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Abstract

Wireless Sensor Networks (WSN) have received much attention in the past 5 years, and
much progress has been made in designing hardware, communications protocols, routing,
and sensor fusion algorithms. The planning and deployment of the WSN, however, has
been overlooked to a great extent. These are important aspects, as we show, which can
result in significant gains in WSN performance and resource utilization.

We propose a comprehensive strategy for the planning, deployment, and operation of
WSNs divided into 3 phases, Phases I, II, and III. This framework addresses the optimiza-
tion challenges of the planning process, and takes into account the major sources of uncer-
tainty (notably that due to the aerial deployment of the sensors), so that the WSN deployed
on the ground performs as best as possible. We first present general-purpose algorithms
implementing this strategy, and showcase their benefits on a few examples. In particular, a
Multi-Objective Genetic Algorithm (MOGA) is proposed for the initial network planning
of Phase I, and a greedy local search is used for the real-time deployment of Phase II.

We then direct our attention to a specific application, where a WSN is deployed to
provide localization to an agent navigating in GPS-denied environments. The network
relies on Ultra-Wideband (UWB) technology in order to provide accurate ranging. Because
of its high resolution, UWB is able to provide high ranging accuracy, even in the kind
of harsh environments typically found in GPS-denied areas (indoor, urban canyon, etc.).
However the ranging accuracy is limited by two phenomena: the presence of positive biases
in the range measurements due to NLOS propagation, and the increase of the measurement
variance with distance. Given these characteristics, we derive the Position Error Bound
(PEB), a lower bound on the localization accuracy of a sensor configuration.

We then develop a placement algorithm, RELOCATE, which places the sensors so as
to minimize the PEB. We show that this algorithm can be used for the initial planning of
Phase I, as well as when incremental planning is needed, such as during Phases II and III.

Finally a Monte Carlo localization (MCL) method is developed to fuse the range mea-
surements from UWB sensors and the inertial measurements from an onboard IMU, so
as to optimally estimate the state of an agent moving through a GPS-denied environment.
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This algorithm is shown to provide high positioning accuracy, notably thanks to its ability
to accurately estimate the bias embedded in the range measurements.

The benefits of using these smart algorithms is showcased at each step, in order to
demonstrate the importance of optimally planning, deploying, and operating the WSN.
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Chapter 1

Introduction

1.1 Motivation

Recent military operations demonstrated the limitations of surveillance missions performed

by high-altitude platforms (Unmanned Aerial Vehicle (UAV), U2, satellite), even if equipped

with state of the art sensors. These limitations can for example affect target identification in

the presence of a cloud cover or a tree canopy, as during NATO’s operation Allied Force in

Kosovo in 1999. Likewise aerial surveillance may only provide a limited assessment of the

use of a facility, as was the case before operation Iraqi Freedom in 2003. Aerial surveillance

proved to be insufficient for assessing whether or not certain facilities were being used for

the manufacture of weapons of mass destruction. Furthermore, targets can be concealed by

terrain features like caves (such as those in Afghanistan) or other man-made constructions

(underground complex, decoys), so that they are hidden from high-altitude observers. In

the examples just mentioned, the limitations are inherent to aerial surveillance, and they are

unlikely to be resolved with any amount of improvement in the onboard-sensor technology.

Today’s surveillance needs are no longer satisfied by high-altitude observation. Rather, cru-

cial information such as chemical, acoustic, biological and nuclear data about the targets is

required, information which cannot be satisfactorily sensed from a high altitude.

In order to gain a clear understanding of the situation on the ground, it is becoming vital

to observe from up-close, using sensing devices placed in the area of interest. For exam-

ple, the U.S. Army Future Combat System (FCS) will “rely heavily on the use of remote,
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unattended sensors to detect, identify and track enemy targets” [75]. These sensors form

a so-called Wireless Sensor Network (WSN), which provides all necessary information

remotely.

The shortcomings of high altitude platforms are not limited to monitoring hostile activ-

ity. In open environments where a direct line-of-sight to aircraft or satellites is available,

ground units can satisfactorily communicate with each other through these links. By com-

bining this capability with GPS, they can also track their own position and that of other

friendly forces, using for example the U.S. Army Force XXI Battle Command, Brigade-

and-Below (FBCB2) [1]. However in more cluttered environments such as in dense urban

areas, under-the-canopy, or indoors, harsh propagation conditions prevent ground units

from efficiently communicating or accurately localizing themselves. In order to provide

these critical capabilities in such environments, it is again necessary to deploy sensors on

the ground, close to the agents.

Since the area in which the sensors operate is potentially hostile, they must be placed

without any human physically involved, for example by dropping them from an aircraft,

which can itself be a UAV. Moreover there might only be a limited number of sensors

available for a specific mission, or sensors might be expensive requiring the mission to be

performed with the fewest sensors possible (the sensing capabilities of miniature sensors

such as Smart Dust [2] are very limited and cannot be used for missions requiring sophis-

ticated sensing, such as cameras, microphones, etc.). Also, even if sensors are cheap and

available in unlimited quantity, certain missions must still be performed with the fewest

sensors in order to fulfill the objectives. As this thesis will show by example, dropping

thousands of sensors randomly is often unacceptable. In addition, the mission may have

objectives that conflict with one another. For example, two objectives may be maximizing

the total coverage of the network and minimizing the number of sensors. Maximizing the

coverage leads to layouts with more and more sensors, so that the second objective gets

worse. Conversely, using few sensors typically yields a poor total coverage. In this case

the objectives are conflicting, and the user must determine the trade-off he or she is willing

to make between those two.

For these reasons, the location of each sensor must be carefully determined, so as to
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make the best out of every sensor and ensure the optimal performance of the network. Note

also that because the sensors are deployed from an aircraft, their final ground location will

have some uncertainty due to the airdrop inaccuracy (as opposed to the case where humans

place the sensors manually, which they can do with very high accuracy). The aircraft

deployment of sensors introduces some uncertainty in the position of the sensors.

The resulting complexity of the planning task (multiple, conflicting objectives, uncer-

tainty) renders human instinct and expertise insufficient, and an optimization algorithm is

required in order to satisfactorily solve this problem.

Once the necessary sensors are deployed on the ground, their data is transmitted back

to the base in order to provide decision makers with the necessary situational awareness.

In recent years researchers have given more attention to operational issues of WSNs such

as energy-efficient communication [33, 84] and data fusion [14, 15]. Aspects related to the

optimal operation of WSNs will be included in the proposed 3-phased planner of Chapter 2,

but most of this thesis will be devoted to the issue of sensor placement. The only exception

will be in Chapter 7 in the context of a UWB localization WSN, since those issues were

not satisfactorily treated in the literature.

Such a sensor network can be used not only in military operations, but also for envi-

ronmental monitoring. Sensor networks are used in Hawaii to assist the long-term study

of rare and endangered species of plants [10]. In this particular project the sensors were

hand-placed by human personnel, but it is easy to imagine that in some cases (e.g. rugged

terrain), the sensors need to be dropped from an aircraft. Another example is that of an en-

vironmental disaster, such as a nuclear explosion, a biological leak or other scenarios where

monitoring the area is required but human presence is dangerous. Sensors may be dropped

in the contaminated area to monitor the evolution of the disaster. Placement algorithms are

also needed for underwater sensing using hydrophones [21]. The common denominator in

all these applications is a need to observe certain states from up-close, in an area that is

hostile for human personnel (military or environmental threat).

In addition, an aerospace firm designing UAV’s, drop vehicles or sensors could use this

planning tool to conduct a sensitivity analysis in order to figure out where additional capa-

bility would be well invested. For example, with a limited research budget, one must decide
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whether the drop accuracy should be improved, or whether the effort should concentrate on

extending the battery life, increasing the UAV payload, the sensors communication range

or sensing range, etc.

1.2 Thesis Contributions and Outline

This thesis aims to provide a planning system for the automated deployment of WSNs.

As mentioned above, the applications of WSNs are numerous, and the performance of the

WSN is highly dependent on the position of the sensors. The network should be planned

optimally, while taking into account the uncertainty due to the aerial deployment. First

some general results are derived in Chapters 2 and 3.

• a planning strategy in 3 phases is proposed for robust WSN planning and deployment

(Chapter 2);

• general-purpose algorithms are presented for solving Phases I and II (Chapter 3);

• although the placement of sensors and other WSN deployment issues are often ne-

glected in the literature, we show through several case studies that planning is in fact

critical for ensuring satisfactory performance of WSNs (Chapter 3).

Then in Chapters 4-7 a specific application is considered where the WSN is used to pro-

vide accurate localization to ground agents through ultra-wide bandwidth (UWB) ranging.

This application extends the aforementioned blue force tracking capability to GPS-denied

environments. The main contributions are as follows:

• analysis of the errors in UWB ranging and their statistical modeling (Chapter 4);

• calculation of a lower bound on the localization accuracy given a set of sensors loca-

tions. This provides the best performance achievable given the ranging errors, and is

used subsequently as the objective to minimize (Chapter 5);

• derivation of a sensor placement algorithm that maximizes the localization accuracy

in an area. This algorithm is shown to be optimal for a special case and to perform
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very well in general (Chapter 6). In addition its flexibility makes it applicable to all

3 phases of the deployment process;

• demonstration of high accuracy localization for agents using the UWB WSN. This is

achieved by an algorithm based on particle filtering, which provides a greater degree

of accuracy due to its ability to estimate the ranging errors (Chapter 7).
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Chapter 2

Planning Strategy: Phases I, II, and III

2.1 Wireless Sensor Networks

In this section we give a general model for WSNs, which will be used in Chapter 3. In

Chapters 4-7 a WSN modeling specifically tailored to the localization application will be

considered.

2.1.1 The Sensors

Sensors can be thought of as having two modules. The first is the sensing module, which

can be of different types (seismic, acoustic, chemical, optical, etc.) and will depend on

the mission at hand. The other is the wireless communication module, which is used to

communicate with the other sensors and transmit the sensed information. Note that in

some sensors the sensing module is the same as the communication module. This will be

the case later on when a UWB WSN is considered. In this case UWB can be used for both

ranging (the “sensing” part) and communication purposes.

In Chapters 2-3 we make the following assumptions about the sensors. First, a free

space model is considered for the sensing and communication properties of the sensors, in

other words:

• A sensor can sense anything within its sensing range, RSensing;
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• A sensor can transmit data to another one if the latter is within its communication

range, RCOMM.

This is illustrated in Figure 2-1. We also assume, without loss of generality, that all sensors

have the same sensing and communication range. These assumptions are for simplicity

only. The results of Chapter 3 can easily accommodate heterogenous sensors and more

realistic models, where for example the terrain influences both sensing and communication.

Figure 2-1: The sensors have a sensing and a communication range, which can be different.
Two sensors communicate if they are within RCOMM.

When lifetime issues are considered, the sensors’ battery storage capacity will also need

to be specified, along with the rate at which batteries are depleted, depending on the task

performed (e.g. asleep, sensing, communicating).

The following illustrates the characteristics of an acoustic/seismic sensor [3]:

• Weight: 500g;

• Size: 8cm× 8cm× 8cm;

• Sensing range: RSensing = 1000m for vehicles, 50m for people (unaffected by terrain

or vegetation);

• Communication range: RCOMM = 300m;
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• Communication frequency: 900MHz;

• Lifetime: batteries last for 2 weeks.

2.1.2 The Network Architecture

Sensors are usually small, and therefore have limited energy. This prevents them from

relaying their gathered information directly to some far-off UAV or relay satellite. For

some missions this may be acceptable, for example if the WSN can perform its task in

isolation from the outside world (e.g. a WSN solely devoted to relaying communications

between ground units). However most missions will require transmission of the gathered

data to the home base. It is therefore necessary to have at least one node with enough power

to transmit data over longer distances. We call such node the High-Energy Communication

Node (HECN). All sensors must then be able to transmit their data to this node, either

directly or via hops using nearby sensors to act as communication relays. This requirement

is called communication connectivity, and ensures that the network formed by all sensor

nodes and communication links be connected. Figure 2-2 illustrates this architecture for

a scenario where the WSN is used to monitor movements in a forest (sensors N4 to N12)

and on a road (sensors N1 and N3). We will only consider scenarios with a single HECN

without loss of generality.

2.1.3 The Aerial Deployment

As mentioned in Chapter 1, WSNs may need to operate in hostile or humanly inaccessible

environments. The WSN therefore needs to be deployed remotely, with no human person-

nel involved. Our system utilizes a UAV to fly to the mission area and deploy the sensors.

Drop vehicles may be available to guide the sensors in place, with different degrees of

precision. Since the sensors are airdropped, their actual location once deployed will dif-

fer from their planned location. This is the airdrop inaccuracy. The planner will need to

account for this uncertainty.
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Figure 2-2: Illustration of a WSN monitoring a forest and a road. The HECN located on
top of a building collects all the data gathered by the sensor, before relaying it back to the
base. The sensing ranges are shown circles around each sensor.

2.2 Challenges to Optimal WSN Performance

Below is a summary of the many factors affecting the performance of WSN:

1. Once on the ground, the sensors must efficiently operate and interact (e.g. network-

ing, information fusion);

2. The physical location of the sensors strongly influences the performance of the WSN;

3. Multiple, conflicting objectives may need to be taken into account. These include

network coverage, lifetime, survivability, or the number of sensors;

4. The objectives often are nonlinear or discrete, and sometimes have to be calculated

through simulation (“black box”);

5. Uncertainties are present due to:
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• The sensors are deployed from a UAV, which introduces uncertainty in the lo-

cation of the sensors. Sensors may also malfunction due to the airdrop or for

other various reasons;

• Inaccuracies in the sensors capabilities (in terms of sensing or communication

ability);

• The mission objectives may be changing with time. As the WSN performs its

task, new information may change the goal of the WSN user.

6. Although we have assumed an idealized terrain model, in general the terrain will

affect the sensing and communication ability of the sensors. There may also be areas

where sensors should not be dropped (e.g. lake);

7. Additional constraints must be accounted for:

• Connectivity constraints between the sensors and the HECN. The sensors also

act as relay for their neighbors, in order to circulate the sensed information;

• Payload constraints on the UAV;

• Lifetime constraints on the UAV. If the mission area is hostile, the UAV has a

probability of being shot down at each pass over the area, so the deployment of

the sensors must be as fast as possible.

These challenges will often interact with one another. For example the fact that the aircraft

carrying the sensors has a limited payload implies that it is impossible to drop thousands

of sensors randomly over the area of interest, hoping the necessary coverage and commu-

nication connectivity to arise by chance. Moreover one objective may be to minimize the

number of sensors deployed.

In light of the complexity of the task, an automated planning tool is necessary to plan

the WSN deployment.

2.3 Literature Review

Several areas of research are relevant to the WSN planning problem.
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A large body of research was devoted to the Base Station (BS) location problem for

cellular phone networks in the 1990’s. BS antennas must be placed so that every user is

covered by the network, i.e., so that their communications can be relayed by at least one

BS antenna.

Each BS typically has to be located above the users, i.e. on rooftops or on dedicated

towers, which in both cases is a costly enterprize. There is a strong incentive to achieve full

coverage with the minimum number of stations. In addition these stations often operate

in urban environments, where wave propagation is complex. The resulting complexity of

this problem led network designers to develop optimization algorithms in order to help

automate the planning task. In spite of its similarities with the WSN planning problem

however, the BS problem differs from it in several aspects. One main difference comes from

the fact that in WSNs the sensors (analogous to the BS) also need to communicate with

each other wirelessly (connectivity), whereas BS are connected to the backbone network

via ground wires. Also, the payload constraint, and more importantly the inaccuracy of

deployment are peculiar to aerial deployment (BS are placed at the exact planned location

by human personnel). Finally, WSNs must be deployed faster than cellular networks, which

can take months to plan. For example some military applications may require a WSN to be

deployed as soon as possible, typically within a few hours. In spite of these differences, the

two problems are similar enough that reviewing the methods used to plan cellular phone

networks is fruitful. These range from Dynamic Programming [81] and unconstrained

optimization [24], to Genetic Algorithms [45, 73] and Tabu Search [6]. Virtually every

type of optimization technique was tested on this problem, many dealing with multiple

objectives (though almost always blended in a single objective function, except in [73]

which uses Pareto optimality), while using non-trivial communication models accounting

for the terrain.

The BS location problem is part of the larger research area of Facility Location in Op-

erations Research [32]. Here a set of demand points must be covered by a set of facilities,

which corresponds in WSN to covering an area with a set of sensors. The goal is to locate

these facilities so as to optimize a certain objective (e.g. minimize the total distance of

demand points to their closest facility). A classic example close to the WSN problem is
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the Maximal Covering Location Problem (MCLP) [26, 72], where as many demand points

as possible must be covered with a number s of sensors of fixed radius. It is also referred

as the location-allocation problem, since each demand point must be assigned to a certain

sensor. Suzuki and Drezner [91] addressed a similar problem on the continuous plane, i.e.,

the problem of locating s facilities to cover a whole planar region, while using the smallest

possible radius. Salapaka discusses a more sophisticated version of this class of problems

in [82]. A set of target points on the ground needs to be observed from above, with each

target possibly requiring different sensors depending on its nature. Salapaka implements

a Deterministic Annealing technique that assigns the required resources (sensors) to each

aircraft and then determines the aircraft position so that the targets are covered as best as

possible. Again in all these discussions, the main difference with the WSN problem is

that the nodes are not required to be connected. Another problem of interest is the Facility

Location-Network Design problem, where facility positions need to be determined (just as

in the MCLP) and the network connecting these facilities must also be optimized. Unfor-

tunately, in the WSN design it is impossible to decouple sensor placement and network

design, since the locations of the sensors determine the network topology.

The past five years have seen a rising interest in sensor network planning, focusing

mostly on optimizing the location of the sensors in order to maximize their collective cov-

erage. Although this is a problem almost identical to the BS location problem, the work

on BS location is rarely mentioned. Chakrabarty [20] used Integer Programming, while

Bulusu [16], Dhillon [30] and Howard [48, 50] devised different greedy heuristic rules to

incrementally deploy the sensors. Virtual force methods (VFM), often used for the deploy-

ment of robots [49], were adapted by Zou [104] for the sensor deployment. Finally the

author implemented a Genetic Algorithm to solve this placement problem [55, 56], which

will be described in the next chapter. Some also looked at communication connectivity

problems from a theoretical point of view [10, 61], but this seems to have little value in

realistic, asymmetrical terrain conditions.

More attention has been paid to adaptive techniques for the deployment of sensors, e.g.

when more sensors are needed [16, 30]. This accounts for the nature of the deployment,

happening in real-time, whereas the BS planning problem is assumed to be offline. As
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mentioned before, current work on WSN mainly focuses on the maximization of the to-

tal sensing coverage, with little or no attention given to the communication connectivity.

Meguerdichian [71] assumes that the communication radius of the sensors will be much

larger than the sensing radius, so that connectivity will arise naturally. But this assumption

is unrealistic for two reasons. First, there exist sensors for which the sensing range is of

the same order or larger than the communication range (e.g. the seismic sensors described

in Section 2.1.1), so that maximizing the coverage without caring about the communica-

tion range will result in a disconnected network. Second, if the areas to be covered are

disjoint, the network will be partitioned. In addition, in our WSN model the sensors must

be connected not only to each other but also to a HECN. Therefore the communication

connectivity requirement cannot be trivialized and both aspects of the sensors (sensing and

communicating) must be taken into account for the planning of the network.

The research in WSN planning deals only with a single objective (almost always cov-

erage) whereas it seems that other considerations are also of vital importance in the choice

of the network layout (lifetime, survivability, etc.). The sensing model usually does not

account for terrain. The areas considered are flat squares, and only Howard [49] and

Dhillon [30] include a few obstacles obstructing communications. Finally there is no con-

cern about aerial deployment (payload, inaccuracy).

Beginning in Chapter 4 a WSN used for localization in GPS-denied environments will

be considered. A separate literature review will be performed at that time, suffice to say for

now that the optimal placement of sensors in that context has received very little attention.

2.4 Proposed Strategy

In order to ensure that the actual network placed on the ground meets its planned perfor-

mance in spite of the uncertainties, the planning method should not only be able to plan a

network design from scratch, but it should also be adaptive, i.e., it should be able to respond

to drop inaccuracy or additional sensor deployment while onsite.

The system should therefore have several “time constants”: one on the order of a few

hours (initial planning of the WSN, before take-off), the other on the order of a few minutes
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(in-flight adaptive planning, while the aircraft is onsite and sensors are being dropped). For

these reasons the planning sequence was divided into 3 phases, as described below and

summarized in Figure 2-3.

Phase I is performed on the ground and generates the initial network design. It deter-

mines the type and number of sensors to be loaded inside the UAV, as well as the location of

each sensor. It includes a multi-objective optimization algorithm to generate those designs

under several constraints. It may also account for the uncertainty in sensor placement, or

the terrain information. This phase can take on the order of several hours. Once Phase I

is completed, the necessary sensors are loaded inside the UAV and the aircraft flies to the

drop zone.

