
Deploying Metaheuristics
for Global Optimization

M. Davarynejad

.

Deploying Metaheuristics
for Global Optimization

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 18 juni 2014 om 15:00 uur
door Mohsen Davarynejad

Master of Science in Electrical Engineering
Ferdowsi University of Mashhad, Iran

geboren te Sary, Iran.

Dit proefschrift is goedgekeurd door de promotoren:
Prof.dr.ir. J. van den Berg

Copromotor: Dr.ir. J.L.M. Vrancken

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr.ir. J. van den Berg Technische Universiteit Delft, promotor
Dr.ir. J.L.M. Vrancken Technische Universiteit Delft, copromotor
Prof.dr. D.E. Goldberg University of Illinois at Urbana-Champaign, USA
Prof.dr.ir C.W. Oosterlee Centrum voor Wiskunde en Informatica (CWI)
Prof.dr.ir U. Kaymak Eindhoven University of Technology
Prof.dr.ir. J.N. Kok Leiden University
Prof.dr.ir. C. Vuik Technische Universiteit Delft
Prof.dr.ir M. Reinders Technische Universiteit Delft, reservelid

The research described in this thesis received funding from the European Communitys Sev-
enth Framework Programme within the “Control for Coordination of Distributed Systems”
(Con4Coord - FP7/2007-2013 under grant agreement no. INFSO-ICT-223844).

Published and distributed by: M. Davarynejad
WWW: http://davarynejad.com/Mohsen/

Cover design: Ehsan Davarynejad, WWW: http://davarynejad.com/Ehsan/

ISBN 978-90-5584-173-8

Keywords: metaheuristics, fitness approximation, fuzzy granulation, simulated big bounce,
center-seeking bias, initialization region bias.

Copyright c⃝ 2014 by M. Davarynejad

All rights reserved. No part of the material protected by this copyright notice may be re-
produced or utilized in any form or by any means, electronic or mechanical, including pho-
tocopying, recording or by any information storage and retrieval system, without written
permission of the author.

Printed in the Netherlands

 .

.

.

.

Acknowledgements

The road to understanding ourselves as human beings and mother nature is not paved. To
keep from being overwhelmed by the bewildering scale and challenges of the journey, we
have designed some stations along the way, one of which is PhD station. My main concern
during my studies has not been to find the best way. Instead, I have tried to find “a way”,
for which, like anybody, I needed a mentor to put me in the right direction, and colleagues,
friends and families to stand by me on my journey. I have been very fortunate in both
respects.

First of all I would like to express my deepest gratitude to my promoter Jan van den Berg,
who has been a tremendous help to me on my way to the PhD station, for his continuous
support and guidance in this path, and for his patience, enthusiasm, and immense knowledge
that has helped me a lot. I have been fortunate to have a mentor who gave me the freedom to
explore on my own and to develop my scientific work independently. Not only did I enjoy
our scientific discussions, but also the numerous personal talks and free lectures: you talked
with great enthusiasm about big data, inductive bias, cyber security, etc. I enjoyed all of
our meetings: thanks for all the good advice and discussions! Jan, it was a great pleasure
working with you!

I would like to express my deep gratitude to Jos Vrancken for his guidance in conduct-
ing this research. I have been very much appreciated his willingness to give his time, his
enthusiastic encouragement along with his constructive critiques.

I would like to thank my brother Ehsan and my best friends Jafar and Ebrahim for the
many prolific brainstorming discussions we had.

During my PhD, I had the opportunity to work on some other projects and scientific pa-
pers with some of my best colleagues, graduate students and friends: Carlos Coello Coello,
Ehsan Davarynejad, Sobhan Davarynejad, Gary Fogel, Ebrahim Rahimi, Jafar Rezaei, Chang
Wook Ahn, Andreas Hegyi, Ewa Snaar-Jagalska, Yubin Wang, Vincent Marchau, Jelmer
van Ast, Ron van Duin, Guido van Heck, Maarten Janssen and Zary Forghany from whom
I learned a lot. Thank you all!

I had the pleasure to co-supervise a number of very bright graduate students. I learned
how to supervise projects from the collaboration with Jan van den Berg supervising the
projects of Guido van Heck, Mohamad Alamili, Maarten Janssen and Antonio Spadaro. I
learned a lot from you guys.

Although I have been complaining about many relocations not only in our building,
but also within sections, I should have celebrated it. I had the chance to share my office
with several brilliant colleagues, with whom I discussed many interesting ideas and shared
wonderful time. Thank you Andreas Schmidt, Yusasniza Mohd Yunus, Ebrahim Rahimi,
Sam Soleimani, Devender Maheshwari, Thieme Hennis, Tanja Buttler, Yakup Koç, Mingxin
Zhang, Reza Haydarlou, Evangelos Pournaras, Çagri Tekinay and Yilin Huang.

Finally I would like to thank all my family and friends who supported me. I would like

vii

viii

to thank my friends, Mohammad and Saeed, for asking zillions of annoying, but critical and
useful, questions about my work. Furthermore I would like to thank Zary, Sara and Elnaz
for keeping them off my back every once in a while.

.

:

.

:

 .

.

.

.

:

 .

Mohsen Davarynejad,
The Hague, January 2013.

Contents

Acknowledgements vii

1 Introduction 1
1.1 Classical search methods . 2

1.1.1 Gradient based algorithms . 3
1.1.2 Direct search algorithms . 3
1.1.3 Limitations of classical search methods 4

1.2 Metaheuristics . 5
1.2.1 Convergence of metaheuristics . 6

1.3 Research goals . 6
1.4 Research Approach . 8

1.4.1 Research philosophy . 8
1.4.2 Research instruments . 9

1.5 Contributions . 9
1.6 Dissertation Outline . 10
References . 10

2 A Fitness Granulation Approach for Large-Scale Structural Design Optimiza-
tion 15
2.1 Introduction . 16
2.2 Structural design optimization problems 17

2.2.1 Easier/Smaller problems . 17
2.2.2 Voltage and pattern design of a piezoelectric actuator 18

2.3 GAs in structural optimization problems 19
2.4 Fitness Approximation in Evolutionary Computation 20

2.4.1 Fitness Inheritance . 20
2.4.2 Surrogates . 21
2.4.3 Artificial Neural Networks . 24
2.4.4 Final Remarks About Fitness Approximation 25

2.5 Adaptive Fuzzy Fitness Granulation . 26
2.5.1 Algorithm Structure . 26
2.5.2 How to control the length of the granule pool? 28

2.6 Numerical results . 29
2.6.1 3-Layer composite beam . 30
2.6.2 Airplane wing . 30
2.6.3 2D truss frame . 32
2.6.4 Voltage and pattern design of piezoelectric actuator 32

2.7 Analysis of results . 39

ix

x Contents

2.8 Conclusions . 41
References . 41

3 Evolutionary Hidden Information Detection by fitness approximation 47
3.1 Introduction . 48
3.2 The AFFG Framework . 50

3.2.1 Basic Idea . 50
3.2.2 Basic Algorithm Structure . 51
3.2.3 How to control the size of the granule pool? 53
3.2.4 How to Determine the Width of the Membership Functions 53

3.3 Benchmark problems and numerical results 54
3.4 Spread Spectrum Watermarking (SSW) 57

3.4.1 Recovering the PN sequence . 59
3.5 Concluding Remarks . 62
References . 63

4 Accelerating Convergence Towards the Optimal Pareto Front 67
4.1 Introduction . 68
4.2 Basic Concepts . 68
4.3 Previous Related Work . 69

4.3.1 Final Remarks on Fitness Approximation 71
4.4 Adaptive Fuzzy Fitness Granulation (AFFG) 71

4.4.1 Algorithm’s Structure . 72
4.4.2 Controlling the size of the granule pool and protecting new pool

members through speciation . 74
4.5 Numerical results . 74
4.6 Conclusions and Future Work . 78
References . 79

5 Simulated Big Bounce: A continuous space global optimizer 83
5.1 Introduction . 84
5.2 A review of some popular heuristic algorithms 85

5.2.1 Evolutionary algorithms . 85
5.2.2 Particle swarm optimization . 86
5.2.3 A Brief Tour of the GSA . 87

5.3 Simulated Big Bounce (SBB) . 88
5.3.1 Elements of Big-Bang (BB) Theory: Back to the beginning 88
5.3.2 The Big Bounce Theory explains the Universe preceding the Big

Bang and after. 88
5.3.3 SBB algorithm . 90

5.4 A Brief Tour of the SBB Algorithm . 91
5.4.1 Mass Assignment . 93

5.5 Experimental Setup and Numerical results 93
5.5.1 Parameter Settings . 95
5.5.2 Results . 96

5.6 A comparative discussion on evolutionary computing paradigms vs. SBB . 100

Contents xi

5.7 Conclusions and Future Work . 101
References . 102

6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA 107
6.1 Introduction . 108
6.2 A metric for measuring center-seeking bias 109

6.2.1 Understanding the assumptions underlying center offset 109
6.2.2 A metric for center-seeking bias 111

6.3 A metric for initialization region bias . 112
6.4 Three population-based metaheuristics . 113

6.4.1 A brief tour of the particle swarm optimization 113
6.4.2 A Brief Tour of the GS Algorithm 113
6.4.3 mdGSA, a mass-dispersed GSA 115

6.5 Experimental results . 116
6.5.1 Experiment 1: Standard optimization problems 117
6.5.2 Experiment 2: Gene regulatory network model identification 130

6.6 Discussions . 133
6.7 Conclusions and Future Work . 135
References . 136

7 Conclusions and future research 143
7.1 Directions for Future Research . 146

TRAIL Thesis Series publications 149

Summary 151

Samenvatting 155

“If I have seen further it is by standing on the shoulders of
giants.”

Sir Isaac Newton - 1675

1
Introduction

When resources are limited in nature, competition is inevitable. This observation also holds
for society as we can conclude from competition occurring in business, politics, etc. due to
limitations of available resources. Competition over limited resources enforces exploration
of possibilities to improve the current status quo. Achieving optimal utility out of limited
resources is often desired and sometimes, crucial. This exploration process, which takes as
its objective to improvement any given current situation, is referred to as optimization. In an
ideal situation, the objective of optimization is to find values for a vector of parameters that
minimize or maximize a given objective function subject to given constraints [7]. A vector of
parameters where all constraints are satisfied is called a feasible solution. Feasible solutions
to the optimization problem are optimal solutions when their objective function value(s) are
superior to those of any other feasible solution. Optimization problems are ubiquitous, from
planning a route for a “Zombie walk” to designing a strong but light airplane wing, and from
holiday planning to finding a secret message hidden in a signal.

Optimization encompasses maximization and minimization of an objective function
f0 : E → IR where E ⊆ IRD and D comprise the dimensions of the search space E. A maxi-
mization problem can be transformed into a minimization problem and vice versa by taking
the negative of the objective function. The terms maximization, minimization and optimiza-
tion, therefore, are used interchangeably throughout this thesis.

A single-objective optimization problem can be defined as follows1 [7]

Given f0 : E→ IR where E ⊆ IRD and D is the dimension of the search space E

find x∗ ∈ E such that fi(x)≤ bi, i = 1, . . . ,m

and f0(x∗)≤ f0(x), ∀x ∈ E.

(1.1)

1For now we will be focusing on single-objective optimization.

1

2 1 Introduction

Here the vector x is the optimization variable of the problem, the function f0 is the
objective function, the functions fi : IRD→ IR, i = 1, . . . ,m, are the constraint functions, bi,
i = 1, . . . ,m are bounds for the constraints, and vector x∗ is the global optimal solution of
f0. x∗B is a the local optimal solution of the region B when f0(x∗B) ≤ f0(x), ∀x ∈ B, where
B⊂ E ⊆ IRD. Note that when dealing with unconstraint problems E = IRD.

Also interchangeable are the terms optimization variable, decision variable and design
variable. They refer to the vector x. We also use objective function, fitness function, cost
function and goodness interchangeably to refer to f0. Vectors are set in bold face throughout
this thesis.

Optimization problems encountered in practice appear in various types and with vari-
ous mathematical properties. As an example, the optimization problem is called a linear
program if both the objective function f0 and the constraints are linear, i.e., satisfy [7]

fi(αx+βy) = α fi(x)+β fi(y), i = 0, . . . ,m, (1.2)

for all x,y ∈ E and ∀α,β ∈ IR.
When the optimization problem is not linear, the problem is referred to as a nonlinear

program.
Global optimization is the process of finding the true global optimal solution. This

process begins by choosing initial starting solutions. A global optimizer is a solution method
which can find x∗ regardless of the initial starting point x0 ∈ E. A solution method is an
algorithm that finds the optimal solution (to some given accuracy) of a class of optimization
problems.

Optimization is an active research topic in many areas, including engineering, business,
the social sciences and mathematics. With the advent of new optimization algorithms, solu-
tion to various classes of optimization problems are gaining popularity [7]. Depending on
particular forms of the objective function, constraints and decision variables, optimization
problems can take various forms, with the following examples:

• Combinatorial optimization: where an objective function is defined over a finite set
of solutions.

• Box-Bounded optimization: where an objective function is defined over lower and
upper bounded design variables. The optimization problems addressed in this thesis
belong to this class of optimization problems.

In a broad sense, search algorithms may be classified as classical search methods and
metaheuristics. Partly in response to the limitations of classical search methods, metaheuris-
tics are gaining increasing attention. The next section outlines key limitations of classical
search methods. Before this, a brief introduction to them is provided.

1.1 Classical search methods

Classical search methods may be classified into Gradient based algorithms [11] and Direct
search algorithms [36].

1.1 Classical search methods 3

1.1.1 Gradient based algorithms
Gradient based optimization methods are of use when the objective function at hand is
continuous and differentiable. These methods often locate an optimal solution by employing
differential calculus.

In the 12th century Sharaf al-Din al-Tusi, in an attempt to find a root of some single-
dimensional function, developed an early form of Newton’s procedure [45]. Following
Newton’s iterative procedure, and starting from a reasonable guess, the root is guaranteed
to be found. This root finding method can be transformed to find either a local optimum
or the saddle point of a function. Gradient based algorithms assume the availability deriva-
tives. Newton’s method requires the objective function to be twice differentiable, and uses
first and second derivative information to construct a successive quadratic approximation
of the objective function. It is thus known as a second-order model. Newton’s procedure
is perhaps the classic form of numerical optimization. The Secant method, a well-known
extension of Newton’s procedure, does not need the derivatives to be evaluated directly;
rather, they are approximated.

Quasi-Newton methods generalize the Secant method to multi-dimensional problems
where the inverse Hessian matrix of second derivatives is approximated. The Quasi-Newton
methods not only require the existence of the gradient, they are also complex to implement.
A well-known instance of Quasi-Newton methods independently developed by Broyden [8],
Fletcher [18], Goldfarb [25], and Shanno [43], is known as the BFGS (Broyden Fletcher
Goldfarb Shanno) method.

Steepest decent which uses the first-order Taylor polynomial, assumes the availability
of the first derivatives to construct a local linear approximation of an objective function and
is a first-order method.

1.1.2 Direct search algorithms
While Newton’s method provides more than a decent direction, and has a quadratic con-
vergence (compared to linear convergence of Steepest decent), its performance is hampered
by the fact that the calculation of the Hessian matrix is required. That holds even when the
complex and expensive task of Hessian matrix calculation is alleviated by approximations
or variations. The main common practical difficulty, assuming a reasonable computing time
for obtaining the Hessian matrix, arises when the Hessian matrix is singular, ill-conditioned,
or is not positive definite. When the gradient of an optimization problem is not available,
e.g., due to a partially discontinuous or non-differentiable objective function, then direct
search methods are promising alternatives.

Direct search methods do not require derivative information, nor do they construct ap-
proximations of the objective function. They are thus also known as zero-order methods [7].
They are reasonably straightforward to understand and implement. Direct search methods
rely on sampling of the objective function. While samples of the objective function may
replace the actual gradient with an estimate of the gradient, precisely what it is that dis-
tinguishes them from gradient based algorithms is the sufficiency of the relative rank of
solutions, rather than the actual values. Hooke and Jeeves [30] provide the following de-
scription of direct search in their 1961 paper:

“We use the phrase ‘direct search’ to describe sequential examination of

4 1 Introduction

trial solutions involving comparison of each trial solution with the ‘best’ ob-
tained up to that time together with a strategy for determining (as a function
of earlier results) what the next trial solution will be. The phrase implies our
preference, based on experience, for straightforward search strategies which
employ no techniques of classical analysis except where there is a demonstra-
ble advantage in doing so.”

1.1.3 Limitations of classical search methods

When dealing with an optimization problem, several challenges arise. The problem at hand
may have several local optimal solutions, it may be discontinuous, the optimal solution
may appear to change when evaluated at different times, and the search space may have
constraints. The problem may have a large “hilly” search space, making it intractable to
try all candidate solutions in turn. The curse of dimensionality [3, 27], a notion coined by
Richard Bellman, is another obstacle when the dimensions of the optimization problem are
large.

Both gradient and direct search methods are generally regarded as local search meth-
ods [15, 26]. Nonlinear and complex dependencies that often exist among design the vari-
ables in real-world optimization problems contribute to the high number of local optimal
solutions. Classical methods cannot escape from these local optimal solutions.

Another common difficulty is that they cannot be efficiently parallelized on multi-pro-
cessor machines. This is especially important when measuring the fitness of candidate so-
lutions is computationally expensive [12, 13].

Many real-world optimization problems [9] have mixed discrete and continuous design
variables. A common approach to the optimization of this kind of problems, when using
classic optimization algorithms, is to treat all variables as continuous, locate the optimal so-
lution, and round off the discrete variables to their closest discrete values. The first problem
with this approach is a considerable deterioration of the objective function. The second is
the inefficiency of the search due to the evaluation of infeasible solutions. These difficulties
may be avoided during the execution of the optimization process by taking into account the
type of design variables.

Even if classical approaches offer quick convergence to an optimal solution when ap-
plied to a certain class of optimization problems, they may still not inefficient when applied
to a specific optimization problem. They are mostly tailored to the salient characteristics
of certain types of problems, e.g., they require a “high degree of interconnection between
the solver and the objective function” [22]. A notable example is the geometric program-
ming [6] method specifically designed to solve a posynomial-type objective function and
constraints. The conjugate gradient method is suitable for strictly convex quadratic objective
functions with finite and global convergence property, but it is not expected to work appro-
priately on multimodal optimization problems. While numerous nonlinear conjugate gradi-
ent methods for non-quadratic problems have been developed and extensively researched,
they are frequently subject to severely restrictive assumptions (e.g., their convergence de-
pends on specific properties of the optimization problem, such as Lipschitz continuity of
the gradient of the objective function). Even when designing an algorithm, in some cases,
efficiency is sacrificed in favor of appealing theoretical properties.

1.2 Metaheuristics 5

1.2 Metaheuristics

Classical search methods do not live up to the expectations of modern, computationally
expensive optimization problems of today. The shortcomings (Section1.1.3) of classical
search methods discussed above are partially addressed and remediated by metaheuristics.
We will follow the convention of Glover [20, 21] and use the term metaheuristics to refer
to all modern nature-inspired optimization algorithms. These are a class of iterative search
algorithms that aim to find reasonably good solutions to optimization problems by com-
bining different concepts for balancing exploration (also known as diversification, that is,
the ability to explore the search space for new possibilities) and exploitation (also known
as intensification, that is, the ability to find better solutions in the neighborhood of good
solutions found so far) of the search process [39].

General applicability and effectiveness are particular advantages of metaheuristics. An
appropriate balance between intensively exploiting areas with high quality solutions (the
neighborhood of elite solutions) and moving to unexplored areas when necessary, is the
driving force behind the high performance of metaheuristics [5]. Metaheuristics require
a large number of function evaluations. They are often characterized as population-based
stochastic search routines which assures a high probability of escape from local optimal
solutions when compared to gradient-based and direct search algorithms. Metaheuristics do
not necessarily require a good initial guess of optimal solutions, in contrast to both gradi-
ent and direct search methods, where an initial guess is highly important for convergence
towards the optimal solution [14, 17]. Metaheuristics are also easy to hybridize [22], a
property that makes it possible for them to exploit problem-specific heuristics.

Nature is the most complex system that has field tested solutions to many problems [22,
31, 46]. Imitation of natural processes has had a profound influence on solvers for chal-
lenging optimization problems, and has been transformed into a mature subfield existing
somewhere in the intersection of computer science, physics and biology. There are a grow-
ing number of examples where nature-inspired algorithms have been successfully applied
to practical problems.

Metaheuristics can be classified into single-solution search algorithms and population-
based search algorithms [35]. Single-solution solvers are solution-to-solution search meth-
ods in which a single solution is evolved following a certain set of principles. Notable
examples of single-solution solvers are simulated annealing and tabu search. Population-
based search algorithms, such as genetic algorithms and particle swarm optimization, on
the other hand, evolve a set of solutions in each iteration and generate new solutions by
somehow combining multiple solutions. While the available nature-inspired metaheuristics
share similarities in their search processes, their performance may differ considerably.

The most used metaheuristic in the literature is concerns evolutionary algorithms. A
population of sample potential solutions provide information about the objective function. A
new population of potential solutions is generated (stochastically, in the main) by selection
and manipulation of those samples in the hope of approaching the optimal solution. One
of the earliest metaheuristics concerns genetic algorithms (GAs) [23, 24, 29], a well-known
approach that is based on the idea of natural selection. GAs have a very different working
principle than most of the classical optimization problems. In GAs, a population of solutions
evolve through a series of operators, including selection, crossover, and mutation. The
section operator assures survival of the fittest solutions of the population. Crossover is an

6 1 Introduction

operator that combines more than one fit solution, while mutation modifies each solution.
These operators specify the neighborhood of a solution to be evaluated. While genetic
algorithms may work with variables themselves, or a coding of variables, their most decisive
characteristic is the selection operator.

The theory of evolution provides a sound explanation for numerous natural phenomena.
The development of resistance in HIV to anti-retroviral drugs is only one instance of the
laws of selection and mutation in evolution. Motivated by principles of biological evolu-
tion, genetic algorithms are search procedures that require minimal problem information.
Attempts to implement some search strategies inspired by natural evolution were made by
Fogel et. al [19]. More sophisticated algorithms, with some comparison of their property
of convergence, are explored later [2, 42]. A systematic theoretical analysis of genetic al-
gorithms is presented in [23, 24, 29].

Apart from GAs, this thesis will study variants of two popular optimization methods,
namely particle swarm optimization (PSO) and gravitational search algorithms (GSA).
PSO was originally proposed by Kennedy and Eberhart [34] as a model for the social be-
havior of individuals within a swarm. Each particle traverses the search space under the
influence of its own best experience and that of its topological neighbors. GSAs [41] are
among those population-based optimization algorithms that have been introduced recently,
and is gaining popularity. It uses the concept of formation of complex structure in the uni-
verse. In GSA, the movement of each particle follows Newtons law of gravitation.

1.2.1 Convergence of metaheuristics

While mathematical proof for the convergence of global optimization algorithms can be
appealing, such proofs are often of no use without practical value. The proofs available
are often made in the form of infinity-limits [40], where an optimizer, provided enough
iterations, is proven to find a small region surrounding the optimum. See for example [4].
When the exact same proof can be provided for random sampling search algorithms, proofs
relying on infinity-limits are of no practical use.

Optimization algorithms, as stated by the No Free Lunch (NFL) set of theorems [47],
will expose equal performance over all possible cost functions. This implies that no algo-
rithm can be designed so as to maintain superiority over linear enumeration of the search
space, or even a random sampling search algorithm. However, the NFL theorem does not
hold for all subsets of the set of all possible cost functions. This implies that when de-
veloping an optimization algorithm, they can be tailored to the salient problem-specific
characteristics to solve an optimization problem efficiently. Bearing in mind the No Free
Lunch theorem, when developing metaheuristics, they need to be tested empirically.

1.3 Research goals

In this section we introduce the general context of our research by providing an overview of
the challenges of metaheuristics. We also define the research goals and sub goals. Bound-
aries for our research are also explained.

Metaheuristics may suffer from a slow rate of convergence towards the global opti-
mum, which implies that they may be too (computationally) expensive for certain problems.

1.3 Research goals 7

Consequently, it is a challenge to develop computationally efficient evolution-based search
methods. The aim of this research is to find ways or improve the currently exiting solutions
to improve the performance of this type of search methods. This has lead us to our main
research goal:

Central goal is to improve the performance of some metaheuristics by alleviating cer-
tain identified drawbacks.

This required us to look at the different situations where metaheuristics exhibit a slow
convergence. We have identified that there are at least two main reasons responsible for
their slow convergence: a) The large computation time required for calculating the fitness
function, and b) High-dimensional search space with complex fitness landscape.

To alleviate the convergence time of computationally expensive optimization problems,
a variety of techniques have been proposed in the literature. Perhaps the most obvious
choice is to use parallelization techniques [1]. However, another alternative is to rely on
fitness approximation techniques, which avoid evaluating every individual in the popula-
tion of solutions (see [32, 33]). Based on an approximate model of the fitness landscape
these approaches estimate the quality of some individuals. When using fitness approxi-
mation techniques, it is necessary to strike a balance between exact fitness evaluation and
approximate fitness evaluation.

Lack of sufficient training data is the main problem when using most fitness approxi-
mation models currently available, hence the failure to obtain a model with sufficient ap-
proximation accuracy. Since evaluation of the original fitness function is time consuming
and/or expensive, the approximate model may be of low fidelity and may even introduce
false optima. Furthermore, if the training data does not cover the search domain, large er-
rors may occur due to extrapolation. Errors may also occur when the set of training points
is not sufficiently dense and uniform.

In multi-objective optimization problems (MOOP), the complexity of the problem is
normally higher compared to that of single-objective optimization problems (SOOP) [10].
In general, although the fitness approximation approaches used in SOOP may be extended
and adapted for MOOP, such adaptation may require more elaborate mechanisms.

Metaheuristics, by making a tradeoff between exploration and exploitation, are strate-
gies used to guide the search process iteratively. When studying the properties of these
algorithms, it turns out that some population-based optimization techniques suffer from a
notable and specific search bias [37]. They tend to perform best when the optimum is lo-
cated at, or near the center of the search space. This is known as center-seeking bias (CSB).
General purpose optimizers are those which make no assumptions about the problem at
stake. Consequently, if we want to compare the quality of the solutions found by a set of
metaheuristics for a series of benchmark problems with the optimal solution near the center
of the search space, the comparison becomes unfair. Metaheuristics may also suffer from
bias towards the initialization region. This is known as initialization search bias (IRB).
Observe that, while search algorithms may perform better when they are initialized within
the whole search space, and benefit from knowing the search space, one with a lower bias
towards the initialization region is preferable to one with a higher bias.

This led us to to following sub goals, which together with the main goal are addressed
at the end of Chapters 2 to 6:

8 1 Introduction

1. Reduction of computational complexity related to

(a) slow convergence and/or

(b) high computation costs of fitness evaluations

2. More effective search strategies

(a) by improved balancing of exploration and exploitation and

(b) measuring certain search biases (e.g. CSB and IRB)

In our research we focused on well-known and widely used metaheuristics including
GAs, PSO and GSA. It was quite possible for us to include other global search algorithms,
but we did not specially research them. Although the ideas presented here are applicable for
other population-based search algorithms, we did not wish to continue the ongoing debate
on which algorithm is superior to others in terms of convergence. We also did not study the
CSB and IRB of a large class of global optimization algorithms, but we have presented a
framework that enables such a study.

1.4 Research Approach
Addressing the challenges of metaheuristics raised in this thesis requires a thorough under-
standing of artificial intelligence in general and computational intelligence and approximate
reasoning in particular. The research approach chosen in this thesis is presented below.

1.4.1 Research philosophy
The content of this thesis has been inspired by the philosophical school of positivism [11].
According to this philosophy, scientific knowledge must be based on logical inference from
a set of objective, observable and measurable facts. The data-collection process and the
findings that come from empirical evidence have to be repeatable. Positivists are reduc-
tionists, in that they break a problem down to its constituent parts, a common practice in
complex systems analysis and design.

Research strategy

Among the two distinct paradigms that characterize much of the research in information
systems, namely behavioral science and design science [28], the latter is the research strat-
egy followed in this thesis. Design science is outlined in seven guidelines [28].

The contribution of a design science research to the user community is a purposeful and
innovative artifact that delivers utility in terms of solving a relevant problem. In this thesis, a
number of algorithms is proposed to address some areas of concerns discussed in Section1.3
(guideline 1). While the artifacts are of importance in both the current reality and practice
of real-world optimization problems (guideline 2), their effectiveness is shown using rele-
vant and well-established test problems and real-world optimization problems (guideline 3)
which provide verifiable contributions to the studied research area (guideline 4). The con-
struction and evaluation of each artifact designed relies on appropriate performance metrics

1.5 Contributions 9

(guideline 5). The artifacts are improved during the evaluation process, where design alter-
natives are tested so to satisfy the research problem and objectives (guideline 6). Various
artifacts discussed throughout this thesis are a result of these design alternatives. It is gen-
erally acknowledged that the results of design science should be properly communicated to
the relevant audience as a measure to strengthen cumulative knowledge, as well as to mo-
tivate future work (guideline 7). Chapter 7 in general, and each other chapter in particular,
discusses and envisions the impact of this research on the field.

1.4.2 Research instruments

The research in each chapter of this thesis involves four types of research tool [44]: (i) liter-
ature review, (ii) experiment (iii) evaluation and (iv) case study. Literature review provides
the background knowledge required to conduct research and motivates the research ques-
tion. Experiment is the tool to test the functionality of the proposed solutions in addressing
the challenges identified. The empirical evidence that this thesis provides comes from con-
trolled experiments performed in simulation environments. Evaluation follows each of the
performed experiments. For some of the cases, the applicability of the solutions introduced
is studied using real-world case studies.

1.5 Contributions

While the existing methods aim to reduce computational cost by approximating the fitness
function, the prevalent problem of interpolation in rough surfaces remains. If the assumption
of smooth continuity is invalid, interpolation might even yield values that are not physically
realizable. Furthermore, in using interpolation, we may be blind to optimal solutions, as
interpolation assumes a pattern of behavior that may not be valid around optimal peaks.

This thesis addresses this problem by introducing the concept of information granu-
lation. With a view to reducing computational cost, the concept of fuzzy granulation is
deployed to effectively approximate the fitness function. The advantages of this approach
over others are that no training samples are required, and that the approximate model is
updated dynamically with negligible overhead cost.

Some evolutionary computing techniques have advantages over others in terms of ease
of implementation, preservation of diversity of the population, efficiency, etc. [16]. For ad-
vancement of their performance they may be simplified, hybridized etc. There has also been
a steady increase in the number of global optimization algorithms, each characterized by its
unique population dynamics. Different population dynamics characterize the way two con-
flicting goals, exploration (diversification) and exploitation (intensification), are balanced.
In practice, metaheuristic algorithms have been shown to often find local minima, some-
times of low quality, meaning that the chosen balance between exploration and exploitation
is not adequate to the problem at stake. We aim at presenting a solver that, next to exploita-
tion, applies robust exploration in order to escape from local minima.

A review of the literature reveals the lack of an appropriate quantification metric for
measuring CSB and IRB. Quantitative measures are succinct and are the preferred disclo-
sure form not only for a) comparison of the degree of bias of a set of search algorithms,
but are also desirable when the task is to b) discover whether a single search algorithm has

10 1 Introduction

any search bias at all. In this thesis, two metrics are introduced, one for measuring center-
seeking bias (CSB) and one for initialization region bias (IRB). An alternative for center
offset [38], a common approach to analyzing center-seeking behavior of algorithms, is also
proposed, as we noticed that its assumption did not always hold.

1.6 Dissertation Outline

The reminder of this thesis is organized as follows.

Chapter 2 starts with an introduction to the structural design optimization problems
as an example of computationally expensive optimization problems. This is followed by
an extensive review of the existing fitness approximation approaches. This is followed in
turn by a proposition for an adaptive predictive model for fitness approximation, with the
goal of deciding on the use of expensive function evaluations. Empirical analysis of the
performance of the proposed algorithm, when applied to a set of four structural design
problems, is then presented.

Chapter 3 presents the development of an auto-tuning strategy with the aim of avoiding
the tuning of the parameters of the algorithm introduced in Chapter 2. Empirical analysis
of the behavior of the proposed predictive model, applied to two sets of problems, then
follows. The first of these is a set of several numerical benchmark problems with various
optimization characteristics. The second is the real-world problem of the detection of the
hidden information in a spread spectrum watermarked signal.

An extension of the developed fitness approximator to multiobjective problems is pre-
sented in Chapter 4. The proposed extension is then applied to a set of synthetic benchmark
functions. These synthetic benchmarks facilitate specific aspects of the proposed extension
to be tested.

Chapter 5 presents a new metaheuristic based on the theory of Big Bounce. The algo-
rithm has been tested by comparing its performance with the performance of five different
variations of other metaheuristics.

In Chapter 6, two metrics are introduced, one for measuring center-seeking bias (CSB)
and one for initialization region bias (IRB). The metrics introduced are used to evaluate the
bias of three algorithms while running on a test-bed of optimization problems which have
their optimal solution at, or near to, the center of the search space. The most prominent
finding is considerable CSB and IRB of gravitational search algorithm(GSA). In addition, a
partial solution to the center-seeking and initialization region bias of GSA is proposed. The
performance of the proposed variant of GSA which promotes the global searching capability
of GSA is verified using a number of synthetic benchmarks problems. The solvers studied
are used to identify the parameters of a gene regulatory network system.

Chapter 7 provides a summary of the main findings of this thesis and presents future
research directions.

The appendices present a glossary of the terms and a list of publications derived from
this work.

Bibliography 11

Bibliography
[1] Alba, E. and Tomassini, M. (2002). Parallelism and Evolutionary Algorithms. IEEE

Transactions on Evolutionary Computation, 6(5):443–462.

[2] Bagley, J. (1967). The behavior of adaptive systems which employ genetic and correla-
tion algorithms. PhD thesis, PhD thesis, University of Michigan, Ann Arbor.

[3] Bellman, R. (1957). Dynamic Programming. Princeton University Press, Princeton,
N.J.

[4] Birbil, Ş., Fang, S., and Sheu, R. (2004). On the convergence of a population-based
global optimization algorithm. Journal of global optimization, 30(2):301–318.

[5] Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview
and conceptual comparison. ACM Computing Surveys (CSUR), 35(3):268–308.

[6] Boyd, S., Kim, S., den berghe, L. V., and Hassibi, A. (2007). A tutorial on geometric
programming. Optimization and Engineering, 8(1):67–127.

[7] Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

[8] Broyden, C. (1970). The convergence of a class of double-rank minimization algo-
rithms. IMA Journal of Applied Mathematics, 6(1):76–90.

[9] Chiong, R., Weise, T., and Michalewicz, Z. (2011). Variants of evolutionary algorithms
for real-world applications. Springer.

[10] Coello Coello, C. A., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary
Algorithms for Solving Multi-Objective Problems. Springer, New York, second edition.
ISBN 978-0-387-33254-3.

[11] Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods
approaches. Sage Publications, fourth edition.

[12] Davarynejad, M., Akbarzadeh-T, M.-R., and Pariz, N. (2007). A novel general
framework for evolutionary optimization: Adaptive fuzzy fitness granulation. In IEEE
Congress on Evolutionary Computation (CEC’07), pages 951–956. IEEE.

[13] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012). A Fit-
ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,
R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for
Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[14] Deb, K. (1999). An introduction to genetic algorithms. In Sadhana (Academy Pro-
ceedings in Engineering Sciences), volume 24, pages 293–315.

[15] Deb, K. and Goyal, M. (1997). Optimizing engineering designs using a combined
genetic search. In Proceedings of the seventh international conference on genetic algo-
rithms, pages 521–528.

12 1 Introduction

[16] del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Hernandez, J., and Harley, R.
(2008). Particle swarm optimization: basic concepts, variants and applications in power
systems. IEEE Transactions on Evolutionary Computation, 12(2):171–195.

[17] Dorsey, R. and Mayer, W. (1995). Genetic algorithms for estimation problems with
multiple optima, nondifferentiability, and other irregular features. Journal of Business &
Economic Statistics, 13(1):53–66.

[18] Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer
Journal, 13(3):317–322.

[19] Fogel, L., Owens, A., and Walsh, M. (1966). Artificial intelligence through simulated
evolution.

[20] Glover, F. (1986). Future paths for integer programming and links to artificial intelli-
gence. Computers & Operations Research, 13(5):533–549.

[21] Glover, F. and Kochenberger, G. (2003). Handbook of metaheuristics. Springer.

[22] Goldberg, D. (1994). Genetic and evolutionary algorithms come of age. Communica-
tions of the ACM, 37(3):113–119.

[23] Goldberg, D. (2002). The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers.

[24] Goldberg, D. and Holland, J. (1988). Genetic algorithms and machine learning. Ma-
chine learning, 3(2):95–99.

[25] Goldfarb, D. (1970). A family of variable metric methods derived by variational
means. Mathematics of computation, 24(109):23–26.

[26] Haddad, O., Afshar, A., and Marino, M. (2006). Honey-bees mating optimization
(hbmo) algorithm: a new heuristic approach for water resources optimization. Water
Resources Management, 20(5):661–680.

[27] Hastie, T., Tibshirani, R., and Friedman, J. (2008). The elements of statistical learning.
Springer-Verlag, 2nd edition.

[28] Hevner, A., March, S., Park, J., and Ram, S. (2004). Design science in information
systems research. MIS quarterly, 28(1):75–105.

[29] Holland, J. (1975). Adaptation in natural and artificial systems. University of Michi-
gan Press, Ann Arbor, MI.

[30] Hooke, R. and Jeeves, T. (1961). ”direct search” solution of numerical and statistical
problems. Journal of the ACM (JACM), 8(2):212–229.

[31] Huebsch, N. and Mooney, D. (2009). Inspiration and application in the evolution of
biomaterials. Nature, 462(7272):426–432.

[32] Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing-A Fusion of Foundations, Methodologies and Applications,
9(1):3–12.

Bibliography 13

[33] Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances and
future challenges. Swarm and Evolutionary Computation, 1:61–70.

[34] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE Interna-
tional Conference on Neural Networks, volume 4, pages 1942–1948.

[35] Kochenberger, G. (2003). Handbook of metaheuristics. Springer.

[36] Kolda, T., Lewis, R., and Torczon, V. (2003). Optimization by direct search: New
perspectives on some classical and modern methods. SIAM review, 45(3):385–482.

[37] Mitchell, T. (1997). Machine learning. McGraw Hill.

[38] Monson, C. and Seppi, K. (2005). Exposing origin-seeking bias in pso. In Proceedings
of the 2005 conference on Genetic and evolutionary computation, pages 241–248.

[39] Osman, I. and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Opera-
tions Research, 63(5):511–623.

[40] Pedersen, M. (2010). Tuning & simplifying heuristical optimization. PhD thesis, PhD
thesis, University of Southampton.

[41] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2009). Gsa: a gravitational
search algorithm. Information Sciences, 179(13):2232–2248.

[42] Rosenberg, R. (1967). Simulation of genetic populations with biochemical properties.
PhD thesis, PhD thesis, University of Michigan.

[43] Shanno, D. (1970). Conditioning of quasi-newton methods for function minimization.
Mathematics of computation, 24(111):647–656.

[44] Sjoberg, D., Dyba, T., and Jorgensen, M. (2007). The future of empirical methods in
software engineering research. In Future of Software Engineering, 2007, pages 358–378.

[45] Soleymani, F. and Sharifi, M. (2011). On a general efficient class of four-step root-
finding methods. International Journal of Mathematics and Computers in Simulation,
5:181–189.

[46] Wen, H., Zhang, S., Hapeshi, K., and Wang, X. (2008). An innovative methodology
of product design from nature. Journal of Bionic Engineering, 5(1):75–84.

[47] Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82.

“Complexity makes discovery of the optimum a long, perhaps
never-to-be completed task, so the best among tested options
must be exploited at every step.”

John Holland - 1992

2
A Fitness Granulation Approach for

Large-Scale Structural Design
Optimization 1

Abstract
The complexity of large-scale mechanical optimization problems is partially due to the pres-
ence of high-dimensional design variables, the interdependence among design variables,
and the high computational cost of the finite element simulations needed to evaluate the
fitness of candidate solutions. Evolutionary cycles are ruled by competitive games of sur-
vival and not merely by absolute measures of fitness, as well as exploiting the robustness
of evolution against uncertainties in the fitness function evaluations. This chapter takes up
the complexity challenge of mechanical optimization problems by proposing a new fitness
granulation approach that attempts to cope with many difficulties of fitness approximation
approaches that have been reported in the literature. The approach is based on adaptive
fuzzy fitness granulation having as its main aim to strike a balance between the accuracy
and the utility of the computations. The adaptation algorithm adjusts the radials of influ-
ence of granules according to the perceived performance and level of convergence attained.
Experimental results show that the proposed approach accelerates the convergence towards
optimal solutions, when compared to the performance of other more popular approaches.

1This chapter is based on:

• M. Davarynejad, J. Vrancken, J. van den Berg, and C. A. Coello Coello, “A Fitness Granulation Approach
for Large-Scale Mechanical Optimization Problems”, In Raymond Chiong and Zbigniew Michalewicz
(Eds.), Variants of Evolutionary Algorithms for Real-World Applications, pp. 245-280, Springer, Berlin,
2012. (ISBN 978-3-642-23423-1)

15

16 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

This suggests its applicability to other complex finite element-based engineering design
problems.

2.1 Introduction
Since the 1960s, and due to significant developments in numerical methods and computing,
the finite element analysis (FEA) became a frequent tool to solve engineering problems that
arise in systems with several interacting components, complex geometries, and which are
under the effect of different physical phenomena. These systems elude exact techniques, but
are reasonably manageable by means of a systematic discretization approach known as the
finite element method (FEM) [47]. At the same time that the FEM was developed, efficient
and fast optimization algorithms have arisen for solving various kinds of mathematical and
optimization problems (OPs). Both trends contributed to the development of large-scale
structural design and optimization problems (SDOPs) and to the discipline of structural
optimization. The aim of structural optimization is to generate automated procedures for
finding the best possible structure with respect to at least one criterion (the objective), and
having to satisfy a set of constraints, by selecting from a set of geometrical dimensions,
material properties and/or topological parameters [43].

Structural optimization problems are often challenging due to their high computational
demands 2, multi-modality, non-convexity, high dimensionality, and multi-objectivity. Be-
cause of this, many structural optimization problems are weakly amenable to conventional
mathematical programming approaches, which motivates the use of alternative solution
methods.

Randomized search heuristics are among the simplest and most robust strategies that are
applicable to a wide range of optimization problems including structural design (SD). While
they can normally provide nearly optimal solutions, they cannot guarantee convergence
to the optimum. However, their computational requirements are normally high. Among
the randomized search heuristics currently available, evolutionary algorithms (EAs) have
become very popular in the last few years, mainly because of their ease of use and efficacy.
EAs are stochastic search techniques which operate on a set of solutions (the so-called
population), that are modified based on the principles of the natural evolution (i.e., the
survival of the fittest) [39]. EAs have been commonly adopted for solving complex SD
problems. For example, Walker and Smith [61] combined the FEM and EAs to minimize
a weighted sum of the mass and deflection of fiber-reinforced structures. Similarly, Abe
et al. [1] used FEM and an EA for structural optimization of the belt construction of a
tire. More recently, Giger and Ermanni [21] applied FEM and EA to minimize the mass of
composite fiber-reinforced plastic (CFRP) rims subject to strength and stiffness constraints.
However, EAs may suffer from a slow rate of convergence towards the global optimum,
which implies that they may be too (computationally) expensive for certain SD problems.
Consequently, it is challenging to develop computationally efficient evolution-based search
methods.

