyzes this problem and proposes the theoretical and empirical

evidences. In order to solve this problem, we propose regularized negative correla-

27

2.4 Ensemble Pruning Methods

tion learning (RNCL) algorithm which incorporates an additional regularization

term for the ensemble. Then we describe two techniques, gradient descent with

Bayesian inference and evolutionary multiobjective algorithm, to implement the

RNCL. The details of both implementations are detailed in chapter 4 and 5.

2.4 Ensemble Pruning Methods

The goal of ensemble pruning is to reduce the size of ensemble without com-

promising its performance. The pruning strategy for a group of learners is of

fundamental importance, and can decide the performance of the whole system.

As described in chapter 1, ensemble pruning can be viewed as one way to re-

duce the size of ensemble and balance the diversity, accuracy and generalization

in the ensembles at the same time. The pruning algorithms can be classified

into two categories, selection-based and weight-based pruning algorithms. In the

following, we review the two kinds of strategies, respectively.

2.4.1 Selection based Ensemble Pruning

The selection-based ensemble pruning algorithms do not weigh each leaner by a

weighting coefficient, and they either select or reject the learner.

A straightforward method is to rank the learners according to their individual

performance on a validation set and pick the best ones (Chawla et al., 2004).

This simple approach may sometimes work well but is theoretically unsound. For

example, an ensemble of three identical classifiers with 95% accuracy may be

worse than an ensemble of three classifiers with 67% accuracy and least pairwise

correlated error.

Margineantu et al. (Margineantu and Dietterich, 1997) proposed four heuristic

approaches to prune ensembles generated by Adaboost. Of them, KL-divergence

pruning (Margineantu and Dietterich, 1997) and Kappa pruning (Margineantu

and Dietterich, 1997) aim at maximizing the pair-wise difference between the se-

lected ensemble members. Kappa-error convex hull pruning (Margineantu and

Dietterich, 1997) is a diagram-based heuristic targeting at a good accuracy-

divergence trade-off among the selected subsets. Back-fitting pruning (Margineantu

28

2.4 Ensemble Pruning Methods

and Dietterich, 1997) essentially enumerates all the possible subsets, which is com-

putationally too costly for large ensembles. Then, Prodromidis et al. invented

several pruning algorithms for their distributed data mining system (Chan et al.,

1999; Prodromidis and Chan, 1998). One of the two algorithms they implemented

is based on a diversity measure they defined, and the other is based on the class

specialty metrics.

The major problem with the above algorithms is that they all resort to greedy

search, which is usually without either theoretical or empirical quality guarantees.

2.4.2 Weight based Ensemble Pruning

The more general weight-based ensemble optimization aims at improving the

generalization performance of the ensemble by tuning the weight on each ensemble

member.

For regression ensembles, the optimal combination weights minimizing the

mean square error (MSE) can be calculated analytically (Hashem, 1993; Krogh

and Vedelsby, 1995; Perrone, 1993; Zhou et al., 2002). The study has been covered

in other research areas as well, such as financial forecasting (Clemen, 1989), and

operational research (Bates and Granger, 1969). According to (Hashem, 1993),

the optimal weights can be obtained as:

wi =

∑M
j=1(C

−1)ij∑M
k=1

∑M
j=1(C

−1)kj

, (2.8)

where C is the correlation matrix with elements indexed as Cij =
∫

p(x)(fi(x)−
y)(fj(x) − y)dx that is the correlation between the ith and the jth component

learner, wherein p(x) is the distribution of x. The correlation matrix C can-

not be computed analytically without knowing the distribution p(x) but can be

approximated with a training set, as follows:

Cij ≈ 1

N

N∑
n=1

[(yn − fi(xn))(yn − fj(xn))] . (2.9)

However, this approach rarely works well in real-world applications. This is

because when a number of estimators are available, there are often some estima-

tors that are quite similar in performance, which makes the correlation matrix

29

2.4 Ensemble Pruning Methods

C ill-conditioned, hampering the least square estimation. Other issues of this

formulation include (1) the optimal combination weights are computed from the

training set, which often over-fits the noise and (2) in most cases the optimal

solution does not reduce the ensemble size.

The least square formulation is a numerical stable algorithm to calculate these

optimal combination weights. In this thesis, we use the least square (LS) pruning

to minimize MSE in our experiments to act as a baseline algorithm. The LS prun-

ing is applicable to binary classification problems by modeling the classification

problem as a regression problem with its target as -1 or +1.

However, the LS pruning often produce negative combination weights. A

strategy allowing negative combination weights is believed to be unreliable (Benedik-

tsson et al., 1997; Ueda, 2000).

To prevent the weights from negative values, Yao et al. (Yao and Liu, 1998)

proposed to use genetic algorithm (GA) to weigh the ensemble members by con-

straining the weighs to be positive. Then, Zhou et al. (Zhou et al., 2002) proved

that small ensembles can be better than large ensembles. A similar genetic al-

gorithm approach can be found in (Kim et al., 2002). However, these GA based

algorithms try to obtain the optimal combination weights by minimizing the

training error and in this way these algorithms become sensitive to noise.

Then, Demiriz et al. (Demiriz et al., 2002) employed mathematical program-

ming to look for good weighting schemes. Those optimization approaches are

effective in performance enhancement according to empirical results and are some-

times able to significantly reduce the ensemble size (Demiriz et al., 2002). How-

ever, ensemble size reduction is not explicitly built into those programs and the

final size of the ensemble can still be very large in some cases.

In fact, the weighted-based ensemble pruning can be viewed as a sparse

Bayesian learning problem by applying Tipping’s relevance vector machine (RVM)

(Tipping, 2001). RVM is an application of Bayesian automatic relevance deter-

mination (ARD) and it prunes most of the ensemble members by employing a

Gaussian prior and updating the hyperparameters in an iterative way. However,

ARD pruning does allow negative combination weights and the solution was not

optimal according to the current research (Benediktsson et al., 1997; Ueda, 2000).

30

2.5 Summary

To address the problem of ARD pruning, Chen et al. (Chen et al., 2006) mod-

eled the ensemble pruning as a probabilistic model with truncated Gaussian prior

for both regression and classification problems. The Expectation-Maximization

(EM) algorithm is used to infer the combination weights and our algorithm shows

good performance in both generalization error and pruned ensemble size.

2.5 Summary

This chapter provided a review on ensemble of learning machines from the fol-

lowing four aspects: (i) some popular ensemble learning algorithms; (ii) three

generalization decompositions for analyzing ensemble models and the analysis

of diversity in classifier ensembles; (iii) some developments and applications of

negative correlation learning algorithm; (iv) a number of methods for ensem-

ble pruning. For the first point, we studied the current techniques on ensemble

learning and their advantages and disadvantages. The second point introduced

three important theoretical results for ensemble learning, the bias-variance de-

composition, bias-variance-covariance decomposition and ambiguity decomposi-

tion, which are fundamental to our understanding of ensemble models. We also

reviewed the current literature on the analysis and application of diversity in

classifier ensembles. The third point reviewed the current development and the

wide applications of one specific ensemble learning algorithm, negative correla-

tion learning and pointed out the potential problems, which ignite the explosion

of regularized negative correlation learning technique in this thesis. At the last

point, we summarized various selection-based and weight-based algorithms for

ensemble pruning.

31

Chapter 3

Diversity in Classifier Ensembles

In chapter 2 we reviewed a number of decompositions for analyzing supervised

learning models and ensemble models, where all of the decompositions are only

applicable to regression problems. In this chapter we propose ambiguity de-

composition for classifier ensembles and focus on two research questions: how

to define the diversity for classifier ensembles and how diversity correlates with

generalization error. In this chapter, section 3.2 proposes an ambiguity decom-

position for classifier ensembles and section 3.3 derives a new diversity measure

based on the proposed ambiguity decomposition. The experiments and analysis

on the correlation between diversity and generalization are presented in section

3.4, followed by the summary in section 3.5. In appendix A, we detail other nine

diversity measures.

3.1 Introduction

In ensemble research, it is widely believed that the success of ensemble algo-

rithms depends on both the accuracy and diversity among individual learners in

the ensemble, demonstrated by theoretical (Hansen and Salamon, 1990; Krogh

and Vedelsby, 1995) and empirical studies (Liu and Yao, 1999b). In general,

the component learners in an ensemble are designed to be accurate yet diverse.

For example, Bagging (Breiman, 1996a) relies on bootstrap sampling to pro-

duce diverse subsets of the training set to train each individual learner. Boosting

32

3.1 Introduction

(Schapire, 1999) employs the feedback scheme to pay more attention to the train-

ing samples that are misclassified by the former classifiers in the training of next

classifier and thus promotes the diversity among these base learners; Negative

correlation learning (NCL) (Liu and Yao, 1999a,b; Liu et al., 2000) optimizes the

trade-off between accuracy and diversity in this ensemble.

The empirical results reveal that the performance of an ensemble is related

with the diversity among individual learners in the ensemble and better perfor-

mance might be achieved with more diversity (Tang et al., 2006). Many related

research on analysis and applications of diversity have been conducted (Giacinto

and Roli, 2001; Kohavi and Wolpert, 1996; Partridge and Krzanowski, 1997).

As we know, the definition of diversity for regression ensembles originates

from ambiguity decomposition (Krogh and Vedelsby, 1995), in which the error

of regression ensemble is broken into two terms: the accuracy term measuring

the weighted average error of the individuals and the ambiguity term measuring

the difference among ensemble and component estimators. However, there is no

ambiguity decomposition for classifier ensembles. Therefore, how to define an

appropriate measure of diversity for classifier ensembles is still an open question

(Giacinto and Roli, 2001; Kohavi and Wolpert, 1996; Partridge and Krzanowski,

1997).

Although diversity among ensemble members is deemed to be a key factor

to the performance of ensemble (Brown et al., 2005a; Darwen and Yao, 1997;

Krogh and Vedelsby, 1995) and many studies on diversity have been conducted,

there is less clarity on how to define the diversity for classifier ensembles and how

diversity correlates with the generalization of ensemble (Kuncheva and Whitaker,

2003).

Kuncheva et al. and Garcia et al., in their empirical results (Garćıa et al.,

2005; Kuncheva and Whitaker, 2003), raised some doubts about the usefulness

of diversity measures in building classifier ensembles because the empirical re-

sults did not show much correlation between diversity and generalization error

by varying the diversity in the ensemble. These findings are counterintuitive since

ensembles of many identical classifiers perform no better than a single classifier

and ensembles should benefit from diversity.

33

3.2 Ambiguity Decomposition for Classifier Ensembles

The focus of the chapter is to provide answers to the following questions: (i)

how to define the diversity for classifier ensembles and (ii) how diversity correlates

with generalization error.

In order to answer the first question, section 3.2 proposes an ambiguity de-

composition for classifier ensembles with zero-loss loss function, where the error

is broken into two terms: accuracy and ambiguity. We follow the definition of

diversity for regression ensembles and define the diversity for classifier ensembles

by the ambiguity term.

To address the second question, by taking Bagging as an example of ensemble

methods, this chapter conducts empirical experiments to explore the relationship

between diversity and generalization by varying the diversity of Bagging. The

originality is that by varying the sampling rate r (from 0.1 to 1) of Bagging,

i.e. sample 100r% data from the original training set to train each component

classifier, to tune the diversity, we could observe the diversity from zero, where

r = 1, to a large value, when r = 0.1. This is very helpful in understanding the

relationship between diversity and generalization error. The relationship among

ambiguity measure and other diversity measures has been studied as well.

3.2 Ambiguity Decomposition for Classifier En-

sembles

The definition of diversity for regression ensembles is derived from the ambiguity

decomposition. Ambiguity decomposition of regression ensembles (Krogh and

Vedelsby, 1995) proves that for a single arbitrary data point, the quadratic error

of the ensemble estimator can be decomposed into two terms:

(fens(x)− y)2 =
M∑
i

ci(fi(x)− y)2 −
M∑
i

ci(fi(x)− fens(x))2, (3.1)

where y is the target output of a data point, ci are the combination weights

which satisfy ci ≥ 0,
∑M

i=1 ci = 1, and fens is a convex combination of component

estimators:

fens(x) =
M∑
i=1

cifi(x). (3.2)

34

3.2 Ambiguity Decomposition for Classifier Ensembles

The first term,
∑

i ci(fi(x) − y)2, is the weighted average error of the indi-

viduals. The second,
∑

i ci(fi(x) − fens(x))2 is the ambiguity term measuring

the amount of variability among ensemble members. As this ambiguity term is

always positive, the ensemble error is guaranteed to be lower than the average

individual error.

The ambiguity decomposition is an encouraging result for regression ensembles

with quadratic loss. However, it is not applicable to classifier ensembles with

zero-one loss. In order to define an appropriate diversity measure for classifier

ensembles, we follow the idea of regression ensembles and present an ambiguity

decomposition for classifier ensembles with zero-one loss function.

Suppose the classification task is to use an ensemble comprising M component

classifiers to approximate a function f : RD −→ Y , where Y is the set of class

labels and D is the dimension of the data, and the predictions of the component

classifiers are combined through majority voting where each component classifier

votes for a class and the class label receiving the most number of votes is regarded

as the output of the ensemble1.

In this chapter we only consider binary classification, i.e. Y ∈ {−1, +1}. Now

assume there are N instances {xn, yn}N
i=1. For a single arbitrary data point xn,

yn denotes the target output of this instance. fi(xn) is the actual output of the

ith component classifier with data point xn. yn and fi(xn) satisfy the relationship

that yn ∈ {−1, +1} and fi(xn) ∈ {−1, +1}(i = 1, · · · ,M), respectively. It

is obvious that if the actual output of the ith component classifier is correct

according to the target output then fi(xn)yn = +1, otherwise fi(xn)yn = −1.

The output of the ensemble is defined as:

fens(xn) = sign

(
M∑
i=1

cifi(xn)

)
. (3.3)

For classifier ensembles, the error at a single arbitrary data point is defined as:

Err(fens(xn) · yn) = Err

(
sign

(
M∑
i=1

cifi(xn)

)
· yn

)
, (3.4)

1If there is a tie, the Error function, equation (3.5) gives zero for binary classification.

35

3.2 Ambiguity Decomposition for Classifier Ensembles

where Err(x) is a function defined as

Err(x) =





1 if x = −1
0.5 if x = 0
0 if x = 1

. (3.5)

where x = 0 means there is a tie,
∑M

i=1 cifi(xn) = 0, in the majority voting.

Since the error function Err(x) is discrete, we need to generalize it to a

continuous function to facilitate the derivation. Based on the definition of Err(x),

a linear function Err(x) = −1
2
(x−1) can be easily obtained by fitting these three

points (−1, 1), (0, 0.5) and (1, 0). With this generalization, the following equation

holds

Err(x)− a · Err(y) = −1

2
((x− 1)− (y − 1)a) =

1

2
((y − 1)a− (x− 1)), (3.6)

where a is a constant.

The difference between ensemble error and the average error of component

classifiers is:

Err(fens(xn) · yn)−
M∑
i=1

ci · Err(fi(xn) · yn)

=
1

M

M∑
i=1

(Err(fens(xn) · yn)−Mci · Err(fi(xn) · yn))

=
yn

2

M∑
i=1

(
cifi(xn)− 1

M
fens(xn)

)
. (3.7)

Reorganizing equation (3.7), the ambiguity decomposition can be written as

follows:

Err(fens(xn)yn) =
M∑
i=1

ciErr(fi(xn)yn)−yn

2

M∑
i=1

(
1

M
fens(xn)− cifi(xn)

)
. (3.8)

The decomposition is made up of two terms. The first,
∑

i ciErr(fi(xn)yn), is

the weighted average error of the individuals. The second term is the ambiguity

term which measures the difference between fens(xn) and component classifiers

fi(xn).

36

3.3 A New Diversity Measure

3.3 A New Diversity Measure

According to equation (3.8), the proposed ambiguity decomposition for classifier

ensembles is purely additive (i.e., loss = accuracy − diversity) and has a clear

relationship to the original ambiguity decomposition for squared loss. Besides

the purely additive similarity, the new ambiguity decomposition is related to the

margin in classification problems.

Since

M∑
i=1

cifi(xn) =

∣∣∣∣∣
M∑
i=1

cifi(xn)

∣∣∣∣∣ sign

(
M∑
i=1

cifi(xn)

)
= snfens(xn), (3.9)

where sn ∈ [0, 1] is the absolute value of
∑M

i=1 cifi(xn). The following equation

can be obtained:

yn

2

M∑
i=1

(
1

M
fens(xn)− cifi(xn)

)

=
yn

2
(fens(xn)− sfens(xn)) =

1− s

2
ynfens(xn). (3.10)

According to equation (3.10), when the output of ensemble is correct for the

point xn, the value ynfens(xn) > 0. In fact, the term mn = ynfens(xn) in equation

(3.10) is the margin (Rätsch et al., 2001; Schapire et al., 1998) for data point xn.

The margin at xn is positive if the correct class label of the pattern is predicted.

As the margin value increases, the decision stability becomes larger. Moreover,

as f(xn) ∈ [−1, 1], then mn ∈ [−1, 1].

Margin theory is firstly used by support vector machine. Then Breiman

(Breiman, 1999) defined the margin1 for a single point and used the concept to

analyze boosting algorithms. The following work on margin includes an explana-

tion of Adaboost as boosting the margin (Schapire et al., 1998) and construction

of the soft-margin Adaboost (Rätsch et al., 2001).

Besides the margin term, the parameter sn =| ∑M
i=1 cifi(xn) | measures the

difference between the number of positive and negative votes, and a smaller sn

encourages more diversity. In order to maximize the ambiguity term, firstly we

can enlarge the margin and keep the obtained margin unchanged. Secondly,

1Note that the edge (Breiman, 1999) is just an affine transformation of the margin.

37

3.4 Correlation Between Diversity and Generalization

Table 3.1: Summary of Data Sets

Data Sets Examples Features %Positive

Card 690 14 44.49%

Cancer 683 9 34.99%

Heart 270 13 44.44%

Sonar 208 60 53.37%

Ionosphere 351 34 64.10%

Liver 345 6 57.97%

we try to minimize the corresponding gap between the number of positive and

negative votes.

Based on the above analysis, we can define the accuracy and ambiguity as

follows:

Accuracy =
1

N

N∑
n=1

M∑
i=1

ci · Err(fi(xn) · yn), (3.11)

Ambiguity =
1

2N

N∑
n=1

M∑
i=1

(
1

M
fens(xn)− cifi(xn)

)
yn. (3.12)

3.4 Correlation Between Diversity and Gener-

alization

In this section, we conduct empirical experiments to analyze the relationship

between ten diversity measures and the generalization error of Bagging. Classifi-

cation and regression tree (CART) is used as the component classifier in Bagging.

Six data sets have been employed in our experiments. They are Australian credit

card, Wisconsin breast cancer, heart disease, sonar, ionosphere and liver disorder,

which are from the UCI Machine Learning Repository (Asuncion and Newman,

2007). The characteristics of these data sets are summarized in Table 3.1.

As we know, Bagging is based on bootstrap sampling and each individual clas-

sifier is trained on almost 1− 1/e ≈ 63.2% training points (Efron and Tibshirani,

38

3.4 Correlation Between Diversity and Generalization

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7
x 10

−3

R
es

id
ua

l v
ar

ia
nc

e

Number of MDS dimensionality

Figure 3.1: In MDS algorithm, residual variance vs. number of dimensions on

credit card problem. The other problems yield similar plots and are omitted only

to save space.

1993). In our experiments, we tune the sampling rate r, i.e. randomly sample

100 × r% of data to train each tree, to change the diversity. For each problem,

we change the sampling rate from 0.1 to 1 with the interval 0.05 and finally we

get 181 sampling rates.

For each sampling rate, an ensemble of 100 trees are built to record the ac-

curacy, ambiguity, generalization error and other nine diversity measures. These

results are based on 100 runs of 5-fold cross validation and validation data is used

to record the diversity measures and generalization error.

3.4.1 Visualization of Diversity Measures using Multidi-

mensional Scaling

This subsection uses multidimensional scaling (MDS) (Cox and Cox, 1994) as a

visualization tool to investigate the relationship among these diversity measures.

A MDS algorithm starts with a matrix of item-item similarities or dissimilarities,

and then assigns a coordinate of each item in a low-dimensional space, aiming

39

3.4 Correlation Between Diversity and Generalization

−4 −3 −2 −1 0 1 2 3 4
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
 Am

 Q

 K CC

 Dis and KW
 E

 Diff

 GD

 CFD

−4 −2 0 2 4 6 8
−3

−2

−1

0

1

2

3

4

5
 Am

 Q

 K CC

 Dis and KW
 E

 Diff

 GD CFD

Figure 3.2: 2D MDS plot using normalized scores (left) and standard deviation

scaling (right) for credit card problem. The 10 measures of diversity are: AM-

Ambiguity, Q - Q statistics, K - Kappa statistics, CC - correlation coefficient, Dis -

disagreement measure, E - entropy, KW - Kohavi-Wolpert variance, Diff - measure

of difficulty, GD - generalized diversity, CFD - coincident failure diversity and Err

- generalization error for the six data sets. The x and y axes are coordinates of

these diversity measures in 2D space.

at preserving the pairwise distances of high dimensional data. As we use ten

diversity measures including ambiguity for investigation, for each problem we

build a 10 × 1811 table where lines represent the diversity measures, columns

represent ensembles with different sampling rates, and each entry (i, j) in the

table is the diversity score with the jth sampling rate using the ith diversity

measure.

For a MDS algorithm, each row in the table is treated as the coordinate of

a point in a 181 dimensional space. The distance is calculated as the Euclidean

distance between the two corresponding points in that space.

In order to calculate the pairwise Euclidean distance, we need to normalize

these diversity measures. Diversity measures such as entropy and kappa statistics

have range [0, 1], while others (Ambiguity, Q statistics, disagreement measure,

Kohavi-Wolpert variance and measure of difficulty) range from p to q where p and

1For each problem, we change the sampling rate from 0.1 to 1 with the interval 0.05 and
totally there are 181 sampling rates.

40

3.4 Correlation Between Diversity and Generalization

q depend on the data set and diversity measure. For some measures lower values

indicate higher diversity, e.g. Q statistics; for others, higher values indicate higher

diversity, e.g. ambiguity. Different diversity measures have different baseline rates

that depend on the data. In order to compare diversity measures in a meaningful

way, all the measures need to be placed on a similar scale. One way to do this

is to scale the scores from 0 to 1, where 0 is the lowest diversity, and 1 is the

highest diversity. The disadvantage of normalized scores is that recovering the

raw diversity measures requires knowing the values that define the top and bottom

of the scale, and as new sampling rates are employed the bottom/top of the scale

may change.

As MDS is sensitive to how the performance metrics are scaled, we perform

MDS two ways. The first approach uses normalized method and the second

approach scales these diversity measures to mean 0.0 and standard deviation

1.0 instead of using normalized method, though scaling by standard deviation is

somewhat less intuitive because scores scaled by standard deviation depend on

the full distribution of models instead of just the distance that fall at the top and

bottom of each scale.

To quantify the performance of a MDS algorithm, the residual variance (RV)

is used as the error measure, defined in (Tenenbaum et al., 2000) as the residual

square of correlation coefficient

RV = 1− cov2(D̂X , DY)/σ2
D̂X

σ2
DY

, (3.13)

where σ is the variance and cov is the function for computation of correlation coef-

ficients. DY is the matrix of pairwise Euclidean distances in the high-dimensional

embedding space and D̂X is the best estimate of the pairwise Euclidean distances

in the low dimensional space. The smaller the residual variance is, the better the

algorithm is.

Ten diversity measures permit 10 × 9/2 = 45 pairwise comparisons. We cal-

culate Euclidean distance between each pair of measures in the high dimensional

space, and then perform multidimensional scaling on these pairwise distances.

Figure 3.1 shows the residual variance as a function of the number of dimen-

sions in the MDS. The ten diversity measures appear to span a MDS space of

41

3.4 Correlation Between Diversity and Generalization

−4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

 Am

 Q

 K CC

 Dis and KW

 E
 Diff

 GD

 CFD

 Err

(a) Card
−3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

 Am

 Q

 K CC

 Dis and KW E

 Diff

 GD

 CFD

 Err

(b) Heart

−3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

 Am

 Q

 K CC
 Dis and KW

 E

 Diff

 GD

 CFD

 Err

(c) Liver
−5 −4 −3 −2 −1 0 1 2 3 4 5

−1

−0.5

0

0.5

1

1.5

2

2.5

 Am

 Q

 K CC

 Dis and KW
 E

 Diff

 GD
 CFD

 Err

(d) Cancer

−5 −4 −3 −2 −1 0 1 2 3 4
−1

−0.5

0

0.5

1

1.5

2

 Am

 Q

 K CC

 Dis and KW E

 Diff

 GD

 CFD

 Err

(e) Ionosphere
−3 −2 −1 0 1 2 3 4

−1.5

−1

−0.5

0

0.5

1

1.5

2

 Am

 Q

 K CC

 Dis and KW
 E

 Diff

 GD

 CFD

 Err

(f) Sonar

Figure 3.3: 2D MDS plot (10 diversity measures and generalization error) using

normalized method on six data set. The results are averaged on the 100 run on

each data set. The x and y axes are coordinates of these diversity measures in

2D space.

42

3.4 Correlation Between Diversity and Generalization

about 3 to 5 dimensions. In this section we examine the 2-D MDS plots for easy

visualization in detail.

Figure 3.2 shows two MDS plots when dimensionality is reduced to two di-

mensions. The plot on the left is MDS using normalized method. The plot on

the right is MDS using standard deviation scaled method.

Both MDS plots show a similar pattern. The metrics appear to form 5-6

somewhat distinct groups. In the middle is a group that includes K, CC and GD.

The second group includes E, Dis and KW. The other groups are Am (by itself),

Diff (by itself, or possibly with the second group), Q (by itself), and CFD (by

itself).

The ambiguity does not appear to correlate strongly with any other metric.

It is not surprising that disagreement measure and Kohavi-Wolpert variance lay

in the same point because Kohavi-Wolpert variance differs from the averaged

disagreement measure by only a coefficient (Kuncheva and Whitaker, 2003). K

and CC form a cluster because the definition of Kappa statistics and correlation

coefficient only differ at the denominator: the denominator of Kappa is the square

of that of correlation coefficient.

It is somewhat surprising that entropy measure falls very close to disagreement

measure and Kohavi-Wolpert variance. Also, GD is closer to K and CC.

Figure 3.3 shows 2-D MDS plots for six test problems. These figures also

include the generalization error with 10 diversity measures. Although there are

variations between the plots, the 2-D MDS plots for the six problems are remark-

ably consistent given that these are different test problems. The consistency in

these six MDS plots suggests that we have an adequate sample size of sampling

rate to reliably detect relationships between the measures.

Ambiguity consistently lies close to the generation error, which means Am

exhibits a good correlation with generalization error compared with other diver-

sity measures. For some data sets, CFD and GD also fall near the generalization

error. Metrics such as Q and Diff seem to move around in these plots.

43

3.4 Correlation Between Diversity and Generalization

Table 3.2: Rank correlation coefficients (in %) between the diversity measures

based on the average of the six data sets. The measures are: Am - Ambiguity; Q

statistics; K - Kappa statistics; CC - correlation coefficient; Dis - disagreement

measure; E - entropy; KW - Kohavi-Wolpert variance; Diff - measure of difficulty;

GD - generalized diversity; and CFD - coincident failure diversity.

Am Q K CC Dis E KW Diff GD CFD Err

Am 100 84 84 84 81 80 81 48 85 37 75

Q 100 99 99 96 95 96 52 92 27 44

K 100 100 93 92 93 49 95 32 51

CC 100 93 92 93 49 95 32 51

Dis 100 99 100 55 82 15 28

E 100 99 54 81 12 27

KW 100 55 82 15 28

Diff 100 46 47 16

GD 100 50 66

CFD 100 62

Err 100

44

3.4 Correlation Between Diversity and Generalization

−0.7 −0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

 Am

 Q
 K CC

 Dis and KW

 E

 Diff

 GD

 CFD

 Err

Figure 3.4: 2D MDS plot using rank correlation coefficients. This figure is aver-

aged on six data sets. The 10 measures of diversity are: AM-Ambiguity, Q - Q

statistics, K - Kappa statistics, CC - correlation coefficient, Dis - disagreement

measure, E - entropy, KW - Kohavi-Wolpert variance, Diff - measure of difficulty,

GD - generalized diversity, CFD - coincident failure diversity and Err - general-

ization error. The x and y axes are coordinates of these diversity measures in 2D

space.