Phase II is initiated when the UAV reaches the mission area and starts deploying sen-

sors. This phase is aimed at adding robustness to the deployment process, especially to cope

with the uncertainty. The accuracy of the drop vehicles used to deploy the sensors from the

UAV is characterized by a probability distribution with standard deviation σDV. Even the

most accurate drop vehicles will have a non-negligible σDV. Indeed the most accurate

placement is currently achieved through ballistic drops, which have a very high terminal

velocity. While this is acceptable (and even desirable) for seismic sensors which must be

buried in the ground, some sensors will require a softer ground impact. But a smaller ter-

minal velocity implies a loss of accuracy. Typically, the best σDV that low-velocity impact

drop vehicles can currently achieve is about 4m, which is accurate enough to drop a sensor

on a rooftop or a large tree [4]. This inaccuracy makes it important to close the loop on the

deployment process. Phase II must therefore decide which sensors to deploy first, and then

it must adapt the drop location of the remaining sensors depending on the result of the pre-

vious drops. This implies an ability to dynamically re-plan the optimal WSN configuration

computed earlier, which must be done quickly (on the order of minutes).

Finally Phase III accounts for the operation and maintenance of the WSN, once all

the sensors have been dropped. Optimal operation of the WSN requires algorithms to

optimally route the information, conserve energy, or fuse the information. This part of

Phase III is probably the area in WSN research that has received most attention. The

maintenance aspect of Phase III deals with sensor placement (just like Phases I and II). As
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the network operates and gathers data, the mission objectives may change, or the sensing

or communication model may be updated, so that additional sensors need to be deployed

in order to fulfill the mission requirements.

Figure 2-3: Diagram summarizing the 3 phases of planning and deployment.

2.5 Thesis Limitations

We end this chapter on a word about the limitations of this thesis. Because it is at the core

of each of the 3 phases, the focus of this thesis will primarily be to develop sensor place-

ment algorithms. In particular the next chapter will present a general purpose placement

algorithm for Phase I, and Chapter 6 will present a custom-tailored placement algorithm

when the WSN must provide accurate localization in GPS-denied environments. The latter

algorithm will be applicable to the placement problem in Phases I, II, and III.
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The results on Phase II presented in the next chapter will be mostly aimed at demonstrat-

ing the need for Phase II planning through a few examples. An approximation algorithm

will be presented there, but a more thorough treatment will still be needed.

Phase III will not be treated in generality. It will only be considered in the context of

the UWB localization WSN. Chapter 6 will then provide an incremental placement algo-

rithm, and Chapter 7 an algorithm for optimally fusing the range measurements to provide

accurate localization.

2.6 Summary

In this chapter a general WSN architecture was described, along with the challenges to op-

timal network performance. Based on those challenges a planning strategy was proposed,

which was divided into 3 phases.

In the next chapter some algorithms will be developed to implement this strategy in

the general case. The importance of Phases I and II will be outlined by comparing the

performance of WSNs deployed using the planner versus that of WSNs deployed randomly.

These studies will be performed on several case scenarios.

In Chapters 4-7 a particular application will be considered, where UWB sensors are

used to provide accurate localization in GPS-denied environments. A specifically tailored

algorithm will be described for the sensor placement problem of Phases I, II and III, and

again the benefit of using a planning system for the network deployment will be outlined.
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Chapter 3

General Results on Phase I and Phase II

3.1 Introduction

In this chapter a general purpose algorithm for Phase I is proposed. This algorithm is

general in the sense that it is not tailored to any specific objective or mission, but rather

works with any kind of scenario that fits the modeling of Chapter 2. It will therefore have

the advantage of being versatile and able to account for all the challenges mentioned in the

previous chapter. A drawback is that, because of its generality, it may not be the fastest

for some types of problems. In particular Chapter 6 will present another algorithm for a

specific, narrower scenario, which will prove faster and near-optimal in terms os sensor

placement.

An algorithm for Phase II is then presented and is analyzed through an example. Our

goal here is mainly to motivate the importance of Phase II planning.

The benefit of using a planning algorithm for Phases I and II will be showcased on

several scenarios, which we now describe.

3.2 Case Scenarios

In both case scenarios considered here a flat square area of side 10 (in arbitrary units) is

considered. We assume a single HECN is present, which is for convenience and does not

prevent generalization. Every sensor must communicate with the HECN either directly or
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via hops through nearby sensors. Only connected sensors will be taken into account in

the objective calculation, as the data from disconnected sensors cannot be collected by the

HECN and is therefore useless.

The design variables are the x-y coordinates of the sensors in the plane, where the center

of the area is taken as the origin. The vector of design variables p is a column vector of

size 2n, where n is the maximum number of sensors and the coordinates (xi, yi) of the ith

sensor are stacked as shown below:

p =




x1

y1

...

xn

yn




. (3.1)

The goal of the optimization is to find the optimal design vector p, given certain objectives

and constraints.

Finally the sensors are assumed to be identical, with a common RSensing and RCOMM.

Again, this assumption is for simplicity and can be relaxed in other applications.

3.2.1 Case Scenario 1 (CS1)

In case scenario 1 (CS1) the sensors must be placed so as to maximize 2 mission objectives,

the network coverage and lifetime [55]. This corresponds to a mission where surveillance

must be provided in an area for an extended period of time. The HECN is placed at the

center of the area.

Each sensor initially has the same energy available in its battery, which then decreases

by one arbitrary unit for every data transmission. The cost of sensing is not modeled, as

we assume that during the mission all the sensors spend the same amount of energy on the

sensing task.

Note that because of the symmetry of this scenario about the origin, similar layouts

rotated about the origin will have similar objectives, but different design vectors p.
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Coverage

The coverage of design p is equal to the fraction of area occupied by the sensing disks of

connected sensors:

Coverage(p) =

∫
∪i∈C(p)D(xi,yi)

dxdy
∫
A dxdy

, (3.2)

where C(p) is the set of indices of connected sensors, D(xi, yi) is the disk of radius RSensing

centered at (xi, yi), and A is the total area. This objective is to be maximized.

The following routine is used to numerically compute the coverage of a given network

design p:

1. Discretize A into ngrid grid points;

2. Initialize the number of covered point ncovered = 0;

3. For j = 1 . . . ngrid, do:

• If grid point j is within RSensing of one of the n sensors, then: ncovered ←
ncovered + 1;

• Else: ncovered ← ncovered.

4. Set Coverage = ncovered/ngrid.

Lifetime

The lifetime of the network is to be maximized. In order to define the lifetime of a WSN

we need to model how quickly the sensors’ energy is depleted. We describe below a simple

model for how the network operates. It is by no means the only valid one, but it captures

the most salient feature about WSN lifetime, namely that the network topology will require

some sensors to do more “work” than others, leading to shorter battery life.

In our model the sensors first gather data about the environment. Each sensor encodes

its gathered data into a data packet which is then sent to the HECN. Once all the data

packets are collected by the HECN, the whole process (called a sensing cycle) can start

again. Some sensors will have a direct communication link to the HECN, so that their data
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packet can be passed directly (in one hop) to the HECN. However other sensors will not

have such a direct link, instead their data packet will “hop” from one neighboring sensor

to another in order to reach the HECN. These neighboring sensors will not only have to

transmit their own data packet, but also that of other sensors (in which case they act as

communication relay). Therefore at every sensing cycle some sensors will be required to

do more data transmission than others, resulting in an asymmetric energy depletion among

sensors, causing some to fail earlier than others.

We assume that the sensors initially have E (arbitrary) units of energy stored in their

batteries initially, and each data transmission costs 1 unit of energy. A sensor can therefore

survive at most E sensing cycles, in which case the sensor would have had to only transmit

its own data packet each cycle. For a given network design p, a connectivity matrix C can

be obtained, such that Ci,j = 1 if the distance between sensors i and j is less than RCOMM,

0 otherwise. Note that C is of size (n + 1)× (n + 1), where the (n + 1)th row and column

correspond to the HECN. From this matrix we can construct a graph where each sensor is

a node and an arc exists between nodes i and j if Ci,j = 1. This is illustrated on Figure 3-1

with a WSN composed of 3 sensors. Four communication links are present, shown as line

segments. The corresponding connectivity matrix is a 4 by 4 matrix (3 sensors and the

HECN) and is given by:

C =




1 0 1 1

0 1 1 1

1 1 1 0

1 1 0 1




. (3.3)

The only remaining piece that is needed is a routing scheme which, for each sensing

cycle, describes how the data packets are directed from every sensor to the HECN. Sensors

with a direct link to the HECN will obviously transmit directly to it. However when multi-

ple hops are required to reach the HECN, the data packet may have several possible paths

to get to the HECN. For example, the data of N3 in Fig. 3-1 can reach the HECN by going

either through N1 or N2. The routing scheme is the set of rules whereby this path is chosen.

For WSN the main challenge is to route the information so as to conserve the energy of the
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Figure 3-1: Example of a WSN with communication links shown as solid lines.

network, and many algorithms have been proposed and studied to that effect [51, 86].

We adopt a routing algorithm that maximizes the remaining energy in the sensors. At

each sensing cycle, consider the connectivity graph formed by the WSN (similar to that

of Fig. 3-1). If an arc exists between nodes Ni and Nj , it is split into 2 directional arcs,

one from Ni to Nj and the other from Nj to Ni. Then weights are assigned to each arc

depending on the remaining energy ei in each sensor i. In particular the outgoing arcs of

node i are weighted by the inverse of the node’s remaining energy, or 1/ei. Arcs going

out of nodes with little energy will thus receive a large weight. Dijkstra’s algorithm is then

run from every node to the HECN. This algorithm solves the single-source shortest path

problem on a weighted, directed graph, so for each node it finds the route of minimum

aggregate weight to the HECN [28]. This routing scheme will therefore avoid overusing

nodes with little energy, if possible. Once the routing of data packets is determined for

all nodes, we can count the number of data transmissions performed by each sensor. The

energy of each sensor is decreased accordingly, and the process is repeated for another

sensing cycle. If all of a sensor’s energy is depleted, then this sensor is ignored at the

next sensing cycle. This whole process enables us to simulate the WSN operation for a

given configuration p and determine how many sensing cycles ncycles(i) sensor i is able

to perform, for all i = 1 . . . n. This process is illustrated on Figure 3-2 for the WSN of

Fig. 3-1. The sensors energy is shown next to each sensor, starting with 6 units of energy

each. The routing paths for each cycle are shown by bold arcs. Note that the data packets

of N3 are relayed alternatively by N2 and N1, so that the total number of sensing cycles is
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4. It is easy to verify that if the same routing was used at each sensing cycle (e.g. packets

from N3 always go through N2), the number of sensing cycles would be 3 instead of 4. On

this simple example this routing scheme increased the WSN lifetime by 33%.

Figure 3-2: Illustration of the routing scheme on the WSN of Fig. 3-1. A total of 4 sensing
cycles can be achieved, versus only 3 if a fixed routing path was chosen beforehand.

Based on this model there are many possible ways to define the lifetime of a WSN.

One possibility adopted here is to say that the network is fully operational as long as all the

(initially connected) sensors remain connected. Therefore the WSN will “die” according

to our definition when one sensor no longer has any energy to transmit its data. The WSN
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will therefore operate for ncycles(p) = mini∈C(p) {ncycles(i)}. The lifetime is then defined as

the ratio between ncycles(p) and the maximum lifetime of a sensor:

Lifetime(p) =
ncycles(p)

E . (3.4)

This is a conservative definition, and for practical systems one may choose another

one1. However it captures the desired trade-off, so that coverage and lifetime, the two

objectives, are competing. On the one hand the coverage objective will desire spread-out

network layouts, where sensors are far apart from each other in order to minimize the

overlap between sensing disks. This implies that at each sensing cycle the sensors close to

the HECN will have to relay a large number of data packets from the outlying sensors. This

will result in faster energy depletion for those sensors, leading to their early failure. The

resulting network lifetime will be small. On the other hand, in order to get a lifetime of 1

all the sensors must communicate directly to the HECN, so that their energy is used only

for their own data transmission. This implies a configuration with all the sensors clustered

around the HECN, yielding a poor coverage value due to the overlap between sensing disks.

The computation of the lifetime for a given network design p is summarized below.

1. Compute the connectivity matrix C;

2. Initialize the energy ei = E for i = 1 . . . n, and the number of sensing cycle ncycles =

0;

3. While ei > 0 for all i = 1 . . . n, do:

• Form the weighted connectivity matrix Cw such that Cw
i,j = 1/ei for all i, j such

that Ci,j = 1;

• Run Dijkstra’s algorithm from each node to the HECN;

• For all i = 1 . . . n, count how many packets pi node i has to transmit, and

update its remaining energy ei ← ei − pi;

• ncycles ← ncycles + 1.

1For example one could instead choose the time at which the coverage drops below 50% of its original
value.
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4. Set Lifetime = ncycles/E .

Note that since the lifetime is defined by the first sensor failure, the inner loop only needs

to be run until a node’s energy is depleted.

3.2.2 Case Scenario 2 (CS2)

In case scenario 2 (CS2) a facility served by two roads is located in a hostile area. The WSN

must monitor the movements in and out of the facility [56]. For example the facility could

be a terrorist training camp, or a plant suspected of manufacturing nuclear material, so that

monitoring the activity could yield valuable information. The activity must be monitored

along the roads (where it is most likely to occur), but also around the facility as a whole.

Moreover, since the area is hostile, the survivability of the WSN depends on whether the

sensors will be detected or not. The closer that sensors are placed to the facility or to

the roads, the greater the probability that they will be discovered. Finally the network is

deployed from an aircraft that can only carry a limited payload, so the number of sensors

must be minimized.

The HECN is placed at the top right corner of the area, as shown on Figure 3-3. The

circular facility is located at the center of the area, while two roads stem from it, one going

East, the other North. We assume that any sensor placed inside the facility will not operate,

so any such sensor will not be taken into account in the objectives calculation. A description

of the objectives used in CS2 is now given.

Activity Detection

This objective measures the ability of the WSN to monitor movements in and out of the

facility and is to be maximized. A series of nradial equally spaced radial lines stemming

from the facility are generated, which approximate the possible routes agents can take to

enter or exit the facility (Figure 3-4). A sensor covers a line if the distance between them

is less than RSensing, i.e., if the line crosses the sensor’s sensing disk. The detection is then

equal to the number of lines covered by the sensors ncovered(p), divided by the total number
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Figure 3-3: Map for CS2 with the facility, the two roads and the HECN.

of lines, so that it is between 0 and 1:

Detection(p) =
ncovered(p)

nradial
. (3.5)

Since the facility is served by two roads, it is likely that the activity in and out of the facility

will take place mostly along them. More lines can then be generated along the roads, so

that these directions carry a greater weight.

Survivability

The second objective is the survivability of the network, which is to be maximized. It

represents the likelihood that the sensors will not be found. Each point (x, y) in the area

is assigned a probability of destruction Pdestruction(x, y), that is, the probability that a sensor

placed at (x, y) will be found and destroyed. This probability depends on the proximity of

the point to the facility or the roads. Indeed we assume that most of the activity takes place
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Figure 3-4: Lines used to calculate the detection objective in CS2.

on the roads or in close proximity to the facility. Therefore if a sensor is placed close to

these features it is more likely to be discovered and disabled. For the purpose of this study a

mapping of this probability is generated heuristically using a sum of exponential functions

that decay with the distance to the features (3.6). We assume that the aggregate threat from

the 3 features is the sum of 3 components: Pfacility(x, y), PRoadE(x, y), and PRoadN(x, y),

corresponding respectively to the facility, the eastbound road, and the northbound road.

Pdestruction(x, y) = Pfacility(x, y) + PRoadE(x, y) + PRoadN(x, y), (3.6)

with (for a square area of side 2L)

Pfacility(x, y) =
1

6

[
1−

√
x2 + y2 −Rfacility√

2L−Rfacility

]
+

1

6
e
− 1

2

���√x2+y2−Rfacility

���3
, (3.7)

PRoadE(x, y) =





1
2
e−

1
2
|y|3 if x ≥ Rfacility,

0 otherwise
(3.8)
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PRoadN(x, y) =





1
2
e−

1
2
|x|3 if y ≥ Rfacility,

0 otherwise
(3.9)

where L = 5 is half the side of the area and Rfacility = 1 is the radius of the facility. This

function is plotted on Figure 3-5. Note that Pdestruction(x, y) is maximum at the “gates,”

i.e. where the roads meet the facility. The survivability of the network (as we define it)

is obtained by finding the sensor with maximum probability of destruction and subtracting

this value from 1:

Survivability(p) = 1− max
i∈C(p)

{Pdestruction(xi, yi)} . (3.10)

Note that since this objective only takes into account the sensor with highest probability

of destruction, whether one or all the sensors have a high destruction probability will not

matter. In this sense this objective captures the cost of having the presence of the WSN

discovered at all: if one sensor is discovered, it is easy to imagine that the enemy will

search for the others.

Number of Sensors

The third objective is the number of sensors n, which is to be minimized.

The first two objectives, detection and survivability, are competing. For a fixed number

of sensors, in order to have more detection capability the sensors need to come closer to

the facility, so that they can make a closed loop around it. However doing so decreases the

survivability of the network since the sensors are close to the threats. Conversely a high

survivability is obtained when all the sensors are far away from the roads and the facility,

yielding a poorer coverage. Also, the more sensors the more coverage and the closer to the

edges of the area the WSN can spread (yielding a good survivability). So the third objective

is competing with the other two.
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Figure 3-5: Mapping of the probability of destruction of a sensor.

3.3 Phase I: Multi-Objective Genetic Algorithm (MOGA)

In this section the sensor placement algorithm used for Phase I is presented.

3.3.1 Motivation

The Phase I optimization can be formalized as follows:

max{Objective1, . . . , Objectivem} (3.11)

subject to





the connectivity constraint

maximum number of sensors n
(3.12)

Although the terrain is idealized as a flat surface, the design space of the WSN opti-

mization remains highly non-linear. This is due primarily to the binary nature of the com-

munication connectivity constraint between sensors. Moving a sensor by a small amount

can cause large changes in all the objectives, especially if it becomes disconnected. This is
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illustrated in Figure 3-6 for the detection objective of CS2, where 4 sensors are fixed (Fig. 3-

6(a)), while the fifth one is moved throughout the area in order to map the corresponding

objective. Discontinuities can be observed in the detection (Fig. 3-6(b)), although only

one sensor is moved. These discontinuities correspond to positions where the fifth sensor

becomes disconnected from the rest of the network. As long as it is inside the communica-

tion region of one of the fixed sensors (solid circles), its coverage contributes to the overall

detection when it is in locations not already covered by the other 4 sensors. But once it

leaves this region, it cannot communicate anymore with the HECN so the detection drops

abruptly. The maximum for the detection is found on a sharp edge of the design space, with

a sudden drop on one side. The combined effect of all sensors renders these discontinuities

even more severe.

In addition, the lifetime objective and the number of sensors objective vary in discrete

amount, which makes the optimization harder.

The Phase I algorithm must therefore be able to cope with:

• Variety of objectives: Phase I should be flexible to accommodate diverse objectives

without changing the algorithm;

• Multiple objectives, often non-analytical (coverage, detection) or discrete (number

of sensors, lifetime);

• Nonlinear, nonconvex design space.

These challenges call for a heuristic method, and the Genetic Algorithm (GA) is well-suited

for this problem [43]. It can work with problems where the objectives are nonlinear, dis-

crete, or obtained through simulation (“black box”). It also has a multiple-objective variant,

the Multi Objective Genetic Algorithm (MOGA), which easily handles multiple objectives

through Pareto-optimality [27,36]. MOGA is also very flexible and can be applied without

any modifications to different scenarios with different objectives. Among its drawbacks are

the absence of convergence guarantees and a typically heavy computational cost. In spite

of these, good results were obtained on the scenarios considered.
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Figure 3-6: (a) Set up for CS2 with 4 sensors fixed, while the fifth is moved throughout the
area. (b) Mapping of Detection as the sensor is moved throughout the area.

3.3.2 Dominance and Pareto ranking

Before describing the mechanics of MOGA, we first need to define the concepts of dom-

inance and Pareto ranking. When a single objective is considered, different designs can

be compared by simply comparing the respective objective values. However when there

is more than one objective (without any a priori preference of one over another) such

comparisons do not make sense. Indeed, what is meant by a design being “better” than

another itself needs to be defined. This is what the concept of dominance does. Let

J1 = [J1
1 , . . . J1

m]T and J2 = [J2
1 , . . . J2

m]T be the vectors2 containing the values of the

2the superscript T denotes the transpose.
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m objectives of 2 design vectors p1 and p2.

Dominance (assuming maximization): J1 (weakly) dominates J2 if and only if:

J1
i ≥ J2

i ∀i = 1 . . . m, and there exists at least one i such thatJ1
i > J2

i . (3.13)

This concept enables the comparison of vectors of objectives. Design p1 is then said to

be better than p2 if J1 dominates J2.

It is possible to have J1 and J2 such that neither dominate the other. Take for example

the vectors J1 = [1 0]T and J2 = [0 1]T. The first objective value is greater for J1, but

the opposite is true for the second objective, so that neither dominates the other. Consider

now a set of objective vectors S = {J1, . . .Jn}. A subset of those vectors will not be

dominated by any other. These vectors are said to be non-dominated. In the non-dominated

set, an improvement in one objective can only be achieved at the expense of at least one

other objective. The non-dominated set facilitates trade-offs between the m objectives.

For a multi-objective optimization problem, the Pareto front is the set of all non-dominated

designs, i.e., it extends the concept of optimality to the multi-objective case. The goal of the

MOGA will be to generate an approximate Pareto front (APF) composed of non-dominated

designs.

In the set S each individual can also be assigned a ranking equal to the number of

vectors that dominate it, plus 1: this is the Pareto ranking. Non-dominated individuals

will therefore receive a rank of 1, while the rank of dominated vectors will be 2 or more.

The concept of Pareto-ranking will be used in the MOGA to compare and rank different

designs.