To alleviate the problem of converging time of computationally expensive optimization
problems, a variety of techniques has been proposed in the literature. Perhaps the most ob-

2Finite element analysis is computationally costly and may require several days to complete its calculations,
even for a relatively simple problem.

2.2 Structural design optimization problems 17

vious choice is to use parallelization techniques [4]. However, another alternative is to rely
on fitness approximation techniques, which avoid evaluating every individual in the popula-
tion of an EA. In order to do this, these approaches estimate the quality of some individuals,
based on an approximate model of the fitness landscape. This is the sort of approach on
which this chapter is focused. Section 2.4 provides a review of fitness approximation tech-
niques in evolutionary computation. When using fitness approximation techniques, it is
necessary to strike a balance between exact fitness evaluation and approximate fitness eval-
uation. In this chapter, with a view to reducing computational cost, we employ the concept
of fuzzy granulation to effectively approximate the fitness function. The advantages of this
approach over others is the fact that no training samples are required, and the approximate
model is dynamically updated with no or negligible overhead cost.

The remainder of this chapter is organized as follows. The following section elabo-
rates upon four SD optimization problems before explaining the genetic algorithm (GA)
approach proposed here for the SD optimization task (see Section 2.3). This is followed
by a review of a variety of fitness approximation approaches that have been proposed for
EAs in Section 2.4. In order to accelerate the convergence speed of the GA with a min-
imum number of fitness function evaluations, a novel method is presented in Section 4.4.
The approach is based on generating fuzzy granules via an adaptive similarity analysis. To
illustrate the efficiency of the proposed method in solving the four SD problems introduced
in Section 2.2, the performance results of different optimization algorithms are presented in
Section 2.6. A further statistical analysis confirms that the proposed approach reduces the
computational complexity of the number of fitness function evaluations by over 50% while
reaching similar or even better final fitness values. Finally, in Section 3.5 we provide our
conclusions.

2.2 Structural design optimization problems
Four SD optimization problems, with increasing complexity are investigated here. They are
the following: (1) the design of a 3-layer composite beam with two decision variables, (2)
the design of an airplane wing with six decision variables, (3) the design of a 2D truss frame
with 36 decision variables, and (4) the voltage/pattern design of piezoelectric actuators.
We discuss in more detail the last problem, because of its complexity. Such a problem
consists of finding the best voltage and pattern arrangement for static shape control of a
piezoelectric actuator with 200 design variables. Clearly, this is a more challenging and
heavy optimization task from a fitness/computational perspective.

2.2.1 Easier/Smaller problems
The first three SD problems are covered in this section. The ultimate goal in these opti-
mization problems is to maximize the first natural frequency 3 of the given structure. To
allow more space for the last problem (described in Subsections 2.2.2 and 2.6.4), we limit
ourselves here to a short description of the other problems.

3Resonance occurs when the excitation frequency is the same as the natural frequency. For the same excita-
tion energy, the resulting vibration levels at resonance frequency is higher than other exciting frequencies. The
importance of maximizing the first natural frequency is to avoid the resonance phenomenon to occur.

18 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

3-Layer composite beam

A multi-layered composite beam is constructed from a combination of two or more layers of
dissimilar materials that are joined together to act as a unit in which the resulting combina-
tion is lighter, stronger and safer than the sum of its parts. A finite element analysis model
has been developed to analyze the multi-layer composite beams and plates. The objective is
to raise the first natural frequency of the beam.

Airplane wing

An airplane wing is an elastic structure that, in the presence of aerodynamic loads, starts
to vibrate. In this study, we treated the natural frequency as the design objective since it is
quite intuitive and natural to raise the natural frequencies of the wing so that it is not easily
excited by undesirable disturbances.

2D truss frame

Trusses are the most commonly used structure and in comparison to heavily-built struc-
tures, they have a relatively small dead weight. A truss consists of bar-elements (members)
connected by hinged joints to each other and supported at the base. Truss design problems
belong to the class of load-supporting structure design problems that are usually finite-
dimension optimization problems. The design of load-supporting structures plays a key
role in engineering dynamics. The objective (fitness) here is to raise the structure’s first
natural frequency.

2.2.2 Voltage and pattern design of a piezoelectric actuator
Piezoelectric materials exhibit both direct (electric field generation as a response to me-
chanical strains) and converse (mechanical strain is produced as a result of an electric field)
piezoelectric effects. The direct effect is used in piezoelectric sensors while the converse
effect is used in piezoelectric actuators.

Apart from ultrasound applications, energy harvesting, sensor applications (e.g., strain
gauges and pressure sensors), and vibration/noise control domains, piezoelectric materi-
als are widely used as actuators in smart structures. Smart structures with integrated self-
monitoring, self-diagnosis and control capabilities have practical uses ranging from MEMS,
biomedical engineering, control engineering, aerospace structures, ground transportation
systems and marine applications. The smart structures’ technology is widely used in biome-
chanics, i.e., to expand obstructed blood vessels or to prevent further enlargement of blood
vessels damaged by aneurysms [37] which most commonly occurs in arteries. Another
apparent practical use of smart and adaptive structural systems is to properly control the
undesirable motions of geometry-changing structures.

Piezoelectric actuators are also found in an enormous range of applications for dis-
tributed actuation and control of mechanical structures for shape correction and modifica-
tion. One example for this is their use in flexible aircrafts where they improve the aerody-
namic performance and deformation control of conformal antennas [26], through their in-
corporation within the structure. For instance, in [34], an optimization algorithm is used to
deal with the shape control of functionally graded material (FGM) plates which are actively

2.3 GAs in structural optimization problems 19

controlled by piezoelectric sensor and actuator patches. A computational intelligence-based
algorithm is used to derive the optimal voltage distribution, by adopting the elements of the
gain control matrix as the design variables.

The optimal shape control and correction of small displacements in composite struc-
tures using piezoelectric actuators concern complex engineering problems. To achieve a
predefined shape of the structure of the metal plate, in this chapter we will present a fast
converging global optimization algorithm to find the optimal actuation voltages that need to
be applied to the piezoelectric actuators and to the pattern of piezoelectric patches.

2.3 GAs in structural optimization problems
Genetic algorithms (GAs) are perhaps the most popular type of EAs nowadays and have
been applied to a wide variety of problems [22]. The GA optimization procedure for solv-
ing SD problems begins with a set of randomly selected parents (design variables). If any
of these parents does not meet all the physical constraints, they are modified until they
do. In subsequent generations, each offspring’s phenotype is also checked for its feasibil-
ity. Furthermore, the fitness values of the parents and their offspring are compared and the
worst individuals are rejected, preserving the remaining ones as parents of the new genera-
tion (known as steady-state population treatment). This procedure is repeated until a given
termination criterion is satisfied.

Due to their robustness, GAs have been frequently used in a variety of real world opti-
mization applications including optimizing the placement of actuators on large space struc-
tures [20], the design of a low-budget lightweight motorcycle frame with superior dynamic
and mechanical properties [51], and the evolution of the structural configuration for weight
minimization of a space truss structure [32]. The implementation of a GA can be summa-
rized as follows:

1. Initialization: Initialize P design variable x = {x1,x2, . . . ,xi, . . . ,xP}, where P is the
population size.

2. Constraints check: If satisfied, continue, else modify xi until the candidate solution
becomes feasible.

3. Evaluation (Analysis): Evaluate the fitness function f (xi), i = {1,2,
. . . ,P}.

4. Convergence check:

(a) if satisfied stop,

(b) else select the next generation parent design variable, apply genetic operators
(mutation, recombination) and generate the next offspring design variables x.
Go to step 2.

EAs in general are often expensive in the sense that they may require a high number
of computationally costly objective function evaluations. As a result, it may be necessary
to forgo an exact evaluation and use approximated fitness values that are computationally
efficient. In the design of mechanical structures, for instance, each exact fitness evaluation

20 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

requires the time-consuming stage of FEA which, depending on the size of the problem,
may consume from several seconds up to several days. If we assume a conventional genetic
algorithm with a fixed and modest population size of 100, a maximum of 100 generations,
and a very small-scale structural problem that requires 10 seconds for each fitness evalua-
tion, the total execution of the GA would require 30 hours! This should make evident the
inhibiting role of the computational complexity associated to GAs (and EAs, in general) for
more non-trivial and large-scale problems.

Since one of the crucial aspects for solving large-scale SD optimization problems using
EAs is the computational time required, in the following section we outline a few existing
strategies that have been proposed to deal with this issue.

2.4 Fitness Approximation in Evolutionary Computation

As indicated before, one possibility to deal with time-consuming problems using a GA is to
avoid evaluating every individual and estimate instead the quality of some of them based on
an approximate model of the search space. Approximation techniques may estimate indi-
viduals’ fitness on the basis of previously observed objective function values of neighboring
individuals. There are many possible approximation models [24]. Next, we will briefly re-
view some of the most commonly adopted fitness approximation methods reported in the
specialized literature.

2.4.1 Fitness Inheritance

This is a very simple technique that was originally introduced by Smith et al. [60]. The
mechanism works as follows: when assigning fitness to an individual, some times we eval-
uate the objective function as usual, but the rest of the time, we assign fitness as an average
(or a weighted average) of the fitness of the parents. This fitness assignment scheme will
save us one fitness function evaluation, and operates based on the assumption of similarity
between an offspring and its parents. Clearly, fitness inheritance cannot be applied all the
time, since we require some true fitness function values in order to obtain enough infor-
mation to guide the search. This approach uses a parameter called inheritance proportion,
which regulates how many times do we apply fitness inheritance (the rest of the time, we
compute the true fitness function values). As will be seen next, several authors have reported
the use of fitness inheritance.

Zheng et al. [66] used fitness inheritance for codebook design in data compression tech-
niques. They concluded that the use of fitness inheritance did not degrade, in a significant
way, the performance of their GA.

Salami et al. [55] proposed a Fast Evolutionary Strategy (FES) in which a fitness and
associated reliability value were assigned to each new individual. Considering two decision
variables pi

1 = (xi
1, f i

1,r
i
1) and pi

2 = (xi
2, f i

2,r
i
2) where xi

1 and xi
2 are the chromosomes 1 and

2 at generation i with fitness values f i
1 and f i

2 and reliabilities ri
1 and ri

2, respectively. In this
scheme, the true fitness function is only evaluated if the reliability value is below a certain
threshold. Otherwise, the fitness of the new individual and its reliability value is calculated
from:

2.4 Fitness Approximation in Evolutionary Computation 21

f i+1 =
S1ri

1 f i
1 +S2ri

2 f i
2

S1ri
1 +S2ri

2
(2.1)

and

ri+1 =
(S1ri

1)
2 +(S2ri

2)
2

S1ri
1 +S2ri

2
(2.2)

where S1 is the similarity between xi+1
1 and xi

1 and S2 is the similarity between xi+1
1 and xi

2.
Also, they incorporated random evaluation and error compensation strategies. Clearly, this
is another (more elaborate) form of fitness inheritance. Salami et al. reported an average
reduction of 40% in the number of evaluations while obtaining similar solutions. In the same
work, they presented an application of (traditional) fitness inheritance to image compression
obtaining reductions ranging from 35% up to 42% of the total number of fitness function
evaluations.

Pelikan et al. [44] used fitness inheritance to estimate the fitness for only part of the
solutions in the Bayesian Optimization Algorithm (BOA). They concluded that fitness in-
heritance is a promising concept, because population-sizing requirements for building ap-
propriate models of promising solutions lead to good fitness estimates, even if only a small
proportion of candidate solutions is evaluated using the true fitness function.

Fitness inheritance has also been used for dealing with multi-objective optimization
problems. Reyes-Sierra and Coello Coello [49, 50] incorporated the concept of fitness in-
heritance into a multi-objective particle swarm optimizer and validated it in several test
problems of different degrees of difficulty. They generally reported lower computational
costs, while the quality of their results improved in higher dimensional spaces. This was in
contradiction with other studies (e.g., [17] as well as this chapter) that indicate that the per-
formance of the parents may not be a good predictor for their children’s fitness in sufficiently
complex problems, rendering fitness inheritance inappropriate under such circumstances.

2.4.2 Surrogates

A common approach to deal with expensive objective functions is to construct an approx-
imation function which is much cheaper to evaluate (computationally speaking). In order
to build such an approximation function which will be used to predict promising new solu-
tions, several sample points are required. The meta-model built under this scheme aims to
reduce the total number of (true objective function) evaluations performed, while producing
results of a reasonably good quality.

Evidently, the accuracy of the surrogate model depends on the number of samples pro-
vided (and their distribution) and on the approximation model adopted. Since throughout
the course of optimization the model will be used very frequently, it is very important that
the construction of such a model is computationally efficient [24]. The following are exam-
ples of the use of surrogates of different types.

Sano et al. [56] proposed a genetic algorithm for optimization of continuous noisy fitness
functions. In this approach, they utilized the history of the search to reduce the number of
fitness function evaluations. The fitness of a novel individual is estimated using the fitness
values of the other individuals as well as the sampled fitness values for it. So, as to increase
the number of individuals adopted for evaluation, they not only used the current generation

22 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

but also the whole history of the search. To utilize the history of the search, a stochastic
model of the fitness function is introduced, and the maximum likelihood technique is used
for estimation of the fitness function. They concluded that the proposed method outperforms
a conventional GA in noisy environments.

Branke et al. [9] suggested the use of local regression for estimation, taking the fitness
of neighboring individuals into account. Since in local regression it is very important to
determine which solutions belong to the neighborhood of a given individual, they studied
two different approaches for setting the value of the size of the local neighborhood (rela-
tive neighborhood and adaptive neighborhood). They concluded that local regression pro-
vides better estimations than previously proposed approaches. In more recent work [8], a
comparison between two estimation methods, interpolation and regression, is done. They
concluded that regression seems to be slightly preferable, particularly if only a very small
fraction of the individuals in the population is evaluated. Their experiments also show that
using fitness estimation, it is possible to either reach a better fitness level in a given time,
or to reach a desired fitness level much faster (using roughly half of the original number of
fitness function evaluations).

Ong et al. [41] proposed a local surrogate modeling algorithm for parallel evolutionary
optimization of computationally expensive problems. The proposed algorithm combines
hybrid evolutionary optimization techniques, radial basis functions, and trust-region frame-
works. The main idea of the proposed approach is to use an EA combined with a feasible
sequential quadratic programming solver. Each individual within an EA generation is used
as an initial solution for local search, based on Lamarckian learning. They employed a
trust-region framework to manage the interaction between the original objective and con-
straint functions and the computationally cheap surrogate models (which consist of radial
basis networks constructed by using data points in the neighborhood of the initial solution),
during local search. Extensive numerical studies are presented for some benchmark test
functions and an aerodynamic wing design problem. They show that the proposed frame-
work provides good designs on a limited computational budget. In more recent work, Ong
et al. [42] presented a study on the effects of uncertainty in the surrogate model, using what
they call Surrogate-Assisted Evolutionary Algorithms (SAEA). In particular, the focus was
on both the curse of uncertainty (impairments due to errors in the approximation) and bless-
ing of uncertainty (benefits of approximation errors). Several algorithms are tested, namelly
the Surrogated-Assisted Memetic Algorithm (SAMA) proposed in [41], a standard genetic
algorithm, a memetic algorithm (considered as the standard hybridization of a genetic al-
gorithm and the feasible sequential quadratic programming solver used in [41]), and the
SAMA-Perfect algorithm (which is the SAMA algorithm but using the exact fitness func-
tion as surrogate model), on three multi-modal benchmark problems (Ackley, Griewank and
Rastrigin). The conclusion was that approximation errors lead to convergence at false global
optima, but turns out to be beneficial in some cases, accelerating the evolutionary search.

Regis and Shoemakes [48] developed an approach for the optimization of continuous
costly functions that uses a space-filling experimental design and local function approx-
imation to reduce the number of function evaluations in an evolutionary algorithm. The
proposed approach estimates the objective function value of an offspring by means of a
function approximation model over the k-nearest previously evaluated points. The esti-
mated values are used to identify the most promising offspring per function evaluation. A
Symmetric Latin Hypercube Design (SLHD) is used to determine initial points for function

2.4 Fitness Approximation in Evolutionary Computation 23

evaluation, and for the construction of the function approximation models. They compared
the performance of an Evolution Strategy (ES) with local quadratic approximation, an ES
with local cubic radial basis function interpolation, an ES whose initial parent population
is obtained from a SLHD, and a conventional ES (in all cases, they used a (µ,λ)-ES with
uncorrelated mutations). The algorithms were tested on a groundwater bioremediation prob-
lem and on some benchmark test functions for global optimization (including Dixon-Szegö,
Rastrigin and Ackley). The obtained results (which include analysis of variance to provide
stronger and solid claims regarding the relative performance of the algorithms) suggest that
the approach that uses SLHDs together with local function approximations has potential
for success in enhancing EAs for computationally expensive real-world problems. Also,
the cubic radial basis function approach appears to be more promising than the quadratic
approximation approach on difficult higher-dimensional problems.

Lim et al. [35] presented a Trusted Evolutionary Algorithm (TEA) for solving opti-
mization problems with computationally expensive fitness functions. TEA is designed to
maintain good trustworthiness of the surrogate models in predicting fitness improvements
or controlling approximation errors throughout the evolutionary search. In this case, the
most interesting part was to predict search improvement as opposed to the quality of the
approximation, which is regarded as a secondary objective. TEA begins its search using
the canonical EA, with only exact function evaluations. During the canonical EA search,
the exact fitness values obtained are archived in a central database together with the design
variables (to be used later for constructing surrogate models). After some initial search
generations (specified by the user), the trust region approach takes place beginning from
the best solution provided by the canonical EA. The trust region approach uses a surrogate
model (radial basis neural networks) and contracts or expands the trust radius depending
on the ability of the approximation model in predicting fitness improvements, until the ter-
mination conditions are reached. An empirical study was performed on two highly multi-
modal benchmark functions commonly used in the global optimization literature (Ackley
and Griewank). Numerical comparisons to the canonical EA and the original trust region
line search framework are also reported. From the obtained results, the conclusion was that
TEA converges to near-optimum solutions more efficiently than the canonical evolutionary
algorithm.

Kriging

A more elaborate surrogate model that has been relatively popular in engineering, is the
so-called Gaussian Process Model, also known as Kriging [54]. This approach builds prob-
ability models through sample data and estimates the function values at every untested point
with a Gaussian distribution.

Ratle [46] presented a new approach based on a classical real-encoded genetic algorithm
for accelerating the convergence of evolutionary optimization methods. A reduction in the
number of fitness function calls was obtained by means of an approximate model of the
fitness landscape using Kriging interpolation. The author built a statistical model from a
small number of data points obtained during one or more generations of the evolutionary
method using the true fitness landscape. The model is updated each time a convergence
criterion is reached.

24 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Figure 2.1: The GA-ANN algorithm that is proposed in [28]. Only if the approximate fitness
of an individual is better than the maximum fitness found in the last population,
its fitness is re-evaluated in order to find its real fitness value.

2.4.3 Artificial Neural Networks

In the last few years, artificial neural networks (ANNs), including multi-layer perceptrons [23]
and radial basis function networks [64] have also been employed to build approximate mod-
els for design optimization. Due to their universal approximation properties, ANNs can be
good fitness function estimators if provided with sufficient structural complexity and rich-
ness in their training data set. Next, some representative applications of the use of ANNs
for building approximate models will be briefly reviewed.

Khorsand et al. [28] investigated structural design by a hybrid of neural network and
finite element analysis. They used the neuro-estimation of the fitness value only when the
individual was not deemed to be highly fit (error in estimation may not be important). The
methodology used in [28] is presented in Figure 2.1 where r is considered as the maxi-
mum fitness of the individuals in the last generation. As with any other numerically driven
approximation method, the performance of ANNs is closely related to the quality of the
training data.

Jin et al. [25] investigated the convergence properties of an evolution strategy with neu-
ral network-based fitness evaluations. In this work, the concept of controlled evolution is
introduced, in which the evolution proceeds using not only the approximate fitness func-
tion value, but also the true fitness function value. They also introduce two possibilities to
combine the true with the approximate fitness function value: (1) the controlled individu-
als approach and (2) the controlled generation approach. Jin et al. defined “controlled” as
evaluated with the true fitness function. Both approaches were studied and some interesting
conclusions/recommendations for the correct use of such techniques are provided. A com-
prehensive survey of fitness approximation applied in evolutionary algorithms is presented
in [58].

2.4 Fitness Approximation in Evolutionary Computation 25

2.4.4 Final Remarks About Fitness Approximation
Lack of sufficient training data is the main problem in using most of the fitness approx-
imation models currently available and hence the failure to reach a model with sufficient
approximation accuracy. Since evaluation of the original fitness function is very time con-
suming and/or expensive, the approximate model may be of low fidelity and may even in-
troduce false optima. Furthermore, if the training data does not cover all the domain range,
large errors may occur due to extrapolation. Errors may also occur when the set of training
points is not sufficiently dense and uniform. In such situations, a combination of methods
may be more desirable. For example, Ong et al. [41] combined radial basis functions with
transductive inference to generate local surrogate models.

Alternatively, if individuals in a population can be clustered into several groups as
in [30], then only the individual that represents its cluster can be evaluated. The fitness
value of other individuals in the same cluster will be estimated from the representative in-
dividual based on a distance measure. This is termed fitness imitation in contrast to fitness
inheritance [24]. The idea of fitness imitation has been extended and more sophisticated
estimation methods have been developed in [7]. A similarity based model is introduced in
[18] and is applied to constrained and unconstrained optimization problems.

In multi-objective optimization problems (MOOP), the complexity of the problem is
normally higher, compared to that of single-objective optimization problems (SOOP) [11].
In general, although the fitness approximation approaches used in SOOP can be simply ex-
tended and adapted for MOOP, such adaptation may require more elaborate mechanisms.
One example of this is constraint-handling.4 It is well-known that in real-world optimiza-
tion problems there are normally constraints of different types (e.g., related to the geometry
of structural elements, to completion times, etc.) that must be satisfied for a solution to be
acceptable. Traditionally, penalty functions have been used with EAs to handle constraints
in SOOP [10]. However, because of the several problems associated to penalty functions
(e.g., the definition of appropriate penalty values is normally a difficult task that has a se-
rious impact on the performance of the EA), some researchers have proposed alternative
constraint-handling approaches that require less critical parameters and perform well across
a variety of problems (see for example [10, 38, 53]). However, when dealing with MOOPs,
many of these constraint-handling techniques cannot be used in a straightforward manner,
since in this case, the best trade-offs among the objectives are always located in the bound-
ary between the feasible and the feasible region. This requires the development of different
approaches specially tailored for MOOPs (see for example [59, 63]). A similar problem oc-
curs when attempting to migrate single-objective fitness approximation models to MOOPs.
For more details on this topic, see [57].

While the above methods aim to reduce computational cost by approximating the fit-
ness function, the prevalent problems with interpolation in rough surfaces remains. If the
assumption of smooth continuity is not valid, interpolation may even yield values that are
not physically realizable. Furthermore, we may be blinded to the optimal solutions using
interpolation as interpolation assumes a pattern of behavior that may not be valid around
optimal peaks. The next section addresses this problem by introducing the concept of infor-

4Although constraint-handling techniques are very important in real-world optimization problems, their dis-
cussion is beyond the scope of this chapter, due to space limitations. Interested readers are referred to other
references for more information on this topic (see for example [38, 52]).

26 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

mation granulation.

2.5 Adaptive Fuzzy Fitness Granulation
Fuzzy granulation of information is a vehicle for handling information, as well as a lack of
it (uncertainty), at a level of coarseness that can solve problems appropriately and efficiently
[13]. In 1979, the concept of fuzzy information granulation was proposed by Zadeh [65] as
a technique by which a class of points (objects) are partitioned into granules, with a granule
being a clump of objects drawn together by indistinguishability, similarity, or functionality.
The fuzziness of granules and their attributes is characteristic of the ways by which human
concepts and reasoning are formed, organized and manipulated. The concept of a granule
is more general than that of a cluster, potentially giving rise to several conceptual structures
in various fields of science as well as mathematics.

In this chapter, with a view to reducing computational cost, the concept of fitness gran-
ulation is applied to exploit the natural tolerance of EAs in fitness function computations.
Nature’s survival of the fittest is not about exact measures of fitness; rather it is about rank-
ings among competing peers. By exploiting this natural tolerance for imprecision, optimiza-
tion performance can be preserved by computing fitness only selectively and only to keep
this ranking among individuals in a given population. Also, fitness is not interpolated or
estimated; rather, the similarity and indistinguishability among real solutions is exploited.

In the proposed algorithm, an adaptive pool of solutions (fuzzy granules) with an ex-
actly computed fitness function is maintained. If a new individual is sufficiently similar to
a known fuzzy granule [65], then that granules’ fitness is used instead as a crude estimate.
Otherwise, that individual is added to the pool as a new fuzzy granule. In this fashion,
regardless of the competitions’ outcome, the fitness of the new individual is always a phys-
ically realizable one, even if it is a crude estimate and not an exact measurement. The pool
size as well as each granules’ radius of influence is adaptive and will grow/shrink depending
on the utility of each granule and the overall population fitness. To encourage fewer func-
tion evaluations, each granule’s radius of influence is initially large and gradually shrinks
at later stages of the evolutionary process. This encourages more exact fitness evaluations
when competition is fierce among more similar and converging solutions. Furthermore, to
prevent the pool from growing too large, not used granules are gradually replaced by new
granules, once the pool reaches a certain maturity.

2.5.1 Algorithm Structure

Given the general overview in the preceding section, the concrete steps of the algorithm are
as follows:

Step 1: Create a random parent population P1 = {x1
1, x1

2, . . . , x1
j , . . . ,x1

t } of design
variable, where, more generally, xi

j = {xi
j,1, xi

j,2, . . . ,x
i
j,r, . . . , xi

j,m} is the jth parameter
individual in the ith generation, xi

j,r ∈ IR the rth parameter of xi
j, m is the number of design

variables and t is the population size.
Step 2: Define a multi-set G of fuzzy granules (Ck, σk, Lk) according to G= {(Ck, σk, Lk

)|Ck ∈ ℜm, σk ∈ ℜ, Lk ∈ ℜ, k = 1, . . . , l}. G is initially empty (i.e., l = 0). Ck is an m-
dimensional vector of centers, σk is the width of membership function (WMF) of the kth

2.5 Adaptive Fuzzy Fitness Granulation 27

Figure 2.2: A number of gaussian granules with different widths in a 2-D solution space.
Once a new individual is sufficiently similar to a granule in the granule pool,
then that granules’ fitness is used instead as a crude estimate. Otherwise, that
individual is added to the pool as a new fuzzy granule. Each granules’ radius
of influence is determined based on equation (2.4).

fuzzy granule, and Lk is the granule’s life index. A number of granules with different widths
are shown in Figure 2.2.

Step 3: Choose the phenotype of first chromosome (x1
1 = {x1

1,1, x1
1,2, . . . , x1

1,r, . . . , x1
1,m})

as the center of the first granule (C1 = {c1,1, c1,2, . . . ,c1,r, . . . , c1,m} = x1
1).

Step 4: Define the membership µk,r of each xi
j,r to each granule member by a Gaussian

similarity neighborhood function according to

µk,r
(
xi

j,r
)
= exp

(
−
(
xi

j,r− ck,r
)2

(σk)
2

)
, k = 1,2, . . . , l , (2.3)

where l is the number of fuzzy granules.
Remark: σk is the distance measurement parameter that controls the degree of similarity

between two individuals. Like in [14], σk is defined based on equation (2.4). According to
this definition, the granules shrink or enlarge in reverse proportion to their fitness:

σk = γ
1(

eF(Ck)
)β , (2.4)

where β> 0 is an emphasis operator and γ is a proportionality constant. The problem arising
here is how to determine the parameters β and γ as design parameters. The fact is that these
two parameters are problem dependent and, in practice, a number of trials is needed to adjust
these parameters. This trial is based on a simple rule with respect to the acceleration of the
parameter optimization procedure: high speed needs to have enlargement in the granule
spread and, as a consequence of this, less accuracy is obtained in the fitness approximation,
and viceversa. To deal with this rule, a fuzzy controller is presented in [14].

Step 5: Compute the average similarity of every new design parameter xi
j = {xi

j,1, xi
j,2,

. . . ,xi
j,r, . . . , xi

j,m} to each granule Gk using equation (2.5)

28 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

µ j,k =

m

∑
r=1

µk,r
(
xi

j,r
)

m
(2.5)

Step 6: Either calculate the exact fitness function of xi
j or estimate the fitness function

value by associating it to one of the granules in the pool in case there is a granule in the pool
with higher similarity to xi

j than a predefined threshold, i.e.

f
(
xi

j
)
=

 f (Ck) if max
k∈{1,2,...,l}

{µ j,k}> θi ,

f
(

xi
j

)
otherwise.

(2.6)

where f (Cx) is the fitness function value of the fuzzy granule, f (xi
j) is the real fitness calcu-

lation of the individual, θi =α(max{ f (xi−1
1), f (xi−1

2), . . . , f (xi−1
t)}/ f i−1

), K = argmax{µ j,k}
when k ∈ {1,2, . . . , l}, f i

= ∑i
j=1 f (xi

j)/t and α > 0 is a proportionality constant that is usu-
ally set at 0.9 unless otherwise indicated. The threshold θi increases as the best individual’s
fitness at generation i increases. As the population matures and reaches higher fitness val-
ues (i.e., while converging more), the algorithm becomes more selective and uses exact
fitness calculations more often. Therefore, with this technique we can utilize the previous
computational efforts during previous generations. Alternatively, if

max
k∈{1,2,...,l}

{µ j,k}< θi

xi
j is chosen as a newly created granule.

Step 7: If the population size is not completed, repeat Steps 5 to 7.
Step 8: Select parents using a suitable selection operator and apply the genetic operators

of recombination and mutation to create a new generation.
Step 9: When termination/evolution control criteria are not met, then update σk using

equation (2.4) and repeat Steps 5 to 9.
In [13] and [3], additional details on the convergence speed of the algorithm on a se-

ries of mathematical testbeds are provided along with a simple example to illustrate the
competitive granule pool update.

2.5.2 How to control the length of the granule pool?
As the evolutionary procedures are applied, it is inevitable that new granules are generated
and added to the pool. Depending on the complexity of the problem, the size of this pool
can be excessive and become a computational burden itself. To prevent such unnecessary
computational effort, a forgetting factor is introduced in order to appropriately decrease
the size of the pool. In other words, it is better to remove granules that do not win new
individuals, thereby producing a bias against individuals that have low fitness and were
likely produced by a failed mutation attempt. Hence, Lk is initially set to N and subsequently
updated as below,

Lk =

{
Lk +M if k = K ,

Lk otherwise ,
(2.7)

2.6 Numerical results 29

where M is the life reward of the granule and K is the index of the winning granule for
each individual at generation i. At each table update, only the NG granules with the highest
Lk index are kept, and the others are discarded. In [16], an example has been provided to
illustrate the competitive granule pool update law. Adding a new granule to the granule pool
and assigning a life index to it, is a simple way of controlling the size of the granule pool,
since the granules with the lowest life index will be removed from the pool. However, it
may happen that the new granule is removed, even though it was just inserted into the pool.
In order to prevent this, the pool is split into two parts with sizes εNG and (1− ε)NG. The
first part is a FIFO (First In, First Out) queue and new granules are added to this part. If it
grows above εNG, then the top of the queue is moved to the other part. Removal from the
pool takes place only in the (1−ε)NG part. In this way, new granules have a good chance to
survive a number of steps. In all of the simulations that are conducted here, ε is set at 0.1.

The distance measurement parameter is completely influenced by the granule enlarge-
ment/shrinkage in the widths of the produced membership functions. As in [16], the com-
bined effect of granule enlargement/shrinkage is in accordance with the granule fitness and
it requires the fine-tuning of two parameters, namely β and γ. These parameters are problem
dependent and it seems critical to have a procedure to deal with this difficulty. In [14] and
[15], an auto-tuning strategy for determining the width of membership functions is presented
which removes the need of exact parameter determination, without a negative influence on
the convergence speed.

2.6 Numerical results

To illustrate the efficacy of the proposed granulation algorithm, the result of applying it to
the problems introduced in Section 2.2 are studied and analyzed in the two following sec-
tions. The commercial FEA software ANSYS [5] is used during the analysis and numerical
simulation study.

The GA routines utilize initially random populations, binary-coded chromosomes, single-
point crossover for the first three problems and 15-point crossover for the piezoelectric ac-
tuator design problem, mutation, fitness scaling, and an elitist stochastic universal sampling
selection strategy. Crossover rate PXOV ER = 1, PMUTAT ION = 0.01 and the population size
is set at 20. However, due to the number of parameters and complexity of the structural
problems, the number of generations is set to 50 for the first three problems and 600 for the
piezoelectric actuator design problem. These settings were determined during several trial
runs to reflect the best performing set of parameters for the GA. Finally, the chromosome
length varies depending on the number of variables in a given problem but each variable is
still allocated 8 bits.

For performing the FES, a fitness and associated reliability value are assigned to each
new individual. The reliability value, T , varies between 0 and 1 and depends on two factors:
first is the reliability of parents, and second is how close parents and children are in the
solution space, as explained in equation (2.2). Also, as mentioned in [55], T = 0.7 is used
for the threshold as we empirically found that it generally produces the best results. The
parameters of the GA-ANN are the same as in the GA alone. In the GA-ANN approach
for solving optimization problems, a two-layer neural network is used, having as input the
design variables and as outputs the fitness values.

30 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Furthermore, due to the stochastic nature of EAs, each of the simulations was repeated
ten times, and a paired Mann-Whitney U test was performed except for the last optimization
problem in which, for each algorithm, it was performed only once, due to the running time
needed. The significance level α represents the maximum tolerable risk of incorrectly reject-
ing the null hypothesis H0, indicating that the mean of the 1st population is not significantly
different from the mean of the 2nd population. The p-value or the observed significance
level of a statistical test is the smallest value of α for which H0 can be rejected. If the p-
value is less than the pre-assigned significance level α, then the null hypothesis is rejected.
Here, the significance level α was assigned, and the p-value was calculated for each of the
following applications.

The results are presented in Tables 2.1, 2.2, 2.3 and 2.5, in which FFE stands for the
number of fitness function evaluations needed to perform the optimization task and the train-
ing data column presents the number of initial input/output pairs needed in order to build up
the approximation model. Since the most computationally expensive part of an evolutionary
algorithm is usually, by far, its fitness evaluation, the convergence time improvement of dif-
ferent algorithms, compared to the standard GA, can be estimated in terms of the number of
fitness evaluations. So, the time improvement percentage column is calculated as one minus
the difference between the sum of FFE and training data divided by the number of FFE of
the standard algorithm, i.e., a GA, multiplied by 100.

2.6.1 3-Layer composite beam

A 3-layer composite beam has been modeled numerically by using the ANSYS program.
The composite layout are the design variables that change in the region [0 - 180]. The
objective here is to raise the first natural frequency by appropriately choosing 2 composite
layers’ angles. In this example, the Young’s modulus [19] is EX = 210 GPa, EY = 25 GPa,
EZ = 25 GPa, GXY = GYZ = GXZ = 30 GPa, Poisson’s ratio ν = 0.2 and density ρ =
2100 kg/m3. There are two design variables (two degrees of freedom) for this optimization
problem each varying between 0 and 180. For this case, a 2-100-1 ANN architecture is
consequently chosen and used for the optimization runs. The proposed algorithm (called
AFFG, for adaptive fuzzy fitness granulation) and other methods are compared in Table 2.1.
Results indicate that while there is not a significant statistical difference between the three
algorithms in terms of solution fitness, i.e., rigidity of the beam, the time savings provided
by the proposed method is much higher than that of the GA-ANN. In particular, the pro-
posed AFFG algorithm finds better solutions on the average with less computational time
as compared with the GA-ANN. Also, while FES seems to have found better solutions, the
proposed GA-AFFG used less than half as many evaluations.

2.6.2 Airplane wing

Figure 2.3(a) shows the initial design of an airplane wing. The wing is of uniform con-
figuration along its length, and its cross-sectional area is defined to be a straight line and
a spline. It is held fixed to the body of the airplane at one end and hangs up freely at the
other. The objective here is to maximize the wing’s first natural frequency by appropriately
choosing three key points of the spline. The material properties are: Young’s modulus =
261.820 GPa, density ρ = 11031 kg/m3, Poisson’s ratio ν = 0.3.

2.6 Numerical results 31

Table 2.1: Performance of the optimization methods (average of 10 runs) for the 3-layer
composite beam, α = 0.9, β = 0.1, γ = 30, M = 5, NG = 250, T = 0.7.

FFEs Training data Time improvement (%) Optimum p-value

GA 1000 Not Needed 19.3722
FES 228.1 Not Needed 77.19 19.369 0.0211
GA-ANN 155.9 100 74.41 19.3551 0.0026
GA-AFFG 97.5 Not Needed 90.25 19.3681 0.0355

Figure 2.3: Airplane wing: (a) initial shape, (b) GA optimized shape, and (c) GA-AFFG.

The optimized shape found by a simple GA is shown in Figure 2.3(b) and that found by
GA-AFFG is shown in Figure 2.3(c). A 6-100-1 architecture is chosen for the ANN used as
fitness approximator. Table 2.2 illustrates that while the GA-ANN finds inferior solutions as
compared with the GA, the use of the ANN significantly reduces computational time. The
application of AFFG shows an improvement in the search quality while maintaining a low
computational cost. Specifically, the average 10-run performance of the AFFG solutions
is higher than that of any of the competing algorithms including the GA, FES and GA-
ANN. Furthermore, while the Mann-Whitney U test confirms that the proposed algorithm
solutions are at least as good as those produced by the GA, the proposed algorithm is over
82% faster.

32 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Table 2.2: Performance of the optimization methods (average of 10 runs) for Airplane wing,
α = 0.9, β = 0.5, γ = 1, M = 5, NG = 250, T = 0.7 .

FFEs Training data Time improvement (%) Optimum p-value

GA 1000 6.0006
FES 481.6 51.84 5.9801 0.9698
GA-ANN 172.1 100 72.79 5.9386 0.4274
GA-AFFG 173.5 82.65 6.0527 0.3075

Table 2.3: Performance of the optimization methods (average of 10 runs) for the 2D truss,
α = 0.9, β = 0.11, γ = 3.05, M = 5, NG = 550, T = 0.7 .

FFEs Training data Time improvement (%) Optimum p-value

GA 1000 12.1052
FES 1000 0 11.8726 0.0058
GA-ANN 293 100 60.66 11.8697 0.0257
GA-AFFG 570.4 42.96 12.1160 0.9097

2.6.3 2D truss frame

A typical truss designed by an engineer is illustrated in Figure 2.4(a). The objective (fitness)
here is to raise the structure’s first natural frequency to reduce the vibration domain and to
prevent the resonance phenomenon (in dynamic response) of the structure by appropriately
choosing the 18 key point locations (our design variables) as illustrated in Figure 2.3(a).

In this benchmark, isotropic material properties are assumed (Young’s modulus E = 210
GPa, Poisson’s ratio ν = 0.3 and density ρ = 7800 kg/m3). The optimized shapes produced
by the GA and the new proposed method AFFG are shown in Figures 2.4(b) and 2.4(c),
respectively. The 36-100-1 ANN architecture is chosen and used for the optimization runs.

The search begins with an initial population. The maximum fitness in the initial pop-
ulation is nearly 9.32. Over several generations, the fitness gradually evolves to a higher
value of 11.902. Figure 2.5 shows a plot of best, average and worst fitness vs. generation
number for one run of our GA-AFFG. This performance curve shows the learning activity
or adaptation associated with the algorithm. The total number of generations is 50. For a
population size of twenty, this requires 1000 (50×20) fitness evaluations for the GA while
the proposed GA-AFFG required only 570.4 fitness evaluations. Figure 2.6 shows the plot
of the number of FEA evaluations vs. generation number corresponding to one run [13].

2.6.4 Voltage and pattern design of piezoelectric actuator

Piezoelectric materials have coupled mechanical and electrical properties making them able
to generate a voltage when subjected to a force or deformation (this is termed as the direct
piezoelectric effect). Conversely, they exhibit mechanical deformation when subjected to an
applied electric field (this is called the converse piezoelectric effect) [3]. Various applica-
tions of piezoelectric actuators/sensors have appeared in the literature. Lin et al. [36] inves-

2.6 Numerical results 33

Figure 2.4: 2D truss frame: (a) initial configuration, (b) GA optimized shape, and (c) GA-
AFFG optimized shape.

tigated the modeling and vibration control of a smart beam by using piezoelectric damping-
modal actuators/sensors. They presented theoretical formulations based on damping-modal
actuators/sensors and numerical solutions for the analysis of a laminated composite beam
with integrated sensors and actuators. A proof-of-concept design of an inchworm-type
piezoelectric actuator of large displacement and force for shape and vibration control of
adaptive truss structures is proposed by Li et al. in [33]. The applications of such actuators
include smart or adaptive structural systems for the car and aerospace industries.

A fiber composite plate with initial imperfections and under in-plane compressive loads
is studied by Adali et al. [2] with a view towards minimizing its deflection and optimizing
its stacking sequence by means of the piezoelectric actuators and the fiber orientations.
Krommer [31] studied a method to control the deformation of a sub-section of a beam.
His intention was to apply a distributed control by means of self-stresses within the sub-
section to keep the sub-section in its non-deformed state. In practical applications such as
deformation control of conformal antennas, this strategy is highly valuable.

Global optimization algorithms [62] along with a finite element formulation are widely
used in shape control. For instance in [34], a computational intelligence based optimization
algorithm along with a modified finite element formulation is used to deal with the shape
control of functionally graded material (FGM) plates that contain piezoelectric sensor and
actuator patches. In this study, an optimal voltage distribution or a gain control matrix are
used as design variables for the shape control of smart structures. Numerical simulations
have been successfully carried out on the shape control of the FGM plates by optimizing the
voltage distribution for the open loop shape control or gain values for the closed loop shape
control. A finite element formulation with non-rectangular shaped actuators for laminated

34 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Figure 2.5: Plot of generation number vs. fitness value for the 2D truss frame using GA-
AFFG: best (circle), average (cross) and worst (asterisk) individuals at each
generation.

smart composite structure is studied in [40]. For smart cantilever plates, the actuated deflec-
tions are measured and are used to validate the present formulation. They also investigated
the effect of actuator pattern on the optimum values of the applied voltages and the shape
match factors. Numerical results shown that the actuator patterns may have an important
influence on the values of the optimum voltages applied to each individual actuator and the
final shape match factor.