3.4.2 Correlation Analysis of Diversity Measures

With the MDS analysis in the previous subsection, we used ten diversity measures

to investigate 181 ensembles with different sampling rates on each of the six test

problems. In this section we use correlation analysis, instead of MDS, to study the

relationship among ambiguity, nine other diversity measures and generalization

error. Again, to make the correlation analysis easier to interpret, we firstly scale

scores to the range [0, 1] so that the best score is 1, and baseline score is 0.

Ten diversity measures and generalization error permit 11×10/2 = 55 pairwise

correlations. We do these comparisons using non-parametric Spearman’s rank

correlation, which studies relationships between different rankings on the same

set of items. We use rank correlation instead of linear correlation because rank

correlation makes fewer assumptions about the relationships between the metrics,

45

3.4 Correlation Between Diversity and Generalization

and it is insensitive to how these diversity measures are scaled. While linear

correlation assumes that the relationship of two variables is linear, which is not

always correct in practice.

Table 3.2 summarizes these average pairwise correlations among ambiguity,

other nine diversity measures and generalization error. Each entry in the table is

the average rank correlation across the six test problems. The table is symmetric

and contains 55 unique pairwise comparisons.

From this table, two pairs of diversity measures: Kappa statistics (Kappa)

and correlation coefficient (CC), disagreement measure Dis and Kohavi-Wolpert

variance KW , are equivalent, because their correlation coefficients are 1. In

(Kuncheva and Whitaker, 2003), it is proven that KW differs from the averaged

disagreement measure Dis by only a coefficient.

Metrics with pairwise rank correlations near one behave more similarly than

those with smaller rank correlations. The pairs that have rank correlations above

0.90 are listed as follows:

1.00: Kappa to CC, Dis to KW

0.99: Q to Kappa (CC), Dis (KW) to E

0.96: Q to Dis (KW)

0.95: Q to E, GD to Kappa (CC)

0.93: Kappa to Dis (KW)

0.92: GD to Q, E to Kappa (CC)

The relationships revealed by rank correlation analysis are consistent with

MDS analysis. As expected, Am and generalization error have higher rank cor-

relation than other diversity measures. Q is highly correlated with the other

two metrics, Kappa and CC. But the high correlation between entropy and dis-

agreement measure is somewhat surprising and we currently do not know how to

explain this.

The weakest correlations are all between coincident failure diversity (CFD)

and the other metrics, even with GD, the correlation is only 0.5. However, it has

second largest rank correlation with the generalization error.

Figure 3.4 shows a MDS plot for the metrics when distance between metrics

is calculated as rank correlation coefficients, making MDS insensitive to how the

metrics are scaled. (Distances based on rank correlation coefficients do not respect

46

3.4 Correlation Between Diversity and Generalization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Test Accuracy
Test Diversity
Generalization Error
Q (Right Y−axis)
Entropy (Right Y−axis)
GD (Right Y−axis)

(a) Card
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

0

1

Test Accuracy
Test Diversity
Generalization Error
Q (Right Y−axis)
Entropy (Right Y−axis)
GD (Right Y−axis)

(b) Heart

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test Accuracy
Test Diversity
Generalization Error
Q (Right Y−axis)
Entropy (Right Y−axis)
GD (Right Y−axis)

(c) Liver
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Test Accuracy
Test Diversity
Generalization Error
Q (Right Y−axis)
Entropy (Right Y−axis)
GD (Right Y−axis)

(d) Cancer

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

0

0.5

1

Test Accuracy
Test Diversity
Generalization Error
Q (Right Y−axis)
Entropy (Right Y−axis)
GD (Right Y−axis)

(e) Ionosphere
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

Test Accuracy
Test Diversity
Generalization Error
Q (Right Y−axis)
Entropy (Right Y−axis)
GD (Right Y−axis)

(f) Sonar

Figure 3.5: Accuracy, Diversity, Q statistics, Entropy, Generalized Diversity

(GD) and Generalization Error with different sampling rates (from 0.1 to 1)

of Bagging for six data sets. The x-axis is the sampling rate r. The plot inter-

val of sampling rate r from 0.1 to 0.9 is 0.05 and plot the interval between 0.9

and 1 is 0.01. The left y-axis is to record the values of Accuracy, Diversity and

Generalization Error; the right y-axis is for Q statistics, Entropy and Generalized

Diversity (GD). The results are averaged on 100 runs of 5-fold cross validation.
47

3.4 Correlation Between Diversity and Generalization

Table 3.3: Rank correlation coefficients (in %) among ambiguity, nine diversity

measures and Generalization Error in Different Sampling Range, where G stands

for generalization error.

Rate 0.9 ≤ r ≤ 1

Pairs Card Heart Liver Cancer Iono Sonar Mean

Am-G 91 85 90 83 81 94 87

Q-G 80 58 73 62 65 82 70

K-G 85 58 75 70 69 85 74

CC-G 85 58 75 70 69 85 74

Dis-G 76 56 68 50 60 82 65

E-G 76 53 70 48 60 82 65

KW-G 76 56 68 50 60 82 65

Diff-G 75 62 66 59 49 83 66

GD-G 85 66 79 75 71 89 78

CFD-G 87 80 84 79 71 91 82

0.1 ≤ r < 0.9

Am-G 47 66 73 58 68 20 55

Q-G 38 51 45 57 67 -9 42

K-G 42 53 46 61 71 -6 44

CC-G 42 53 46 61 71 -6 44

Dis-G 31 46 43 43 62 -16 35

E-G 31 46 42 40 61 -16 34

KW-G 31 46 43 43 62 -16 35

Diff-G 30 40 -44 46 63 22 26

GD-G 47 61 58 63 76 36 57

CFD-G 52 35 -11 63 78 40 43

48

3.4 Correlation Between Diversity and Generalization

Table 3.4: The generalization error of Bagging algorithms with different sampling

rates, where r = 0.632 is the performance of Bagging with bootstrap. The results

are averaged over 50 runs of 5 fold cross validation.

Rate 0.1 0.3 0.5 0.632 0.7

Card 13.69±2.12 13.07±1.92 13.27±2.05 13.50±1.98 13.40±1.87

Heart 17.47±3.39 18.48±4.48 18.93±3.69 19.12±3.36 19.89±4.12

Liver 30.33±3.68 28.52±3.76 28.80±3.40 29.54±3.77 30.43±4.32

Cancer 3.70±1.31 3.39±1.14 3.38±1.12 3.60±1.18 3.51±1.05

Iono. 9.62±2.77 7.00±2.26 7.74±2.57 8.51±2.61 8.36±2.77

Sonar 25.10±5.05 23.84±5.47 22.89±4.76 22.54±5.37 21.99±5.20

the triangle inequality so this is not a proper metric space.) The overall pattern

is similar to that observed in the MDS plots in Figure 3.3. Am is closest to the

generalization error, which is consistent with the rank correlation coefficients in

Table 3.2. The two clusters in Figure 3.3: K, CC and GD, Dis, KW and E, seem

to unite to one cluster. Q statistic is closest to K and CC, though not as close

as in the other plots. CFD is at the left end of the space farthest from Am and

most of other metrics. Diff is at the lower side of the space.

We also study the relationship between the generalization error and ten di-

versity measures with different sampling rates. Figure 3.5 illustrates the curves

of the generalization vs. the sampling rate r for each data set.

From Figure 3.5, the correlation between diversity and generalization error

varies with different sampling rates r. In order to quantify the difference, Table

3.3 reports the rank correlation coefficients between ten diversity measures and

generalization error in two sampling zones. According to Table 3.3, nine diversity

measures show similar characteristics as ambiguity: when the sampling rate r is

large, i.e. ambiguity is small, ambiguity highly correlated with generalization

error but when ambiguity exceeds a threshold, the correlation drops. The reason

is that accuracy changes with ambiguity at the same speed.

Based on the observed relationship, three zones with different sampling rates

49

3.4 Correlation Between Diversity and Generalization

r are summarized in the following under the condition that there are sufficient

training data.

1. Low diversity zone, i.e. large sampling rate (0.9 ≤ r ≤ 1).

When the sampling rate r converges to 1, the training of the individual

classifiers in the ensemble converge. Accuracy does not change a lot with r.

However, as unstable base classifiers, only a small change of training data

would disturb the output and thus increase the diversity much (Buhlmann

and Yu, 2002). In this way, when r changes from 1 to 0.9, accuracy term

keeps almost unchanged but diversity increases a lot. The generalization

error, which is the difference between accuracy and diversity, reduces a lot.

The empirical results support the statement that Bagging benefits form

combining unstable learners to succeed (Breiman, 1996a; Buhlmann and

Yu, 2002).

2. Medium diversity zone, i.e. medium sampling rate (0.2≤ r < 0.9).

In this zone, generalization error does not change much when diversity

changes a lot. As diversity raises, so does accuracy, and thus the difference,

i.e. generalization error, will not change much. As we know, the sampling

rate of bootstrap is around r = (1 − 1/e) ≈ 0.632, varying diversity of

Bagging will not change the generalization error much. This explains the

empirical results in (Garćıa et al., 2005; Kuncheva and Whitaker, 2003).

3. Large diversity zone, i.e. low sampling rate (r <0.2).

When the sampling rate r is small, there is not sufficient training data avail-

able for each component classifier, so accuracy becomes larger but diversity

term changes less than accuracy. Therefore, this leads an increase of the

generalization error.

It is very important that whether there are sufficient training data available.

If there are not enough data points available for training, the generalization will

not change much in zone 1 because the accuracy term doesn’t converge and will

change with diversity at the same speed.

50

3.5 Summary

The generalization error of Bagging algorithm with different sampling rates

are also reported in Table 3.4. According to the table, the ongoing sampling

rate of Bagging is not the optimum. Bagging algorithm with a small sampling

rate r ≤ 0.5 outperforms that with a large sampling rate, supported by Bagging

algorithm on the five data sets in our experiments. The only exception is the

sonar data set because the number of data points in sonar data set is few (208).

A low sampling rate results in insufficient training data for individual classifiers.

This finding also confirms that Bagging algorithm with a small sampling rate

performs better than the original Bagging algorithm with bootstrap (Buhlmann

and Yu, 2002).

Regarding the question “whether the use of diversity measures has a beneficial

effect for classifier ensembles”, our answer is partially positive. However, we

should be very careful to select the diversity measure, because different diversity

measures have significantly different correlation with generalization error. For

example, the rank correlation between ambiguity and generalization is 0.75 but

the correlation between Diff and generalization is just 0.16 in our experiments.

Apart from selecting the proper diversity measure, if we want to enlarge the

diversity for better performance, we had better judge whether the ensemble has

adequately large diversity. If the ensemble already has a large diversity, the

generalization performance of ensemble will not benefit much from more diversity.

The contradictory results (Garćıa et al., 2005; Kuncheva and Whitaker, 2003)

about the usefulness of diversity can be explained by the above two reasons.

3.5 Summary

This chapter investigates two fundamental questions on diversity in classifier en-

sembles (i) how to define the diversity for classifier ensembles and (ii) how diver-

sity correlates with generalization error.

In order to answer the first question, we conduct the first theoretical analysis

of ambiguity decomposition for classifier ensembles with zero-one loss, which

breaks the error of ensemble into two terms: accuracy and ambiguity terms.

As the ambiguity term measures the amount of variability among the ensemble

members, the ambiguity term is adopted as a new diversity measure for classifier

51

3.5 Summary

ensembles. The empirical experiments confirm that ambiguity is a good measure

of diversity in comparison with nine most-often-used diversity measures. This is

the first contribution of the chapter.

The second contribution of the chapter is the first empirical findings that

diversity highly correlates with generalization error when the diversity is small

but the correlation reduces after diversity exceeds a threshold. These findings can

explain the empirical results (Garćıa et al., 2005; Kuncheva and Whitaker, 2003)

that varying diversity does not change the generalization error much because in

their experiments the diversity was already large and did not strongly correlate

with generalization error.

Our experiments also suggest that the performance of Bagging (r ≈ 0.632)

could be improved by changing the sampling rate to a small value (0.2 ≤ r ≤ 0.5)

under the condition that there are sufficient training data.

52

Chapter 4

Regularized Negative Correlation

Learning

This chapter investigates a special kind of diversity, error diversity, using nega-

tive correlation learning (NCL) (Liu and Yao, 1999a,b; Liu et al., 2000). Negative

correlation learning is a neural network ensemble algorithm which considers the

cooperation and interaction among the ensemble members. However, we observe

that NCL is prone to overfitting the noise in the training set by training the

ensemble as a single estimator and only minimizing the MSE without regulariza-

tion. Therefore, regularization should be used to address the overfitting problem

of NCL. To avoid overfitting, section 4.2 proposes the regularized negative correla-

tion learning (RNCL) algorithm. In section 4.3, we formulate RNCL by Bayesian

technique and propose an algorithm to infer the regularization parameters based

on Bayesian inference. The numerical results on synthetic data as well as real-

world data sets are presented in section 4.4. Finally, section 4.5 summarizes the

chapter.

4.1 Introduction

Negative Correlation Learning (NCL) (Liu and Yao, 1999a,b; Liu et al., 2000)

has shown a number of empirical applications (Chen and Yao, 2007a; Islam et al.,

2003; Liu et al., 2000; Yao et al., 2001). NCL introduces a correlation penalty

53

4.1 Introduction

term into the cost function of each individual network so that each neural net-

work minimizes its MSE error together with the correlation with other ensemble

members.

According to the definition of NCL, it seems that the correlation term in the

cost function acts as the regularization term. However, we observe that the train-

ing of NCL with the penalty coefficient λ setting to 1 corresponds to treating the

entire ensemble as a single estimator and considering only the empirical training

error without regularization. In this case, NCL only reduces the empirical MSE

of the ensemble, but it pays less attention to regularizing the complexity of the

ensemble and NCL is prone to overfitting the noise in the training set. Similarly,

setting a zero or small positive λ corresponds to independently training these

estimators without regularization and in this case, NCL is prone to overfitting as

well.

NCL can use the penalty coefficient to explicitly alter the emphasis on the

individual MSE and correlation portions of the ensemble and thus alleviate the

overfitting problem to some extent. However, NCL could not totally overcome the

overfitting problem by tuning this parameter without regularization, especially

when dealing with data with non-trivial noise, which will be evidenced by the

empirical work in this paper.

The chapter analyzes the overfitting problem of NCL and proposes the the-

oretical and empirical evidences. In order to solve this problem, this chapter

proposes regularized negative correlation learning (RNCL) algorithm which in-

corporates an additional regularization term for the ensemble. Then we describe

that the regularization term for the ensemble can be decomposed into different

parts for each network. In this paper, we describe how the training algorithm of

NCL is equivalent to training a single learning machine and how RNCL controls

the complexity by adding a regularization term. The regularization parameter is

used to control the tradeoff between MSE and regularization and this parameter

is crucial to ensemble’s generalization ability.

We provide a Bayesian interpretation for RNCL, and propose an automatic

algorithm for parameters optimization based on Bayesian inference. The RNCL

algorithm is a generic ensemble algorithm, which is applicable to any nonlin-

ear regression estimator minimizing the MSE, for example multilayer perceptron

54

4.2 Regularized Negative Correlation Learning

(MLP) and radial basis function (RBF) neural network. In this chapter we show

an example using MLP as the base estimators.

4.2 Regularized Negative Correlation Learning

This section describes negative correlation learning and its potential problem. In

order to address the problem, regularized negative correlation learning (RNCL)

is proposed in this section.

4.2.1 Negative Correlation Learning

Negative Correlation Learning (NCL) introduces a correlation penalty term into

the error function of each individual network in the ensemble so that all the

networks can be trained interactively on the same training data set.

Given the training set {xn, yn}N
n=1, NCL combines M neural networks fi(x)

to constitute the ensemble.

fens(xn) =
1

M

M∑
i=1

fi(xn). (4.1)

To train network fi, the cost function ei of network i is defined by

ei =
N∑

n=1

(fi(xn)− yn)2 + λpi, (4.2)

where λ is a weighting parameter on the penalty term pi:

pi =
N∑

n=1

{
(fi(xn)− fens(xn))

∑

j 6=i

(fj(xn)− fens(xn))

}

= −
N∑

n=1

(fi(xn)− fens(xn))2 . (4.3)

The first term in the right-hand side of (4.2) is the empirical training error of

network i. The second term pi is a correlation penalty function. The purpose of

minimizing pi is to negatively correlate each network’s error with errors for the

rest of the ensemble. The λ parameter controls a trade-off between the training

55

4.2 Regularized Negative Correlation Learning

error term and the penalty term. With λ = 0, we would have an ensemble with

each network training with plain back propagation, exactly equivalent to training

a set of networks independently of one another. If λ is increased, more and more

emphasis would be placed on minimizing the penalty.

Based on the individual error function, equation (4.2), the error function of

the ensemble can be obtained by averaging these networks’ errors ei. With λ = 1,

the average error E of all the networks’ ei is obtained as follows:

E =
1

M

M∑
i=1

ei =
1

M

N∑
n=1

M∑
i=1

{
(fi(xn)− yn)2 − (fi(xn)− fens(xn))2}

=
N∑

n=1

(fens(xn)− yn)2. (4.4)

From equation (4.4), NCL is equivalent to training a single estimator fens(xn)

instead of training each individual network separately. It is also observed that

NCL only minimizes the empirical training MSE error
∑N

n=1(fens(xn)− yn)2 but

does not regularize the complexity of the ensemble. As discussed in section 1.1,

the learning algorithm that only minimizes the empirical MSE error is prone to

overfitting the noise. In section 4.4, we also present the empirical evidences that

NCL is prune to overfitting.

In order to improve the generalization ability of NCL, in the next subsection

we propose regularized negative correlation learning (RNCL).

4.2.2 Regularized Negative Correlation Learning

Following the traditional strategy to avoid overfitting, a regularization term is

incorporated into the error function of the ensemble:

Eens =
N∑

n=1

(fens(xn)− yn)2 +
M∑
i=1

αiw
T
i wi, (4.5)

where wi = (wi,1, · · · , wi,ni
)T is the weight vector of neural network i and ni is

the total number of weights in network i. This regularization term
∑M

i=1 αiw
T
i wi

is the weight decay (Krogh and Hertz, 1992) term for the ensemble.

Weight decay adds a penalty term to the error function. The usual penalty is

the sum of squared weights times a decay constant. In a linear model, this form

56

4.3 Bayesian Formulation and Regularized Parameter Optimization

of weight decay is equivalent to ridge regression (Hoerl and Kennard, 2000). The

weight decay penalty term causes the weights to converge to smaller absolute

values than they otherwise would. The regularization term does help the gener-

alization ability of neural network because large weights can hurt generalization

in two different ways: a) Excessively large weights leading to hidden units can

cause the output function to be too rough, possibly with near discontinuities; Ex-

cessively large weights leading to output units can cause wild outputs far beyond

the range of the data if the output activation function is not bounded to the same

range as the data. b) Large weights can cause excessive variance of the output

(Geman et al., 1992).

In order to train each neural network with its regularization, we decompose

the error function of ensemble into M parts, each part for one network. The error

function for network i can be obtained as follows:

ei =
N∑

n=1

(fi(xn)− yn)2 −
N∑

n=1

(fi(xn)− fens(xn))2 + αiw
T
i wi. (4.6)

Comparing this error function with the error function of NCL, equation (4.2),

RNCL imposes a regularization term on every individual neural network and

RNCL optimizes the regularization parameter αi instead of the correlation pa-

rameter λ.

According to equations (4.5) and (4.6), RNCL is implemented by decomposing

the error function of ensemble into a set of sub-functions, each sub-function for

one network. RNCL provides one way to decompose the learning task of the

ensemble with regularization into a number of subtasks for individual networks.

The algorithm can be summarized in Figure 4.1.

We use scaled conjugate gradient (SCG) (Møller, 1993b) algorithm for fast

RNCL training.

4.3 Bayesian Formulation and Regularized Pa-

rameter Optimization

This section formulates RNCL by Bayesian technique and proposes an algorithm

for parameter optimization by Bayesian inference. We separate the section into

57

4.3 Bayesian Formulation and Regularized Parameter Optimization

Algorithm Regularized Negative Correlation Learning (RNCL)
Input: the training set D = {xn, yn}

N
n=1

, integer M specifying size of en-
semble, the initial regularization parameter αi, i = 1, · · · , M and the learning
rate η.

1. For the training set

• Calculate fens(xn) = 1

M

∑M

i=1
fi(xn)

• For each network from i = 1 to M do: for each weight wi,j in network
i, perform a desired number of updates,

ei =

N
∑

n=1

(fi(xn) − yn)2 −

N
∑

n=1

(fi(xn) − fens(xn))2 + αiw
T
i wi

∂ei

∂wi,j

= 2

N
∑

n=1

(fi(xn) − yn)
∂fi

∂wi,j

− 2

N
∑

n=1

(fi(xn) − fens(xn))(1 −
1

M
)

∂fi

∂wi,j

+ 2αiwi,j

∆wi,j = −2η

{

N
∑

n=1

(fi(xn) − yn)
∂fi

∂wi,j

−
N

∑

n=1

(fi(xn) − fens(xn))(1 −
1

M
)

∂fi

∂wi,j

+ αiwi,j

}

2. Parameter Optimization by Bayesian Inference.

3. Repeat from step 1 for a desired number of iterations.

Output: RNCL ensemble

f(x) =
1

M

∑

i

fi(x).

Figure 4.1: Regularized Negative Correlation Learning Algorithm

two parts: the first part describes the model specification and the probabilistic

formulation of RNCL. The second part describes the procedures to infer the

regularization parameters.

4.3.1 Bayesian Formulation of RNCL

Given the training set D = {xn, yn}N
n=1, we follow the standard probabilistic

formulation and assume that the targets are sampled from the model with additive

noise:

yn = fens(xn) + en =
1

M

M∑
i=1

fi(xn) + en, (4.7)

where en is an independent sample from some noise process which is further

assumed to be zero-mean Gaussian with variance β−1.

58

4.3 Bayesian Formulation and Regularized Parameter Optimization

According to the Bayesian theorem, given the hyperparameters µ = (µ1, · · · , µM)1

and β, we obtain the weight parameters w = (wT
1 , · · · ,wT

M)T by maximizing the

posterior P (w | D).

P (w | D) =
P (D | w,β)P (w | µ)

P (D | µ, β)
, (4.8)

where the probability P (D | µ, β) is a normalization factor which is independent

of w.

The weight vector of each network wi is assumed to have a Gaussian distri-

bution with mean zero and variance µ−1
i . The prior of the weight vector w is

obtained as follows.

P (w | µ) =
∏

M
i=1

(µi

2π

)ni/2

exp

(
−1

2
µiw

T
i wi

)
, (4.9)

where ni is the total number of weights in network i.

Since noise en follows a Gaussian distribution with mean zero and variance

β−1, the likelihood P (D | w,β) can be written as

P (D | w,β) =
∏

N
n=1

(
β

2π

)1/2

exp

(
−β

2
e2

n

)
. (4.10)

We omit all the constants and the normalization factor, and apply Bayesian

theorem:

P (w | D) ∝ exp

(
−β

2

N∑
n=1

e2
n

)
· exp

(
−

M∑
i=1

µi

2
wT

i wi

)
. (4.11)

Taking the negative logarithm, the maximum of the posterior w is obtained

as the solution to the following optimization problem:

min J1(w) =
1

2
β

N∑
n=1

e2
n +

1

2

M∑
i=1

µiw
T
i wi. (4.12)

The posterior P (w | D) can also be approximated by Gaussian distribution,

the details are presented in the following.

1µi, i = 1, · · · ,M is the inverse variance of the Gaussian distribution of weights for network
i.

59

4.3 Bayesian Formulation and Regularized Parameter Optimization

Considering the normalization term, the posterior of weigh vector w is de-

scribed as

P (w | D) =
exp(−J1(w))∫
exp(−J1(w))dw

. (4.13)

In order to obtain the result, the Taylor expansion of J1(w) is employed at

point wMP .

J1(w) ≈ J1(wMP) +
1

2
(w −wMP)T A(w −wMP), (4.14)

where wMP is the most probable weight vector, and A is the Hessian matrix of

J1(w).

A = ∇∇J1 = ∇∇
(

M∑
i=1

µi

2
wT

i wi +
β

2

N∑
n=1

e2
n

)
= diag(Λ) + β∇∇

(
1

2

N∑
n=1

e2
n

)
,

(4.15)

where Λ = (µ
(1)
1 , · · ·µ(n1)

1 , µ
(1)
2 , · · ·µ(n2)

2 , · · · , µ
(1)
M , · · ·µ(nM)

M)T and the superscript

indicates the number of repetitions of µi.

The integral can be computed as below:

∫
exp(−J1(w))dw =

∫
exp(−J1(wMP)− 1

2
(w −wMP)T A(w −wMP))dw

= exp(−J1(wMP)) · (2π)W/2 det A− 1
2 . (4.16)

Based on these equations, the approximated posterior of w is obtained as

follows

P (w | D) =
exp(−J1(w))∫
exp(−J1(w))dw

=
exp(−1

2
(w −wMP)T A(w −wMP))

(2π)W/2|A|− 1
2

, (4.17)

where A is the Hessian matrix of the cost function J1, W is the total number

of weights in the ensemble and the subscript MP indicates the most probable

values.

The error function J1 is made up of two terms. The first, 1
2
β

∑N
n=1 e2

n, is the

sum of the empirical training error. The second, 1
2

∑M
i=1 µiw

T
i wi, is the regular-

ization term, measuring the total amount of square of weights.

Comparing equation (4.12) with (4.5), RNCL is equivalent to maximization

of the posterior under Bayesian framework. The likelihood P (D | w,β) stands

60

4.3 Bayesian Formulation and Regularized Parameter Optimization

for the empirical training error term and the prior of the weight vector P (w | µ)

is equivalent to the regularization term.

Based on the above analysis, RNCL is an application of Bayesian framework

in ensemble system. Instead of simultaneously optimizing the weigh vector of en-

semble, RNCL manages to train the entire ensemble by decomposing the job into

a set of subtasks, which significantly reduces computational complexity compared

with Bayesian framework.

Take a RBF network ensemble with linear outputs as an example. If we treat

the ensemble as a single estimator, the training of the entire ensemble involves

inversion of a matrix, whose computational complexity is O(W 3) ∼ O(M3n3
i),

where W =
∑M

i=1 ni (ni is the number of weights in network i and M is the

size of ensemble) is the total number of weights in ensemble. By decomposing

the operation into a set of sub-operations, the total computational complexity

is reduced to O(Mn3
i). As M , the size of ensemble, is often set to be equal or

greater than 25, the reduction of computational complexity is non-trivial.

Although there are two types of parameters: µi and β , the minimization of

J1 only depends on the ratio αi = µi/β. These ratios, controlling the trade-off

between the empirical training error and the regularization term, are crucial to

the performance of ensemble. The next subsection presents a Bayesian approach

to automatically optimize these parameters.

4.3.2 Inference of Regularization Parameters

In order to find the optimal parameters µ and β, we need to maximize the pos-

terior of P (µ, β | D).

According to Bayesian rule, the posteriors of µ and β are obtained by

P (µ, β | D) =
P (D | µ, β)P (µ, β)

P (D)
∝ P (D | µ, β), (4.18)

where a flat prior is assumed on the hyperparameters µ and β. According to equa-

tions (4.8) and (4.17), the marginal likelihood can be obtained in the following

61

4.3 Bayesian Formulation and Regularized Parameter Optimization

way (Gestel et al., 2002).

P (D | µ, β) =
P (D | w, β)P (w | µ)

P (w | D)

=
(2π)W/2|A|− 1

2

∏
M
i=1

(
µi

2π

)ni/2 (
β
2π

)N/2
exp (−J1(w))

exp(−1
2
(w −wMP)T A(w −wMP))

. (4.19)

Since J1(w) ≈ J1(wMP) + 1
2
(w −wMP)T A(w −wMP) and W =

∑
ni is the

total number of weights in the ensemble,

P (D | µ, β) = (2π)W/2|A|− 1
2

∏
M
i=1

(µi

2π

)ni/2
(

β

2π

)N/2

exp (−J1(wMP))

= (
1

2π
)N/2

√∏M
i=1 µni

i βN

det A
exp(−J1(wMP)).