On the objectives graph the n individuals can be plotted as a function of their m ob-

jectives. This is illustrated on Figure 3-7 where 2 objectives are maximized. The non-

dominated points are linked by a line. The utopia point is the point for which every ob-

jective is maximum. This point is typically infeasible, but as designs improve during the

optimization they tend to come closer to it.
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Figure 3-7: Example of an objectives graph with 2 objectives to be maximized. The utopia
point is in the upper right corner, and non-dominated points (APF) are linked by a line.

3.3.3 Algorithm Description

The output of the MOGA will be a set of non-dominated layouts from which the user

can choose. This is valuable information because it expresses the trade-off between the

objectives. For example it quantifies the amount of additional coverage that can be attained

by deploying an additional sensor, and the user, depending on his or her preference, can

decide whether it is worth doing or not.

Because the MOGA is stochastic, it has a lesser tendency to get stuck in local optima

than other algorithms. In particular, the non-dominated set will typically contain different

network topologies: some with all sensors clustered around the HECN, some in a hub-and-

spoke shape, etc. The layouts generated by the MOGA will typically be “rough” designs,

and local search methods can then be used to refine them by fine-tuning the position of

each sensor.

Below is the description of the GA implemented for Phase I. While the main operators

are classic GA operators, it should be kept in mind that this is a specific implementation of

a MOGA. For more information on different variants of GAs, the reader is referred to the

literature [27, 35, 36, 43].
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A design vector p is called a chromosome3. Each chromosome is composed of genes

that contain the sensors coordinates. At each step of the GA (called a generation), a popula-

tion of Npop chromosomes is maintained. Each chromosome is then passed through a series

of genetic operators (crossover, mutation, and selection) to produce the next generation.

The population is expected to improve as generations pass.

Crossover: Chromosomes are paired two by two at random. Each such pair is then

mated according to the following procedure. The 2 chromosomes are first cut in 2 at a

common crossover point chosen at random. The 4 chromosome pieces are then recombined

to form 2 new chromosomes, or children.

Mutation: Each gene in each children is mutated with probability pmutation. If a gene is

selected for mutation, a new value for the coordinate is chosen at random.

Fitness Assignment: After mutation, the objectives of the children are computed and

the Pareto ranking of each child and parent is computed. Each of these 2Npop chromosomes

is then assigned a fitness equal to the inverse of its Pareto ranking [35]. Chromosomes with

higher fitness thus represent better designs.

Selection: Among the pool of parent and children chromosomes, the Npop with highest

fitness are selected. This enables the non-dominated individuals to be passed on to the next

generation, so that the population keeps improving while maintaining its diversity.

The process is repeated on the new generation, unless the maximum number of gener-

ations is reached. This is summarized in Figure 3-8.

Figure 3-8: Block diagram summarizing the Genetic Algorithm procedure.

A final note regarding the MOGA for CS2: in this case the number of sensors is itself a

3Since the design variables are the coordinates of the sensors and are therefore homogenous, there is no
need for encoding as is traditionally done in GAs.
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variable. While the chromosomes are of constant length, equal to the maximum number of

sensors, the actual number of sensors per chromosome is allowed to vary dynamically [45].

In particular, a sensor is present at the (2i − 1, 2i) genes (for i = 1 . . . n) if this pair

is different from (0, 0). When the initial population is generated, the number of sensors

present in each chromosome (as well as the sensor coordinates) are chosen at random.

Likewise, the mutation operator can affect both the coordinate of a sensor and whether or

not the sensor is present.

3.4 MOGA Results for Phase I

3.4.1 Results for CS1

Figure 3-9 illustrates the results of MOGA on CS1 for 10 sensors, with RCOMM = RSensing =

2. The MOGA was run for 250 generations, with Npop = 120 and a mutation rate of

0.1. On the objectives graph all designs generated during the 250 generations are plotted

according to their objectives. The color code shows how the designs tend to evolve toward

the utopia point in the upper-right corner as the generation number increases. Note that

the lifetime can only take a finite number of values, so the objectives graph is composed

of horizontal lines. Each of those lines corresponds to a value of lifetime, which in turn

corresponds to a certain network topology, that is linked (typically) to the number of sensors

directly connected to the HECN. The APF contains the non-dominated designs, which for

convenience have been joined by a line. The designer needs only to look at this finite set

of designs to make his decision about what layout to deploy, since all the other layouts

are dominated by those (i.e., there exists at least one design on the APF for which both

objectives are better). It can be seen on the APF that higher coverage is only achieved

at the expense of a smaller lifetime. To illustrate these different designs, two of them are

plotted on Figure 3-10, one with 5 sensors at the HECN (5-spokes design), the other with

3 (3-spokes design). It can be seen that for a 6% improvement in coverage (from 0.4647 to

0.4984), the lifetime drops 37.5% (from 0.4 to 0.25). The user may therefore decide that

the marginal increase in coverage is not worth the decrease in lifetime, and may choose
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to go with the 5-spokes design. This insight would not have been available if only the

coverage had been maximized. So not only does the MOGA provide diverse solutions

for this problem, but it also helps inform the user about the available trade-off between

objectives.

Note that the designs shown on Figure 3-10 could be refined by performing a local

search around the nominal designs. An algorithm to do so will be presented in the section

on Phase II.
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Figure 3-9: Objectives graph for CS1 with 10 sensors and RCOMM = RSensing = 2. All
designs generated during the 250 generations are plotted according to the following color
code. Blue: generations 1-50; Green: generations 51-100; Yellow: generations 101-150;
Magenta: generations 151-200; Black: generations 201-250

3.4.2 Analysis of the APF

In the previous example the layout with largest coverage was a 3-spoke design. How would

this change if the sensing radius was decreased, while the communication range remained

constant? Intuitively, more sensors could be clustered around the HECN without having
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Figure 3-10: Example of non-dominated designs given by the MOGA on Fig. 3-9. One is
with 5 spokes, the other with 3.

the sensing disks overlap, thus providing the same coverage with a greater lifetime: the

3-spoke design would no longer be part of the APF. In this section we briefly investigate

the influence of the ratio ρ = RSensing/RCOMM on the non-dominated designs, focusing on

the layouts at the two ends of the APF.

The layout with best lifetime at the upper end of the APF is always the same, irrespec-

tive of the value of ρ. In this case all the sensors are clustered around the HECN, so that

all the sensors’ energy can be devoted to transmitting their own data packets, yielding a

network lifetime of 1. This is true irrespective of the value of the sensing radius.

Let us then turn our attention to the design with best coverage at the bottom end of

the APF. On Figure 3-11 are shown the APF designs with largest coverage for ρ = 0.5, 1,

and 2. When ρ = 0.5 the sensors are arranged in a “beehive” fashion around the HECN,

whereas when it is equal to 1 and 2 the sensors form a hub-and-spoke configuration, with

respectively 3 and 2 spokes stemming from the HECN. It is interesting to note that in the

first case hub-and-spoke layouts are not part of the APF. This is in accordance with our

previous observation, since the same coverage can be obtained with a larger lifetime.

For a given number of sensors, the maximum coverage will be obtained when, if pos-

sible, there is no overlap between the sensing disks. Viewing the sensors as marbles of

radius RSensing, the tightest packing is obtained when each marble touches 6 neighbors (ex-

cept for the peripheral ones). This beehive configuration ensures a maximum coverage,
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Figure 3-11: Layouts with best coverage for ρ = 0.5, 1, and 2. Note how the number of
sensors at the HECN decreases as ρ increases.

while providing the maximum number of neighbors for each sensor, so that the lifetime is

maximized. This is shown on Figure 3-12 (note the similarities between this design and

that of Figure 3-11 with ρ = 0.5). Thus as long as RCOMM ≥ 2RSensing, or ρ ≤ 0.5, the

configuration where the sensors are packed like marbles will be the bottom point of the

APF.

Let us now assume that RCOMM < 2RSensing. If the sensors remained in this “beehive”

configuration they would be unable to communicate with each other since they would all be

outside their neighbors’ communication range. Overlap between the sensing disks therefore

becomes necessary, which explains the change in design observed for ρ = 1 and 2. Instead
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Figure 3-12: Beehive configuration where all sensors are tightly packed together (here
ρ = 0.5).

of having 7 sensors directly connected to the HECN, these respectively have 3 and 2 sensors

connected to the HECN.

As ρ increases it also seems that the number of spokes stemming from the HECN de-

creases. Given ρ > 0.5, let us perform a numerical study to approximate the number of

spokes stemming from the HECN in the APF design with best coverage. For this purpose

the area is assumed to be the infinite plane. We also assume that given a total number of n

sensors, the layout is completely determined by the number n′ of sensors directly connected

to the HECN. This design is constructed as follows:

• Evenly space n′ sensors around the HECN;

• Assign the remaining n− n′ sensors evenly between the n′ sensors already in place,

and place them on a straight line stemming outward.

The resulting designs are star-shaped hub-and-spoke layouts. This is an approximation

since the true optimal design may have the spokes of the hub-and-spoke connect with each
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other (this can result in a slightly larger lifetime, as in Figure 3-2).

Following this rule we can determine the optimum number of sensors directly con-

nected to the HECN for different values of ρ. When ρ = 0.5, 6 sensors can be placed at

the HECN without overlap between the sensing disks. As ρ increases, fewer sensors can

be placed at the HECN if overlap is to be avoided. However, overlap might be beneficial

at the HECN in order to have less overlap in the spokes, as illustrated in Figure 3-13 for 3

sensors and ρ = 1. In this example the overlap of 3 sensors at the HECN (right) is lower

than that between 2 sensors on a spoke (left). In general overlap at the HECN will therefore

be allowed if it results in more overall coverage.

Figure 3-13: In this example a layout with 2 spokes (left) generates more overlap than one
with 3 spokes (right). Although no overlap is present at the HECN, more is incurred by
having 2 sensors connect on a spoke.

Let us start by considering a layout with n sensors at the HECN. Let CHECN(n) be the

resulting coverage. There are two possibilities for the placement of an additional sensor:

• It can be added to the HECN. In that case the n+1 sensors are equally spaced around

it, and the resulting coverage is CHECN(n + 1);

• It can be added to a spoke. Let Cspoke be the corresponding additional coverage, so

that the total coverage is CHECN(n) + Cspoke.

The option yielding the largest coverage is chosen.

• If CHECN(n + 1) ≥ CHECN(n) + Cspoke, add the sensor to the HECN;

• Else add it to a spoke.
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Note that once the second option is optimal, then all the remaining sensors will be placed on

spokes: placing additional sensors at the HECN provides a decreasing amount of additional

coverage as the sensors increasingly overlap. In Figure 3-13 additional sensors will be

added to the spokes.

This analysis was performed numerically for several values of ρ. The optimal number

of sensors at the HECN is plotted as a function of ρ on Figure 3-14. The number of sensors

at the HECN starts from 6 when ρ = 0.5, and then decreases rapidly to 3. When the

sensing radius is about twice the communication radius, the optimal layout only has 2

spokes stemming from the HECN and the network essentially degenerates into a linear

array. These results, valid for any number of sensors, confirm the optimality of the layouts

obtained by the MOGA. Previous results from the MOGA results indeed showed a 3-spoke

design when ρ = 1, and a 2-spoke design for ρ = 2.

This result is important because it shows the influence of the sensor technology on the

optimal layout. Values of ρ will indeed largely vary depending on whether a seismic or a

visual sensor is employed. For example, the seismic sensor described in Section 2.1.1 had

RCOMM = 300m and RSensing = 1000m for vehicles, yielding ρ = 3.3. The configuration of

the WSN with largest coverage would therefore be a linear array. However a visual sensor

can be expected to yield a ρ smaller than 1, leading to a design with at least 3 spokes.

Network designers cannot therefore have a one-size-fits-all approach to WSN design,

where the same configuration would be used for all missions. As has just been demon-

strated, even when the area and the mission objectives are the same, different sensors will

yield different optimal designs. An automated planner such as the MOGA presented in

this section is therefore necessary to optimize the use of resources. Section 3.5 will further

investigate benefits of using the MOGA.

3.4.3 Results for CS2

The MOGA was run for a maximum number of 12 sensors with RSensing = 1.8 RCOMM =

4 (i.e., the sensing range is about half the communication range). The MOGA had 300

generations, Npop = 100, and a mutation rate of 0.1. The objectives graph is shown in
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Figure 3-14: Optimal number of sensors at the HECN for CS1 as a function of ρ.

Figure 3-15, where the non-dominated designs populating the APF are shown by circles.

The utopia point is where coverage and survivability are 1, and the number of sensors is

0. Figure 3-16 shows non-dominated designs with 9, 7, and 5 sensors. This illustrates the

trade-off between detection, survivability, and number of sensors. This optimization took

24 minutes to complete on a Pentium 4 processor running at 1.8GHz.

These results confirm the intuition about this problem. Higher survivability is achieved

by placing the sensors far away from the facility and the roads (e.g., the case with 9 sensors),

but to maintain full detection capability of the movement more sensors are needed (compare

the designs with 9 and 5 sensors). The cost for using fewer sensors and requiring the

same full coverage is a lower survivability: it drops by 39% from that with 9 sensors

(Survivability = 0.73) to that with 5 sensors (Survivability = 0.44). The layouts selected

in Figure 3-16 all have a detection value close to 1. However it may be the case that the

survivability is of great concern for a particular mission (e.g. if the WSN has to stay on

site for a long time), so that some detection capability can be given up in order to gain in
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Figure 3-15: Objectives graph for CS2 obtained with a maximum of 12 sensors, RSensing =
1.8 and RCOMM = 4. Non-dominated designs are shown as circles, and 3 of them with 9, 7,
and 5 sensors are plotted on Fig. 3-16

survivability. In particular we also note that the APF layouts with the largest survivability

have the same structure as the design with 9 sensors in Figure 3-16, with the necessary

number of sensors removed, starting from the lower left corner.

We finally note that this MOGA was tested on 2 other case scenarios, presented in

Appendix A.

To summarize, a total of 5 different objectives were tested on 4 different case scenar-

ios, each with different combinations of objectives. In all these examples the exact same

MOGA was used to obtain different network designs from which the user can choose. The

flexibility of the MOGA is evident from the variety of cases tested. The simple case sce-

narios treated here can serve as building blocks (or primitives) of more complex missions,

while the same algorithm can be used.
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Figure 3-16: Non-dominated designs with 9, 7, and 5 sensors for CS2.

3.5 Benefits of Phase I Planning

Some important reasons for using MOGA to plan the WSN have already been outlined in

the previous sections:

• The MOGA provides the user with the trade-off between objectives.

• The optimal network designs will depend on the sensors characteristics, so there is

no one-size-fits-all network layout optimal in all cases.

Much of the WSN literature assumes that the sensors will be randomly deployed. In this

section we perform a brief numerical comparison between the performance of the MOGA
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designs and that of designs obtained without planning, when the sensors are simply dropped

at random.

Let us first consider the objectives graph obtained for CS1 in Figure 3-9. For a given

number of sensors, the coverage and lifetime are averaged over 100 random deployments

of the WSN. This is done for n = 5, 10, . . . , 70 sensors. The corresponding averaged

objectives values are plotted as a red line on the objectives graph of Figure 3-17. It can

be seen that over 25 sensors are needed to achieve on average the same coverage than

the value obtained by 10 sensors deployed according to the MOGA. Moreover, the only

parameter one can control when dropping sensors at random is the number of sensors,

which only gives access to a very limited portion of the objectives space. The MOGA

however provides the user with much more control over where the WSN should be in the

objectives space.
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Figure 3-17: Objectives graph for CS1 with the averaged objectives obtained by randomly
dropping 5, 10, . . . , 70 sensors.

We then consider the results from CS2, in particular the designs with 9 sensors (called

D9) and with 5 sensors (called D5) of Figure 3-16. Just as in the previous case, these ob-

68



jectives are compared to those obtained via random deployments, with a varying number

of sensors. The resulting objectives are plotted as a function of the number of sensors in

Figure 3-18. The objectives of D9 and D5 are also plotted on each graph for comparison. It

can be seen that to obtain designs with an average detection close to 1, about 30 sensors are

needed if placed randomly, whereas both designs with 5 and 9 sensors provide a detection

of 1. As far as survivability is concerned, it peaks for 8 sensors (at about 0.3) and decreases

on average as the number of sensors increases. In this case deploying more sensors actu-

ally hurts the survivability since the probability of a sensor falling close to a road or the

facility increases if more are dropped. On Figure 3-19 the average value of detection and

survivability for each number of sensor is plotted alongside the objectives graph obtained

by MOGA (the graph is projected on the 2D plane of detection and survivability). It is clear

from this plot that, just like for CS1, the portion of the objectives space reached by random

designs is poor.

In summary these brief examples illustrate the need for a planner. Without it most

desirable regions of the design space can never be reached, even by deploying an increasing

number of the resources. In fact deploying more sensors may even result in a decreases of

some objective value.

These sections demonstrated the need for planning as well as validated our solution

approach with MOGA. The MOGA was shown to be a flexible algorithm well-suited for

the type of complex problems typically encountered during Phase I. It was shown that using

a planning algorithm is necessary as it leads to significant saving of resources and achieves

designs otherwise impossible, e.g. via random deployment.

3.6 Phase II: Algorithm and Studies

Phase I provides the planner with a nominal WSN design. The necessary resources are

then loaded into the UAV, and the aircraft flies to the deployment zone. Referring back

to the 3-phased strategy of Section 2.4, the system then enters Phase II, where the UAV

starts deploying the sensors on the ground, according to the Phase I design. The following

assumptions are made about the deployment process:
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Figure 3-18: Average value of the detection and survivability objective as a function of the
number of sensors dropped. The 1-σ envelop is shown in dashed, and the objectives values
for D5 and D9 are shown for comparison.

• The UAV can make several passes over the mission area;

• At each pass it can deploy one or more sensors;

• At each pass it has a probability of being lost;

• The UAV has the ability of knowing the location of the sensors once they are on the

ground (e.g. through broadcast of their GPS positions).

The task of Phase II will therefore be to decide how many sensors to drop at each pass,

and where each of these sensors should be deployed. As mentioned before, the drops are
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Figure 3-19: Average value of detection and survivability when sensors are placed ran-
domly, plotted alongside the objectives graph obtained by MOGA.

guided so that sensors can be deployed at the desired location, given some inaccuracy due

to the drop vehicle modeled as a zero-mean Gaussian with variance σ2
DV.

This is a complex problem. Decisions must be made not only about drop sequencing,

but also about the location of the drops, while taking into account the information from

previous drops. In this section we will provide a simple approach to this problem, and

analyze it through numerical simulations. This study will demonstrate the clear need for

planning Phase II.

3.6.1 Algorithm Description

Phase II starts where Phase I left off. The nominal Phase I design would be chosen on the

APF by the user, according to his or her preferences among several objectives. We restrict

our study to CS1, where coverage and lifetime must be maximized. We also require that

the topology of the network on the ground, i.e. the communication links between sensors,
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remain the same as on the Phase I design. In this way the value of the lifetime will be the

same as that planned. Phase II will therefore aim at maximizing the expected value of the

coverage. If CS2 was considered, then the expected survivability and detection must be

maximized (assuming the number of sensors is constant). A weighted average of those two

may be a good way to address this case within the framework adopted below.

It is convenient to decompose Phase II into two separate subproblems. Given a nom-

inal layout of the sensors, with some possibly already deployed on the ground, we do the

following:

• Choose a drop sequence, i.e. which sensors should be dropped at each pass;

• Given this drop sequence, refine the location of the sensors to be dropped at the next

pass to account for the drop vehicle inaccuracy and the actual locations of the sensors

already on the ground.

Let us first define a few variables. Let p0 be the nominal Phase I design, S = {S(1), . . . , S(q)}
is the drop sequence where S(i) contains the indices of the sensors to be dropped at the

ith drop and q is the total number of drops, p(i) are the coordinates of the sensors to

be dropped on the ith pass, and pGND are the coordinates of the sensors already on the

ground. Also, the probability that the UAV may be lost during a pass is denoted by ploss.

Given a drop sequence S, the refining routine of the second task of Phase II is denoted

REFINE(p0,pGND, S(i)) for the ith pass, and it returns p(i).

The goal is to choose the sequence S with maximum expected coverage. Unfortunately

there exists no closed-form expression for the expected coverage, so it must be approxi-

mated through Monte Carlo simulation. For a given drop sequence S, the expected cover-

age E{Coverage(S)} is calculated as follows:

• Initialize cov = 0;

• Repeat the following nMC times:

1. Initialize pGND = ∅.

2. For drop i = 1 . . . q, do:
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– Get p(i) = REFINE(p0,pGND, S(i));

– Sample a random number uniformly between 0 and 1. If it is below ploss

the UAV is lost, go to (3);

– Simulate dropping p(i) with inaccuracy according to N (0, σ2
DV);

– Add the resulting sensors positions to pGND.

3. Calculate the coverage Coverage(pGND);

4. cov ← cov + Coverage(pGND).

• E{Coverage(S)} = cov/nMC,

where nMC is the number of Monte Carlo simulations used to calculated the expected cov-

erage.

Not only is there no closed-form expression for the expected coverage, but the num-

ber of possible drop sequences is also exponentially large. For 3 sensors, the possible

sequences are:

• Drop them all together (1 combination);

• Drop them in 2 groups (2× C2
3 combinations);

• Drop them one by one: (3! combinations).

The total number of drop sequences is 13 in this case, and for n sensors this number will

grow faster than n!. This prohibits enumerating all drop sequences and calculating the

expected coverage for each.