Piezoelectric equations (constitutive equations)

In this study, the assumption is that the thermal effect is negligible. The piezoelectric con-
stitutive relationships describe how two piezoelectric mechanical and electrical quantities
(stress, strain, electric displacement, and electric field) interact and it is expressed by the
direct and the converse piezoelectric equations respectively [6]:

{D}= [e]{ε}+[ε]{E} , (2.8)

{σ}= [Q]{ε}+[e]T{E} , (2.9)

2.6 Numerical results 35

Figure 2.6: Plot of the generation number vs. number of FEA evaluations for the 2D truss
frame in a single run using GA-AFFG.

where {σ} is the stress vector, [Q] is the elastic stiffness matrix, {ε} is the strain vector, [e]
is the piezoelectric constant matrix, {E} = −∇φ is the electric field vector. Also, φ is the
electrical potential, {D} is the electric displacement vector and [ε] is the permittivity coeffi-
cient matrix. Equations (2.8) and (2.9) describe the electromechanical coupling. Assuming
that a laminated beam consists of a number of layers and each layer possesses a plane of
material symmetrically parallel to the x-y plane, the constitutive equations for the kth layer
can be written as [29]:{

D1
D3

}
k
=

[
0 e15

e31 0

]
k
×
{

ε1
ε5

}
k
+

[
ε11 0
0 ε33

]
k
×
{

E1
E3

}
k

(2.10)

{
ε1
ε3

}
k
=

[
Q11 0

0 Q55

]
k
×
{

ε1
ε5

}
k
+

[
0 ε31

ε15 0

]
k
×
{

E1
E3

}
k

(2.11)

where
Q11 =

E11

1− v12v21
,Q55 = G13

and are the reduced elastic constants of the kth layer, E11 is the Young’s modulus and G13
is the shear modulus. The piezoelectric constant matrix [e] can be expressed in terms of the
piezoelectric strain [d] as:

[e] = [d][Q]

36 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

where

[d] =
[

0 d15
d31 0

]
Using the above piezoelectricity analysis and formulation, finite element model (FEM)

of piezoelectric patches and metal plate [45] was built by ANSYS [5]. Also, a small deflec-
tion and thin plate theory are assumed for the FEM of the plate.

To validate the software, a clamped free aluminum plate with 4 piezoelectric patches
is modeled and the results are compared with the experimental model of reference [12]. A
close agreement between our model and our experimental results is observed. Also, in order
to achieve an acceptable mesh density, mesh sensitivity 5 is performed.

Piezoelectric design for static shape control

The shape control problem considered here is to find the optimal actuator pattern design
variable P and exiting voltage vector V as design variables. The (quasi-) static shape control
problem can be defined, in the context of an optimization formulation, as follows:

Find x = [P,V]T to minimize:

f (x) =
Nx

∑
j=1

Ny

∑
i=1

∣∣∣dd
i, j−d f

i, j

∣∣∣∣∣∣maxi, j

(
dd

i, j

)∣∣∣/(Nx×Ny) . (2.12)

x is the decision variable with two components: i) the pattern variable vector P, and
ii) the applied voltage variable vector V . Here, f (x) is the objective function. P is the
distribution of active piezoelectric actuator material (pattern variable) whereas the voltage
variables in vector V are the electrical potentials applied across the thickness direction of
each actuator. The objective function f (x) in equation (2.12) is a weighted sum of all
the absolute differences between the desired and designed shapes at all nodes. dd

i, j and

d f
i, j are the desired and designed (calculated by the FE model) transversal displacements

of the (i, j)-location, respectively. max(dd
i, j) is the maximum displacement in the desired

structural shape. As the displacement is small here, there is no need to consider stress or
strain constraint variables for the shape control problem.

Model description

A cantilever plate clamped at its left edge and subjected to a non-applied mechanical load is
assumed here. The plate has a length of 154 mm; width of 48 mm and consists of one layer
of 0.5 mm in thickness. The piezoelectric actuators (thickness of 0.3 mm each) are attached
to the top surfaces of the plate (Figure 2.7). The desired pre-defined surface [12] is defined
as:

dd
i, j =

(
1.91x2 +0.88xy+0.19x

)
×10−4 . (2.13)

5Mesh sensitivity is performed to reduce the number of elements and nodes in the mesh while ensuring the
accuracy of the finite element solution [27].

2.6 Numerical results 37

Table 2.4: Material properties for the PX5-N piezoelectric material [12].

CE
11(N m−2) 13.11×1010 d15(m V−1) 515×10−12

CE
12(N m−2) 7.984×1010 d31(m V−1) −215×10−12

CE
13(N m−2) 8.439×1010 d33(m V−1) 500×10−12

CE
33(N m−2) 12.31×1010 εt

11/ε0 1800

CE
44(N m−2) 2.564×1010 εt

33/ε0 2100

CE
66(N m−2) 2.564×1010 ρ(kg m−3) 7800

Figure 2.7: Geometrical model of the piezoelectric patch adopted here.

The piezoelectric electro-mechanical properties shown in Table 2.4 according to PX5-
N from Philips Components. After a careful mesh sensitivity analysis, a FEM is built as
illustrated in Figure 2.8.

For this SD and optimization problem, there are 200 design variables. Half of these

Figure 2.8: Finite element model built by ANSYS.

38 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Figure 2.9: Generation number vs. fitness for the piezoelectric actuator using our proposed
GA-AFFG for a single run: best (circle), average (cross) and worst (asterisk)
of individuals at each generation.

Table 2.5: Piezoelectric actuator performance of the optimization methods, α = 0.9, β =
0.11, γ = 3.05, M = 5, NG = 550, T = 0.7 .

FFEs Training data Time Improved (%) Error (%)

GA 12000 7.313
FES 12000 0 12.82
GA-ANN 2617 5000 36.52 8.093
GA-AFFG 5066 Not needed 57.64 7.141

design variables belong to actuation voltage of piezoelectric patches which vary between
-10 and 20 V and the rest of the design variables are Boolean, indicating whether or not
the voltage should be applied to the piezoelectric patches. When the ith(i = 1, . . . ,100)
piezoelectric pattern variable is zero, the piezoelectric patch is not built so that there is no
actuation voltage, and viceversa. Figure 2.9 shows the graph of best, average and worst
fitness vs. generation number and Figure 2.10 shows the number of FEA evaluations vs.
generation number for a single GA-AFFG run while Table 2.4 presents the results of the
four optimization algorithms corresponding to one run.

2.7 Analysis of results 39

Figure 2.10: Generation number vs. number of FEA evaluations, for the piezoelectric actu-
ator, using our proposed GA-AFFG for a single run.

2.7 Analysis of results
Tables 2.1, 2.2, 2.3 and 2.5, illustrate the performance of the proposed GA-AFFG method
in comparison with a GA, FES and GA-ANN [13] in terms of computational efficiency and
performance for the 3-layer composite beam, the airplane wing, and the 2D truss design
problems as well as for the piezoelectric actuator problem. Due to the stochastic nature of
the GA, the first three design simulations are repeated 10 times and a statistical analysis
is performed. However, for the piezoelectic actuator we could not run the GA that many
times, because of its high computational cost.

The second column in these tables makes a comparison of the three algorithms in terms
of the number of FEA evaluations as compared to those of the GA, while the fourth column
makes a comparison in terms of performance. Results indicate that our proposed GA-AFFG
finds statistically equivalent solutions by using more than 90%, 82%, 42% and 57% fewer
finite element evaluations. The GA-ANN also significantly reduces the number of FEA
evaluations, but its average performance is inferior when compared with our proposed GA-
AFFG due to the ANNs approximation error. It must be noted that the improvement in time
by GA-ANN takes into account the time spent on constructing the training data set. It must
be noted that the GA-ANN’s improved time includes the number of initial training data.

For the piezoelectric actuator design problem, Table 2.5 illustrates a comparison of the
GA, FES and GA-ANN [3] with respect to our proposed GA-AFFG in terms of computa-

40 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

Table 2.6: A Mann-Whitney U test of the number of real fitness calculations for the 3-layer
composite beam (10 runs).

Simulation results
3-layer composite beam Mean Var p-Value

FES 228.1 4601.2 6.39×10−05

GA-ANN 155.9 511.9 6.34×10−05

GA-AFFG 97.5 406.7 6.39×10−05

Table 2.7: A Mann-Whitney U test of the number of real fitness calculations for the airplane
wing (10 runs).

Simulation results
Airplane wing Mean Var p-Value

FES 481.6 38648 6.39×10−05

GA-ANN 172.1 6392.1 6.39×10−05

GA-AFFG 173.5 1600.3 6.39×10−05

tional efficiency and performance. The second column of this table makes a comparison
of the four algorithms in terms of the number of FEA evaluations as compared with a GA,
while the fifth column makes a comparison in terms of the quality of the optimal solutions.
Results indicate that GA-AFFG finds at least equivalent solutions by using 57% fewer fi-
nite element evaluations as compared to GA. Also, when compared with the GA-ANN, the
proposed algorithm finds better solutions while being more computationally efficient. The
main difference here is ANN’s need for pre-training. Trying various sizes of initial training
sets and considering the 200 design parameters, the ANN required at least 5000 training
data pairs for comparable performance, see Table 2.5.

Overall, when compared with a GA, the two sets of applications indicate that FES, GA-
ANN and GA-AFFG improve the computational efficiency of their problem by reducing
the number of exact fitness function evaluations. However, the neuro-approximation as well
as fitness inheritance fail with a growing size of the input-output space. Consequently, the
utility of AFFG becomes more significant in larger and more complex design problems.
Furthermore, our statistical analysis confirms that fitness inheritance is more comparable in
terms of performance when the size of the search space is smaller (Tables 2.1 and 2.2), but
its performance deteriorates as the complexity of the problem increases (Tables 2.3 and 2.5).

A comparison of the number of exact fitness function evaluations in terms of mean
and variance that presents the improved computational time is presented in Tables 2.6, 2.7
and 2.8 for the first three mechanical optimization problems described before. A Mann-
Whitney U test is also performed to study the significance of lower computation cost. Since
the fourth optimization problem (piezoelectic actuator design) could not be repeated due to
the its FEA time consuming nature, a Mann-Whitney U test could not be performed in that
case.

2.8 Conclusions 41

Table 2.8: A Mann-Whitney U test of the number of real fitness calculations for the 2D truss
(10 runs).

Simulation results
2D truss Mean Var p-Value

FES 100 0 Not available
GA-ANN 293 2394.2 6.39×10−05

GA-AFFG 570.4 18477 6.39×10−05

2.8 Conclusions

In this chapter, we have proposed a systematic and robust methodology for solving com-
plex structural design and optimization problems. The proposed methodology relies on the
use of finite element analysis and adaptive fuzzy fitness granulation. As we saw, adaptive
fuzzy fitness granulation provides a method to selectively reduce the number of actual fit-
ness function evaluations performed by considering the similarity/indistinguishability of an
individual to a pool of fuzzy information granules. Since the proposed approach does not
use approximation or online training, it is not caught in the pitfalls of such techniques such
as false peaks, large approximation error due to extrapolation, and time consuming online
training.

The effectiveness and functionality of the proposed approach was verified through four
structural design problems. In the first three of them, the objective was to increase the
first natural frequency of the structure. In the last problem, a piezoelectric actuator was
considered for the purposes of shape control and/or active control for correction of static
deformations. The design variables were the voltage and the actuator locations and the
performance index was considered as the square root of the error between the nodal pre-
defined displacement and the observed displacement.

References
[1] Abe, A., Kamegawa, T., and Nakajima, Y. (2003). Optimization of construction of tire

reinforcement by genetic algorithm. Optimization and Engineering, 5(1):77–92.

[2] Adali, S., Sadek, I., Jr., J. B., and Sloss, J. (2005). Optimization of composite plates with
piezoelectric stiffener-actuators under in-plane compressive loads. Composite Structures
Journal, 71:293–301.

[3] Akbarzadeh-T, M., Davarynejad, M., and Pariz, N. (2008). Adaptive fuzzy fitness gran-
ulation for evolutionary optimization. International Journal of Approximate Reasoning,
49(3):523–538.

[4] Alba, E. and Tomassini, M. (2002). Parallelism and Evolutionary Algorithms. IEEE
Transactions on Evolutionary Computation, 6(5):443–462.

[5] Ansys, I. (2004). ANSYS users manual. ANSYS Inc., Southpointe, 275.

42 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

[6] Aryana, F., Bahai, H., Mirzaeifar, R., and Yeilaghi, A. (2007). Modification of dynamic
characteristics of FGM plates with integrated piezoelectric layers using first-and second-
order approximations. International Journal for Numerical Methods in Engineering,
70(12):1409–1429.

[7] Bhattacharya, M. and Lu, G. (2003). A dynamic approximate fitness based hybrid ea for
optimization problems. In Proceedings of IEEE Congress on Evolutionary Computation,
pages 1879–1886.

[8] Branke, J. and Schmidt, C. (2005). Fast convergence by means of fitness estimation.
Soft Computing Journal, 9(1):13–20.

[9] Branke, J., Schmidt, C., and Schmeck, H. (2001). Efficient fitness estimation in noisy
environment. In et al, L. S., editor, Proceedings of Genetic and Evolutionary Computa-
tion Conference (GECCO), pages 243–250, San Francisco, CA. Morgan Kaufmann.

[10] Coello, C. A. C. (2002). Theoretical and Numerical Constraint Handling Techniques
used with Evolutionary Algorithms: A Survey of the State of the Art. Computer Methods
in Applied Mechanics and Engineering, 191(11-12):1245–1287.

[11] Coello Coello, C. A., Lamont, G. B., and Van Veldhuizen, D. A. (2007). Evolutionary
Algorithms for Solving Multi-Objective Problems. Springer, New York, second edition.
ISBN 978-0-387-33254-3.

[12] da Mota Silva, S., Ribeiro, R., Rodrigues, J. D., Vaz, M. A. P., and Monteiro, J. M.
(2004). The application of genetic algorithms for shape control with piezoelectric
patches-an experimental comparison. Smart Materials and Structures, 13:220–226.

[13] Davarynejad, M. (2007). Fuzzy Fitness Granulation in Evolutionary Algorithms for
Complex Optimization. Master’s thesis, Ferdowsi University of Mashhad.

[14] Davarynejad, M., Ahn, C. W., Vrancken, J. L. M., van den Berg, J., and Coello, C.
A. C. (2010). Evolutionary hidden information detection by granulation-based fitness
approximation. Applied Soft Computing, 10(3):719–729.

[15] Davarynejad, M., Akbarzadeh-T, M., and Coello, C. A. C. (2008). Auto-tuning fuzzy
granulation for evolutionary optimization. In CEC 2008, IEEE World Congress on Evo-
lutionary Computation, pages 3572–3579, Hong Kong.

[16] Davarynejad, M., Akbarzadeh-T, M.-R., and Pariz, N. (2007). A novel general
framework for evolutionary optimization: Adaptive fuzzy fitness granulation. In IEEE
Congress on Evolutionary Computation, pages 951–956. IEEE.

[17] Ducheyne, E. I., De Baets, B., and De Wulf, R. (2003). Is Fitness Inheritance Use-
ful for Real-World Applications? In Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb,
K., and Thiele, L., editors, Evolutionary Multi-Criterion Optimization. Second Interna-
tional Conference, EMO 2003, pages 31–42, Faro, Portugal. Springer. Lecture Notes in
Computer Science. Volume 2632.

[18] Fonseca, L. G. and Barbosa, H. J. C. (2009). A similarity-based surrogate model for
enhanced performance in genetic algorithms. OPSEARCH, 46:89107.

2.8 Conclusions 43

[19] Freudenberger, J., Gllner, J., Heilmaier, M., Mook, G., Saage, H., Srivastava, V., and
Wendt, U. (2009). Materials science and engineering. In Grote, K. H. and Antonsson,
E. K., editors, Springer Handbook of Mechanical Engineering. Springer Berlin Heidel-
berg.

[20] Furuya, H. and Haftka, R. T. (1993). Locating actuators for vibration suppression on
space trusses by genetic algorithms. ASME-PUBLICATIONS-AD, 38.

[21] Giger, M. and Ermanni, P. (2005). Development of CFRP racing motorcycle rims
using a heuristic evolutionary algorithm approach. Structural and Multidisciplinary Op-
timization, 30(1):54–65.

[22] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley Publishing Co., Reading, Massachusetts.

[23] Hong, Y.-S., H.Lee, and Tahk, M.-J. (2003). Acceleration of the convergence speed of
evolutionary algorithms using multi-layer neural networks. Engineering Optimization,
35(1):91–102.

[24] Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing, 9(1):3–12.

[25] Jin, Y., Olhofer, M., and Sendhoff, B. (2000). On evolutionary optimization with
approximate fitness functions. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference, pages 786–792. Morgan Kaufmann.

[26] Joseffsson, L. and Persson, P. (2006). Conformal Array Antenna Theory and Design.
John wiley & sons.

[27] Kelly, D. W., Gago, J. P. D. S. R., Zienkiewicz, O. C., and Babuska, I. (1983). A
posteriori error analysis and adaptive processes in the finite element method: Part ierror
analysis. International Journal for Numerical Methods in Engineering, 19:1593–1619.

[28] Khorsand, A.-R. and Akbarzadeh, M. (2007). Multi-objective meta level soft
computing-based evolutionary structural design. Journal of the Franklin Institute, pages
595–612.

[29] Khorsand, A.-R., Akbarzadeh-T, M.-R., and Moin, H. (2006). Genetic Quantum Al-
gorithm for Voltage and Pattern Design of Piezoelectric Actuator. In IEEE Congress on
Evolutionary Computation, CEC 2006, pages 2593–2600.

[30] Kim, H.-S. and Cho, S.-B. (2001). An efficient genetic algorithms with less fitness
evaluation by clustering. In Proceedings of IEEE Congress on Evolutionary Computa-
tion, pages 887–894. IEEE.

[31] Krommer, M. (2005). Dynamic shape control of sub-sections of moderately thick
beams. Computers & Structures, 83(15-16):1330–1339.

[32] Lemonge, A., Barbosa, H., and Fonseca, L. (2003). A genetic algorithm for the design
of space framed structures. In XXIV CILAMCE–Iberian Latin-American Congress on
Computational Methods in Engineering, Ouro Preto, Brazil.

44 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

[33] Li, J., Sedaghati, R., Dargahi, J., and Waechter, D. (2005). Design and development
of a new piezoelectric linear Inchworm actuator. Mechatronics Journal, 15:651–681.

[34] Liew, K., He, X., and Ray, T. (2004). On the use of computational intelligence in the
optimal shape control of functionally graded smart plates. Computer Methods in Applied
Mechanics and Engineering, 193(42-44):4475–4492.

[35] Lim, D., Ong, Y. S., Jin, Y., and Sendhoff, B. (2006). Trusted evolutionary algorithm.
In Proceedings of the 2006 Congress on Evolutionary Computation (CEC’2006), pages
149–156.

[36] Lin, J. and Nien, M. (2005). Adaptive control of a composite cantilever beam with
piezoelectric damping-modal actuators/sensors. Composite Structures Journal, 70:170–
176.

[37] Mackerle, J. (2003). Smart materials and structuresa finite element approachan adden-
dum: a bibliography (1997 2002). Modelling and Simulation in Materials Science and
Engineering, 11(5):707–744.

[38] Mezura-Montes, E., editor (2009). Constraint-Handling in Evolutionary Optimization.
Springer, Berlin, Germany. ISBN 978-3-642-00618-0.

[39] Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs.
Springer-Verlag New York, Inc., New York, NY, USA.

[40] Nguyen, Q. and Tong, L. (2004). Shape control of smart composite plate with non-
rectangular piezoelectric actuators. Composite Structures, 66(1-4):207–214.

[41] Ong, Y., Nair, P., and Keane, A. (2003). Evolutionary optimization of computation-
ally expensive problems via surrogate modeling. American Institute of Aeronautics and
Astronautics Journal, 41(4):687–696.

[42] Ong, Y. S., Zhu, Z., and Lim, D. (2006). Curse and blessing of uncertainty in evolu-
tionary algorithm using approximation. In Proceedings of the 2006 Congress on Evolu-
tionary Computation (CEC’2006), pages 2928–2935.

[43] Papadrakakis, M., Lagaros, N., and Kokossalakis, G. (2000). Evolutionary Algorithms
Applied to Structural Optimization Problems. High Performance Computing for Com-
putational Mechanics, pages 207–233.

[44] Pelikan, M. and Sastry, K. (2004). Fitness inheritance in the Bayesian optimization al-
gorithms. In Genetic and Evolutionary Computation Conference, pages 48–59. Springer.

[45] Piefort, V. (2001). Finite element modelling of piezoelectric active structures. PhD
thesis, Université Libre de Bruxelles.

[46] Ratle, A. (1998). Accelerating the convergence of evolutionary algorithms by fitness
landscape approximation. In Eiben, A., Bäck, T., Schoenauer, M., and Schwefel, H.-P.,
editors, Parallel Problem Solving from Nature, volume V, pages 87–96.

[47] Reddy, J. (1993). Introduction to the Finite Element Method. McGrawHill, New York.

2.8 Conclusions 45

[48] Regis, R. and Shoemaker, C. (2004). Local function approximation in evolutionary
algorithms for the optimization of costly functions. IEEE Transactions on Evolutionary
Computation, 8(5):490–505.

[49] Reyes Sierra, M. and Coello Coello, C. A. (2005a). Fitness Inheritance in Multi-
Objective Particle Swarm Optimization. In 2005 IEEE Swarm Intelligence Symposium
(SIS’05), pages 116–123, Pasadena, California, USA. IEEE Press.

[50] Reyes Sierra, M. and Coello Coello, C. A. (2005b). A Study of Fitness Inheritance
and Approximation Techniques for Multi-Objective Particle Swarm Optimization. In
2005 IEEE Congress on Evolutionary Computation (CEC’2005), volume 1, pages 65–
72, Edinburgh, Scotland. IEEE Service Center.

[51] Rodrı́guez, J. E., Medaglia, A. L., and Coello, C. A. C. (2009). Design of a motorcycle
frame using neuroacceleration strategies in MOEAs. Journal of Heuristics, 15(2):177–
196.

[52] Runarsson, T. P. (2004). Constrained Evolutionary Optimization by Approximate
Ranking and Surrogate Models. In Yao, X., Burke, E., Lozano, J. A., Smith, J., , Merelo-
Guervós, J. J., Bullinaria, J. A., Rowe, J., Tiňo, P., Kabán, A., and Schwefel, H.-P.,
editors, Proceedings of 8th Parallel Problem Solving From Nature (PPSN VIII), pages
401–410, Heidelberg, Germany. Birmingham, UK, Springer-Verlag. Lecture Notes in
Computer Science Vol. 3242.

[53] Runarsson, T. P. and Yao, X. (2000). Stochastic Ranking for Constrained Evolutionary
Optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294.

[54] Sacks, J., Welch, W., Mitchell, T., and Wynn, H. (1989). Design and analysis of
computer experiments (with discussion). In Statistical Science, volume 4, pages 409 –
435.

[55] Salami, M. and Hendtlass, T. (2003). A fast evaluation strategy for evolutionary algo-
rithms. Applied Soft Computing, 2:156–173.

[56] Sano, Y. and Kita, H. (2000). Optimization of noisy fitness functions by means of
genetic algorithms using history. In et al, M. S., editor, Parallel Problem Solving from
Nature (PPSN), volume 1917 of Lecture Notes in Computer Science. Springer.

[57] Santana-Quintero, L. V., Arias Montaño, A., and Coello Coello, C. A. (2010). A Re-
view of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective
Optimization. In Tenne, Y. and Goh, C.-K., editors, Computational Intelligence in Ex-
pensive Optimization Problems, pages 29–59. Springer, Berlin, Germany. ISBN 978-3-
642-10700-9.

[58] Shi, L. and Rasheed, K. (2010). A survey of fitness approximation methods applied
in evolutionary algorithms. In Hiot, L. M., .Ong, Y. S., Tenne, Y., and Goh, C. K.,
editors, Computational Intelligence in Expensive Optimization Problems, volume 2 of
Adaptation Learning and Optimization, pages 3–28. Springer Berlin Heidelberg.

46 2 A Fitness Granulation Approach for Large-Scale Structural Design Optimization

[59] Singh, H. K., Ray, T., and Smith, W. (2010). C-PSA: Constrained Pareto sim-
ulated annealing for constrained multi-objective optimization. Information Sciences,
180(13):2499–2513.

[60] Smith, R., Dike, B., and Stegmann, S. (1995). Fitness inheritance in genetic algo-
rithms. In Proceedings of ACM Symposiums on Applied Computing, pages 345–350.
ACM.

[61] Walker, M. and Smith, R. E. (2003). A technique for the multiobjective optimisation
of laminated composite structures using genetic algorithms and finite element analysis.
Composite Structures, 62(1):123–128.

[62] Weise, T. (2008). Global Optimization Algorithms–Theory and Application. URL:
http://www. it-weise. de, Abrufdatum, 1.

[63] Woldesenbet, Y. G., Yen, G. G., and Tessema, B. G. (2009). Constraint Handling in
Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Compu-
tation, 13(3):514–525.

[64] Won, K. S., Ray, T., and Tai, K. (2003). A framework for optimization using approxi-
mate functions. In Proceedings of IEEE Congress on Evolutionary Computation, pages
1077–1084.

[65] Zadeh, L. A. (1979). Fuzzy sets and information granularity. Advances in Fuzzy Set
Theory and Applications, pages 3–18.

[66] Zhang, X., Julstrom, B., and Cheng, W. (1997). Design of vector quantization code-
books using a genetic algorithm. In Proceedings of the IEEE Conference on Evolutionary
Computation, pages 525–529. IEEE.

3
Evolutionary Hidden Information Detection

by Granulation-Based Fitness
approximation 1

Abstract
Spread spectrum audio watermarking (SSW) is one of the most powerful techniques for
secure audio watermarking. SSW hides information by spreading the spectrum. The hid-
den information is called the “watermark” and is added to a host signal, making the latter a
watermarked signal. The spreading of the spectrum is carried out by using a pseudo-noise
(PN) sequence. In conventional SSW approaches, the receiver must know both the PN se-
quence used at the transmitter and the location of the watermark in the watermarked signal
for detecting the hidden information. Detection of the PN sequence is the key issue of hid-
den information detection in SSW. Although the PN sequence can be reliably detected by
means of heuristic approaches, due to the high computational cost of this task, such ap-
proaches tend to be too computationally expensive to be practical. Evolutionary Algorithms
(EAs) belong to a class of such approaches. Most of the computational complexity involved
in the use of EAs arises from fitness function evaluation that may be either very difficult
to define or computationally very expensive to evaluate. This chapter proposes an approxi-
mate model, called Adaptive Fuzzy Fitness Granulation with Fuzzy Supervisor (AFFG-FS),
to replace the expensive fitness function evaluation. First, an intelligent guided technique

1This chapter is based on:

• M. Davarynejad, C.W. Ahn, J. Vrancken, J. van den Berg, C.A. Coello Coello, “Evolutionary hidden
information detection by granulation-based fitness approximation”, Applied Soft Computing, Vol. 10(3),
pp. 719-729, 2010, DOI: 10.1016/j.asoc.2009.09.001.

47

48 3 Evolutionary Hidden Information Detection by fitness approximation

via an adaptive fuzzy similarity analysis for fitness granulation is used for deciding on the
use of the exact fitness function and dynamically adapting the predicted model. Next, in
order to avoid manually tuning parameters, a fuzzy supervisor as auto-tuning algorithm is
employed. Its effectiveness is investigated with three traditional optimization benchmarks
of four different choices for the dimensionality of the search space. The effect of the num-
ber of granules on the rate of convergence is also studied. The proposed method is then
applied to the hidden information detection problem to recover a PN sequence with a chip
period equal to 63, 127 and 255 bits. In comparison with the standard application of EAs,
experimental analysis confirms that the proposed approach has an ability to considerably
reduce the computational complexity of the detection problem without compromising per-
formance. Furthermore, the auto-tuning of the fuzzy supervisor removes the need of exact
parameter determination.

3.1 Introduction

In recent years, digital watermarking has received due attention from the security and cryp-
tography research communities. Digital watermarking is a technique to hide information
into an innocuous-looking media object, which is called “host”, so that no one can suspect
the existence of hidden information. It is intended to provide a degree of copyright pro-
tection as use of digital media mushrooms [9]. Depending on the type of the host signal
to cover hidden information, watermarking is classified into image watermarking and au-
dio watermarking. In this chapter, we focus our attention on audio watermarking but the
approach can be applied to image watermarking as well.

Numerous audio watermarking techniques have been proposed and the most important
ones being Least Significant Bits (LSB) [13], Phase coding [3], Echo hiding [18] and spread
spectrum watermarking (SSW) [19]. The latter, SSW, is known as the most promising water-
marking method due to its high robustness against noise and high perceptual transparency.
The main idea of SSW is to add the spread spectrum of hidden information to the spectrum
of the host signal. Spreading the spectrum of the hidden information is performed by means
of a pseudo-random noise (PN) sequence.

Detection of hidden information from the received watermark signal is performed using
the exact PN sequence adopted for spreading the spectrum of hidden information. There-
fore, the receiver should have access to the PN sequence for detection. This essential, private
knowledge results in a highly secure transmission of information against any unauthorized
user who does not have access to the PN sequence and the location of the watermark. Hence,
the PN sequence can be regarded as a secret key which is shared between the transmitter
and the receiver.

In [26], genetic algorithms (GAs) have been presented for detecting hidden information,
even though the receiver has no prior knowledge on the transmitter’s spreading sequence.
However, iterative fitness function evaluation for such a complex problem is often the most
prohibitive and limiting segment of this approach. For the problem of recovering the PN
sequence, sequences with different periods have different converging times. In the study re-
ported in [26], it has been shown that converging time increases exponentially as the period
of the PN sequence increases. So, the approach fails by losing the validity of information.
The greater the PN sequence is, the more difficult is the situation for recovering the PN

3.1 Introduction 49

sequence and the more secure SSW will result. Note hereby that a greater period of the
PN sequence decreases the capacity of the SSW algorithm for embedding hidden informa-
tion. To alleviate the problem of exponentially increasing converging times, a variety of
techniques for constructing approximation models - often referred to as metamodels - have
been proposed [8, 14]. For computationally expensive optimization problems such as the
detection of hidden information, it may be necessary to strike a balance between exact fit-
ness evaluation and approximate fitness evaluation. A popular subclass of fitness function
approximation methods is fitness inheritance where fitness is simply inherited [8]. A similar
approach named Fast Evolutionary Strategy (FES) has also been suggested in [25], in which
the fitness of a child individual is the weighted sum of its parents. In that approach, fitness
and associated reliability values are assigned to each new individual, and then the actual
fitness function is only evaluated when the reliability value is below a certain threshold.
Further, Reyes Sierra and Coello Coello [24] incorporated the concept of fitness inheritance
into a multi-objective particle swarm optimizer to reduce the number of fitness evaluations.
In [23], they tested their approach on a well-known test suite of multi-objective optimization
problems. They generally reported lower computation cost, while the quality of their results
improved in higher dimensional spaces. However, as also shown in [12] as well as in this
chapter, the performance of parents may not be a good predictor of their children for suf-
ficiently complex and multiobjective problems, rendering fitness inheritance inappropriate
under such circumstances.

Other common approaches based on learning and interpolation from known fitness val-
ues of a small population, (e.g. low-order polynomials and least square estimations [21],
artificial neural networks (ANN) including multi-layer perceptrons [16] and radial basis
function networks [29], support vector machines (SVM) [14, 28], etc.) can also be em-
ployed.

In 1979, Zadeh [31] developed fuzzy information granulation as a technique by which a
class of points (objects) is partitioned into granules, with a granule being a clump of objects
drawn together by indistinguishability, similarity, and/or functionality. The fuzziness of
granules and their attributes is characteristic of the ways by which human concepts and
reasoning are formed, organized and manipulated. The concept of a granule is more general
than that of a cluster, potentially giving rise to various conceptual structures in various fields
of science as well as in mathematics.

In this chapter, with a view to reducing computational cost, we employ the concept of
fuzzy granulation to effectively approximate the fitness function in evolutionary algorithms
(EAs). In other words, the concept of fitness granulation is applied to exploit the natural
tolerance of EAs in fitness function computations. Nature’s “survival of the fittest” does not
necessarily mean exact measures of fitness; rather it is about rankings among competing
peers [17]. By exploiting this natural tolerance for imprecision, optimization performance
can be preserved through computing fitness only selectively based on the ranking among
individuals in a given population. Unlike existing approaches, the fitness values are not
interpolated or estimated; rather the similarity and indistinguishability among real solutions
is exploited.

In the proposed algorithm, as explained in detail in [11], an adaptive pool of solutions
(fuzzy granules) with an exactly computed fitness function is maintained. If a new indi-
vidual is sufficiently similar to a known fuzzy granule, then that granule’s fitness is used
instead as a crude estimate. Otherwise, the individual is added to the pool as a new fuzzy

50 3 Evolutionary Hidden Information Detection by fitness approximation

granule. In this fashion, regardless of the competition’s outcome, fitness of the new individ-
ual is always a physically realizable one, even if it is a “crude” estimate and not an exact
measurement. The pool size as well as each granule’s radius of influence self-adaptively
grow or shrink depending on the utility of each granule and the overall population fitness.
To encourage fewer function evaluations, each granule’s radius of influence is initially large
and then gradually shrinks in the course of evolution. This encourages more exact fitness
evaluations when competition is fierce among more similar and converging solutions. Fur-
thermore, to prevent the pool from growing too large, granules that are not used are grad-
ually eliminated. This fuzzy granulation scheme is applied here as a type of fuzzy approx-
imation model to efficiently detect hidden information from spread spectrum watermarked
signals. Finally, a fuzzy supervisor is developed for adaptively, automatically adjusting sys-
tem parameters. The chapter is organized as follows: Section 3.2 presents the framework of
adaptive fuzzy fitness granulation (AFFG). An auto-tuning strategy for determining width
of membership functions (MFs) is also presented in the section; by which the need of exact
parameter setting is eliminated, without affecting the rate of convergence. This approach is
called adaptive fuzzy fitness granulation with fuzzy supervisory (AFFG-FS). In Section 3.3,
the proposed algorithm is tested on three traditional optimization benchmarks with four
different dimensions. In Section 3.4, the recovery of the PN sequence from a received wa-
termarked signal using the proposed approach is illustrated. Some supporting simulation
results and discussion thereof are also presented in the section. Finally, conclusions are
drawn in Section 3.5.

3.2 The AFFG Framework

Adaptive fuzzy fitness granulation (AFFG) was first proposed in [11]. It includes a global
model of a genetic algorithm (GA) which is hybridized with a fuzzy granulation (FG) tool
(see Figure 3.1). The expensive fitness evaluation of individuals required in traditional GA,
can be partially replaced by an approximation model. Explicit control strategies are used
for evolution control, leading to a considerable speedup without compromising heavily on
the solution accuracy. While the approximation techniques themselves are widely known
for accelerating the iterative optimization process, the focus of AFFG lies in promoting con-
trolled speedup in view of avoiding detrimental effects of the approximation. The following
section presents the main elements of the AFFG framework.

3.2.1 Basic Idea

The proposed adaptive fuzzy fitness granulation aims to minimize the number of exact fit-
ness function (FF) evaluations by maintaining a pool of solutions (fuzzy granules) by which
can be used to approximate solutions in further stages of the evolutionary process. The
algorithm uses Fuzzy Similarity Analysis (FSA) to produce and update an adaptive compet-
itive pool of dissimilar solutions (granules). When a new solution is introduced to this pool,
granules compete by a measure of similarity to win the new solution and thereby to prolong
their lives in the pool. In turn, the new individual simply assumes fitness of the winning
(most similar) individual in this pool. If none of the granules are sufficiently similar to the
new individual (i.e., if their similarity is below a certain threshold), the new individual is

3.2 The AFFG Framework 51

Fuzzy Similarity

Analysis based on

Granulation Pool

Yes
FF EvaluationFF Association

Phenospace

Fitness of Individual

Update Granulation

Table

No

Figure 3.1: The architecture of the proposed algorithm.

instead added to the pool after its exact fitness is evaluated by the actual fitness function.
Finally, granules that cannot win new individuals are gradually eliminated in order to avoid
consistent growth of the pool. The basic idea of the proposed algorithm is graphically shown
in Figure 3.1 and is discussed in more detail in the next section. For even more details, we
refer to [11] and [2].

3.2.2 Basic Algorithm Structure

Step 1: Create a random parent population P1 = {x1
1, x1

2, . . . , x1
j , . . . ,x1

t } of design variable
vector, where, more generally, xi

j = {xi
j,1, xi

j,2, . . . ,x
i
j,r, . . . , xi

j,m} is the jth parameter
individual in the ith generation, xi

j,r the rth parameter of xi
j ∈ IR, m is the number of design

variables and t is the population size.
Step 2: Define a multi-set G of fuzzy granules (Ck, σk, Lk) according to G= {(Ck, σk, Lk

)|Ck ∈ IRm, σk ∈ IR, Lk ∈ IR, k = 1, . . . , l}. G is initially empty (i.e., l = 0). Ck is an m-
dimensional vector of centers, σk is the width of membership function (WMF) of the kth
fuzzy granule, and Lk is the granule’s life index.

Step 3: Choose the phenotype of first chromosome (x1
1 = {x1

1,1, x1
1,2, . . . , x1

1,r, . . . , x1
1,m})

as the center of the first granule (C1 = {c1,1, c1,2, . . . ,c1,r,
. . . , c1,m} = x1

1).
Step 4: Define the fuzzy membership µk,r of each xi

j,r to each granule member by a
Gaussian similarity neighborhood function according to

µk,r
(
xi

j,r
)
= exp

(
−
(
xi

j,r− ck,r
)2

(σk)
2

)
, k = 1,2, . . . , l , (3.1)

where l is the number of fuzzy granules.
Remark: σk is the distance measurement parameter that controls the degree of similarity

between two individuals. Like in [10], σk is defined based on equation (3.2). According to

52 3 Evolutionary Hidden Information Detection by fitness approximation

this definition, the granules shrink or enlarge in reverse proportion to their fitness:

σk = γ
1(

eF(Ck)
)β , (3.2)

where β> 0 is an emphasis operator and γ is a proportionality constant. The problem arising
here is how to determine the parameters β and γ as design parameters. The fact is that these
two parameters are problem dependent and, in practice, a number of trials is needed to adjust
these parameters. This trial is based on a simple rule with respect to the acceleration of the
parameter optimization procedure: high speed needs to have enlargement in the granule
spread and, as a consequence of this, less accuracy is obtained in the fitness approximation,
and viceversa. To deal with this rule, a fuzzy controller is presented in [10].

Step 5: Compute the average similarity of every new design parameter xi
j = {xi

j,1, xi
j,2,

. . . ,xi
j,r, . . . , xi

j,m} to each granule Gk using equation (3.3)

µ j,k =

m

∑
r=1

µk,r
(
xi

j,r
)

m
(3.3)

Step 6: Either calculate the exact fitness function of xi
j or estimate the fitness function

value by associating it to one of the granules in the pool in case there is a granule in the pool
with higher similarity to xi

j than a predefined threshold, i.e.

f
(
xi

j
)
=

 f (Ck) if max
k∈{1,2,...,l}

{µ j,k}> θi ,

f
(

xi
j

)
otherwise.

(3.4)

where f (Cx) is the fitness function value of the fuzzy granule, f (xi
j) is the real fitness calcu-

lation of the individual, θi =α(max{ f (xi−1
1), f (xi−1

2), . . . , f (xi−1
t)}/ f i−1

), K = argmax{µ j,k}
when k ∈ {1,2, . . . , l}, f i

= ∑i
j=1 f (xi

j)/t and α > 0 is a proportionality constant that is usu-
ally set at 0.9 unless otherwise indicated. The threshold θi increases as the best individual’s
fitness at generation i increases. As the population matures and reaches higher fitness val-
ues (i.e., while converging more), the algorithm becomes more selective and uses exact
fitness calculations more often. Therefore, with this technique we can utilize the previous
computational efforts during previous generations. Alternatively, if

max
k∈{1,2,...,l}

{µ j,k}< θi

xi
j is chosen as a newly created granule.

Step 7: If the population size is not completed, repeat Steps 5 to 7.
Step 8: Select parents using a suitable selection operator and apply the genetic operators

of recombination and mutation to create a new generation.
Step 9: When termination/evolution control criteria are not met, then update σk using

equation (3.2) and repeat Steps 5 to 9.

3.2 The AFFG Framework 53

3.2.3 How to control the size of the granule pool?
As the evolutionary procedures proceed, it is inevitable that new granules are generated
and added to the pool. Depending on complexity of the problem, the size of this pool can
become excessive and become a computational burden itself. To prevent such unnecessary
computational effort, a forgetting factor is introduced in order to appropriately decrease
the size of the pool. In other words, it is better to remove granules that do not win new
individuals, thereby producing a bias against individuals that have low fitness and were
likely produced by a failed mutation attempt. Hence, Lk is initially set to N and subsequently
updated as below,

Lk =

{
Lk +M if k = K ,

Lk otherwise ,
(3.5)

where M is the life reward of the granule and K is the index of the winning granule for
each individual at generation i. At each table update, only the NG granules with the highest
Lk index are kept, and the others are discarded. In [2], an example has been provided to
illustrate the competitive granule pool update law.

Adding a new granule to the granule pool and assigning a life index to it, is a simple
way of controlling the size of the granule pool, since the granules with the lowest life index
will be removed from the pool. However, it may happen that the new granule is removed,
even though it was just inserted into the pool. In order to prevent this, the pool is split into
two parts with sizes εNG and (1− ε)NG. The first part is a FIFO (First In, First Out) queue
and new granules are added to this part. If it grows above εNG, then the top of the queue
is moved to the other part. Removal from the pool takes place only in the (1− ε)NG part.
In this way, new granules have a good chance to survive a number of steps. In all of the
simulations that are conducted here, ε is set at 0.1.

The distance measurement parameter is completely influenced by the granule enlarge-
ment/shrinkage in the widths of the produced membership functions. As in [11], the com-
bined effect of granule enlargement/shrinkage is in accordance with the granule fitness and
it requires the fine-tuning of two parameters, namely β and γ. These parameters are prob-
lem dependent and it seems critical to have a procedure to deal with this difficulty. The next
section presents an auto-tuning strategy for determining the width of MFs which removes
the need of exact parameter determination, without negative influence on the convergence
speed.

3.2.4 How to Determine the Width of the Membership Functions
It is crucial to have accurate estimations of the fitness function of the individuals in the fin-
ishing generations. In the proposed method, it can be accomplished by controlling the width
of the produced MFs. At early steps of evolution, by choosing relatively large WMFs, the
algorithm accepts individuals with less degree of similarity as similar individual. Therefore
at the early stages of the search, the fitness function is more often estimated. As the individ-
uals mature and reach better fitness values, the width decreases and the similarity between
individuals should increase in order to be accepted as similar individuals. This prompts
higher selectivity for granule associability and a higher threshold for estimation. In short, in
later generations, the degree of similarity between two individuals must be larger than that

54 3 Evolutionary Hidden Information Detection by fitness approximation

Fuzzy Logic

Controller

AFFG

Structural Design

Problem

NDV

MRDV

PCG
kσ

Figure 3.2: Flow-diagram of Adaptive Fuzzy Controller.

in the early generations, to be accepted as similar individuals. This procedure ensures a fast
convergence rate due to rapid computation at the early phase and accurate fitness estimation
at the later stage.

To achieve these desiderata, a fuzzy supervisor with three inputs is employed. Dur-
ing the AFFG search, the fuzzy logic controller observes the Number of Design Variables
(NDV), the Maximum Range of Design Variables (MRDV) and the percentage of completed
trials, and specifies the WMFs. The first input is the NDV and the Range of the input vari-
ables (RIV) is the second one. Large values of the NDV and MRDV need big width in the
MFs, vice versa. The Percent Completed Generations (PCG) is the third input, which takes
a number in the range [0, 1], where “1” signifies exhaustion of all allowed trials. This con-
cerns the maturity level of search, given a fixed amount of resources. The combined effect
of granule enlargement/shrinkage in accordance to PCG is to realize both rapid computation
and accurate fitness estimation.