∝
√∏M

i=1 µni
i βN

det A
exp(−J1(wMP)). (4.20)

In order to maximize the probability P (D | µ, β), negative logarithm is ap-

plied:

J2 =
1

2

M∑
i=1

µiw
T
i,MPwi,MP +

1

2
β

N∑
n=1

e2
n,MP−

1

2

M∑
i=1

ni log µi− 1

2
N log β+

1

2
log det A,

(4.21)

where the subscript MP indicates the most probable value.

Setting the gradient to zero and we can get the optimal αi = µi/β. Please

refer to appendix B for detail.

αnew
i =

∑N
n=1 e2

n,MP

wT
i,MPwi,MP

(
ni −

∑
j∈ni

αi

λj+αi

)
(
N −∑W

j=1
λj

λj+α̂j

) , (4.22)

where α̂ = [α
(1)
1 , · · ·α(n1)

1 , · · · , α
(1)
M , · · ·α(nM)

M]T and the superscript indicates the

number of repetitions for αi. j ∈ ni indicates the range
(∑i−1

t=1 nt + 1, · · · ,
∑i

t=1 nt

)
,

and λj is the eigenvalue of the Hessian matrix ∇∇
(

1
2

∑N
n=1 e2

n

)
.

When the eigenvalue decomposition λj is calculated, the update rule of αnew
i

involves only vector products that can be evaluated very quickly. In order to

62

4.4 Numerical Experiments

reduce the computational complexity for large data sets, one can choose to cal-

culate only the largest eigenvalues using the expectation maximization approach

(Rosipal and Girolami, 2001).

The learning algorithm thus proceeds by repeated application of (4.22) (step

4 in Figure 4.1), concurrent with training RNCL, equivalent to updating of the

posterior statistics from (4.11), until some suitable convergence criteria have been

satisfied.

4.4 Numerical Experiments

In this section we present the numerical experiments of RNCL. Firstly, we present

experimental results of RNCL on two synthetic regression problems and four

synthetic classification problems in order to understand the behavior of the al-

gorithm. We also design four experiments (two regressions and two classifica-

tions) with different noise levels to study the characteristics of RNCL and NCL

with noise data. Secondly, we carry out extensive experiments on 8 benchmark

regression data sets and 13 benchmark classification data sets to evaluate the

performance of RNCL, NCL and Bagging.

4.4.1 Experimental Setup

In the experiments, three-layer feed-forward multi-layer perceptions (MLPs) are

used as the base learners. The number of hidden nodes is randomly selected

but restricted in the range 3 to 15. The initial connection weights of individ-

ual network are randomly chosen. We employ scaled conjugate gradient (SCG)

algorithm to train MLP, NCL and RNCL. Since negative correlation learning

algorithm uses MSE and correlation to train ensemble, it is not necessary to

employ a large ensemble. We use 25 MLPs to constitute the ensemble of NCL

and RNCL. For Bagging, we employ 100 MLPs to constitute the ensemble. The

input attributes of data sets are scaled to mean zero and unit variance as the

preprocessing procedure.

63

4.4 Numerical Experiments

−8 −6 −4 −2 0 2 4 6 8
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Sinc Noise Free

−8 −6 −4 −2 0 2 4 6 8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) Sinc with Gaussian noise (mean 0,
variance 0.2)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.005

0.01

0.015

0.02

0.025

0.03

(c) Sinc with Different Noise Levels

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

(d) Friedman Test with Different Noise Lev-
els

Figure 4.2: Comparison of NCL and RNCL on regression data sets: Sinc and

Friedman test. In Figure 4.2(a) and 4.2(b), the lines in green (wide zigzag), black

(dashed) and red (solid) are obtained by RNCL, NCL and the true function,

respectively. Figure 4.2(c) and 4.2(d) show mean square error (MSE) of RNCL

(red solid) and NCL (blue dashed) on Sinc and Friedman with different noise

levels. Results are based on 100 runs.

64

4.4 Numerical Experiments

4.4.2 Synthetic Experiments

As the first experiment, we compare RNCL and NCL algorithms on two synthetic

regression data sets: Sinc and Friedman test. Figure 4.2(a) and 4.2(b) show the

output of RNCL and NCL on sinc function with different noise levels. In the

noise-free case, NCL perfectly approximates the actual function, while RNCL

does not approximate the function very well near the tail. However, when the

noise level increases, NCL, only minimizing the empirical error, overfits the noise

in the training set while RNCL is more robust with respect to noise than NCL,

refer to Figure 4.2(b).

In order to evaluate RNCL and NCL on training data with different noise

levels, we add zero mean and different variance Gaussian noise to sinc and Fried-

man test problems. Figures 4.2(c) and 4.2(d) illustrate the average results of 100

runs. Since the standard deviations of the targets: sinc and Friedman test, are

different, the range of noise levels are different in Figure 4.2(c) and 4.2(d).

For sinc data set, when the noise level (variance) is lower than 0.24, NCL

outperforms RNCL. When the noise level is greater than 0.24, MSE of RNCL

increases slower than that of NCL as the noise increases. For Friedman problem,

RNCL outperforms NCL all the time and the difference between RNCL and NCL

becomes greater when noise level passes 2.5. From these figures, RNCL is more

robust with respect to noise.

In the following, we demonstrate the application of RNCL on classification

problems. Firstly, we apply RNCL and NCL on four synthetic data in two di-

mensions in order to illustrate graphically the decision boundary.

These four data sets are (1) synth is generated from mixtures of two Gaussians

by (Ripley, 1996). (2) Overlap comes from two Gaussian distributions with equal

covariance, and it is expected to be separated by a linear plane. (3) Bumpy

comes from two equal Gaussians but by being rotated by 90 degrees. Quadratic

boundaries are required. (4) Relevance is a case where only one dimension of the

data is relevant to separating the data.

In Figure 4.3, we observe a similar performance of RNCL and NCL in the case

of Relevance. Since the data set is noise-free, both RNCL and NCL successfully

separate the two classes. The situation is a little similar in the case of Overlap.

65

4.4 Numerical Experiments

−1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Synth

−3 −2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Overlap

−2 −1 0 1 2

−2

−1

0

1

2

3

(c) Bumpy

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(d) Relevance

Figure 4.3: Comparison of RNCL and NCL on four synthetic classification data

sets. Two classes are shown as crosses and dots. The separating lines were

obtained by projecting test data over a grid. The lines in green (light) and black

(dark) are obtained by RNCL and NCL, respectively.

66

4.4 Numerical Experiments

RNCL produces a linear boundary according to the expectation while NCL con-

centrates on three overlapping points and generates a linear plane with a corner.

Although the training error of NCL is smaller, it does not generalize well for this

data set.

RNCL gives more accurate results in the other cases. In the cases of Synth

and Bumpy, RNCL produces smooth boundary and disregards the outliers in the

training points. In the case of Bumpy, the noise level is great because of these

overlapping points. NCL does not generalize and produces the twisty bound-

ary. Although the boundary line of NCL for the case of Synth seems smooth, it

separates the decision boundary into two parts and disregards the future points

between the two boundaries.

To compare RNCL and NCL on noisy classification problems, we conduct

similar noise experiments as the regression problems. In the experiments, we

select two data sets: synth and banana1.

To change the noise level, we randomly select different percentages of data

points and reverse their labels. We run 100 times and report the average results

in Figure 4.4. Figures 4.4(a) and 4.4(b) visualize the decision boundaries of RNCL

and NCL with 20% noise points.

Although the noise level is high, RNCL produces smooth boundary. NCL

tries to minimize the training error and it does not generalize well. We also plot

the curve, Figure 4.4(c) and 4.4(d), of the error rate vs. the noise level for these

data sets. In these two figures, RNCL is a little better in the beginning, but as

the noise level increases, RNCL significantly outperforms NCL.

The results of RNCL are promising on these regression and classification prob-

lems. Based on the results and analysis, RNCL inherits the advantages of NCL

and can achieve a good performance with a small ensemble. The regularization

term does work in RNCL and improves its ability against noise, which is espe-

cially important in practice since most of the actual data are contaminated by

noise. After the analysis with synthetic data sets, the next subsection presents

the results for the real-world benchmark problems.

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

67

4.4 Numerical Experiments

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Synth with 20% noise

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

(b) Banana with 20% noise

0 0.05 0.1 0.15 0.2 0.25 0.3

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

(c) Synth with different noise Levels

0 0.05 0.1 0.15 0.2 0.25 0.3

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

(d) Banana with different noise Levels

Figure 4.4: Comparison of RNCL and NCL on two classification data sets. Two

classes are shown as crosses and dots. The separating lines are obtained by pro-

jecting test data over a grid. In Figure 4.4(a) and 4.4(b), the decision boundary

in green (light) and black (dark) are obtained by RNCL and NCL, respectively.

The randomly-selected noise points are marked with a circle. Figure 4.4(c) and

4.4(d) show the error rate of RNCL (red solid) and NCL (blue dashed) vs. the

noise levels on Synth and banana data sets. The results are based on 100 runs.

68

4.4 Numerical Experiments

Table 4.1: Summary of Regression Data Sets

Data Sets Function Variable Training Points Test Points

Mexican Hat y = sinc|x| = sin |x|
|x| x ∼ U [−2π, 2π] 250 1000

Friedman 1 y = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 xi ∼ U [0, 1] 250 1000

Gabor y = 1
2
π exp[−2(x2

1 + x2
2)] cos[2π(x1 + x2)] xi ∼ U [0, 1] 250 1000

Multi y = 0.79 + 1.27x1x2 + 1.56x1x4 + 3.42x2x5 + 2.06x3x4x5 xi ∼ U [0, 1] 250 1000

Plane y = 0.6x1 + 0.3x2 xi ∼ U [0, 1] 250 1000

Polynomial y = 1 + 2x + 3x2 + 4x3 + 5x4 x ∼ U [0, 1] 250 1000

Sinc y = sin x
x

x ∼ U [0, 2π] 250 1000

Boston House — - 400 106

4.4.3 Benchmark Results

In the benchmark experiments, we evaluate RNCL, NCL and Bagging with 8

regression benchmark problems and 13 classification benchmark problems. The

information on the data sets used for regression is tabulated in Table 4.1. The

Mexican hat was used by Weston et al. (Weston et al., 1996) in investigating

the performance of support vector machines. Friedman 1 was used by Breiman

(Breiman, 1996a) in testing the performance of Bagging. Gabor, Multi, and Sinc

were used by Hansen (Hansen, 2000) in comparing several ensemble approaches.

Plane was used by Ridgeway et al. (Ridgeway et al., 1999) in evaluating the

performance of boosted naive Bayesian regressors. The constraints of the vari-

ables are also shown in Table 4.1, where U [x, y] means a uniform distribution

over the interval determined by x and y. Note that in our experiments additive

zero-mean Gaussian noise, whose variance is one-third of the standard deviation

of the target y(x), is generated. The Boston House data set is obtained from UCI

machine learning repository (Asuncion and Newman, 2007). In the 100 runs, we

randomly select 400 data points for the training set and the rest 106 points are

used for testing.

The classification data sets used in this chapter have been summarized in

Table 4.2. These data sets have been preprocessed and organized by Rätsch et

al.1. These data sets include one synthetic set (banana) along with 12 other

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

69

4.4 Numerical Experiments

Table 4.2: Summary of Classification Data Sets.

Data Sets Training Points Test Points Input Dimensions

Banana 400 4900 2

Cancer 200 77 9

Diabetics 468 300 8

Solar 666 400 9

German 700 300 20

Heart 170 100 13

Image 1300 1010 18

Ringnorm 400 7000 20

Splice 1000 2175 60

Thyroid 140 75 5

Titanic 150 2051 3

Twonorm 400 7000 20

Waveform 400 4600 21

Table 4.3: Comparison of NCL, Bagging and RNCL on 8 Regression Data Sets,

by MSE (standard deviation) and t test p value between Bagging vs. RNCL and

NCL vs. RNCL. The p value with a star means the test is significant. These

results are averages of 100 runs.

Data Sets Bagging P value NCL P value RNCL

Mexican Hat 0.0064(0.0018) 0.07 0.0069(0.0013) 0.00∗ 0.0060(0.0017)
Friedman 1.75(0.34) 0.00∗ 1.05(0.24) 0.00∗ 0.82(0.21)

Gabor 0.020(0.004) 0.00∗ 0.015(0.002) 0.00∗ 0.009(0.004)
Multi 0.038(0.010) 0.05 0.105(0.030) 0.00∗ 0.035(0.009)
Plane 0.83e-4(0.48e-4) 0.00∗ 1.64e-4(0.52e-4) 0.11 1.42e-4(0.48e-4)

Polynomial 0.159(0.075) 0.00∗ 0.128(0.044) 0.00∗ 0.076(0.023)
Sinc 0.0067(0.0018) 0.07 0.0070(0.0015) 0.00∗ 0.0066(0.0016)

Boston House 13.41(4.71) 0.02∗ 12.56(3.62) 0.47 12.16(3.51)

70

4.4 Numerical Experiments

Table 4.4: Comparison of NCL, Bagging and RNCL on 13 benchmark Data Sets,

by % error (standard deviation) and t test p value between Bagging vs. RNCL

and NCL vs. RNCL. The p value with a star means the test is significant. These

results are averages of 100 runs.

Error Banana Cancer Diabetics Solar German Heart

Bagging 11.41(0.78) 28.12(4.87) 24.23(1.78) 34.97(1.51) 24.97(2.10) 18.71(3.10)

Bagging vs. RNCL 0.00∗ 0.16 0.00∗ 0.00∗ 0.10 0.00∗

NCL 11.09(0.68) 28.42(4.61) 24.57(1.96) 35.42(1.79) 25.88(2.19) 18.28(3.68)

Bagging vs. RNCL 0.01∗ 0.21 0.03∗ 0.00∗ 0.00∗ 0.00∗

RNCL 10.42(0.65) 26.31(4.77) 23.16(1.62) 33.86(1.71) 24.01(2.23) 16.32(3.11)

Error Image Ringnorm Splice Thyroid Titanic Twonorm Waveform

Bagging 3.34(0.69) 1.84(0.31) 11.62(0.62) 4.48(2.36) 23.98(1.37) 3.03(0.30) 11.68(0.62)

Bagging vs. RNCL 0.00∗ 0.05 0.00∗ 0.31 0.15 0.00∗ 0.00∗

NCL 2.65(0.46) 1.64(0.24) 11.23(0.72) 4.45(2.37) 22.71(1.32) 2.61(0.26) 12.30(0.76)

Bagging vs. RNCL 0.06 0.01∗ 0.03∗ 0.34 0.89 0.13 0.00∗

RNCL 2.79(0.68) 1.79(0.19) 10.53(0.64) 4.03(2.11) 22.42(1.03) 2.79(0.21) 9.91(0.48)

real-world data sets coming from the UCI (Asuncion and Newman, 2007) and

DELVE1 repositories. The major difference between the original and Rätsch’s

data is that Rätsch converted every problem into binary classes and randomly

partitioned every data set into 100 training and testing folds (Splice and Image

have only 20 folds in the Rätsch’s implementation and we generate additional

80 folds by random sampling to make the experiments consistent). In addition,

every instance is normalized dimension-wise to have zero mean and unit standard

deviation.

Table 4.3 reports the performance of these algorithms on the 8 benchmark

regression data sets. According to the table, RNCL performs excellently in these

data sets. For example, RNCL outperforms the other two methods in 7 out of 8

data sets, in which 6 wins are significant against NCL and 4 wins are significant

against Bagging.

The performance of RNCL, NCL and Bagging on classification problems have

been tabulated in Table 4.4. Based on the table, RNCL performs very well since

RNCL outperforms all the other methods in 11 out of 13 data sets, comes second

1http://www.cs.toronto.edu/~delve/data/datasets.html

71

4.4 Numerical Experiments

Table 4.5: Running Time (in seconds) of RNCL and NCL on Regression Data

Sets. Results are averaged over 100 runs.

Data Sets Mexican Hat Friedman Gabor Multi Plane Polynomial Sinc House

NCL 6.4 16.1 8.4 21.2 3.3 23.6 6.2 28.6

RNCL 19.6 143.2 30.8 113.2 7.9 62.3 20.3 269.5

Table 4.6: Running Time (in seconds) of RNCL and NCL on Classification Data

Sets. Results are averaged over 100 runs.

Error Banana Cancer Diabetics Solar German Heart
NCL 3.6 8.2 4.6 12.1 21.6 1.6

RNCL 12.1 29.4 17.6 36.0 168.5 16.7
Error Image Ringnorm Splice Thyroid Titanic Twonorm Waveform
NCL 21.3 4.8 43.6 3.1 0.8 4.0 4.2

RNCL 277.2 20.7 426.7 8.4 2.6 34.8 41.7

in 2 cases. In the results, NCL outperforms RNCL in the cases: Ringnorm and

Twonorm, which are both synthetic data with little noise (see the lower error

rate). This observation also validates that NCL achieves better results when

noise is small and RNCL is more robust with respect to noise than NCL.

4.4.4 Computational Complexity and Running Time

Based on the algorithm in Figure 4.1, RNCL consists of two main parts: neural

network training using regularized negative correlation learning and Bayesian

parameter optimization.

In the first part, for each component neural network, totally M neural net-

works in the ensemble, one needs to train the network with an amount of epochs.

Since the scaled conjugate gradient algorithm is employed in RNCL, the training

can be evaluated quickly.

72

4.4 Numerical Experiments

Table 4.7: Comparison of RNCL and NCL with equal time on four regression

problems and four classification problems. NCL is run 10 times in 8 experiments

with randomly selected regularization parameters between 0 and 1. The first row

reports the best performance of NCL in the 10 runs. The results are the average

results of 20 runs.

Data Sets Mexican Hat Friedman Gabor House Banana Cancer Diabetics Solar

(Best) NCL 0.0064 0.93 0.013 12.33 10.86 27.11 23.32 34.16

RNCL 0.0060 0.82 0.009 12.16 10.42 26.31 23.16 33.86

In the second part, the major running time is consumed in the calculation

of Hessian matrix and eigen-decomposition of the Hessian matrix. This chap-

ter employs the fast multiplication by the Hessian (Møller, 1993a; Pearlmutter,

1994) method to estimate the Hessian matrix. Although the eigenvalues have

to be calculated only once, their calculation in the eigenvalue problem becomes

computationally expensive for large data sets. In this case, one can choose to cal-

culate only the largest eigenvalues using an expectation maximization approach

(Rosipal and Girolami, 2001).

If the Hessian matrix is not so large, most of the computation time will be

consumed in the first part. RNCL is an iterative algorithm and in most of time it

will converge in less than 8 iterations. Therefore, the computation time of RNCL

is 5-10 times of NCL. In Tables 4.5 and 4.6, we show the average running time

of RNCL and NCL over 100 runs. The computational environment is Windows

XP with Intel Core 2 Duo 1.66G CPU and 2G RAM. These algorithms including

RNCL and NCL are programmed in C++.

Based on these Tables, the running time of RNCL is 5-10 times of that of

NCL. In order to fairly compare RNCL with NCL, the following experiments

are carried out. We run NCL 10 times on 8 data sets with randomly selected

regularization parameter in the range of [0, 1] and let the total time of NCL

equals to the running time or RNCL.

Table 4.7 reports the best performance of NCL in 10 runs on 8 data sets

based on the average results of 20 runs. From the table, we confirm that even

73

4.5 Summary

given the same amount of time to NCL, NCL cannot pick the best regularization

parameter as Bayesian inference does in RNCL. The Bayesian parameter inference

does improve the performance of NCL.

4.5 Summary

This chapter analyzes negative correlation learning and theoretically and empir-

ically demonstrates that NCL is prone to overfitting the noise, which is the first

contribution of the chapter.

To overcome the shortcoming of NCL, we propose the regularized negative cor-

relation learning (RNCL) which incorporates an additional regularization term

for NCL. RNCL decomposes the ensemble’s training objectives, including MSE

and regularization, into a set of sub-objectives, and each sub-objective is imple-

mented by one individual neural network. Moreover, we formulate RNCL by

Bayesian technique and propose an algorithm to optimize the regularization coef-

ficients by Bayesian inference. The RNCL and the Bayesian inference algorithm

constitute the second contribution of the chapter.

Several experiments have been carried out to evaluate RNCL. The experiments

on two synthetic regression problems and four synthetic classification problems

demonstrate the behavior of RNCL and NCL. The following experiments on two

regression and two classification problems with different noise demonstrate that

RNCL achieves better performance than NCL, especially when the noise is non-

trivial in data sets. Secondly, we carry out extensive experiments on 8 benchmark

regression and 13 benchmark classification data sets to evaluate RNCL, NCL and

Bagging. RNCL has shown an excellent performance on these data sets.

This chapter analyzes the computational complexity of RNCL and carries out

experiments to demonstrate that even NCL is given the same time as RNCL, NCL

could not achieve the same performance as RNCL. The noise-robustness charac-

teristic of RNCL is especially important when the training data are contaminated

with noise.

In general, RNCL is a generic ensemble algorithm, which is best viewed as a

framework, rather than an algorithm itself.

74

Chapter 5

Multiobjective Regularized

Negative Correlation Learning

In section 4, we provided the theoretical and empirical evidences to explain that

NCL is prone to overfitting the noise, and we proposed regularized negative

correlation learning (RNCL), which was implemented by gradient descent with

Bayesian inference. As discussed in chapter 4, RNCL was implemented by mini-

mizing the three terms with weighting coefficients. Inspired by this, this chapter

proposes multiobjective regularized negative correlation learning (MRNCL) al-

gorithm, where the three terms of RNCL are treated as three objectives and

multiobjective algorithm is used to search the trade-off among the three objec-

tives. The rest of this chapter is organized as follows. After the introduction

in section 5.1, the proposed algorithm is described in section 5.2. Experimental

results and discussions are presented in section 5.3. Finally, section 5.4 concludes

the chapter.

5.1 Introduction

Most ensemble learning algorithms train the base learners independently or se-

quentially, so the advantages of interaction and cooperation among the base

learner are not exploited. Liu and Yao (Liu and Yao, 1999a,b; Liu et al., 2000)

proposed negative correlation learning (NCL) and showed that ensemble meth-

ods benefits from considering the cooperation among the base learners. This

75

5.1 Introduction

approach opens a new research area where the design and training of the base

learners can be interdependent.

Although NCL performs well for a broad range of practical applications by

considering the cooperation in the ensemble, it is not regularized, which leads

to overfitting, and the weighting coefficient, which controls the trade-off between

empirical error and correlation, needs to be tuned.

In order to address these problems, we proposed regularized negative correla-

tion learning (RNCL) with an algorithm to optimize the regularization parameter

by Bayesian inference in chapter 4, where RNCL was implemented by minimizing

the three terms with weighting coefficients. Inspired by this, RNCL can be imple-

mented by a multiobjective algorithm, where each minimization term is treated

as an objective.

The trade-off among the three terms is crucial for the generalization perfor-

mance of ensemble. Poor generalization occurs if the trade-off is unbalanced. For

example, a small regularization term may lead to overfitting with noise data sets

and a large regularization may seriously bias the learning outcome. The situation

is applicable to the correlation term as well.

One approach to balance the trade-off is to assign coefficient parameters to

these terms and choose the appropriate coefficients. The usual way to choose

the coefficients is to train several networks with different values of these coef-

ficients and estimate the generalization error for each network and then choose

the coefficients that minimize the estimated generalization error. However, the

computation of this approach is extremely expensive.

Evolutionary multiobjective algorithms are well suited to search the optimal

trade-off among different objectives by parallelizing the searching using a pop-

ulation of networks and biasing toward the Pareto front and at the same time

maintaining population diversity to obtain as many diverse solutions as possible.

These properties are especially important in ensemble design.

This chapter proposes multiobjective regularized negative correlation learn-

ing (MRNCL) algorithm, which implements RNCL algorithm by an evolutionary

multiobjective algorithm. MRNCL involves minimization of the three terms:

empirical training error term, correlation penalty term and the regularization

term. MRNCL algorithm not only addresses the issues concerned with NCL,

76

5.2 Multiobjective Regularized Negative Correlation Learning

but also provides the following advantages: (1) Being a multiobjective algorithm,

the approach is able to produce a diverse ensemble. Some individuals are good

at minimizing the training error; some pay more attention to cooperation and

the others manage to control the complexity. (2) The parameters of individual

network can be effectively obtained in the evolutionary multiobjective algorithm.

(3) Due to the regularization term in MRNCL, the obtained ensemble is regular-

ized and is more robust with respect to noise. (4) There is no need to weigh the

different objectives by optimizing the coefficient parameters.

5.2 Multiobjective Regularized Negative Corre-

lation Learning

In this section, we detail multiobjective regularized negative correlation learning

algorithm (MRNCL). Section 5.2.1 proposes MRNCL, followed by the descrip-

tion of component network and evolutionary operators in section 5.2.2. Section

5.2.3 describes multiobjective evaluation of ensemble and rank-based fitness as-

signment. Finally, section 5.2.4 presents the algorithm of MRNCL.

5.2.1 Multiobjective Regularized Negative Correlation Learn-

ing

Multiobjective Regularized Negative Correlation Learning (MRNCL) introduces

a regularization term into the error function of NCL. Given the training set

{xn, yn}N
n=1, MRNCL combines M neural networks fi(x) to constitute the en-

semble.

fens(xn) =
1

M

M∑
i=1

fi(xn). (5.1)

To train the ensemble, the cost function Eens for the ensemble is defined as

follows:

Eens =
1

M

N∑
n=1

M∑
i=1

(fi(xn)− yn)2 + λ
1

M

M∑
i=1

pi +
M∑
i=1

αiw
T
i wi, (5.2)

77

5.2 Multiobjective Regularized Negative Correlation Learning

where wi = (wi,1, · · · , wi,ni
)T is the weight vector of neural network i, and ni is

the total number of weights in network i. αi and λ are weighting coefficients on

the regularization term and the correlation term pi, respectively.

The correlation term pi is presented by

pi =
N∑

n=1

{
(fi(xn)− fens(xn))

∑

j 6=i

(fj(xn)− fens(xn))

}

= −
N∑

n=1

(fi(xn)− fens(xn))2 . (5.3)

In order to train each neural network with its regularization, we decompose

the error function of ensemble into M parts, each part for a network. The error

function of network i can be obtained as follows:

ei =
N∑

n=1

(fi(xn)− yn)2 − λ

N∑
n=1

(fi(xn)− fens(xn))2 + αiw
T
i wi. (5.4)

Comparing this error function with the cost function of NCL, equation (4.2),

MRNCL imposes a regularization term on every individual neural network and

MRNCL needs to optimize both the correlation coefficient λ and the regulariza-

tion parameters αi.

According to equation (5.4), the training of an individual neural network

in MRNCL involves minimization of the three terms: empirical training error

term, correlation penalty term and the regularization term. The generalization

of ensemble depends on the trade-off among the three terms and this chapter uses

the evolutionary multiobjective algorithm to balance the trade-off.

The formulation of MRNCL is not a heuristic but based on the Bayesian sta-

tistical model. According to chapter 4, MRNCL is an application of Bayesian

framework in ensemble system. The squared weight decay term, i.e. the regular-

ization term, acts as the prior of weight vector in the ensemble. This is the reason

why we only include the squared weight decay term as the regularization term in

the multiobjective algorithm. This intrinsic Bayesian characteristic of MRNCL

potentially facilitates the incorporation of Bayesian methods with evolutionary

multiobjective algorithms to improve the performance of MRNCL.

According to equation (5.4), MRNCL defines the following three objectives.

78

5.2 Multiobjective Regularized Negative Correlation Learning

• Objective of Performance
∑N

n=1(fi(xn)− yn)2.

This objective measures the empirical mean square error based on the train-

ing set.

• Objective of Cooperation −∑N
n=1(fi(xn)− fens(xn))2.