Drop Sequences

In the following only a subset of sequences will be evaluated, in order to illustrate the vast

differences in terms of resulting expected coverage.

In particular in sequence S1 all the sensors are dropped at the same time, while in S2

they are dropped one by one. The sensors can also be grouped according to the number of

hops h required for information to reach the HECN. This forms the basis of 2 other drop
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sequences. In S3 the sensors are dropped from the HECN outward, that is the sensors with

h = 1 are dropped first, followed by those with h = 2, etc. In S4 the opposite is performed,

where sensors with higher h are dropped first. Finally sensors can be grouped so that in

each group, no sensor has a communication link in common. In S5 the sensors are dropped

according to those groups, so that in each group sensors are “independent” of one another.

Refining Algorithm

We first concentrate on the problem of adjusting the location of a single sensor (xi, yi).

We assume that all the other sensors are fixed, and we want to find the location that will

maximize the expected coverage. A small area around its nominal location is discretized,

and for each of these candidate positions, the expected coverage is computed, for example

through Monte Carlo simulation. Then the location with maximum expected coverage is

chosen.

We then successively apply a routine called REFINE to every sensor in the drop, so that

all their positions are adjusted. Doing so successively for each sensor presupposes that the

sensors in a single drop are independent of one another. This is not true in general because

sensors with overlapping sensing disks or interconnected by a communication link are not

independent, so that moving one sensor will typically influence the rest of the network. To

be more rigorous we should adjust the positions of all the sensors in a drop simultaneously,

but this would make the problem intractable.

This routine is summarized below. The nominal Phase I design is denoted by p0, and

the position of the sensors in the set S are to be refined. There may also be sensors already

on the ground, given by pGND.

REFINE(p0,pGND, S)

• Set p = p0;

• For each sensor i in S, do:

1. Discretize the area around p(i) (the nominal location of sensor i) into q points

{p̃1(i), . . . , p̃q(i)};
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2. For each of these points p̃j(i), repeat mMC times:

– Simulate dropping a sensor at p̃j(i) with inaccuracy according toN (0, σ2
DV);

– In p replace the ith nominal sensor position by this value;

– Calculate the corresponding coverage;

3. Let p̃k(i) be the points yielding the largest average coverage;

4. Set p(i) = p̃k(i).

• The refined design is given by p.

This method can actually be applied to all the sensors in the network, so as to refine the

whole design. This is desirable especially for the design given by Phase I, which tends to

be rough as mentioned before. Running it through REFINE will fine-tune the positions of

all the sensors, while accounting for the inaccuracy in drop vehicles (something to which

Phase I is oblivious). Consider an example where Phase I gave a layout with 5 sensors and

3 spokes. Three layouts (Figure 3-20) are compared. In the first, the sensors are brought

close to one another (within 60% of their communication range): this is a conservative

option. In the second one, the sensors are stretched as far as their communication range

will allow them. In the third one, REFINE is used, given that σDV = 0.2. We assume that

all the sensors are dropped at the same time, and the expected coverage of the network

is calculated through Monte Carlo simulation. The expected coverage values are, respec-

tively, 0.23, 0.13, and 0.27, while the coverage values obtained through 100 simulations

are sorted and plotted on Figure 3-21. The stretched configuration yields the poorest cov-

erage because, due to the drop inaccuracy, sensors often end up being disconnected from

the HECN. The coverage is much better for the more conservative design, but it can still

be improved (by 17%) by running REFINE. This is explained by the fact that the REFINE

routine explicitly takes the value of σDV into account, so that the refined design is neither

too risky nor too conservative.
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Figure 3-20: (a) Conservative design, (b) stretched design, (c) design fine-tuned using
REFINE.

3.6.2 Benefits of Phase II Planning

Let us now consider the whole Phase II process. Two different designs are used in this study

to show the benefits of Phase II planning. Design D9 is a 3-spoke design with 9 sensors, as

shown on Figure 3-22, while design D19 is a mesh of 19 sensors. For both designs, the 5

drop sequences S1 through S5 are tested and the resulting expected coverage are compared.

The probability of UAV loss at each pass is set to ploss = 0.1.

Results for D9 are shown on Figure 3-23. This plot shows, for all 5 sequences, the

coverage values of 100 drop simulations, sorted from worst (to the left) to best (to the
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Figure 3-21: Sorted coverage values obtained through 100 Monte Carlo simulations for the
3 refined designs of Fig. 3-20.

right). It can be seen that the best sequence is S3, when the sensors are dropped 3 by 3

outward. This strikes the best balance between the UAV survivability and the amount of

feedback from previous passes. In comparison, dropping the sensors all at once (S1) only

yields mediocre results, due to the absence of feedback. The worst sequence is S2, i.e.

dropping the sensors one by one. In that case the UAV is usually lost before it had time

to deploy all the sensors (the probability it survives the 9 passes is only 0.99 = 0.39), so

although the amount of feedback is maximum, it does not survive long enough to benefit

from it.

Figure 3-24 depicts the results for D19 with 250 Monte Carlo simulations. This time

the best sequence on average is S1, where all the sensors are dropped at once. Since the

sensors are closely clustered in the nominal Phase I design, they have a high probability

of remaining connected after they are all dropped. Sequences S3 and S4 perform well also

(actually better than S1 in most cases, but by a small amount). However they suffer from

multiple UAV passes, so that the coverage can be much worse than S1 in some cases (left
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Figure 3-22: Design D9 is a 3-spoke design with 9 sensors, while design D19 is a mesh of
19 sensors.

of the curves). Again, S2 is the worst, so much so now that 19 passes have to be performed

in order to fully deploy the entire network.

We draw two conclusions from this study. The first is that Phase II, can have a large

impact on the performance of the WSN. With D19 for example, the expected coverage is

over 4 times better when using sequence S1 over S2. Choosing the wrong drop sequence

can have a catastrophic effect on the performance of the WSN. The second conclusion is

that the optimal drop sequence varies depending on the WSN design. For a hub-and-spoke

with 9 sensors, S3 was the best, whereas for a mesh of 19 sensors it was better to drop all

the sensors at once. There is therefore no one-size-fits-all drop sequence that will perform

optimally in every case, and an algorithm like the one proposed for Phase II is a crucial

piece of the planning algorithm.

3.7 Conclusion

In this chapter algorithms for Phase I and Phase II were proposed. A MOGA was shown

to perform well on a variety of Phase I scenarios. Likewise, an approximate algorithm was

described for Phase II, and shown to have a significant impact on the performance of the

WSN once it reaches the ground.
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Figure 3-23: For design D9, coverage values of 100 drop simulations, sorted from worst
(to the left) to best (to the right) for all 5 sequences.

For Phase I, we showed that careful planning of the WSN design leads to far superior

solutions than random placement. Likewise for Phase II we demonstrated the importance

of striking the optimal balance between the amount of feedback received through multi-

ple drops, and the risk of having the UAV lost. In both cases this underlined the large

benefit of smart algorithms compared to random approaches. This also showed that a pre-

determined, one-size-fits-all approach to network planning and deployment will result in a

highly sub-optimal performance. The algorithms presented in this chapter therefore justify

the validity of the Phase I/Phase II approach to provide flexible, near-optimal planning for

WSN deployment.

Having motivated and justified the importance of WSN deployment planning and out-

lined suitable algorithms for the general case, we now turn our attention to the specific

scenario where the WSN is deployed to provide accurate localization to an agent navigat-

ing in a GPS-denied environment. A placement algorithm will be specifically developed

for this application and will be directly applicable to Phases I, II and III.
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Figure 3-24: For design D19, coverage values of 250 drop simulations, sorted from worst
(to the left) to best (to the right) for all 5 sequences.
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Chapter 4

Application to Localization in

GPS-denied environments Using a

Network of UWB Beacons

4.1 Introduction

The analysis developed so far has remained fairly general, so as to be applicable to any type

of scenario. In the remaining chapters of this thesis we focus on a particular application of

WSNs, the localization of agents in GPS-denied environments.

Since the Global Positioning System (GPS) became widely accessible [89], localization

in the absolute frame (or geolocation) has found application in many different fields. In ar-

eas where there is a good line-of-sight (LOS) to GPS satellites, this technique provides a

good estimate (within a few meters) of the user’s location on the earth. However, in indoor

and dense urban environments, geolocation has always been a more challenging problem

for several reasons. Typically the GPS signal is not strong enough to penetrate through most

materials. As soon as an object obscures the GPS satellite from the user’s view, the signal

is corrupted. This constrains the usefulness of GPS to open environments, and limits its

performance in forests or in dense urban environments, as retaining a lock on the GPS sig-

nals becomes more difficult. GPS typically becomes completely useless inside buildings.
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However there is an increasing need for accurate geolocation in cluttered environments, in

addition to open spaces. In commercial applications for example, the tracking of inventory

in warehouses or cargo ships is an emerging need. In military applications the problem of

“blue force tracking,” i.e., knowing where friendly forces are, is of vital importance. This

is not a problem in open environments where systems can rely on GPS [1], but in dense

urban or indoor environment, no satisfactory solution exists. Navigation in GPS-denied

environment is also a pressing military need. For example untethered robots operating in

enclosed environments such as urban canyons or inside buildings need accurate positioning

to safely navigate.

Our scenario is that of an agent (such as a person or a vehicle) entering a building and

accurately tracking its position over time. The position estimate should have a precision

of under one meter (i.e. on the order of some of the building feature dimensions, such as

hallway width).

4.2 Proposed Architecture

To address the problem of geolocation in cluttered environments, we consider deploying a

WSN composed of nB fixed beacons emitting radio signals1. We assume that once they are

deployed, the location of these beacons is known. For example the beacons can be placed

outside and rely on GPS, or agents can place them inside and determine their locations

by survey or other means (e.g. an accurate map). The user agent can then extract range

estimates to the beacons from the received signals (by time-of-arrival estimation), and then

use the range estimates in a triangulation technique to determine its own position.

In the proposed architecture the beacons transmit ultra-wide bandwidth (UWB) signals.

UWB technology potentially provides high ranging accuracy in cluttered environments [34,

42, 65, 68] owing to its inherent delay resolution and ability to penetrate obstacles [18, 98,

99, 101]. It is therefore the signal of choice for indoor ranging. Further information on the

fundamentals of UWB can be found in [80, 90, 96, 97, 100] and the references therein. For

1In the configuration envisioned the “sensors” do not actually sense anything, but rather transmit a radio
signal, so they are referred to as “beacons” in the remainder of this thesis.
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simplicity we restrict our analysis to the two-dimensional case, but most results thereafter

can be extended to three dimensions.

This architecture is illustrated on Figure 4-1. In response to an emergency in a high-

rise building, a network of UWB beacons is deployed. These beacons provide a localization

network to responders (or agents) moving inside the building. Note that the beacons can

also provide the communication infrastructure necessary to relay information between the

agents and the base (shown as a Humvee). Such a network has a similar structure to those

previously studied.

Figure 4-1: Architecture for accurate indoor localization.

In the remainder of this dissertation we will focus exclusively on the localization aspect

of the network, so that the network architecture is less general than that described in Chap-

ter 2. In particular only one objective will be considered. The potential role of the network
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as a communication infrastructure will not be further considered. This implies that issues

related to the communication connectivity between beacons or the HECN are not present,

as the beacons do not need to interact with one another to perform the localization task

(which is performed by the agent itself). Therefore unlike the WSNs considered so far,

information does not need to be relayed to other beacons. Of course if both localization

and communication are of importance, then a method using MOGA can be implemented

for Phase I, as discussed in the previous chapter. For example a second objective might be

to maximize the total communication throughput of the network.

This WSN implementation implies that the agents is cooperative, i.e., it interacts with

the WSN to perform its task. In this specific architecture, the role of the sensors (called bea-

cons) is also slightly different. So far we have considered sensors that gathered information

and relayed it to the rest of the network, whereas here the beacons are used to provide the

agent with ranges. There is nothing fundamentally different with the previous general case,

however. Consider the variant where the agent would broadcast a UWB signal, so that the

sensors each measure the range to the agent, share the information and infer the location

of the agent. In this case the WSN operates just as before (and the connectivity constraint

between sensors needs to be enforced). Therefore, although the flow of information dif-

fers from the general case in this specific implementation (the ranges are measured by the

agent, as opposed to the sensors/beacons), the WSN architecture considered here still fits

our general framework.

The sensing range is assumed to be infinite, at least in theory. In fact the quality of

range measurements will degrade with distance, so that the distance between beacons is

still of concern, as discussed later on in this chapter. Note also that the placement algorithm

presented in Chapter 6 can easily accommodate range constraints between beacons and

agents, so that this assumption is without loss of generality.

The rest of this chapter is devoted to modeling the UWB range measurements so that in

Chapter 5 an objective for the placement algorithm can be derived, which will account for

the localization accuracy of beacon configurations.
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4.3 Ultra-Wideband (UWB) Ranging

4.3.1 Radio-based localization

Different techniques can be used to localize an agent based on radio signals, such as the

angle-of-arrival (AoA), the received signal strength (RSS), or the time delay informa-

tion [17,42,76]. The AoA method measures the angle between the agent and the incoming

signal using typically multiple antennae or an antenna array. By measuring the angle to

2 (non-aligned) transmitters in 2D, the location of the receiver is found at the intersection

of the 2 lines. Since our system operates in a dense cluttered environment, however, the

signal will often not travel in a straight line between the agent and the beacon. AoA meth-

ods are therefore not appropriate for UWB indoor positioning. The RSS method relies on

a path-loss model, where the distance between receiver and transmitter is inferred by mea-

suring the energy of the received signal. Three transmitters are needed in 2D to calculate

the agent’s location by using a triangulation technique. However the characteristics of the

propagation channel must be known in advance in order to deduce distance from RSS, and

in most cases such precise characterization will not be available.

The appropriate method for our problem is based on timing. Assuming the beacons and

the agent are synchronized in time, the agent can calculate the time-of-flight of a signal

by comparing its time stamp at transmission to its time-of-arrival (TOA). This can then be

converted to a distance by multiplying the time-of-flight by the speed of light. Since the

accuracy of TOA estimation increases with the signal-to-noise ratio (SNR) and the band-

width [42], UWB (for a given SNR) will typically achieve great TOA accuracy compared

to narrower band signals.

We note that in general the beacons and the agent will not have a common time-

reference, in which case variants of this method must be used. In the round-trip method,

the agent transmits a UWB signal to a certain beacon. Once it is received at the beacon,

it is retransmitted and in turn received by the agent. By comparing the time of original

transmission to the TOA (and accounting for the processing time required for the beacon

to retransmit the signal), a time-of-flight can be determined [65] (in 2D, 3 beacons are suf-

ficient to generate a position estimate). If the beacons are synchronized, but not the agent,
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then the time-of-difference-of-arrival (TDOA) method can be used. In this case the agent

transmits a UWB signal, and the TDOA is computed at two beacons. The agent is then

located on a hyperbola with foci at the beacons (again, 3 beacons are required in 2D). Note

that these 2 variants require the agent to have the capability to transmit UWB signals. It

is a realistic assumption if the agent also uses UWB for communication purposes in the

mission scenario. Then the localization capability can simply be bootstrapped onto the

communication system.

If the agent does not have the capability to transmit UWB signals, a similar approach

to that of GPS can be used (assuming still that the beacons are synchronized). In this case,

in addition to solving for the agent’s position, we also solve for the clock bias of the agent.

Then 4 beacons are necessary to yield a solution in 2D.

For simplicity and without loss of generality, we will assume in the following that the

beacons and the agent have a common time-reference.

4.3.2 Time-of-arrival estimation

Several methods for TOA estimation of UWB signals can be found in [34,42,68]. Examples

of low-complexity estimators include a maximum peak detection method and a threshold

detection method. In the latter a threshold is chosen a priori, and the TOA is defined as the

instant when the received amplitude goes above this threshold [34]. In spite of its simplicity,

this method works quite well for UWB signals, especially in high SNR environments. This

is illustrated on Figure 4-2.

4.3.3 Challenges to UWB ranging

Let us now define a few terms. We refer to a range measurement between a transmitter and a

receiver as a direct path (DP) measurement if the range is obtained from the signal traveling

along a straight line between the two points. A measurement can be non-DP if the DP signal

is completely obstructed. In this case, the first signal to arrive at the receiver may come from

reflected paths only. A LOS measurement is one obtained when the signal travels along an

unobstructed DP, while a non-line-of-sight (NLOS) measurement can come from complete
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Figure 4-2: Illustration of a threshold detection method on a received UWB trace.

DP blockage or DP excess delay (in the latter case the DP is partially obstructed so that the

signal has to pass through different materials, which results in additional delays).

In the case of radio-based localization, range measurements are typically corrupted

by four sources: multipath fading, thermal noise, DP blockage, and DP excess delay.

Multipath fading is due to destructive and constructive interference of signals at the re-

ceiver arriving via different propagation paths. This makes the detection of DP, if present,

challenging. However UWB signals have the capability to resolve multipath components,

which greatly reduces multipath fading [18,98,99,101]. The presence of thermal noise also

limits the ability to accurately determine ranges as the distance increases, i.e., as the SNR

decreases. We account for this effect by introducing a suitable model for the variance of

the range measurement errors that increases with distance [34, 42].

The third difficulty is due to DP blockage. In some areas of the environment the DP to

certain beacons may be completely obstructed, so that the only received signals are from

reflections, resulting in measured ranges larger than the true distances. The fourth difficulty
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is due to DP excess delay incurred by propagation of the partially obstructed DP through

different materials, such as walls. When such a partially obstructed DP signal is observed

as first arrival, the propagation time depends not only upon the traveled distance, but also

upon the materials it encountered. Because the propagation of electro-magnetic signals is

slower in some materials than in the air, the signal arrives with excess delay, again yielding

a range estimate larger than the true one. An important observation is that the effect of

DP blockage and DP excess delay is the same: they both add a positive bias to the true

range between agent and beacon, so that the measured range is larger than the true value

(thus, from now on we will refer to such measurements as NLOS). This positive error has

been identified as a limiting factor in UWB ranging performance [34, 65], so it must be

accounted for.

4.3.4 Analysis of UWB Measurements

Using data collected by Win and Scholtz [101] we are able to build a probabilistic model

for the beacon bias. These measurements were collected on a single floor of an office

building, a map of which is provided in Figure 4-3. A bandwidth in excess of 1GHz was

used, and the UWB transmitter was placed in a specific room, while measurements were

taken in different rooms. For an in-depth description of the experiment, we refer the reader

to [101]. We focus on two sets of data, one with measurements taken in room P, and the

other with measurements taken at regular intervals along a corridor (points 1 though 33 on

Fig. 4-3).

Measurements on a Grid

For the first set of data, 49 measurements were taken in a 7x7 square grid with a 6 inch spac-

ing between measurement points. These were collected in room P, a different room from

that of the transmitter (so that the signal had to propagate through several walls). From the

received signal we determined the time-of-arrival of the signal by manual inspection, and

inferred a range measurement. These range estimates were then compared to the true dis-

tances between transmitter and receiver (this true distance was obtained from the building
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Figure 4-3: Floor map of the office building where the UWB measurements were per-
formed [101]. The concentric circles are centered on the transmitter antenna and are spaced
at 1m intervals. The data sets used are those from room P and the corridor points 1 through
33.

floor plan, with a precision of about 0.1m). Figure 4-4 shows the differences between the

range estimates using the measured signal and the true range for the 49 points. It can be

seen that for most points there is a constant difference of about 1m. This can be attributed

to either LOS blockage or propagation delays (as mentioned before, these two phenomena

produce the same effect). We also observe that for 4 points located toward one edge of the

grid, this difference is higher. This shows that toward this edge either the propagation delay

increases, or a multipath signal becomes the first arrival.

We draw two conclusions from this set of data. First, the range estimates are posi-
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Figure 4-4: Difference in meters (on the z axis) between the measured and true ranges for
the 49 points of room P.

tively biased, as expected. Second, the value of the bias remains constant locally, and then

suddenly changes by a discrete amount as the receiver is moved through the building. For

example, in Figure 4-4, notice the local plateau at 1m for x < −4m and the sudden increase

to 1.5m around x = −4m.

Measurements Along a Corridor

In this second experiment, 33 measurements were made at regular intervals as the receiver

was moved around the floor along the building corridor.

Again, for each point a range estimate was extracted from the received signal and com-

pared to the true range. This difference is plotted on Figure 4-5 for all 33 points. It is seen

that the positive bias changes as the receiver moves along the corridor. In this case, the

value of the bias varied between 0.15m and 1m, and we will use these values in our exper-

iments in a latter section. The distance between two measurement points was about 2m,
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and we make an approximation that the bias value remains constant between two points.

This assumption is consistent with our previous observation.

These observations will be used in the next section and in Chapter 7.
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Figure 4-5: Difference in meters between the measured and true ranges for the 33 corridor
locations.

4.3.5 Statistical Characterization of the UWB Range Measurements

We now derive a statistical characterization of the range measurements. From the previous

section we note that the range measurements r̃i between the agent and the ith beacon can

be positively biased due to NLOS propagation. If we denote by di the true distance, the

measured range r̃i can be expressed as:

r̃i = di + bi + εi, (4.1)

where bi is the bias added to the ith beacon and εi is a random Gaussian noise, independent

of bi, with zero-mean and variance σ2
i . We model the dependence of the variance of εi on
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the distance di as σ2
i ≡ σ2(di) = σ2

0d
α
i , where α is the path-loss exponent and σ2

0 is the

variance at one meter [18, 42]. The probability density function (pdf) of εi is therefore:

fεi
(ε) =

1√
2πσ(di)

e
− ε2

2σ2(di) . (4.2)

Let us now model the statistics of the bias. If a detailed characterization of the bias is

available, so that its exact value can be known at any location, then there is no need to ac-

count for biases at all: the predicted value can be subtracted from the range measurements.