The architecture for adaptive fuzzy control of the WMFs is visualized in Figure 3.2.
Gaussian MFs are used for specification of the knowledge base of the fuzzy logic controller.
The knowledge base for controlling the WMFs based on the above architecture has a large
number of rules and the extraction of these rules is very difficult. Consequently, a new
architecture (as shown in Figure 3.3) is proposed, in which the controller is separated in
two controllers to diminish the complexity of the system and to reduce the number of rules.
The first controller has two inputs (with three MFs in each, Zero(0, 0.3), Small(0.5, 0.3),
Big(1.0, 0.3), the first number is the center and the second one is the spread), and the second
controller has only one input. As shown in Figure 3.3, the spread of the granules is provided
by the multiple output of the controllers. The knowledge base for the first controller is
shown in Table 3.1. The Gaussian MFs with equal width in each (0.3) are used for output.
The second controller has just one Gaussian MF in which 0 and 1.25 are its center and
spread, respectively. The fuzzy system (that employs singleton fuzzifier, products inference
engine, and center average defuzzifier) adjusts σk after each generation.

3.3 Benchmark problems and numerical results

To illustrate the efficacy of the proposed granulation techniques, a set of 3 traditional op-
timization benchmarks (shown in Table (3.2)) are chosen namely: Ackley, Griewangk and

3.3 Benchmark problems and numerical results 55

Fuzzy Logic

Controller

AFFG

Structural Design

Problem

NDV

MRDV

kσ

Fuzzy Logic

Controller

PCG

×

Figure 3.3: Flow-diagram of Proposed Fuzzy Controller.

Table 3.1: Fuzzy Rules of the First Controller.

NDV
MRDV Zero Small Big

Zero 228.1 4601.2 6.39×10−05

Small 155.9 511.9 6.34×10−05

Big 97.5 406.7 6.39×10−05

Rastrigin. These benchmark functions are scalable and are commonly used to assess op-
timization algorithms. They have some intriguing features which most optimization algo-
rithms find hard to deal with.

The Ackley function [1, 7] has an exponential term by which numerous local minima are
produced. Analyzing a wider region helps to cross the valley along local optima, thereby
achieving better solutions. The global optimum is always f (x) = 0, which is obtained at

Table 3.2: Benchmark problems used in the experiments.

Function name Mathematical Representation Original Search space

20+ e−20exp
(
−0.2

√
1
D ∑D

i=1 x2
i

)
Ackley

−exp
(1

D ∑D
i=1 cos(2πxi)

) [−32.768,32.768]D

Griewank 1+ 1
4000 ∑D

i=1 x2
i −∏D

i=1 cos
(

xi√
i

)
[−600,600]D

Rastrigin 10D+∑D
i=1
(
x2

i −10cos(2πxi)
)

[−5.112,5.112]D

56 3 Evolutionary Hidden Information Detection by fitness approximation

Table 3.3: Benchmark problems used in the experiments.

Function β γ

Ackley 0.02 0.25
Griewank 0.00012 190.0
Rastrigin 0.004 0.15

xi = 0, ∀i.
The Griewangk function [6] is also highly multimodal. Unlike Ackley and Rastrigin

functions, it has a product term that introduces interdependence among variables. It is
hard to find the optimal solution without some information on the variables’ dependencies.
Regardless of its dimensionality, the global optimum is f (x) = 0 which occurs at xi = 0, ∀i.

The Rastrigin function [22] is created by adding a cosine modulation term to the Sphere
function. It consists of a large number of local minima whose values increase in receding
from the global minimum. The global optimum is f (x) = 0 which occurs at xi = 0, ∀i.

The aim of the empirical study consists of investigating the search capability, as a func-
tion optimizer, of the proposed granulation technique (AFFG-FS), compared to the conven-
tional GA, FES and AFFG techniques. The parameters are summarized in Table 3.4.

The GA routine utilizes random initial populations, binary-coded chromosomes, single-
point crossover, bit-wise mutation, fitness scaling, and an elitist stochastic universal sam-
pling selection strategy. Moreover, crossover and mutation probabilities are PXOV ER = 1
and PMUTAT ION = 0.01 respectively, the population size is 20, and the maximum number of
generations is 100. Finally chromosome length varies depending on the number of variables
in a given problem, but each variable’s length is set to 8 bits. The total number of gener-
ations as well as the termination criterion is determined during several trial runs to ensure
the convergence of the algorithm on the three benchmark problems.

AFFG and AFFG-FS uses all of the above evolutionary parameters as in a GA to estab-
lish analysis only from the perspective of granulation and in order to keep track of the best
solution found. Ten independent runs of each experiment were executed.

As to FES, a fitness and an associated reliability values are assigned to each new indi-
vidual. The fitness is actually evaluated if the reliability value is below a certain threshold.
The reliability value varies between 0 and 1 and depends on two factors: the first one is the
reliability of parents, and the second one is the closeness of parents and children in the so-
lution space. Three different levels for T , i.e., 0.5, 0.7 and 0.9, have been used here which
equal to ones proposed in [25].

In this experiment, four sets of dimensions are considered for each test function; namely
n = 5, 10, 20 and 30. As for both the AFFG and AFFG-FS, NG changes and is set at 20, 20,
40 and 80 respectively. The reported results were obtained by achieving the same level of
fitness evaluations for both the proposed method (AFFG-FS) and the comparative references
(GA, FES and AFFG), namely 500 for 5-D (dimension), 1000 for 10-D, 2000 for 20-D and
3000 for 30-D.

The average convergence trends of the standard GA, FES, AFFG and AFFG-FG are
summarized in Figures 3.4 to 3.6. All the results presented were averaged over 10 runs. The
y-axis in these figures denotes the (average) fitness value in common logarithmic scale, and

3.4 Spread Spectrum Watermarking (SSW) 57

0 100 200 300 400 500

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (5-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 200 400 600 800 1000

2.4

2.5

2.6

2.7

2.8

2.9

3

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (10-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (20-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000 2500 3000

2.6

2.7

2.8

2.9

3

3.1

3.2

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (30-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

Figure 3.4: Comparisons of convergence curve on the Ackley function.

the x-axis denotes the number of exact function evaluation.
As shown in Figures 3.4 to 3.6, the search performance of AFFG and AFFG-FS are

superior to GA and FES, even with a small number of granules in the granule pool. The
results also illustrate that fitness inheritance method (i.e., FES), albeit being comparable in
smaller dimensions, deteriorates as the problem size increases.

We also studied the effect of varying the number of granules NG on the convergence
behavior of AFFG and AFFG-FS. The comparison can be made by the results obtained in
Figure 3.8. The good news from the results is that AFFG and AFFG-FS are not so sensitive
to NG . However, further increase of NG slows down the rate of convergence due to the
imposed computational complexity.

3.4 Spread Spectrum Watermarking (SSW)
This section bears out the effectiveness of the proposed granulation technique in real world
applications. We consider a hidden information detection problem such that the correct
(pseudorandom noise) PN sequence must be recovered from a spread spectrum watermarked
signal. Spread spectrum watermarking (SSW) has been perceived to be a powerful wa-
termarking scheme that offers high robustness (surviving hidden information after noise
addition), high transparency (high quality of watermarked signal after addition of hidden
information) and high security (against unauthorized users) to hide the bits of information.
SSW uses the idea of spread spectrum communication to embed bits of information into a

58 3 Evolutionary Hidden Information Detection by fitness approximation

0 100 200 300 400 500

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (5-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 200 400 600 800 1000
0

1

2

3

4

5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (10-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000
0

1

2

3

4

5

6

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (20-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000 2500 3000

1

2

3

4

5

6

7

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (30-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

Figure 3.5: Comparisons of convergence curve on the Griewangk function.

host signal. Spreading the spectrum of the hidden information is carried out by a pseudo-
random noise sequence. A PN sequence is a zero mean, periodic binary sequence with a
noise-like waveform whose bits are equal to +1 or -1 [15]. To embed each bit of hidden
information m(i), i = 1,2 . . . , into a host signal, the embedder conducts the following steps.

• Generates one period of the PN sequence by a PN sequence generator.

• Multiply m(i) by all the bits of the generated PN sequence to generate a watermark
signal as follows:

w(i) = p(n)m(i),n = 1,2, . . . ,N (3.6)

where p(n) is the nth bit of the PN sequence and w(i) is the ith block of the watermark
signal.

• Produces a watermarked signal s(w,x) as follows:

S(w,x) = λw(n)+ x(n) (3.7)

Then the watermarked signal S(w,x) is sent to the receiver.
Extraction of hidden information from a received watermarked signal at the detector can

be done using the correlation property of the PN sequence. Cross correlation C(., .) between
two PN sequences pa and pb is given as 3.8 [20].

3.4 Spread Spectrum Watermarking (SSW) 59

0 100 200 300 400 500

2

2.5

3

3.5

4

4.5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (5-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 200 400 600 800 1000

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (10-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (20-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

0 500 1000 1500 2000 2500 3000
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (30-D)

GA

AFFG

AFFG-FS

FES-.5

FES-0.7

FES-0.9

Figure 3.6: Comparisons of convergence curve on the Rastrigin function.

C(Pa,Pb) =
1
N

N−1

∑
i=0

(Pa(i)Pb(i)) =

{
i, if a = b
−1
N , otherwise.

(3.8)

Hence, cross correlation between a watermarked signal and a PN sequence can be writ-
ten a the following.

C(S, p′) =C(w, p′)+C(m.p, p′) =

{
C(w, p′)+m, if p = p′

C(w, p′)− m
N , otherwise.

(3.9)

Equation (3.9) expresses that the bit of hidden information can be determined by cal-
culating the correlations between the received watermarked signal and the PN sequence
employed at the transmitter, and comparing the result with a threshold.

3.4.1 Recovering the PN sequence

In general, it is very hard to recover the PN sequence from a spread spectrum watermarked
signal where no information about the PN sequence or its location is known. The reason is
that there are vast regions for the solution sets of possible PN sequences. For instance, to
recover a PN sequence with a period equal to 63 bits, 263 PN sequences must be generated.

To make the problem of recovering the PN sequence more tractable, we assume that the
exact location of the watermark in the watermarked signal is known. In [27], an approach

60 3 Evolutionary Hidden Information Detection by fitness approximation

0 200 400 600 800 1000

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Ackley, (10-D)

AFFG, 20

AFFG, 50

AFFG, 100

AFFG-FS, 20

AFFG-FS, 50

AFFG-FS, 100

0 200 400 600 800 1000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Griewangk, (10-D)

AFFG, 20

AFFG, 50

AFFG, 100

AFFG-FS, 20

AFFG-FS, 50

AFFG-FS, 100

0 200 400 600 800 1000
3

3.5

4

4.5

5

Exact Function Evaluation Count

lo
g
 (

F
it
n

e
s
s
 V

a
lu

e
)

Rastrigin, (10-D)

AFFG, 20

AFFG, 50

AFFG, 100

AFFG-FS, 20

AFFG-FS, 50

AFFG-FS, 100

Figure 3.7: Effect of Varying NG ∈{20,50,100} on convergence trend of studied benchmark
optimization problems when D is set at 10.

for detecting hidden information from an image spread spectrum signal has been proposed.
This approach detects abrupt jumps in the statistics of the watermarked signal to recover
the PN sequence. However, the algorithm which is based on hypothesis tests for detection
of abrupt jump in the statistics is very complicated and its performance suffers from low
frequency embedding.

Our approach to recover the PN sequence is based on unconstrained optimization. We
have a set of feasible solutions available in order to find the global minimum of a cost func-
tion. The feasible solutions are sequences with the period length of the PN sequence and
elements of +1 and -1. A cost function for this problem can be defined by a exploring a very
useful property of SSW (in detection), namely the correlation property of the PN sequence.
Thus, the proper cost (fitness) function is the cross correlation between the generated se-
quence and the watermarked signal as is defined in Equation (3.9).

In [5], an interesting method for recovering the PN sequence of the spread spectrum
signal with a predefined SNR has been proposed. The approach uses a GA approach with
a fitness function based on the cross correlation between the estimated PN sequence and
the spread spectrum. However, spread spectrum watermarking is more complicated than a
single spread spectrum signal since, in SSW, the spread spectrum hidden information is like
a white Gaussian noise for the host signal.

We observe here that the computation of the cross correlation between the sequences
of possible solutions’ set and the watermarked signal for only one block of the SSW signal

3.4 Spread Spectrum Watermarking (SSW) 61

would not converge to the PN sequence used at the transmitter. This is because the energy
of host signal is at least 12 dB more than the energy of the watermark, and that has a strong
effect on maximizing the cross correlation (i.e., the optimization algorithm converges to
a sequence that maximizes the correlation with the host). As a solution to this problem,
several consequence blocks of the watermark (i.e. several bits of hidden information) should
be considered in the computation of the cross correlation. In this case, the watermark signal
has a stronger effect than the host signal on maximizing the cross correlation function.

Carrying out the global optimization by searching over the entire solution set, as men-
tioned above, is the subject of deterministic methods such as covering methods, tunneling
methods, zooming methods, etc. Such methods discover the global minimum by an exhaus-
tive search over the entire solution set. For instance, the basic idea is to cover all the feasible
solutions by evaluating the objective function at all points [4]. Although these schemes have
high reliability and accuracy is always guaranteed, they are not practical due to their poor
convergence [30].

Since the solution set is vast, we need an efficient optimization algorithm with high
reliability and fast converging rate. Many stochastic optimization algorithms have been
proposed such as GA, simulated annealing, ant colony, etc. However, the GA approach
has been perceived to be promising in a wide range of applications. Moreover, it is apt to
strike an attractive balance between reliability and converging rate. In this regard, we have
chosen the GA framework for the global optimization task. In order to further enhance the
search capability, we employ the proposed AFFG-FS with a view to reduce the number of
expensive fitness evaluations by incorporating an approximate model.

Empirical results for recovering PN sequence

This empirical study focuses on performance improvement of the proposed granulation
technique (AFFG-FS) in comparison with conventional GA approaches. In Section (3.3), it
has been exhibited that the fuzzy supervisory part of AFFG-FS gets rid of the need of exact
parameter determination of AFFG, and their performances are comparable to each other.
Moreover, it has also been shown that FES is much worse than the granulation techniques.
As such, we did not take into account the original AFFG and FES as comparative references
in this experiment.

In order to reasonably keep track of the best solution found, the GA uses roulette-wheel
selection with elitism. Moreover, one-point crossover and bit-wise mutation are imple-
mented. Crossover and mutation probabilities used are 1.0 and 0.01, respectively. The
population size is set to 20 with the elite size of 2.

For AFFG-FS, the number of individuals in the granule pool varies between 10, 20 and
50. The reported results were obtained by achieving the same level of fitness evaluations
for both a canonical GA and the proposed AFFG-FS. In this experiment, all results were
averaged over 10 runs.

The average of convergence performance of GA and AFFG-FG is depicted in Fig-
ure (3.8) and is summarized in Table 3.4. It is seen that cross correlation values returned
by AFFG with NG = {10,20,50} are much better than that of GA. It is also observed that
the cross correlation increases, albeit insensitive, with the number of granules. However,
the increase of NG slows down the rate of convergence due to its imposed computational
complexity. Moreover, Table 3.4 exhibits that the rate of convergence of AFFG-FS is, on

62 3 Evolutionary Hidden Information Detection by fitness approximation

0 2000 4000 6000 8000 10000

4

5

6

7

8

9

10

Exact Function Evaluation Count

F
itn

e
s
s
 V

a
lu

e

GA

AFFG-FS, 10

AFFG-FS, 20

AFFG-FS, 50

(a)

0 2000 4000 6000 8000 10000

2

3

4

5

6

7

8

9

Exact Function Evaluation Count

F
itn

e
s
s
 V

a
lu

e

GA

AFFG-FS, 10

AFFG-FS, 20

AFFG-FS, 50

(b)

0 2000 4000 6000 8000 10000
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Exact Function Evaluation Count

F
itn

e
s
s
 V

a
lu

e

GA

AFFG-FS, 10

AFFG-FS, 20

AFFG-FS, 50

(c)

Figure 3.8: Cross correlation between the estimated PN sequence and the watermarked sig-
nal when a) PN sequence has a period of 63 chips, b) PN sequence has a period
of 127 chips, c) PN sequence has a period of 255 chips, .

average, 3.5 times faster than that of GA. It is noted that the performance gain is not so
dependent on the chip length of the PN sequence (i.e., problem size). From the results, it
can be concluded that the search performance of AFFG-FS is superior to that of the GA,
even with the small number of individuals in the granule pool.

3.5 Concluding Remarks

An intelligent guided technique via an adaptive fuzzy similarity analysis for fitness granula-
tion, called adaptive fuzzy fitness granulation with fuzzy supervisory (AFFG-FS), has been
presented. The aim was to decide on the use of expensive function evaluations and adapt
the predictive model in a dynamic manner. A fuzzy supervisor as an auto-tuning strategy
has also been proposed in order to avoid the tuning of parameters. Empirical evidence on its
effectiveness over existing approaches (i.e., GA and FES) was adduced with widely-known
benchmark functions. In detail, numerical results showed that the proposed technique is
capable of optimizing functions of varied complexity efficiently. It was seen that AFFG and
AFFG-FS are not much sensitive to the number of granules NG, and smaller values of NG
still lead to good results. Moreover, the auto-tuning of fuzzy supervisor eliminated the need
for exact parameter determination without compromising convergence performance.

The proposed AFFG-FS has been further applied to the problem of detecting hidden

3.5 Concluding Remarks 63

Table 3.4: Performance comparison of GA and AFFG-FS when NG = {10,20,50}.

Chip length Criteria-I a Criteria-II b Criteria-III c

63
GA 10.17 9.57 9965
AFFG-FS, 10 10.29 10.18 2978
AFFG-FS, 20 10.36 10.29 2547
AFFG-FS, 50 10.39 10.28 1904

127
GA 4.51 4.16 9934
AFFG-FS, 10 5.90 5.58 3817
AFFG-FS, 20 6.10 5.72 2969
AFFG-FS, 50 6.19 5.86 2156

255
GA 4.51 4.16 9934
AFFG-FS, 10 5.90 5.58 3817
AFFG-FS, 20 6.10 5.72 2969
AFFG-FS, 50 6.19 5.86 2156

a The best cross correlation of population at the last generation.
b The average cross correlation of population at the last generation.
c The average number of fitness evaluations until the same cross correlation value
is reached (the values are equal to the average cross correlation of population
achieved by GA at the last generation); 4.16 for 255 chips, 6.16 for 127 chips, 9.57
for 63 chips.

information from a spread spectrum watermarked signal. Under the assumption of knowing
the location of hidden information, the knowledge necessary for detecting hidden infor-
mation at the receiver (that is the PN sequence used at the transmitter) could be detected.
Experimental studies demonstrated that AFFG-FS is capable of rapidly detecting hidden
information.

Acknowledgments
This research received funding from the European Community’s Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. INFSO-ICT-223844, the Next Gener-
ation Infrastructures Research Program of Delft University of Technology and the Mexican
CONACyT project No. 45683-Y.

References
[1] Ackley, D. (1987). An empirical study of bit vector function optimization. Genetic

algorithms and simulated annealing, 1:170–204.

64 3 Evolutionary Hidden Information Detection by fitness approximation

[2] Akbarzadeh-T, M., Davarynejad, M., and Pariz, N. (2008). Adaptive fuzzy fitness gran-
ulation for evolutionary optimization. International Journal of Approximate Reasoning,
49(3):523–538.

[3] Ansari, R., Malik, H., and Khokhar, A. (2004). Data-hiding in audio using frequency-
selective phase alteration. In IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP’04), volume 5, pages 389–392.

[4] Arora, J., Elwakeil, O., Chahande, A., and Hsieh, C. (1995). Global optimization meth-
ods for engineering applications: a review. Structural and Multidisciplinary Optimiza-
tion, 9(3):137–159.

[5] Asghari, V. and Ardebilipour, M. (2004). Spread spectrum code estimation by genetic
algorithm. International Journal of signal processing, 1(4):301–304.

[6] Back, T., Fogel, D., and Michalewicz, Z. (1997). Handbook of evolutionary computa-
tion. New York: Oxford Univ. Press and Institute of Physics.

[7] Bäck, T. and Schwefel, H. (1993). An overview of evolutionary algorithms for param-
eter optimization. Evolutionary computation, 1(1):1–23.

[8] Chen, J., Goldberg, D., Ho, S., and Sastry, K. (2002). Fitness inheritance in multiobjec-
tive optimization. In Genetic and Evolutionary Computation Conference (GECCO’02),
pages 319–326.

[9] Cvejic, N. (2004). Algorithms for audio watermarking and steganography. PhD thesis,
PhD thesis, Oulu University of Technology.

[10] Davarynejad, M., Ahn, C. W., Vrancken, J. L. M., van den Berg, J., and Coello, C.
A. C. (2010). Evolutionary hidden information detection by granulation-based fitness
approximation. Applied Soft Computing, 10(3):719–729.

[11] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012). A Fit-
ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,
R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for
Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[12] Ducheyne, E., Baets, B. D., and Wulf, R. D. (2003). Is fitness inheritance useful for
real-world applications? In Evolutionary Multi-Criterion Optimization, pages 31–42.

[13] Gopalan, K. (2003). Audio steganography using bit modification. In IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing (ICASSP ’03), pages
421–424.

[14] Gunn, S. (1998). Support vector machines for classification and regression. Technical
report, Technical Report, School of Electronics and Computer Science, University of
Southampton.

[15] Haykin, S. (2001). Communication systems. John Wiley & Sons, Inc.

3.5 Concluding Remarks 65

[16] Hong, Y., Lee, H., and Tahk, M. (2003). Acceleration of the convergence speed of
evolutionary algorithms using multi-layer neural networks. Engineering Optimization,
35(1):91–102.

[17] Hüsken, M., Jin, Y., and Sendhoff, B. (2005). Structure optimization of neural net-
works for evolutionary design optimization. Soft Computing, 9(1):21–28.

[18] Kim, H. and Choi, Y. (2003). A novel echo-hiding scheme with backward and forward
kernels. IEEE Transactions on Circuits and Systems for Video Technology, 13(8):885–
889.

[19] Kirovski, D. and Malvar, H. (2003). Spread-spectrum watermarking of audio signals.
IEEE Transactions on Signal Processing, 51(4):1020–1033.

[20] Liu, Z., Kobayashi, Y., Sawato, S., and Inoue, A. (2002). A robust audio watermarking
method using sine function patterns based on pseudorandom sequences. In Pacific Rim
Workshop on Digital Steganography, pages 167–173.

[21] Myers, R., Montgomery, D., and Anderson-Cook, C. (2009). Response surface
methodology: process and product optimization using designed experiments. John Wiley
& Sons.

[22] Rastrigin, L. (1974). Extremal control systems. Theoretical Foundations of engineer-
ing cybernetics series.

[23] Reyes-Sierra, M. and Coello, C. C. (2005). A study of fitness inheritance and approx-
imation techniques for multi-objective particle swarm optimization. In IEEE Congress
on Evolutionary Computation (CEC’05), volume 1, pages 65–72.

[24] Reyes-Sierra, M. and Coello, C. C. (2006). Dynamic fitness inheritance proportion for
multi-objective particle swarm optimization. In Genetic and Evolutionary Computation
Conference (GECCO’06), pages 89–90.

[25] Salami, M. and Hendtlass, T. (2003). A fast evaluation strategy for evolutionary algo-
rithms. Applied Soft Computing, 2(3):156–173.

[26] Sedghi, S., Mashhadi, H., and Khademi, M. (2006). Detecting hidden information
from a spread spectrum watermarked signal by genetic algorithm. In IEEE Congress on
Evolutionary Computation (CEC’06), pages 173–178.

[27] Trivedi, S. and Chandramouli, R. (2005). Secret key estimation in sequential steganog-
raphy. IEEE Transactions on Signal Processing, 53(2):746–757.

[28] Vapnik, V. (2000). The nature of statistical learning theory. Springer-Verlag New
York Incorporated.

[29] Won, K. and Ray, T. (2005). A framework for design optimization using surrogates.
Engineering optimization, 37(7):685–703.

[30] Yen, K. and Hanzo, L. (2001). Genetic algorithm assisted joint multiuser symbol
detection and fading channel estimation for synchronous cdma systems. IEEE Journal
on Selected Areas in Communications, 19(6):985–998.

66 3 Evolutionary Hidden Information Detection by fitness approximation

[31] Zadeh, L. (1979). Fuzzy sets and information granularity. In Gupta, M., Ragade, R.,
and Yager, R., editors, Advances in Fuzzy Set Theory and Applications, North-Holland,
Amsterdam, Adaptation Learning and Optimization, pages 3–18. Springer Berlin Heidel-
berg.

4
Accelerating Convergence Towards the

Optimal Pareto Front 1

Abstract
Evolutionary algorithms have been very popular optimization methods for a wide variety
of applications. However, in spite of their advantages, their computational cost is still a
prohibitive factor in certain real-world applications involving expensive (computationally
speaking) fitness function evaluations. In this chapter, we adopt the observation that na-
ture’s survival of the fittest is not about exact measures of fitness; rather it is about rank-
ings among competing peers. Thus, by exploiting this natural tolerance for imprecision,
we propose here a new, fuzzy granules-based approach for reducing the number of neces-
sary function calls involving time consuming real-world problems. Our proposed approach
is compared with respect to the standard NSGA-II, using the Set Coverage, Hypervolume
and Generational Distance performance measures. Our results indicate that our proposed
approach is a very promising alternative for dealing with multi-objective optimization prob-
lems involving expensive fitness function evaluations.

1This chapter is based on:

• M. Davarynejad, J. Rezaei, J. Vrancken, J. van den Berg and Carlos A. Coello Coello, “Accelerating Con-
vergence Towards the Optimal Pareto Front”, in 2011 Congress on Evolutionary Computation (CEC’2011),
New Orleans, pp. 2107-2114, 2011.

67

68 4 Accelerating Convergence Towards the Optimal Pareto Front

4.1 Introduction
Optimization using metaheuristics has become a very popular research topic in the last
few years. Real-world problems, however, frequently have two or more (possibly conflict-
ing) objectives that we aim to optimize at the same time. Such problems are called multi-
objective and have been intensively studied using metaheuristics (particularly, evolutionary
algorithms) in the last few years [2].

As opposed to single-objective optimization problems in which we aim to find a single
optimum solution, in multi-objective optimization problems (MOOPs) the notion of opti-
mality changes, since there is normally no single solution that is the best for all the criteria.
The aim in this case is to find a set of solutions for which no objective can be improved
without worsening another. This set of solutions is known as the Pareto optimal set and
their vectors are said to be non-dominated. When plotted in objective function space, these
solutions are collectively known as the Pareto front.

A wide variety of multi-objective evolutionary algorithms (MOEAs) have been proposed
since the inception of this field in the mid-1980s [2, 7]. However, MOEAs are known to be
computationally expensive, since they normally require a high number of objective function
evaluations in order to produce a reasonably good approximation of the Pareto front of the
problem being solved. Nevertheless, relatively little research has been reported so far on the
development of techniques that reduce the computational cost of MOEAs (see [25]). This
chapter seeks to contribute to this area by introducing a fuzzy granules-based approach for
reducing the number of objective function evaluations required by a MOEA.

The remainder of this chapter is organized as follows. Section 4.2 provides some ba-
sic multi-objective optimization concepts. The previous related work is discussed in Sec-
tion 4.3. Section 4.4 presents the approach proposed in this chapter. To illustrate the ef-
ficiency of the proposed method, the performance results on ZDT1-6 test problem is pre-
sented in Section 6.5. The final section draws conclusions and considers implications for
future research.

4.2 Basic Concepts
We are interested in solving problems of the type2:

minimize f(x) := [f1(x), f2(x), . . . , fn(x)] (4.1)

subject to:
gi(x)≤ 0 i = 1,2, . . . ,q (4.2)

h j(x) = 0 j = 1,2, . . . , p (4.3)

where x is a vector of decision variables, fi : IRm→ IR, i = 1, ...,n are the objective functions
and gi,h j : IRm→ IR, i = 1, ...,q, j = 1, ..., p are the constraints of the problem.

To describe the concept of optimality, a few definitions are introduced.

2Without loss of generality, we will assume only minimization problems.

4.3 Previous Related Work 69

Definition 1. Given two vectors x,x∈ IRm, x dominates x (denoted by x≺ x) if fi(x)≤ fi(x)
for i = 1, . . . ,n, and that x ̸= x.

Definition 2. A vector of decision variables x ∈ X ⊂ IRm is nondominated with respect to
X , if there does not exist another x′ ∈ X such that x′ ≺ x.

Definition 3. A vector of decision variables x∗ ∈ F ⊂ IRm (F is the feasible region) is
Pareto-optimal if it is nondominated with respect to F .

Definition 4. The Pareto Optimal Set P ∗ is defined by:

P ∗ = {x ∈ F |x is Pareto-optimal}

Definition 5. The Pareto Front P F ∗ is defined by:

P F ∗ = {f(x) ∈ IRn|x ∈ P ∗}

The problem is to find the Pareto optimal set from the set F of all the decision variable
vectors that satisfy (4.2) and (4.3). Note however that in practice, not all the Pareto optimal
set is normally desirable (e.g., it may not be desirable to have different solutions that map
to the same values in objective function space) or achievable.

4.3 Previous Related Work
Evolutionary algorithms usually require such a large number of function calls that this fre-
quently makes them computationally prohibitive in some real-world applications. When
dealing with MOOPs, this issue becomes more critical, because more objectives are in-
volved and this multiplies the computational cost, while also making the search more dif-
ficult. For dealing with expensive objective functions, it is relatively common to rely on
approximate models that allow us to simplify the representation of real-world complex be-
haviors. 3 Approximation techniques may estimate each of the individuals’ fitness value on
the basis of previously observed objective function values of neighboring individuals. A
wide range of approximation and meta-model techniques have been adopted in combina-
tion with evolutionary algorithms, including Kriging [24], artificial neural networks [26],
and radial-basis-function networks [18]. Other authors have adopted fitness inheritance
[21], cultural algorithms [15] and other fitness function approximation techniques [14] for
the same purpose. Next, we will briefly review the most representative work on the use of
mechanisms for handling expensive objective functions with MOEAs reported in special-
ized literature.

Fitness inheritance, a popular class of fitness approximation method, was originally
introduced by Smith et al. [27] and is a very simple technique that works as follows: when
assigning fitness to an individual, some times the objective function is evaluated as usual,
but the rest of the time, the fitness assigned to the individual is the average (or a weighted
average) of the fitness of its parents. This fitness assignment scheme operates based on the

3This is based on the assumption that approximate models require small computational resources compared
to the cost of complex simulations, which is normally the case when considering real-world problems.

70 4 Accelerating Convergence Towards the Optimal Pareto Front

assumption of similarity between an offspring and its parents. Clearly, fitness inheritance
cannot be applied all the time, since some true fitness function values are required in order
to obtain enough information to guide the search. This approach uses a parameter called
inheritance proportion, which regulates how many times the fitness has to be approximated.
Very few authors have reported the use of fitness inheritance in MOOPs. Ducheyne et
al. [11] tested the performance of both average and weighted average fitness inheritance
approaches and concluded that the usefulness of this technique was limited to cases in which
the Pareto front is convex and continuous. Ducheyne et al. [10] also concluded that for non-
convex Pareto fronts, fitness inheritance produces a slower convergence to the true Pareto
front than when the approach is not adopted. Other authors, however, have successfully
applied fitness inheritance to more complicated test problems having non-convex Pareto
fronts (see [21]).

Another approach for dealing with expensive objective functions is based on learning
and interpolation from representative small datasets of the true objective functions values
in the desired design space which is known as functional approximation [14]. Function
approximation methods provide a mapping between design space and objective functions
space that may be multi-dimensional. The accuracy of these models depends greatly on the
number of sample data points used and their location in the multi-dimensional space. Some
examples of this sort of approach are the following: the response surface methodology
that uses low-order polynomials and the least square estimations [12, 13, 17] and Gaussian
processes (also known as Kriging) that build probability models by exploiting information
recorded and use them to estimate the function values of new candidate solutions [3].

Artificial Neural networks (ANNs) can also be used for dealing with expensive objec-
tive functions. In fact, ANNs can be considered one of the best approaches to approximate
a generic IRm ⇒ IRn function4, where m and n represent the number of decision variables
and number of objectives, respectively. Although nonlinear interpolation can be used, it
is shown that with a number of decision variables higher than 10, the interpolation prob-
lem becomes almost not tractable [20]. ANNs are successfully used for building approxi-
mate models in a number of complex multiplicative optimization problems. As an example,
in [1], a generic supersonic aircraft configuration with two main goals (maximization of the
total range of the aircraft and minimization of the ground sonic boom) and a number of
buildability and mission constraints (such as structural integrity of the aircraft, take-off and
landing field length) is optimized using ANNs to generate inexpensive surrogates. The ap-
proximation is used only where this is warranted. Using Latin Hypercube Sampling (LHS),
300 sample data were generate via CFD (Computational Fluid Dynamics) simulation are
fitted using a single hidden layer perceptron with sigmoid activation functions to provide
a general nonlinear higher fidelity model. In another study, Poloni et al. [20] used a com-
bination of GAs and ANNs with a modified backpropagation algorithm, and a local search
method to optimize the design of a sailing yacht fin keel which is a complex design problem
in fluid dynamics. The ANN acted as a model for 3D Navier-Stokes simulation of the fin
keel while cruising.

For more information on approaches for dealing with expensive objective functions in
the context of multi-objective optimization, interested readers should refer to [25].

4If they are provided with sufficient structural complexity and a rich training data set.

4.4 Adaptive Fuzzy Fitness Granulation (AFFG) 71

4.3.1 Final Remarks on Fitness Approximation
In most of the fitness approximation models currently available, the main problem is the
lack of sufficient training data and hence the failure to reach a model with sufficient approx-
imation accuracy. Since the evaluation of the original fitness function, in many practical
problems, is obtained by some sort of analysis (i.e., fluid mechanics analysis, thermody-
namic analysis) that is computationally expensive, the approximate model may be of low
fidelity. Furthermore, if the training data does not cover the full domain range, large errors
may occur due to extrapolation. Errors may also occur when the set of training points is not
sufficiently dense and uniform. Here, we adopt the concept of information granulation as
an attempt to address these difficulties.

4.4 Adaptive Fuzzy Fitness Granulation (AFFG)
Granular computing is regarded as the processing of granules of information that are aggre-
gated due to their indistinguishability, similarity, proximity or functionality in some con-
text [29]. It is a vehicle for handling information, as well as a lack of it (uncertainty), at a
level of coarseness that can solve problems appropriately and efficiently [5]. In problems
with incomplete, uncertain or vague information, the practical necessity; and in problems
with huge detailed information, the simplicity are the main reasons of popularity, respec-
tively, of granular computing. It is widely used in many fields including interval analy-
sis, Dempster-Shafer theory of belief functions, cluster analysis, optimization and problem
solving [23], machine learning, bioinformatics, among other fields [19]. The concept of
information granulation was proposed by Zadeh [30] (in the context of fuzzy set theory) as
a technique by which a class of points (objects) is partitioned into granules. The fuzziness
of granules and their attributes is characteristic of the ways by which human concepts and
reasoning are formed, organized and manipulated. The concept of a granule is more general
than that of a cluster, potentially giving rise to several conceptual structures in various fields
of science as well as mathematics.

In the present chapter, with the aim to reducing the computational cost of MOOPs, the
concept of information granulation and approximation in the context of rough set theory is
studied to exploit the natural tolerance of EAs in fitness function computations. Nature’s
survival of the fittest is not about exact measures of fitness; rather it is about rankings among
competing peers. By exploiting this natural tolerance for imprecision and aiming to exploit
this uncertainty [16], optimization performance can be preserved by computing fitness only
selectively and only to keep this ranking among individuals in a given population.

In the proposed algorithm, a pool of solutions with exact fitness values are maintained.
Based on the maximum similarity of a new candidate solution to this pool, the fitness of
individuals will be either approximated or calculated explicitly. If a new individual is suf-
ficiently similar to a known fuzzy granule, then that granules’ fitness is used instead as a
crude estimate. Otherwise, that individual is added to the pool as a new granule. In this
fashion, regardless of the competitions’ outcome, the fitness of the new individual is always
a physically realizable one, even if it is a crude estimate and not an exact measurement.
The pool size as well as each granules’ radius of influence depends on the utility of each
granule [6].Furthermore, to prevent the pool from growing too large, pool members are
competing for survival and members with lower life index are gradually replaced by new

72 4 Accelerating Convergence Towards the Optimal Pareto Front

Figure 4.1: A number of gaussian granules with different widths in a 2-D solution space.
Once a new individual is sufficiently similar to a granule in the granule pool,
then that granules’ fitness is used instead as a crude estimate. Otherwise, that
individual is added to the pool as a new fuzzy granule. Each granules’ radius
of influence is determined based on equation (4.7).

granules. By splitting up the pool into two parts, the new granules are given a chance to
survive a number of steps [4].

4.4.1 Algorithm’s Structure
The preceding section provided a general overview of our approach. Going in more detail
now, the algorithm’s computation steps are as follows:

Step 1: Create a random parent population P1 = {x1
1, x1

2, . . . , x1
j , . . . , x1

t } of decision
vectors, where, xi

j = {xi
j,1, xi

j,2, . . . ,x
i
j,r, . . . , xi

j,m} is the jth individual in the ith generation,
xi

j,r the rth component of xi
j, m the number of components of decision vector and t is the

population size.
Step 2: Define a multi-set G of fuzzy granules (Ck, σk, Lk) according to G= {(Ck, σk, Lk

)|Ck ∈ IRm, σk ∈ IR, Lk ∈ IR, k = 1, . . . ,NG}. G is initially empty. Ck is an m-dimensional
vector of centers, σk is the width of membership function (WMF) of the kth fuzzy granule,
and Lk is the granule’s life index. A number of granules with different widths are shown in
Figure 4.1.

Step 3:

• Choose the phenotype of chromosomes, xi
j, as the center of granules, Ck.

• Rank P1 and goto step 8.

Step 4: Define the membership µk,r of each xi
j,r to each granule member by a Gaussian

similarity neighborhood function according to

µk,r
(
xi

j,r
)
= exp

(
−
(
xi

j,r− ck,r
)2

(σk)
2

)
, k = 1,2, . . . ,NG , (4.4)

where NG is the number of fuzzy granules.

4.4 Adaptive Fuzzy Fitness Granulation (AFFG) 73

Step 5: Compute the average similarity of the new decision vector xi
j = {xi

j,1, xi
j,2, . . . ,x

i
j,r,

. . . , xi
j,m} to each granule Gk using equation (4.5)

µ j,k =

m

∑
r=1

µk,r
(
xi

j,r
)

m
(4.5)

Step 6: Either calculate the exact fitness value of xi
j or estimate it by associating it to one

of the granules in the pool in case there is a granule in the pool with similarity value higher
than a predefined threshold, i.e.,

f
(
xi

j
)
=

 f (Ck) if max
k∈{1,2,...,NG}

{µ j,k}> θi ,

f
(

xi
j

)
otherwise.

(4.6)

where f (Cx) is the fitness function value of the fuzzy granule and f (xi
j) is the real fitness

calculation of the individual.
Remark: θi is a predefined (time-varying) threshold that controls the minimum similar-

ity a solution has to have with a pool member to be approximated. Here, θi is considered as
a constant value for all simulations, and is set to 0.9. In general, as the population matures
steadily, the algorithm needs to be more selective (to calculate the exact fitness more often),
suggesting the need for a gradual increase of θi. Alternatively, if

max
k∈{1,2,...,NG}

{µ j,k}< θi

xi
j is chosen as a newly created granule.

Step 7: If the population size is not completed, repeat Steps 4 to 7.
Step 8: When termination/evolution control criteria are not met:

• Create offspring population.

• Rank the granule pool.

• Assign σk based on equation (4.7).

σk = σmin ∗ ((1−grσ)+grσ ∗ rank(k)) (4.7)

where rank(k) is the rank of the granule k among the granule set, and σmin ∈R>0 is a
proportional constant that defines the minimum spread of granules. σmin is a problem
dependent design parameter.

Remark: σk, the distance measurement parameter that controls the degree of similar-
ity between two individuals, controls the radius of influence of each granule. Instead
of drawing the radius directly from the fitness (as in the single-objective optimization
case [4]), as objectives are often non-commensurable and conflicting, dominance-
based ranking is used. The spread of granules grow as their rank among granule
members increases, with a rate of grσ. Here, grσ is set to 0.1 and σmin ∈ {2n|n ∈ Z}.

• Goto step 4.

74 4 Accelerating Convergence Towards the Optimal Pareto Front

4.4.2 Controlling the size of the granule pool and protecting new pool
members through speciation

As the evolutionary procedures are applied, it is inevitable that new granules are generated
and added to the pool. Depending on the complexity of the problem, the size of this pool
can be excessive and become a computational burden itself. To prevent such unnecessary
computational effort, a life index is introduced in order to appropriately decrease the size of
the pool. In other words, it is better to remove granules that do not win new individuals,
thereby producing a bias against individuals that have low fitness and were likely produced
by a failed mutation attempt. Lk is initially set to 0 and subsequently updated as below,

Lk =

{
Lk +M if k = K ,

Lk otherwise ,
(4.8)

where M is the life reward of the granule and K is the index of the winning granule for each
individual at generation i. Here, M is set at 1. At each table update, only the NG granules
with the highest Lk index are kept, and the others are discarded. In [5], an example has been
provided that illustrates the competitive granule pool update law. Adding a new granule to
the granule pool and assigning a life index to it, is a simple way of controlling the size of the
granule pool, since the granules with the lowest life index will be removed from the pool.
However, it may happen that the new granule is removed, even though it was just inserted
into the pool. In order to prevent this, the pool is split into two parts with sizes εNG and
(1− ε)NG. The first part is a FIFO (First In, First Out) queue and new granules are added
to this part. If it grows above εNG, then the top of the queue is moved to the other part.
Removal from the pool takes place only in the (1− ε)NG part. In this way, new granules
have a good chance to survive a number of steps. In all of the simulations that are conducted
here, ε is set to 0.1.

4.5 Numerical results
In order to validate our proposed approach, we adopted the Zitzler-Deb-Thiele (ZDT) test
problems [32] and compared our results with respect to those obtained with the standard
NSGA-II [8]. The following parameters were adopted for our experiments:

• Population size = 50.

• Crossover rate = 0.9 (SBX).

• Binary tournament selection.

• Mutation rate of 1/m, m = number of decision variables.

• Distribution indices for crossover ηc and mutation ηm: ηc = 20 and ηm = 20.

For assessing our results we adopted three performance measures: (1) Generational
Distance (GD) [28], which measures how far the given solutions are, on average, from the
true Pareto front, (2) the Hypervolume indicator IH (also known as Lebesgue measure or
S-metric) [31], which measures the volume of the dominated portion of the objective space

4.5 Numerical results 75

Table 4.1: AFFG-NSGA-II utilized parameter values and reference points used for calcu-
lating IH .

Problem σmin NG Reference point
ZDT1 2−4 100 [1.1,3.5]
ZDT2 2−5 100 [1.1,5.0]
ZDT3 2−5 100 [1.1,6.0]
ZDT4 2−6 100 [1.1,140]
ZDT6 2−5 100 [1.1,9.0]

Table 4.2: Mean and standard deviation of the GD performance measure.