This cooperation term measures the amount of variability among the en-

semble member and this term can also be treated as the diversity measure

(Krogh and Vedelsby, 1995). From both theoretical and experimental re-

sults, the most effective combination of ensemble members occurs when the

errors of these ensemble members are negatively correlated. This objective

is to obtain highly correlated networks to disagree as much as possible.

• Objective of Regularization wT
i wi =

∑
j w2

i,j.

Based on the regularization theory (Vapnik, 1995), the weight decay term

(Krogh and Hertz, 1992) is employed to punish large weights. The weight

decay term causes the weights to converge to smaller absolute values than

they otherwise would. The regularization term helps the generalization

ability of neural network and reduces the variance (Geman et al., 1992).

5.2.2 Component Network and Evolutionary Operators

A radial basis function (RBF) network is used as the component network in this

chapter. The output of RBF network is computed as a linear combination of K

basis functions

f(x) =
K∑

k=1

wkφk(x) = ΦTw, (5.5)

where w = (w1, · · · , wK)T denotes the weight vector in the output layer and Φ =

(φ1, · · · , φk)
T is the vector of basis functions. The Gaussian basis functions φk

are defined as

φk(x) = exp(
‖ x− µk ‖2

2σ2
k

), (5.6)

where µk and σk denote means and widths of the Gaussian, respectively. The

training of RBF network is separated into two steps. In the first step, the means

µk are initialized with randomly selected data points from the training set and

79

5.2 Multiobjective Regularized Negative Correlation Learning

the variances σk are determined as the Euclidean distance between µk and the

closest µi(i 6= k, i ∈ {1, · · · , K}). Then in the second step we perform a gradient

descent with the regularized error function (weight decay)

min E =
1

2

N∑
n=1

(yn − f(xn))2 + α

K∑

k=1

w2
k. (5.7)

In order to fine-tune the centers and widths, we simultaneously adjust the

output weights, the RBF centers and variances. Taking the derivative of equation

(5.7) with respect to RBF means µk and variances σ2
k we obtain

∂E

∂µk

=
N∑

n=1

(f(xn)− yn)
∂f(xn)

∂µk

, (5.8)

with ∂f(xn)
∂µk

= wk
xn−µk

σ2
k

φk(xn) and

∂E

∂σk

=
N∑

n=1

(f(xn)− yn)
∂f(xn)

∂σk

, (5.9)

with ∂f(xn)
∂σk

= wk
‖x−µk‖2

σ3
k

φk(xn). These two derivatives are employed in the min-

imization of equation (5.7) by a scaled conjugate gradient descent, where we

always compute the optimal output weights in every evaluation of the error func-

tion. The optimal output weights w can be computed in closed form by

w = (ΦT Φ + αI)−1ΦTy, (5.10)

where y =(y1, · · · , yn)T denotes the output vector, and I is an identity matrix.

We use RBF network as the base learner because of the following advantages.

1) Once the centers and the widths of the basis functions have been fixed, the

optimal output weights w can be efficiently computed in closed form, which

means the performance mostly depends on the selection of basis functions. 2)

It is reasonable to define crossover and mutation operators in structural-evolving

RBF network by tuning these basis functions.

Based on the above reasons, the crossover operator and mutation operator for

RBF networks are described as follows.

80

5.2 Multiobjective Regularized Negative Correlation Learning

• Crossover Operator

As the performance of a RBF network mostly depends on the basis func-

tions, i.e. the centers and the widths, the crossover operator is defined to ex-

change the basis functions of two RBF networks. Many crossover techniques

exist in the literature, such as one-point crossover, two-point crossover and

“cut and splice” crossover. In a RBF network ensemble, as different net-

works may have different numbers of basis functions, the “cut and splice”

approach has been adopted by randomly choosing separate crossover points

for two RBF networks and swap their basis functions beyond those points.

• Mutation Operator

This chapter defines two structural mutation operators for RBF networks.

1. Deleting one basis function. Randomly select one basis function and

delete it.

2. Adding one basis function. The center of the new basis function is

determined by a randomly selected data point from the training set.

Then, the width of the basis function is chosen as the minimal distance

from other centers in this RBF network.

As the crossover and mutation operations may not generate the optimal

combination of basis functions, afterwards, we simultaneously adjust the out-

put weights, the RBF centers and widths based on equations (5.8), (5.9) and

(5.10). This procedure is also called parametric mutation, which only modifies

the parameters of the network without modifying its topology. This parametric

mutation is performed for a few iterations (in our experiments, only one scaled-

conjugate-gradient update is employed).

5.2.3 Multiobjective Evaluation of Ensemble and Rank-

based Fitness Assignment

In this subsection, we consider a population of individuals who have three objec-

tives and a multiobjective algorithm is employed to select a set of best classifiers

with respect to the three objectives.

81

5.2 Multiobjective Regularized Negative Correlation Learning

In this chapter, nondominated sorting with fitness sharing (Srinivas and Deb,

1995) and rank-based fitness assignment have been used. Nondominated sorting

is based on layers of Pareto front, which ranks the individuals in the population

by fronts that leads to fast convergence to Pareto front in the final population.

The diversity of population is maintained by a niching method.

The nondominated sorting algorithm consists of two stages: One is to obtain

the nondominated fronts of different layers and every individual of these fronts

is assigned an equal dummy fitness. The algorithm used for obtaining the non-

dominated set of solutions compares the individuals pairwise and marks these

individuals, which are dominated by at least one member of the population, as

dominated. The second is that the members of every front share their fitness

(Darwen and Yao, 1996) with the constraint that none of the members of a front

gets a higher fitness than any of the members of the previous front.

Since the dummy fitness assigned by nondominated sorting is raw, sometimes

the range of the dummy fitness is too large, leading to the situation that some

networks reproduce too rapidly, taking over the population too quickly, and pre-

venting the evolutionary algorithm from searching other areas of the solution

space. Fitness scaling is the process of mapping an arbitrary fitness range into

an appropriate range.

This chapter employs rank-based fitness assignment to reassign the fitness to

the networks because rank-based fitness assignment behaves in a more robust

manner than proportional fitness assignment. In the rank-based fitness assign-

ment, the population is sorted according to the raw fitness values. The fitness

assigned to each individual depends only on its position in the individual’s rank-

ing and not on the actual raw fitness value.

We use a linear rank-based fitness assignment, where the fitness value for an

individual is calculated as:

fitness(Pos) = 2− SP + 2(SP − 1)
Pos− 1

M − 1
, (5.11)

where M is the number of individuals in the population. Pos is the position

of an individual in this population (least fit individual has Pos = 1, the fittest

individual Pos = M) and SP is the selective pressure. Linear ranking allows

82

5.2 Multiobjective Regularized Negative Correlation Learning

1. Generate an initial RBF network population: Generate an initial population of M RBF Net-

works, the number of hidden nodes K for each network is specified randomly restricted by

the maximal number of hidden nodes. The centers µk are initialized with randomly selected

data points from the training set and the width σk are determined as the Euclidian distance

between µk and the closest µj(j 6= k, j ∈ {1, · · · , K}).

2. Train the initial RBF network population and recode the three objective values of each network.

3. Apply nondominated sorting with rank-based fitness assignment algorithm to obtain the rank-

based fitness.

4. For 1 to maximal generation

• Perform a desired number of crossover operations.

Choose parents based on roulette wheel selection algorithm and perform crossover. Then

perform a few number of updates for weights, centers and widths. Compare the children

with parents and keep the better ones.

• Perform a desired number of mutation operations.

Choose parents based on roulette wheel selection algorithm and perform mutation. Then

perform a few number of updates for weights, centers and widths. Compare the children

with parents and keep the better ones.

• Apply nondominated sorting algorithm and obtain the rank-based fitness for the new

population.

5. Combine these classifier to form the ensemble.

Figure 5.1: Multiobjective Regularized Negative Correlation Learning Algorithm

values of the parameter SP in [1.0, 2.0]. Our algorithm adopts 1.5 as the selective

pressure.

Note that we use all the individuals in the population to generate the ensemble.

5.2.4 Algorithm Description

The details of Multiobjective Regularized Negative Correlation Learning (MRNCL)

are summarized in Figure 5.1. Note that in the crossover and mutation opera-

tion, the comparison of the child network with the parent network is conducted

as follows.

1. Evaluate the three objective values of the child network.

83

5.2 Multiobjective Regularized Negative Correlation Learning

2. Include the child network into the population, then apply non-dominant

sorting with fitness sharing algorithm to obtain the raw fitness values of

the child network and the parent network.

3. Compare the raw fitness values and keep the better one.

−1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Class 1
Class 2
MRNCL
MNCL

(a) Synth

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

1.5

Class 1
Class 2
MRNCL
MNCL

(b) Overlap

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Class 1
Class 2
MRNCL
MNCL

(c) Bumpy

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Class 1
Class 2
MRNCL
MNCL

(d) Relevance

Figure 5.2: Comparison of MRNCL and MNCL on four synthetic classification

data sets. Two classes are shown as crosses and dots. The separating lines were

obtained by projecting test data over a grid. The lines in green (thin) and black

(thick) are obtained by MRNCL and MNCL, respectively.

84

5.3 Numerical Experiments

5.3 Numerical Experiments

In this section we present the experimental results of MRNCL and MNCL, which

employs a multiobjective algorithm (two objectives: training error and correlation

term) to train negative correlation ensembles. We use MNCL instead of gradient-

based NCL because MRNCL uses a multiobjective algorithm and it is fair and

natural to use multiobjective algorithm to train NCL.

In this section, firstly, we present experimental results of MRNCL on four

synthetic classification problems and we design two experiments to study the

characteristics of MRNCL and MNCL on data with different noise levels. Sec-

ondly, we carry out extensive experiments on 13 benchmark classification data

sets to evaluate MRNCL, MNCL and other classifiers.

5.3.1 Experimental Setup

In our experiments, radial basis function (RBF) networks are used as the base

classifiers. The number of hidden nodes is randomly selected but restricted in

the range of 5 to 15. The parameters in the evolutionary algorithm are set to:

the population size M (100), the number of crossover in one generation 20, the

number of mutation in one generation 10, the number of generations (100), the

parameter of fitness sharing σshare (0.2). These parameters are chosen after some

preliminary experiments. They are not meant to be optimal.

5.3.2 Synthetic Data Sets

As the first experiment, we demonstrate the results of MRNCL on four synthetic

data in two dimensions in order to illustrate graphically the decision boundary.

These four data sets are synth, Overlap, Bumpy and Relevance. They are

used in section 4.4. The detailed information of these data sets can be referred

to section 4.4.

In Figure 5.2 we present a comparison of MRNCL and MNCL. We can observe

a similar performance of MRNCL and MNCL in the case of Relevance. Since the

data set is noise-free, both MRNCL and MNCL successfully separate the two

classes. The situation is similar in the case of Overlap. Since it is extremely

85

5.3 Numerical Experiments

0 20 40 60 80 100 120
80

85

90

95

100

105

110

115

E
rr

or
 +

 R
eg

ul
ar

iz
at

io
n

+
 C

or
re

la
tio

n

Generations
0 20 40 60 80 100 120

20

25

30

35

40

45

50

55

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 (

E
rr

or
 +

 R
eg

ul
ar

iz
at

io
n

+
 C

or
re

la
tio

n)

(a) Banana

125

130

135

140

5.5

6

6.5

7
−60

−50

−40

−30

−20

Traing Error
Regularization

C
or

re
la

tio
n

(b) Banana Evolving Information in 3D

0 20 40 60 80 100 120
14

15

16

17

18

19

20

21

E
rr

or
 +

 R
eg

ul
ar

iz
at

io
n

+
 C

or
re

la
tio

n

Generations
0 20 40 60 80 100 120

10

12

14

16

18

20

22

24

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 (

E
rr

or
 +

 R
eg

ul
ar

iz
at

io
n

+
 C

or
re

la
tio

n)

(c) Overlap

22
24

26
28

30
32

3.5

4

4.5
−20

−15

−10

−5

Traing Error
Regularization

C
or

re
la

tio
n

(d) Overlap Evolving Information in 3D

Figure 5.3: Detailed information in multiobjective algorithm for two data sets,

Banana and Overlap. In Figure 5.3(a) and 5.3(c), the left-y axis (red line with

circles) measures the summation of the mean of three objectives, training error,

regularization and correlation in different generations. The right-y axis (blue line

with triangles) is the standard deviation of the summation. In Figure 5.3(b)

and 5.3(d), the 3D figure records the mean value of these three objectives in

different generations. The arrow points from the beginning (Generation = 1) to

end (Generation = 100). The color represents different generations. Blue points

stands for small generations and red points mean large generations.

86

5.3 Numerical Experiments

0 20 40 60 80 100 120
60

65

70

75

E
rr

or
 +

 R
eg

ul
ar

iz
at

io
n

+
 C

or
re

la
tio

n

Generations
0 20 40 60 80 100 120

5

10

15

20

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 (

E
rr

or
 +

 R
eg

ul
ar

iz
at

io
n

+
 C

or
re

la
tio

n)

(a) Bumpy

75
76

77
78

79
80

2.6

2.8

3

3.2

3.4

3.6
−20

−15

−10

−5

Traing Error
Regularization

C
or

re
la

tio
n

(b) Bumpy Evolving Information in 3D

0 20 40 60 80 100 120
10

20

30

E
rr

or
 +

 R
eg

ul
ar

iz
at

io
n

+
 C

or
re

la
tio

n

Generations
0 20 40 60 80 100 120

20

40

60

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 (

E
rr

or
 +

 R
eg

ul
ar

iz
at

io
n

+
 C

or
re

la
tio

n)

(c) Relevance

30 35 40 45 50 55 60 65

4.2

4.4

4.6

4.8

5

5.2
−50

−40

−30

−20

−10

Traing Error
Regularization

C
or

re
la

tio
n

(d) Relevance Evolving Information in 3D

Figure 5.4: Detailed information in multiobjective algorithm for two data sets,

bumpy and relevance. In Figure 5.4(a) and 5.4(c), the left-y axis (red line with

circles) measures the summation of the mean of three objectives, training error,

regularization and correlation in different generations. The right-y axis (blue line

with triangles) is the standard deviation of the summation. In Figure 5.4(b)

and 5.4(d), the 3D figure records the mean value of these three objectives in

different generations. The arrow points from the beginning (Generation = 1) to

end (Generation = 100). The color represents different generations. Blue points

stands for small generations and red points mean large generations.

87

5.3 Numerical Experiments

difficult to obtain a linear boundary from a RBF function (Gramacy and Lee,

2005), both MRNCL and MNCL produce near-linear boundary.

0
50

100
150

200 0
2

4
6

8

−100

−80

−60

−40

−20

0

Regularization
Traing Error

C
or

re
la

tio
n

(a) Synth

0
20

40
60

80
100 0

2
4

6
8

−80

−60

−40

−20

0

RegularizationTraing Error

C
or

re
la

tio
n

(b) Overlap

40
60

80
100

120 0
2

4
6

8

−50

−40

−30

−20

−10

0

Regularization
Traing Error

C
or

re
la

tio
n

(c) Bumpy

0
50

100
150 0

10
20

30−140

−120

−100

−80

−60

−40

−20

0

Regularization
Traing Error

C
or

re
la

tio
n

(d) Relevance

Figure 5.5: Illustration the trade-off among the three objectives: training error,

regularization and correlation, in the final population for four synthetic classifi-

cation data sets. The color represents different correlations. Blue points stands

for low correlations and red points mean large correlations.

In other cases, MRNCL gives more accurate results. In the cases of Synth and

Bumpy, MRNCL produces smooth boundary and disregards the outliers in the

training points. In the case of Bumpy, the noise level is great because of these

overlapping points. MNCL does not generalize and produces the twisty boundary.

In the case of Synth, MNCL concentrates on several outliers and generate twisty

88

5.3 Numerical Experiments

boundaries.

20 40 60 80 100 120 140 160
0

1

2

3

4

5

6

7

8

Traing Error

R
eg

ul
ar

iz
at

io
n

(a) Synth

0 20 40 60 80 100
0

1

2

3

4

5

6

7

Traing Error
R

eg
ul

ar
iz

at
io

n

(b) Overlap

50 60 70 80 90 100 110 120
0

1

2

3

4

5

6

7

Traing Error

R
eg

ul
ar

iz
at

io
n

(c) Bumpy

0 50 100 150
0

5

10

15

20

25

Traing Error

R
eg

ul
ar

iz
at

io
n

(d) Relevance

Figure 5.6: 2D view of the trade-off between two objectives: training error and

regularization for four synthetic classification data sets. The color represents

different training errors. Blue points stands for low training errors and red points

mean large training errors.

In order to illustrate the characteristics of MRNCL, in each generation we

record the mean value and standard deviation of the three objectives in the

population.

Figures 5.3(b), 5.3(d), 5.4(b) and 5.4(d) illustrate the mean value of these

three objectives in different generations. The arrow points from the first genera-

89

5.3 Numerical Experiments

tion to the final generation.

According to these figures, MRNCL tries to minimize the three objectives.

However, based on the analysis in section 5.2, the empirical training error is

negatively correlated with the correlation term. Instead of minimizing the three

objectives simultaneously, firstly, MRNCL seeks to find a good balance between

the training error and the correlation term, and then MRNCL always minimizes

the third objective, the regularization term, in the evolutionary algorithm.

20 40 60 80 100 120 140 160
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Traing Error

C
or

re
la

tio
n

(a) Synth

0 20 40 60 80 100
−70

−60

−50

−40

−30

−20

−10

0

Traing Error

C
or

re
la

tio
n

(b) Overlap

50 60 70 80 90 100 110 120
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Traing Error

C
or

re
la

tio
n

(c) Bumpy

0 50 100 150
−140

−120

−100

−80

−60

−40

−20

0

Traing Error

C
or

re
la

tio
n

(d) Relevance

Figure 5.7: 2D view of the trade-off between two objectives: training error and

correlation for four synthetic classification data sets. The color represents dif-

ferent training errors. Blue points stands for low training errors and red points

mean large training errors.

90

5.3 Numerical Experiments

In Figures 5.3(a), 5.3(c), 5.4(a) and 5.4(c), we show the mean value and stan-

dard deviation of the summation of the three objectives in different generations.

Although the direct summation of the three objectives into one term is an inac-

curate estimation, as we do not consider the weighting coefficients and we use the

mean value instead of summation of the three objectives for every individual, the

summation does reflect the tendency of MRNCL in the multiobjective algorithm.

These figures show that MRNCL does minimize the summation of the three ob-

jectives. In these figures, the standard deviation increases from the beginning,

indicating that the search space of MRNCL becomes large and the population

becomes diverse from generation to generation.

To understand the trade-off among the three objectives for different problems,

the 3D view of the three objectives in the final generation is illustrated in Figure

5.5. The negative correlation between the empirical error term and the correla-

tion term has been confirmed in this figure. (The trade-off between correlation

and training error is presented 2D in Figure 5.7 as well.) Figure 5.6 shows the

trade-off between the empirical error term and the regularization term. The final

population distributed a good trade-off between these two objectives for all the

datasets except Relevance. As Relevance is a noise-free data set, most networks

concentrate on the training error and correlation but not regularization. This in-

dicates that MRNCL can choose a better trade-off among these multi-objectives

for different problems.

In chapter 4, we use the same synthetic classification data and MLP network

as the base learners to illustrate the decision boundaries of RNCL and NCL. As

MLPs are able to produce more flexible boundaries than RBFs1 do in MNCL, the

decision boundary of NCL is smoother than that of MNCL. The advantages of

MRNCL and MNCL include explicit observation of the interaction and trade-off

among different objectives and automatic balance of the trade-off among these

objectives.

1A RBF network is a combination of RBF functions and thus its decision boundary is not
flexible as that of MLPs.

91

5.3 Numerical Experiments

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Class 1
Class 2
Noise Point
MRNCL
MNCL

(a) Synth with 20% noise

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

Class 1
Class 2
Noise Point
MRNCL
MNCL

(b) Banana with 20% noise

0 0.05 0.1 0.15 0.2 0.25 0.3

0.1

0.12

0.14

0.16

0.18

0.2

0.22

(c) Synth with different noise Levels

0 0.05 0.1 0.15 0.2 0.25 0.3

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

(d) Banana with different noise Levels

Figure 5.8: Comparison of MRNCL and MNCL on two classification data sets.

Two classes are shown as crosses and dots. The separating lines were obtained

by projecting test data over a grid. In Figure 5.8(a) and 5.8(b), the decision

boundary in green (thin) and black (thick) are obtained by MRNCL and MNCL,

respectively. The randomly-selected noise points are marked with a circle. Figure

5.8(c) and 5.8(d) show classification error of MRNCL (red solid) and MNCL (blue

dashed) vs. noise levels on synth and banana data sets. The results are based on

100 runs.

92

5.3 Numerical Experiments

5.3.3 Experimental Results on Noisy Data

In order to evaluate MRNCL and MNCL on data with different noise levels, we

conduct two additional experiments. In the experiments, we select two data sets:

synth and banana.

To change the noise level, we randomly select different percentages of data

points and reverse their labels. We run 100 times and report the average results

in Figure 5.8. Figure 5.8(a) and Figure 5.8(b) visualize the decision boundaries

of MRNCL and MNCL with 20% noise.

Although the noise level is high, MRNCL produces smooth boundary. MNCL

tries to minimize the training error and it does not generalize well. We also plot

the curve, Figure 5.8(c) and 5.8(d), of the classification error rate vs. the noise

level for these data sets. In these two figures, MRNCL is a little better in the

beginning, but as the noise level increases, MRNCL significantly outperforms

MNCL.

The results of MRNCL are promising on these classification problems. The

regularization term does work in MRNCL and improves its ability against noise,

which is especially important in practice since most of the actual data are con-

taminated by noise. After the analysis with synthetic data sets, the next section

presents the results for the real-world benchmark problems.

Compared Figure 5.8 with Figure 4.4 in chapter 4, the multiobjective based

algorithms have similar tendency as the gradient descent based algorithms, i.e. as

noise level increases, the error rate of these algorithms increases but the difference

between MRNCL and MNCL (same as RNCL and NCL) becomes large. From

these two figures, multiobjective based algorithms outperform gradient descent

based algorithms. The reason is that multiobjective based algorithms consider

an additional weighting coefficient of the correlation term.

5.3.4 Benchmark Results

These data sets used in this chapter have been summarized in Table 4.2. The

details of these datasets have been presented in chapter 4 and please refer to

section 4.4 for more information.

93

5.3 Numerical Experiments

Table 5.1: Comparison among the six methods on 13 benchmark Data Sets:

Single RBF classifier, MRNCL, MNCL, Adaboost, Bagging, and support vector

machine. Estimation of generalization error in % on 13 data sets (best method

in bold face). The columns P1 to P4 show the results of a significance test (95%

t-test) between MRNCL and MNCL, Adaboost, Bagging and SVM, respectively.

The p value with a star means the test is significant. The performance is based

on 100 runs (20 runs for Splice and Image). MRNCL gives the best overall

performance.

RBF MRNCL MNCL P1 Adaboost P2 Bagging P3 SVM P4

Banana 10.8±0.6 10.7±0.7 11.2±0.7 0.00∗ 12.3±0.7 0.00∗ 11.2±0.7 0.03∗ 11.5±0.7 0.00∗

Cancer 27.6±4.7 26.4±4.6 28.2±4.8 0.08 30.4±4.7 0.00∗ 27.3±4.6 0.23 26.0±4.7 0.33

Diabetics 24.3±1.9 23.2±1.7 25.3±1.9 0.00∗ 26.5±2.3 0.00∗ 24.2±1.8 0.03∗ 23.5±1.7 0.46

German 24.7±2.4 24.2±2.1 26.1±2.3 0.03∗ 27.5±2.5 0.00∗ 24.9±2.5 0.15 23.6±2.1 0.08

Heart 17.6±3.3 15.6±3.0 16.2±3.1 0.25 20.3±3.4 0.00∗ 17.2±3.4 0.00∗ 16.0±3.3 0.46

Image 3.3±0.6 2.6±0.7 2.6±0.7 0.42 2.7±0.7 0.31 3.0±0.6 0.04∗ 3.0±0.6 0.05∗

Ringnorm 1.7±0.2 1.6±0.2 1.9±0.2 0.00∗ 1.9±0.3 0.04∗ 1.6±0.2 0.61 1.7±0.1 0.26

Solar 34.4±2.0 33.1±1.7 33.4±1.5 0.62 35.7±1.8 0.02∗ 34.1±1.9 0.07 32.4±1.8 0.21

Splice 10.0±0.8 9.9±0.6 10.2±0.5 0.08 10.1±0.5 0.06 10.0±0.5 0.34 10.9±0.7 0.00∗

Thyroid 4.5±2.1 4.5±2.1 4.3±2.1 0.43 4.4±2.2 0.62 4.4±2.1 0.58 4.8±2.2 0.13

Titanic 23.3±1.3 22.3±1.1 22.2±1.3 0.12 22.6±1.2 0.08 22.8±1.2 0.04∗ 22.4±1.0 0.32

Twonorm 2.9±0.3 2.3±0.1 2.4±0.1 0.03∗ 3.0±0.3 0.00∗ 2.8±0.2 0.00∗ 3.0±0.2 0.00∗

Waveform 10.7±1.1 10.4±0.6 10.6±0.7 0.13 10.8±0.6 0.04∗ 10.2±0.5 0.12 9.9±0.4 0.03∗

94

5.3 Numerical Experiments

The performance of MRNCL, MNCL, RBF network, Adaboost, Bagging, and

SVM over 100 runs (20 runs for Splice and Image) is tabulated in Table 5.1. The

performance of RBF network, Adaboost and SVM in each fold is obtained from

Rätsch’s implementation1.

According to Table 5.1, MRNCL outperforms all the other methods in 7 out of

13 data sets, comes second in 4 cases and third in the remaining 2. In comparison

with MNCL, MRNCL wins 10 times out of 13 and of them 5 wins are statistically

significant. In the results, MNCL only performs well in the cases with little noise:

Image, Thyroid and Twonorm, which are all synthetic data with little noise (see

the lower error rate). The observation validates that MNCL achieves good results

only when the noise level is small.

Compared MRNCL with gradient descent based RNCL in chapter 4, MRNCL

achieves a little better performance than RNCL.

There are at least three reasons to explain the success of MRNCL.

1. Effective parameters of RBF ensemble, obtained by the evolutionary al-

gorithm, improve the performance of the ensemble. The performance of

RBF networks mostly depends on the number of basis functions and the

selection of centers and widths in these basis functions. In a RBF network

ensemble, better performance is achieved when these individuals cooperate

with each other. How to select these parameters is crucial for the ensem-

ble. In most of the existing ensemble algorithms, we have to tune these

parameters manually, suffering from the tedious trial-and-error process in

practice. However, our algorithm can determine these parameters automat-

ically for different problems given that you specify some parameters for the

evolutionary algorithm.

2. The multiobjective algorithm promotes the accuracy, diversity and regular-

ization in the ensemble. The accuracy and diversity are considered as two

important factors in ensemble algorithms. Our analysis reveals that besides

these two factors, regularization is another important factor for ensemble

performance. The regularization term controls the complexity of ensemble

1http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

95

5.3 Numerical Experiments

and improves the performance of ensemble against noise. The existing en-

semble algorithms either focus on accuracy, e.g. Adaboost and/or diversity,

e.g. Bagging and NCL. In order to take all these terms into consideration,

our strategy adopts a multiobjective algorithm to generate accurate, diverse

and regularized ensembles.

3. A better trade-off of the three objectives can be determined automatically.

Different problems require different trade-offs among the three objectives.

The usual way, which assigns combination coefficients to the three terms and

optimizes these coefficients by grid search, is computationally expensive.

Our algorithm uses a multiobjective algorithm to choose a better trade-off

for the specific problem. There is no need to weigh objectives by selecting

the coefficients.

5.3.5 Computational Complexity and Running Time

Table 5.2: Running Time of MRNCL and MNCL on 13 Data Sets in seconds.

Results are averaged over 100 runs.