On the other hand, such characterization will not be possible in most cases since it assumes

complete knowledge of the environment and of the agent position. This is unrealistic in

military scenarios where the area of interest may be completely unmapped. We assume

here that no such complete characterization of the biases is available.

Let us start by making some general observations about the biases based on the previ-

ous section 4.3.4. We first note that the bias will always be non-negative. Its actual value,

however, will largely depend on the environment. We expect it to take a wider range of val-

ues in a cluttered environment with many walls, machines and furniture (such as a typical

office building), than in an open space. In particular Fig. 4-4 reveals that the bias jumps

from one value to another as the transmitter is moved through the building. In these mea-

surements the bias is seen to vary between 0 and 1.5m, depending on the room in which the

measurements were taken. Note finally that the bias cannot grow infinitely large regardless

of the propagation environment.

Although a detailed map of the environment may not be available, most of the time

we will be able to classify the environment in broad terms, such as “concrete office build-

ing,” or “wooden warehouse” (which we call an environment class). By performing range

measurements in typical buildings of different classes beforehand, we can build a library

of frequency histograms valid for different environments classes. We can then use these

histograms to approximate the pdf of the biases in the building of interest. An example of

such histogram is derived from Fig. 4-5, with the range measurements taken in the corridor.

The corresponding frequency histogram of the bias is plotted on Figure 4-6(a). Such his-

tograms will account for the positivity of the biases, as well as an approximate distribution
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of their expected value throughout the building. From Figure 4-6(a) we can see that biases

around 0.5m are most common, while they were never larger than 1.1m.
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Figure 4-6: (a) Frequency histogram of the bias from range measurements performed in
an office building [57]; (b) Corresponding pdf of the error in range measurements from
beacon i r̃i − di, for di = 1m and β

(i)
0 = 10−3m

Let us assume such frequency histograms are available for each beacon. They may

differ from beacon to beacon, so we index them by the beacon number i. The ith histogram

has K(i) bars, where the kth bar goes from β
(i)
k−1 to β

(i)
k and has frequency (height) p

(i)
k , as

shown on Figure 4-6(a). We can therefore associate to the frequency histogram the pdf of

bi as:

fbi
(b) =

K(i)∑

k=1

w
(i)
k un

β
(i)
k−1,β

(i)
k

o(b), (4.3)

where w
(i)
k = p

(i)
k

1

β
(i)
k −β

(i)
k−1

, and u{a,a′}(b) = 1 if a ≤ b ≤ a′, 0 otherwise, and β
(i)
0 = 0. We

note that if beacon i is LOS (i.e. it has no bias), then fbi
(b) = δ(b) where δ(b) is the Dirac

pseudo function.

Let us then lump the bias term with the Gaussian measurement noise ν̃i = bi + εi and

obtain the corresponding pdf:

fν̃i
(ν̃i) =

∫ ∞

−∞
fbi

(x)fεi
(ν̃i − x)dx (4.4)

=
K(i)∑

k=1

w
(i)
k

∫ β
(i)
k

β
(i)
k−1

fεi
(ν̃i − x)dx (4.5)
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=
K(i)∑

k=1

w
(i)
k

[
Q

(
ν̃i − β

(i)
k

σ(di)

)
−Q

(
ν̃i − β

(i)
k−1

σ(di)

)]
, (4.6)

where Q(x) = 1√
2π

∫ +∞
x

e−t2/2dt is the Gaussian Q function. If the ith beacon is LOS,

then fν̃i
(ν̃i) = 1√

2πσ(di)
e
− ν̃2

i
2σ2(di) . The mean of ν̃i is denoted mi, and in order to obtain an

unbiased estimator we subtract mi from the ith range measurement. This is equivalent to

replacing ν̃i by νi
∆
= ν̃i −mi. Let pA be the vector of (xA, yA) coordinates of the agent, so

that we have:

di(pA) =
√

(xA − xi)2 + (yA − yi)2 i = 1, ..., nB (4.7)

where (xi, yi) are the coordinates of the ith beacon. The unbiased range measurements are

therefore modeled as:

ri = di(pA) + νi (4.8)

with pdf given by

fi(ri|pA) =
K(i)∑

k=1

w
(i)
k

[
Q

(
ri − di(pA) + mi − β

(i)
k

σ (di(pA))

)
−Q

(
ri − di(pA) + mi − β

(i)
k−1

σ (di(pA))

)]
.

(4.9)

The probability density function corresponding to the bias profile of Figure 4-6(a) is plotted

on Figure 4-6(b) as a function of the error in range measurement r̃i − di for di = 1m and

β
(i)
0 = 10−3m. We observe that the pdf is a smoothed version of the bias profile, since the

Gaussian error is small compared to the bias values.

This modeling will be useful in the next chapter, when deriving a lower bound on the

localization accuracy.

4.4 Conclusion

In this chapter we described a WSN that can provide accurate indoor localization to an

agent. This architecture relies on UWB beacons for ranging. We have also analyzed actual

UWB range measurements and identified positive biases as a key limitation to the ranging

accuracy. We finally built a statistical model of the range measurements, accounting for the

94



presence of biases and the increase of the range measurement variance with distance.

This statistical modeling will be used in the next chapter to derive a lower bound on the

localization accuracy of a specific beacon configuration, the so-called Position Error Bound

(PEB). The PEB will serve as the objective to be minimized in the deployment planner. In

particular in Chapter 6 a placement algorithm will be presented that minimizes the PEB in

order to optimally place the beacons (in Phases I, II, and III). In Chapter 7 this statistical

modeling will be used for the optimal operation of the network (also part of Phase III). In

particular it is a critical part of the particle filter that estimates the agent position based on

the range measurements and a strap-down IMU.
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Chapter 5

The Position Error Bound

5.1 Motivation

In order to optimally place beacons, we need a metric that will measure the quality of bea-

con configurations. The accuracy of range-only localization systems depends mainly on

two factors. The first is the geometric configuration of the system, i.e., how the beacons

are placed relative to the agent. The second is the quality of the range measurements them-

selves. If the range estimates to the beacons were perfect, then three beacons, placed at any

(but distinct) locations would be sufficient to determine the agent position unambiguously

using any triangulation technique (since we restrict ourselves to a two-dimensional environ-

ment). In practice, however, these measurements are corrupted by several effects described

in Chapter 4. Partial and complete LOS blockage lead to range estimates that are noisy and

biased. Furthermore, the measurement variance increases as the received signal-to-noise

ratio (SNR) decreases, which is in general related to an increase in distance between agent

and beacon. All these factors will affect the localization accuracy to different degrees.

In this chapter we derive the Position Error Bound (PEB), a fundamental limit of local-

ization accuracy using the Information Inequality [11] for the UWB localization system.

The results derived thereafter are not limited to UWB ranging, however this technique is

the only one able to guarantee high localization accuracy in cluttered environments. This

limit can serve as the objective to be minimized in the deployment planner. In particular

it can be used to design the localization network by deciding how many sensors to deploy
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and where to place them (Phase I), or to determine when additional sensor deployment is

needed (Phases II and III). Beyond these applications it can also serve to map the area in

terms of localization accuracy, so that the agent does not venture in locations with unsatis-

factory coverage.

Literature Review

A measure of the localization performance used extensively in the GPS community is the

geometric dilution of precision (GDOP) [89]. The GDOP provides a systematic way to

compare geometric configurations of beacons. Bounds on the GDOP have also been de-

rived in [102]. It turns out that there is a close relationship between the GDOP and the

Cramér-Rao bound (CRB) from estimation theory [11, 19]. Along this line, estimation

bounds for localization of sensors in a sensor network, either with or without anchor nodes,

have been derived in [22]. The effect of geometric configurations and node density on the

localization accuracy have been investigated in [83]. It has been shown numerically that

collaborative localization, where sensors use range information not only from the anchor

nodes but also from each other, is superior than localization relying solely on the anchor

nodes [64].

Biases in bearing measurements are treated as additional noise with known a priori

statistics in [39]. In [77, 78] the biases on range measurements are treated as additional

parameters to be estimated for a range-only localization system. It was shown that in the

absence of prior information about the biases, the NLOS beacons do not improve the geolo-

cation accuracy [77], whereas if some prior information (such as their probability density

function) is available, NLOS beacons can improve it [78]. In [79], the authors investigate

the improvement in positioning accuracy if all multipath delays, instead of simply the first

path, are processed. It is shown that using the first arrival only is sufficient for optimal

localization when no prior information is known about the NLOS delays, whereas when

such prior information is available, then the multipath delays can improve the accuracy

(with the drawback of a more complex receiver). These papers do not take into account the

dependence on distance of the variance of the range measurements. This dependence was
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addressed by numerical simulations in [64] and briefly discussed in [22]. Our analysis here

will treat this dependence. We note that another bound was suggested in [95], and analyzed

via simulations. Our contributions in this chapter are as follows [52–54]:

• We derive the PEB, a fundamental limit to the localization accuracy. This bound

accounts for the dependence on distance of the range measurements and the presence

of positive biases. The PEB can easily incorporate any statistical characterization of

biases, e.g. one coming from measurements campaigns as described in Chapter 4.

• The structure of the PEB expression shows explicitly that the contribution in local-

ization accuracy from each beacon is weighted by a factor reflecting the propagation

environment, thereby providing insights into the importance of information coming

from each beacon. In particular, it is shown that LOS beacons contribute with a larger

weight than NLOS ones (at equal distance).

• We quantify the importance of information from NLOS beacons to show that NLOS

beacons can significantly improve the localization accuracy (provided some mini-

mum a priori knowledge of the biases is available), compared to the case where only

LOS beacons are considered, especially in dense cluttered environments character-

ized by a low number of LOS beacons.

• We show that for a system of beacons placed on the vertices of a regular polygon,

the lowest PEB is no longer found at the center of the polygon. This differs from the

results typically found in the literature, where the sensor variances do not depend on

the distance [66].

• We put forth the concept of localization accuracy outage to characterize the quality

of localization throughout the area and determine whether more beacons should be

deployed.

In Section 5.2 we derive the bound for our system of UWB beacons. In Section 5.3

we use this bound to conduct several numerical case studies. Finally in Section 5.4 we

illustrate the achievability of the PEB on a few numerical examples to show that the PEB is

not only a theoretical bound, but also a practical measure of localization accuracy that can
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be used in making engineering decisions, and is therefore well-suited to be the objective

for a placement algorithm.

5.2 Derivation of a Lower Bound on the Localization Ac-

curacy

In [78] the biases are treated as additional parameters to be estimated. However it can

be shown that if the biases are modeled as described in Chapter 4, this approach fails to

yield a bound lower than that when the NLOS beacons are ignored (the proof is given in

Appendix B). In this thesis the biases are treated as additional noise terms on the time-

of-arrival estimate, and we show that a better performance limit can be obtained, as the

information from NLOS beacons can help improve the accuracy.

5.2.1 The Position Error Bound (PEB)

A lower bound on the covariance of any position estimator p̂A = (x̂A, ŷA) based on

r = [r1, r2, ...rnB
], the vector of nB range measurements, is given by the Information In-

equality [11]1:

Er

{
(pA − p̂A)(pA − p̂A)T} ≥ J−1. (5.1)

J is the Fisher information matrix (FIM) given by:

J = Er

{
[∇pA ln(f(r|pA))] [∇pA ln(f(r|pA))]T

}
, (5.2)

where f(r|pA) is the pdf of the vector r conditioned on pA, and∇pA{.} denotes the gradient

of a scalar with respect to pA. Note that we have:

√
Er {(xA − x̂A)2 + (yA − ŷA)2} ≥

√
T{J−1} (5.3)

1The notation Er{.} denotes the expectation operator with respect to the random variable r, the notation
V ≥ W means that the matrix V −W is positive semi-definite, and superscript T denotes the transpose.
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for any estimator of the position pA = (xA, yA), where T{.} is the trace of a square matrix.

In the remaining we refer to this expression as the PEB:

PEB(xA, yA)
∆
=

√
T{J−1}. (5.4)

The PEB is a fundamental limit on the accuracy of any localization method.

5.2.2 Derivation of the FIM

We now seek to calculate the PEB for our system. Because the measurement errors are

assumed to be statistically independent we have:

f(r|pA) =

nB∏
i=1

fi(ri|pA), (5.5)

where fi(ri|pA) is given by (4.9). Hence:

∇pA ln(f(r|pA)) =

nB∑
i=1

1

fi(ri|pA)




∂fi(ri|pA)
∂xA

∂fi(ri|pA)
∂yA


 , (5.6)

so that

J = Er





nB∑
i=1

nB∑
j=1

1

fi(ri|pA)

1

fj(rj|pA)




∂fi(ri|pA)
∂xA

· ∂fj(rj |pA)

∂xA

∂fi(ri|pA)
∂xA

· ∂fj(rj |pA)

∂yA

∂fi(ri|pA)
∂yA

· ∂fj(rj |pA)

∂xA

∂fi(ri|pA)
∂yA

· ∂fj(rj |pA)

∂yA






 .

(5.7)

We show in Appendix B that all the terms in (5.7) for which i 6= j are 0. We therefore

have:

J = Er





nB∑
i=1

1

fi(ri|pA)2




(
∂fi(ri|pA)

∂xA

)2
∂fi(ri|pA)

∂xA

∂fi(ri|pA)
∂yA

∂fi(ri|pA)
∂yA

∂fi(ri|pA)
∂xA

(
∂fi(ri|pA)

∂yA

)2






 . (5.8)
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We are left with calculating partial derivatives. After a few algebraic manipulations we

obtain:

∂fi(ri|pA)

∂xA
= gi(νi) cos θi, (5.9)

∂fi(ri|pA)

∂yA
= gi(νi) sin θi, (5.10)

where θi is the angle between the agent and the ith beacon measured with respect to the

horizontal, νi = ri − di, and gi(νi) is given by:

gi(νi) =
1

σ0d
α/2
i

√
2π

K(i)∑

k=1

w
(i)
k

[ (
1 +

α

2di

(
νi + mi − β

(i)
k

))
e
−(νi+mi−β

(i)
k )

2

2σ2
0dα

i

−
(

1 +
α

2di

(
νi + mi − β

(i)
k−1

))
e
−(νi+mi−β

(i)
k−1)

2

2σ2
0dα

i

]
. (5.11)

We can therefore write:

J = Er





nB∑
i=1

gi(νi)
2

fi(ri|pA)2


 cos2 θi cos θi sin θi

cos θi sin θi sin2 θi






 , (5.12)

and by taking the expectation inside the sum we finally obtain:

J =

nB∑
i=1

A(β(i), di)M(θi) (5.13)

with β(i) = {β(i)
1 , ..., β

(i)

K(i)},

M(θ) =


 cos2 θ cos θ sin θ

cos θ sin θ sin2 θ


 , (5.14)

and

A(β(i), di) =

∫ ∞

−∞

gi(νi)
2

fi(ri|pA)
dνi. (5.15)

The expression (5.13) provides us with some useful insights. First, note that M(θi) contains

geometric information about the relative position of the agent with respect to the ith beacon.
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The FIM is therefore a weighted sum of this geometric information, where the weights

A(β(i), di) depend on β(i) and di. We show in Section 5.2.3 that these weights correspond

to the quality of the information coming from the corresponding beacon, in other word they

reflect the trustworthiness of the range information coming from this beacon.

We also note that our analysis can easily be extended to 3D. If the position vector pA is

now a 3D vector, we define λ as its longitude (angle between the x axis and the projection

of pA on the x-y plane) and φ as its latitude (angle between the projection of pA on the x-y

plane and pA). Then (5.9) and (5.10) become:

∂fi(ri|pA)

∂xA
= gi(νi) cos λi cos φi (5.16)

∂fi(ri|pA)

∂yA
= gi(νi) sin λi cos φi (5.17)

∂fi(ri|pA)

∂zA
= gi(νi) sin φi (5.18)

where gi(νi) is given by (5.11). The only change from (5.13)-(5.15) is in the matrix M(θ)

which becomes:

M(λ, φ) =




cos2 λ cos2 φ cos λ sin λ cos2 φ cos λ cos φ sin φ

cos λ sin λ cos2 φ sin2 λ cos2 φ sin λ cos φ sin φ

cos λ cos φ sin φ sin λ cos φ sin φ sin2 φ


 (5.19)

5.2.3 Analysis of the Weights A(β,d)

Let us investigate the behavior of A(β, d) as a function of β and d. Let us first consider the

case when all the biases go to 0, with d fixed. This implies that the βk tend to 0 for all k,

and that the mean of the corresponding measurement noise m also goes to 0. We write this

as m− β → 0. We then have the following first order approximation for small m− βk:

Q

(
ν

σ
+

m− βk

σ

)
= Q

(ν

σ

)
− m− βk

σ
√

2π
e−

ν2

2σ2 + o(m− βk), (5.20)

e−
(ν+m−βk)2

2σ2 =
(
1− (m− βk)

ν

σ2

)
e
−ν2

2σ2 + o(m− βk). (5.21)
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We use these to calculate the limit of (4.9) when m− β → 0:

lim
m−β→0

f(r|pA) = lim
m−β→0

K∑

k=1

wk

[
Q

(
ν + m− βk

σ(d)

)
−Q

(
ν + m− βk−1

σ(d)

)]
(5.22)

= lim
m−β→0

K∑

k=1

wk

[
− m− βk

σ(d)
√

2π
+

m− βk−1

σ(d)
√

2π

]
e
− ν2

2σ2(d) (5.23)

=
1

σ(d)
√

2π
e
− ν2

2σ2(d) lim
m−β→0

K∑

k=1

wk(βk − βk−1) (5.24)

=
1

σ(d)
√

2π
e
− ν2

2σ2(d) , (5.25)

where we have used the fact that
∑K

k=1 wk(βk − βk−1) = 1. As expected, the pdf of the

range measurements converges to a zero-mean Gaussian of variance σ2(d): if no biases are

present, the only noise is Gaussian. We now look at the limit of g(ν). We have:

lim
m−β→0

(
1 +

α

2d
(ν + m− β)

)
e−

(ν+m−β)2

2σ2 = e−
ν2

2σ2 lim
m−β→0

(
1 +

α

2d
ν + (m− β)

(
α

2d
− ν

σ2
− αν2

2dσ2

))
,

(5.26)

so that:

lim
m−β→0

g(ν) =
1

σ(d)
√

2π
e
− ν2

2σ2(d) lim
m−β→0

K∑

k=1

wk

[(
α

2d
− ν

σ2(d)
− αν2

2dσ2(d)

)
(βk−1 − βk)

]

=
1

σ(d)
√

2π

(
αν2

2dσ2(d)
+

ν

σ2(d)
− α

2d

)
e
− ν2

2σ2(d) . (5.27)

We can then calculate the limit of A(β, d) as β goes to 0. If we let y = ν/
(
σ(d)

√
2
)
, we

obtain:

A(0, d) =
1√
π

∫ ∞

−∞

(
α

d
y2 +

√
2

σ(d)
y − α

2d

)2

e−y2

dy (5.28)

=
1√
π

[
α2

d2

∫ ∞

−∞
y4e−y2

dy +

(
2

σ2(d)
− α2

d2

) ∫ ∞

−∞
y2e−y2

dy +
α2

4d2

∫ ∞

−∞
e−y2

dy

]

=
1√
π

[
α2

d2

3
√

π

4
+

(
2

σ2(d)
− α2

d2

) √
π

2
+

α2

4d2

√
π

]
(5.29)
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=
1

σ2(d)
+

α2

2d2
. (5.30)

We now turn our attention to the case when the biases grow to infinity. In particular we

consider the special case where K = 1 and β1 = β is the maximum bias, with the purpose

of emphasizing in a simple way the role played by the NLOS beacons when the biases

grow. This corresponds to the case where the biases are uniformly distributed between 0

and β. It can also model the case where all that is known about the environment is that the

bias cannot be greater than β. The corresponding pdf (4.9) is plotted on Figure 5-1. In this

case the weights A(β, d) are equal to:

A(β, d) =
1

βσ(d)π
√

2

∫ ∞

−∞
h(y, β, d)dy, (5.31)

where

h(y, β, d) =

[(
e−y2 − e

−
�
y+ β

σ(d)
√

2

�2
) (

1 + ασ(d)

d
√

2
y
)
− αβ

2d
e
−
�
y+ β

σ(d)
√

2

�2
]2

Q
(√

2y
)−Q

(√
2y + β

σ(d)

) . (5.32)

When β → +∞ for a given d, the integral in (5.31) tends to a constant so that we have:
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Figure 5-1: Pdf of the error in range measurements r̃i − di when K(i) = 1, given the true
distance di = 15m and β(i) = 2m.
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A(β, d) ∼ 1

β
when β→+∞ (5.33)

For a given d, A(β, d) therefore approaches 0 as β goes to infinity. From (5.30) we see

that the same is true when d goes to infinity (so that the range estimation variance goes to

infinity). This is consistent with our intuition that the larger the bias or the range estima-

tion variance, the less valuable the corresponding range information will be in determining

the agent’s position: the corresponding M(θ) in (5.13) will receive a low weight and the

contribution from the ith beacon will be small. The weights A(β(i), di) therefore quantify

the importance of the information coming from the ith beacon. This implies that the infor-

mation from beacons that are far away (large range measurement variance) or that are in

highly cluttered areas (large bias) will not contribute much to the FIM. This behavior is il-

lustrated on Figure 5-2, where we used (5.31) to plot A(β, d) as a function of β, for several

values of d. It can be seen that when d is small, the weights are sensitive to changes in β.