Problem AFFG-NSGA-II NSGA-II
mean, σ mean, σ

ZDT1 0.010165,0.005744 0.102095,0.029859
ZDT2 0.018143,0.008509 0.716683,0.365823
ZDT3 0.098656,0.022421 0.236176,0.048486
ZDT4 11.160124,4.239201 20.191547,11.658247
ZDT6 0.768217,0.143028 1.328310,0.224595

which is enclosed by the reference set and (3) Set Coverage (SC) [32], which measures the
percentage of solutions from one algorithm that are covered by the solutions of the other. To
measure the Hypervolume, a single reference point, R = r ∈ IRm was considered in all cases.
This point corresponds to the worst value in each dimension of the fronts. The reference
values we used here are given in Table 4.1.

The performance measures to assess the results are presented in Tables 4.2, 4.3 and 4.4.
The measures are evaluated by conducting 30 independent runs per test problem per algo-
rithm. Each run is restricted to 1,000 fitness function evaluations. Each table displays the
average and standard deviation of each of the performance measures.

Table 4.3: Mean and standard deviation of the IH performance measure.

Problem AFFG-NSGA-II NSGA-II
mean, σ mean, σ

ZDT1 3.408204,0.052768 2.689226,0.164173
ZDT2 4.524421,0.110119 2.227951,0.350130
ZDT3 6.106243,0.198963 4.516725,0.267211
ZDT4 108.878924,10.460062 100.619288,9.466605
ZDT6 3.229885,0.896935 1.178803,0.176150

76 4 Accelerating Convergence Towards the Optimal Pareto Front

Table 4.4: Mean and standard deviation of the SC performance measure.

Problem AFFG-NSGA-II NSGA-II-AFFG
mean, σ mean, σ

ZDT1 1.000000,0.000000 0.000000,0.000000
ZDT2 1.000000,0.000000 0.000000,0.000000
ZDT3 0.995745,0.023307 0.003401,0.018630
ZDT4 0.613805,0.455574 0.324147,0.427815
ZDT6 0.891819,0.134759 0.033209,0.081798

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.2: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right
panel) for the ZDT1 test problem using 1,000 real fitness function evaluations.

Figures 4.2 to 4.6 present results of 30 independent runs of the standard NSGA-II and
the AFFG-NSGA-II, adopting the test problems ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6
(ZDT5 is a binary problem and was, therefore, omitted here), with a budget of only 1,000
fitness function evaluations. Each color corresponds to a single run.

The results clearly show that the proposed AFFG approach outperforms the standard
NSGA-II. According to the Wilcoxon rank-sum test, the results of our proposed approach

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 4.3: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right
panel) for the ZDT2 test problem using 1,000 real fitness function evaluations.

4.5 Numerical results 77

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

6

Figure 4.4: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right
panel) for the ZDT3 test problem using 1,000 real fitness function evaluations.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

Figure 4.5: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right
panel) for the ZDT4 test problem using 1,000 real fitness function evaluations.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

Figure 4.6: 30 independent runs of the NSGA-II (left panel) and AFFG-NSGA-II (right
panel) for the ZDT6 test problem using 1,000 real fitness function evaluations.

78 4 Accelerating Convergence Towards the Optimal Pareto Front

0 1000 2000 3000 4000 5000
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Number of fitness evaluation

H
yp

er
vo

lu
m

e

NSGA−II
AFFG−NSGA−II

Figure 4.7: Convergence of the hypevolume metric for the ZDT1 problem (30 distinct runs).

are better with a significance level of 5%. To further investigate the convergence speed of
the proposed approach, in Figure 4.7, the changes in hypervolume metric is plotted against
the number of fitness function evaluations, for the ZDT1 problem.

4.6 Conclusions and Future Work

By combining the concepts of survival of the fittest and fuzzy granulation, which enables a
faster convergence without degrading the estimated set of solutions, this chapter presents an
approach to speed up convergence towards the Pareto optimal front of multi-objective op-
timization problems. With the proposed approach, we can exploit the information obtained
from our previous objective function evaluations. Our results indicate that the proposed
approach is very promising, since it can achieve a faster convergence than the standard
NSGA-II in the test problems adopted. However, a more thorough validation is still re-
quired (adopting other problems such as the DTLZ test problems [9]). It is also desirable
to perform comparisons with respect to other fitness approximation methods such as curve
fitting, fitness inheritance and artificial neural networks. As part of our future work, we are
interested in studying the effect of the number of granules on the convergence rate. Addi-
tionally, in order to further test the robustness of our proposed approach, we want to study
its sensitivity to its parameters and its scalability when increasing the number of decision
variables and objectives. Adaptively changing θi and being more selective as the population
matures (to calculate the exact fitness more often), is indeed part of our ongoing research.
Finally, we wish to apply our proposed approach to real-world problems in the field of
supplier selections [22].

4.6 Conclusions and Future Work 79

Acknowledgment
This research received funding from the European Community’s Seventh Framework Pro-
gramme within the ”Control for Coordination of Distributed Systems” (Con4Coord - FP7/2007-
2013 under grant agreement no. INFSO-ICT-223844), the Next Generation Infrastructures
Research Program of Delft University of Technology and the Mexican CONACyT Project
No. 103570.

References
[1] Alonso, J., LeGresley, P., and Pereyra, V. (2009). Aircraft design optimization. Mathe-

matics and Computers in Simulation, 79(6):1948–1958.

[2] Coello Coello, C., Lamont, G., and Van Veldhuizen, D. (2007). Evolutionary Algo-
rithms for Solving Multi-Objective Problems. Springer, New York, second edition. ISBN
978-0-387-33254-3.

[3] D’Angelo, S. and Minisci, E. (2005). Multi-objective evolutionary optimization of sub-
sonic airfoils by kriging approximation and evolutionary control. In 2005 IEEE Congress
on Evolutionary Computation (CEC’2005), volume 2, pages 1262–1267, Edinburg, Scot-
land.

[4] Davarynejad, M., Ahn, C., Vrancken, J., van den Berg, J., and Coello Coello, C. (2010).
Evolutionary hidden information detection by granulation-based fitness approximation.
Applied Soft Computing, 10(3):719–729.

[5] Davarynejad, M., Akbarzadeh-T, M.-R., and Pariz, N. (2007). A novel general frame-
work for evolutionary optimization: Adaptive fuzzy fitness granulation. In IEEE
Congress on Evolutionary Computation, pages 951–956. IEEE.

[6] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012). A Fit-
ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,
R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for
Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[7] Deb, K. (2001). Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, Chichester, UK. ISBN 0-471-87339-X.

[8] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A Fast and Elitist Multiob-
jective Genetic Algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation,
6(2):182–197.

[9] Deb, K., Thiele, L., Laumanns, M., and Zitzler, E. (2005). Scalable Test Problems for
Evolutionary Multiobjective Optimization. In Abraham, A., Jain, L., and Goldberg, R.,
editors, Evolutionary Multiobjective Optimization. Theoretical Advances and Applica-
tions, pages 105–145. Springer, USA.

[10] Ducheyne, E., Baets, B. D., and Wulf, R. D. (2008). Fitness inheritance in multiple
objective evolutionary algorithms: A test bench and real-world evaluation. Applied Soft
Computing, 8(1):337–349.

80 4 Accelerating Convergence Towards the Optimal Pareto Front

[11] Ducheyne, E., De Baets, B., and De Wulf, R. (2003). Is Fitness Inheritance Useful
for Real-World Applications? In Fonseca, C. M., Fleming, P. J., Zitzler, E., Deb, K.,
and Thiele, L., editors, Evolutionary Multi-Criterion Optimization. Second International
Conference, EMO 2003, pages 31–42, Faro, Portugal. Springer. Lecture Notes in Com-
puter Science. Volume 2632.

[12] Goel, T., Haftka, R., Shyy, W., Queipo, N., Vaidyanathan, R., and Tucker, K. (2007).
Response surface approximation of pareto optimal front in multi-objective optimization.
Computer Methods in Applied Mechanics and Engineering, 196(4-6):879–893.

[13] Goel, T., Vaidyanathan, R., Haftka, R., Shyy, W., Queipo, N., and Tucker, K. (2004).
Response surface approximation of pareto optimal front in multiobjective optimization.
Technical Report 2004-4501, AIAA.

[14] Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary com-
putation. Soft Computing, 9(1):3–12.

[15] Landa Becerra, R. and Coello Coello, C. (2006). Solving Hard Multiobjective Opti-
mization Problems Using ε-Constraint with Cultured Differential Evolution. In Runars-
son, T. P., Beyer, H.-G., Burke, E., Merelo-Guervós, J. J., Whitley, L. D., and Yao, X.,
editors, Parallel Problem Solving from Nature - PPSN IX, 9th International Conference,
pages 543–552. Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Ice-
land.

[16] Lim, D., Jin, Y., Ong, Y., and Sendhoff, B. (2010). Generalizing surrogate-assisted
evolutionary computation. IEEE Transactions on Evolutionary Computation, 14(3):329–
355.

[17] Madsen, J., Shyy, W., and Haftka, R. (2000). Response surface techniques for diffuser
shape optimization. AIAA journal, 38(9):1512–1518.

[18] Nakayama, H., Arakawa, M., and Washino, K. (2003). Optimization for black-box
objective functions. In Pardalos, P. M., Tseveendorj, I., and Enkhbat, R., editors, Opti-
mization and Optimal Control, pages 185–210. World Scientific, Singapore.

[19] Pedrycz, W., Skowron, A., and Kreinovich, V. (2008). Handbook of granular comput-
ing. Wiley-Interscience New York, NY, USA.

[20] Poloni, C., Giurgevich, A., Onesti, L., and Pediroda, V. (2000). Hybridization of
a multi-objective genetic algorithm, a neural network and a classical optimizer for a
complex design problem in fluid dynamics. Computer Methods in Applied Mechanics
and Engineering, 186(2-4):403–420.

[21] Reyes Sierra, M. and Coello Coello, C. (2005). A Study of Fitness Inheritance and
Approximation Techniques for Multi-Objective Particle Swarm Optimization. In 2005
IEEE Congress on Evolutionary Computation (CEC’2005), volume 1, pages 65–72, Ed-
inburgh, Scotland. IEEE Service Center.

[22] Rezaei, J. and Davoodi, M. (2011). Multi-objective models for lot-sizing with supplier
selection. International Journal of Production Economics, 130(1):77–86.

4.6 Conclusions and Future Work 81

[23] Rowhanimanesh, A. and Akbarzadeh-T, M.-R. (2010). Perception-based evolution-
ary optimization: Outline of a novel approach to optimization and problem solving.
In IEEE International Conference on Systems Man and Cybernetics, pages 4270–4275.
IEEE Press.

[24] Sacks, J., Welch, W., Mitchell, T., and Wynn, H. (1989). Design and analysis of
computer experiments. Statistical science, 4(4):409–423.

[25] Santana-Quintero, L., Arias Montaño, A., and Coello Coello, C. (2010). A Review
of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Opti-
mization. In Tenne, Y. and Goh, C.-K., editors, Computational Intelligence in Expen-
sive Optimization Problems, pages 29–59. Springer, Berlin, Germany. ISBN 978-3-642-
10700-9.

[26] Smith, M. (1993). Neural Networks for Statistical Modeling. von Nostrand, Reinhold,
New York, USA.

[27] Smith, R., Dike, B. A., and Stegmann, S. A. (1995). Fitness inheritance in genetic
algorithms. In SAC ’95: Proceedings of the 1995 ACM symposium on Applied computing,
pages 345–350, New York, NY, USA. ACM Press.

[28] Veldhuizen, D. V. (1999). Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations. PhD thesis, Department of Electrical and Computer
Engineering. Graduate School of Engineering. Air Force Institute of Technology, Wright-
Patterson AFB, Ohio.

[29] Yao, Y. (2001). Information granulation and rough set approximation. International
Journal of Intelligent Systems, 16(1):87–104.

[30] Zadeh, L. A. (1979). Fuzzy sets and information granularity. In Advances in Fuzzy
Set Theory and Applications, pages 3–18. North Holland, New York, USA.

[31] Zitzler, E. (1999). Evolutionary Algorithms for Multiobjective Optimization: Methods
and Applications. PhD thesis, Swiss Federal Institute of Technology (ETH), Zurich,
Switzerland.

[32] Zitzler, E., Deb, K., and Thiele, L. (2000). Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, 8(2):173–195.

“Nature is my teacher!”

Antoni Gaudi

5
Simulated Big Bounce: A continuous space

global optimizer 1

Abstract
That most complex of systems, Nature has field-tested solutions to many problems, and has
furnished the inspiration for many successful problem-solving techniques, including meta-
heuristics. Metaheuristics applies a search strategy that balances exploration and exploita-
tion in an algorithm-specific way. It is observed that metaheuristic algorithms in practice
often find local minima, sometimes of low quality, meaning that the chosen balance is in-
adequate to the problem at stake. For example, due to an algorithm’s search bias, too great
an emphasis may be placed on the exploitation of solutions found, while little attention is
paid to the further exploration of the search space as a whole. Based on these observations,
and inspired by the Big Bounce theory (a cosmological oscillatory model of the Universe),
we developed a Simulated Big Bounce (SBB) algorithm that, next to exploitation, applies
robust exploration in order to escape local minima. This paper presents the design of this
new algorithm and shows the results of a series of comparative experiments in which the
performance of SBB on a set of high-dimensional mathematical benchmarks is compared
to that of five other popular metaheuristics. The results obtained indicate that the proposed
algorithm (i) is competitive with (and in most cases surpasses) other population-based op-
timization algorithms, and (ii) substantially decreases the number of fitness function evalu-
ations needed to find equally good solutions. Although SBB has features in common with

1This chapter is based on:

• M. Davarynejad and J. van den Berg, “Simulated big bounce: a continuous space global optimizer”, Under
second-round review at Information Sciences.

83

84 5 Simulated Big Bounce: A continuous space global optimizer

existing optimization methods, such as particle swarm optimization (PSO), it possesses ad-
ditional unique features. These owe to the diverse kinetic energy of particles, and enable
the algorithm to escape from local minima. Furthermore, the experimental outcomes pro-
vide evidence that the characteristic of robust exploration which marks SBB underlies the
superior performance observed.

5.1 Introduction
Assume a search scenario in a finite continuous search space E ⊂ IRD defined as

E =
D⊗

d=1

[Ld
x ,U

d
x], (5.1)

with the objective of locating x∗ ∈ E, where f (x∗) is the extremum of a function f (x) : E→
IR and where Ld

x and Ud
x are respectively the lower and upper bound of the search domain at

dimension d. The optimization problem may be in any engineering, business, medicine, etc.
area [8] where it is assumed that samples of the search space and their associated objective
function values are the only available information to locate x∗. Without loss of generality, a
minimization problem is considered here.

Metaheuristics [26] are strategies to guide the search process. They provide a trade-off
between the cost of exploring new possibilities (diversification) and exploiting old certain-
ties (intensification). Many nature-inspired algorithms make use of a certain metaheuristic.
The evolution of life on Earth has been such a source of inspiration, the research efforts
related to which resulted in the development of evolutionary algorithms [21], a well-known
class of population-based stochastic search that falls into the territory of metaheuristics. Not
only is a life-supporting planet like the Earth a great inspiration for humans in the designing
of metaheuristics, but so is the Universe as a whole.

All population-based algorithms find common ground in (a) the availability of a mea-
sure to discriminate solutions and (b) the capability to modify solutions and, using a set
of operators, direct the solutions towards promising search regions. Two distinct classes
of nature-inspired population-based optimization algorithms are evolutionary algorithms
(EAs) and swarm intelligence (SI). A popular member of the former is the class of ge-
netic algorithms (GAs) [23]. The metaphor underlying EAs is natural selection [10], which
simulates the natural evolution phenomenon. One possible explanation for the success of
genetic algorithms is the building block hypothesis [21, 22].

Swarm intelligence, which refers to the collective problem-solving behavior of multiple
agents (exampled by ant colonies [19], bee colonies [24], and the immune system [6]), is
also a popular source of inspiration in the design of optimization heuristics. Particle swarm
optimization (PSO) [25] and the gravitational search algorithm (GSA) [34] are among pop-
ular swarm-intelligence-based algorithms, where the former mimics the social behavior of
fish-schooling or bird-flocking, and the later mimics the law of gravity and mass interac-
tions. In swarm intelligence, those solutions which perform best are used to construct a new
set of solutions and guide the swarm towards promising regions of the search space.

A competitive optimization algorithm, in order that it quickly and accurately converge
on the global optimal solution, has to overcome a number of difficulties, including local
optimal solutions, isolation of optimum, non-improving regions of objective landscapes, etc.

5.2 A review of some popular heuristic algorithms 85

This requires a good balance between exploring new search directions (through a “healthy”
preservation of diversity) and exploiting the best current search direction [16]. In practice,
metaheuristic algorithms have been shown frequently to find local minima, meaning that the
chosen balance between exploration and exploitation during the search is inadequate to the
problem at hand. For example, because of the search bias of an algorithm, much emphasis
may be placed on the exploitation of solutions found, while, after some time, little attention
is paid to the further exploration of the whole search space.

Based on these observations, and inspired by the Big Bounce theory (the theory of the
development of the Universe), we developed a Simulated Big Bounce (SBB) algorithm that,
besides exploitation, applies robust exploration in order to escape local minima. We first
provide a general presentation of this new nature-inspired algorithm. We then compare
and contrast the SBB with other well-established population-based optimization methods.
This second task is achieved by looking at the differences and commonalities from the
algorithmic point-of-view as well as an experimental point of view; by comparing their
performances on a set of several widely used high-diminution mathematical benchmark
problems with various optimization characteristics.

The remainder of this paper is organized as follows. In Section 5.2, GA, PSO and GSA
algorithms are briefly summarized. The Big Bounce theory, followed by the key terminol-
ogy of the new SBB, is provided in Section 5.3. Next, a brief tour of the SBB algorithm is
given in Section 5.4. The experimental setup adopted for evaluation and comparison, fol-
lowed by the major observations made in the experiments, is presented in Section 5.5. The
final section draws conclusions and considers implications for future research.

5.2 A review of some popular heuristic algorithms

While SBB shares similarities with other existing population-based algorithms, there are,
however, some substantial differences. To help clarify these similarities and differences, and
to establish the notation used in SBB, this section outlines the evolutionary algorithms [5,
23], the particle swarm algorithm as proposed in [9] and the gravitational search algo-
rithm [34]. This set of well-established metaheuristics is adopted in order to both specify
and to compare the performance of SBB.

5.2.1 Evolutionary algorithms

Evolutionary algorithms (EAs) are stochastic population-based search methods inspired by
the scheme of natural selection [22]. EAs includes method of genetic algorithms (GAs) [5,
23], evolution strategies (ESs) and some other derivatives, including genetic programming
[27]. Although they are different in some details, they are loosely similar. They all maintain
a population of solutions that is randomly generated in the initialization phase. To guide the
evolution, by discriminating good solutions from bad ones, a fitness is assigned to every in-
dividual. Selection and genetic operators iteratively evolve the population. Recombination
(to combine pieces of parental solutions to form offspring) and mutation (whereby random
changes are introduced into a solution, reducing the risk of the search algorithm becoming
trapped locally) are genetic operators that are often used.

86 5 Simulated Big Bounce: A continuous space global optimizer

5.2.2 Particle swarm optimization

Particle swarm optimization (PSO) [25] is a successful instance of a nature-inspired al-
gorithm used to solve global optimization problems. A number of advantages have been
attributed to PSO, making it a choice candidate for benchmark algorithm. The PSO algo-
rithm is suited to handle nonlinear, nonconvex optimization problems with fast convergence
characteristics. PSO is therefore a reasonable choice for comparison as it shares some sim-
ilarities with SBB proposed in this paper. For that reason, and in order to illustrate the
similarities and differences between the PSO and SBB, the PSO is introduced more for-
mally.

In classical PSO, every particle is a solution moving in a D-dimensional search space.
A collection of particles is known as a swarm. Each particle i has a position xi ∈ IRD,
a velocity vi ∈ IRD and the best position found so far pi ∈ IRD. In contrast to global best
PSO (GPSO), where each particle shares the details of the best position it has found with the
whole swarm, in local best PSO (LPSO) each particle informs only k other randomly chosen
particles, known as information links or neighbors. Neighbors are often defined once at the
beginning of the search process [4]. While the LPSO typically has a slower convergence
compared to that of GPSO, it is less prone to becoming trapped in a local minima. Hence,
for complex and high-dimensional problems, LPSO is preferred over GPSO.

Under the global best topology (GPSO) setting, the movement equations of every parti-
cle i ∈ 1,2, . . . ,S are given by expressions (5.2) and (5.3).

vi = wvi +C1R1 (pi−xi)+C2R2 (gi−xi) , (5.2)

xi = xi +vi, (5.3)

PSO uses two independent random vectors, R1,R2 that are arrays of size D correspond-
ing to each element in vectors (pi− xi) and (gi− xi) respectively. R1 and R2, with com-
ponents drawn from a uniform distribution U(0,1), are used to maintain the population
diversity. The scaling constants C1 and C2 are known as learning rates and they influence
the maximum step size a particle can take in a single iteration. These two scaling constants
represent, respectively, the confidence of a particle in its best performance and that of the
global best. w is a predefined constant representing the confidence of a particle in its own
movements. pi and gi are those positions found which represent personal best and global
best respectively. Finally S is the number of particles in the swarm.

To ensure convergence by avoiding explosion, Clerc et al. [9] introduce the constriction
factor and modify the velocity update equation as follows:

vi = χ(vi +C1R1 (pi−xi)+C2R2 (gi−xi)) , (5.4)

where χ = 2
|2−φ−

√
φ2−4φ|

and φ =C1 +C2, φ > 4.

In the local best setup, the global best position gi may be replaced by the local best
position li in equations (5.2) and (5.4).

5.2 A review of some popular heuristic algorithms 87

5.2.3 A Brief Tour of the GSA

The Gravitational search algorithm (GSA) [34] is a relatively new technique that has been
empirically shown to perform well on many function optimization problems [1, 7, 20, 28,
29, 32, 33, 35, 37]. In its original version, GSA scatters particles in a feasible region of
the search space, where they interact with each other under Newtons gravitational force and
move within the search area, seeking for an optimal solution.

In GSA, each candidate solution is a particle with a mass Mi. The attractive gravitational
force governs the movement of the particles in the search space. The quantity of the resulting
force is determined by Newtons gravitational law, which together with particle’s current
position xi(t), particles updated position xi(t +1) is determined.

In the original GSA [34], the mass of particles is assigned as follows:

Mi =
mi

∑S
j=1 m j

, i = 1,2, . . . ,S (5.5)

where

mi =
f (xi)−max j∈{1,...,S} f (x j)

min j∈{1,...,S} f (x j)−max j∈{1,...,S} f (x j)
, (5.6)

and S is the number of particles. The resulting gravitational force acting on particle i in
direction d is determined using

Fd
i = ∑

j∈Kbest
r jFd

i j , (5.7)

where Kbest is a set of particles with the highest mass, r j ∼U(0,1) and Fd
i j is the gravita-

tional force exerted by particle j on particle i. To provide a better exploration in the early
iterations |Kbest| is set at S in the beginning, i.e. K0 = S; however the exploration must be
decreased gradually. Therefore choosing a decremented function for |Kbest| increases the
exploitation of the algorithm when the number of iterations increases.

The force exerted by particle j acting on particle i is defined as:

Fd
i j = Gt

Mi×M j

Ri j + ε

(
xd

j − xd
i

)
(5.8)

where Ri j is Euclidian distance between particles i and j, and Gt , the gravitational constant
initialized at G0 is determined using equation (5.9) as:

Gt = G0e−α t
T , (5.9)

where α is algorithmic tuning parameter and T is the maximum number of cycles.
The equations of motion of particle i are as follows.

vi(t +1) = R×vi(t)+
Fi

Mi
.∆t, (5.10)

xi(t +1) = xi(t)+vi(t +1).∆t, (5.11)

where ∆t = 1, R is an array of size D drawn from a uniform distribution U(0,1).

88 5 Simulated Big Bounce: A continuous space global optimizer

5.3 Simulated Big Bounce (SBB)

5.3.1 Elements of Big-Bang (BB) Theory: Back to the beginning
Life on Earth is thought to be a consequence of the evolution of the cosmos. Our under-
standing of the origin of life on Earth is connected to a proper understanding of the origin
of the Universe. Cosmology is the study of the Universe as a whole, its origin and evo-
lution, from early times down to the future [39]. The Big Bang, known as the standard
cosmological model of the Universe, is a widely accepted explanation for the origin of the
Universe.

According to this model, the Universe was born about 13.7 billion years ago in an
unimaginably hot and dense single point known as the Big Bang singularity2, and started
to expand. In time, as the Universe cooled down to the point where particles and atoms
could form, gravity pulled particles together and organized them into cosmic structures -
the planets, stars, galaxies and associated objects we observe today. The observed evolution
of organized structures, clumps of galaxies and stars, from a nearly homogenous hot gas in
thermal equilibrium3, is the inspirational base for the SBB. Even though there is no “suf-
ficiently broad” basis for the theoretical justification of BB theory, there are several facts
which are very much in favour of the validity of this theory.

The discovery of the cosmic microwave background (CMB) in 1965 by two American
radio astronomers performing a routine noise analysis of a large antenna, led, some 10
years later, to the establishment of the hot Big Bang model, a revolution in the winding
path of cosmology. The CMB (Figure 5.1), on average nearly 2.725 K (-270.425C) [18]
deviation from a perfect blackbody spectrum, is generally interpreted as a thermal relic
of an earlier phase of the Universe, e.g. left over from the Big Bang. The BB model
states that the Universe, in its early phase, started hot and dense. As the evolution of the
Universe proceeds, it is expanded, thinned out and cooled. When the temperature dropped
below 3,000 K, the photons and matter that were tightly coupled in the early Universe were
released in the late Universe, travelled freely, and made up the CMB we see today.

The second piece of evidence in favour of BB is known as Hubble’s Law of red-shift,
which states that distant galaxies are receding from us with a speed proportional to their
distance from us. Red-shift, interpreted as a Doppler phenomenon, is the increase in the
measured wavelength of radiation from remote space matter, caused by their recession (Fig-
ure 5.2). Red-shift was first discovered by Slipher and Hubble and suggests that the expan-
sion of the Universe traces back to a time when all the matter was closer together than it is
today.

5.3.2 The Big Bounce Theory explains the Universe preceding the Big
Bang and after.

According to Einstein’s general theory of relativity, the Big Bang began in a singularity, a
state where general relativity is invalid. To evade the singularity problem, the possibility of

2A state in which a certain parameter increases without bound is referred to as a singularity.
3In thermal equilibrium, matter and radiation continuously undergo reactions and are able, based on the Spe-

cial Theory of Relativity, to freely convert back and forth.

5.3 Simulated Big Bounce (SBB) 89

Figure 5.1: Cosmic microwave background (CMB). CMB anisotropies as observed by
Wilkinson Microwave Anisotropy Probe (WMAP). Different colors represent-
ing different temperature with fluctuations of the order of µK, too small to have
been observed in the 1960s. [Figure courtesy NASA/WMAP Science Team]

Figure 5.2: Doppler effect (The observed radiation of light sources moving toward us shifts
to shorter wavelengths (blue-shifted) and those moving away from us have their
wavelength increased (red-shifted)). Some studies shown that the Hubble’s Law
do not need to be related to the notion of Doppler redshifts of the observed
light from receding Galaxies. As the distance between the light source and
the observer expands, the wavelength of emitted light expanders by the same
proportion and that’s the source of the redshift.

a cyclic Universe is proposed in [38] and [3], in which the Universe undergoes a “bounce”
at a minimum non-zero volume into an expanding one (Figure 5.3).

The Big Bounce theory extends the history of the Universe even further back beyond
the Big Bang. It asserts that the initial high-density state arose as a result of the collapse
of an existing Universe under the attractive force of gravity. Gravity switches and becomes
repulsive as a result of high density [3]. An expansion phase, with all cosmic energy in
mass format, begins. The expansion phase of each cycle proceeds by converting the mass
resolved in the preceding phase back into energy. Gravity dilutes the accelerated expansion
phase and initiates the reconversion of the energy back into mass. Contraction occurs when
the mass that fuels the cosmic expansion is nearly depleted.

Simulated Big Bounce (SBB) is an optimization algorithm that is inspired by the Big
Bounce Theory of the evolution of the Universe. This oscillation of the Universe (a cy-

90 5 Simulated Big Bounce: A continuous space global optimizer

Figure 5.3: Big Bounce is a cosmological oscillatory model of Universe with an endless
sequence of cycles of extraction and contraction[3].

cle that begins with a Big Bang, followed by expansion, contraction and a Big Crunch) is
the metaphor that endows the SBB, a search algorithm that is explained in detail in Sec-
tion 5.3.3, and more extensively in Section 5.4.

5.3.3 SBB algorithm

SBB models each candidate solution as a particle, each with a position, velocity and mass.
Each particle travels in the D-dimensional search space E under the effect of a dynami-
cally changing force field. The presence of the force field and the particle’s kinetic energy,
induced by its velocity and mass, together with its current position, determine the parti-
cle’s next position in the search space. Both a) the diverse kinetic energy accumulated by
the moving particles and b) the oscillatory force acting on them, enable the swarm to escape
from the local minima, thereby making SBB a successful optimizer in complex multi-modal
optimization problems. A description of the working principles of the SBB algorithm fol-
lows.

In SBB the Universe undergoes two phases, the Small-bang and the Small-crunch.

Small-bang (Explosion phase)

In this phase, also known as the Explosion phase, all particles are exposed to a repulsive
force Fr

i ∈ IRD, i = 1,2, . . . ,S, whose direction opposes the BaryCenter xBC, tending to
preserve diversity in the swarm. The BaryCenter xBC is the center of mass of all the particles.
The external applied force affects the speed and the direction of motion of the particles
and changes their position in the search space. In this phase, the particles are scattered
throughout the search space. This phase will be selected by a small probability pSB.

5.4 A Brief Tour of the SBB Algorithm 91

Small-crunch (Contraction phase)

In this phase, also known as the Contraction phase, the particles are getting closer to the
best performing particle, xDM , that is, the particle with the highest mass, UM . The best
performing particle is referred to as “Dark Matter” with position xDM . The probability of
performing Small-crunch is pSC.

The search begins with a force applied to the static particles uniformly distributed within
the search space E. This force may bring the particles closer to the Dark Matter (the best
solution found so far) or it may spread the particles out in order to preserve the diversity of
the swarm, depending on whether the Universe is in an explosion or contraction phase. The
fitness of the particles in the next time step defines the mass of each particle. A superior
solution is analogous to a particle with a high mass, and a poor solution represents a particle
with a small mass. Particles with high mass resist position change more than those with
low mass, and tend to have a higher impact on the Barycenter XBC, thereby sharing their
good features (better fitness) with low quality solutions. Poor solutions with low mass are,
however, subject to a massive change which may raise the quality of those solutions found.

Particles with a diverse range of mass and different resistances to position change pre-
vent premature convergence and stagnation. This is the first built-in mechanism for preserv-
ing the diversity of solutions throughout the course of the search process in SBB. The second
mechanism engineered to prevent premature convergence is the Small-bang phase, where
particles are scattered throughout the search space by a force acting on them with a random
strength, and which tends to preserve diversity in the swarm. Moreover, the randomness of
the strength of the force also boosts the particles exploration of the search space. To en-
sure the convergence of the swarm, both the pSB and this upper-bound for the randomized
strength of the force decreases with lapse of time.

5.4 A Brief Tour of the SBB Algorithm
The search begins by scattering a predefined number S of particles randomly distributed
in the search space E, with positions xi, i = 1, . . . ,S and velocities vi, i = 1, . . . ,S all set
at zero. To guide the population in the search space, some measure of discrimination is
needed, referred here to as the “fitness” f (xi) of each candidate solution. The fitness value
associated with each point in the search space also defines the mass Mi, i = 1, . . . ,S of a
particle in that position.

In the next step, depending on whether the search is in the contraction or expansion
phase, an attractive or repulsive force is applied to the particles. For the sake of notation
simplification, we will bundle the lower and upper bounds of decision variables into the
arrays

Lx := (L1
x | . . . |Ld

x | . . . |LD
x)

and
Ux := (U1

x | . . . |Ud
x | . . . |UD

x)

respectively. If the search is in the contraction phase, the external force, with a random
strength bounded between [0, C1 (Ux−Lx)], has a direction towards the Dark Matter xDM .
Otherwise the strength is bounded between [0, C2 (Ux−Lx)] with a direction opposing the
Barycenter XBC of the swarm (5.18). With probability pSB the swarm undergoes expansion,

92 5 Simulated Big Bounce: A continuous space global optimizer

and with probability pSC = 1− pSB the swarm undergoes contraction. In the contraction
phase, the particles are getting closer to the best performing solution, i.e., that with the
highest mass. This oscillatory process preserves the diversity of the particles in the swarm
throughout the whole search process.

In order to achieve a solid compromise between exploration and exploitation, differ-
ent strategies are embedded in the search process of SBB. The parameter pSB controls the
frequency of the expansion phase the Universe undergoes. With lapse of time, in order to
provide enough iterations for particles to converge, pSB decreases according to (5.12). The
same holds for the parameters that control the strength of the attractive and repulsive forces
exerted on particles, C1 (5.13) and C2 (5.14).

pSB(t +1) = pSB(t)∗
T − t

T
(5.12)

C1(t +1) =C1(t)∗
T − t

T
(5.13)

C2(t +1) =C2(t)∗
T − t

T
(5.14)

The behavior of particles under the attractive Fa
i ∈ IRD and repulsive Fr

i ∈ IRD forces and
their associated mass Mi and velocity vi is governed according to (5.15) and (5.16), also
known as “equations of motion”. The kinetic energy of the particle is a form of “memory”,
giving it the possibility to “steer” its movement under the influence of both its past behavior
and the current external forces acting on it. The force field and the kinetic energy induced
from the particles’s velocity and mass, together with its current position, determine the
particle’s next position in the search space.

vi(t +1) = ρ∗vi(t)+
Fi

Mi
.∆t (5.15)

xi(t +1) = xi(t)+vi(t +1).∆t (5.16)

where ∆t is the time interval and is usually set as one unit; vi = (vi1, . . . ,vid , . . . ,viD),
vid ∈ [−Ud

v ,U
d
v], and Ud

v is a designated velocity upper bound and is determined accord-
ing to (5.17) where C3 is velocity coefficient. In reality, as a particle accelerates under the
effect of the force field, it is also attenuated by a friction force. In equation (5.15), ρ is
friction coefficient.

Ud
v =C3(Ud

x −Ld
x) (5.17)

The termination criterion for iterations is determined according to whether a maximum
number of cycles T or a designated value of the fitness has been reached.

The barycenter (center of mass) that is xBC is given by:

xBC =

S

∑
i=1

Mixi

S

∑
i=1

Mi

(5.18)

5.5 Experimental Setup and Numerical results 93

5.4.1 Mass Assignment

Based on the fitness of each particle, a mass is assigned to it in the range of [LM,UM]. g, the
function that maps the non-negative fitness values f (xi) to the mass g : IR→ IR, f (xi) 7→
g(f (xi)) , ∀xi ∈ E may be any arbitrary (and possibly time varying) monotonically nonde-
creasing, usually real-valued function. We take g as a linear time-invariant strictly increas-
ing function according to (5.19).

Mi = g(f (xi)) =

LM +(UM−LM)

f (xi)− max
j∈{1,...,S}

f (x j)

min
j∈{1,...,S}

f (x j)− max
j∈{1,...,S}

f (x j)
.

(5.19)

Although the mass assignment in SBB (equation 5.19) and GSA (equation 5.5) share
similarities, they are different in definition. The mass assignment in GSA has two steps. In
the first, particles are assigned a mass mi according to their fitness (equation 5.6). Then Mi
is calculated by normalizing mi. The sum of mi’s at every iteration changes. Now, consider
that the position of particle k, xk is the same in two consecutive iterations. Since the sum of
mi’s over all particles in these two iterations is most likely different, the mass assigned to
particle k changes surprisingly, although its position xk has not changed.

The basic steps of the SBB algorithm are summarized in pseudocode shown in Algo-
rithm 5.1.

We also observed that in GSA, a change in the number of particles changes the mass
assigned to them. This is a result of an increase in the denominator of the equation (5.5).
This increase of the denominator smoothes out the difference between the mass of the parti-
cles, making them, in absolute terms, more equal in exerting an attractive force, and equally
resistant to change in their position as a result of the applied gravitational force. The swarm,
then, can be seen as a group of particles with a loosely uniform mass distribution. Under
the Newtonian gravitational force, this brings the particles closer to the center of the swarm,
resulting in an increase in the density of swarm. As a result, they move towards the center of
the search space. As we will see in Section 5.5, GSA has a poor performance when the op-
timal solution is not at the center of the search space, an observation that may be explained
by the “center-seeking bias” of the GSA [14]. Neither of these two observations are to be
found in the mass assignment procedure of SBB.

5.5 Experimental Setup and Numerical results

Typical mathematical optimization problems are crafted to hold the optima at, or near, the
origin of the search space. This is the case with most of the test functions adopted in
this study. When comparing nature-inspired metaheuristic algorithms, a symmetric search
space is possibly misleading [12, 14]. It may positively influence the performance of certain
metaheuristics. To prevent predisposed results in favour of origin-seeking bias of studied
optimization algorithms, an “asymmetric search space” has been adopted here.

In addition, most real-world optimization problems of today are encountered in envi-
ronments that undergo continual change. These are referred to as “dynamic optimization
problems”. When the global optimal solution changes, the population members have to

94 5 Simulated Big Bounce: A continuous space global optimizer

Algorithm 5.1 Pseudocode of Simulated Big Bounce (SBB)

Input: Search space E, Maximum number of cycles T , Population size S, Fitness function
f , Friction coefficient ρ, Force coefficients C1 and C2, Velocity coefficient C3, pSB, LM ,
UM .

1: Calculate Ud
v ◃ According to (5.17)

2: Initialize particles location, X = (x1, . . . ,xS)
T

3: Fitness calculation
4: t← 1 ◃ t is the number of iterations
5: Mi← 1, i = 1, . . . ,S
6: vi← 0, i = 1, . . . ,S
7: procedure EXPLOSION(x) ◃ For Exploration
8: Update xBC according to (5.18)
9: Update repulsive force Fr

i , ∀i = 1, . . . ,S
10: end procedure
11: procedure CONTRACTION(x) ◃ For Exploitation
12: xDM ← argminxi

Mi(xi)
13: Update attractive force Ft

i, ∀i = 1, . . . ,S
14: end procedure
15: while t < T do
16: Update vi, ∀i = 1, . . . ,S ◃ According to (5.15)
17: Update xi, ∀i = 1, . . . ,S ◃ According to (5.16)
18: With probability pSB do Explosion else do Contraction
19: Fitness calculation
20: Update Mi, ∀i = 1, . . . ,S ◃ According to (5.19)
21: t ++ ◃ t is the number of iterations
22: Update C1 and C2 ◃ According to (5.13) and (5.13)
23: Update pSB ◃ According to (5.12)
24: end while
Output: x∗ and f (x∗)

move along an extended path, often with many local optima. To test the sensitivity of the
different algorithms studied on the search initialization, as well as their ability to move from
the initial search space to more promising regions, “asymmetric initialization” is adopted as
well [2]. E.g. the algorithms are deliberately initialized in a portion of the search space that
does not include the global optimum. A notable example of algorithms suffering from in-
sufficient generation of offspring outside of a given initial population is GA with Unimodal
Normal Distribution Crossover (UNDX) [31].

When comparing the effectiveness of different optimization methods, a standard perfor-
mance measure is the best fitness value a certain algorithm can attain within a predefined
number of function evaluations. This is based on the assumption that fitness evaluation is
the dominant factor in the overall computational cost. Such an assumption is usually valid
for complex optimization tasks of interest in real-world problems [13, 15] where the bud-
get allocated, in terms of time and resources, is limited. For that reason, the algorithms in
this work are compared with one another solely based on fitness values that can be achieved
within a predefined number of function evaluations, and not based on their algorithm-related

5.5 Experimental Setup and Numerical results 95

computation time.
From the test beds studied in [34, 40], those with varying dimensions are used in this

study in addition to those studied in [30]. The test beds, along with their characteristics, are
listed in Table 5.14.

In Table 5.1, D is the dimension of the search space. The optimal solution f (x∗) for
all the adopted test functions is located at [0, . . . ,0], with the exception of Dixon-Price, the

optimal solution for which is located at 2−
2d−2

2d for d = 1,2, . . . ,D, as well as the Levy and
Rosenbrock, where the optimal solution sits at [1, . . . ,1]. Of the 14 adopted test studies,
half are unimodal, while the other half are multimodal. The set contains five separable5 and
nine non-separable functions.

Table 5.1: Test problems used in the experiments. U: Unimodal, M: Multimodal, S: Sepa-
rable, N: Non-Separable

Function name Characteristic Search space Initialization range

Ackley MN [−10,30]D [20,30]D

Dixon-Price UN [−10,2]D [−10,−8]D

Griewank MN [−100,600]D [500,600]D

Levy MN [−10,2]D [−10,−8]D

Penalized1 MN [−50,10]D [−50,−40]D

Penalized2 MN [−50,10]D [−50,−40]D

Quartic US [−1.28,0.28]D [−1.28,−1.18]D

Rastrigin MS [−1.12,5.12]D [4.12,5.12]D

Rosenbrock MN [−10,50]D [40,50]D

Schwefel MS [−512,512]D [−512,−412]D

Schwefel P2.22 UN [−2,10]D [8,10]D

Schwefel P1.2 UN [−50,100]D [50,100]D

Schwefel P2.21 US [−50,100]D [50,100]D

Sphere US [−10,100]D [90,100]D

Step US [−100,10]D [−100,−80]D

As the studied optimization techniques are stochastic in nature, 30 independent runs of
each of the algorithms were executed, and the median and the best of the fitness values
are reported in Tables 5.2 and 5.3 along with the results of the Mann-Whitney U-test for
statistical significance.

5.5.1 Parameter Settings
In all experiments described in this section, the common parameters used in each algo-
rithm, such as population size and the number of fitness evaluations, are the same. Unless

4Note that, in [34], the Rosenbrock function (also known as the Banana problem) is treated as a unimodal test
function when D is set at 30, while it is multimodal when the problem dimensions are more than three [17, 36].

5A separable function can be decomposed into D one-dimensional functions.

96 5 Simulated Big Bounce: A continuous space global optimizer

otherwise mentioned, the population size is set at 50 and the maximum number of fitness
evaluations is set at 100,000.

GA settings

A real-coded genetic algorithm with roulette wheel selection was used. Two different types
of crossover, namely single point (GA1) and uniform (GAU), were tried. In both cases,
the crossover rate was set at 1 and the mutation rate at 0.05. In order to ensure that the
best-performing chromosomes always intact, the elitism parameter was set at 2.

PSO settings

For PSO, local learning was used, where each particle is influenced by its topological neigh-
bors. Both standard PSO and PSO with a constriction factor were considered. For standard
PSO (PSO-local) the inertial constant w was set at 0.9 and linearly decreased to 0.4. Both
the cognitive constant C1 and social constant C2 were set at 2.0. For PSO with a constriction
factor (PSO-cf-local), w was set at 0.729 and C1 =C2 = 1.49. This is equivalent to setting
χ = 0.729 and φ = 4.1. k, the number of neighbors was set at 3.