Time(s) Banana Cancer Diabetics Solar German Heart

MNCL 80.6 28.6 62.7 84.6 126.1 26.3

MRNCL 81.3 29.4 68.6 83.0 121.5 26.7

Time(s) Image Ringnorm Splice Thyroid Titanic Twonorm Waveform

MNCL 220.0 192.6 283.6 19.1 46.9 186.8 132.1

MRNCL 236.2 183.7 288.7 19.4 45.6 193.8 145.7

Based on the algorithm in Figure 5.1, the major running time of MRNCL is

consumed in the training of RBF networks. In the initialization step, we need to

train M RBF network. In each generation, we need to train 2C+u RBF networks,

where C is the number of crossover in one generation and u is the number of

mutation in one generation. In total, we need to train M + (2C + u)G RBF

networks in MRNCL, where G indicates the number of generations. Given the

centers and widths of a RBF network, the training of RBF is a linear optimization

96

5.4 Summary

problem, which can be evaluated quickly. Table 5.2 shows the average running

time of MRNCL and MNCL over 100 runs. The computational environment is

Windows XP with Intel Core 2 Duo 1.66G CPU and 2G RAM. The algorithms

are implemented in Matlab and C language, where C language is used for the

implementation of RBF network training algorithm.

Generally speaking, MRNCL needs more computational resource than RNCL.

As MRNCL uses a large ensemble (100 RBF networks) than RNCL (25 MLP

networks in chapter 4) and MRNCL is implemented by an evolutionary multiob-

jective algorithm, the running time of MRNCL is longer than that of RNCL in

most cases. We are not surprised that RNCL consumes more time than MRNCL

for some large datasets, such as German, Image, Splice in our experiments. It is

because the training of RBF network in MRNCL is much faster than training of

MLP network with the same number of hidden nodes in RNCL.

5.4 Summary

The major contribution of the chapter is to formulate the regularized negative

correlation learning (RNCL) as a multiobjective optimization problem. The re-

sulting algorithm MRNCL can effectively search the best trade-off among these

three terms. To effectively evolve these networks, the crossover and mutation

operators are defined to vary the structure of RBF networks. The nondominated

sorting algorithm with fitness sharing and linear rank-based fitness assignment

are employed to promote diversity in MRNCL.

The numerical results and visualization on both the synthetic data sets and

the benchmark datasets have demonstrated that MRNCL achieves better perfor-

mance than MNCL, especially when the noise is non-trivial in data sets. The

comparison with other state-of-the-art algorithms also demonstrate the superior-

ity of MRNCL.

Compared with RNCL by gradient descent with Bayesian inference in chapter

4, MRNCL often achieves a little better performance by considering an additional

weighting coefficient of the correlation term. The potential advantages of the mul-

tiobjective approach include: It enables us to observe the interaction and trade-off

among different objectives; and it enables us to add or remove an objective easily

97

5.4 Summary

without changing the overall algorithm. However, the better performance comes

with the price, more computational time to train MRNCL.

Choosing one appropriate implementation from RNCL and MRNCL depends

on the application and users’ specification. If the users would like to observe the

interaction and trade-off among different objectives and easily modify the code

without changing the overall algorithm, multiobjective MRNCL is appropriate.

If they pay more attention to the computational resource and prefer the explicit

combination coefficients, gradient descent based RNCL with Bayesian inference

is a better choice.

98

Chapter 6

Predictive Ensemble Pruning by

Expectation Propagation

The existing ensemble learning algorithms often generate unnecessarily large en-

sembles, which consume extra computational resource. As these algorithms do

not explicitly manage the trade-off among diversity, regularization and accuracy in

the ensemble, these large ensembles will degrade the performance when the trade-

off is unbalanced. For example, large boosting ensembles are prone to overfitting

by paying more attention to accuracy but ignoring regularization. Therefore,

proper ensemble pruning algorithms can improve the performance and efficiency

of ensembles. In this chapter, we investigate ensemble pruning as one way to

better balance diversity, regularization and accuracy in the ensemble.

This chapter extends our previous work (Chen et al., 2006) and proposes a

probabilistic ensemble pruning algorithm, aiming to find a good subset of en-

semble members to produce a small ensemble, which saves the computational

resource and performs as well as, or better than, the non-pruned ensemble.

The rest of this chapter is organized as follows. After the introduction in

section 6.1, section 6.2 describes the sparseness-induction and truncated prior.

Section 6.3 presents the pruning algorithm for regression and classification prob-

lems, respectively, followed by experimental results and analysis in section 6.4.

Finally, section 6.5 summarizes the chapter.

99

6.1 Introduction

6.1 Introduction

The existing ensemble learning algorithms often generate unnecessarily large en-

sembles. These large ensembles are memory demanding. Obtaining a prediction

for a fresh data point can be done expensively in large ensembles. Although these

extra costs may seem to be negligible when dealing with small data sets, they may

become serious when the ensemble method is applied to a large scale data set. In

addition, it is not always true that the larger the size of an ensemble, the better

it is. Some theoretical and empirical evidences have shown that small ensembles

can be better than large ensembles (Breiman, 1996a; Yao and Liu, 1998; Zhou

et al., 2002).

For example, the boosting ensembles, Adaboost (Schapire, 1999) and Arcing

(Breiman, 1998, 1999), pay more attention to those training samples that are mis-

classified by former classifiers in the training of next classifier and finally reduce

the training error to zero. In this way, the former classifiers, with large training

error and large diversity, may under-fit the data, while the latter classifiers, with

low training error and weak regularization, are prone to overfitting the noise in

the training data. The trade-off among diversity, regularization and accuracy in

the ensemble is unbalanced and thus Boosting ensembles are prone to overfitting

(Dietterich, 2000; Opitz and Maclin, 1999). In these circumstances, it is necessary

to prune some individuals to achieve better generalization.

The evolutionary ensemble learning algorithms often generate a number of

learners in the population. Some are good at accuracy; some have larger diver-

sity and others pay more attention to regularization. In this setting, we had

better select a subset of learners to produce an effective and efficient ensemble by

balancing diversity, regularization and accuracy.

In the last decades, several ensemble pruning algorithms have been proposed,

such as Kappa pruning (Margineantu and Dietterich, 1997), concurrency pruning

(Banfield et al., 2005). However, these algorithms all resort to greedy search,

which is without either theoretical or empirical quality guarantees.

Yao et al. (Yao and Liu, 1998) adopted a global optimization approach,

genetic algorithm (GA), to weigh the ensemble members by constraining the

weighs to be positive. Zhou et al. (Zhou et al., 2002) proved that small ensembles

100

6.1 Introduction

can be better than large ensembles. A similar genetic algorithm approach can be

found in (Kim et al., 2002). However, these GA based algorithms try to obtain

the optimal combination weights by minimizing the training error and in this way

these algorithms become sensitive to noise.

Motivated by the above reasons, this thesis investigates ensemble pruning,

which reduces the size of ensembles without hurting the generalization error, as

one way to balance diversity, regularization and accuracy and the thesis proposes

one probabilistic ensemble pruning algorithm. The algorithm treats ensemble

pruning as a weight-based optimization, aiming to improve the generalization

performance of the ensemble by tuning the weight of each ensemble member.

By introducing a sparseness-inducing prior for each combination weight, many of

the posteriors of weights are sharply distributed around zero, leading to pruning

unimportant learning machines. As negative combination weights are unreliable

and not intuitive (Breiman, 1996b; Hashem, 1993; Hastie et al., 2001; Leblanc

and Tibshirani, 1996), we follow this constraint and employ a left-truncated prior

to prevent negative values in the combination weights.

By incorporating the truncated prior, the normalization integral in Bayesian

inference becomes intractable. In our previous work (Chen et al., 2006), Expectation-

Maximization (EM) algorithm was used to infer the combination weights and our

algorithm showed a good performance in both generalization and pruned ensem-

ble size. However, EM algorithm is sensitive to the initialization and we need to

rerun the EM algorithm from several initializations and select the best one based

on the cross validation error.

The chapter extends the previous work and employs the deterministic expec-

tation propagation (EP) (Minka, 2001) to approximate the posterior of weights.

Conveniently, an estimate of the leave-one-out (LOO) error can be obtained in

the training of EP. The LOO error is used together with the Bayesian model

evidence for model selection in this algorithm.

101

6.2 Sparseness-induction and Truncated Prior

6.2 Sparseness-induction and Truncated Prior

In the weight-based ensemble pruning algorithm, the ensemble is formulated as

a linear combination of the individual learners:

fens(x;w) =
M∑
i=1

wifi(x) = wTF(x), (6.1)

where w = (w1, · · · , wM)T is the weight vector of the ensemble, and F(x) =

(f1(x), · · · , fM(x))T is the vector of individual learners. The pruning algorithm

is to adjust the parameters w = (w1, · · · , wM)T , setting many wi to zeros, but

not degrade the generalization performance of the ensemble. As negative weight

vectors are neither intuitive nor reliable (Breiman, 1996b; Hashem, 1993; Hastie

et al., 2001; Leblanc and Tibshirani, 1996), this chapter constraints the weight

vector to be non-negative.

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

w
i

p(
w

i|α
 i)

Non−negative Gaussian Prior

Figure 6.1: The truncated Gaussian Prior

To encourage the sparsity of weight vector w and to satisfy the non-negative

restriction, a left-truncated Gaussian prior is introduced for each weight wi:

p(w|α) =
M∏
i=1

p(wi|αi) =
M∏
i=1

Nt(wi|0, α−1
i), (6.2)

102

6.3 Predictive Ensemble Pruning by Expectation Propagation

where α =(α1, · · · , αM)T is the inverse variance of weight wi and Nt(wi|0, α−1
i) is

a left-truncated Gaussian distribution. This is formalized in equation (6.3) and

illustrated in Figure 6.1.

p(wi|αi) =

{
2N(wi|0, α−1

i) if wi ≥ 0
0 if wi < 0

. (6.3)

6.3 Predictive Ensemble Pruning by Expecta-

tion Propagation

In this section, we describe our ensemble pruning algorithm and present the

detailed expectation propagation procedures.

6.3.1 Expectation Propagation

Expectation propagation (Minka, 2001) is a deterministic algorithm for approx-

imating Bayesian inference that extends assumed-density filtering (ADF) to in-

corporate iterative refinement of the approximations. Expectation propagation

assumes that the joint distribution p(D,w), where the data D = {xn, yn}N
n=1 has

been observed and w is a parameter vector, can be factored into some simple

terms:

p(D,w) =
M∏
i=1

ti

N∏
n=1

gn =
M∏
i=1

p(wi)
N∏

n=1

p(yn|w, xn), (6.4)

where p(wi) is the prior distribution of wi, M is the number of weights and
N∏

n=1

p(yn|w, xn) is the likelihood.

Expectation propagation adopts a family of exponential functions to approx-

imate each term by minimizing the KL-divergence (Kullback and Leibler, 1951)

between the exact term and the approximation term, and then combines these

approximations analytically to obtain a Gaussian posterior q(w) on w.

Expectation propagation will adopt a family of Gaussian function t̃i(w) =

si exp(− 1
2vi

(w − mi)
T (w − mi)) with different mean mi and variances vi to ap-

proximate each term ti by minimizing the KL-divergence Kullback and Leibler

(1951) between the exact term ti and the approximation term t̃i, then combine

these approximations analytically to get a Gaussian posterior q(w) on w.

103

6.3 Predictive Ensemble Pruning by Expectation Propagation

The procedures of expectation propagation can be decomposed in the follow-

ing steps:

1. Initialize the approximating term t̃i: the prior: t0 = p(w) and ti = 1; the

posterior of w can be obtained from the product of t̃i.

q(w) =
Πiti(w)∫
Πiti(w)dw

= N(mw, Vw). (6.5)

2. Remove the approximating term t̃i from the posterior q(w) to get the leave-

one-out posterior q\i(w) which is also Gaussian.

q\i(w) ∝ q(w)/t̃i. (6.6)

3. Choose the ”new” posterior qnew(w) to minimizing the KL-divergence Kull-

back and Leibler (1951) between the posterior qnew(w) and the product of

q\i(w) with the ”exact” term ti: q\i(w)ti(w).

4. Update the approximating term t̃i = Zi
qnew(w)

q\i(w)
, where Zi is the normalizing

factor.

5. As each term t̃i approximates the exact term ti very well, the approximating

posterior of weight vector w can be obtained as:

q(w) =
Πiti(w)∫
Πiti(w)dw

. (6.7)

6.3.2 Expectation Propagation for Regression Ensembles

In the regression ensemble model, we train M individual estimators using the

training set {xn, yn}N
n=1, where yn is a scalar. We assume the ensemble output is

corrupted by an i.i.d. additive Gaussian noise εn = N(0, σ2) with mean zero and

variance σ2:

yn = wTF(xn) + εn. (6.8)

According to equation (6.8), the true value yn is distributed as a Gaussian

distribution with mean wTF(xn) and variance σ2. Based on the assumption of

independence of training points, the likelihood can be expressed as:

p(y|w,xn, σ
2) = (2πσ2)−N/2 exp{− 1

2σ2
‖y −wTF‖2}. (6.9)

104

6.3 Predictive Ensemble Pruning by Expectation Propagation

where y = (y1, · · · , yN)T , w = (w1, · · · , wM)T and F = (F(x1), · · · ,F(xN)) is a

M ×N matrix, where F(xn) = (f1(xn), · · · , fM(xn))T .

The posterior of the weight vector w is denoted by

p(w|x,y, α) ∝ p(w|α)ΠN
n=1p(yn|xn,w)

=
M∏
i=1

2N(wi|0, α−1
i)

M∏
i=1

Θ(wi)
N∏

n=1

p(yn|xn,w), (6.10)

where Θ(wi) = Θ(wTei) =

{
1 if wi > 0
0 if wi ≤ 0

prevents the weights from negative

values and ei = (0, · · · , 1, 0, · · · , 0) is used to obtain the weight wi (wi = wTei

and Θ(wi) = Θ(wTei)).

According to equation (6.10), we only need to approximate the terms Θ(wi)

in calculating the posterior. Denote the exact terms Θ(wi) by ti(w), and the

approximate terms by t̃i(w) = si exp(− 1
2vi

(wTei−mi)
2) which are parameterized

by (mi, vi, si). Since the likelihood terms p(yn|xn,w) are Gaussians, we represent

these terms p(yn|xn,w) by g̃n(w) = sn exp(− 1
2vn

(wTF(xn) − yn)2) to facilitate

EP training, where vn = σ2 and mn = yn. After approximating every term as

an exponential family distribution, the resulting distribution will be Gaussian:

p(w|x,y, α) ≈ q(w) = N(mw,Vw). The EP algorithm for regression ensembles

is described in the following (to simplify notations, Fn stands for F(xn)).

1. Initialization the prior term: q(w) = N(w|0, α−1) and initialize the approx-

imating terms to 1, t̃i = 1: mi = 0, vi = ∞ and si = 1.

2. Until both g̃n and t̃i converge: Loop n = 1, . . . , N , and i = 1, . . . , M ;

(a) Remove the approximation term g̃n from the posterior q(w) to obtain

the leave-one-out posterior q\n(w): N(m
\n
w ,V

\n
w).

q\n(w)

∝ q(w)

g̃n

=
exp(−1

2
(w −mw)TV−1

w (w −mw))

(2π)M/2 |Vw|1/2 sn exp(− 1
2vn

(wTF(xn)− yn)2)
(6.11)

=
1

(2π)M/2 |Vw|1/2 sn

exp

{
−1

2

[
wT

(
V−1

w − 1
vn

FnF
T
n

)
w − 2wT

(V−1
w mw − 1

vn
ynFn)+mT

wV−1
w mw − 1

vn
y2

n

]}

105

6.3 Predictive Ensemble Pruning by Expectation Propagation

Based on equation (6.11), the variance V
\n
w of q\n(w) can be obtained

as follows:

V\n
w =

(
V−1

w − 1

vn

FnF
T
n

)−1

. (6.12)

According to the Woodbury matrix identity (Woodbury, 1950),

(A−BD−1C)−1 = A−1 + A−1B(D−CA−1B)−1CA−1. (6.13)

V
\n
w can be reformulated as:

V\n
w = Vw +

(VwFn)(VwFn)T

vn − FT
nVwFn

, (6.14)

Based on equation (6.11), the mean m
\n
w of q\n(w) can be obtained as

follows:

m\n
w = V\n

w

(
V−1

w mw − 1

vn

ynFn

)
, (6.15)

Since V−1
w = (V

\n
w)−1+ 1

vn
FnF

T
n by equation (6.12), m

\n
w can be written

as

m\n
w = mw + (V\n

w Fn)v−1
n (FT

nmw −mn). (6.16)

(b) Combine q\n(w) and the exact term gn(w) to get the new posterior

q(w).

q(w) =
gn(w)q\n(w)∫
gn(w)q\n(w)dw

. (6.17)

Since q\n(w) = N(w|m\n
w ,V

\n
w) and gn(w) = sn exp(− 1

2vn
(wTF(xn)−

yn)2), q(w) is a Gaussian with the mean mw and variance Vw.

Vw = (v−1
n FnF

T
n + (V\n

w)−1)−1, mw = Vw(v−1
n Fnyn + (V\n

w)−1m\n
w).

(6.18)

(c) Update the approximation term g̃n = Zn
q(w)

q\n(w)
. Since q(w) and q\n(w)

are both Gaussians, g̃n is a Gaussian (Minka, 2001).

g̃n = Zn
q(w)

q\n(w)
=

Zn

N(mn;m
\n
w ,Vn + V

\n
w)

N(w;mn,Vn), (6.19)

106

6.3 Predictive Ensemble Pruning by Expectation Propagation

where

Vn = (V−1
w − (V\n

w)−1)−1, (6.20)

mn = VnV
−1
w mw −Vn(V\n

w)−1m\n
w , (6.21)

sn =
Zn

(2π)M/2|Vn|1/2N(mn;m
\n
w ,Vn + V

\n
w)

. (6.22)

Based on equations (6.20) and (6.18), Vn can be obtained as:

Vn = (V−1
w − (V\n

w)−1)−1 = (v−1
n FnF

T
n)−1. (6.23)

The matrix v−1
n FnF

T
n has one nonzero eigenvalue, which means Vn

will have one finite eigenvalue (Minka, 2001) (page 46). This special

structure allows us to represent Vn with a scalar, vn

FT
nVnFn = vnew

n . (6.24)

vnew
n = vn = σ2 will not change and mn = yn.

vn = σ2, mn = yn. (6.25)

(d) Remove the approximation term t̃i from the posterior q(w) to obtain

the leave-one-out posterior q\i(w): N(m
\i
w,V

\i
w). Refer to the equa-

tions (6.14) and (6.16).

(e) Combine q\i(w) and the exact term ti(w) to get p̂(w) = q\i(w)ti(w)∫
q\i(w)ti(w)dw

and minimize the KL-divergence KL(p̂(w)||q(w)) between p̂(w) and

new posterior q(w) subject to the constrain that q(w) is a Gaussian

distribution. Zeroing the gradient with respect to m
\i
w and V

\i
w gives

the conditions (Minka, 2001),

Eq(w)[w] = Ep̂(w)[w], (6.26)

Eq(w)[w
Tw] = Ep̂(w)[w

Tw] (6.27)

This is the reason why the algorithm is named as expectation propa-

gation.

Zi =

∫

w

q\i(w)ti(w)dw =

∫

w

q\i(w)Θ(wTei)dw

= Φ(zi) = Φ


 (m

\i
w)Tei√

eT
i V

\i
wei


 . (6.28)

107

6.3 Predictive Ensemble Pruning by Expectation Propagation

and

∂ log Zi

∂m
\i
w

=
N(zi)

Φ(zi)

ei√
eT

i V
\i
wei

= gi (6.29)

∂ log Zi

∂V
\i
w

= −1

2
ρi

(m
\i
w)Tei

eT
i V

\i
wei

eie
T
i = Gi, (6.30)

where

ρi =
N(zi)

Φ(zi)

1√
eT

i V
\i
wei

. (6.31)

According to the theory of expectation propagation (Minka, 2001),

mw = m\i
w + V\i

w

∂ log Zi

∂m
\i
w

= m\i
w + V\i

wρiei, (6.32)

Vw = V\i
w + V\i

w(gig
T
i − 2Gi)V

\i
w = V\i

w + (V\i
wei)(

ρie
T
i mw

eT
i V

\i
wei

)(V\i
wei)

T ,

(6.33)

(f) Update the approximation term t̃i = Zi
q(w)

q\i(w)
. Based on equations

(6.20), (6.33) and the Woodbury formula. Vi can be obtained

Vi =
[
V−1

w − (V\i
w)−1

]−1
=

(
ρim

T
wei

eT
i V

\i
wei

eie
T
i

)−1

−V\i
w. (6.34)

The matrix ρim
T
wei

eT
i V

\i
wei

eie
T
i has one nonzero eigenvalue, which means Vi

will have one finite eigenvalue (Minka, 2001) (page 46). This special

structure allows us to represent Vi with a scalar, vi

vi = eT
i Viei = eT

i V\i
wei(

1

ρieT
i mw

− 1). (6.35)

Another consequence of this special structure is that instead of the full

vector mi, we only need the projection mT
i ei, which can be stored as

a scalar mi. Based on equations (6.21) and (6.22),

mi = (ViV
−1
w mw −Vi(V

\i
w)−1m\i

w)Tei

= (m\i
w)Tei + (vi + eT

i V\i
wei)ρi, (6.36)

108

6.3 Predictive Ensemble Pruning by Expectation Propagation

si =
Zi

(2π)M/2|Vi|1/2N(mi;m
\i
w,Vi + V

\i
w)

= Φ(zi)

√
eT

i V
\i
weiv

−1
i + 1 exp(

1

2

eT
i V

\i
wei

eT
i mw

ρi). (6.37)

6.3.2.1 Leave-one-out Estimation

A nice property of EP is that it can easily obtain an estimate of the leave-

one-out error without any extra computation. In each iteration, EP computes

the parameters of the approximate leave-one-out posterior q\n(w) (step 2(a))

that does not depend on the nth data point. So we can use the mean m
\n
w to

approximate a classifier trained on the other (N − 1) data points. Thus an

estimate of the leave-one-out MSE error can be computed as

errloo =
1

N

N∑
n=1

((m\n
w)TF(xn)− yn)2. (6.38)

6.3.3 Expectation Propagation for Classifier Ensembles

For classification ensembles, the ensemble output is a linear combination of indi-

vidual classifiers passed through a link function, fens(xn) = Φ
(∑M

i=1 wifi(xn)
)
,

where Φ(x) =
∫ x

−∞ N(t|0, 1)dt is the Gaussian cumulative distribution function.

Given the data set D = {xn, y}N
n=1, the likelihood for the combination weight

w can be written as

p(y|x,w) =
N∏

n=1

p(yn|xn,w) =
N∏

n=1

Φ

(
yn

M∑
i=1

wifi(xn)

)
. (6.39)

By incorporating the prior with likelihood, the posterior of weight vectors w is

denoted by

p(w|x,y, α) ∝ p(w|α)
N∏

n=1

p(yn|xn,w)

=
M∏
i=1

2N(wi|0, α−1
i)

M∏
i=1

Θ(wi)
N∏

n=1

p(yn|xn,w). (6.40)

In EP algorithm, we need to approximate both the likelihood term p(yn|xn,w) =

Φ
(
yn

∑M
i=1 wifi(xn)

)
and the Θ(wi) term. Denote the exact terms gn(w) =

109

6.3 Predictive Ensemble Pruning by Expectation Propagation

p(yn|xn,w) and ti(w) = Θ(wi) = Θ(wTei), and the approximate terms by

g̃n(w) = sn exp(− 1
2vn

(ynw
T Fn − mn)2) and t̃i(w) = si exp(− 1

2vi
(wT ei − mi)

2).

The EP algorithm for classification ensembles is described in the following (to

simplify notations, ynF(xn) is written as Fn).

1. Initialization the prior term: q(w) = p(w|α). Also initialize the approxi-

mating terms to 1: g̃n = 1 and t̃i = 1: m = 0, v = ∞ and s = 1.

2. Until both g̃n and t̃i converge: Loop n = 1, . . . , N , and i = 1, . . . , M ;

(a) Remove the approximation term g̃n from the posterior q(w) to obtain

the leave-one-out posterior q\n(w): N(m
\n
w ,V

\n
w). The Equation is

exactly the same as the regression EP. (Please refer to equations (6.14)

and (6.16).)

(b) Combine q\n(w) and the exact term gn(w) to get p̂(w) ∝ q\n(w)gn(w)

and minimize the KL-divergence between p̂(w) and new posterior

q(w).

Zn =

∫

w

q\n(w)gn(w)dw = Φ(zn) = Φ


 (m

\n
w)TFn√

FT
nV

\n
w Fn + 1


 . (6.41)

and

mw = m\n
w + V\n

w

∂ log Zn

∂m
\n
w

= m\n
w + V\n

w Fnρn (6.42)

Vw = V\n
w + V\n

w

(
∂ log Zn

∂m
\n
w

(
∂ log Zn

∂m
\n
w

)T

− 2
∂ log Zn

∂V
\n
w

)
V\n

w

= V\n
w + (V\n

w Fn)
ρn(FT

nmw + ρn)

FT
nV

\n
w Fn + 1

(V\n
w Fn)T , (6.43)

where

ρn =
1√

F T
n V

\n
w Fn + 1

N(zn; 0, 1)

Φ(zn)
.

110

6.3 Predictive Ensemble Pruning by Expectation Propagation

(c) Update the approximation term g̃n = Zn
q(w)

q\n(w)
according to equations

(6.21), (6.20), (6.22) and the Woodbury formula. vn, mn and sn are

obtained

vn = FT
nV\n

w Fn(
1

ρn(FT
nmw + ρn)

− 1) +
1

ρn(FT
nmw + ρn)

,(6.44)

mn = (m\n
w)TFn + (vn + FT

nV\n
w Fn)ρn, (6.45)

sn = Φ(zn)

√
FT

nV
\n
w Fnv−1

n + 1 exp(
1

2

FT
nV

\n
w Fn + 1

FT
nmw + ρn

ρn). (6.46)

(d) The remaining steps are the same as the regression ensemble. Please

refer to EP pruning for regression ensemble steps 2(d)-(f) in section

6.3.2.

An estimate of the leave-one-out error can be obtained by

errloo =
1

N

N∑
n=1

Θ(−yn(m\n
w)TF(xn)), (6.47)

6.3.4 Hyperparameters Optimization for Expectation Prop-

agation

The previous sections present the training algorithm of EP with fixed hyper-

parameter α. In this subsection, we update the hyperparameter α based on

the type-II marginal likelihood, also known as the evidence (Faul and Tipping,

2002). According to the updated value of α, we choose to add one learner to the

ensemble, delete one ensemble member or re-estimate the hyperparameter α.

As described in previous sections, expectation propagation approximates each

term as a Gaussian distribution, leading to the situation that the likelihood of

every point in a classification ensemble has similar forms as a regression likelihood

term. The likelihood of each data point in classifier ensemble can be obtained as

p(m|w,x) = (2π)−N |Λ|−1/2 exp(−1

2
(wTF−m)T Λ−1(wTF−m)), (6.48)

where m = (m1, . . . ,mN) denotes the target point vector, Λ = diag(v1, . . . , vN),

vn represents the variance of the noise for the training point n. EP actually

111

6.3 Predictive Ensemble Pruning by Expectation Propagation

maps a classification problem into a regression problem where (mn,vn) defines

the virtual observation data point with mean mn and variance vn.

Note that we can compute analytically the posterior distribution of the weights.

The posterior distribution of the weight vector is thus given by:

p(w|x,m, α) =
p(m|w,x)p(w|α)

p(m|α,x)
= (2π)−N |Σ|−1/2 exp(−1

2
(w−µ)TΣ−1(w−µ)),

(6.49)

where the posterior covariance and mean are:

Σ = (A + FΛ−1FT)−1, (6.50)

µ = ΣFΛ−1m. (6.51)

where A = diag(α1, · · · , αM).

For regression ensemble, the posterior of weights can be easily obtained by

replacing classification likelihood terms with regression likelihood terms. The

posterior of weights has the similar equations as (6.49), (6.50) and (6.51) but

with different m and Λ.

In order to sequentially update α, we can maximize the type-II marginal

likelihood p(D|α). The fast algorithm to optimize the type-II marginal likelihood

is to decompose p(D|α) into two parts, one part denoted by p(D|α\i), that does

not depend on αi and another that does, i.e.,

p(D|α) = p(D|α\i) + l(αi), (6.52)

where l(αi) is a function that depends on αi.