Indeed at short distances the variance σ2(d) of the Gaussian noise is small, and therefore

the dominating term in measurement inaccuracy will be the bias value. However as the

distance increases, the value of β is less significant since the large σ2(d) tends to dominate

the error. In any case, as d or β increase, the importance of the information coming from

the corresponding beacon decreases.
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Figure 5-2: A(β, d) for several values of d in the case where σ0=0.001m and α=3
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Consider a mix of LOS (for which βLOS = 0) and NLOS beacons with no a priori

knowledge of their biases (the biases can take any non-negative value so they have no

upper bound, or βNLOS → +∞). Then the information from the NLOS beacons is not

used at all in the calculation of the PEB since limβ→+∞ A(β, d) = 0. This observation

is consistent with [77], in which it was shown that in the presence of a mix of LOS and

NLOS beacons (with no a priori knowledge about the NLOS statistics), the performance

depends only on the LOS beacons. Our result shows however that in the case where a priori

knowledge of the NLOS beacon biases is available (which is always the case since biases

cannot be infinitely large), the NLOS beacons should indeed be taken into account since

they contribute to the PEB. In fact Section 5.3 will show that the contribution from NLOS

beacons can be quite significant.

5.2.4 Analytical Expression for the PEB

We now use the analytical expression for the FIM to obtain the PEB (5.4). Recall from

(5.13) that the FIM is a 2x2 matrix, so its inverse is easily obtained as:

J−1 =
1

detJ




∑nB
i=1 Ais

2
i −∑nB

i=1 Aicisi

−∑nB
i=1 Aicisi

∑nB
i=1 Aic

2
i


 , (5.34)

where Ai = A(β(i), di), ci = cos θi, and si = sin θi. The PEB is then equal to:

PEB(xA, yA) =

√ ∑nB
i=1 Ai

(
∑nB

i=1 Aic2
i )(

∑nB
i=1 Ais2

i )− (
∑nB

i=1 Aicisi)2
. (5.35)

We can also expand the denominator to obtain the alternate expression:

PEB(xA, yA) =

√ ∑nB
i=1 Ai∑

i<j AiAj sin2(θj − θi)
. (5.36)

We stress that the limit on the localization accuracy given in (5.35) and (5.36) depends on

the distance between the agent and the beacons, as well as on the presence of biases. If the

variance were not dependent on the distance (α = 0) and if no bias were present (K(i) = 0
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for all i), then according to (5.30) Ai = 1/σ2
0 for all i and the PEB is equal to:

PEB(xA, yA) = σ0

√
nB

(
∑nB

i=1 c2
i )(

∑nB
i=1 s2

i )− (
∑nB

i=1 cisi)2
, (5.37)

which is the product of the measurement standard deviation σ0 and the GDOP. This is the

case most commonly treated in the literature for range-only localization [19, 77, 83].

5.3 Numerical Case Studies

In the following case studies the biases are modeled as in Section 5.2.3, i.e., they are uni-

formly distributed between 0 and β(i) for all i. We adopt this model in order to study

the influence of β(i) on the PEB, but a more general characterization is of course possi-

ble. We consider a set of nB beacons where nLOS of them are LOS, while the remaining

nNLOS = nB − nLOS are NLOS. For the sake of these case studies we assume we know

whether a beacon is LOS or NLOS (if a map of the environment is available, channel mod-

eling tools can be used [92], otherwise NLOS identification techniques exist [13, 41, 94]).

We note that in practical applications it may be more realistic to assign each beacon with a

probability of being LOS and NLOS.

We call ρ the fraction of LOS beacons, that is ρ = nLOS/nB. By definition LOS beacons

have no bias so βLOS = 0. A LOS beacon may be one placed such that it is visible from

any location in the area. On the other hand we assume that all the NLOS beacons have

a common maximum bias βNLOS = β. This value will vary from building to building

depending on whether the environment is highly cluttered or not. A NLOS beacon may be

one placed behind a concrete wall: regardless of the agent’s location in the environment,

the beacon will be NLOS and the range measurement will be biased, with a maximum bias

of β (which depends on the environment characteristics).

We acknowledge that assuming that beacons remain LOS or NLOS irrespective of the

agent’s position is not quite realistic, but our goal in the following case studies is to un-

derstand the general behavior of the PEB as we vary some key parameters. The analysis

of the previous sections is perfectly amenable to cases where beacons are LOS and NLOS
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depending on the agent’s location.

The following case studies are carried out with α = 3 (a typical value for UWB indoor

environments [18]) and σ0 = 10−3m.

5.3.1 Case Study 1: Importance of NLOS beacons

We first consider 6 beacons placed at the vertices of a polygon of radius d = 5m and

20m, and we assume that 3 beacons are LOS, while the 3 others are NLOS with a common

maximum bias β (therefore ρ = 0.5). We plot PEB(β, d) at the center of the polygon as

we vary β from 0 to 2m (solid curve on Figure 5-3). Also shown on the figure are PEBs

if all beacons were LOS (lower dotted line) and if the NLOS beacons were ignored (upper

dashed line).

It can be seen that when β goes to 0, PEB(β, d) converges to the PEB when all beacons

are LOS, as expected since β = 0 corresponds to all beacons being LOS. On the other hand

when β goes to infinity PEB(β, d) converges to the upper line. This is also expected since

the information from the NLOS beacons is suppressed increasingly as β grows larger: for

β → +∞ their contribution is altogether ignored (as shown in Section 5.2.3). However

it is interesting to note that in between those two extremes, the NLOS beacons can help

significantly in reducing the PEB, especially for small values of β and large values of d.

Therefore the range information from NLOS beacons should not be dismissed, as it can

greatly improve the localization accuracy. In particular, if there is an incentive in using as

few beacons as possible to estimate the agent’s position (e.g. minimization of the number of

beacons deployed, energy conservation in communication, or computational complexity),

these results can be used to decide which beacons to involve in the localization process.

5.3.2 Case Study 2: Mapping the PEB throughout an area

For a practical system we may be interested in the quality of localization not just at one

point, but over an area. Let us map the value of the PEB throughout a square area for 6

LOS beacons placed at the vertices of a polygon of radius d = 10m (Figure 5-4). This

contour plot reveals that the center of the polygon is no longer the location with minimum
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Figure 5-3: Case 2 when d = 5m (top), and d = 20m (bottom): PEB as a function of
β (solid), bounded below by the PEB when all 6 sensors are LOS (dotted), and above by
the PEB when only the 3 LOS beacons are considered (dashed). Lower values of the PEB
indicate a better localization accuracy.

PEB, contrary to the common conclusions in the literature based on a model where the

range measurement variance does not depend on distance between agent and corresponding

beacons [66]. In other words, when the beacons are so arranged, the agent should not expect

to have optimal localization accuracy in the center of the polygon. The situation becomes

all the more complicated when NLOS beacons are included.

Suppose that we desire the PEB to be below a certain threshold τ for all points in the

area. If at some location we have PEB > τ , then whatever position estimator is used, the

localization accuracy will be above the required threshold (since the PEB is a lower bound

on the estimator accuracy). In this case we say that the localization system is in outage at
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Figure 5-4: Case 1: Contour map of PEB when 6 LOS beacons are placed at the vertices
of a polygon with d = 10m.

this location, and we define the outage probability for a given τ as:

pout(τ)
∆
= P{PEB > τ}. (5.38)

The outage probability tells us that as the agent moves through the area, with probability

pout(τ) the PEB will exceed the required threshold so that the localization accuracy will

be unsatisfactory. If the threshold τ is chosen large enough, then the outage probability

will approach 0, otherwise it will grow as more locations in the area will not meet the

accuracy requirement. We illustrate this on Figure 5-5 where we plot the relative frequency

diagram of the PEB over a 20m by 20m area where 10 beacons are placed at the vertices of

a polygon, with β = 2m and ρ = 0.3. The area covered for PEB > τ represents the outage

probability. Note that in most practical cases beacons will not remain LOS or NLOS for

all possible target positions (exception made for particular cases). However, we assume

here that this is the case in order to show the importance of the outage probability and the
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impact of NLOS beacons. Our conclusions remain valid in the more general case.

On Figure 5-6 we plot the outage probability as a function of the threshold τ for ρ = 0.3

and different values of β. We also show pout(τ) for the extreme cases when only the LOS

beacons are taken into account (β → +∞, rightmost curve) or when all the beacons are

LOS (β = 0, leftmost curve). The curves for positive values of β lie between these two.

In addition, we can observe that for low τ the sensitivity of the outage probability to β

becomes larger. If a certain accuracy threshold is desired, these curves can help determine

whether more beacons should be deployed. In Table 5.1 we show the outage probability

for different values of the threshold τ and β.

Table 5.1: Outage probability for different values of τ [m] and β[m]
β = 0.1m β = 1m β = 2m β → +∞

τ = 0.05m 0.025 0.4 0.57 0.9
τ = 0.1m < 10−3 0.012 0.04 0.33
τ = 0.15m < 10−3 < 10−3 < 10−3 0.09

5.3.3 Case Study 3: Results with the ε-localization accuracy outage

In order to capture with a single number the quality of localization throughout the area,

we define PEB1−ε, the ε-localization accuracy outage, as the value of the threshold τ for

which the outage probability is ε, that is:

ε = P{PEB > PEB1−ε}. (5.39)

In the remaining of this paper we consider ε = 0.1, so that PEB90 gives a good indication

of the performance we can expect 90% of the time as we move through the area. We plot

PEB90 as a function of β for different values of ρ on Figure 5-7, when 10 beacons are

placed randomly in a 20m by 20m area. It can be seen that the proportion of LOS and

NLOS beacons has a significant impact on the PEB. If we have control over ρ, then we

should try to increase it especially when β is large and the number of LOS is relatively

small. In other words, increasing the proportion of LOS beacons in cluttered environments

(if it is possible) will significantly improve the PEB throughout the area. This plot also tells
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us the performance loss if a beacon initially thought to be LOS turns out to be NLOS. For

example notice the large increase in PEB between ρ = 0.5 and ρ = 0.4. This penalty grows

for larger β and smaller ρ.

We now investigate the benefit of taking NLOS information into account, compared to

the case where we neglect it. On Figure 5-8 we plot the ratio between PEB90(+∞) obtained

by using only the LOS beacons and PEB90(β), obtained with both LOS and NLOS beacons.

Large values of this ratio indicate that the use of NLOS beacons yields a large reduction

in the PEB compared to using only the LOS ones. The results show that the information

from NLOS beacons can lower the PEB by several factors. This is especially true when the

number of LOS beacons is relatively small. Also, lower uncertainty in the bias provides

larger improvements in the PEB, indicating that the information from NLOS beacons is

more useful when β is small.
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Figure 5-5: Case 3: Frequency histogram of the PEB over an area for 10 beacons placed at
the vertices of a polygon, where β = 2m and ρ = 0.3. The area to the right of τ represents
the outage probability.
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5.4 Achievability of the PEB

In this chapter we have used the PEB to measure a beacons configuration ability to provide

accurate localization. It is a legitimate concern to wonder whether this measure has actually

any relevance in reality. Indeed, although the PEB is a lower bound on the localization ac-

curacy in theory, it may be of no practical value, for example if it is too loose. In particular

two major concerns are:

• If beacon configuration A has a lower PEB than configuration B, will configuration

A result in actual better localization accuracy than B?

• Also of interest is the PEB value per se: can it be used as a useful indication of the

localization accuracy, or is it just too loose to be taken at face value?

It is known that the Maximum Likelihood (ML) estimate converges to the CRB as the

SNR tends to 0 [93]. In our case this means that, when there is no bias, the PEB will
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Figure 5-7: Case 3: Average PEB90(β) for 10 beacons for different values of ρ = nLOS/nB.

be achievable as the variance σ2 goes to 0. In this section we illustrate this result on a

numerical example.

We consider the scenario depicted in Fig. 5-9, where nA = 50 agent locations are

divided into two subsets of the building. For each agent location, given a set of range

measurements we calculate the ML estimate of the agent location by using a non-linear

least-squares (NLLS) method described in Appendix C. By repeating this several times

over one agent location, we can compute the Mean Square Error (MSE) of the position

estimate. By repeating the process over all the agent locations, we can calculate MSE90

and compare it to PEB90. Note that NLLS requires an initial position estimate, whereas the

PEB assumes no a priori location information. The comparison between MSE and PEB is

therefore not entirely fair, but it is still good because the initial position estimate given to

NLLS is poor.

On Figure 5-10 we plot PEB90 (dashed) and MSE90 (solid) as a function of the number

of sensors deployed. We do this when the beacons are placed uniformly along the boundary
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(UNIFORM) and when they are clustered around the agent locations (RELOCATE). It can

be seen that MSE90 is slightly larger than PEB90 (within about 5% for most test points).

The same was observed for the other configurations. This indicates that, at least in some

special cases when the bias is absent, the PEB will be close to achievable, so its actual

value can be used as well. For example, if a certain localization accuracy is required, the

PEB value can be used as an engineering tool to indicate whether more beacons should be

deployed.

5.5 Conclusion

In this chapter we derived the PEB, which describes the limit on the accuracy of localiza-

tion using UWB beacons. We considered the dense cluttered environment in which range

measurements can be positively biased, and where their variance depends on the distance

between agent and corresponding beacons. The PEB is easy to compute and accounts for
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Figure 5-9: Setup for the comparison of PEB90 and MSE90. The beacons are placed either
uniformly along the boundary (UNIFORM, left), or on the boundary close to the agent
locations (RELOCATE, right). The nA = 50 agent locations are shown as squares.

the geometric configuration of the system, the increase of measurement variance with dis-

tance, and the presence of positive biases with general statistical characterization.

We then investigated properties of this bound. We found that, contrary to results where

the measurement variance is treated as constant [66], when the beacons are at the vertices

of a regular polygon the minimum value of the PEB is not found at the center. We also

found that, in the case of a mix of LOS and NLOS beacons, the information from the

NLOS beacons can be very valuable: taking the NLOS beacons into account often yields a

significantly lower localization bound, especially in cluttered environments. We put forth

the concept of localization accuracy outage, which can guide in deciding whether to deploy

additional beacons. Finally we verified that at least in certain cases where there is no bias,

the PEB is achievable.

The PEB is therefore a practical measure of the localization accuracy, and it will be

used in the next chapter as an objective for the optimal placement of the beacons.
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Chapter 6

Algorithm for Optimal Beacon

Placement

6.1 Introduction

In the previous chapter we have used the Information Inequality to derive the PEB for our

UWB localization system. As mentioned then, both the geometric configuration of the bea-

cons and the quality of their range measurements are critical to accurate localization. The

location of the beacons therefore directly impact the quality of localization. But although

this (intuitive) dependence is well-known, there has been comparatively little work on the

optimization of beacon placement. In this chapter we develop a coordinate-descent algo-

rithm, RELOCATE, and demonstrate theoretically and through numerical simulations that

this approach is well-suited for the optimal beacon placement problem [58, 59].

In Section 6.2 we start by presenting RELOCATE, the placement algorithm. In Sec-

tion 6.3 we then apply RELOCATE to the single agent location problem where the range

measurements are unbiased and have constant (but possibly different) variances. We intro-

duce the coordinate transform that allows us to prove key results, in particular that RELO-

CATE converges to the global minimum efficiently. An algorithm solving this placement

problem has been proposed in [103], but that method cannot be easily extended beyond

that simple case. Our goal in this section will be to gain confidence in our algorithm before

generalizing it to more complex cases. The coordinate transform is also critical for deriv-
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ing an expected rate of convergence, so that our algorithm is shown to converge in practice

with great precision in only a few steps, even for a large number of beacons.

In Section 6.4 we adapt our algorithm to deal with the more realistic case where the

range measurements can be biased and where their variance depends on the beacon loca-

tion, something not present to our knowledge in the literature. For example the measure-

ment variance may increase with the distance to the agent, or when obstacles obstruct the

line-of-sight between agent and beacons. In Section 6.5 we then consider the case where

instead of minimizing the PEB at a single location (which does not have many realistic ap-

plications), the average PEB over multiple agent locations is to be minimized. For example

the agent may be moving through the area and good localization must be provided along its

trajectory. In such situations the quality of the range measurements may also vary with the

beacon position, so this case is the most general. We show that our algorithm performs well

on this realistic scenario by comparing its performance to Simulated Annealing (SA) [62].

SA is a natural choice for such combinatorial optimization problems, and it has been used

on the beacon placement problem before [25]. We also finally show that by carefully plan-

ning the beacon placement, fewer beacons are required to achieve the same accuracy than

one-size-fits-all approaches such as distributing the beacons evenly on the area boundary.

We restrict ourselves to static beacons operating in 2D. Initially we also restrict our

analysis to an agent operating inside a convex building, while the beacons lie on the bound-

ary of that building. This assumption is in accordance with our mission scenario where

localization must be provided inside an area, while the beacons are deployed from outside

that area. The convexity assumption will then be relaxed, and our algorithm will be applied

to the case where the agent moves between different buildings, with the beacons placed on

the buildings’ walls.

Related Work

McKay [70] and Hegazy [46] minimize the condition number of the visibility matrix in

order to minimize the impact of range measurement errors on the position estimate. In

both [70] and [46], three dimensions are considered, although in [70] the beacons are con-
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strained to lie on the ground. A Sequential Quadratic Programming method is used to solve

the problem in [70], while in [46] an analytical solution is derived for 4 beacons. Sinha [87]

maximizes the Fisher information gathered by a group of UAVs acting as beacons, which

blends beacon geometry, survivability, and distance to the agent. A Genetic Algorithm

coupled with a gradient descent algorithm is then used to search for the global minimum.

Abel [5], Martinez [69], and Zhang [103] optimize the beacon placement by minimizing

a cost related to the Cramér-Rao bound (CRB), obtained from the Information Inequality.

The acoustic beacons are constrained to lie on a line segment in [5], which allows for a sim-

ple analytic solution. In [69] an analytic form for the CRB in 2D and 3D is derived for the

case when all the beacons have similar measurement variance. The classic result is found,

namely that the configuration with minimum CRB is that with all beacons evenly spread

around the agent [66]. The authors then use this result to dynamically control the beacons

in order to track a moving agent. Finally in [103] Zhang considers the optimal placement

of beacons in 2D, where the beacons have different measurement variances. He minimizes

the determinant of the joint covariance matrix, which turns out to be equivalent to minimiz-

ing the CRB. Zhang obtains the minimum value of the CRB for this case and proposes an

algorithm that converges to the optimal beacon placement in nB − 3 steps (where nB is the

number of beacons). Zhang’s algorithm, however, does not generalize beyond the case of

constant variances, which limits its applicability to more realistic scenarios.

Most of these papers are restricted to optimizing the beacon placement for the localiza-

tion of a single agent location. A possible exception is [69] since the agent can move, but

in this case the beacons are mobile and can adaptively rearrange their configuration. Sheng

in [85] considers the placement of static beacons for the localization of an agent along its

path, but the approach is more statistical in nature and assumes that many beacons can be

deployed.
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Figure 6-1: The agent (square) is inside a convex area, and the beacons (circles) are placed
on its boundary. The distance between the agent and beacon k depends only on θk.

6.2 Preliminaries and Notations

6.2.1 The Design Variables θ

We will constrain the beacons to lie on the boundary of a set (representing for example

the exterior walls of a building). Initially we assume this set to be convex, with the agent

in its interior. In this case the position of the beacon is completely determined by θk, the

angle the agent makes with the kth beacons, as shown on Figure 6-1. The design variables

to be optimized are the beacon locations, denoted by the vector θ = (θ1, . . . , θnB). The

convexity assumption of the set is for convenience, and will be relaxed later int he chapter,

when for example beacons will be placed on walls belonging to different buildings. In that

case the angles θk are not sufficient to unambiguously characterize the beacons positions

and another parametrization should then be used.
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6.2.2 The PEB

In the literature the range measurements are typically assumed to be unbiased, normally

distributed independent variables with constant variances [5, 69, 103], but instead we will

use the PEB derived in Chapter 5:

PEB (θ) =

√ ∑nB
k=1 Ak(θk)∑nB

k=1 Ak(θk)c2
k

∑
k Ak(θk)s2

k − (
∑nB

k=1 Ak(θk)cksk)2
, (6.1)

where ck = cos θk, sk = sin θk, and the importance weights Ak(θk) are given by (5.15). As

noted in Section 5.2.3, the importance weights indicate that the range measurements from

different beacons will not be equally weighted in the PEB, depending on their accuracy.

Moreover the relative positions of the beacons with respect to the agent will also influence

the PEB (through the sine and cosine of (6.1)). Minimizing the PEB therefore implies

striking the optimal balance between spatial diversity and range measurement quality. This

non-trivial task requires using an optimization algorithm.

6.2.3 Generic Algorithm Description

We now present the RELOCATE algorithm in its generic form. We omit for the time being

some additional conditions required to guarantee convergence to the optimal solution. This

algorithm is a coordinate descent algorithm, i.e., it minimizes the PEB one coordinate at a

time, until convergence. It operates as follows:

RELOCATE

• Randomly initialize θ1 = {θ1
1, ...θ

1
nB
}, p = 1;

• Until convergence, do:

1. Select beacon ip for relocation;

2. Find the angle θ∗ip that minimizes the PEB along θip ;

3. Set θp+1
ip

= θ∗ip and θp+1
k = θp

k for all k 6= ip, so that θp+1 =
(
θp
1, . . . , θ

∗
ip , . . . , θ

p
nB

)
;

4. p ← p + 1.