GSA settings

Apart from the common parameters, namely, the number of the population and the maxi-
mum number of the fitness evaluation, in the case of GSA, k was set at the population size
S and was linearly decreased to 1. The gravitational constant G0 was set at 100 and α was
set at 20.

SBB settings

In the case of the SBB algorithm, The friction coefficient ρ was set at .1, C1 = 1, C2 =
10∗C1 = 10, C3 = .2, pSB = .1 and LM and UM were set at 1 and 10 respectively.

5.5.2 Results

The medians of the best-of-run of the studied algorithms are normalized and shown in Ta-
ble 5.2. This normalization is obtained by comparison with the best performing algorithm
on each benchmark. Therefore, the best solution found usually has a value of 1.00 (this
holds for all the functions except the last). As the results of Table 5.2 demonstrate, the
median performance of the SBB, when averaged over 30 independent simulation runs, is
competitive to the studied optimization algorithms. In this table, asterisk symbols are used
to denote solutions that are, statistically, significantly better than their contenders. The test
caries out using MannWhitney U test (a non-parametric statistical test that is often inter-
preted as a comparison of medians).

As shown in Figures (5.4), in roughly most of the cases SBB began with a steep con-
vergence, and in 6 cases, located better solutions substantially faster than other algorithms
studied. PSO with a constriction factor is the second best performing algorithm, and finds
significantly better solutions in 5 of the benchmarks. GSA is significantly superior to the

5.5 Experimental Setup and Numerical results 97

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

Number of fitness evaluation

B
es

t F
itn

es
s

 (a)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−2

10
0

10
2

10
4

10
6

10
8

Number of fitness evaluation

B
es

t F
itn

es
s

 (b)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Number of fitness evaluation

B
es

t F
itn

es
s

 (c)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

Number of fitness evaluation

B
es

t F
itn

es
s

 (d)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−5

10
0

10
5

10
10

Number of fitness evaluation

B
es

t F
itn

es
s

 (e)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−4

10
−2

10
0

10
2

10
4

10
6

Number of fitness evaluation

B
es

t F
itn

es
s

 (f)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

10
5

Number of fitness evaluation

B
es

t F
itn

es
s

 (g)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
1

10
2

10
3

10
4

Number of fitness evaluation

B
es

t F
itn

es
s

 (h)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

Figure 5.4: Median of 30 independent runs on a) Ackley, b) Dixon-Price, c) Griewank,
d) Levy, e) Penalty 1, f) Penalty 2, g) Quartic, h) Rastrigin,

98 5 Simulated Big Bounce: A continuous space global optimizer

0 2 4 6 8 10

x 10
4

10
0

10
2

10
4

10
6

10
8

10
10

Number of fitness evaluation

B
es

t F
itn

es
s

 (i)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
3

10
4

10
5

Number of fitness evaluation

B
es

t F
itn

es
s

 (j)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of fitness evaluation

B
es

t F
itn

es
s

 (k)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Number of fitness evaluation

B
es

t F
itn

es
s

 (l)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
1

10
2

Number of fitness evaluation

B
es

t F
itn

es
s

 (m)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of fitness evaluation

B
es

t F
itn

es
s

 (n)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

0 2 4 6 8 10

x 10
4

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of fitness evaluation

B
es

t F
itn

es
s

 (o)

GA1
GAU
PSO−local
PSO−cf−local
GSA
SBB

Figure 5.4: (con’t) i) Rosenbrock, j) Schwefel, k) Schwefel P2.22, l) Schwefel P1.2,
m) Schwefel P1.21, n) Sphere, o) Step.

5.5 Experimental Setup and Numerical results 99

others in only 2 of the cases. As shown in our other studies [12, 14], the poor mass assign-
ment procedure in GSA is, in part, responsible for its poor performance. Its performance is
flattened out dramatically in almost every case tested. With the Step function, SBB reaches
upto a true minimum with value zero, resulting in a “NaN” score for this algorithm in Ta-
ble 5.2 and an “Inf” of infinity for the others.

We also provide a comparison to find, amongst those metaheuristics studied, which is
best at finding the most fitted solution when multiple runs are made (Table 5.3). SBB places
first by performing best in 6 out of 14 benchmarks (the Step function is excluded). PSO-
cf placed second, performing best in 5 benchmarks, followed by GSA, which performed
best in three benchmarks. With regards to the Step function, the optimal solution, 0, is
attainable under a wide range of design values. Although both PSO-cf-local and SBB found
the optimal solution, SBB had a better convergence characteristics (Figure 5.4.o).

It is notable that, in this work, the settings are taken from the original works. However,
it must be noted that changing the algorithmic parameter settings and stopping criteria, the
benchmark functions, and even the grading criteria, may change the results and conclusions.
In spite of these caveats, these preliminary results are a promising indication of the success
of the proposed SBB on a wide range of optimization problems.

Table 5.2: Median of normalized optimization results of the competing optimization algo-
rithms on the studied benchmark functions averaged over 30 independent simu-
lation runs.

Function name GA1 GAU PSO-Local PSO-cf-local GSA SBB

Ackley 283.91 337.04 101.29 19.21 399.72 1*
Dixon-Price 6.97E4 2.49E4 8.43E4 64.21 3.28 1*
Griewank 2.83E4 3.23E4 2.10E3 1* 5.75E5 104.01
Levy 102.15 105.21 25.66 2.92 1* 13.63
Penalty 1 2.86E6 3.97E3 1.99E9 1.1E3 1.23E12 1*
Penalty 2 5.77E4 3.66E4 2.96E4 1 14.32 8.45E3
Quartic 6.43E31 1.93E31 6.07E31 3.32E25 1* 4.51E23
Rastrigin 9.86 10.28 2.29 1* 1.89 3.95
Rosenbrock 1.34E5 5.63E4 3.51E4 2.73 1.57E6 1*
Schwefel 3.99 4.05 2.76 4.15 5.11 1*
Schwefel P2.22 6.51E3 6.86E3 1.79E3 1* 407.66 1.90E3
Schwefel P1.2 15.84 12.93 4.26 1* 647.02 7.431
Schwefel P1.21 1.97 2.43 1.35 1 3.03 1.03
Sphere 1.96E6 2.23E6 1.36E5 1* 1.73E7 94.10
Step Inf Inf Inf Inf Inf NaN*

100 5 Simulated Big Bounce: A continuous space global optimizer

Table 5.3: Best of normalized optimization results of the competing optimization algorithms
on the studied benchmark functions averaged over 30 independent simulation
runs.

Function name GA1 GAU PSO-Local PSO-cf-local GSA SBB

Ackley 5.6E3 6.89E3 1.78E3 6.62 8.53E3 1
Dixon-Price 8.78E4 1.90E4 1.35E5 36.86 3.78 1
Griewank 5.24E4 6.50E4 4.09E4 1 1.57E6 18.57
Levy 3.90E17 4.20E17 1.25E17 1.97E13 1 1.82E13
Penalty 1 1.54E5 1.08E4 3.75E9 3.55E3 5.80E12 1
Penalty 2 7.94E17 4.63E17 2.75E17 1.73E12 1 1.34E15
Quartic 4.18E31 1.53E31 8.93E31 2.03E25 1 7.14E19
Rastrigin 17.29 17.51 2.33 1 2.71 2.70
Rosenbrock 1.98E5 2.94E5 1.76E5 20.33 1.12E7 1
Schwefel 19.50 21.42 13.56 20.71 27.22 1
Schwefel P2.22 7.96E3 8.45E3 2.23E3 1 3.14 957.28
Schwefel P1.2 20.73 14.48 3.49 1 79.87 8.13
Schwefel P1.21 8.27E3 9.37E3 5.56E3 3.26E3 1.38E4 1
Sphere 3.67E6 3.59E6 1.97E5 1 4.38E7 2.3694
Step Inf Inf Inf NaN Inf NaN

5.6 A comparative discussion on evolutionary computing
paradigms vs. SBB

In the previous sections, the comparative results of GA, PSO, GSA and SBB were presented.
In this section, a thorough comparative analysis is offered.

Two very important aspects of evolutionary computing paradigms are exploration (also
known as diversification; that is, the ability to search for new possibilities) and exploitation
(also known as intensification; that is, the ability to find better solutions in the neighborhood
of good solutions found so far). Different metaheuristics employ different operators to
balance exploration and exploitation throughout the optimization process. The design of
the SBB scheme is strongly influenced by the idea that exploration should be continued in
a robust way in order that it be able to escape from local minima discovered in all phases of
the search. The key feature distinguishing SBB from prior work is its unique machinery to
maintaining a healthy diversity of particles.

In GAs, the mutation operator is responsible for maintaining the population diversity by
modifying a randomly selected part of each (new) population member. In SBB meanwhile,
the repulsive force applied to particles preserves diversity. Unlike PSO, where solutions are
mostly clumped together for information flow control (in order to prevent premature conver-
gence, although their topology is not necessarily fixed), both SBB and EAs solutions do not
necessarily have a built-in tendency to cluster solutions. They already possess certain mech-
anisms for maintaining population diversity. PSO and GSA control population diversity by

5.7 Conclusions and Future Work 101

inserting random parameters when updating solutions. SBB maintains population diversity
though two mechanisms: a) it diversifies particle’s by updating their mass as the optimiza-
tion process progresses; b) it applies repulsive external force to particles with a bounded
random strength acting in a direction opposite to the center of gravity of the swarm.

The fitness-based probabilistic selection scheme used in GAs does not exist in SBB. The
selection mechanism is the main difference between GA and other metaheuristics adopted in
this study. Moreover, in contrast to EAs where solutions “die” at the end of each generation,
in PSO, GSA and SBB, solutions survive through the course of the optimization process,
providing a substantial source of information for the population searching for the global
optimum.

In PSO, each particle’s position vector is decoded by a function of the particles current
position, the best solution found by itself so far, and the swarms best solution. In SBB,
a new solution vector is calculated, depending on the state of the Universe, using the best
solution found so far, or using the position of the Barycenter. In SBB, the speed of DM
is set at zero. This improves the exploitation of the area surrounding the best solution so
far, while the population continues to enjoy robust exploration due to the particles of light
mass with small inertia. In this way, the information belonging to the fittest member of the
population is distributed among other members without jeopardizing exploration. In PSO,
the inertia of all particles is the same, while in the case of SBB, the inertia of each particle
is directly connected to its mass, and is thus not unique to the entire population.

In GSA, a new position vector is calculated using Newtons attractive gravitational force,
while in SBB, the force applied may be attractive or repulsive with a stochastic variation in
strength. This is in complete contrast to GSA. In early iterations, in the case of GSA,
objects are further apart compared to later iterations. As a result of the gravitational force,
particles are pulled closer together and so the gravitational force strengthens as time elapses.
This leads to shallow exploration in early search iterations and strong exploitation in the
final search stages, which making GSA susceptible to be trapped in a local optimum [12].
In GSA, the mass assigned to a particle changes as a result of an increase or decrease in
swarm size. As swarm size increases, the mass assigned to particles becomes, in absolute
terms, loosely equal. Particles thus exert an equal force on each other, and demonstrate an
equivalent resistance to position change, a phenomenon that is considered undesirable. In
contrast, the dispersed mass-assignment procedure in SBB helps maintaining exploration-
exploitation balance in both the early and the late stages of the search process.

5.7 Conclusions and Future Work

Existing scientific literature evidences that the information sharing mechanism of stochas-
tic population-based metaheuristics accounts for their robust search capabilities as well as
their small inclination to deceit. Nonetheless, for complex high-dimensional optimization
problems, they have been shown to be susceptible to premature convergence, due to a poor
balance between exploration and exploitation. The extent to which information is shared
between agents, and the mechanism designed to update the agents, should work together to
balance the exploration-exploitation trade-off.

A new metaheuristic, based on the theory of Big Bounce, was therefore designed, one
that uses robust exploration in order to escape from local extrema. The proposed Simulated

102 5 Simulated Big Bounce: A continuous space global optimizer

Big Bounce (SBB) showed a capability for the robust exploration of the search space. We
hypothesize that this is due to the built-in “diversification of mass” which supports both
continued exploitation and robust exploration. The algorithm has been tested by comparing
its performance with the performance of five other variations of metaheuristics. The results
obtained show that the SBB’s performance is competitive with existing metaheuristics.

We would like to further test this hypothesis in future research. In addition, we observe
that the proposed optimization strategy can be easily extended to multi-objective optimiza-
tion problems. Further studies may also focus on sensitivity analysis and parameter studies,
and their relationships with the convergence rate of the algorithm. Hybridization with other
popular algorithms, especially with local search algorithms such as simulated annealing,
could also be potentially fruitful.

Much of the computational complexity involved in the use of population-based opti-
mization tools is due to the fitness function evaluation, which may be either very difficult to
define, or very expensive computationally. A popular solution to this challenge is to replace
the expensive fitness evaluation step with an approximate model [11]. In our future work,
the performance of SBB when combined with this type of solution will be studied.

A probabilistic selection of DM may further improve the search process, a suggestion
for future work.

References
[1] Al-Zubaidi, S., Ghani, J., and Haron, C. (2013). Optimization of cutting conditions for

end milling of ti6al4v alloy by using a gravitational search algorithm (gsa). Meccanica,
pages 1–15.

[2] Angeline, P. (1998). Using selection to improve particle swarm optimization. In Inter-
national Conference on Evolutionary Computation, pages 84–89.

[3] Bojowald, M. (2008). Follow the bouncing universe. Scientific American, 299(4):44–
51.

[4] Bratton, D. and Kennedy, J. (2007). Defining a standard for particle swarm optimiza-
tion. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE, pages 120–127. IEEE.

[5] Bremermann, H. (1962). Optimization through evolution and recombination. Self-
organizing systems, pages 93–106.

[6] Castro, L. D. and Zuben, F. V. (2002). Learning and optimization using the clonal
selection principle. IEEE Transactions on Evolutionary Computation, 6(3):239–251.

[7] Chatterjee, A., Mahanti, G., and Pathak, N. (2010). Comparative performance of grav-
itational search algorithm and modified particle swarm optimization algorithm for syn-
thesis of thinned scanned concentric ring array antenna. Progress In Electromagnetics
Research B, 25:331–348.

[8] Chiong, R., Weise, T., and Michalewicz, Z. (2012). Variants of evolutionary algorithms
for real-world applications. Springer.

5.7 Conclusions and Future Work 103

[9] Clerc, M. and Kennedy, J. (2002). The particle swarm-explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation, 6(1):58–73.

[10] Dasgupta, D. and Michalewicz, Z. (1997). Evolutionary algorithms in engineering
applications. Springer-Verlag, Berlin.

[11] Davarynejad, M., Ahn, C., Vrancken, J., van den Berg, J., and Coello Coello, C.
(2010). Evolutionary hidden information detection by granulation-based fitness approx-
imation. Applied Soft Computing, 10(3):719–729.

[12] Davarynejad, M., Forghany, Z., and van den Berg, J. (2012a). Mass-dispersed gravi-
tational search algorithm for gene regulatory network model parameter identification. In
Simulated Evolution and Learning (SEAL’12), pages 62–72.

[13] Davarynejad, M., Rezaei, J., Vrancken, J., van den Berg, J., and Coello, C. C. (2011).
Accelerating convergence towards the optimal pareto front. In IEEE Congress on Evolu-
tionary Computation (CEC’11), pages 2107–2114.

[14] Davarynejad, M., van den Berg, J., and Rezaei, J. (2014). Evaluating center-seeking
and initialization bias: The case of particle swarm and gravitational search algorithms.
Information Sciences, 278:802–821.

[15] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012b). A Fit-
ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,
R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for
Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[16] Deb, K. (2012). Advances in evolutionary multi-objective optimization. In Search
Based Software Engineering, pages 1–26. Springer.

[17] Deb, K., Anand, A., and Joshi, D. (2002). A computationally efficient evolutionary
algorithm for real-parameter optimization. Evolutionary computation, 10(4):371–395.

[18] Dodelson, S. (2003). Modern cosmology. Academic Press.

[19] Dorigo, M. and Caro, G. D. (1999). Ant colony optimization: a new meta-heuristic.
In IEEE Congress on Evolutionary Computation (CEC’99), pages 1470–1477.

[20] Duman, S., Güvenç, U., and Yörükeren, N. (2010). Gravitational search algorithm for
economic dispatch with valve-point effects. International Review of Electrical Engineer-
ing (IREE), 5(6).

[21] Goldberg, D. (1994). Genetic and evolutionary algorithms come of age. Communica-
tions of the ACM, 37(3):113–119.

[22] Goldberg, D. (2002). The Design of Innovation: Lessons from and for Competent
Genetic Algorithms. Kluwer Academic Publishers.

[23] Holland, J. (1975). Adaptation in natural and artificial systems. University of Michi-
gan Press, Ann Arbor, MI.

104 5 Simulated Big Bounce: A continuous space global optimizer

[24] Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for nu-
merical function optimization: artificial bee colony (abc) algorithm. Journal of Global
Optimization, 39(3):459–471.

[25] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE Interna-
tional Conference on Neural Networks, volume 4, pages 1942–1948.

[26] Kochenberger, G. (2003). Handbook of metaheuristics. Springer.

[27] Koza, J. and Poli, R. (2005). Genetic programming. In Edmund, K. and Kendall,
G., editors, Search Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques, pages 127–164.

[28] Li, C. and Zhou, J. (2011). Parameters identification of hydraulic turbine governing
system using improved gravitational search algorithm. Energy Conversion and Manage-
ment, 52(1):374–381.

[29] Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., and Baets, B. D. (2010). A
gravitational approach to edge detection based on triangular norms. Pattern Recognition,
43(11):3730–3741.

[30] Mariani, V. and Coelho, L. (2011). A hybrid shuffled complex evolution approach
with pattern search for unconstrained optimization. Mathematics and Computers in Sim-
ulation.

[31] Ono, I., Kita, H., and Kobayashi, S. (1999). A robust real-coded genetic algorithm
using unimodal normal distribution crossover augmented by uniform crossover: Effects
of self-adaptation of crossover probabilities. In Genetic and Evolutionary Computation
(GECCO’99), pages 496–503.

[32] Precup, R., David, R., Petriu, E., Preitl, S., and Paul, A. (2011). Gravitational search
algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity.
Soft Computing in Industrial Applications, pages 141–150.

[33] Precup, R., David, R., Petriu, E., Preitl, S., and Radac, M. (2013). Fuzzy logic-based
adaptive gravitational search algorithm for optimal tuning of fuzzy-controlled servo sys-
tems. Control Theory & Applications, IET, 7(1):99–107.

[34] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2009). Gsa: a gravitational
search algorithm. Information Sciences, 179(13):2232–2248.

[35] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2011). Filter modeling us-
ing gravitational search algorithm. Engineering Applications of Artificial Intelligence,
24(1):117–122.

[36] Shang, Y., , and Qiu, Y. (2006). A note on the extended rosenbrock function. Evolu-
tionary Computation, 14(1):119–126.

[37] Shaw, B., Mukherjee, V., and Ghoshal, S. (2012). A novel opposition-based gravita-
tional search algorithm for combined economic and emission dispatch problems of power
systems. International Journal of Electrical Power & Energy Systems, 35(1):21–33.

5.7 Conclusions and Future Work 105

[38] Steinhardt, P. and Turok, N. (2002). A cyclic model of the universe. Science,
296(5572):1436–1439.

[39] Weinberg, S. (1972). Gravitation and cosmology: principles and applications of the
general theory of relativity.

[40] Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made faster. IEEE
Transactions on Evolutionary Computation, 3(2):82–102.

“You cannot improve what you cannot measure.”

lord kelvin

6
Evaluating Center-Seeking and

Initialization Bias: The case of Particle
Swarm and Gravitational Search

Algorithms 1

Abstract
Complex optimization problems that cannot be solved using exhaustive search require effi-
cient search metaheuristics to find optimal solutions. In practice, metaheuristics suffer from
various types of search bias, the understanding of which is of crucial importance, as it is
directly pertinent to the problem of making the best possible selection of solvers. In this
paper, two metrics are introduced: one for measuring center-seeking bias (CSB) and one for
initialization region bias (IRB). The former is based on “ξ-center offset”, an alternative to
“center offset”, which is a common but inadequate approach to analyzing the center-seeking
behavior of algorithms, as will be shown. The latter is proposed on the grounds of “region

1This chapter is based on:

• M. Davarynejad, J. van den Berg, J. Rezaei, “Evaluating Center-Seeking and Initialization Bias: The case
of Particle Swarm and Gravitational Search Algorithms”, Information Sciences, 278:(802-821), 2014.

• Z. Forghany, M. Davarynejad, B.E. Snaar-Jagalska, “Gene Regulatory Network Model Identification Using
Artificial Bee Colony and Swarm Intelligence”, in 2012 Congress on Evolutionary Computation (CEC’12),
Brisbane, Australia, pp. 949954, 2012 .

• M. Davarynejad, Z. Forghany, J. van den Berg, “Mass-Dispersed Gravitational Search Algorithm for
Gene Regulatory Network Model Parameter Identification”, in 2012 Simulated Evolution And Learning
(SEAL’12), Volume 7673 of Lecture Notes in Computer Science. pp. 62-72, 2012 .

107

108 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

scaling”. The introduced metrics are used to evaluate the bias of three algorithms while
running on a test bed of optimization problems having their optimal solution at, or near,
the center of the search space. The most prominent finding of this paper is considerable
CSB and IRB in the gravitational search algorithm (GSA). In addition, a partial solution
to the center-seeking and initialization region bias of GSA is proposed by introducing a
“mass-dispersed” version of GSA, mdGSA. mdGSA promotes the global search capability
of GSA. Its performance is verified using the same mathematical optimization problem, next
to a gene regulatory network parameter identification problem. The results of these experi-
ments demonstrate the capabilities of mdGSA in solving real-world optimization problems.

6.1 Introduction
Consider a search scenario in a finite continuous search space E ⊂ X defined by

E =
D⊗

d=1

[Ld
x ,U

d
x], (6.1)

with the objective of locating x∗ ∈ E, where f (x∗) is the extremum of a function f (x) :
E → IR, and where Ld

x and Ud
x are respectively the lower and upper bound of the search

domain at dimension d. Optimization problems are to be found in such diverse arenas
as engineering, business, medicine, etc. [5]. Here we assume that the only information
available to the search for the optimal design variable is a measure to discriminate solutions,
i.e., for any point x ∈ E, the associated objective (fitness) value f (x) is assumed to be the
only information available to locate x∗. Without loss of generality, a minimization problem
is considered.

In contrast to exhaustive search which looks into every entry in the search space, meta-
heuristics [22] are strategies that guide the search process iteratively, in many cases by
making a trade-off between exploration and exploitation. This is an important notion when
it comes to allocating scarce resources to the exploration of new possibilities and the ex-
ploitation of old certainties.

The evolution of life on earth, which has been the original inspiration for many types of
metaheuristics, has resulted in the family of population-based stochastic search algorithms
termed “evolutionary algorithms”. Common to all population-based metaheuristics are (i)
a measure to discriminate solutions, and (ii) a set of mechanisms to modify solutions by
various operators.

There are two distinct classes of nature-inspired population-based optimization algo-
rithms that are of our interest: evolutionary algorithms (EA), and swarm intelligence (SI)-
based algorithms. Some popular members of the former class are genetic algorithm (GA) [24]
and differential evolution (DE) [45, 56]. Successful instances of swarm intelligence-based
algorithms are particle swarm optimization (PSO) [27] and the gravitational search algo-
rithm (GSA) [46].

Studying the properties of these algorithms, it turns out that some population-based
optimization techniques suffer from a specific search bias [11, 35]: they tend to perform
best when the optimum is located at or near the center of the search space. General purpose
optimizers are those which make no assumption on the problem at stake. Consequently, if
we want to compare the quality of the solutions found by a set of metaheuristics for a

6.2 A metric for measuring center-seeking bias 109

series of benchmark problems with optimal solution near the center of the search space, the
comparison becomes unfair.

To remedy this unfairness, the so-called center offset (CO) [36] approach was proposed
which changes the borders of the search space in such a way that the optimal solution is
no longer located in the center of the search space. Basically, the CO approach changes the
search space of the original problem by reducing it on one side and expanding it at the other.
When comparing a set of algorithms qualitatively, the comparison is valid since interference
tends to be reduced when all the contenders are submitted to the same set of benchmarks,
no matter if the shifting has introduced some degree of increase/decrease in the complexity
of the search. Our goal, here, is to supplement the comparison by developing quantitative
measures that can assist the observer in evaluation of the “degree” of CSB of a certain
search algorithm. Quantitative measures are succinct and are the preferred disclosure form,
not only for a) a comparison of the degree of CSB in a set of search algorithms, but also
when the task is b) to examine if a single search algorithm has any CSB at all.

On the basis of these observations, we decided to examine generic methods for evaluat-
ing the search bias of different algorithms. In this paper, we limit ourselves to two metrics;
one for measuring center-seeking bias, and one for initialization bias. These metrics are
used to evaluate the behavioral bias of several algorithms related to swarm optimization and
gravitational search.

The remainder of this paper is organized as follows. Section 6.2.1 elaborates on center
offset and its assumptions, and presents an alternative. Section 6.2.2 presents a metric to
both measure and compare the center-seeking bias of optimization algorithms. A metric to
measure initialization region bias is then presented in Section 6.3. In Section 6.4.1 and 6.4.2
PSO and GSA are briefly summarized. The mass assignment in GSA is analyzed and chal-
lenged in Section 6.4.3, and an alternative is proposed. The experimental setup adopted
for the evaluation and comparison, followed by the major observations derived form the
experiment, are presented in Section 6.5. Section 6.6 presents discussions and provides a
framework that enables a fair comparison of optimization heuristics. The last section high-
lights conclusions and provides suggestions for future research.

6.2 A metric for measuring center-seeking bias

6.2.1 Understanding the assumptions underlying center offset

According to the No Free Lunch theorem [60], all learning systems will expose equal per-
formance over all possible cost functions. This implies that, in order to efficiently solve an
optimization problem, they should be tailored to the salient problem-specific characteristics.
Where there is no available information on the problem at hand, as with various real-world
applications, some search biases known to us are not often of service. Such biases include
center-seeking (CS) behavior and initialization region bias (IRB), the foci of this study.

When comparing nature-inspired metaheuristic algorithms, a symmetric search space
can be misleading when the optimal solution is located at, or near, the center of the search
space. In such a case, one must account for CS behavior in order to draw valid conclusions
from an experiment [8]. One attempt to deal with CS bias is called center offset (CO). This
is a common approach to negating the centrist bias of an optimization algorithm [3]. The

110 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1

1.5

Design space, x

f(
x)

a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

−0.5

0

0.5

1

1.5

Design space, x

f(
x−
.0
5
)

b)

Optimal Solution

Figure 6.1: Change in complexity as a result of CO. a) The original function, b) The trans-
formed function.

underlying assumption of CO is that the complexity of a problem does not change as a result
of moving the optimal solution from the center of the search space; this is an assumption
that is discussed in greater detail below.

When applying CO, the optimization problem f (x) is changed to f (x−C) where C is
the location of the new center. CO is equivalent to expanding the search space from one side,
for each dimension d, and to shrinking it on the other side, without changing the distance
∥Ud

x −Ld
x∥ between the lower bound Ld

x and the upper bound Ud
x . When the objective of a

test is to measure the search bias of an algorithm, CO is not an adequate approach. This is
because a change in the complexity of a problem is not explicitly controlled: without any
additional information, the complexity of the problem might increased, decreased, or even
remained the same. As a consequence, any observed difference in the performance of an
algorithm cannot, to any degree of certainty, be associated with the CS bias of the algorithm;
it may also have been caused by an (unknown) change in the problem complexity.

Figure 6.1 shows an example of an increase in problem complexity (due to an increase
in the number of local optimal solutions) as a result of shifting the search window when the
objective is to locate the minimum of the following function:

f (x) = 10(x−0.2)2 + sin(
π
x
),0.1≤ x≤ 0.3. (6.2)

In this case, due to an increased problem complexity, the average performance of any
metaheuristic is expected to deteriorate whether or not the algorithm possesses CS bias.
Consequently no hypothesis can be made on the CS behavior of an optimization algorithm.

Assuming we know that the problem complexity decreases, some decision making
around CS behavior becomes possible. If a certain algorithm shows a better performance,
one can conclude that this algorithm has no observable CS bias, since we would otherwise

6.2 A metric for measuring center-seeking bias 111

have observed a deterioration in its performance, i.e., a deterioration in the best found fit-
ness during optimization. In this study, the ξ-CO approach is introduced to remove the
uncertainties on change in problem complexity.

In ξ-CO, the search space is downsized asymmetrically, as a result of which the problem
complexity always decreases and the algorithm is expected to locate a near optimal solution
more quickly and with greater precision if there is no center-seeking bias. This makes it
possible to test the hypotheses on CS behavior of an optimization algorithm considering a
benchmark problem with (i) a symmetric search space and (ii) the optimal solution near the
center of the search space. Let us assume that Ld

x =−Ud
x and that Ud

x > 0, as is the case for
most of the problems studied here. In ξ-CO, the search space is downsized asymmetrically
by modifying the lower bound of the search space Ld

x according to

Ld
x = Ld

x +
ξ

100
× ||U

d
x −Ld

x ||
2

, (6.3)

where ξ ∈ [ξL,ξU] is the percentage of downsizing the search space and where ξL and ξU
are the predefined lower and upper bound of ξ, respectively.

Observe that CO is only worthwhile for optimization problems the support of which
extends outside of the initial boundary. With the proposed ξ-CO approach this shortcoming
does not arise.

6.2.2 A metric for center-seeking bias
After identifying ξ-CO as an appropriate approach for analyzing CS behavior of optimiza-
tion heuristics, there is still a need to quantify the observations on the CS bias behavior,
i.e., a metric is needed. By executing a series of runs when gradually increasing, with a
predefined step size of ξs, the percentage ξ of downsizing the search space from a lower
limit ξL to an upper limit ξU , one can measure the best-fitness each optimization algorithm
can attain. Because randomly chosen initializations affect the outcome, experiments under
equal conditions are usually repeated several times, say r f time, yielding a data of the form(

ξ, f ξ
r

)
∈ IR2 when r ∈ [1,r f]. Based on these observations, an estimation of best-of-run f̂ ξ

as function of ξ
f̂ ξ = CSBξL−ξU

ξs
.ξ+ c1 (6.4)

can be calculated, where CSBξL−ξU
ξs

is the slope of the regression line. The slope CSBξL−ξU
ξs

has been selected as the metric to analyze CS behavior of optimization heuristics. For min-
imization problems, in case CSBξL−ξU

ξs
≥ 0, the best fitness found increases, implying the

presence of CS bias behavior (because the quality of the solutions found does not improve
when complexity is reduced). Similarly, in case CSBξL−ξU

ξs
< 0, the best fitness found de-

creases, implying that there is no observable CS bias behavior.
In special cases, ξ may be changed from its lower limit to its upper limit without inter-

mediate steps. In this case the corresponding metric is referred to as CSBξL,ξU . Comparing
CSBξL,ξU and CSBξL−ξU

ξs
, the latter has a greater generalization ability and is the preferred

metric for comparing algorithms under study.
Note, finally, that the proposed metric is not restricted to situations where the search

space is downsized according to ξ-CO. The original CO approach may still be used, namely,

112 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

in cases where the problem at hand is well-known and the problem complexity due to center
offset remains unchanged. Under such circumstances, the metric CSBξL−ξU

ξs
can be used as

well. In that case, ξ ∈ [ξL,ξU] is the percentage by which the center of the search space is
offset.

6.3 A metric for initialization region bias

Most of today’s real-world optimization problems are formulated in environments that un-
dergo continual change, referred to as dynamic optimization problems [2]. When the global
optimal solution changes, the population members have to move along an extended path
with many local optima. To test the sensitivity of PSO on the search initialization, as well
as its ability to move from the initial search space to more promising regions, Angeline [1]
proposed reducing the initialization region, referred to as Region Scaling (RS) [36]. This
initialization is adopted here as well, where the algorithm is initialized deliberately in a
portion of the search space. A notable example of a class of algorithms suffering from suf-
ficiently generating offsprings outside a given initial population, specially when the size of
the population is small relative to the search space, is GA with Unimodal Normal Distribu-
tion Crossover (UNDX) [40].

Region Scaling (RS) [36] is an approach to qualitatively observe if a search algorithms
has any IRB. By shrinking the initialization region (IR), an algorithm with no IRB will
perform not worse than when the IR covers the entire design space. In order to quantify
the IRB, in this study, the initialization space is gradually degraded, starting from the entire
search space, to ζ percent of the search space. The method, hereafter referred to as ζ-RS,
explicitly downsizes the initialization region to a region where the bottom left sides are all
downsized to ζ ∈ [ζL,ζU] percent of the original length. A series of experiments is executed
when ζ changes from ζL to ζU with a predefined step size of ζs. Due to the stochastic
nature of most of optimization processes, each of the experiments is repeated r f times. The

observations have a form of
(

ζ, f ζ
r

)
∈ IR2 where f ζ

r is the best fitness an algorithm can
find within a predefined budget on run r ∈ [1,r f], when the initial population is positioned
randomly in a corner box of length ζ percent of the entire search space. An estimation of
best-of-run f̂ ζ as function of ζ can be calculated directly from the observed results.

f̂ ζ = IRBζL−ζU
ζs

.ζ+ c2 (6.5)

where IRBζL−ζU
ζs

is the slope of the regression line fitted to
(

ζ, f ζ
r

)
∈ IR2.

In special cases where ζs is equal to ||ζU − ζL|| the metric is referred to as IRBζL,ζU .
To measure the initialization region bias, the IRBζL−ζU

ζs
has a greater generalization ability

compared to IRBζL,ζU .
While search algorithms may perform better when they are initialized in the whole

search space and benefit from knowing the search space, one with lower IRB is preferable
over one with higher IRB.

6.4 Three population-based metaheuristics 113

6.4 Three population-based metaheuristics
The primary goal of this study is to asses CSB and IRB of a set of widely used and well-
established metaheuristics. We do not aim at giving an exhaustive experimental comparison
on a wide range of alternative search algorithms, rather we focus on a set of well benchmark
instances. This section respectively formulates the particle swarm algorithm as proposed
in [6] and gravitational search algorithm [46] in addition to presenting a modification of
GSA.

6.4.1 A brief tour of the particle swarm optimization
Swarm intelligence, an emerging collective behavior of interacting agents with examples
of ant colony [18] and bee colony [25], is a popular source of inspiration for the design of
optimization algorithms. Particle swarm optimization (PSO) [27] is a successful instance of
a nature-inspired algorithm for solving global optimization problems. A number of advan-
tages have been attributed to PSO, making it a choice candidate as a benchmark algorithm.
The standard PSO algorithm is suited to handle nonlinear nonconvex optimization prob-
lems with fast convergence characteristics. In this study, PSO is a reasonable choice for
comparison as it does not have bias towards the center of the search space [26].

In classical PSO, every particle is a solution moving in a D-dimensional search space. A
collection of particles is known as swarm. Each particle i has a position, xi ∈ IRD, a velocity,
vi ∈ IRD and the best position found so far, pi ∈ IRD.

PSO uses two independent random variables, r1,r2 ∼ U(0,1), scaled by constants C1
and C2. The constants C1 and C2 are known as learning rates and they influence the maxi-
mum step size a particle can take in a single iteration, representing the confidence of a parti-
cle on its best performance and that of the global best respectively. The movement equations
of every particle i ∈ 1,2, . . . ,S, specified separately for every dimension d ∈ 1,2, . . . ,D, are
given by expressions (6.6) and (6.7).

vd
i = wvd

i +C1rd
1

(
pd

i − xd
i

)
+C2rd

2

(
gd

i − xd
i

)
, (6.6)

xi = xi +vi, (6.7)

where w is a predefined constant representing the confidence of particle on its own move-
ments and pd

i and gd
i are personal best and global best positions respectively. S is the number

of particles in the swarm.
To ensure convergence by avoiding explosion, Clerc et al. [6] introduces the constriction

factor and modifies the velocity update equation as follows:

vd
i = χ

(
vd

i +C1rd
1

(
pd

i − xd
i

)
+C2rd

2

(
gd

i − xd
i

))
, (6.8)

where χ = 2
|2−φ−

√
φ2−4φ|

and φ =C1 +C2, φ > 4.

6.4.2 A Brief Tour of the GS Algorithm
Gravitational search algorithm (GSA) [46] is a relatively new technique that has been em-
pirically shown to perform well on many optimization problems [4, 16, 19, 23, 31, 32, 41,

114 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

44, 47, 54]. GSA was inspired by the Newton’s law of universal gravitation. In its original
version, GSA scatters particles in a feasible region of the search space, where they interact
with each other under Newton’s gravitational force and move in the search area seeking an
optimal design variable. GSA shares features with several competing schemes, for instance
by sharing information between solutions. In contrast to EAs where solutions die at the end
of each generation, in PSO and GSA, solutions survive throughout the optimization process,
providing a substantial source of information for the population when searching the global
optimum.

In GSA, like in many other population based optimization techniques, to guide the pop-
ulation in the search space E, some measure of discrimination is needed, referred here as
a fitness of each candidate solution xi. Each candidate solution is a particle with a mass
Mi. A good solution is analogous to a particle with a high mass, while a poor solution rep-
resents a particle with a low mass. A particle with a high mass resists change more than
one with a low mass and tends to have higher impact on other particles, thereby sharing its
features with low quality solutions. The attractive gravitational force governs the movement
of the particles in the search space. The search begins by an attractive force with a strength
and direction as a function of the mass of particle itself, the mass of other particles and its
relative distance to the other particles. The force is applied to static particles of one under
which their position in the next time step changes and they gain velocity. The quantity of the
resulting force is determined by Newton’s gravitational law. A solution with a higher mass
exerts a stronger force compared to a smaller mass. The kinetic energy stored in particles
is a form of memory, allowing them to steer their movement under the influence of their
memory and external forces. The sum of the force field Fi and the particle’s kinetic energy,
induced from its velocity and mass, is the total force acting on them, which together with its
current position xi(t), determines the particles next position xi(t +1) in the search space.

In original GSA [46], the mass of particles, considering its quality, is assigned as fol-
lows:

Mi =
mi

∑S
j=1 m j

, i = 1,2, . . . ,S (6.9)

where

mi =
f (xi)−max j∈{1,...,S} f (x j)

min j∈{1,...,S} f (x j)−max j∈{1,...,S} f (x j)
, (6.10)

and S is the number of particles. The resulting gravitational force acting on particle i in
direction d is determined using Equation (6.11).

Fd
i = ∑

j∈Kbest
r jFd

i j , (6.11)

where Kbest is a set of particles with the highest mass, r j ∼U(0,1) and Fd
i j is the gravita-

tional force exerted by particle j on particle i. To provide a better exploration in the early
iterations |Kbest| is set at S in the beginning; however the exploration must be decreased
gradually. Therefore choosing a decremented function for |Kbest| increases the exploitation
of the algorithm when the number of iterations increases.

The force exerted by particle j acting on particle i is defined as:

6.4 Three population-based metaheuristics 115

Fd
i j = G

Mi×M j

Ri j + ε

(
xd

j − xd
i

)
(6.12)

where Ri j is Euclidian distance between particles i and j. and G, the gravitational constant
initialized at G0 is determined using Equation (6.13) as:

G = G0e−α t
MaxIteration (6.13)

where α is algorithmic tuning parameter and MaxIteration is the maximum iteration.
The equations of motion of every particle are described using (6.14) and (6.15) as:

vi(t +1) = R×vi(t)+
Fi

Mi
.∆t, (6.14)

xi(t +1) = xi(t)+vi(t +1).∆t, (6.15)

where ∆t = 1, R∼U(0,1) is an array of size D corresponding to each element in vector vi.

6.4.3 mdGSA, a mass-dispersed GSA

In GSA, an increase in the number of particles changes the mass assigned to them as a result
of an increase in the denominator of the Equation (6.9). This increase in the denominator
smooths out the difference between the mass of particles, making them in absolute terms,
more equal in exerting an attractive force and equally resistant to change in their position
as a result of the applied gravitational force. The swarm can be seen as one particle with a
uniform mass distribution. Under the Newtonian gravitational force, this brings the particles
closer to the center of the swarm, resulting in an increase in the density of swarm. As a
result, they move more quickly towards the center of the search space [11]. This may explain
the center-seeking behavior of standard GSA. It is against this backdrop that a different GSA
called mass-dispersed gravitational search algorithm (mdGSA) is devised and tested here.

A more intense discrimination of solutions can be achieved by using the concept intro-
duced in the Simulated Big Bounce (SBB) algorithm [14]. SBB is a global search algorithm
that is inspired by the Big Bounce theory (a cosmological oscillatory model of the Universe),
that, next to exploitation, applies robust exploration in order to escape local minima. In this
approach, based on their fitness, the particles are assigned a mass in the range of [LM,UM].
g, the function that maps the fitness to the mass g : IR→ IR, f (xi) 7→ g(f (xi)) , ∀xi ∈ E can
be any monotonically nondecreasing (and possibly time varying) function in principle with
real values defined on a the set of fitness of particle xi whose value is non-negative for f (xi).
We take g as a linear time-invariant strictly increasing function as follows [14]:

Mi = g(f (xi)) =

LM +(UM−LM)

f (xi)− max
j∈{1,...,S}

f (x j)

min
j∈{1,...,S}

f (x j)− max
j∈{1,...,S}

f (x j)
.

(6.16)

mdGSA’s basic steps in pseudo-code are shown in Algorithm 6.1.

116 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

Algorithm 6.1 Pseudo code of mass-dispersed gravitational search algorithm (mdGSA)

Input: Search space E, fitness function f , S, G0, α
1: Initialize particle’s Location, x = (x1, . . . ,xS)

T

2: while t < MaxIteration do
3: Fitness calculation
4: Update Mi, ∀i = 1, . . . ,S ◃ According to (6.16)
5: Update G ◃ According to (6.13)
6: Update attractive force Fd

i , ∀i = 1, . . . ,S
7: Update vi, ∀i = 1, . . . ,S ◃ According to (6.14)
8: Update xi, ∀i = 1, . . . ,S ◃ According to (6.15)
9: t ++ ◃ t is the number of iterations

10: end while
Output: x∗ and f (x∗)

6.5 Experimental results
When comparing the effectiveness of different optimization heuristics, a standard perfor-
mance measure is the best fitness a certain algorithm can reach within a predefined num-
ber of function evaluations. This is based on the assumption that the dominating factor in
measuring computational effort is fitness evaluation, which is usually valid for complex op-
timization problems [13, 15, 51]. In the experiments, this, is modeled as if the maximum
computational resource budget available to carry out a task were limited, which is equiv-
alent to a situation where the maximum time budget for which the best solution has to be
delivered is limited.

Although the studied optimization algorithms can be simply extended and adapted for
real-world optimization problem, such adaptation may require more elaborate mechanisms.
One example of this is constraint-handling.2 It is well-known that in real-world optimiza-
tion problems there are normally constraints of different types (e.g., related to the geometry
of structural elements to completion times, etc.) that must be satisfied for a solution to be
acceptable. Traditionally, penalty functions have been used to handle constraints [7]. How-
ever, because of the several problems associated to penalty functions (e.g., the definition
of appropriate penalty values is normally a difficult task that has a serious impact on the
performance of the optimizer), some authors have proposed alternative constraint-handling
approaches that require less critical parameters and perform well across a variety of prob-
lems (see for example [7, 34, 50]).