The updating rule for αi can be obtained with the derivation of marginal

likelihood (Faul and Tipping, 2002). The details have been presented in appendix

C.

6.3.5 Algorithm Description

Based on the above subsections, the predictive ensemble pruning algorithm by

expectation propagation is summarized as follows:

1. Include a number of learning machines in the ensemble and initialize the

hyperparameters α.

112

6.3 Predictive Ensemble Pruning by Expectation Propagation

2. Train EP algorithm with the current hyperparameters α and sequentially

update α by maximizing the type-II marginal likelihood p(D|α). Based on

the updated values of α, we choose to add one learner to the ensemble,

delete one existing ensemble member or re-estimate the hyperparameter α.

Repeat this process until the algorithm converges.

3. Choose the ensemble from the sequential updates with the minimum leave-

one-out error estimation. As the leave-one-out error is discrete, so in case

of a tie, choose the first ensemble in the tie, i.e., the one with the smaller

marginal likelihood1.

6.3.6 Comparison of Expectation Propagation with Markov

Chain Monte Carlo

Expectation Propagation is a kind of integral approximation technique. It is

better to know the difference between the approximation and the exact distribu-

tion. As the truncated Gaussian prior is used in this paper, the exact posterior

distribution is unknown. In this section, we employ Markov Chain Monte Carlo

(MCMC) method to simulate the exact posterior distribution for the comparison

with EP.

MCMC methods (Andrieu et al., 2003) are a class of algorithms for sampling

from probability distributions based on constructing a Markov chain that has the

desired distribution as its equilibrium distribution. MCMC may be too slow for

many practical applications, but has the advantage that it becomes exact in the

limit of long runs. Thus, MCMC can provide a standard way to measure the

accuracy of integral approximation methods, such as expectation propagation in

this paper.

This paper uses one of the most well-known MCMC algorithms, Metropolis-

Hastings algorithm (Andrieu et al., 2003) to investigate regression and classifica-

tion ensembles, respectively. In our experiments, a Bagging ensemble with 100

1Qi et al. Qi et al. (2004) pointed out that optimization of marginal likelihood can lead
to over-fitting and leave-one-out error with smaller marginal likelihood is a better choice for
model selection.

113

6.3 Predictive Ensemble Pruning by Expectation Propagation

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

first component

se
co

nd
 c

om
po

ne
nt

PCA Analysis of MCMC (Metropolis−Hastings) and EP

10

20

30

40

50

60
EP mean
Gaussian Ellipse Contour by EP

(a) Sinc

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06
−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

first component

se
co

nd
 c

om
po

ne
nt

PCA Analysis of MCMC (Metropolis−Hastings) and EP

10

20

30

40

50

60
EP mean
Gaussian Ellipse Contour by EP

(b) Boston House

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

first component

se
co

nd
 c

om
po

ne
nt

PCA Analysis of MCMC (Metropolis−Hastings) and EP

10

20

30

40

50

60
EP mean
Gaussian Ellipse Contour by EP

(c) Breast Cancer

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
−1

−0.5

0

0.5

first component

se
co

nd
 c

om
po

ne
nt

PCA Analysis of MCMC (Metropolis−Hastings) and EP

10

20

30

40

50

60
EP mean
Gaussian Ellipse Contour by EP

(d) Diabetics

Figure 6.2: The posteriors of combination weights calculated by MCMC (30000

sampling points) and EP. The color bar indicates the density (the number of

overlapping points) in each place.

114

6.4 Numerical Experiments

Classification And Regression Trees (CARTs) is generated. MCMC and EP with

the hyperparameters optimization algorithm are employed for ensemble pruning.

In most of the cases, the pruned ensemble size is larger than 2 or 3 which makes

it inconvenient to directly visualize the resulting distribution. To facilitate the

visualization, principal components analysis (PCA) is performed and the first

two components are used for visualization. Figure 6.2 illustrates the first two

components, calculated by PCA, of the posterior of weighs calculated by MCMC

and EP for regression and classification ensembles.

Figure 6.2 illustrates the posteriors of combination weights calculated by

MCMC (30000 sampling points) and EP. We use sinc (with 0.1 Gaussian noise),

Boston house, breast cancer and diabetics data sets in this figure. Note that

the hyperparameters and noise terms are estimated in the hyperparameters op-

timization step by maximizing the marginal likelihood in both EP and MCMC

methods. The posteriors of weights calculated by MCMC have irregular bound-

aries for these problems and EP approximates the posteriors well by picking a

Gaussian to cover the densest area, although the distribution are not Gaussians,

for both regression and classification problems.

The pruned ensemble sizes and the error for both regression and classification

problems are shown in Table 6.1. From the table, EP and MCMC achieve similar

performance in terms of both accuracy and ensemble size. EP uses much less

time than MCMC.

Both figures and table indicate that EP approximates the posterior well in

this ensemble pruning model with truncated Gaussian priors for regression and

classification problems.

6.4 Numerical Experiments

This section presents the experimental results of expectation propagation pruning

algorithm for regression problems and classification problems, respectively.

In chapter 5, we generate a population of networks using evolutionary mul-

tiobjective algorithm and include all of the individual networks in the ensemble.

In this chapter, we use the ensemble pruning algorithm (EP pruning) to select

the classifiers, generated by MRNCL, to produce small ensembles.

115

6.4 Numerical Experiments

Table 6.1: The pruned ensemble size, error rate and computational time of

MCMC, EP and unpruned ensembles.

Regression Sinc House

Size MSE Time size MSE Time

MCMC 7 0.0082 343.1s 11 11.4892 398.5s

EP 8 0.0087 8.7s 11 11.5725 11.6s

Unpruned 100 0.0103 - 100 11.8464 -

Classification Cancer Diabetics

Size %error Time size error Time

MCMC 10 26.34 676.2s 19 24.58 986.3s

EP 11 26.93 19.1s 18 24.73 62.6s

Unpruned 100 27.64 - 100 24.65 -

In chapter 2, we reviewed a number of ensemble pruning algorithms, such as

least-square (LS) pruning, Bayesian automatic relevance determination (ARD)

pruning an so on. These algorithms are employed to compared with our EP

pruning algorithm in this section.

6.4.1 Synthetic Data Sets

As the first experiment, we compare EP-pruned ensembles with un-pruned en-

sembles on some synthetic data sets, including one regression data set, Sinc, and

two classification data sets: synth and banana.

Figure 6.3 shows the output of EP pruning and original Bagging ensembles,

which consists of 100 MLPs. We notice that EP pruning is a little better than the

original ensemble in the left tail of the sinc function. With respect to ensemble

size, EP pruning only picks 9 neural networks vs. 100 neural networks in the

original ensemble.

In the following synthetic classification data sets, we select the Adaboost of

neural networks as the ensemble algorithm because large Adaboost is prone to

overfitting the noise in the training set. Figure 6.4 illustrates the decision bound-

aries of EP pruning and original Adaboost for both problems. Not surprisingly,

116

6.4 Numerical Experiments

−8 −6 −4 −2 0 2 4 6 8
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2
SinC Function 100 Sampling Points with 0.1 Gaussian Noise

Points
EP Pruning
Original Ensemble
True Function

Figure 6.3: Comparison of EP-pruned ensembles and un-pruned Bagging ensem-

bles on sinc data set. The sinc data set is generated by sampling 100 data points

with 0.1 Gaussian noise from the sinc function. The Bagging ensemble consists

of 100 neural networks with random selected hidden nodes (3-6 nodes).

Adaboost with 100 neural networks overfits the noise and generates the twisty

boundaries.

With small ensemble size (16 for synth and 12 for banana), EP pruning

removes those overfitting individuals and generates better (smoother) decision

boundaries for both classification problems.

Based on these initial experiments with synthetic data, we observe that EP

pruning performs better than the original ensembles by utilizing a small amount

of individuals.

The following experiments will investigate EP pruning for benchmark prob-

lems. In the benchmark problems, we utilize decision trees, i.e. classification and

regression trees (CART), as base learners to generate different kinds of ensembles,

such as Bagging, Adaboost and Random Forest (both for classification ensembles

only). Each ensemble consists of 100 CARTs.

6.4.2 Results of Regression Problems

The information on the data sets used for regression is tabulated in Table 4.1.

These data sets have been used in chapter 4 to evaluate the performance of RNCL.

117

6.4 Numerical Experiments

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Decision Boundaries of Original Ensemble and EP Pruning Ensemble

class 1
class 2
EP Pruning
Original Ensemble

(a) Synth

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

Decision Boundaries of Original Ensemble and EP Pruning Ensemble

class 1
class 2
EP Pruning
Original Ensemble

(b) Banana

Figure 6.4: Comparison of EP-pruned ensembles and un-pruned Adaboost en-

sembles on Synth and banana data sets. The Adaboost ensemble consists of 100

neural networks with random selected hidden nodes (3-6 nodes).

Table 6.2: Average Test MSE, Standard Deviation for seven regression Bench-

mark Data sets based on 100 runs for Bagging. EP, ARD, LS, Random stand

for EP pruning, ARD pruning, least square pruning and random pruning, respec-

tively.

Bagging EP RVM LS Random Non-pruned

Sinc 0.0091±0.0019 0.0158±0.0026 0.0254±0.0036 0.0158±0.0018 0.0102±0.0017

Friedman 4.4765±0.4287 4.6327±0.4079 4.9594±0.4355 4.7711±0.4107 4.6094±0.4196

Gabor 0.0272±0.0094 0.0289±0.0080 0.0311±0.0087 0.0518±0.0118 0.0497±0.0010

Multi 0.1472±0.0206 0.1606±0.0198 0.1994±0.0236 0.1753±0.0206 0.1537±0.0190

Plane 0.0011±0.0002 0.0015±0.0003 0.0026±0.0004 0.0018±0.0002 0.0010±0.0002

Polynomial 0.3261±0.0522 0.3614±0.0499 0.4813±0.0664 0.3765±0.0515 0.3349±0.0487

House 11.5725±4.0741 11.5803±4.3361 12.3202±4.8322 12.2844±4.8322 11.8464±4.4938

W-L-T - 0-7-0 0-7-0 0-7-0 1-6-0

Significant - 0-4-3 0-6-1 0-6-1 0-2-5

118

6.4 Numerical Experiments

Table 6.3: Size of Pruned Ensemble with standard deviation for Different Algo-

rithms for Bagging. The results are based on 100 runs.

Bagging EP RVM LS Random Non-pruned

Sinc 7.9±1.7 21.4±5.3 100 25 100

Friedman 12.2±1.9 36.3±5.3 100 25 100

Gabor 9.6±2.0 44.3±4.6 100 25 100

Multi 13.6±1.7 34.9±5.0 100 25 100

Plane 9.3±1.5 24.4±6.3 100 25 100

Polynomial 11.2±2.1 31.3±5.3 100 25 100

House 10.5±1.5 44.0±4.4 100 25 100

Please refer to chapter 4 for detailed information.

In order to evaluate the performance of EP pruning algorithm, we have imple-

mented Bayesian ARD pruning without negative constraints, least square pruning

algorithm and random pruning algorithm on 8 regression benchmark problems

for comparison purposes.

For every data set, we run independent 100 times and record the average

mean squared error (MSE) and the standard deviation on the test set for different

algorithms. The performance of four pruning algorithms with seven data sets has

been presented in Table 6.2. A win-loss-tie summary based on mean values and

t-test (95% significance level) is attached at the bottom of the table.

Table 6.2 shows that EP pruning outperforms all the other methods in 6

out of 7 data sets, comes second in one other case. Although ARD pruning

uses Bayesian inference for ensemble pruning as well, it seems that adopting the

negative combination weights leads to suboptimal results. The baseline algorithm,

random pruning, fails to compete with EP and ARD pruning. In most cases, the

least square algorithm is worse than other algorithms, which indicates that the

least square algorithm often overfits the noise and does not work well in practice.

Another interesting point is that EP pruning achieves better performance by

employing only a few of the ensemble members, as shown by Table 6.3. For

the random pruning algorithm, we fix the size of pruned ensemble as 25 since

119

6.4 Numerical Experiments

Table 6.4: Average Test error, Standard Deviation for 13 classification Benchmark

Data sets based on 100 runs for Bagging algorithm. EP, ARD, Kappa, CP,

LS, Random stand for EP pruning, ARD pruning, kappa pruning, concurrency

pruning, least square pruning and random pruning.

Bagging EP ARD Kappa CP LS Random Non-pruned

Banana 12.74±0.78 13.14±0.67 13.74±0.73 13.32±0.87 14.54±0.94 14.93±0.85 12.75±0.79

Cancer 26.81±4.74 30.96±4.73 28.81±4.54 30.30±4.54 34.51±5.03 29.35±4.33 27.42±4.54

Diabetics 24.88±1.93 25.76±1.90 26.30±1.79 25.08±1.97 26.15±1.89 27.89±1.95 24.62±1.81

Solar 35.18±1.80 36.33±1.93 36.80±1.98 36.00±1.77 37.15±1.93 37.88±1.82 35.96±1.82

German 22.15±2.21 24.19±2.23 24.12±2.21 24.67±2.30 25.01±2.27 25.80±2.05 23.63±2.17

Heart 19.13±3.64 22.17±3.56 20.01±3.99 20.71±4.11 26.42±3.98 22.08±3.75 19.09±3.89

Image 2.04±0.48 2.20±0.47 2.40±0.54 2.31±0.48 2.35±0.46 2.40±0.53 2.32±0.50

Ringnorm 8.68±1.16 10.44±1.53 8.88±1.16 9.26±1.42 8.00±1.20 9.84±1.36 8.08±1.37

Splice 5.03±0.67 5.18±0.69 5.13±0.75 5.15±0.69 5.04±0.70 5.71±0.79 5.02±0.77

Thyroid 6.27±3.04 7.03±5.14 6.87±3.04 7.35±2.95 9.19±3.25 7.49±3.21 6.83±3.20

Titanic 22.36±1.31 23.72±5.61 22.56±1.67 24.00±1.64 22.49±1.21 24.50±0.96 22.57±1.01

Twonorm 7.24±1.04 12.55±6.48 7.98±0.88 8.67±1.60 7.18±0.98 10.44±1.21 6.55±1.34

Waveform 13.12±0.57 14.35±0.48 14.10±0.65 13.52±0.63 13.84±0.89 14.64±0.68 13.67±0.71

W-L-T - 0-13-0 0-13-0 0-13-0 2-11-0 0-13-0 5-8-0

Significant - 0-7-6 0-5-8 0-7-6 0-8-5 0-11-2 1-3-9

previous empirical research suggests that, in most cases, most or all of the gen-

eralization gain in a well-constructed ensemble comes from the first 25 learners

added (Breiman, 1996a; Opitz and Maclin, 1999).

According to Table 6.3, EP pruning consistently uses significantly fewer en-

semble members than other algorithms, including ARD pruning.

In general, the performance of EP pruning on these benchmark problems is

better than non-pruned ensembles in terms of generalization ability and sparsity.

6.4.3 Results of Classifier Ensembles

For classifier ensembles, we use Rätsch’s data sets, which have been used in

chapter 4 and 5, to make the thesis consistent. Please refer to section 4.4 for the

detailed description of these data sets.

In order to compare our algorithm with others, we have implemented ARD

120

6.4 Numerical Experiments

Table 6.5: Size of Pruned Ensemble with standard deviation with Different Al-

gorithms for Bagging. The results are based on 100 runs.

Bagging EP RVM Kappa CP LS Random Non-pruned

Banana 10.2±2.7 12.7±1.7 25 25 100 25 100

Cancer 9.8±2.7 17.5±2.0 25 25 100 25 100

Diabetics 17.5±2.3 18.6±1.8 25 25 100 25 100

Solar 5.7±1.8 7.0±1.0 25 25 69.4±4.3 25 100

German 17.9±3.7 25.0±2.5 25 25 100 25 100

Heart 10.1±1.7 10.1±1.5 25 25 100 25 100

Image 9.4±1.4 9.5±1.5 25 25 100 25 100

Ringnorm 10.1±1.6 8.0±2.4 25 25 100 25 100

Splice 11.4±2.4 12.2±1.7 25 25 100 25 100

Thyroid 5.1±1.2 4.9±2.2 25 25 43±6.2 25 100

Titanic 3.3±1.1 25.9±22.5 25 25 74.8±1.4 25 100

Twonorm 10.6±1.5 5.3±3.5 25 25 100 25 100

Waveform 10.3±1.8 10.8±1.2 25 25 100 25 100

121

6.4 Numerical Experiments

Table 6.6: Average Test error, Standard Deviation for 13 classification Benchmark

Data sets based on 100 runs for Adaboost algorithm. EP, ARD, Kappa, CP,

LS, Random stand for EP pruning, ARD pruning, kappa pruning, concurrency

pruning, least square pruning and random pruning.

Adaboost EP ARD Kappa CP LS Random Non-pruned

Banana 13.49±0.65 14.19±0.76 15.85±1.48 13.40±0.72 14.23±0.67 16.65±0.69 13.51±0.60

Cancer 31.88±4.15 31.64±6.21 37.40±6.58 38.86±5.87 32.70±4.97 36.94±6.42 31.16±4.47

Diabetics 25.72±2.42 28.78±2.33 28.21±2.52 28.13±2.07 26.25±1.92 29.15±2.12 26.06±1.99

Solar 34.28±1.87 36.37±1.98 39.46±2.38 40.95±2.38 38.59±1.97 41.95±5.43 36.26±1.78

German 24.37±2.55 27.39±2.43 26.73±2.35 27.21±2.57 24.21±2.05 28.05±2.44 24.06±2.19

Heart 18.40±4.25 23.33±3.41 28.33±4.68 22.65±4.00 21.74±3.76 22.79±3.98 20.82±3.97

Image 1.23±0.54 1.78±0.72 1.46±0.55 1.40±0.37 1.15±0.35 1.40±0.42 1.12±0.35

Ringnorm 3.82±0.53 4.65±0.61 5.14±1.08 6.43±0.78 4.37±0.49 6.89±0.75 4.09±0.47

Splice 4.17±0.85 4.40±0.62 6.4±0.68 4.40±0.58 3.94±0.49 6.12±0.77 3.55±0.54

Thyroid 5.09±2.70 7.24±2.90 8.39±8.04 5.58±2.57 7.41±3.24 7.00±3.38 4.69±2.40

Titanic 21.40±0.79 23.76±0.82 28.98±0.84 29.12±0.79 23.22±0.96 32.90±1.07 21.98±0.70

Twonorm 3.52±0.41 5.49±0.52 6.08±0.52 6.01±0.83 4.14±0.44 5.85±0.39 3.79±0.30

Waveform 10.47±0.52 11.88±0.62 14.12±0.64 12.83±0.70 11.58±0.59 14.88±0.47 11.42±0.50

W-L-T - 1-12-0 0-13-0 1-12-0 3-10-0 0-13-0 5-8-0

Significant - 0-7-5 0-10-3 0-9-4 0-5-7 0-12-1 2-4-7

122

6.4 Numerical Experiments

Table 6.7: Size of Pruned Ensemble with standard deviation with Different Al-

gorithms for Adaboost. The results are based on 100 runs.

Adaboost EP RVM Kappa CP LS Random Non-pruned

Banana 10.9±1.9 10.6±1.8 25 25 100 25 100

Cancer 11.4±2.3 13.2±1.7 25 25 65.0±19.2 25 100

Diabetics 12.5±1.9 12.4±2.1 25 25 100 25 100

Solar 8.3±2.8 11.8±1.7 25 25 49.8±17.1 25 100

German 12.4±1.8 12.3±1.2 25 25 100 25 100

Heart 10.9±1.6 11.0±2.1 25 25 100 25 100

Image 8.8±2.3 6.2±2.7 25 25 100 25 100

Ringnorm 10.4±2.7 8.7±2.5 25 25 100 25 100

Splice 8.9±1.2 8.3±2.2 25 25 87.3±12.6 25 100

Thyroid 5.9±0.9 5.1±2.9 25 25 87.3±18.3 25 100

Titanic 4.9±0.9 5.6±0.7 25 25 10.7±1.8 25 100

Twonorm 11.3±1.6 8.6±1.4 25 25 100 25 100

Waveform 10.5±2.0 9.1±2.9 25 25 100 25 100

pruning, kappa pruning, concurrency pruning, least square pruning and random

pruning. As same as the previous subsection, we fix the pruned ensemble size at

25 for kappa pruning, concurrency pruning and random pruning.

Tables 6.4, 6.6, and 6.8 report the performance of these algorithms with 13

benchmark data sets using Bagging, Adaboost and Random forests, respectively.

The size of the ensembles is recorded in Tables 6.5, 6.7 and 6.9.

In this chapter, we also apply the EP pruning to select the best subset of indi-

vidual classifiers, generated by the multiobjective regularized negative correlation

learning (MRNCL) algorithm in chapter 5, to produce the ensemble. Tables 6.10

and 6.11 reports the performance on MRNCL, and the size of pruned ensembles,

respectively.

According to these tables, EP pruning compares quite favorably against these

different ensemble algorithms. For example, for Bagging (Table 6.4) EP pruning

outperforms all the other methods, including the non-pruned ensemble on eight

123

6.4 Numerical Experiments

Table 6.8: Average Test error, Standard Deviation for 13 classification Benchmark

Data sets based on 100 runs for Random forests algorithm. EP, ARD, Kappa, CP,

LS, Random stand for EP pruning, ARD pruning, kappa pruning, concurrency

pruning, least square pruning and random pruning.

Random Forest EP RVM Kappa CP LS Random Non-pruned

Banana 12.76±0.44 13.83±0.42 13.70±0.49 13.89±0.57 13.89±0.89 16.24±0.79 12.72±0.48

Cancer 24.86±4.66 26.66±4.65 26.86±4.69 28.18±4.47 34.79±4.69 28.43±4.21 24.92±4.10

Diabetics 24.67±1.98 24.35±2.14 30.79±2.38 25.12±1.76 26.80±2.10 26.45±2.18 25.20±1.74

Solar 34.90±1.79 36.31±1.90 36.78±2.76 39.70±4.60 37.37±2.06 38.85±2.31 34.59±1.91

German 23.64±2.37 24.96±2.38 27.23±2.48 24.51±2.29 25.72±2.29 26.18±2.24 24.32±2.33

Heart 18.08±4.16 18.31±4.27 19.34±4.20 19.63±4.06 26.32±4.11 18.71±3.87 17.43±3.72

Image 1.81±0.40 1.83±0.58 2.37±0.81 1.98±0.48 1.67±0.42 2.01±0.49 1.84±0.44

Ringnorm 3.71±0.63 4.07±0.76 5.50±0.65 6.17±0.98 5.19±0.68 6.00±0.85 4.63±0.68

Splice 3.63±0.51 3.70±0.68 3.64±1.42 3.99±0.48 3.30±0.39 3.84±0.48 2.91±0.35

Thyroid 5.25±2.84 6.13±2.83 8.36±2.87 5.78±2.54 8.28±3.92 6.21±3.14 5.71±2.78

Titanic 22.44±1.31 22.76±2.97 24.19±2.20 24.23±2.11 22.41±1.17 23.96±2.73 23.55±2.15

Twonorm 3.89±0.51 4.21±0.81 5.93±0.56 6.74±0.75 5.39±0.53 6.06±0.60 4.31±0.40

Waveform 11.98±0.75 12.06±0.85 13.06±0.85 12.65±0.76 13.88±0.76 12.59±0.72 11.57±0.63

W-L-T - 1-12-0 0-13-0 0-13-0 3-10-0 0-13-0 5-8-0

Significant - 0-5-8 0-9-4 0-7-6 0-9-4 0-7-6 1-2-10

124

6.4 Numerical Experiments

Table 6.9: Size of Pruned Ensemble with standard deviation with different algo-

rithms for random forest. The results are based on 100 runs.

Random Forest EP RVM Kappa CP LS Random Non-pruned

Banana 14.1±2.4 15.1±4.7 25 25 76.0±4.5 25 100

Cancer 6.7±1.6 19.3±3.1 25 25 98.5±1.4 25 100

Diabetics 16.8±4.2 20.3±2.0 25 25 99.9±0.1 25 100

Solar 7.1±2.6 11.9±2.0 25 25 84.5±3.6 25 100

German 16.0±4.8 27.1±2.2 25 25 100 25 100

Heart 11.1±1.6 11.2±1.6 25 25 100 25 100

Image 10.1±1.5 8.9±2.9 25 25 100 25 100

Ringnorm 10.7±1.4 6.4±2.6 25 25 100 25 100

Splice 12.8±1.9 12.1±2.3 25 25 100 25 100

Thyroid 5.6±1.2 4.9±2.0 25 25 82.5±5.9 25 100

Titanic 3.7±1.5 22.3±18.1 25 25 96.8±1.4 25 100

Twonorm 10.8±1.4 4.8±2.9 25 25 100 25 100

Waveform 11.1±1.4 10.4±2.2 25 25 100 25 100

out of thirteen data sets, comes second in two cases and third in the remaining

three. Comparing with the original ensemble, EP pruning employs much fewer

ensemble members but performs better than the original ensemble. Take the Ad-

aboost (Table 6.6) as an example, EP pruning performs better than non-pruned

ensemble in eight out of thirteen cases, in which four wins are statistically signif-

icant; EP pruning loses five times, where two losses are statistically significant.

Least square (LS) pruning, which minimizes the training error, performs well

only on data set with little noise, for example Image. In most situations, LS

pruning does not reduce the size of an ensemble. Random pruning, which serves

as the baseline algorithm, is not comparable to the original ensemble and other

pruning algorithms.

According to these tables, the previous finding that Adaboost is prone to

overfitting the noise in the training set is also confirmed as Adaboost performs

well on data sets with little noise, such as Image, Twonorm, but worse on noise-

corrupted data sets.

125

6.4 Numerical Experiments

Table 6.10: Average Test error, Standard Deviation for 13 classification Bench-

mark Data sets based on 100 runs for MRNCL algorithm. EP, ARD, Kappa, CP,

LS, Random stand for EP pruning, ARD pruning, kappa pruning, concurrency

pruning, lease square pruning and random pruning.

MRNCL EP RVM Kappa CP LS Random Non-pruned

Banana 10.75±0.82 11.62±0.79 11.70±0.89 11.93±0.62 12.31±0.87 13.44±0.92 10.68±0.72

Cancer 24.86±4.26 26.47±4.72 26.92±4.61 27.27±4.38 30.79±4.76 28.39±4.89 26.43±4.61

Diabetics 23.53±1.86 23.38±2.14 27.72±2.28 26.25±1.79 26.58±2.11 27.40±2.14 23.26±1.68

Solar 32.43±1.79 35.36±1.90 35.78±2.36 38.57±2.63 37.42±2.07 38.95±2.31 33.10±1.76

German 23.68±2.37 25.06±2.28 26.88±2.49 26.62±2.49 25.83±2.29 27.36±2.93 24.23±2.12

Heart 16.04±3.62 16.42±3.68 17.19±4.21 17.63±4.06 19.47±3.89 19.75±4.92 15.62±3.03

Image 2.83±0.73 3.06±0.78 2.89±0.82 2.98±0.84 2.56±0.69 3.48±0.99 2.62±0.70

Ringnorm 1.58±0.25 1.89±0.36 1.66±0.32 1.92±0.35 1.72±0.22 2.69±0.63 1.61±0.23

Splice 9.96±0.51 10.13±0.61 10.34±0.83 11.36±0.86 11.87±0.60 12.37±0.94 9.89±0.59

Thyroid 4.58±2.44 4.86±2.63 4.97±2.78 5.38±2.54 4.39±3.10 6.48±3.53 4.53±2.12

Titanic 22.24±1.31 22.78±1.89 23.09±2.10 23.29±2.46 27.11±1.48 27.96±2.39 22.28±1.08

Twonorm 2.49±0.16 2.6±0.18 2.89±0.32 3.42±0.63 2.83±0.21 5.32±0.64 2.29±0.12

Waveform 10.24±0.72 11.26±0.75 11.04±0.82 12.25±0.76 13.47±0.80 14.22±0.85 10.42±0.61

W-L-T - 0-13-0 0-13-0 0-13-0 2-11-0 0-13-0 7-6-0

Significant - 0-5-8 0-8-5 0-6-7 0-9-4 0-10-3 2-2-9

126

6.4 Numerical Experiments

Table 6.11: Size of Pruned Ensemble with standard deviation with different al-

gorithms for MRNCL. The results are based on 100 runs.