123



Coordinate descent algorithms are efficient as long as the minimization in step (2) is fast [9],

i.e., as long as finding θ∗ip such that ∂PEB
∂θip

(θ∗ip) = 0 and ∂2PEB
∂θ2

ip

(θ∗ip) ≥ 0 is easy. In the

following section we show that step (2) can in fact be solved in closed-form when the

importance weights are constant. This result, along with others on convergence and rate of

convergence, will be made possible through the coordinate transform introduced next.

6.3 Single Agent Location and Beacons with Constant Im-

portance Weights

Let us consider the case where the importance weights Ak(θk) do not depend on θk, that

is, the weights are independent of where the beacons are located. This can be the case for

example if we assume that the variance of the range measurements is constant (α = 0)

and there are no biases (β = 0), which is the typical assumption in the literature. From

(6.1) we see that in this case the PEB is the same for angles modulo π, so we will only

consider values of θk between 0 and π. We also assume without loss of generality that

An ≥ ... ≥ A1.

6.3.1 Coordinate Transform

Instead of working directly with the angles θi, we introduce a set of complex numbers (or

vectors) r(θ) and zi(θ) for i = 1, . . . , nB. This representation will be critical in allowing

us to solve step (2) of RELOCATE in closed-form, to prove the optimal convergence of the

algorithm, and to approximate its expected rate of convergence.

Definition 6.1 (Coordinate transform).

zi(θ) = e−2jθi

∑

k 6=i

Ake
2jθk , ∀ i = 1 . . . nB, (6.2)

r(θ) =

nB∑

k=1

Ake
2jθk , (6.3)

r(θ) = |r(θ)|, (6.4)
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where j denotes the complex number such that j2 = −1.

In particular we will show that if the PEB is minimum at θ̃, we must have <
{
zi(θ̃)

}
≤

0 and =
{
zi(θ̃)

}
= 0 for all i, in other words all the zi(θ̃) must lie on the negative real

axis1.

More results and graphical interpretation of those vectors are given in Appendix D.1.

6.3.2 General Results on the PEB

The assumption of constant weights leads to two key results about the PEB. The first result,

given in the following lemma, relates r(θ) to PEB (θ).

Lemma 6.1. When the importance weights are constant, minimizing PEB (θ) is equivalent

to minimizing r(θ), and PEB (θ) can be re-written as

PEB (θ) =

√
4
∑nB

k=1 Ak

(
∑nB

k=1 Ak)2 − r2(θ)
. (6.5)

Proof. This follows directly from (6.1) and (6.3) after a few elementary algebraic manipu-

lations.

r(θ) therefore provides a measure of the distance to optimality, and so it will be referred

to as the error radius. The following lemma gives a lower bound on the error radius.

Lemma 6.2. For any θ we have

r(θ) ≥ r∗ = max(0, An −
nB−1∑

k=1

Ak). (6.6)

Proof. If AnB ≤
∑nB−1

k=1 Ak, then r∗ is 0 and the relationship holds since the error radius is

by definition always non-negative.

1where <{a} and ={a} respectively are the real and imaginary parts of a, a complex number.
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Figure 6-2: Shape of PEB(θip) when the weights are constant. Note that it has a unique
minimum in [0, π).

If AnB >
∑nB−1

k=1 Ak, then r(θ) is minimized by having all the vectors Ake
2jθk (k =

1, . . . , nB − 1) aligned in the opposite direction to the vector of maximum amplitude

AnBe
2jθnB . For example this can be achieved by setting θnB = 0 and θk = π/2 for

k = 1, . . . , nB − 1, so that r(θ) = AnB −
∑nB−1

k=1 Ak and (6.6) again holds.

Therefore, if there exists θ̃ such that r(θ̃) = r∗, θ̃ is a global minimum of the PEB. In

particular, if An >
∑n−1

k=1 Ak, the global minimum is easily found by setting (for example)

θn = 0 and θk = π/2 for k = 1, . . . , n− 1. We will show in Section 6.3.3 that there always

exists θ̃ such that r(θ̃) = r∗, and that it can be found using the proposed algorithm.

Step (2) of RELOCATE involves a 1-dimensional minimization of the PEB along θip

(or equivalently a minimization of the error radius along θip). A typical shape of the PEB

as a function of θip is plotted on Figure 6-2. As indicated on the figure, the PEB is a

smooth function of θip , with a unique minimum in [0, π). The second key result, stated in

the following lemma, gives the closed-form expression of this unique minimum.

126



Lemma 6.3 (Closed-form solution to step (2) of RELOCATE). The minimization

θ∗i = arg min
θi∈[0,π)

{r(θ1, . . . , θi, . . . , θnB)}

has a unique solution given by

θ∗i =
1

2
arctan

(∑
k 6=i Ak sin 2θk∑
k 6=i Ak cos 2θk

)
+ q

π

2
, (6.7)

where q ∈ {0, 1} such that <{zi(θ1, . . . , θ
∗
i , . . . , θnB)} ≤ 0.

Proof. We first write from (6.3)

r2(θ) = |
∑

k 6=i

Ake
2jθk |2 + A2

i + 2Ai

∑

k 6=i

Ak cos(2θk − 2θi). (6.8)

The minimum of r(θ1, . . . , θi, . . . , θnB) with respect to θi is the same as that of r2(θ1, . . . , θi, . . . , θnB)

and is found where the corresponding first partial derivative is 0 and the second derivative

is non-negative. We first calculate

∂ (r2(θ))

∂θi

= 4Ai

∑

k 6=i

Ak sin(2θk − 2θi) (6.9)

= 4Ai

[(∑

k 6=i

Ak sin 2θk

)
cos 2θi −

(∑

k 6=i

Ak cos 2θk

)
sin 2θi

]
(6.10)

= 4Ai={zi(θ)} . (6.11)

This is a sinusoidal function of θi, which is 0 twice in [0, π). The two roots are given by

θ0
i =

1

2
arctan

(∑
k 6=i Ak sin 2θk∑
k 6=i Ak cos 2θk

)
, (6.12)

θ1
i =

1

2
arctan

(∑
k 6=i Ak sin 2θk∑
k 6=i Ak cos 2θk

)
+

π

2
. (6.13)
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By taking the derivative of (6.10) one more time with respect to θi we obtain

∂2 (r2(θ))

∂θ2
i

= −8Ai

[(∑

k 6=i

Ak sin 2θk

)
sin 2θi +

(∑

k 6=i

Ak cos 2θk

)
cos 2θi

]
(6.14)

= −8Ai<{zi(θ)} , (6.15)

which is a sinusoidal function of θi that is non-positive at either θ0
i or θ1

i (but not both),

depending on which one yields <{zi(θ)} ≤ 0. There is therefore a unique value of θi in

[0, π) for which (6.10) is 0 and (6.15) is non-negative, and r(θ) has a unique minimum

along the ith coordinate, obtained at θ∗i given by (6.7). This proof also implies that the

minima of the PEB are such that all zi lie one the negative real axis.

The following corollary follows from this proof.

Corollary 6.4. If at iteration p RELOCATE selects beacon ip for relocation, the corre-

sponding zip is rotated by −2θ∗ip so as to lie on the negative real axis, i.e.,

<
{
zip(θp

1, . . . , θ
∗
ip , . . . , θ

p
n)

}
≤ 0 and =

{
zip(θp

1, . . . , θ
∗
ip , . . . , θ

p
n)

}
= 0.

We also have the following result.

Corollary 6.5. The stationary points of the PEB are such that all zi lie one the real axis.

Moreover candidates for minima are those stationary points for which all zi lie on the

negative real axis.

Proof. At a stationary point θ̃ of the PEB, the gradient of the PEB with respect to θ is the

zero vector. In other words, all the first partial derivatives ∂PEB
∂θi

(θ̃) = 0. From (6.11) this

means that =
{
zi(θ̃)

}
= 0 of all i, i.e., all zi lie on the real axis.

Candidates for minima will also be such that the second derivatives of the PEB will be

positive. From (6.15) this implies that in addition <
{
zi(θ̃)

}
≤ 0 of all i, i.e., all zi lie on

the negative real axis.

The following lemma proves that RELOCATE actually converges to the stationary

points that are candidates for minima.
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Lemma 6.6 (Convergence of RELOCATE). RELOCATE converges to a stationary point

θ̃ =
(
θ̃1, . . . , θ̃nB

)
, such that all zk(θ̃) lie on the negative real axis, or

<
{
zk(θ̃)

}
≤ 0 and =

{
zk(θ̃)

}
= 0 ∀k = 1, . . . , nB. (6.16)

Proof. Coordinate descent algorithms are guaranteed to converge to some stationary point

if the function to be minimized is continuously differentiable and if the minimum in step

(2) is uniquely attained [9]. This is the case here as shown in Lemma 6.3, so RELOCATE

converges to a stationary point. This stationary point will be such that all θ̃k satisfy (6.7)

and therefore all zk(θ̃) lie on the negative real axis, or <
{
zk(θ̃)

}
≤ 0 and =

{
zk(θ̃)

}
= 0

for all k (Corollary 6.4).

RELOCATE therefore converges to stationary points that are candidates for minima

(Corollary 6.5). Note however that such points may not be global minima. Consider for

example the case with 3 beacons where A1 = A2 = A3 = 1, so that r∗ = 0. An optimal

configuration is found at θ∗ = (π/3, π,−π/3) (which yields r(θ∗) = 0 = r∗). Suppose

RELOCATE is started at θ1 = (0, 0, π/2). It is easy to see that z1(θ
1) = z2(θ

1) = 0 and

z3(θ
1) = −2. All the zk lie on the negative real axis, while r(θ1) = 1 > r∗: the algorithm

has converged to a suboptimal stationary point. In the next subsection an additional step

will be added to RELOCATE in order to guarantee convergence to the global minimum.

6.3.3 RELOCATE for Constant Importance Weights

Let us now implement RELOCATE for the case of constant importance weights.

RELOCATE

• Define r∗ = max(0, AnB −
∑nB−1

k=1 Ak) and the convergence threshold ε. Set p = 1;

• Randomly initialize θ1 = (θ1
1, ..., θ

1
nB

);

• While (r (θp)− r∗) /r∗ > ε, do:

1. Choose ip such that ip = arg mink=1,...,nB{|Ak − |zk(θ
p)||};
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2. Calculate θ∗ip according to (6.7);

3. Set θp+1
ip

= θ∗ip and θp+1
k = θp

k for k 6= ip, so that θp+1 =
(
θp
1, . . . , θ

∗
ip , . . . , θ

p
nB

)
;

4. p ← p + 1.

5. If all zk(θ
p) lie on the negative real axis, enter the INCREASE RADIUS routine;

• Else, stop.

INCREASE RADIUS routine:

1. Write r (θp) as
∑

k∈S Ak −
∑

k∈S Ak;

2. Let l and m be 2 distinct indices in S;

3. Choose θp+1
l such that |Am − |zm(θp

1, . . . , θ
p+1
l , . . . , θp

nB
)|| < ∑

k∈S Ak −
∑

k∈S Ak;

4. p ← p + 1, select sensor m for relocation, and go to step (2) of RELOCATE.

Note that in step (1) of RELOCATE the beacon that yields the maximum decrease

in error radius is chosen (see Corollary D.5 in Appendix D.1). Alternatively, the beacon

chosen for relocation at iteration p could also be selected at random.

According to Lemma 6.6, steps (1)-(4) of RELOCATE converge to a stationary point

such that all the zk lie on the negative real axis. As we illustrated, however, some of these

configurations are suboptimal. We show in Lemma 6.7 that step (5) enables RELOCATE

to escape such suboptimal stationary points so that it converges to the optimal stationary

point (which is guaranteed to exist), characterized by an error radius equal to r∗.

Lemma 6.7 (Optimal convergence of RELOCATE). RELOCATE converges to the global

minimum:

• If AnB >
∑nB−1

k=1 Ak, RELOCATE finds θ∗ such that r(θ∗) = AnB −
∑nB−1

k=1 Ak;

• Otherwise, RELOCATE finds θ∗ such that r(θ∗) = 0.

Proof. The proof is given in Appendix D.3.
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Let us illustrate how the algorithm operates on an example where all Ak = 1. We first

reproduce some of the key results derived in Appendix D.1.

• The zk (θp) are vectors starting at (0, 0) and ending on the same circle of radius

r (θp), centered at (−1, 0) (Corollary D.2);

• When beacon ip is relocated in step (2) of RELOCATE, the corresponding zip is

rotated about (0, 0) so as to lie on the negative real axis (Corollary 6.4), while its

magnitude |zip| does not change (Corollary D.3). Note also that although the other

θk (for k 6= ip) are unchanged in this process, the corresponding zk rotate and change

magnitude;

• If beacon ip is relocated at iteration p, the error radius is equal to |Ak − |zip(θp)||.
Once it is relocated on the real axis, the error radius can also be found by measuring

the distance between the tip of zip(θp+1) and (−1, 0) (Corollary D.5).

On Figure 6-3 are plotted the vectors zk for 3 iterations of RELOCATE when 5 beacons are

to be optimally placed. At the first iteration (Fig. 6-3(a)) beacon 3 is selected, and the corre-

sponding z3 is rotated by almost π to lie on the negative real axis (Fig. 6-3(b)). Throughout

the process its magnitude remains 1.62 (note the change in the axes scale). However the

error radius has decreased significantly from 3.6 (in Fig. 6-3(a)) to 0.62 (Fig. 6-3(b)).

At the next iteration beacon 5 is selected for relocation and z5 is made to lie on the

negative real axis as shown on Fig. 6-3(c). The error radius is decreased to 0.1 in the

process. By repeating this procedure the error radius diminishes to zero and all the zk

converge to (−1, 0).

Note that at each iteration the beacon whose vector yields the largest decrease in error

radius is selected, as specified by step (1) of RELOCATE (i.e. the one whose |zk| is closest

to 1). As can be seen on Fig. 6-3 beacon 3 is the first to be selected, then beacon 5 for the

second iteration, and finally beacon 1 for the third iteration.

The final configuration of beacons is shown on Figure 6-4. The final PEB is equal to

0.8944m, which is optimal since it is equal to the value of the PEB when r = 0 in (6.5).

The beacons are evenly distributed around the agent. Note that any beacon could be moved

by π without changing the PEB value, so other configurations are optimal as well.
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Figure 6-3: Plot of the zk(θ
p) and of the circle of radius r(θp) centered at−1 for p = 1, 2, 3

for the case where all Ak = 1. Note that the beacon selected for relocation is the one with
|zk| closest to 1, so that the decrease in error radius r is maximum. This vector is rotated
so as to lie on the negative real axis.
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Figure 6-4: Optimal configuration found by RELOCATE when 5 beacons are to be placed
and Ak = 1.

Another corollary is the optimal value of the PEB.

Corollary 6.8. The optimal PEB is given by:

PEB∗ =

√
4
∑nB

k=1 Ak

(
∑nB

k=1 Ak)
2 − (

max(0, AnB −
∑nB−1

k=1 Ak)
)2 . (6.17)

If all the beacons have the same importance weight Ak = 1/σ2
0 (so that AnB <

∑nB−1
k=1 Ak),

we obtain the classic result that the minimum PEB is equal to 2σ0/
√

nB [66].

6.3.4 Rate of Convergence

In the next 2 subsections we analyze the performance of RELOCATE. We will show that

not only is RELOCATE guaranteed to find the global minimum, but it is also an efficient

algorithm. In this subsection we derive an approximation to the expected rate of conver-

gence of RELOCATE for the special case when Ak = 1 for all k. Again, we are able to

derive these results by relying on the coordinate transform introduced earlier.
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Figure 6-5: Illustration of the approximation of rp+1 = |1− |zi(θ
p)|| by rp| cos αp

i |.

If beacon i is selected for relocation at iteration p, the new error radius is rp+1 =

|1 − |zi
p||, which is obtained by rotating zi

p until it lies on the negative real axis and then

measuring the distance between the tip of the vector and −1 (Corollary D.5). Assume

rp ¿ 1, so that zi
p is close to the negative real axis as depicted in Figure 6-5. We can

then approximate rp+1 by projecting |zp
i | onto the real axis and measuring the distance

between the tip of the projection and −1. This distance is equal to rp| cos αp
i |, where αp

i is

the argument of the vector 1 + zi
p (i.e. the angle it makes with the horizontal).

Because at iteration p the beacon with magnitude closest to 1 is selected for relocation,

the new error radius is equal to rp+1 ' mink=1,...,nB(| cos αp
k|)rp. If we define the rate of

convergence τ p as the ratio rp+1/rp, we then have

τ p ' min
k=1,...,nB

(| cos αp
k|). (6.18)

At iteration p one beacon (beacon i) lies on the negative real axis (the one relocated at

iteration p− 1), and let us assume that the nB − 1 other beacons have an equal probability

of lying anywhere on the circle of radius rp centered at −1, so that the αp
k (for k 6= i) are
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uniform random variables distributed between 0 and 2π. We also assume that these αp
k are

independent. This is a questionable assumption since the zp
k are not independent, but one

that will enable us to obtain a closed-form solution to the expected rate of convergence

which, as we will show, agrees with numerical examples.

The rate of convergence becomes a random variable τ , and its expected value will give

the expected rate of convergence of RELOCATE. As shown in Appendix D.4, at each

iteration p such that rp ¿ 1, the expected rate of decrease of the error radius can be

approximated by

E[τ ] '
∫ 1

0

(
2 cos−1 x

π

)nB−1

dx. (6.19)

On average RELOCATE therefore converges linearly.

On Figure 6-6 this theoretical expected rate is plotted as a function of the number of

beacons (dashed curve). It tends to 0 as nB goes to infinity, which means that convergence

is faster when more beacons are present. This is to be expected since the probability that

zi satisfies |zi| = 1 goes to 1 as the number of beacons is increased. We also performed

100 runs of RELOCATE for these values of nB and computed the average ratio of decrease,

once rp was below 0.1. We see that as the number of beacons increases, the experimental

average rate matches the theoretical value better.

6.3.5 Average Number of Iterations

Finally we use the previous result to estimate the average number of iterations required to

reach a certain precision in PEB. When Ak = 1 ∀k, r∗ = 0 and the minimum value of the

PEB for nB beacons is equal to PEB∗ = 2/
√

nB (6.5). We can then express the relative

error in PEB compared to the optimum value PEB∗ as

PEBp − PEB∗

PEB∗
=

1√
1− (rp/nB)2

− 1, (6.20)

so that it is approximately equal to (rp/nB)2/2 for small values of rp. Let s be the precision

required, i.e., the maximum relative error permitted.

We assume we start the algorithm with a radius of 0.1, so that r1 ¿ 1. On average we
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Figure 6-6: Theoretical value of the expected rate of decrease of the error radius (dashed),
and experimental value of this rate (solid). The experimental value converges to the theo-
retical one for large values of nB.

then have rp = τ p−1r1. Achieving precision s will then require 1+ log(10nB
√

2s)
logτ

iterations on

average (not counting the iterations required to bring the radius below 0.1). This number

is plotted as a function of the number of beacons for several values of the precision on

Figure 6-7. We can see that once the error radius goes below 0.1, the algorithm converges

in a few iterations even for high precision requirements. This is even more so as the number

of beacons increases, which tends to speed up convergence.

In this section we proved that when a single agent location is considered and when the

importance weights are constant, RELOCATE converges to the global minimum. We also

showed that it does so efficiently, in a few steps even for high accuracy requirement or

large numbers of beacons. Fortunately RELOCATE can easily be applied to more complex

cases where the importance weights depend on the beacon position, or when several agent

locations are of interest. Given the theoretical guarantees in this simple case, we now

proceed with confidence in applying RELOCATE to those more complex cases. In the next

section we apply it to the realistic case where the importance weights depend on where the

beacons are located.
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Figure 6-7: Expected number of iterations once the error radius goes below 0.1 as a function
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6.4 Single Agent Location with Varying Importance Weights

So far the importance weights of the beacons were assumed constant, no matter where the

beacons were. Although this assumption permitted us to solve the placement problem ex-

actly, it is unlikely to be realistic in real-world scenarios. Since the signal-to-noise ratio

(SNR) decreases exponentially with distance, the range measurements will be more accu-

rate (i.e. have lower variance) if beacons and agent are close to one another. Likewise if the

agent is inside a building, greater accuracy will be achieved if there is minimal obstruction

between the two (as opposed to when several walls, machines, or other objects corrupt the

signal). This will result in importance weights that depend on the beacons’ locations with

respect to the agent.

In this section we consider two cases. In the first one, the importance weights are

piecewise constant functions of the angle. The second case is the most general, where the

importance weights are allowed to vary arbitrarily. Note that in both cases we no longer

have any guarantee of optimality, although in practice we do well.
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Figure 6-8: An agent is located in the middle of a circular building, which contains several
walls. The importance weights take a finite number of values (4 in this example, from A1

to A4).

6.4.1 Importance Weights as a Piecewise Constant Function of the An-

gle

Consider a scenario where the range measurement variance does not depend on the dis-

tance, but where obstacles, such as walls, block the line-of-sight (LOS) between the agent

and the beacons at certain angles. At these angles, a beacon will be NLOS so its range mea-

surements will be biased, which we modeled with β > 0 [52–54]. If we have a map of the

area, we can predict what value β will take depending on the location of the beacon. The

corresponding importance weights will then be a piecewise constant function of the angle.