In the experiments described in this section, the common parameters used in each algo-
rithm, such as population size and total number of fitness evaluation, where chosen to be the
same. Unless indicated otherwise, the population size is set at 50 and the maximum number
of fitness evaluation, MaxIteration, is set at 100,000. For Gene regulatory network (GRN)
model identification problem (Section 6.5.2), the maximum number of fitness evaluation is
set at 200,000.

2Although constraint-handling techniques are very important in real-world optimization problems, their dis-
cussion is beyond the scope of this article, due to space limitations. Interested readers are referred to other refer-
ences for more information on this topic (see for example [34, 49]).

6.5 Experimental results 117

PSO settings

The PSO parameters across the experiments have been φ = 4.1, φ1 = φ2 and χ = 0.729,
which is equivalent to setting C1 =C2 = 1.496 and w = 0.729 [6].

GSA settings

The GSA parameters are as follows: G0 is set at 100, α is set at 20, Kbest is set at number
of particles, S, and is linearly decreased to 1 in the final iteration, (MaxIteration) [46].

mdGSA settings

The common setting are GSA settings. The upper and lower bound of mass are set at 1 and
0.01, respectively.

Because the optimization techniques under study are stochastic in nature, for a given
function of a given dimension 30 independent runs where executed for all ξ and ζ values.
Throughout the experiments discussed in this study, the population size and maximum fit-
ness evaluation remain fixed, although it is well known that these control-parameters affect
the performance of the algorithms. The reason not to change the parameters was primarily
the motivation of our study in exposing the center-seeking behavior and IRB of GSA, rather
than emphasizing its performance under different control-parameter settings. The second
reason relates to the assumption that end-users do not know much about the algorithmic
parameters for their optimization problem.

6.5.1 Experiment 1: Standard optimization problems
From the test beds studied in [46, 61], those with varying dimensions are used in this study
to capture the CS behavior of GSA [46], in addition to those studied in [33]. The test beds
along with their characteristics are listed in Table 6.123.

Because the primary objective of this study is to specify the center-seeking behavior
of GSA, the Schwefel function is excluded, since its optimal solution is not close to the
center of the search space. In Table 6.12, D is the dimension of function. The optimal
solution f (x∗) for all the adopted test functions is located at [0, . . . ,0], with the exception

of Dixon-Price, that has its optimal solution located at 2−
2d−2

2d for d = 1,2, . . . ,D as well as
Levy and Rosenbrock with optimal solution at [1, . . . ,1]. Of the 14 adopted test studies,
half are unimodal, while the others are multimodal. The set contains five separable and nine
non-separable functions. A separable function can be decomposed into D one-dimensional
functions.

The performance of the algorithms is evaluated from both accuracy and robustness per-
spectives. Accuracy is the degree of precision of an optimization algorithm in locating an
optimal solution. An algorithm with a higher accuracy tends to come closer to the op-
timal solution. Accuracy is studied in two different settings for optimization problems,

3Note that, in [46], the Rosenbrock function (also known as Banana problem) is treated as a unimodal test
function when D is set at 30, while it is indeed multimodal when the problem dimensions is more than three [17,
53].

118 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

ξ-Accuracy and ζ-Accuracy. ξ-Accuracy refers to the performance of the optimization al-
gorithms (OAs) under study when the center of the search space changes, while ζ-Accuracy
refers to the performance of OAs when the initialization region changes. Robustness is de-
fined here as the degree of bias of an optimization heuristics on the center of the search
space or the initialization region. A robust optimization algorithm has no CS nor IR bias.

In our experiments, the metrics are measures in a log-linear scale, because the best-of-
run found by each algorithm, in many cases, changes several orders of magnitude as a result
of ξ-CO and/or ζ-RS.

ξ-CO test results

Figures 6.2 to 6.3 are the test results of the ξ-CO on a selection of the studied standard
benchmark problems when D is set at 50 and 100, respectively. The x-axis is ξ and the
y-axis is the performance of each OA, averaged over r f = 30 independent runs. Throughout
this study ξL and ξU are set at 5 and 45 respectively and the step size ξs is set at 5. These
choices for ξL and ξU are based on the assumption that an optimal solution of a real-world
problem is usually neither at the center of the search space, nor at the boundaries, suggesting
ξ = 0 and ξ = 50 are not interesting cases to study.

Figures 6.2 to 6.3 show that, as a result of downsizing the search space, the performance
of the PSO algorithm is nearly a horizontal line in most of the experiments. The performance
of the GSA deteriorates quickly by moving the optimal solution from the center of the search
space. mdGSA falls somewhere in between.

Tables 6.1 and 6.3 summarize the CSBξL−ξU
ξs

, when D is set at 50 and 100, respectively.
In each table, asterisk symbols are used to denote no statistically significant association
between the observed change in estimation of the best-of-run as a result of change in ξ
using F-statistics. Statistical testing is performed to determine whether or not CSBξL−ξU

ξs

measures are zero, in addition to testing if CSBξL−ξU
ξs

(mdGSA) is statistically smaller than

that of CSBξL−ξU
ξs

(GSA).
In the case of Step function, F14, the optimal solution, 0, is attainable under a relatively

wide range of design values. This, in log-linear scale, leaves us with no way to fit a line to
the observed performance. Hence, the Step function is excluded from Tables 6.1 and 6.3.
As a replacement for it, the convergence curse of some selected ξ values are visualized in
Figure 6.4.

For each of the nine ξ values on each of the 14 problems, the optimization methods are
statistically compared using pairwise contrast. The number of times an OA has a statistically
significant superiority (SSS) compared to other optimization algorithms on a total of 9∗14
problems is shown in Tables 6.2 and 6.4. We also report the number of times an optimization
approach achieves the best result, best mean and best median when it is statistically superior
to others. As an example, the number of times an algorithm performs best is the number
of times a) it is statistically superior to others and b) it has the best fitness over 30 runs
compared to other competing algorithms. In addition, the number of times the worst result
is achieved is reported.

Results on 50D problems First, we evaluate the robustness of each algorithm when the
dimension of the optimization problems is set at 50. For each optimization algorithm,

6.5 Experimental results 119

CSB5−45
5 are reported in Table 6.1. The slope of fitted line describing center-seeking bias

of PSO (Mdn = -0.3019) was not significantly different from zero (Wilcoxon signed-rank,
W=33, p=0.2071) while for GSA (Mdn = 5.8795, Wilcoxon signed-rank, W=1, p=2.44E-4)
and mdGSA (Mdn = 0.9621, Wilcoxon signed-rank, W=8, p=0.0030) the fitted line had
a slope significantly different from zero. Interestingly, the observed CSB5−45

5 (GSA) was
significantly higher than CSB5−45

5 (mdGSA) (Wilcoxon rank sum test, W=224, p = 0.069).
Out of total of 9*14 experiments each repeated 30 times, when D = 50, mdGSA and

GSA are competing closely when looking at the number of times they were statistically su-
perior to the others (Table 6.2). As a result, a statistical test of significance was performed on
median of fitness they both can achieve under different settings of studied optimization prob-
lems. For that, logarithmic transformation of the median of fitness values was performed in
the first place (because the Wilcoxon test assumes that the distribution of the data, although
not normal, is symmetric). Wilcoxon paired sample test (W=3399, p=0.8865) confirms that
there is no significant difference between the performance of GSA and mdGSA. Note that,
due to logarithmic transformation of the medians, the Step function is excluded from the
test, which means that the test is performed on 13 test problems, each with 9 different ξ
values.

So, while mdGSA and GSA come in joint first place, PSO, with only two cases of SSS,
cames second (Table 6.2). While PSO is the most robust of the algorithms under study, it
did not perform better than the others in terms of its ξ-accuracy.

The picture changes when looking at other measures, for instance the worst solutions
over the 30 runs. While GSA and mdGSA come close in terms of their statistical superiority,
mdGSA shows the worst fitness in only 13 cases, compared to 47 cases for GSA, which
suggests that GSA is more susceptible to trapping around a local optimum and missing the
global optimum.

Table 6.1: CSB5−45
5 of the studied algorithms when D is set at 50.

Simulation results
CSB5−45

5 (GSA) CSB5−45
5 (mdGSA) CSB5−45

5 (PSO)

Ackley 9.219 1.25 -0.49*
Dixon 1.217 0.01371 0.4631
Griewank 5.879 2.195 0.8024*
Levy 29 12.42 4.599
Penalty1 31.3 5.48 -1.596*
Penalty2 49.75 0.856* -2.843
Quartic -0.05537* 0.01948* -1.119
Rastrigin 2.02 1.503 0.2341
Rosenbrock 0.3789 0.9621 -0.04733*
Schwefel222 4.5 1.074 -0.3019
Schwefel12 11.01 -0.5769 0.1159*
Schwefel121 11.79 -0.02214* -0.3442
Sphere 4.285 0.02609* -0.6474

120 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

(a)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

(b)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

1

10
2

10
3

10
4

10
5

10
6

10
7

(c)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50

10
−8

10
−6

10
−4

10
−2

10
0

10
2

(d)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50

10
−20

10
−15

10
−10

10
−5

10
0

(e)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

(f)

GSA

mdGSA

PSO

Figure 6.2: Test results of the ξ-CO for GSA (blue), mdGSA (red) and PSO (black) when
D = 50. a) Dixon-Price, b) Quartic, c) Schwefel P1.2, d) Schwefel P2.21,
e) Sphere, f) Step.

6.5 Experimental results 121

Table 6.2: Comparison results of the three studied algorithms (GSA, mdGSA and PSO)
when ξ changes from 5 to 45 and when D is set at 50.

Simulation results
GSA mdGSA PSO

SSS a 57 51 2
Best b 56 33 1
Worst c 48 12 63
Best mean d 43 49 2
Best median e 57 51 2
a # of times the fitness values are statistically superior.
b # of times the best fitness value is obtained.
c # of times the worst fitness value is obtained.
d # of times the best mean of fitness values is obtained.
e # of times the best median of fitness values is obtained.

Results on 100D problems Table 6.3 summarizes the results of the studied algorithms
when D is set at 100 considering CSB5−45

5 metric. In this case again the null hypothesis
of equality of median of CSB5−45

5 (PSO) to zero is accepted (Mdn = -0.1096, Wilcoxon
signed-rank, W=32, p=0.1878) while for both GSA (Mdn = 12.3409, Wilcoxon signed-rank,
W=0, p=1.22E-4) and mdGSA (Mdn = 3.4746, Wilcoxon signed-rank, W=0, p=1.22E-4)
this hypothesis is rejected. CSB5−45

5 (mdGSA) was statistically lower than CSB5−45
5 (GSA)

(Wilcoxon rank sum test, W=215, p = 0.0227), suggesting that mdGSA indeed dilutes the
strong center-seeking bias of GSA. This can also be confirmed by looking at the median of
the two optimization heuristics.

Note that, as a result of an increase in the dimension of the search space, GSA loses
its ξ-accuracy in favor of mdGSA (Table 6.4). GSA, out of a total of 9*14 experiments,
is statistically superior to the others in 20 cases, mdGSA in 67 cases and PSO in only 11
cases. Wilcoxon paired-sample test (W=1341, p=9.4594E-9) also confirms the superiority
of mdGSA when looking at the logarithmic transformation of the median of their perfor-
mance on the set of optimization problems.

While GSA shows the worst results in 71 cases, and PSO in 55 cases, this was never
the case for mdGSA, which, again suggests that GSA, when compared to mdGSA, is more
susceptible to trapping around a local optimum.

ξ-CO test results on Step function The results of the Step function are not presented in
Tables 6.1 and 6.3. Instead, for ξ = {5,25,45}, Figure 6.4 compares the performance of the
algorithms under study. In this figure, GSA5 for instance means the performance of GSA
when ξ is set at 5. The results presented are averaged over 30 independent runs to eliminate
the random effect of arbitrary initialization of initial population.

When D = 50 (Figure 6.4.a) as a result of moving the center of the search space, the
performance of both PSO and mdGSA does not change very much. For GSA, there is a
clear deterioration in performance when the center of the search space is moved. When
ξ = 5 (which basically means that the optimal solution is near to the center of the search
space), GSA locates the optimal solution very quickly and defeats its contenders, while it

122 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 5 10 15 20 25 30 35 40 45 50
10

−1

10
0

10
1

10
2

10
3

10
4

(a)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(b)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

3

10
4

10
5

10
6

10
7

10
8

10
9

(c)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

−1

10
0

10
1

10
2

(d)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50

10
−15

10
−10

10
−5

10
0

10
5

(e)

GSA

MGSA

PSO

0 5 10 15 20 25 30 35 40 45 50
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

(f)

GSA

mdGSA

PSO

Figure 6.3: Test results of the ξ-CO for GSA (blue), mdGSA (red) and PSO (black) when
D = 100. a) Dixon-Price, b) Quartic, c) Schwefel P1.2, d) Schwefel P2.21,
e) Sphere, f) Step.

6.5 Experimental results 123

Table 6.3: CSB5−45
5 of the studied algorithms when D is set at 100.

Simulation results
CSB5−45

5 (GSA) CSB5−45
5 (mdGSA) CSB5−45

5 (PSO)

Ackley 26.59 15.35 -0.1096*
Dixon 5.409 2.789 -0.02233*
Griewank 4.043 2.863* -0.6713
Levy 10.98 7.655 -0.3052
Penalty1 7.644 5.933 -0.1683
Penalty2 12.43 5.624 -0.5562
Quartic 44.37 5.285 -1.158
Rastrigin 1.943 1.627 0.2927
Rosenbrock 12.34 2.723 0.06779*
Schwefel222 17.93 12.84 -0.1035*
Schwefel12 14.21 3.023 0.897
Schwefel121 1.737 3.475 2.457
Sphere 54.84 2.904 -0.5122

Table 6.4: Comparison results of the three studied algorithms (GSA, mdGSA and PSO)
when ξ changes from 5 to 45 and when D is set at 100.

Simulation results
GSA mdGSA PSO

SSS a 20 67 11
Best b 19 58 5
Worst c 71 0 55
Best mean d 14 63 11
Best median e 20 67 11
a # of times the fitness values are statistically superior.
b # of times the best fitness value is obtained.
c # of times the worst fitness value is obtained.
d # of times the best mean of fitness values is obtained.
e # of times the best median of fitness values is obtained.

fails to locate the optimal solution when it is removed from the center of the search space
(ξ = {25,45}).

With regard to the case where the dimension of the search space is set at 100, the results
of PSO basically remain the same (Figure 6.4.b). While, in the beginning of the search, for
ξ = 5, GSA has the greatest reduction of fitness among its competitors, it has the highest
performance deterioration when the center of the search space is moved, confirming its
strong center-seeking bias. mdGSA, although defeating GSA under equal settings in all
three cases, shows a degrading performance when ξ is set at 45. These observations are

124 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−2

10
0

10
2

10
4

10
6

Iteration

F
itn

es
s

(a)

GSA
5

mdGAS
5

PSO
5

GSA
25

mdGAS
25

PSO
25

GSA
45

mdGAS
45

PSO
45

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Iteration

F
itn

es
s

(b)

GSA
5

mdGAS
5

PSO
5

GSA
25

mdGAS
25

PSO
25

GSA
45

mdGAS
45

PSO
45

Figure 6.4: Performance comparison on Step function for ξ = {5,25,45} when a) D = 50,
b) D = 100.

consistent with our previous findings.

ζ-RS test results

Figures 6.5 to 6.6 contain the test results of the ζ-RS on the test problems when D is 50 and
100, respectively. The x-axis is the percentage of shrinking the initialization region and the
y-axis is the performance averaged over 30 independent runs. An algorithm with no IRB
has the opportunity to explore areas outside the initialization region.

Throughout this study, ζs is set at 10 when ζL = 0 and ζU = 90. A line best fitted to
10*30 observations has a slope of IRBζL−ζU

ζs
.

Tables 6.5 and 6.7 present an estimation of the degree of change in the quality of best-of-
run of each optimization heuristic as a result of shrinking the initialization region, when the
dimension of problems are set at 50 and 100, respectively. Here, again, in each table asterisk
symbols are used to denote no statistically significant association between the observed
change in the estimation of the best-of-run as a result of change in ζ using F-statistics.

For the same reason as ξ-CO, the Step function is excluded from the Tables 6.5 and 6.7.
Instead, for some selected ζ values, its convergence curse is visualized in Figure 6.7.

To compare ζ-accuracy of the optimization heuristics under study, we look at the number

6.5 Experimental results 125

Table 6.5: IRB0−90
10 , Initialization region bias when ζ changes from 0 to 90 and when D is

set at 50.

Simulation results
IRB0−90

10 (GSA) IRB0−90
10 (mdGSA) IRB0−90

10 (PSO)

Ackley 1.162 -0.005047* 3.556
Dixon 0.001543* -8.645e-015* 0.1817
Griewank 3.462 -0.48* 0.1506*
Levy 1.255* -0.5644* 3.842
Penalty1 13.02 0.6169* 0.2494*
Penalty2 22.8 -0.6841* 0.5677*
Quartic -0.02836* -0.01201* 0.8033
Rastrigin -0.000824* -0.03876 0.1463
Rosenbrock 0.7701 0.01091* 0.2249
Schwefel222 -0.007248* -0.002421* 0.4908
Schwefel12 6.375 0.01072* 0.8677
Schwefel121 5.495 -0.04105 0.3853
Sphere 30.28 0.003999* 0.2297

of times one is statistically superior to the others and the number of times one has the worst
fitness (Tables 6.6 and 6.8). For each optimization heuristic, the number of test problems
equals 10*14 (10 ζ values for each of the 14 problems). We also report the number of times
an optimization method has the best performance, best mean and best median when it is
statistically superior. The number of times each has the worst fitness is reported as well.

Results on 50D problems In 10 of the 13 optimization problems, the performance of the
PSO algorithm degrades as a result of shrinking the initialization space. However compared
to GSA, its IRB0−90

10 is small. The performance of the GSA on eight optimization problem
degrades under ζ-RS test. The mdGSA is more robust to the initialization region and is
nearly a straight line in 11 of the 13 experiments. The slope is significantly different than
zero in only two cases. In both of these cases, the slope is negative, meaning that the
performance of the algorithm increases as a result of shrinking the initialization region. A
possible explanation for this will be suggested later.

For GSA (Wilcoxon signed-rank, W=227.5, p=0.0012) and PSO (Wilcoxon signed-
rank, W=240.5, p=1.60E-4), the IRB0−90

10 values are significantly different than zero, while
in the case of mdGSA (Wilcoxon signed-rank, W=162.5, p=0.1655), the IRB0−90

10 ’s does not
differ significantly from zero, which suggests that both GSA and PSO are not robust with
regard to the initialization region.

In the combination of 14 test problems and 10 initializations regions, GSA and mdGSA
are competing closely when looking at the number of times each of them is significantly
superior to the others (in 75 and 51 cases, respectively). So, similar to ξ-CO, a statistical
test of significance is performed on the median of fitness each of them can obtain on different
settings of studied optimization problems when a logarithmic transformation of the median

126 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

of fitness values is performed. Wilcoxon signed-rank test4 results (W=3981, p=0.5205)
confirm that there is no significant difference between the performance of GSA and mdGSA.
So, mdGSA and GSA come in joint first place, while PSO comes in second place.

In 69 cases, PSO has the worst fitness over 30 runs, while GSA, with 58 cases, comes
in second place and mdGSA, with 11 cases, shows the best performance. This suggests
that mdGSA is less susceptible to the attraction of local optima. Table 6.6 summarizes the
results.

Table 6.6: Comparison results of the three studied algorithms (GSA, mdGSA and PSO)
when ζ changes from 0 to 90 and when D is set at 50.

Simulation results
GSA mdGSA PSO

SSS a 75 51 0
Best b 74 43 0
Worst c 58 11 69
Best mean d 56 50 0
Best median e 75 51 0
a # of times the fitness values are statistically superior.
b # of times the best fitness value is obtained.
c # of times the worst fitness value is obtained.
d # of times the best mean of fitness values is obtained.
e # of times the best median of fitness values is obtained.

Results on 100D problems In Table 6.7, the slope of the line fitted to observed best-of-run
fitness values for each benchmark problem is presented when D is set at 100. IRB0−90

10 (PSO)
has significantly positive associations with ζ in all cases. GSA has a significantly positive
IRB0−90

10 in 11 of the total of 13 cases, while IRB0−90
10 (mdGSA) has no significant positive

associations with ζ. This suggests that GSA (Wilcoxon signed-rank, W=247, p=9.97E-5)
and PSO (Wilcoxon signed-rank, W=260, p=4.15E-6) both have significant initialization
region bias when D is set at 100, while mdGSA (Wilcoxon signed-rank, W=156, p=.29) has
IRB values that are significantly close to zero.

As was the case when the dimension of the test problems is set at 50, mdGSA again
has some negative IRB values. An intuitive explanation for this observation goes as fol-
lows. Due to high mass discrimination of mdGSA, when the initialization region is small
compared to the entire design space, the particle with the highest fitness that is equivalent
to highest mass is better able to direct the entire swarm towards the optimal solution. As a
result the algorithm performs slightly better compared to when the initialization is the entire
search space. It is important to point out that the improvement is not visible in most of the
cases from Figures 6.5 and 6.6 and that this improvements, in all 13 cases, has no significant
correlation with ζ, confirmed by analysis of covariance (F-test). When compared to GSA,
mdGSA has significantly less IRB (Wilcoxon rank sum test, W=246, p = 1.65E-4). So, in

4Note that, again, the Step function is excluded from the test due to logarithmic transformation of the medians,
which means that the test is performed on 13 test problems, each with 10 different ζ values.

6.5 Experimental results 127

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

(a)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

(b)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100

10
2

10
3

10
4

10
5

10
6

10
7

10
8

(c)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100

10
−8

10
−6

10
−4

10
−2

10
0

10
2

(d)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

(e)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
0

10
2

10
4

(f)

GSA

mdGSA

PSO

Figure 6.5: Test results of the ζ-RS for GSA (blue), mdGSA (red) and PSO (black) when D=
50. a) Dixon-Price, b) Quartic, c) Schwefel P1.2, d) Schwefel P2.21, e) Sphere,
f) Step.

terms of robustness in change in IR, mdGSA defeats its competitors.

Summarized in Table 6.8, mdGSA presents higher ζ-accuracy compared to its two com-
petitors. With 87 cases of significant superiority out of total of 14*10 cases, mdGSA ranked
in the first place, followed by GSA, with 26 cases, and PSO, with zero cases. Wilcoxon
paired-sample test (W=1735, p=4.5869E-9) also confirms the superiority of mdGSA when
looking at the logarithmic transformation of the median of their performance.

128 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

Table 6.7: IRB0−90
10 , Initialization region bias when ζ changes from 0 to 90 and when D is

set at 100.

Simulation results
IRB0−90

10 (GSA) IRB0−90
10 (mdGSA) IRB0−90

10 (PSO)

Ackley 11.29 0.05864* 1.153
Dixon 0.286 -0.02044* 0.1956
Griewank 2.623 0.4001* 0.2914
Levy 2.865 -0.05098* 0.9592
Penalty1 10.06 0.03984* 0.3084
Penalty2 10.05 0.007134* 0.1713
Quartic -0.04523* -0.002844* 0.9314
Rastrigin 0.00851* -0.02011* 0.2116
Rosenbrock 8.438 -0.0005933* 0.4377
Schwefel222 2.635 -0.2029* 0.6911
Schwefel12 7.004 -0.01445* 1.124
Schwefel121 1.116 -0.09892* 0.3697
Sphere 21.57 0.004679* 0.2886

GSA has the worst fitness in 75 cases, and PSO in 65 cases. mdGSA has the smallest
number of worst fitness compared to that of GSA and PSO, confirming its superiority over
its competitors in terms of ζ-accuracy. This again suggests that mdGSA is less susceptible
to premature convergence to local optimum when compared to PSO and GSA.

Table 6.8: Comparison results of the three studied algorithms (GSA, mdGSA and PSO)
when ζ changes from 0 to 90 and when D is set at 100.

Simulation results
GSA mdGSA PSO

SSS a 26 87 0
Best b 26 73 0
Worst c 75 0 65
Best mean d 24 85 0
Best median e 26 87 0
a # of times the fitness values are statistically superior.
b # of times the best fitness value is obtained.
c # of times the worst fitness value is obtained.
d # of times the best mean of fitness values is obtained.
e # of times the best median of fitness values is obtained.

ζ-RS test results on Step function Again for the Step function, the results are not pre-
sented in Tables 6.5 and 6.7. So the performance of the studied algorithms when ζ =

6.5 Experimental results 129

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

(a)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

10
0

(b)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

(c)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

10
2

(d)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−20

10
−15

10
−10

10
−5

10
0

10
5

10
10

(e)

GSA

mdGSA

PSO

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(f)

GSA

MGSA

PSO

Figure 6.6: Test results of the ζ-RS for GSA (blue), mdGSA (red) and PSO (black) when
D = 100. a) Dixon-Price, b) Quartic, c) Schwefel P1.2, d) Schwefel P2.21,
e) Sphere, f) Step.

{10,50,90} are presented in Figure 6.7.
When D = 50 (Figure 6.7.a) GSA10 has a sharp fitness decrease. The performance

degrades significantly as a result of shrinking the initialization region (GSA50 and GSA90).
For mdGSA, the performance slightly changes as a result of change in IR, but the pattern
was not clear. The performance of PSO was basically the same under different IRs.

GSA10, when the dimension is set at 100 (Figure 6.7.b), has a sharp fitness change

130 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−2

10
0

10
2

10
4

10
6

Iteration

F
itn

es
s

(a)

GSA
10

mdGAS
10

PSO
10

GSA
50

mdGAS
50

PSO
50

GSA
90

mdGAS
90

PSO
90

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Iteration

F
itn

es
s

(b)

GSA
10

mdGAS
10

PSO
10

GSA
50

mdGAS
50

PSO
50

GSA
90

mdGAS
90

PSO
90

Figure 6.7: Performance comparison on Step function for ζ = {10,50,100} when a) D =
50, b) D = 100.

and becomes almost stagnant after approximately 300 iterations on average. As a result
of shrinking the search space, there is a clear pattern in deterioration of the performance
GSA. PSO exhibits similar patterns as expected, shrinking the initialization region does not
appear to affect its performance. For mdGSA, on the Step function and when the dimension
of the problem is set at 100, moving the optimum away from the center of the search space
improves the performance slightly. These observations are compatible with our former
findings.

6.5.2 Experiment 2: Gene regulatory network model identification

Gene regulatory network (GRN) model identification can be a good real-world application
to test the center-seeking behavior and convergence speed of the optimization algorithms,
since the optimal solution is, naturally, not at the center of the search space. Moreover
the problem is highly nonlinear and complex [20, 28, 55]. A short introduction to GRN is
provided below.

6.5 Experimental results 131

Gene regulatory Network

The activation and inhibition of genes are governed by factors within a cellular environment
and outside of the cell. This level of activation and inhibition of genes is integrated by
gene regulatory networks (GRNs), forming an organizational level in the cell with complex
dynamics [9].

GRNs in a cell are complex dynamic network of interactions between the products of
genes (mRNAs) and the proteins they produce, some of which in return act as regulators of
the expression of other genes (or even their own gene) in the production of mRNA. While
low cost methods to monitor gene expression through microarrays exist, we still know little
about the complex interactions of these cellular components. Mathematical modeling of
GRNs is becoming popular in the post-genome era [29, 30]. It provides a powerful tool, not
only for a better understanding of such complex systems, but also for developing new hy-
potheses on underlying mechanisms of gene regulation. The availability of high-throughput
technologies provides time course expression data, and a GRN model built by reverse en-
gineering, may explain the data [38]. Since many diseases are the result of polygenic and
pleiotropic effects controlled by multiple genes, genome-wide interaction analysis is prefer-
able to single-locus studies. Readers looking for more information on GRN might refer to
Schlitt [52].

S-system gene network model

Usually, sets of ordinary differential equations (ODEs) are used as mathematical models for
these systems [58]. S-system approaches, on the other hand, use time-independent variables
to model these processes. Assuming the concentration of N proteins, mRNAs, or small
molecules at time t is given by yt

1,y
t
2, . . . ,y

t
i, . . . ,y

t
N , S-systems model the temporal evolution

of the ith component at time t by power-law functions of the form (6.17).

dyt
i

dt
= αi

(
N

∏
j=1

(yt
j)

gi j

)
−βi

(
N

∏
j=1

(yt
j)

hi j

)
. (6.17)

The first term represents all factors that promote the expression of component i at time t,
yt

i , whereas the second term represents all factors that inhibit its expression. In a biochemical
engineering context, the non-negative parameters αi , βi are called rate constants, and real-
valued exponents gi j (G matrix, [G]) and hi j (H matrix, [H]) are referred to as kinetic order
for synthesis and kinetic order for degradation, respectively.
{α,β, [G], [H]} are the parameters that define the S-system. The total number of param-

eters in the S-system is 2N(N + 1). The parameter estimation is used to determine model
parameters so that the dynamic profiles fit the observation.

Population based S-system model parameter identification

S-system based GRN inference was formulated by Tominaga et al. [57] as an optimization
problem to minimize the difference between the model and the system. To guide the popu-
lation in the search space, some measure of discrimination is needed. The most commonly
used quality assessment criterion is the relative mean quadratic discrepancy between the
observed expression pattern yt

i and the model output ŷt
i [39].

132 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

C
on

ce
nt

ra
tio

n

Time

Gene 1
Gene 2

Figure 6.8: Target time dynamics of adopted gene network.

f =
N

∑
i=1

T

∑
t=1

(
ŷt

i− yt
i

yt
i

)2

, (6.18)

where T represents the number of time points.
To assess the performance of the methodologies studied here, a gene regulatory network

consist of two genes generated by the parameters provided in Table 6.9 is adopted [57].
In the original implementation, the search space for αi and βi is limited to [0.0, 20] and
for gi j and hi j to [−4.0, 4.0] and y0

1 and y0
2 are set at 0.7 and 0.3, respectively. The gene

expression levels are plotted in Figure 6.8 and each consist of 50 time course of expression
level per gene. To study the effect of initialization region on the converge of the optimization
algorithms the initialization set to cover part of the search space. In this study, αi and βi is
initialized in [10, 20] and both gi j and hi j to [2.0, 4.0].

Table 6.9: S-System Parameters adopted for model validation [57].

Network parameters
i αi βi gi1 gi2 hi1 gi2

1 3 3 0 2.5 -1 0
2 3 3 -2.5 0 0 2

Results

The fitness transitions of studied methodologies are plotted in Figure 6.9. All algorithms
discussed here start with a randomly generated population of solutions, which means they
all start with close fitness values. The Figures are averaged over 30 independent runs.

6.6 Discussions 133

0 500 1000 1500 2000 2500 3000 3500 4000

2

4

6

8

10

12

14

Number of iteration

F
itn

es
s

GSA
mdGSA
PSO

Figure 6.9: Performance comparison of the GSA, mdGSA and PSO on GRN parameter iden-
tification.

All three OAs start with a sharp fitness decrease in the beginning. GSA almost stagnates
after approximately 2,000 iterations. mdGSA shows a much better progression compared
to PSO and GSA.

As shown in Table 6.10, the results of the proposed mdGSA are better than those of GSA
when the standard cut-off for considering a p-value for a statistically significant difference
is set at p < 0.05. While mdGSA is not significantly superior to PSO, it shows a better
performance, with a smaller standard deviation.

Table 6.10: A Wilcoxon Rank Sum test of the fitness of last generation for GRN parameter
identification (30 runs).

Simulation results
NET1 Mean std. p-Value

PSO 2.8420 2.1192 0.3052
GSA 4.3252 1.6087 3.32E-6
mdGSA 2.4323 0.8699 -

6.6 Discussions
The heuristics we studied are compared on the basis of their robustness and accuracy (per-
formance). We divided the evaluation of robustness into the following two assessments:

• When studying center-seeking bias, PSO is found to be the most appropriate opti-

134 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

mization algorithm (OA). It shows no observable CS bias. mdGSA comes second,
followed by GSA. Statistical comparisons confirm that mdGSA holds less bias to-
wards the center of the search space when compared to GSA.

• When studying initialization region bias, the performance of the PSO deteriorates
(statistically) when the IR is tightened. This is consistent with existing literature [42]
and confirms that an efficient swarm initialization improves performance. GSA also
showed significant deterioration in its performance. mdGSA showed no statistical
change in its performance as a result of shrinking the IR.

From the change in performance that comes from a change in the center of the search
space, as well as a change in IR, we can conclude that mdGSA has less CS bias and less
IRB compared to GSA. It is thus more robust.

From an exploration-exploitation perspective, ζ-RS provides us with better understand-
ing of the behavior of the optimization algorithms. Algorithms with high IRB have limited
abilities to explore promising regions outside of the IR. This is associated with the algo-
rithm’s weak exploration. Looking at the CS bias metric, GSA holds a strong search bias
towards the center of the search space. It even does not have sufficient exploration to search
beyond the initialization region, which lack is confirmed by the metric proposed to measure
IRB. This puts into question the robustness of GSA. mdGSA, on the other hand, while it
enjoys less center-seeking bias, has enough exploration which is confirmed by its statisti-
cally zero IRB. This is considered to be caused by the dispersed mass assignment procedure.
Consequently, mdGSA has a high level of robustness.

As had been shown, mdGSA has a number of negative IRBs. This observation is in
line with the statement made in [43]. There we see that the initial population is beneficial
when it guides the population towards the global optimum, and that, whenever possible, the
alleviation of the negative effects of this bias should be sought. Among the optimization
techniques which we studied, mdGSA is the only one that takes advantage of the initializa-
tion region to guide the population.

The evaluation of accuracy is divided into the following two assessments:

• In low-dimensional optimization problems, both GSA and mdGSA outperform PSO.
There is no significant difference between GSA and mdGSA when counting the num-
ber of times one is statistically superior to the others. This is confirmed by a statistical
test. However, when we collect total number of worst solutions, mdGSA performs
better than GSA.

• In high-dimensional optimization problems, mdGSA performs better than both PSO
and GSA when we consider the number of times one is statistically superior to the
others. The same results is achieved when total of worsts solutions are looked at.

Table 6.11 presents a summary of the comparison of the optimization heuristics exam-
ined in this study. It does so in terms of both their robustness and this accuracy. Robustness
is compared by looking at the metrics presented to measure CSB and IRB. Accuracy is
compared by looking at the quality of solutions found for benchmark optimization prob-
lems under two different settings, ξ-accuracy and ζ-accuracy. To summarize, in terms of
robustness when the center of the search space is changed, PSO is the best of those we
studied. In terms of robustness when changes are made in the initialization region, mdGSA

6.7 Conclusions and Future Work 135

Table 6.11: Best of the studied optimization heuristics when looking at their Robustness and
Accuracy.

Robustness ξ-Accuracy ζ-Accuracy

CSB IRB S-test Worst S-test Worst

GSA / GSA /
Low D PSO mdGSA

mdGSA
mdGSA

mdGSA
mdGSA

High D PSO mdGSA mdGSA mdGSA mdGSA mdGSA

places first. When looking at ξ-accuracy and ζ-accuracy, GSA and mdGSA come joint first
for low-dimensional problems, while mdGSA places first for high-dimensional problems.
mdGSA comes in first place when looking at the number of times it has the worst fitness
compared to the other contenders. High numbers of resulting in worst fitness suggests the
susceptibility of PSO and GSA to becoming trapped in local optima.

Note that it is not in our interest to suggest not to use GSA because of its strong search
bias. User should be aware, rather, of the way in which it might affect their needs. It is also
notable that, in this work, the setting are those recommenced in original work. It must be
noted, however, that changing the algorithmic parameter settings and stopping criteria, the
benchmark functions, and even the grading criteria may change the results and conclusions.
In spite of these caveats, we believe these preliminary results are a promising indication of
the success of the proposed mdGSA on a wide range of optimization problems.

6.7 Conclusions and Future Work

Metaheuristics are a family of approximate methods used to find good solutions to compu-
tationally difficult optimization problems. While some optimization heuristics suffer from
various types of search bias, a review of the literature reveals a lack of an appropriate quan-
tification metric. The major contribution of this study is the development of metrics that
measure the center-seeking and initialization region bias of optimization heuristics. We also
propose an alternative for center offset, as we identified its assumption does not always hold.

Using the proposed metrics, the center-seeking (CS) bias and initialization region bias
(IRB) of GSA are exposed. Our interest in this study was not to improve the performance
of GSA, which can be archived by the integration of useful heuristics. Rather, it was about
presenting a solution to dilute its CS behavior and its IRB. Inspired by our recently in-
troduced global optimization process, we established a “mass-dispersed” version of GSA
called mdGSA. PSO served as our benchmark because it shows no bias towards the center
of the search space [26].

To further substantiate the limitations and capabilities of GSA and mdGSA in dealing
with real-world optimization problems, we want to apply them to a wider range of problems,
such as structural design optimization [15], the detection of hidden information in a spread-
spectrum watermarked signal [10], and problems of traffic control [12].

Several optimization heuristics have evolved in the last decade to facilitate solving op-

136 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

timization problems (see for example [21, 37, 48]), some of which suffer from different
types of search bias [59]. The framework presented in this study appears to be a viable ap-
proach when it comes to comparing different optimization heuristics. As part of our future
work, we are interested in using the framework proposed here to contrast different optimiza-
tion heuristics suitable to handling high-dimensional and complex real-world optimization
problems.

References
[1] Angeline, P. (1998). Using selection to improve particle swarm optimization. In Inter-

national Conference on Evolutionary Computation, pages 84–89.

[2] Branke, J. (2001). Evolutionary approaches to dynamic optimization problems-updated
survey. In GECCO Workshop on evolutionary algorithms for dynamic optimization prob-
lems, pages 27–30.

[3] Bratton, D. and Kennedy, J. (2007). Defining a standard for particle swarm optimiza-
tion. In Swarm Intelligence Symposium, pages 120–127.

[4] Chatterjee, A., Mahanti, G., and Pathak, N. (2010). Comparative performance of grav-
itational search algorithm and modified particle swarm optimization algorithm for syn-
thesis of thinned scanned concentric ring array antenna. Progress In Electromagnetics
Research B, 25:331–348.

[5] Chiong, R., Weise, T., and Michalewicz, Z. (2011). Variants of evolutionary algorithms
for real-world applications. Springer-Verlag New York Inc.

[6] Clerc, M. and Kennedy, J. (2002). The particle swarm-explosion, stability, and con-
vergence in a multidimensional complex space. IEEE Transactions on Evolutionary
Computation, 6(1):58–73.

[7] Coello, C. A. C. (2002). Theoretical and numerical constraint handling techniques used
with evolutionary algorithms: A survey of the state of the art. Computer Methods in
Applied Mechanics and Engineering, 191(11-12):1245–1287.

[8] Cohen, J., Cohen, P., West, S., and Aiken, L. (2003). Applied multiple regres-
sion/correlation analysis for the behavioral sciences. Lawrence Erlbaum Associates.

[9] Crombach, A. and Hogeweg, P. (2008). Evolution of evolvability in gene regulatory
networks. PLoS computational biology, 4(7):e1000112.

[10] Davarynejad, M., Ahn, C., Vrancken, J., van den Berg, J., and Coello Coello, C.
(2010). Evolutionary hidden information detection by granulation-based fitness approx-
imation. Applied Soft Computing, 10(3):719–729.

[11] Davarynejad, M., Forghany, Z., and van den Berg, J. (2012a). Mass-dispersed gravi-
tational search algorithm for gene regulatory network model parameter identification. In
Simulated Evolution and Learning (SEAL’12), pages 62–72.

6.7 Conclusions and Future Work 137

[12] Davarynejad, M., Hegyi, A., Vrancken, J., and van den Berg, J. (2011a). Motorway
ramp-metering control with queuing consideration using Q-learning. In 14th Interna-
tional IEEE Conference on Intelligent Transportation Systems (ITSC), pages 1652–1658.

[13] Davarynejad, M., Rezaei, J., Vrancken, J., van den Berg, J., and Coello, C. C. (2011b).
Accelerating convergence towards the optimal pareto front. In IEEE Congress on Evolu-
tionary Computation (CEC’11), pages 2107–2114.

[14] Davarynejad, M. and van den Berg, J. (2012). Simulated big bounce: a continuous
space global optimizer. Technical report, Faculty of technology policy and management,
Delft University of Technology, The Netherlands.

[15] Davarynejad, M., Vrancken, J., van den Berg, J., and Coello Coello, C. (2012b). A Fit-
ness Granulation Approach for Large-Scale Structural Design Optimization. In Chiong,
R., Weise, T., and Michalewicz, Z., editors, Variants of Evolutionary Algorithms for
Real-World Applications, pages 245–280. Springer-Verlag, Berlin.

[16] David, R., Precup, R., Petriu, E., Rădac, M., and Preitl, S. (2013). Gravitational search
algorithm-based design of fuzzy control systems with a reduced parametric sensitivity.
Information Sciences, 247(20):154–173.

[17] Deb, K., Anand, A., and Joshi, D. (2002). A computationally efficient evolutionary
algorithm for real-parameter optimization. Evolutionary computation, 10(4):371–395.

[18] Dorigo, M. and Caro, G. D. (1999). Ant colony optimization: a new meta-heuristic.
In IEEE Congress on Evolutionary Computation (CEC’99), pages 1470–1477.

[19] Duman, S., Güvenç, U., and Yörükeren, N. (2010). Gravitational search algorithm for
economic dispatch with valve-point effects. International Review of Electrical Engineer-
ing (IREE), 5(6):2890–2895.

[20] Forghany, Z., Davarynejad, M., and Snaar-Jagalska, B. (2012). Gene regulatory net-
work model identification using artificial bee colony and swarm intelligence. In IEEE
Conference on Evolutionary Computation (CEC’12), pages 949–954.

[21] Ghosh, S., Das, S., Kundu, D., Suresh, K., and Abraham, A. (2012). Inter-particle
communication and search-dynamics of lbest particle swarm optimizers: An analysis.
Information Sciences, 182(1):156–168.

[22] Glover, F. and Kochenberger, G. (2003). Handbook of metaheuristics. Springer.

[23] Güvenç, U., Sönmez, Y., Duman, S., and Yörükeren, N. (2012). Combined economic
and emission dispatch solution using gravitational search algorithm. Scientia Iranica,
19(6):1754–1762.

[24] Holland, J. (1975). Adaptation in natural and artificial systems. University of Michi-
gan Press, Ann Arbor, MI.

[25] Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for nu-
merical function optimization: artificial bee colony (abc) algorithm. Journal of Global
Optimization, 39(3):459–471.

138 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

[26] Kennedy, J. (2007). Some issues and practices for particle swarms. In IEEE Swarm
Intelligence Symposium (SIS’07), pages 162–169. IEEE.

[27] Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE Interna-
tional Conference on Neural Networks, volume 4, pages 1942–1948.

[28] Kikuchi, S., Tominaga, D., Arita, M., Takahashi, K., and Tomita, M. (2003). Dynamic
modeling of genetic networks using genetic algorithm and s-system. Bioinformatics,
19(5):643–650.

[29] Kimura, S., Ide, K., Kashihara, A., Kano, M., Hatakeyama, M., Masui, R., Nakagawa,
N., Yokoyama, S., Kuramitsu, S., and Konagaya, A. (2005). Inference of s-system mod-
els of genetic networks using a cooperative coevolutionary algorithm. Bioinformatics,
21(7):1154.