MRNCL EP RVM Kappa CP LS Random Non-pruned

Banana 24.3±6.4 29.1±4.7 25 25 64.0±7.8 25 100

Cancer 18.9±3.2 24.3±5.1 25 25 100 25 100

Diabetics 36.8±4.2 31.3±4.0 25 25 100 25 100

Solar 19.2±2.6 25.9±2.0 25 25 100 25 100

German 36.0±4.1 29.1±5.2 25 25 100 25 100

Heart 18.5±2.4 19.2±1.9 25 25 66.5±7.6 25 100

Image 20.1±1.5 18.9±4.7 25 25 100 25 100

Ringnorm 16.3±2.3 12.4±3.5 25 25 100 25 100

Splice 23.4±2.2 27.1±4.3 25 25 100 25 100

Thyroid 25.9±4.2 16.4±3.8 25 25 92.5±2.9 25 100

Titanic 24.7±7.5 29.3±8.1 25 25 100 25 100

Twonorm 27.4±3.2 19.4±3.5 25 25 98.6±1.1 25 100

Waveform 30.7±2.8 26.7±3.4 25 25 100 25 100

127

6.4 Numerical Experiments

Table 6.12: Running Time of EP pruning, ARD pruning and EM pruning on

Regression Data Sets in seconds. Results are averaged over 100 runs.

Time Sinc Fried. Gabor Multi Plane Poly. House

EP 8.7s 9.3s 8.6s 7.6s 7.2s 9.2 11.6s

EM 0.6s 0.5s 0.7s 0.6s 0.3s 0.6s 1.1s

ARD 0.3s 0.2s 0.3s 0.3s 0.1 0.3s 0.4s

Overall, EP pruning achieves significant sparseness in ensembles and performs

better or as well as the original ensemble. It provides a way to reduce the com-

putational complexity at the test stage and make the ensemble more compact.

There are two possible reasons to explain the success of EP pruning.

1. EP pruning benefits from the truncated Gaussian priors. As negative com-

bination weights are not intuitive and unreliable, especially when individual

learners are highly correlated, the truncated Gaussian prior not only satis-

fies the constraint but also leads to a sparse ensemble. This prior controls

the complexity by generating appropriate sparseness, and thus improves the

generalization.

2. EP pruning employs the leave-one-out error together with the Bayesian

evidence as the criterion for model selection, which is more efficient than

the other algorithms.

6.4.4 Computational Complexity and Running Time

The improved performance of our algorithm comes with a price: more compu-

tation time during the training stage. Tables 6.12 and 6.13 show the average

running time of EP pruning and other pruning algorithms over 100 runs for

regression and classification problems, respectively. The computational environ-

ment is Windows XP with Intel Core 2 Duo 1.66G CPU and 2G RAM. These

algorithms are implemented in MATLAB.

According to the algorithm in section 6.3, EP pruning is an iterative algo-

rithm and it consists of two major parts: EP training and sequential update of

hyperparameters α.

128

6.4 Numerical Experiments

Table 6.13: Running Time of EP pruning, ARD pruning, EM pruning, Kappa

pruning and concurrency pruning on Classification Data Sets in seconds. Results

are averaged over 100 runs.

Time Banana Cancer Diabetics Solar German Heart Image Ringnorm Splice Thyroid Titanic Twonorm Waveform

EP 56.3s 19.1s 62.6s 42.2s 88.4s 21.4s 184.4s 83.5s 136.2s 21.7s 3.1s 84.6s 82.5s

EM 1.6s 1.1s 3.4s 2.6s 4.9s 1.7s 6.3s 4.9s 3.8s 1.3s 0.9s 4.7s 5.3s

ARD 0.7s 0.3s 1.3s 0.7s 2.0s 0.4s 2.5s 1.8s 1.6s 0.4s 0.2s 1.8s 1.8s

Kappa 0.8s 0.7s 0.9s 1.0s 1.0s 0.7s 1.5s 0.9s 1.3s 0.7s 0.6s 0.8s 0.8s

CP 1.2s 0.6s 1.3s 2.1s 2.7s 0.6s 7.2s 1.2s 4.1s 0.5s 0.5s 1.2s 1.2s

In the first part, EP processes each data point in O(M2) time, where M is the

size of current ensemble. Assuming the number of iterations is constant, which

seems to be true in practice, the computational complexity of EP training in the

first part is O(NM2), where N is the number of training points. In the second

step, the major running time is consumed in calculating vector products, which

can be done quickly. Most of the computation time is consumed in the first part.

Although we cannot prove the convergence of EP, in our experiments it al-

ways converges for ensemble pruning with Gaussian (for regression) or probit

(for classification) likelihood. In practice, 200 iterations have been adopted in

our ensemble pruning algorithm. Therefore, the total estimated computational

complexity of EP pruning is around O(iter ∗NM2), where iter is the number of

iterations.

As indicated in the introduction, ensemble pruning algorithms can improve ac-

curacy and reduce the test time, but will lead to a longer training time. Ensemble

pruning algorithms are particularly suited to the applications that are character-

ized by small training but large test sets. In this subsection, we will provide an

example with a relatively small training set and a large test set, namely the poker

hand data set from the UCI machine learning repository (Asuncion and Newman,

2007).

The data set consists of 25010 training examples and 1 million test examples.

Each example represents a hand holding five playing cards drawn from a standard

deck of 52. Each card is described by two attributes (suit and rank), for a total of

10 predictive attributes (corresponding to the 5 cards). There are ten classes in

129

6.4 Numerical Experiments

the data set and we merge the ten classes into 2 classes. One class means nothing1

in hand and another class means that there is something (one pair, two pairs,

flush, royal flush, etc.) in hand. The percentages of the two classes are nearly

balanced in both training and test data sets. Although a manually-specified rule

can successfully classify the data set, this task is not easy for a machine learning

algorithm operating on the provided vectorial feature representation.

We use 100 CART trees to generate a Bagging ensemble and we use different

ensemble pruning algorithms to prune the ensemble. The experimental results are

summarized in Table 6.14. According to Table 6.14, the EP pruning algorithm

has improved both accuracy and efficiency. For example, the pruned ensemble

outperformed the unpruned ensemble in terms of accuracy (error rate 25.68% vs.

27.94%). The total time (2806.1 seconds) including the EP training time and the

application time for the pruned ensemble is much smaller than the application

time for the unpruned ensemble (6154.9 seconds).

Table 6.14: Summary of EP, EM, ARD, LS, Kappa, CP, random and other

unpruned ensembles with poker hand problem (Train points 25010 and Test points

1 mil.). The results are averaged over ten runs.

Summary Error % Size Train Time Test Time Total Time

Unpruned 27.94 100 - 6154.9s 6154.9s

EP 25.68 11.6 2129.4s 677.4s 2806.8s

EM 27.84 19.2 2463.7s 1181.7s 3645.4s

ARD 28.42 29.6 2236.2s 1829.6s 4065.8s

LS 29.13 100 6.8s 6189.2s 6196.0s

Kappa 31.15 25 195.7s 1455.6s 1651.3s

CP 28.73 25 458.6s 1479.3s 1937.9s

Random 31.92 25 1.1s 1464.3s 1465.4s

1In the five cards, there is no one pair, two pairs, three of a kind, straight (five cards,
sequentially ranked with no gaps), flush (five cards with the same suit), full house (pair plus
different rank three of a kind), four of a kind (four equal ranks within five cards), straight flush
(straight plus flush) or royal flush (Ace, King, Queen, Jack, Ten plus flush).

130

6.5 Summary

0 2 4 6 8 10

x 10
6

0

1000

2000

3000

4000

5000

6000

7000

number of testing points

E
va

lu
at

io
n

T
im

e
in

 S
ec

on
ds

Original Ensemble Evaluation Time
EP Training Time + Evaluation Time

Figure 6.5: Comparison of evaluation time of each pruning method averaged.

Figure 6.5 illustrates the total time as a function of the number of test ex-

amples. According to the figure, though EP needed more time in training, the

pruned ensemble is much smaller and thus consumed considerably less time in

testing than the unpruned ensemble. When the number of test examples in-

creased, EP used less time than the unpruned ensemble.

6.5 Summary

This chapter considers how to prune the ensemble to reduce the computational

complexity and improve the generalization performance. This chapter proposes

a probabilistic ensemble pruning algorithm in order to get a set of sparse com-

bination weights to prune the ensemble. As the previous research implied that

negative combination weights in the ensemble will degrade the performance, we

introduce a left-truncated and non-negative Gaussian prior for every combination

weight in this probabilistic model. The integral to calculate the normalization

term is intractable in Bayesian inference after incorporating the truncated Gaus-

sian prior. Therefore, we propose to use expectation propagation to approximate

the posterior calculation in this thesis. An estimate of the leave-one-out (LOO)

error can be obtained in the training of EP. The LOO error is used together with

Bayesian evidence for ensemble pruning. An empirical study on several regression

131

6.5 Summary

and classification benchmark data sets shows that our algorithm utilizes far less

component learners but performs as well as, or better than, the non-pruned en-

semble. The results are promising compared with ARD pruning and some other

heuristic algorithms.

In total, the contributions of the chapter includes a new ensemble pruning

algorithms based on Bayesian probabilistic and a thorough analysis and empirical

comparison of different combining strategies.

132

Chapter 7

Conclusions and future research

This chapter summarizes the work presented in the previous chapters. The po-

tential future research on some further questions and possible extensions are also

discussed.

7.1 Conclusions

This thesis focuses on analyzing and application of diversity and regularization in

ensemble systems. With this aim, we investigated the theoretical and empirical

analysis of diversity in classifier ensembles in chapter 3, and investigated a special

kind of diversity, error diversity, using negative correlation learning (NCL) in

detail, and discovered that regularization should be used to address the overfitting

problem of NCL. Then we proposed the regularized negative correlation learning

(RNCL) algorithm to improve the noise-robustness ability of NCL. Finally, we

investigated ensemble pruning as one way to balance diversity, regularization and

accuracy and studied one ensemble pruning algorithm in chapter 6. The details

of these contributions and significance are described as follows.

In chapter 2 we comprehensively reviewed the literature on ensemble of learn-

ing machines from the following aspects: (i) some popular ensemble learning

methods; (ii) three important decompositions for analyzing ensemble models and

the current literature on analysis of diversity for classifier ensembles; (iii) some

developments and applications of negative correlation learning algorithm; (iv) a

number of ensemble combination and pruning methods. For the first point, we

133

7.1 Conclusions

studied the current techniques of ensemble learning and their advantages and

disadvantages. The second point introduced three fundamental theoretical re-

sults for regression ensembles, the bias-variance decomposition, bias-variance-

covariance decomposition and ambiguity decomposition. Thirdly, we made a

thorough survey and analysis of negative correlation learning (NCL) algorithm

and pointed out the potential problems in NCL, which ignited the explosion of

regularized negative correlation learning techniques in the thesis. In the last part,

we summarized various selection-based and weight-based algorithms for ensemble

pruning, which aims to reduce the size of ensemble and simultaneously improve

the generalization performance by balancing diversity, regularization and accu-

racy in the ensemble. The aim of this chapter is to identify the wider body of

literature to which the thesis contributes.

In chapter 3, we proposed an ambiguity decomposition for classifier ensembles

with zero-one loss for the first time. The proposed ambiguity decomposition is

fundamental for our understanding of classifier ensembles and the decomposition

can be employed to analyze the classifier ensembles. For example, a new diversity

measure has been defined based on the decomposition. The superiority of the new

diversity measure is confirmed by the numerical experiments against other nine

diversity measures. Furthermore, we used ten diversity measures to examine the

relationship between diversity and generalization for Bagging. The results showed

that diversity highly correlated with generalization error when the diversity was

small, and the correlation reduced after diversity exceeded a threshold. These

findings explain the conflicting empirical results (Garćıa et al., 2005; Kuncheva

and Whitaker, 2003) in ensemble research and point out that large diversity does

not always help the generalization of ensemble.

Chapter 4 focused on the application of one specific diversity “error diver-

sity” in negative correlation learning and pointed out two problems of NCL: (1)

non-regularized NCL is prone to overfitting the noise; (2) there is no formulated

approach to select the correlation coefficient. To address these problems, regular-

ization should be used to address the overfitting problem of NCL and we proposed

the regularized negative correlation learning (RNCL) by incorporating an addi-

tional regularization term for NCL. The Bayesian formulation of the RNCL and

134

7.1 Conclusions

an algorithm to optimize these regularization parameters based on Bayesian in-

ference were proposed in this chapter. The numerical results on synthetic data

as well as real-world data sets demonstrated that RNCL achieved better per-

formance than NCL, especially when the noise level was non-trivial in the data

set. There are two major contributions in this chapter. The first contribution

is that we give the first theoretical and empirical analysis demonstrating that

negative correlation learning (NCL) is prone to overfitting the noise. The sec-

ond contribution includes the regularized negative correlation learning algorithm

and the inference of regularization parameters. These work improve the noise-

robustness of NCL, enhance our understanding to ensemble models and bridge

the gap between ensemble research and Bayesian analysis. Another significance

of the chapter is that RNCL can be viewed as a general framework, rather than

an algorithm itself, which means many methods can make use of it.

The major contribution of chapter 5 is to formulate the regularized nega-

tive correlation learning as a multiobjective optimization problem. The resulting

algorithm MRNCL can effectively search the best trade-off among these three

terms. To facilitate the evolutionary process, the crossover and mutation oper-

ators were defined to vary the structure of RBF networks. The nondominated

sorting algorithm with fitness sharing and linear rank-based fitness assignment

were employed to promote diversity in MRNCL. The numerical results and vi-

sualization on both the synthetic data sets and the benchmark datasets have

demonstrated that MRNCL achieves better performance than MNCL. The com-

parison with other state-of-the-art algorithms also demonstrates the superiorly

of MRNCL. The research in this chapter explicitly indicates that evolutionary

multi-objective algorithms provide another way to implement effective ensemble

models for supervised learning problems. In chapter 5, we also compared gradi-

ent descent based RNCL with multiobjective based MRNCL and presented their

respective advantages.

To reduce the computational complexity and improve the generalization per-

formance, chapter 6 investigated ensemble pruning as one way to balance the

trade-off among diversity, regularization and accuracy. We proposed an ensemble

pruning algorithm based on predictive expectation propagation, where an esti-

mate of the leave-one-out (LOO) error can be obtained without extra computa-

135

7.2 Future work

tion. The LOO error is used together with Bayesian evidence for model selection.

An empirical study on several regression and classification benchmark data sets

showed that our algorithm utilizes far less component learners but performs as

well as, or better than, the non-pruned ensemble. Moreover, we have conducted

a thorough analysis and empirical comparison of different combining strategies

and the results of our algorithm are promising compared with ARD pruning and

some other algorithms. EP pruning offers a way to estimate the combination

weights and prune the ensemble with the following compelling advantages: (1)

Good generalization ability. Although our algorithm employs only a few of the

ensemble members, they performs as well as, or better than, the non-pruned en-

semble; (2) The highly sparse model is obtained by the sparseness-inducing prior

and behaves optimally compact; (3) No parameters to tune.

The results are also positive when EP pruning algorithm is used to select the

classifiers from the population, generated by multi-objective regularized negative

correlation learning algorithm, to produce effective and efficient ensembles by

balancing the diversity, regularization and accuracy.

7.2 Future work

This section discusses several ideas for further research that may extend and

improve the methods described in this work.

7.2.1 Reduce the Computational Complexity of EP Prun-

ing

In chapter 6, we proposed an ensemble pruning algorithm based on expectation

propagation. Although this algorithm outperforms other algorithms, it does cost

extra computational resources. In the future, we are interested in improving the

efficiency of the algorithm.

As the source of the low efficiency in EP pruning algorithm originates from

the integral approximating technique expectation propagation, one future opinion

is to employ other integral approximating techniques, such as Laplace approxi-

mation (MacKay, 1998) and variational methods (Jordan et al., 1999), for the

136

7.2 Future work

probabilistic model. Then, we can evaluate different approximating techniques

for this probabilistic ensemble pruning model.

7.2.2 Theoretical Analysis of Ensemble

Throughout the theoretical analysis in this thesis, we mainly focused on develop-

ing decompositions for binary classification problems and we empirically studied

the relationship between diversity and generalization for Bagging. In the future,

we would like to extend the definition of diversity to multi-class classification

problems and study the relationship between diversity and generalization error

for other ensemble algorithms, such as Boosting, negative correlation and random

forests. After we examine the relationship between generalization error and diver-

sity, we are interested in employing the relationship to improve the performance

of ensemble.

7.2.3 Semi-supervised Regularized Negative Correlation

Learning

In this work, we concentrated on developing ensemble methods for supervised

learning. However, the practical dataset might consist of labeled data and a large

amount of unlabeled data, and unlabeled examples are much easier to obtain than

labeled ones in many real-world applications. Semi-supervised learning (Chapelle

et al., 2006; Zhu, 2007), where unlabeled data is used in conjunction with a

small amount of labeled data, can produce considerable improvement in learning

accuracy.

We are interested in the application of ensemble algorithms to semi-supervised

learning problems. In fact, the graph-based methods can be employed to extend

the RNCL algorithm for semi-supervised learning. Graph-based semi-supervised

methods define a graph where the nodes are labeled and unlabeled examples in

the dataset, and edges (may be weighted) reflect the similarity of examples. These

methods usually assume label smoothness over the graph.

Given a set of N labeled examples {xn, yn}N
n=1 and a set of u unlabeled ex-

amples {xl}N+u
l=N+1, an easy extension of RNCL for semi-supervised learning is

137

7.2 Future work

presented as follows:

Eens =
N∑

n=1

(fens(xn)− yn)2 +
M∑
i=1

αiw
T
i wi + γ ‖fens‖2

I , (7.1)

where γ is the coefficient parameter and ‖fens‖2
I is the manifold regularization

term (Belkin et al., 2006)

‖fens‖2
I =

1

(N + u)2

N+u∑

n,l=1

(fens(xn)− fens(xl))
2Wn,l, (7.2)

where Wn,l are edge weights in the data adjacency graph and 1
(N+u)2

is the nor-

malizing coefficient.

The formulation of semi-supervised RNCL considers the relationship among

these data points, specified by the edge weights Wn,l, and this formulation can

be effectively implemented by gradient descent methods.

7.2.4 Multi-objective Ensemble Learning

This thesis has utilized multi-objective algorithm to implement RNCL algorithm.

There are still a lot of room to extend our work in the future. For example,

we proposed the ambiguity decomposition for classifier ensembles in chapter 3

and empirically validated that the ambiguity term is a better diversity measure

than other diversity measures. In the future, we can consider more objectives,

such as the accuracy term and ambiguity term, in the multi-objective ensemble

algorithms and investigate their impacts to the ensemble performance.

In the last stage of multi-objective ensemble learning, we need to aggregate

these individual learners in the population to form an ensemble. Evolutionary

algorithm often employs a large population for large search space and some the-

oretical and empirical evidences have shown that small ensembles may be better

than large ensembles.

In the future, we are interested in considering the ensemble combination as an

evolving population together with the network population and using cooperative

coevolution for the ensemble generation.

138

7.2 Future work

The future work for this study also includes a more in-depth study of differ-

ent evolutionary operators and fitness ranking methods and more comprehensive

evaluation of the proposed algorithm on large noise data sets.

139

Appendix A

Diversity Measures

The existing diversity measures of classifier ensembles could be grouped to two

categories: pairwise diversity measures, which are based on the measurement of

any pairwise classifiers, e.g. Q statistic, Kappa statistic, correlation coefficient,

disagreement measure and non-pairwise diversity measures, e.g. entropy measure,

Kohavi-Wolpert variance and generalized diversity (Kuncheva and Whitaker,

2003).

A.1 Pairwise Diversity Measures

Pairwise diversity measures compute the relationship between any pairwise clas-

sifiers. All of pairwise diversity measures mentioned in this chapter rely on Table

A.1. where fi and fj are two classifiers and Nab is the number of data points for

which fi and fj are correct/wrong when a = 1/0 and b = 1/0.

Table A.1: A 2 × 2 table of the relationship between a pair of classifiers fi and

fj.

fj correct(1) fj wrong(0)

fi correct(1) N11 N10

fi wrong(0) N01 N00

140

A.1 Pairwise Diversity Measures

• The Q statistic

Yule’s Q statistic (Yule, 1900) computes the “coefficient of association” for

two classifiers, fi and fj, is

Qi,j =
N11N00 −N01N10

N11N00 + N01N10
, (A.1)

For statistically independent classifiers, the expectation of Qi,j is 0. Q

varies between -1 and 1. Classifiers that tend to recognize the same objects

correctly will have positive values of Q, and those which commit errors

on different objects will render negative Q value. For an ensemble of M

classifiers, the averaged Q statistic over all pairs of classifiers is

Qav =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

Qi,j. (A.2)

• Kappa statistic (Margineantu and Dietterich, 1997)

Kappa statistic compares the agreement against that which might be ex-

pected by chance. Kappa can be thought of as the chance-corrected pro-

portional agreement, and possibly ranges from +1 (when the two classifiers

agree on every example) via 0 (when the agreement of the two classifiers

equals that expected by chance) to -1 (negative values occur when agree-

ment is weaker than expected by change). Kappa statistic is defined by

followings:

Kappai,j =
Θ1 −Θ2

1−Θ2

, (A.3)

where

Θ1 =
N11 + N00

N
, (A.4)

and

Θ2 =
(N11 + N10)(N11 + N01) + (N00 + N01)(N00 + N10)

N2
, (A.5)

where N is the total number of points, i.e. N = N11 + N10 + N00 + N01.

141

A.2 Non-pairwise Diversity Measures

• The correlation coefficient CC (Sneath and Sokal, 1973)

The correlation coefficient indicates the strength and direction of a linear

relationship between two classifiers. In general, correlation refers to the

departure of two variables from independence. The correlation between

two binary classifiers, fi and fj, is

CCi,j =
N11N00 −N01N10

√
(N11 + N10)(N01 + N00)(N11 + N01)(N10 + N00)

. (A.6)

• The disagreement measure Dis (Ho, 1998)

The disagreement measure is the ratio between the number of observations

on which one classifier is correct and the other is incorrect to the total num-

ber of observations. This measure was used by (Skalak, 1996) to character-

ize the diversity between a base classifier and a complementary classifier,

and then by (Ho, 1998) for measuring diversity in decision forests. In our

notation,

Disi,j =
N01 + N10

N11 + N10 + N01 + N00
. (A.7)

For all pairwise measures we used the averaged values of the diversity ma-

trix, calculated similarly to equation (A.2). We note that all these pairwise

measures have been proposed as measures of (dis)similarity in the numerical

taxonomy literature (Sneath and Sokal, 1973).

A.2 Non-pairwise Diversity Measures

• The entropy measure E (Cunningham and Carney, 2000)

The entropy among an ensemble is defined as follows:

E =
1

N

N∑
n=1

1

(M − dM/2e) min{l(xn),M − l(xn)}. (A.8)

where l(xn) denotes the number of classifiers that correctly recognize xn,

and dM/2e denotes round toward the nearest integers greater than or equal

to M/2. If these classifiers all were 0’s or all were 1’s, there is no disagree-

ment, and the classifiers cannot be deemed diverse. E varies between 0

142

A.2 Non-pairwise Diversity Measures

and 1, where 0 indicates no difference and 1 indicates the highest possible

diversity.

• Kohavi-Wolpert variance KW (Kohavi and Wolpert, 1996)

Kohavi and Wolpert presented a bias-variance decomposition of expected

misclassification rate. They gave an expression of the variability of the

predicted class label y for x, across training sets, for a specific classifier

model

variancex =
1

2
(1− p̂(y = 1|x)2 − p̂(y = −1|x)2), (A.9)

and averaging over the whole data set. Setting the KW measure of diversity

to be

KW =
1

NM2

N∑
n=1

l(xn)(M − l(xn)). (A.10)

From (Kuncheva and Whitaker, 2003), KW differs from the averaged dis-

agreement measure Disav by a coefficient,

KW =
M − 1

2M
Disav. (A.11)

• The measure of “difficulty” θ (Hansen and Salamon, 1990)

Hansen and Salamon defined a discrete random variable θ taking values in

{ 0
M

, 1
M

, ..., 1}, which denotes the proportion of classifiers in M that correctly

classify an input x drawn randomly from the distribution of the problem.

For each input x, the estimate of θ(x) is the fraction of the M classifiers

which classify x incorrectly. This measure is to measure the distribution

of difficulty and in order to capture the distribution shape, variance of θ is

employed in this measure. Based on this, the measure of “difficulty” θ is

defined to be V ar(X).

• Generalized diversity GD (Partridge and Krzanowski, 1997)

In the definition of generalized diversity and coincident failure diversity,

Partridge and Krzanowski assumed that maximum diversity occurs when

failure of one of M classifiers in the ensemble is accompanied by correct

labeling by the other classifier. The probability of both classifiers failing

143

A.2 Non-pairwise Diversity Measures

is the same as the probability of one randomly picked classifier failing.

Minimum diversity occurs when failure of one is always accompanied by

failure of the other, then the probability of both classifiers failing is the

same as the probability of one randomly picked classifier failing.

In order to quantify the maximum and minimum diversity, p(1), the prob-

ability that one randomly chosen classifier will fail on a randomly chosen

point and p(2), two randomly chosen classifiers simultaneously fail on an

input point, are defined as follows:

p(1) =
M∑
i=1

i

M
pi, and p(2) =

M∑
i=1

i(i− 1)

M(M − 1)
pi, (A.12)

where the relative frequency pi represents the probability that i, (i =

0, 1, · · · ,M) classifiers will fail simultaneously on a randomly chosen in-

put from these populations of inputs and classifiers.

Based on these assumptions, the generalization diversity measure GD is

defined as

GD =
p(1)− p(2)

p(1)
= 1− p(2)

p(1)
. (A.13)

GD varies between 0 (minimum diversity when p(2) = p(1)) and 1 (maxi-

mum diversity when p(2) = 0).

• Coincident failure diversity CFD (Partridge and Krzanowski, 1997)

In order to refine the generalized diversity, Partridge and Krzanowski pro-

posed coincident failure diversity, a modification of GD. The formula to

compute the coincident failure diversity is illustrated in the following

CFD =

{
0 if p0 = 1

1
1−p0

∑M
i=1

M−i
M−1

pi if p0 < 1
. (A.14)

Coincident failure diversity varies from a minimum value of 0, when all

classifiers are identical, to a maximum value 1, when all points failure occur

on exactly one classifier.

144

Appendix B

Further Details of RNCL using

Bayesian Inference

B.1 Further Details of Gaussian Posterior

Considering the normalization term, the posterior of weigh vector w is described

as

P (w | D) =
exp(−J1(w))∫
exp(−J1(w))dw

. (B.1)

In order to obtain the result, the Taylor expansion of J1(w) is employed at

point wMP .

J1(w) = J1(wMP) +
1

2
(w −wMP)T A(w −wMP), (B.2)

where wMP is the most probable weight vector, and A is the Hessian matrix of

J1(w).

A = ∇∇J1 = ∇∇
(

M∑
i=1

µi

2
wT

i wi +
β

2

N∑
n=1

e2
n

)
= diag(Λ) + β∇∇

(
1

2

N∑
n=1

e2
n

)
,

(B.3)

where Λ = (µ
(1)
1 , · · ·µ(n1)

1 , µ
(1)
2 , · · ·µ(n2)

2 , · · · , µ
(1)
M , · · ·µ(nM)

M)T and the superscript

indicates the number of repetitions of µi.

The integral can be computed as below:∫
exp(−J1(w))dw =

∫
exp(−J1(wMP)− 1

2
(w −wMP)T A(w −wMP))dw

= exp(−J1(wMP)) · (2π)W/2 det A− 1
2 . (B.4)

145

B.2 Details of Parameter Updates

Based on these equations, the approximated posterior of w is obtained as

follows

P (w | D) =
exp(−J1(w))∫
exp(−J1(w))dw

=
exp(−1

2
(w −wMP)T A(w −wMP))

(2π)W/2 det A− 1
2

. (B.5)

B.2 Details of Parameter Updates

The update rule for αi = µi/β is can be obtained from the derivation of J2.