[30] Lee, W. and Tzou, W. (2009). Computational methods for discovering gene networks
from expression data. Briefings in bioinformatics, 10(4):408–423.

[31] Li, C. and Zhou, J. (2011). Parameters identification of hydraulic turbine governing
system using improved gravitational search algorithm. Energy Conversion and Manage-
ment, 52(1):374–381.

[32] Lopez-Molina, C., Bustince, H., Fernandez, J., Couto, P., and Baets, B. D. (2010). A
gravitational approach to edge detection based on triangular norms. Pattern Recognition,
43(11):3730–3741.

[33] Mariani, V. and Coelho, L. (2011). A hybrid shuffled complex evolution approach
with pattern search for unconstrained optimization. Mathematics and Computers in Sim-
ulation, 81(9):1901–1909.

[34] Mezura-Montes, E., editor (2009). Constraint-Handling in evolutionary optimization.
Springer, Berlin, Germany.

[35] Mitchell, T. (1997). Machine learning. McGraw Hill.

[36] Monson, C. and Seppi, K. (2005). Exposing origin-seeking bias in pso. In Proceedings
of the 2005 conference on Genetic and evolutionary computation, pages 241–248.

[37] Nasir, M., Das, S., Maity, D., Sengupta, S., Halder, U., and Suganthan, P. (2012).
A dynamic neighborhood learning based particle swarm optimizer for global numerical
optimization. Information Sciences, 209:16–36.

[38] Navlakha, S. and Bar-Joseph, Z. (2011). Algorithms in nature: the convergence of
systems biology and computational thinking. Molecular Systems Biology, 7(1).

[39] Noman, N. and Iba, H. (2005). Inference of gene regulatory networks using s-system
and differential evolution. In Genetic and Evolutionary Computation Conference, Wash-
ington, DC, pages 439–446.

6.7 Conclusions and Future Work 139

[40] Ono, I., Kita, H., and Kobayashi, S. (1999). A robust real-coded genetic algorithm
using unimodal normal distribution crossover augmented by uniform crossover: Effects
of self-adaptation of crossover probabilities. In Genetic and Evolutionary Computation
(GECCO’99), pages 496–503.

[41] Pal, K., Saha, C., Das, S., and Coello, C. C. (2013). Dynamic constrained optimization
with offspring repair based gravitational search algorithm. In 2013 IEEE Congress on
Evolutionary Computation (CEC’13), pages 2414–2421.

[42] Pant, M., Thangaraj, R., and Abraham, A. (2009). Particle swarm optimization: Per-
formance tuning and empirical analysis. In Abraham, A., Hassanien, A., Siarry, P., and
Engelbrecht, A., editors, Foundations of Computational Intelligence Volume 3, volume
203 of Studies in Computational Intelligence, pages 101–128. Springer Berlin / Heidel-
berg.

[43] Pelikan, M. and Sastry, K. (2009). Initial-population bias in the univariate estimation
of distribution algorithm. In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, pages 429–436.

[44] Precup, R., David, R., Petriu, E., Preitl, S., and Paul, A. (2011). Gravitational search
algorithm-based tuning of fuzzy control systems with a reduced parametric sensitivity.
Soft Computing in Industrial Applications, pages 141–150.

[45] Price, K., Storn, R., and Lampinen, J. (2005). Differential evolution: a practical
approach to global optimization. Springer Natural Computing Series.

[46] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2009). Gsa: a gravitational
search algorithm. Information Sciences, 179(13):2232–2248.

[47] Rashedi, E., Nezamabadi-Pour, H., and Saryazdi, S. (2011). Filter modeling us-
ing gravitational search algorithm. Engineering Applications of Artificial Intelligence,
24(1):117–122.

[48] Rowhanimanesh, A. and Akbarzadeh-T, M. (2011). Perception-based heuristic gran-
ular search: Exploiting uncertainty for analysis of certain functions. Scientia Iranica,
18(3):617–626.

[49] Runarsson, T. P. (2004). Constrained evolutionary optimization by approximate rank-
ing and surrogate models. In Proceedings of 8th Parallel Problem Solving From Nature
(PPSN VIII), pages 401–410.

[50] Runarsson, T. P. and Yao, X. (2000). Stochastic ranking for constrained evolutionary
optimization. IEEE Transactions on Evolutionary Computation, 4(3):284–294.

[51] Sastry, K., Goldberg, D., and Pelikan, M. (2001). Dont evaluate, inherit. In Proceed-
ings of the Genetic and Evolutionary Computation Conference, pages 551–558.

[52] Schlitt, T. (2013). Approaches to modeling gene regulatory networks: A gentle intro-
duction. In In Silico Systems Biology, pages 13–35.

140 6 Evaluating Center-Seeking and Initialization Bias: The case of PSO and GSA

[53] Shang, Y., , and Qiu, Y. (2006). A note on the extended rosenbrock function. Evolu-
tionary Computation, 14(1):119–126.

[54] Shaw, B., Mukherjee, V., and Ghoshal, S. (2012). A novel opposition-based gravita-
tional search algorithm for combined economic and emission dispatch problems of power
systems. International Journal of Electrical Power & Energy Systems, 35(1):21–33.

[55] Sı̂rbu, A., Ruskin, H., and Crane, M. (2010). Comparison of evolutionary algorithms
in gene regulatory network model inference. BMC Bioinformatics, 11(59).

[56] Storn, R. and Price, K. (1995). Differential evolution-a simple and efficient adaptive
scheme for global optimization over continuous spaces. Technical report, International
Computer Science Institute, Berkley.

[57] Tominaga, D., Okamoto, M., Maki, Y., Watanabe, S., and Eguchi, Y. (1999). Nonlinear
numerical optimization technique based on a genetic algorithm for inverse problems:
Towards the inference of genetic networks. In German Conference on Bioinformatics
Computer Science and Biology, pages 127–140.

[58] Tsai, K. and Wang, F. (2005). Evolutionary optimization with data collocation for
reverse engineering of biological networks. Bioinformatics, 21(7):1180.

[59] Whitacre, J. (2011). Recent trends indicate rapid growth of nature-inspired optimiza-
tion in academia and industry. Computing, 93(2):121–133.

[60] Wolpert, D. and Macready, W. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82.

[61] Yao, X., Liu, Y., and Lin, G. (1999). Evolutionary programming made faster. IEEE
Transactions on Evolutionary Computation, 3(2):82–102.

6.7 Conclusions and Future Work 141

Ta
bl

e
6.

12
:

Te
st

pr
ob

le
m

s
us

ed
in

th
e

ex
pe

ri
m

en
ts

.U
:U

ni
m

od
al

,M
:M

ul
tim

od
al

,S
:S

ep
ar

ab
le

,N
:N

on
-S

ep
ar

ab
le

Fu
nc

tio
n

na
m

e
M

at
he

m
at

ic
al

R
ep

re
se

nt
at

io
n

C
ha

ra
ct

er
is

tic
Se

ar
ch

sp
ac

e

A
ck

le
y

f 1
(x
)
=
−

20
ex

p
(−0

.2
√ 1 D

∑
D i=

1
x2 i) −e

xp
(1 D

∑
D i=

1
co

s(
2π

x i
)) +

20
+

e
M

N
[−

30
,3

0]
D

D
ix

on
-P

ri
ce

f 2
(x
)
=
(x

1
−

1)
2
+

∑
D i=

2
i(2x

2 i
−

x i
−

1) 2
U

N
[−

10
,1

0]
D

G
ri

ew
an

k
f 3
(x
)
=

1
40

00
∑

D i=
1

x2 i
−

∏
D i=

1
co

s(x i √
i) +

1
M

N
[−

60
0,

60
0]

D

f 4
(x
)
=

si
n2 (

πy
1)
+

∑
D i=

1(
y i
−

1)
2
[1

+
10

si
n2 (

πy
i+

1)
] +(y

D
−

1)
2 ,

L
ev

y
y i
=

1
+

x i
−

1
4

M
N

[−
10
,1

0]
D

f 5
(x
)
=

π D
{1

0
si

n
(π

y 1
)
+

∑
D i=

1
(y

i−
1)

2
[1
+

10
si

n2
(π

y i
+

1)
]+

(y
D
−

1)
2 }
+

Pe
na

liz
ed

1
∑

D i=
1

u
(x

i,
10
,1

00
,4
),

y i
=

1
+

x i
+

1
4

,u
(x

i,
a,

k,
m
)
=

 k(
x i
−

a)
m

;
x i
>

0
0;

−
a
<

x i
<

a
k(
−

x i
−

a)
m

;
x i
<

0

M
N

[−
50
,5

0]
D

f 6
(x
)
=

.1
{s

in
2
(3

πx
1)
+

∑
D i=

1
(x

i−
1)

2
[1
+

10
si

n2
(3

πx
i+

1)
]

+
Pe

na
liz

ed
2

(x
D
−

1)
2
[1
+

si
n2 (

2π
x n
)]
}+

∑
D i=

1
u
(x

i,
5,

10
0,

4)
M

N
[−

50
,5

0]
D

Q
ua

rt
ic

f 7
(x
)
=

∑
D i=

1
ix

4 i
U

S
[−

1.
28
,1
.2

8]
D

R
as

tr
ig

in
f 8
(x
)
=

∑
D i=

1
(x2 i
−

10
co

s(
2π

x i
)
+

10
)

M
S

[−
5.

12
,5
.1

2]
D

R
os

en
br

oc
k

f 9
(x
)
=

∑
D
−

1
i=

1
[1

00
(x2 i
−

x i
+

1) 2 +
(x

i−
1)

2]
M

N
[−

50
,5

0]
D

Sc
hw

ef
el

P2
.2

2
f 1

0(
x)

=
∑

D i=
1
|x

i|+
∏

D i=
1
|x

i|
U

N
[−

10
,1

0]
D

Sc
hw

ef
el

P1
.2

f 1
1(

x)
=

∑
D i=

1

(∑
i j=

1
x j
) 2

U
N

[−
10

0,
10

0]
D

Sc
hw

ef
el

P2
.2

1
f 1

2(
x)

=
m

ax
{|

x i
|,1
≤

i≤
n}

U
S

[−
10

0,
10

0]
D

Sp
he

re
f 1

3(
x)

=
∑

D i=
1

x2 i
U

S
[−

10
0,

10
0]

D

St
ep

f 1
4(

x)
=

∑
D i=

1
(⌊

x i
+
.5
⌋)

2
U

S
[−

10
0,

10
0]

D

“Not every end is the goal. The end of a melody is not its goal,
and yet if a melody has not reached its end, it has not reached
its goal. A parable.”

Friedrich Nietzsche

7
Conclusions and future research

This chapter provides a brief summary of the findings and contributions of this thesis, fol-
lowed by a discussion of directions for future research.

Metaheuristics are amongst a set of well-known and widely used techniques for real-
world optimization problems. Depending on the factors responsible for the increased com-
plexity of the problems we are dealing with, there are at least two solutions to improve meta-
heuristics: a) Reduction of computational complexity related to high computation costs of
fitness evaluations and b) More effective search strategies by improved balancing of explo-
ration and exploitation. In this thesis we have taken up this challenge not only by reducing
computational cost using techniques such as fitness approximation, but also by developing
a new metaheuristic as well as proposing metrics for measuring certain search biases that
directly pertinent to the problem of making the best possible selection of solvers.

Fitness Approximation
Population-based metaheuristics are ruled by the competitive nature of the “survival of

the fittest”, a process that is robust against uncertainties in fitness value, as long as a proper
ranking of candidate solutions is preserved. This robustness implies that a proper approxi-
mation of the fitness of candidate solutions may replace the exact fitness calculation. When
exact fitness evaluation is computationally expensive, fitness approximation is a natural ap-
proach, reducing, as it does, the computational cost.

Granulation of information is a satisfactory way of handling information by abstraction
at a level of coarseness suited to providing appropriate and sufficient input for problem solv-
ing. Graduated granulation of information was proposed by Zadeh in 1979, and is a tech-
nique by which a class of objects are partitioned into granules. This is a process whereby
human reasoning can be formed, organized and manipulated so as to handle complexity and
imprecision. In order to exploit evolutionary algorithms’ natural tolerance for imprecision
in fitness values, in Chapter 2 this concept of fuzzy granulation is adopted to reduce the

143

144 7 Conclusions and future research

overall computational cost. It does so by computing exact fitness selectively and only in
the event that it has deficient similitude to a pool of granules whose true fitness has been
registered. The proposed method is adaptive in the sense that the feedback from the current
population is used to determine the granules radius of influence. Moreover, the minimum
similarity a candidate solution needs to share with the granule pool changes in a way de-
signed to encourage fewer exact fitness evaluations in initial stages, and more exact fitness
evaluations in later stages of evolution. In these later stages, competition is fierce amongst
similar and converging solutions, meaning that the level of approximation changes over
time. Moreover, the mechanism that is embedded to control the size of the granule pool,
replaces specific granules with new ones adaptively. That is why the proposed approach is
referred to as adaptive fuzzy fitness granulation (AFFG). Statistical analysis reveals that the
proposed method significantly decreases the number of fitness function evaluations while
finding equally acceptable, or even better, solutions when applied to a set of benchmark
problems and hardware design problems.

Most metaheuristics include some tuning parameters that influence the optimization al-
gorithm. The selection of these algorithm parameters is, to a large extent, empirical. AFFG
is not an exception. When using fitness approximation, it is crucial to have an accurate es-
timation of the fitness function of the individuals in the finishing generations. In the case of
AFFG, this can be accomplished by controlling the radius of influence of the granules. This
radius is the width of the membership function (WMFs). During the early steps of evolu-
tion, and by choosing relatively large WMFs, the algorithm accepts individuals with a lower
degree of similarity. Fitness is therefore more often estimated. As the individuals mature
and reach higher fitness values, the width decreases, implying that, in order for the fitness
of an individual to be approximated, its similarity to the granule pool should increase. This
prompts a higher selectivity and a higher threshold for fitness estimation. In later genera-
tions, the degree of similarity between two individuals must be larger than that in the early
generations, in order for them to be accepted as similar individuals. This procedure ensures
a fast convergence rate, due to rapid computation in the early phase and accurate fitness
estimation in the later stage.

To achieve these desiderata without having to tune the parameters manually, a fuzzy
supervisor with three inputs is employed in Chapter 3. During the AFFG search, the fuzzy
logic controller observes the Number of Design Variables (NDV), the Maximum Range
of Design Variables (MRDV) and the percentage of completed trials. It also specifies the
WMFs. The combined effect of granule enlargement/shrinkage is to realize both rapid com-
putation and accurate fitness estimation. Instead of one controller, and in order to reduce
the large number of rules and the extraction of rules, it is separated in two controllers. This
diminishes the complexity of the system and so reduces the number of rules. The effective-
ness of the proposed controller is investigated with a number of optimization benchmarks:
four different choices are given for the dimensionality of the search space. The effect of
the number of granules on the rate of convergence is also studied. The proposed method
is then applied to the hidden information detection problem to recover a pseudo noise (PN)
sequence with a chip period equal to 63, 127 and 255 bits. In comparison with the standard
application of EAs, experimental analysis confirms that the proposed approach has the abil-
ity to considerably reduce the computational complexity of the detection problem, and to
do so without compromising performance.

Real-world problems frequently have two, or more, (possibly conflicting) objectives that

145

we aim to optimize at the same time. Such problems are called multiobjective problems and
have been studied intensively using metaheuristics (particularly, evolutionary algorithms)
over the last few years. In multiobjective optimization problems there is normally no single
solution that is best for all the criteria. Rather, there exists a set of solutions for which no
objective can be improved without worsening another. This is known as a Pareto optimal
set. When plotted in an objective function space, these solutions are collectively known as
the Pareto front.

Multiobjective evolutionary algorithms (MOEAs) are known to be computationally ex-
pensive, since they normally require a high number of objective function evaluations in
order to produce a reasonably good approximation of the Pareto front of the problem being
solved. Nevertheless, relatively little research has been reported so far on the development
of techniques that reduce the computational cost of MOEAs. Chapter 4 of this thesis con-
tributes to this area by adapting the proposed AFFG for reducing the number of objective
function evaluations required by a MOEA. The proposed approach is compared with respect
to the standard NSGA-II, using the Set Coverage, Hypervolume and Generational Distance
performance measures. The results indicate that the proposed approach is a very promis-
ing alternative for dealing with multiobjective optimization problems that involve expensive
fitness function evaluations.

Looking for efficient algorithms
Genetic algorithms, with their principles rooted in natural selection, are among the first

optimization algorithms inspired by nature that deviate widely from the working principles
of classical optimization algorithms with superior characteristics. According to the “No
Free Lunch” theorem, any elevated performance of an optimization algorithm over one class
of problems is offset by the performance over another class. This suggests that we look for
an optimization algorithm that surpasses the performance of others on a specific class of
problems. And indeed, this is the reasoning that led to the development of a vast number of
optimization algorithms, e.g. particle swarm optimization. By deploying this idea, Chapter
5 endeavors to develop an optimization algorithm inspired by the Big Bounce theorem, and
that is competitive over a class of high dimensional optimization problems.

Metrics
In practice, metaheuristics suffer from different types of search bias, the understanding

of which is of crucial importance when it comes to making the best possible choice for a
given problem. Chapter 6 of this thesis introduced two metrics, one for measuring center-
seeking bias (CSB) and one for initialization region bias (IRB). The proposed metric to
measure CSB is based on the well-known center offset, and the metric to measure IRB is
proposed on the grounds of region scaling. A framework is presented in this study that con-
siders both accuracy and robustness when different optimization heuristics are compared.
The proposed framework is used to evaluate the bias of three metaheuristics.

The first metaheuristic studied is particle swarm optimization (PSO), and is chosen as
a benchmark because it shows no bias towards the center of the search space. The second
metaheuristic studied is the gravitation search algorithm (GSA), mainly because of its unex-
pectedly poor results on the benchmark problems studied in Chapter 5. The most prominent
finding is the considerable CSB and IRB of the gravitational search algorithm (GSA). In-
spired by the mass assignment procedure of SBB presented in Chapter 5, a partial solution

146 7 Conclusions and future research

to the center-seeking and initialization region biases is proposed in Chapter 6. This modified
GSA is referred to as mass-dispersed GSA (mdGSA). The performance of mdGSA, which
promotes the global search capability of GSA, is verified using the same mathematical op-
timization problems as in Chapter 5.

The evaluation of robustness is divided into the following two assessments:

• When studying center-seeking bias, PSO is found to be the most appropriate optimiza-
tion algorithm with no observable CS bias, while mdGSA comes second, followed by
GSA. Statistical comparisons confirm that mdGSA holds less bias towards the center
of the search space compared to GSA.

• When studying initialization region bias, the performance of PSO statistically dete-
riorates when the initialization region is tightened. This is consistent with existing
literature and confirms that an efficient swarm initialization improves performance.
GSA also showed significant deterioration in its performance. mdGSA showed no
statistical change in its performance as a result of shrinking the initialization region.

The evaluation of accuracy is divided into the following two assessments:

• In low-dimensional optimization problems, both GSA and mdGSA outperform PSO.
There is no significant difference between GSA and mdGSA when counting the num-
ber of times one is statistically superior to the others. This is confirmed by statistical
testing. However, when looking at the number of worst solutions, mdGSA performs
better than GSA.

• In high-dimensional optimization problems, mdGSA performs better than either PSO
or GSA when counting the number of times one is statistically superior to the others,
as well as when looking at the number of worst solutions.

The results of the gene regulatory network system parameter identification demonstrates the
capabilities of the mdGSA in solving real-world optimization problems.

7.1 Directions for Future Research
This thesis presents a number of solutions in order to reduce the computational cost of
complex optimization problems, either through fitness approximation or through the devel-
opment of a metaheuristic suitable to a class of problems at hand. Moreover, when studying
the properties of metaheuristics, it turned out that some of them suffer from a notable, spe-
cific search bias. To remedy this unfairness, two generic metrics have been developed to
evaluate the search biases of different algorithms. While the contributions presented in this
study are exciting, what is perhaps even more exciting is the fact that this study has gen-
erated more ideas than could conceivably be handled, even given ample time and worlds.
Some of which follows.

Fitness Approximation

• AFFG is deterministic, meaning that when it is plugged into a deterministic search
algorithm, the combined algorithm will remain deterministic. It is not clear if the

7.1 Directions for Future Research 147

ideal approach for controlling the size of granules is the removal of the granule with
the lowest life index, or the (as yet to be developed) stochastic selection of a granule
to be removed from the granule pool. Another deterministic aspect of AFFG is the
granules’ radius of influence. The effect of introducing stochasticity to the granules’
radius of influence, and its effect on the overall performance of optimization search
algorithms, is an open question.

• Approximate models are, in general, able to preserve the history of optimization.
AFFG preserves the history of a search through the pool of granules, and uses this
history to associate the fitness of granules to a candidate solution. A mean of the
fitness value of granules is another way to assign a fitness to a candidate solution,
when weighted by its degree of similarity to the granules. This may improve the
performance of the search, and deserves to be studied in future work.

Looking for efficient algorithms

• Given the success demonstrated by SBB on high-dimensional optimization problems,
there is a need for it to be evaluated properly on real-world problems.

• When the objective function is noisy (i.e. each solution has different objective val-
ues over time, e.g. in uncertain environments), for many metaheuristics optimization
tends to be difficult. The greedy selection mechanism in some optimization algo-
rithms is, in part, responsible for attracting the population to unproductive locations
of the search space. While many of the existing metaheuristics suffer from the same
problem in various forms, it is of interest to see how the performance of SBB changes
under such conditions.

• In multiobjective optimization problems, there is normally no single solution that is
best for all the criteria. Rather, there exists a set of solutions for which no objec-
tive can be improved without worsening another, known as the Pareto optimal set.
When plotted in objective function space, these solutions are known collectively as
the Pareto front. Multiobjective optimization has been studied intensively using meta-
heuristics (particularly, evolutionary algorithms) over the last few years. Given that
many real-word problems are multiobjective, something that deserves special atten-
tion is the studying of the performance of SBB on real-world problems where two or
more objectives have to be optimized at the same time.

Metrics

• Several optimization heuristics have evolved in the last decade to facilitate solving
optimization problems, some of which suffer from different types of search bias. The
framework presented in Chapter 6 of this study appears to be a viable approach to the
comparison of different optimization heuristics. It is of interest, using the framework
proposed here, to contrast different optimization heuristics suitable to the handling of
both high-dimensional and complex real-world optimization problems.

TRAIL Thesis Series

The following list contains the most recent dissertations in the TRAIL Thesis Series. For a
complete overview of more than 100 titles see the TRAIL website: www.rsTRAIL.nl.

The TRAIL Thesis Series is a series of the Netherlands TRAIL Research School on trans-
port, infrastructure and logistics.

Davarynejad, M., Deploying Metaheuristics for Global Optimization, T2014/4, June 2014,
TRAIL Thesis Series, The Netherlands

Li, J., Characteristics of Chinese Driver Behavior, T2014/3, June 2014, TRAIL Thesis
Series, the Netherlands

Mouter, N., Cost-Benefit Analysis in Practice: A study of the way Cost-Benefit Analysis is
perceived by key actors in the Dutch appraisal practice for spatial-infrastructure projects,
T2014/2, June 2014, TRAIL Thesis Series, the Netherlands

Ohazulike, A., Road Pricing mechanism: A game theoretic and multi-level approach, T2014/1,
January 2014, TRAIL Thesis Series, the Netherlands

Cranenburgh, S. van, Vacation Travel Behaviour in a Very Different Future, T2013/12,
November 2013, TRAIL Thesis Series, the Netherlands

Samsura, D.A.A., Games and the City: Applying game-theoretical approaches to land
and property development analysis, T2013/11, November 2013, TRAIL Thesis Series, the
Netherlands

Huijts, N., Sustainable Energy Technology Acceptance: A psychological perspective, T2013/10,
September 2013, TRAIL Thesis Series, the Netherlands

Zhang, Mo, A Freight Transport Model for Integrated Network, Service, and Policy Design,
T2013/9, August 2013, TRAIL Thesis Series, the Netherlands

Wijnen, R., Decision Support for Collaborative Airport Planning, T2013/8, April 2013,
TRAIL Thesis Series, the Netherlands

Wageningen-Kessels, F.L.M. van, Multi-Class Continuum Traffic Flow Models: Analysis
and simulation methods, T2013/7, March 2013, TRAIL Thesis Series, the Netherlands

Taneja, P., The Flexible Port, T2013/6, March 2013, TRAIL Thesis Series, the Netherlands

Yuan, Y., Lagrangian Multi-Class Traffic State Estimation, T2013/5, March 2013, TRAIL

149

150 TRAIL Thesis Series

Thesis Series, the Netherlands

Schreiter, Th., Vehicle-Class Specific Control of Freeway Traffic, T2013/4, March 2013,
TRAIL Thesis Series, the Netherlands

Zaerpour, N., Efficient Management of Compact Storage Systems, T2013/3, February 2013,
TRAIL Thesis Series, the Netherlands

Huibregtse, O.L., Robust Model-Based Optimization of Evacuation Guidance, T2013/2,
February 2013, TRAIL Thesis Series, the Netherlands

Fortuijn, L.G.H., Turborotonde en turboplein: ontwerp, capaciteit en veiligheid, T2013/1,
January 2013, TRAIL Thesis Series, the Netherlands

Gharehgozli, A.H., Developing New Methods for Efficient Container Stacking Operations,
T2012/7, November 2012, TRAIL Thesis Series, the Netherlands

Duin, R. van, Logistics Concept Development in Multi-Actor Environments: Aligning stake-
holders for successful development of public/private logistics systems by increased aware-
ness of multi-actor objectives and perceptions, T2012/6, October 2012, TRAIL Thesis Se-
ries, the Netherlands

Dicke-Ogenia, M., Psychological Aspects of Travel Information Presentation: A psycho-
logical and ergonomic view on travellers’ response to travel information, T2012/5, October
2012, TRAIL Thesis Series, the Netherlands

Wismans, L.J.J., Towards Sustainable Dynamic Traffic Management, T2012/4, September
2012, TRAIL Thesis Series, the Netherlands

Hoogendoorn, R.G., Swiftly before the World Collapses: Empirics and Modeling of Lon-
gitudinal Driving Behavior under Adverse Conditions, T2012/3, July 2012, TRAIL Thesis
Series, the Netherlands

Carmona Benitez, R., The Design of a Large Scale Airline Network, T2012/2, June 2012,
TRAIL Thesis Series, the Netherlands

Schaap, T.W., Driving Behaviour in Unexpected Situations: A study into the effects of
drivers’ compensation behaviour to safety-critical situations and the effects of mental work-
load, event urgency and task prioritization, T2012/1, February 2012, TRAIL Thesis Series,
the Netherlands

Muizelaar, T.J., Non-recurrent Traffic Situations and Traffic Information: Determining pref-
erences and effects on route choice, T2011/16, December 2011, TRAIL Thesis Series, the
Netherlands

Cantarelli, C.C., Cost Overruns in Large-Scale Transportation Infrastructure Projects: A
theoretical and empirical exploration for the Netherlands and Worldwide, T2011/15, Novem-
ber 2011, TRAIL Thesis Series, the Netherlands

Vlies, A.V. van der, Rail Transport Risks and Urban Planning: Solving deadlock situa-
tions between urban planning and rail transport of hazardous materials in the Netherlands,
T2011/14, October 2011, TRAIL Thesis Series, the Netherlands

Summary

Deploying Metaheuristics
for Global Optimization

Global optimization is an active research topic in many areas including engineering, busi-
ness, social sciences and mathematics. With the advent of new optimization algorithms, the
set of solvable optimization problems grows steadily and the area of applications widens.
Optimization problems encountered in practice appear in various types and with various
mathematical properties. According to the No-Free-Lunch (NFL) theorem it is impossi-
ble to design a general-purpose universal optimization strategy. This implies that for opti-
mization algorithms to solve a problem efficiently, they have to be tailored to the problem-
specific characteristics. However since there are too many factors to be considered, it is
often hard to accomplish this task by an analytical method. Therefore, in practice a trial-
and-error method is used instead. In this thesis we have taken up this challenge by trying
out a number of metaheuristics.

Evolutionary algorithms (EAs) have been very popular optimization methods for a wide
variety of applications. However, in spite of their advantages, their computational cost is
still a prohibitive factor in certain real-world applications involving computationally ex-
pensive fitness function evaluations. In Chapter 2, we adopt the observation that nature’s
survival of the fittest is not about exact measures of fitness; rather it is about correct ranking
of competing peers. Thus, by exploiting this natural tolerance for imprecision, we propose
a fuzzy granules-based approach for reducing the number of necessary function calls. The
approach is based on adaptive fuzzy fitness granulation having as its main aim to strike a
balance between the accuracy and the utility of the computations. The adaptation algorithm
adjusts the radii of influence of granules according to the perceived performance and level
of convergence attained. Experimental results show that the proposed approach accelerates
the convergence towards optimal solutions, when compared to the performance of other
more popular approaches. This suggests its applicability to other complex real-world prob-
lems. The proposed solution does not have the drawbacks of existing solutions for fitness
approximations, such as time consuming online training.

The solution proposed in Chapter 2 has a number of tuning parameters that are problem
dependent. In practice, a number of trials is needed to adjust these parameters. In Chapter 3
we propose a fuzzy supervisor as an auto-tuning strategy, in order to avoid the tuning of pa-
rameters. Its effectiveness is investigated with three traditional optimization benchmarks of
four different choices for the dimensionality of the search space. The effect of the number
of granules on the rate of convergence is also studied. The proposed method is then applied
to the hidden information detection problem to recover a pseudo noise sequence with a chip

151

152 Summary

period equal to 63, 127 and 255 bits. In comparison with the standard application of EA,
experimental analysis confirms that the proposed approach has an ability to considerably
reduce the computational complexity of the detection problem without compromising per-
formance. Furthermore, the auto-tuning of the fuzzy supervisor removes the need for exact
parameter determination.

In Chapter 2 we have introduced a solution to accelerate the convergence towards the
optimal solution in a single objective function setting. In real-world problems, however, the
number of objectives are often two or more. In Chapter 4 we extend the solution presented
in Chapter 2 for the case where the problem at hand is multi-objective. Our proposed ap-
proach is compared to the standard NSGA-II, using the Set Coverage, Hypervolume and
Generational Distance performance measures. Our results indicate that our proposed ap-
proach is a promising alternative for dealing with multi-objective optimization problems
involving expensive fitness function evaluations.

Some evolutionary computing techniques have advantages over others in terms of ease
of implementation, preservation of diversity of the population, efficiency, etc. For advance-
ment of their performance they may be simplified, hybridized etc. There has also been a
steady increase in the number of global optimization algorithms, each characterized by its
unique population dynamics. Different population dynamics characterizes the way two con-
flicting goals are balanced, exploration (diversification) and exploitation (intensification).
These algorithms were constructed to address the need for faster optimization algorithms.
Although existing metaheuristics are suitable for complex optimization problems, their con-
vergence deteriorates when the complexity increases. Metaheuristics apply a search strat-
egy that balances exploration and exploitation in an algorithm-specific way. It is observed
that metaheuristic algorithms in practice often find local minima, sometimes of low quality,
meaning that the chosen balance is inadequate to the problem at stake. For example, due
to an algorithm’s search bias, too great an emphasis may be placed on the exploitation of
solutions found, while little attention is paid to the further exploration of the search space
as a whole. Based on these observations, and inspired by the Big Bounce theory (a cos-
mological oscillatory model of the Universe), in Chapter 5 we developed a Simulated Big
Bounce (SBB) algorithm that, next to exploitation, applies robust exploration in order to
escape from local minima. This paper presents the design of this new algorithm and shows
the results of a series of comparative experiments in which the performance of SBB on a
set of high-dimensional mathematical benchmarks is compared to that of five other popular
metaheuristics. The results obtained indicate that the proposed algorithm (i) is competi-
tive with (and in most cases surpasses) other population-based optimization algorithms, and
(ii) substantially decreases the number of fitness function evaluations needed to find equally
good solutions. Although SBB has features in common with existing optimization methods,
such as particle swarm optimization (PSO), it possesses additional unique features. These
owe to the diverse kinetic energy of particles, and enable the algorithm to escape from local
minima. Furthermore, the experimental outcomes provide evidence that the characteristic
of robust exploration, which marks SBB, underlies the superior performance observed.

When comparing various optimization strategies, we have observed that in practice,
metaheuristics suffer from various types of search bias, the understanding of which is di-
rectly pertinent to the problem of making the best possible selection of solvers. In Chapter 6,
two metrics are introduced: one for measuring center-seeking bias (CSB) and one for ini-
tialization region bias (IRB). The former is based on ξ-center offset, an alternative to center

Summary 153

offset, which is a common but inadequate approach to analyzing the center-seeking behav-
ior of algorithms, as is shown. IRB is proposed on the grounds of region scaling. The
introduced metrics are used to evaluate the bias of three algorithms while running on a test
bed of optimization problems having their optimal solution at, or near, the center of the
search space. The most prominent finding of this paper is considerable CSB and IRB in the
gravitational search algorithm (GSA). In addition, a partial solution to the center-seeking
and initialization region bias of GSA is proposed by introducing a mass-dispersed version
of GSA: mdGSA. This promotes the global search capability of GSA. Its performance is
verified using the same test bed, next to a gene regulatory network parameter identifica-
tion problem. The results of these experiments demonstrate the capabilities of mdGSA in
solving real-world optimization problems.

We finally present the main finding of this thesis in Chapter 7. We close by suggestions
for future research.

Samenvatting

Deploying Metaheuristics
for Global Optimization

Globale optimalisatie is een actief onderzoeksgebied in vele disciplines, waaronder techni-
sche, bedrijfskundige en sociale wetenschappen en wiskunde. Met de komst van nieuwe
optimalisatie-algoritmen groeit de verzameling van oplosbare optimalisatieproblemen ge-
staag en wordt het toepassingsgebied breder. Optimalisatieproblemen uit de praktijk komen
voor in diverse typen en met diverse wiskundige eigenschappen. Volgens de Geen-Gratis-
Lunch stelling is het onmogelijk om een algemeen bruikbare, universele optimalisatiestra-
tegie te ontwerpen. Dit impliceert dat een optimalisatie-algoritme een probleem alleen effi-
cint kan oplossen als het afgestemd wordt op de specifieke eigenschappen van dat probleem.
Door het grote aantal factoren waarmee rekening gehouden moet worden, is het vaak moei-
lijk om dit afstemmen met een analytische methode uit te voeren. Daarom wordt in de
praktijk een trial-and-error methode gebruikt. In dit proefschrift hebben we deze uitdaging
opgepakt door een aantal metaheuristieken te onderzoeken.

Hoofdstuk 2: Evolutionaire Algoritmen (EAn) waren een heel populaire optimalisatie-
methode voor een grote verscheidenheid aan toepassingen. Maar, ondanks de vele voor-
delen, is hun rekenintensiteit nog steeds een belemmering voor bepaalde praktische toe-
passingen waarbij sprake is van een rekenintensieve geschiktheidsfunctie. In dit hoofdstuk
nemen we als uitgangspunt de constatering dat survival-of-the-fittest in de natuur niet gaat
over de precieze mate van geschiktheid; meer van belang is een correcte volgorde in ge-
schiktheid van de concurrerende kandidaten. Door aldus deze natuurlijke tolerantie voor
onnauwkeurigheid te benutten, stellen we een vage korrel-gebaseerde aanpak voor om het
aantal noodzakelijke functie-aanroepen te reduceren (een korrel is een groep van verge-
lijkbare exemplaren uit de populatie). Deze aanpak is gebaseerd op een adaptieve, vage
geschiktheidsbenadering, die als belangrijkste doel heeft om een balans te vinden tussen
nauwkeurigheid en nuttigheid van het rekenwerk. Het adaptieve algoritme past de grootte
van de invloedssfeer van korrels aan, naargelang de rekenintensiteit en het bereikte niveau
van convergentie. Experimentele resultaten laten zien dat de voorgestelde aanpak de conver-
gentie naar optimale oplossingen versnelt, in vergelijking met andere, bekendere methoden.
Dit wijst op toepasbaarheid op andere complexe praktijkproblemen. De voorgestelde oplos-
sing heeft niet de nadelen van bestaande oplossingen voor geschikheidsbenadering, zoals
de noodzaak van rekenintensief, on-line trainen.

Hoofdstuk 3: De oplossing , voorgesteld in hoofdstuk 2, heeft een aantal afstemmings-
parameters die probleem-specifiek zijn. In de praktijk zijn een aantal rondes nodig om deze
parameters te bepalen. Dit hoofdstuk stelt een vage supervisor voor als automatische af-

155

156 Samenvatting

stemmingsstrategie, teneinde het expliciete instellen van deze parameters te vermijden. De
effectiviteit ervan is onderzocht met drie traditionele optimalisatie-benchmarks en 4 ver-
schillende keuzen voor de dimensie van de zoekruimte. Ook is het effect van het aantal kor-
rels op het convergentietempo onderzocht. De voorgestelde methode is vervolgens toegepast
op het probleem van de detectie van verborgen informatie in de vorm van een pseudoruis-
reeks met chipperioden van 63, 127 en 255 bits. In vergelijking met de standaardtoepassing
van EA laat de experimentele analyse zien dat de voorgestelde aanpak de mogelijkheid biedt
om de rekencomplexiteit van het detectieprobleem aanzienlijk te verminderen, zonder het
prestatieniveau aan te tasten. Het automatisch afstemmen door de vage supervisor heft de
noodzaak op van het bepalen van exacte parameterwaarden.

Hoofdstuk 4: In hoofdstuk 2 hebbeen we een oplossing gentroduceerd om de conver-
gentie te versnellen naar de optimale oplossing voor de situatie met n doelfunctie. In prak-
tijkproblemen is echter vaak sprake van 2 of meer doelfuncties. In dit hoofdstuk breiden
we de oplossing uit hoofdstuk 2 uit naar het geval met meer dan n doelfunctie. De voorge-
stelde aanpak wordt vergeleken met de standaard NSGA-II, met gebruik van Set Coverage,
Hypervolume en Generational Distance om prestaties te meten. Onze resultaten laten zien
dat onze aanpak een veelbelovend alternatief is voor het omgaan met optimalisatie voor
meerdere doelen wanneer het berekenen van de geschiktheidsfunctie rekenintensief is.

Hoofdstuk 5: Sommige evolutionaire rekentechnieken hebben voordelen boven andere
voor aspecten zoals het gemak van implementeren, het behouden van diversiteit van de po-
pulatie, efficintie, etc. Om efficintie te bevorderen, kunnen ze vereenvoudigd en/of gekruisd
worden. Er is ook een gestage toename in het aantal globale optimalisatie-algoritmen, waar-
bij elke algoritme zijn eigen unieke populatiedynamiek heeft. Verschillen in de populatie-
dynamiek karakteriseren de wijze waarop verkenning (= diversificeren van de populatie)
en benutting (= benutten wat al gevonden is) uitgevoerd worden en hoe een balans wordt
gevonden tussen conflicterende doelen. Deze algoritmen zijn ontwikkeld om tegemoet te
komen aan de behoefte aan snellere optimalisatie. Alhoewel bestaande metaheuristieken
geschikt zijn voor complexe optimalisatieproblemen, verslechterd hun convergentiegedrag
bij toenemende complexiteit. Metaheuristieken passen een zoekstrategie toe die een ba-
lans zoekt tussen verkennen en benutten in een algoritme-specifieke manier. Men kan vaak
constateren dat metaheuristieke algoritmen lokale minima vinden, soms zelfs van lage kwa-
liteit, wat betekent dat de gevonden balans niet geschikt is voor het op te lossen probleem.
Bijvoorbeeld kan een algoritme, door zijn zoek-afwijking, te veel nadruk leggen op het be-
nutten van gevonden oplossingen, waarbij weinig aandacht overblijft voor het verder explo-
reren van de zoekruimte als geheel. Wegens deze observatie, en genspireerd door de theorie
van de Grote Stuiterpartij (”Big Bounce Theory”: een oscillatorisch model voor het heelal),
hebben we een Gesimuleerd Stuiteren (Simulated Big Bounce: SBB) algoritme ontwikkeld
dat, naast benutting ook robuuste verkenning toepast, teneinde uit lokale minima te kunnen
ontsnappen. Dit hoofdstuk beschrijft het ontwerp van dit algoritme en toont de resultaten
van een serie vergelijkende experimenten waarin de prestaties van SBB op een verzame-
ling wiskundige benchmarks met hoge dimensie worden vergeleken met die van vijf andere
populaire heuristieken. De verkregen resultaten duiden erop dat het voorgestelde algoritme
(i) vergelijkbaar is met (en in sommige gevallen beter is dan) andere populatie-gebaseerde
optimalisatie-algoritmen, en (ii) het aantal berekeningen van de geschiktheidsfunctie dat
nodig is om even goede oplossingen te vinden, aanzienlijk vermindert . Alhoewel SBB
een aantal kenmerken gemeenschappelijk heeft met bestaande optimalisatiemethoden, zo-

Samenvatting 157

als deeltjeszwermoptimalisatie (Particle Swarm Optimization: PSO), bezit het daarnaast
ook unieke kenmerken. Deze komen voort uit diversiteit in kinetische energie van de deel-
tjes, en maken het mogelijk dat het algoritme kan ontsnappen uit lokale minima. Bovendien
bieden de experimentele resultaten aanwijzingen dat het kenmerk van robuuste verkenning,
wat SBB karakteriseert, de grond vormt voor de gemeten superieure prestaties.

Hoofdstuk 6: Bij het vergelijken van verschillende optimalisatiestrategien, hebben we
geconstateerd dat in de praktijk metaheuristieken te lijden hebben onder diverse vormen
van zoek-afwijkingen. Een goed begrip hiervan is direct relevant voor het selecteren van
de meest geschikte strategie. In dit hoofdstuk worden twee metrieken gentroduceerd: n
voor de middelpunt-zoekende afwijking (Center Seeking Bias: CSB) en n voor de zoekaf-
wijking door het gekozen initialisatiegebied (Initialization Region Bias: IRB). De eerste
is gebaseerd op ξ-center offset (verschuiving van het centrum), een alternatief voor center
offset, want deze laatste is niet geschikt voor de analyse van de middelpunt-zoekende af-
wijking, zoals wordt aangetoond. De metriek voor IRB wordt voorgesteld op grond van
regio-schaling (region scaling). De gentroduceerde metrieken worden gebruikt voor het
evalueren van de de afwijkingen van drie algoritmen die losgelaten worden op een testver-
zameling van optimalisatieproblemen die hun optimale oplossing hebben in, of dicht bij,
het centrum van de zoekruimte. Het meest opvallende resultaat in dit hoofdstuk is een
aanzienlijke CSB en IRB in het zwaartekrachts-zoekalgoritme (GSA: Gravitational Search
Algorithm). Dit hoofdstuk doet bovendien een voorstel voor de gedeeltelijke oplossing
van CSB en IRB in GSA door de introductie van een gespreide massa -versie van GSA:
mdGSA (md staat voor: mass dispersed). Dit bevordert de globale zoekmogelijkheden
van GSA. De prestaties hiervan zijn geverifieerd met dezelfde testverzameling en met een
parameter-identificatieprobleem voor een genen-regulerend netwerk. De resultaten van deze
experimenten tonen de mogelijkheden van mdGSA voor het het oplossen van realistische
optimalisatieproblemen uit de praktijk.