J2 =
1

2

M∑
i=1

µiw
T
i,MPwi,MP +

1

2
β

N∑
n=1

e2
n,MP−

1

2

M∑
i=1

ni log µi− 1

2
N log β+

1

2
log det A.

(B.6)

In order to apply the partial derivation to J2, we need to apply partial deriva-

tion to log det A.

Since det A =
W∏

j=1

(βλj + Λj), where λj is the eigenvalue of the Hessian matrix

∇∇
(

1
2

∑N
n=1 e2

n

)
and W is the number of weighs in ensemble.

∂

∂µi

log det A =
∂

∂µi

log

(
W∏

j=1

(βλj + Λj)

)
=

∑
j∈ni

1

βλj + µi

,

∂

∂β
log det A =

∂

∂β
log

(
W∏

j=1

(βλj + Λj)

)
=

∑
j

λj

βλj + Λj

, (B.7)

where j ∈ ni indicates the range
[∑i−1

t=1 nt + 1, · · · ,
∑i

t=1 nt

]
.

The gradient of log P (D | µ, β) toward µi and β are:

∂J2

∂µi

=
1

2
wT

i,MPwi,MP − 1

2

ni

µi

+
1

2

∑
j∈ni

1

βλj + µi

, (B.8)

∂J2

∂β
=

1

2

N∑
n=1

e2
n,MP −

N

2β
+

1

2

∑
j

λj

βλj + Λj

. (B.9)

Setting the gradient to zero and the optimal µi and β can be obtained:

µnew
i =

1

wT
i,MPwi,MP

(
ni −

∑
j∈ni

µi

βλj + µi

)
, (B.10)

βnew =
1∑N

n=1 e2
n,MP

(
N −

W∑
j=1

βλj

βλj + Λj

)
. (B.11)

146

B.2 Details of Parameter Updates

Combining both equations (B.10) and (B.11) and the relation αi = µi/β, we

obtain the following equation:

β

[
M∑
i=1

αiw
T
i,MPwi,MP +

N∑
n=1

e2
n,MP

]
= N. (B.12)

In the following, we reformulate the optimization problem, equation (B.6), in

µi and β into a scalar optimization problem in αi = µi/β. Therefore, we firstly

replace that optimization problem by an optimization problem in β and αi by the

relation µi = βαi. As the equation (B.12) also holds in the scalar optimization,

we search for the optimum only along this curve in the (αi and β) space.

By elimination of β from equation (B.12), the minimization problem from J2

is obtained in a straightforward way:

J3 =
W∑

j=1

log(1 +
λj

α̂j

) + N log

(
M∑
i=1

αiw
T
i,MPwi,MP +

N∑
n=1

e2
n,MP

)
, (B.13)

where α̂j = Λj/β and Λ = (µ
(1)
1 , · · ·µ(n1)

1 , µ
(1)
2 , · · ·µ(n2)

2 , · · · , µ
(1)
M , · · ·µ(nM)

M)T .

Setting ∂J3

∂αi
= 0, the update rule αnew

i = µi/β can be obtained as follows:

αnew
i =

∑N
n=1 e2

n,MP

wT
i,MPwi,MP

(
ni −

∑
j∈ni

αi

λj+αi

)
(
N −∑W

j=1
λj

λj+α̂j

) , (B.14)

where j ∈ ni indicates the range
[∑i−1

t=1 nt + 1, · · · ,
∑i

t=1 nt

]
.

147

Appendix C

Further Details of

Hyperparameters Optimization

in EP

The following analysis is based on the sequential analysis of sparse Bayesian

learning (Faul and Tipping, 2002). Please refer to (Faul and Tipping, 2002) for

more details.

To have a sequential update on αi, we explicitly decompose p(D|α) into two

parts, one part denoted by p(D|α\i), that does not depend on αi and another

that does, i.e.,

p(D|α) = p(D|α\i) +
1

2
(log αi − log(αi + ri) +

u2
i

αi + ri

), (C.1)

where ri = FiC
−1
\i F T

i , ui = FiC
−1
\i m, and C\i = Λ−1 +

∑
m6=i F

T
mFm. Here Fi and

Fm are the ith and the mth rows of the ensemble matrix F respectively.

Using the above equation, p(D|α) has a maximum with respect to αi:

αi =
r2
i

u2
i − ri

, if ηi > 0, (C.2)

αi = ∞, if ηi ≤ 0, (C.3)

where ηi = u2
i − ri. Thus, in order to maximize the evidence, we introduce the

ith learner when αi = ∞ and ηi > 0, exclude the ith learner when αi < ∞ and

ηi ≤ 0, and re-estimate αi according to (C.2) when αi < ∞ and ηi > 0.

148

References

H. A. Abbass. A memetic pareto evolutionary approach to artificial neural net-

works. In Proceedings of the fourteenth Australian Joint Conference on Artifi-

cial Intelligence, volume 2256, pages 1–12, 2000. 19

C. Andrieu, N. d. Freitas, A. Doucet, and M. I. Jordan. An introduction to mcmc

for machine learning. Machine Learning, 50(1-2):5–43, 2003. 113

A. Asuncion and D.J. Newman. UCI machine learning repository, 2007. URL

http://mlearn.ics.uci.edu/MLRepository.html. 38, 69, 71, 129

R. E. Banfield, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Ensemble

diversity measures and their application to thinning. Information Fusion, 6(1):

49–62, 2005. 100

J. M. Bates and C. W. J. Granger. The combination of forecasts. Operations

Research, 20:451–468, 1969. 29

M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geomet-

ric framework for learning from labeled and unlabeled examples. Journal of

Machine Learning Research, 7:2399–2434, 2006. 138

J. A. Benediktsson, J. R. Sveinsson, O. K. Ersoy, and P. H. Swain. Parallel

consensual neural networks. IEEE Transaction on Neural Networks, 8(1):54–

64, 1997. 30

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press,

1995. 3

149

REFERENCES

L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996a. 4, 5,

8, 15, 23, 32, 50, 69, 100, 120

L. Breiman. Arcing classifier. Annals of Statistics, 26(3):801–849, 1998. 8, 100

L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11

(7):1493–1517, 1999. 8, 16, 17, 37, 100

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001. 4, 5, 18, 23

Leo Breiman. Stacked regressions. Machine Learning, 24(1):49–64, 1996b. 101,

102

G. Brown, J. Wyatt, R. Harris, and X. Yao. Diversity creation methods: A survey

and categorisation. Journal of Information Fusion, 6(1):5–20, 2005a. 6, 33

G. Brown, J. Wyatt, and P. Tiňo. Managing diversity in regression ensembles.

Journal of Machine Learning Research, 6:1621–1650, 2005b. 21, 22, 27

P. Buhlmann and B. Yu. Analyzing bagging. The Annals of Statistics, 30(4):

927–961, 2002. 8, 50, 51

P. K. Chan, W. Fan, A. L. Prodromidis, and S. J. Stolfo. Distributed data mining

in credit card fraud detection. IEEE Intelligent Systems, 14(6):67–74, 1999. 29

A. Chandra and X. Yao. Divace: Diverse and accurate ensemble learning algo-

rithm. In Proceedings of the Fifth International Conference on Intelligent Data

Engineering and Automated Learning, volume 3177, pages 619–625, 2004. 19

A. Chandra and X. Yao. Ensemble learning using multi-objective evolutionary

algorithms. Journal of Mathematical Modelling and Algorithms, 5(4):417–445,

2006a. 19, 23

A. Chandra and X. Yao. Evolving hybrid ensembles of learning machines for

better generalisation. Neurocomputing, 69(7-9):686–700, 2006b. 5, 19

A. Chandra, H. Chen, and X. Yao. Trade-off between diversity and accuracy

in ensemble generation. In Y. Jin, editor, Multi-objective Machine Learning,

pages 429–464. Springer, 2006. 12

150

REFERENCES

O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised Learning. MIT

Press, 2006. 137

N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Learning

ensembles from bites: A scalable and accurate approach. Journal of Machine

Learning Research, 5:421–451, 2004. 28

H. Chen and X. Yao. Evolutionary multiobjective ensemble learning based on

bayesian feature selection. In Proceedings of IEEE Congress on Evolutionary

Computation, volume 1141, pages 267–274, 2006. 13

H. Chen and X. Yao. Evolutionary random neural ensemble based on negative

correlation learning. In Proceedings of The 2007 IEEE Congress on Evolution-

ary Computation (CEC’07), pages 1468–1474, 2007a. 13, 27, 53

H. Chen and X. Yao. Evolutionary ensemble for in silico prediction of ames

test mutagenicity. In Proceedings of International Conference on Intelligent

Computing 2007, pages 1162–1171, 2007b. 13

H. Chen and X. Yao. When does diversity in classifier ensembles help generaliza-

tion? Machine Learning, 2008. In Revise. 12

H. Chen and X. Yao. Multiobjective regularized negative correlation learning

for neural network ensembles. IEEE Transactions on Knowledge and Data

Engineering, 2009a. In Press. 12, 27

H. Chen and X. Yao. Regularized negative correlation learning for neural network

ensembles. IEEE Transactions on Neural Networks, 2009b. In Press. 12, 27

H. Chen, P. Tiňo, and X. Yao. A probabilistic ensemble pruning algorithm. In

Workshops on Optimization-based Data Mining Techniques with Applications

in Sixth IEEE International Conference on Data Mining, pages 878–882, 2006.

13, 31, 99, 101

H. Chen, P. Tiňo, and X. Yao. Predictive ensemble pruning by expectation

propagation. IEEE Transactions on Knowledge and Data Engineering, 21(7):

999–1013, 2009a. 12

151

REFERENCES

H. Chen, P. Tiňo, and X. Yao. Probabilistic classification vector machine. IEEE

Transactions on Knowledge and Data Engineering, 20(6):901–914, 2009b. 11

X. Chen and M. Liu. Prediction of protein–protein interactions using random

decision forest framework. Bioinformatics, 21(24):4394–4400, 2005. 19

K. J. Cherkauer. Human expert level performance on a scientific image analysis

task by a system using combined artificial neural networks. In Proceedings of

AAAI-96 Workshop on Integrating Multiple Learned Models for Improving and

Scaling Machine Learning Algorithms, pages 15–21, 1996. 5

R. T. Clemen. Combining forecasts: A review and annotated bibliography. In-

ternational Journal of Forecasting, 5(4):559–583, 1989. 29

T. Cox and M. Cox. Multidimensional Scaling. Chapman Hall, London, 1994. 39

P. Cunningham and J. Carney. Diversity versus quality in classification ensembles

based on feature selection. In ECML’00: Proceedings of the 11th European

Conference on Machine Learning, pages 109–116, 2000. 24, 142

H. H. Dam, H. A. Abbass, C. Lokan, and X. Yao. Neural-based learning classifier

systems. IEEE Transactions on Knowledge and Data Engineering, 20(1):26–39,

2008. 27

P. Darwen and X. Yao. Every niching method has its niche: fitness sharing and

implicit sharing compared. In Proceedings of Parallel Problem Solving from

Nature (PPSN) IV, volume 1141, pages 398–407, Berlin, Germany, 1996. 82

P. J. Darwen and X. Yao. Speciation as automatic categorical modularization.

IEEE Transacions Evolutionary Computation, 1(2):101–108, 1997. 6, 33

A. Demiriz, K. P. Bennett, and J. Shawe-Taylor. Linear programming boosting

via column generation. Machine Learning, 46(1-3):225–254, 2002. 30

R. Diaz-Uriarte and S. Andres. Gene selection and classification of microarray

data using random forest. BMC Bioinformatics, 7(1):3, 2006. 5

152

REFERENCES

T. G. Dietterich. Ensemble methods in machine learning. Lecture Notes in Com-

puter Science, 1857:1–15, 2000. 9, 24, 100

T. G. Dietterich. An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting, and randomization. Machine

Learning, 40(2):139–157, 2003. 17

P. Domingos and M. Pazzani. On the optimality of the simple bayesian classifier

under zero-one loss. Machine Learning, 29(2-3):103–130, 1997. 20

Pedro Domingos. A unified bias-variance decomposition and its applications. In

Proceedings of the Seventeenth International Conference on Machine Learning,

pages 231–238, Morgan Kaufmann, 2000. 21

R. Ebrahimpour, E. Kabir, and M. R. Yousefi. Face detection using mixture of

mlp experts. Neural Processing Letters, 26(1):69–82, 2007. 15

B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman &

Hall, London, U.K., 1993. 38

W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. Adacost: Misclassification cost-

sensitive boosting. In ICML’99: Proceedings of the Sixteenth International

Conference on Machine Learning, pages 97–105, 1999. 16

A. Faul and M. Tipping. Analysis of sparse bayesian learning. In Advances in

Neural Information Processing Systems 14, pages 383–389, 2002. 111, 112, 148

J. H. Friedman. On bias, variance, 0/1—loss, and the curse-of-dimensionality.

Data Mining and Knowledge Discovery, 1(1):55–77, 1997. 16

N. Garćıa, C. Hervás, and D. Ortiz. Cooperative coevolution of artificial neural

network ensembles for pattern classification. IEEE Transactions on Evolution-

ary Computation, 9(3):271–302, 2005. 6, 19, 23, 24, 27, 33, 50, 51, 52, 134

Y. Ge and W. Jiang. A note on mixtures of experts for multiclass responses:

approximation rate and consistent bayesian inference. In ICML’06: Proceedings

of the 23rd international conference on Machine learning, pages 329–335, 2006.

15

153

REFERENCES

S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the

bias/variance dilemma. Neural Computation, 4(1):1–58, 1992. 20, 57, 79

T. Van Gestel, J. A. K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and

J. Vandewalle. Bayesian framework for least-squares support vector machine

classifiers, gaussian processes, and kernel fisher discriminant analysis. Neural

Computation, 14(5):1115–1147, 2002. 3, 62

G. Giacinto and F. Roli. Design of effective neural network ensembles for image

classification purposes. Image and Vision Computing, 19(9-10):699–707, 2001.

6, 33

P. O. Gislason, J. A. Benediktsson, and J. R. Sveinsson. Random forests for land

cover classification. Pattern Recognition Letters, 27(4):294–300, 2006. 19

R. B. Gramacy and H. K. H. Lee. Gaussian processes and limiting linear models.

Technical report, Department of Applied Mathematics and Statistics, Univer-

sity of California, Santa Cruz, 2005. 88

Yves Grandvalet. Bagging equalizes influence. Machine Learning, 55(3):251–270,

2004. 16

J.V. Hansen. Combining predictors: Meta machine learning methods and

bias/variance and ambiguity decompositions. PhD thesis, Department of Com-

puter Science, University of Aarhus, Denmark, 2000. 69

L. K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 12(10):993–1001, 1990. 4, 5, 14,

24, 32, 143

L. K. Hansen, L. Liisberg, and P. Salamon. Ensemble methods for handwritten

digit recognition. In Proceedings of the IEEE Workshop on Neural Networks

for Signal Processing, pages 333–342, 1992. 5

S. Hashem. Optimal Linear Combinations of Neural Networks. PhD thesis, Pur-

due University, 1993. 29, 101, 102

154

REFERENCES

T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of Statistical Learn-

ing. Springer, 2001. 101, 102

S. He, H. Chen, X. Li, and X. Yao. Profiling of mass spectrometry data for

ovarian cancer detection using negative correlation learning. In Proceedings of

the 19th International Conference on Artificial Neural Networks (ICANN’09),

2009. 12

T. K. Ho. The random subspace method for constructing decision forests.

IEEE Transaction on Pattern Analysis and Machine Intelligence, 20(8):832–

844, 1998. 4, 18, 24, 27, 142

T. K. Ho, J. J. Hull, and S. N. Srihari. Decision combination in multiple classifier

systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16

(1):66–75, 1994. 4

A. E. Hoerl and R. W. Kennard. Ridge regression: biased estimation for

nonorthogonal problems. Technometrics, 42(1):80–86, 2000. ISSN 0040-1706.

57

R. C. Holte. Very simple classification rules perform well on most commonly used

datasets. Machine Learning, 11(1):63–90, 1993. 20

F. J. Huang, T. Chen, Z. Zhou, and H. Zhang. Pose invariant face recognition. In

Proceedings of the Fourth IEEE International Conference on Automatic Face

and Gesture Recognition 2000, pages 245–250, Washington, DC, USA, 2000. 5

D. Husmeier and S. J. Roberts. Regularisation of rbf-networks with the bayesian

evidence scheme. In Proceedings of the 8th International Conference on Artifi-

cial Neural Networks(ICANN99), pages 533–538, 1999. 3

M. M. Islam, X. Yao, and K. Murase. A constructive algorithm for training

cooperative neural network ensembles. IEEE Transaction on Neural Networks,

14(4):820–834, 2003. 21, 27, 53

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures

of local experts. Neural Computation, 3(1):79–87, 1991. 14, 15

155

REFERENCES

Gareth James. Variance and bias for general loss functions. Machine Learning,

51(2):115–135, 2003. 21

M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the em

algorithm. Neural Computation, 6(2):181–214, 1994. 4, 15

M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to

variational methods for graphical models. Machine Learning, 37(2):183–233,

1999. 136

Y. Kim, W. N. Street, and F. Menczer. Meta-evolutionary ensembles. In Proceed-

ings of the 2002 International Joint Conference on Neural Networks, volume 3,

pages 2791–2796, 2002. 30, 101

Ron Kohavi and David H. Wolpert. Bias plus variance decomposition for zero-one

loss functions. In Proceedings of the Thirteenth International Conference on

Machine Learning, pages 275–283, Morgan Kaufmann, 1996. 6, 21, 24, 33, 143

A. Krogh and J. A. Hertz. A simple weight decay can improve generalization. In

Advances in Neural Information Processing Systems, volume 4, pages 950–957,

1992. 7, 56, 79

A. Krogh and J. Vedelsby. Neural network ensembles, cross validation, and active

learning. In Advances in Neural Information Processing Systems 7, pages 231–

238, 1995. 5, 6, 22, 24, 29, 32, 33, 34, 79

S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Math-

ematical Statistics, 22:79–86, 1951. 103, 104

L. I. Kuncheva. A Theoretical Study on Six Classifier Fusion Strategies. IEEE

TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLI-

GENCE, pages 281–286, 2002. 4

L. I. Kuncheva and C. J. Whitaker. Measures of diversity in classifier ensembles

and their relationship with the ensemble accuracy. Machine Learning, 51(2):

181–207, 2003. 6, 23, 24, 33, 43, 46, 50, 51, 52, 134, 140, 143

156

REFERENCES

M. Leblanc and R. Tibshirani. Combining estimates in regression and classifica-

tion. Journal of the American Statistical Association, 91(436):1641–1650, 1996.

101, 102

X. Liao, H. Li, and L. Carin. Quadratically gated mixture of experts for incom-

plete data classification. In ICML’07: Proceedings of the 24th international

conference on Machine learning, pages 553–560, 2007. 15

Y. Liao and J. Moody. Constructing heterogeneous committees using input fea-

ture grouping: Application to economic forecasting. In Advances in Neural

Information Processing Systems, pages 921–927, 1999. 18

Y. Liu and X. Yao. Negatively correlated neural networks can produce best

ensembles. In Australian Journal of Intelligent Information Processing Systems

4(3/4), pages 176–185, 1997. 4, 26

Y. Liu and X. Yao. Simultaneous training of negatively correlated neural networks

in an ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part

B: Cybernetics, 29(6):716–725, 1999a. 5, 7, 21, 23, 26, 33, 53, 75

Y. Liu and X. Yao. Ensemble learning via negative correlation. Neural Networks,

12(10):1399–1404, 1999b. 4, 7, 21, 23, 26, 32, 33, 53, 75

Y. Liu, X. Yao, and T. Higuchi. Evolutionary ensembles with negative correlation

learning. IEEE Transaction on Evolutionary Computation, 4(4):380–387, 2000.

7, 23, 26, 33, 53, 75

D. J. C. MacKay. The evidence framework applied to classification networks.

Neural Computation, 4(3):720–736, 1992a. 3

D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447,

1992b. 3

D. J. C. MacKay. Choice of basis for laplace approximation. Machine Learning,

33(1):77–86, 1998. 136

157

REFERENCES

H. Mamitsuka. Empirical evaluation of ensemble feature subset selection methods

for learning from a high-dimensional database in drug design. In Proceedings

of Third IEEE Symposium on BioInformatics and BioEngineering, pages 253–

257, 2003. 18

D. D. Margineantu and T. G. Dietterich. Pruning adaptive boosting. In Proceed-

ings of the Fourteenth International Conference on Machine Learning, pages

211–218, 1997. 28, 100, 141

T. P. Minka. A family of algorithms for approximate Bayesian inference. PhD

thesis, Massachusetts Institute of Technology, 2001. 101, 103, 106, 107, 108

M. Møller. Efficient Training of Feed-Forward Neural Networks. PhD thesis,

University of Aarhus, Denmark, 1993a. 73

M. F. Møller. A scaled conjugate gradient algorithm for fast supervised learning.

Neural Network, 6(4):525–533, 1993b. ISSN 0893-6080. 57

L. S. Oliveira, M. Morita, R. Sabourin, and F. Bortolozzi. Multi-objective genetic

algorithms to create ensemble of classifiers. In Proceedings of the Third Inter-

national Conference on Evolutionary Multi-Criterion Optimization, volume 87,

pages 592–606, 2005. 18, 19, 23

D. Opitz and R. Maclin. Popular ensemble methods: An empirical study. Journal

of Artificial Intelligence Research, 11:169–198, 1999. 9, 100, 120

D. W. Optiz. Feature selection for ensembles. In Proceedings of the 16th Inter-

national Conference on Artificial Intelligence, pages 379–384, 1999. 18

J. O’Sullivan, J. Langford, R. Caruana, and A. Blum. Featureboost: A meta-

learning algorithm that improves model robustness. In Proceedings of the Sev-

enteenth International Conference on Machine Learning, pages 703–710, San

Francisco, CA, USA, 2000. 18

D. Partridge and W. J. Krzanowski. Software diversity: Practical statistics for

its measurement and exploitation. Information and Software Technology, 39:

707C717, 1997. 6, 24, 33, 143, 144

158

REFERENCES

B. A. Pearlmutter. Fast exact multiplication by the hessian. Neural Computation,

6(1):147–160, 1994. 73

M. P. Perrone. Improving Regression Estimation: Averaging Methods for Variance

Reduction with Extensions to General Convex Measure Optimization. PhD

thesis, Brown University, USA, 1993. 29

A. Prodromidis and P. Chan. Meta-learning in a distributed data mining sys-

tem: Issues and approaches. In Proceedings of the Fourteenth International

Conference on Machine Learning, pages 211–218, 1998. 29

Y. A. Qi, T. P. Minka, R. W. Picard, and Z. Ghahramani. Predictive automatic

relevance determination by expectation propagation. In ICML’04: Proceedings

of the twenty-first international conference on Machine learning, pages 85–92,

New York, NY, USA, 2004. 113

G. Rätsch, T. Onoda, and K. R. Müller. Soft margins for adaboost. Machine

Learning, 42(3):287–320, 2001. x, 17, 37

G. Rätsch, A. Demiriz, and K. P. Bennett. Sparse regression ensembles in infinite

and finite hypothesis spaces. Machine Learning, 48(1/3):189–218, 2002. 18

L. Reyzin and R. E. Schapire. How boosting the margin can also boost classifier

complexity. In ICML’06: Proceedings of the 23rd international conference on

Machine learning, pages 753–760, 2006. 8

G. Ridgeway, D. Madigan, and T. Richardson. Boosting methodology for regres-

sion problems. In Proceedings of Artificial Intelligence and Statistics, pages

152–161, 1999. 69

B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University

Press, 1996. 65

R. Rosipal and M. Girolami. An expectation-maximization approach to nonlinear

component analysis. Neural Computation, 13(3):505–510, 2001. 63, 73

R. E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–

227, 1990. 16

159

REFERENCES

R. E. Schapire. A brief introduction to boosting. In Proceedings of the Six-

teenth International Joint Conference on Artificial Intelligence, pages 1401–

1406, 1999. 4, 8, 16, 33, 100

R. E. Schapire, Y. Freund, P. Barlett, and W. S. Lee. Boosting the margin: A new

explanation for the effectiveness of voting methods. The Annals of Statistics,

26(5):1651–1686, 1998. 37

D. Skalak. The sources of increased accuracy for two proposed boosting algo-

rithms. In AAAI’96 Workshop on Integrating Multiple Learned Models for

Improving and Scaling Machine Learning Algorithms, 1996. 142

P. Sneath and R. Sokal. Numerical Taxonomy. W H Freeman & Co, 1973. 24,

142

Y. Song, D. Zhou, J. Huang, I. G. Councill, H. Zha, and C. L. Giles. Boosting the

feature space: Text classification for unstructured data on the web. In ICDM

’06: Proceedings of the Sixth International Conference on Data Mining, pages

1064–1069, 2006. 18

N. Srinivas and K. Deb. Multiobjective function optimization using nondom-

inated sorting genetic algorithms. Evolutionary Computation, 2(3):221–248,

1995. 82

E. K. Tang, P. N. Suganthan, and X. Yao. An analysis of diversity measures.

Machine Learning, 65(1):247–271, 2006. 5, 23, 33

J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework

for nonlinear dimensionality reduction. Science, 290:2319–2323, 2000. 41

M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Jour-

nal of Machine Learning Research, 1(3):211–244, 2001. 3, 30

A. Tsymbal, P. Cunningham, M. Pechenizkiy, and S. Puuronen. Search strategies

for ensemble feature selection in medical diagnostics. In Proceedings of 16th

IEEE Symposium on Computer-Based Medical Systems, pages 124–129. IEEE

Computer Society, 2003. 18

160

REFERENCES

N. Ueda. Optimal linear combination of neural networks for improving classi-

fication performance. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 22(2):207–215, 2000. 30

P. Ueda and R. Nakano. Generalization error of ensemble estimators. In Pro-

ceedings of International Conference on Neural Networks, pages 90–95, 1996.

21

V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer-

Verlag, 1995. 79

V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998. 2, 3, 7

P. Viola and M. Jones. Rapid object detection using a boosted cascade of sim-

ple features. In CVPR’01: Proceedings of 2001 International Conference on

Computer Vision and Pattern Recognition, volume 1, pages 511–518, 2001. 5

G. Wahba, X. Lin, F. Gao, D. Xiang, R. Klein, and B. Klein. The bias-variance

tradeoff and the randomized gacv. In Proceedings of the 1998 conference on

Advances in neural information processing systems II, pages 620–626, 1999. 21

J. A. E. Weston, M. O. Stitson, A. Gammerman, V. Vovk, and V. Vapnik. Exper-

iments with support vector machines. Technical Report CSD-TR-96-19, Royal

Holloway University of London, London, 1996. 69

M. Woodbury. Inverting modified matrices. Memorandum Report, 42, 1950. 106

X. Yao and Y. Liu. Making use of population information in evolutionary artificial

neural networks. IEEE Transactions on Systems, Man, and Cybernetics, Part

B, 28(3):417–425, 1998. 8, 30, 100

X. Yao, M. Fischer, and G. Brown. Neural network ensembles and their applica-

tion to traffic flow prediction in telecommunications networks. In Proceedings

of International Joint Conference on Neural Networks, pages 693–698, 2001. 7,

53

X. Yin, C. Liu, and Z. Han. Feature combination using boosting. Pattern Recog-

nition Letters, 26(14):2195–2205, 2005. 18

161

REFERENCES

L. Yu, H. Chen, S. Wang, and K. K. Lai. Evolving least squares support vector

machines for stock market trend mining. IEEE Transactions on Evolutionary

Computation, 2008. In Press. 12

U. Yule. On the association of attributes in statistics. Philosophical Transactions

of the Royal Society of London. Series A, 194:257–319, 1900. 24, 141

Z. Zhou, J. Wu, and W. Tang. Ensembling neural networks: many could be

better than all. Artificial Intelligence, 137(1-2):239–263, 2002. 8, 29, 30, 100

X. Zhu. Semi-supervised learning literature survey. Techni-

cal report, University of Wisconsin, Madison, 2007. URL

http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf. 137

162