This is illustrated on Figure 6-8, where the agent is in the middle of a circular building,

which contains several walls inside. The value of the importance weights on the building

boundary changes depending on what obstructs the LOS between agent and beacon.

Let us then divide the interval [0, 2π) into L arcs. On arc Cl = [cl, cl), the importance

weight is constant, equal to Al (obtained from (5.31)). The generic RELOCATE of Sec-

tion 6.2.3 can be efficiently adapted to this case. The key is to note that solving step (2) is
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again easy. The following lemma shows that the minimum of the PEB along one coordinate

is obtained at one of 2L + 2 points: the two extremities of each arc, at the angle specified

by (6.7), and at its symmetric with respect to the agent.

Lemma 6.9. Let PEB(θip) be the PEB when all the angles other than θip are kept constant.

The angle θ∗ip minimizing PEB(θip) in step (2) of RELOCATE is given by

θ∗ip = arg min{PEB(θ̃ip), PEB(θ̃ip + π), (6.21)

PEB(c1), PEB(c1), ..., PEB(cL), PEB(cL)},

where θ̃ip is the angle given by (6.7).

Proof. The proof is given in Appendix D.5.

This result makes step (2) of RELOCATE easy to solve, so that RELOCATE can again

be applied to this problem efficiently. There is no longer any guarantee of global conver-

gence however, but since the algorithm is fast it can be restarted several times from different

initial conditions, to eliminate local minima.

Figure 6-9 illustrates a typical result. In this case the internal properties of the building

result in 6 different importance weights at the boundary, represented by arcs of different

colors. RELOCATE places 5 beacons on the boundary in order to optimally localize an

agent placed at the center. Results show that RELOCATE places beacons on arcs with

larger importance weight (beacons 1 through 4 are on the arc with A6 = 0.87, beacon 5

is on the one with A2 = 0.60), while spreading them in order to get range measurements

from different viewpoints. RELOCATE tries to strike the optimal balance between spatial

diversity (well-distributed measurement viewpoints) and measurement quality (arcs with

large importance weights). Note that in this particular case all the beacons are located at

the extremities of the arcs.

6.4.2 Importance Weights as an Arbitrary Function of the Angle

Consider the same scenario as before, except that now the range measurement variance

increases with the distance d to the agent as σ2(d) = σ2
0d

α (see Chapter 4). To be general we
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Figure 6-9: Example of RELOCATE when the importance weights are a piecewise con-
stant function of the angle. Beacons tend to be placed on arcs with larger weight, while
maintaining some spatial diversity in their placement.

assume that α and β can also be arbitrary functions of the beacon location. The importance

weights given by (5.31) can then be any function of the angle. This is the most general

case for a single agent location, where the range measurement variance increases with

the distance (possibly with different path-loss exponents), and where the beacons become

NLOS at certain locations so that β > 0. Unfortunately this also implies that there is no

longer any analytical solution to the minimization of step (2) of RELOCATE, so it must be

solved numerically.

Let us consider a square area as shown on Figure 6-10, characterized by β = 0 and

α = 0, α = 0.2 and α = 2. The configurations for 6 beacons obtained through RELOCATE

are shown for the cases where the agent is at the center (a)-(c) and at the lower left (d)-

(f) of the area. When α = 0 the beacons are scattered all around the agent. Note that

by symmetry there are many beacon configurations that minimize the PEB in this case.

However as α increases they tend to bunch together, so that when α = 2 the beacons are

evenly split into 2 clusters. We can see here again that RELOCATE strikes the optimal

balance between spatial diversity and range measurement quality in order to minimize the
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PEB. The beacons are placed close to the agent so that they get range measurements of

good quality, while also taking those measurements from different viewpoints (a minimum

of two distinct measurement locations are necessary to localize the agent in 2D).

6.5 Multiple Agent Locations

6.5.1 Results with Average PEB

So far we have considered placing beacons in order to minimize the PEB at a single loca-

tion. However in real scenarios we will often want to ensure good localization everywhere

in the area, or along a pre-planned path. There are several possible choices of metrics to

capture this accuracy, but a natural choice adopted here is to minimize the average PEB

over the area or the path. RELOCATE can be applied as before, except that in step (2) the

average PEB is minimized.

To illustrate this we consider the same square area as before, except that now several

agent locations are specified (denoted by squares on Figure 6-11). The beacon configura-

tions given by RELOCATE for different agent locations are also shown. In Fig. 6-11(a)

the agent locations are evenly distributed throughout the area, which models the scenario

where we want to ensure good localization everywhere (e.g. there is no pre-planned path).

In this case RELOCATE places the beacons at regular intervals on the boundary, as intu-

ition would suggest. Interestingly, results do not depend on the value of α.

Fig. 6-11(b)-(c) illustrate a scenario where we only want to ensure good localization in

2 parts of the building. For example the agent may know beforehand that it will only need

to inspect 2 rooms inside a building, so good localization accuracy has to be provided there

only. The configurations given by RELOCATE differ widely depending on α. If α = 2, the

beacons are evenly split between the two clusters of agent locations, and for each cluster

they again strike the optimal balance between spatial diversity and measurement quality.

For α = 0 however, the measurement quality is uniform everywhere, so the beacons are

more spread out.

Finally in Fig. 6-11(d)-(e) we consider a path inside the area. The agent already knows
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Figure 6-10: Configuration of beacons (denoted by circles on the perimeter) given by RE-
LOCATE. The agent (denoted by a square) is placed at the center (figures (a)-(c)) and at
the lower left (figures (d)-(f)). β = 0 and α takes 3 values in each case: 0, 0.2, and 2.
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where it will travel, so it desires to place beacons so as to optimize the localization accuracy

along that path. RELOCATE then concentrates the beacons on the wall close to the path

when α = 2, and spaces them evenly.

Results on the Fort McKenna MOUT Scenario

Let us consider an even more general scenario, where the agent can travel outside the

building boundary. In particular we use a map of the Military Operations on Urbanized

Terrain (MOUT) site at Fort McKenna to simulate a mission where an agent traveling

through the area has to be accurately localized at all times, while the beacons are placed on

the exterior walls of different buildings.

In the simulation shown on Figure 6-12 we assume that range measurements can only

be made by beacons with LOS to the agent. This simulation can easily accommodate the

case where range measurements can be made through buildings, for example by penalizing

NLOS measurements by β > 0.

The path of the agent is shown as black squares, and RELOCATE has to place 8 bea-

cons accordingly. The resulting beacon placement shown on Fig. 6-12 indicates that RE-

LOCATE performed its task well. In particular we note that every agent location is in

view of at least 2 beacons, so that localization can be ensured at all times. These good

results further indicate that RELOCATE is very flexible to more complex scenarios, where

the average PEB is minimized and where the agent is not restricted to the interior of the

buildings’ boundary.

We also note that RELOCATE can easily deal with a probabilistic map of agent loca-

tions. In many scenarios the agent may not know beforehand where exactly it will go, but

it may have an a priori density map of its future locations. The area can then be divided

into a grid of agent locations, each assigned with a probability given by the density map.

The expected PEB is then minimized in step (2) of RELOCATE.
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Figure 6-11: Optimal configuration of beacons (denoted by red circles on the perimeter)
given by RELOCATE for several agent locations (black squares). When the agent can be
anywhere in the building (a), the beacons are evenly distributed on the building’s boundary,
whether α = 0 or 2. The placement varies with α in the other two cases, when only portions
of the building (b)-(c) or a path (d)-(e) must be covered.
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Figure 6-12: Results of RELOCATE for the MOUT site of Fort McKenna. 8 beacons are
placed on the boundary of buildings and can make range measurements to the agent when it
is LOS. Note that every agent location is in view of at least 2 beacons, ensuring localization
at all times.

6.5.2 Benchmarking RELOCATE with Simulated Annealing (SA)

Although there is no longer any guarantee of optimality or efficiency in the case of multiple

agent locations with varying importance weights, we show in this section that RELOCATE

is still efficient and gives results that are near-optimal. In particular we compare the per-

formance of RELOCATE to that of Simulated Annealing (SA) [62]. SA is a stochastic

algorithm, so we expect it to avoid local minima and approach the global minimum. It

is also an efficient heuristic algorithm, and it is particularly well-suited to such combi-

natorial optimization problems [25], so we use it to benchmark RELOCATE. We use the

scenario of Fig. 6-11(d) to compare the two methods with 9 beacons to be placed. The av-

erage PEB obtained through RELOCATE (PEBRELOCATE) and SA (PEBSA) are compared

over 100 simulation runs. In Figure 6-13, we plot the frequency histograms of the ratio

(PEBSA − PEBRELOCATE)/PEBRELOCATE for 3 sets of parameters of the SA that result in 3
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different running times. The 3 SA parameterizations respectively took 0.22, 0.94, and 6.74

of the time it took for RELOCATE to complete. Positive values of the ratio indicate that

the SA solution is worse than that of RELOCATE.

We see that although RELOCATE is a deterministic algorithm, it yields better results

than SA most of the time. For the first two SA parameterizations, RELOCATE produces

solutions that are always better than those of SA (the computational cost of SA and RE-

LOCATE in Fig. 6-13(b) are almost similar). Only for longer runs does SA sometimes find

better solutions than RELOCATE (Fig. 6-13(c)), but this happens rarely (8% of the time),

while the improvement in average PEB is small (2% at most) and the time to completion is

much larger than RELOCATE (6.74 more expensive computationally).

We proved before that RELOCATE finds the global minimum efficiently for a single

agent and constant importance weights, and this study shows that even in more complex

cases (multiple agent locations, varying weights) RELOCATE finds solutions very close

to the global minimum. In addition, RELOCATE finds better solutions (indeed solutions

within 2% of the minimum given by SA) in less time than SA. We conclude that RELO-

CATE remains an efficient, near-optimal algorithm even for complex, realistic cases.

6.5.3 Benefit of Using a Placement Algorithm

Figures 6-11(d)-(e) illustrated how optimal beacon configurations vary with the value of α.

In this case as α increases, beacons tend to gather closer to the path of the agent. A one-

size-fits-all approach which would distribute the beacons evenly on the boundary (which

we call UNIFORM) may therefore not be a good idea, at least in certain situations. Let us

for example consider the agent path depicted in Fig. 6-11(e) with α = 2. We compare three

types of placement strategies along the boundary:

• Placement using RELOCATE

• Uniform placement (UNIFORM)

• Random placement (RANDOM)
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Figure 6-13: Frequency histograms of the relative difference in PEB between the solution
given by SA and RELOCATE, with the mean indicated by a dashed line. The SA respec-
tively took a fraction of 0.22 (a), 0.94 (b), and 6.74 (c) of the time it took for RELOCATE
to complete.

For the last two strategies the results are averaged over 100 trials. We plot the average PEB

resulting from these three methods in Figure 6-14 for different values of the number of bea-

cons. We see that for a given number of beacons, RELOCATE yields an average PEB that

is at least twice lower than that obtained by simply distributing the beacons evenly on the

boundary. This is important in terms of the number of beacons needed to achieve a certain

PEB. For example, to obtain an average PEB below 2mm, 7 beacons are necessary using

RELOCATE, whereas we need 15 with a uniform distribution, and 20 with random place-

ment. Results when beacons are randomly placed are the worst, although not much worse

than UNIFORM. The RELOCATE algorithm will therefore use significantly fewer beacons

to achieve the same accuracy than a simple, one-size-fits-all approach. This demonstrates
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Figure 6-14: Average PEB as a function of the number of beacons for the agent path de-
picted in the bottom plot of Figure 6-11 with α = 2. The average PEB is obtained for
3 placement strategies: RELOCATE, UNIFORM, and RANDOM. The 1-σ envelope is
indicated in dashed for the last two.

the importance of planning the beacons configuration optimally.

This is even more dramatically illustrated by considering the Fort McKenna scenario.

For different number of beacons, we calculate the average PEB obtained by randomly plac-

ing the beacons on the perimeter of the buildings, versus placing them according to RE-

LOCATE. The results are shown on Figure 6-15, and it is clear that the random placement

is much worse than RELOCATE, especially when the number of beacons is small. To bet-

ter visualize this, on Figure 6-16 we plot the ratio between the average PEB obtained by

random placement and that by RELOCATE. We can see that RELOCATE typically beats

random placement by several orders of magnitude.

6.6 RELOCATE in Phases I, II, and III

The flexibility of RELOCATE makes it readily applicable to all 3 phases of the network

planning.
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Figure 6-15: Average PEB as a function of the number of beacons for the agent navigating
in Fort McKenna as depicted in Figure 6-12. α = 0 and agent and beacons must be LOS in
order to measure a range. The average PEB for the RELOCATE configurations is in thick
red (it is too small to be distinguished from 0 on this scale), while the average PEB for
random placement is in solid blue. The 1-σ envelope is indicated in dashed.

Most of the results used to illustrate RELOCATE in this chapter fall into Phase I.

• A network design is obtained from scratch, without any preexisting solution.

• The PEB accounts for any degree of knowledge the user may have about the environ-

ment. If nothing is known, the PEB can simply have constant importance weights.

But if a statistical characterization of the building is available, or if the detailed prop-

agation characteristics of the UWB signal can be predicted, then the PEB can easily

incorporate it.

• Although the number of beacons is fixed, RELOCATE can be run with different

numbers of beacons present, so that the user can decide how many beacons are worth

deploying.

• RELOCATE can account for the airdrop inaccuracy. In this case given a nominal

drop location and the drop vehicle accuracy characterization, the expected PEB is
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Figure 6-16: Ratio of the average PEB obtained through random placement and that ob-
tained through RELOCATE, from Fig. 6-15. RELOCATE beats random placement by
several orders of magnitude, especially for small numbers of beacons.

minimized.

• RELOCATE can even account for modeling uncertainty in Phase I. In particular if

the values of αk or βk are random variables with known statistics, the expected PEB

can again be used.

Not only can RELOCATE produce network designs from scratch, but it can also easily

work with some preexisting beacons. Given some beacons already deployed on the ground,

it can easily add on to this configuration to minimize the PEB. It is therefore well-suited

to Phase II and Phase III, all the more so since, as we have already stressed, it can account

for airdrop or modeling uncertainty. If the mission objective change, i.e. if the agent path

varies as the mission unfolds, RELOCATE can be used as is to deploy more beacons and

so adapt the network to the new requirements (Phase III).

RELOCATE therefore fits perfectly into the Phase I-III framework. The only planning

aspects it does not treat are:

• The selection of the optimal drop sequence in Phase II. The suboptimal technique of
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Chapter 3 can be used here.

• The optimal operation of the network, i.e. how to actually optimally combine the

range measurements to produce a navigation solution. A NLLS method was used for

this in Chapter 5, but it did not account for the presence of biases. The next chapter

will cover this last piece of the puzzle.

6.7 Conclusion

Although metrics based on the Information Inequality are widely used in the literature

to measure the quality of beacon configurations for localization, there have only been a

few papers on how to optimally place the beacons to guarantee good localization. In this

chapter we have proposed RELOCATE, an iterative algorithm that minimizes the Position

Error Bound (PEB). We proved that it converges to the global minimum when the range

measurements are unbiased and have constant variances, and we have derived its expected

rate of convergence.

We have also shown that it can easily be extended to more realistic cases, where the

quality of range measurements depends on the beacon locations. We have also applied RE-

LOCATE to the optimal placement of beacons in order to minimize the average PEB over

multiple agent locations. In all these cases, RELOCATE attempts to strike the optimal bal-

ance between range measurement quality and spatial diversity. Those results have shown

that the optimal configuration of the beacons strongly depends on the influence of the en-

vironment on the quality of range measurements. A one-size-fits-all placement strategy is

therefore inappropriate, a point we illustrated by showing that using RELOCATE can sig-

nificantly reduce the number of beacons needed to achieve a given accuracy requirement.

We have also shown that RELOCATE converges to solutions that are very close to the

global minimum, and that it achieves these results efficiently when compared to Simulated

Annealing.

RELOCATE can be used in Phase I, when planning the network from scratch, but it can

also work with partial design and it can deal with uncertainty, so it is well-suited for Phases

II and III as well. This algorithm can therefore be used in all 3 phases of the deployment
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strategy in order to robustly deploy the network.
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Chapter 7

Monte Carlo Localization Using an IMU

and UWB Ranging

7.1 Introduction

In Chapter 6 RELOCATE was presented as an efficient algorithm for placing beacons in

order to provide optimal localization to an agent. As was shown, the task of beacon place-

ment in all phases of the deployment can be optimized using RELOCATE. In this chapter

we consider another aspect of Phase III, namely the optimal operation of the network, that

is how to optimally combine the range information coming from the different beacons in

order to obtain an accurate position estimate. We assume that the locations of the bea-

cons are known, and that the agent carries a strap-down Inertial Measurement Unit (IMU)

that provides attitude rates and instant accelerations. These ranges, coupled with the IMU

information, are then used to update the agent position.

If the ranges to the beacons were accurate, then three beacons would be sufficient to

determine the agent position with accuracy using any triangulation technique. But we have

shown in Chapter 4 that although UWB ranging performs better than other signals indoor,

the range measurements are still corrupted by the presence of positive biases resulting from

NLOS propagation. This difficulty cannot be resolved at the hardware level, and it has been

referred to as a fundamental limiting factor in UWB ranging performance [65].

If accurate UWB channel modeling was available, then it may be possible to predict
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these biases throughout the environment. In that case the predicted biases can be sub-

tracted from the range measurements, thus overcoming this difficulty. However in many

applications such modeling will not be accurate, and often not available at all (e.g. military

scenarios where the area to explore is unmapped). Another way around this difficulty can

be found in GPS receivers, where a voting system identifies corrupted range measurements

and discards them [60]. This method works because of the redundancy in range measure-

ments (typically more than 4 satellites are in view at all time). However in indoor envi-

ronments we will not usually have this luxury since most (if not all) range measurements

are likely to be biased. If biased or otherwise corrupted measurements are discarded, we

could potentially be left without any measurements at all. This is illustrated on Figure 7-1,

where an Extended Kalman Filter (EKF) [7,8] with outlier rejection is used to estimate the

position of the agent along a path. The range measurements from 2 beacons are positively

biased at all times, but the outlier rejection rejects measurements that differ too much from

their expected value (assuming no bias is present). Very quickly the outlier rejection re-

jects measurements from one beacon, and the position estimate of the agent diverges. We

therefore cannot afford rejecting all biased measurements. An indoor localization method

oblivious to this difficulty is unlikely to perform well.

We show in this chapter that these biases can instead be estimated jointly with the

position of the agent, allowing for the range measurements to be corrected and the agent

accurately localized. We use Monte Carlo Localization (MCL) specifically to capture the

non-linearity of bias transitions [57].

Related work

We focus on localization using a set of beacons with a priori known positions; we will not

deal with the problem of Simultaneous Localization And Mapping (SLAM) of the beacon

position: the goal is to have a system that provides the same capabilities as GPS, but in

a GPS-denied environment. We do, however, assume that no map of the physical layout

building is available to infer the signal bias.

Ours is not the first approach to using Monte Carlo techniques for inference in sensor
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Figure 7-1: Illustration of the failure of classical methods such as this EKF with outlier
rejection. Since all measurements are biased, this method based on rejecting “biased”
measurements leads to divergence.

networks, however, we believe that ours is the first range-based localization to demonstrate

robustness to hidden biases. In contrast, Ladd et al. [63] build an explicit model of the

spatial distribution of biases which they then use to build an HMM and solve the global

localization problem. They are able to use 802.11 signals to localize a laptop based only

on beacon measurements, however, they do require the substantial initial training phase.

Smith et al. [88] avoid many of the bias issues by explicitly using two different range

sensors in the Cricket system. Their results indicate that the EKF approach with outlier

rejection provides accurate localization in the face of bias given a sufficient number of bea-

cons (several per room). However, they do encounter periodic EKF failures; their assump-

tion is that having the moving agent transmit additional signals to the beacons is sufficient

to recover from the EKF failure.

Biswas et al. [12] take a similar approach to ours in factoring the likelihood model,

however, they are attempting to solve a fundamentally different problem in assessing the
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presence of enemy agents in the sensor network.

This chapter is organized as follows. In Section 7.2 we describe MCL. In Section 7.3

we use the results of Chapter 4 to model the biases in the particle filter. Section 7.4 contains

the results from experiments utilizing real-world data from Chapter 4.

7.2 Monte Carlo Localization (MCL)

Our goal is to estimate the position of an agent moving indoor based on IMU instantaneous

rate measurements and range measurements from a set of UWB beacon. As before we re-

strict ourselves without loss of generality to two dimensions. We also assume for simplicity

that the translational velocity of the agent is known at all times. The goal of MCL will be

to optimally estimate the state of the agent as it moves through the area. In particular the

state vector x(t) of the agent at time t contains the following variables:

• x(t), y(t) are the coordinates of the agent;

• θ(t) and θ̇(t) are its heading angle and heading angle rate

Since we are in a 2D environment with known velocity, the onboard IMU needs only

be a rate gyro. The measurements received at time t are then:

• zθ̇(t), the heading angle rate of the agent from the IMU;

• r(t) = {r1(t) . . . , rnB(t)}, the ranges from the nB beacons.

We acknowledge the degree of simplification of our modeling compared to a 6 degrees of

freedom (6-DOF) modeling, but our goal here is to provide a “proof-of-concept” that can

then be generalized to more faithful 6-DOF models [67].

Our goal is to maintain the probability distribution of the state x(t) conditioned on

all the previous measurements. This distribution is called the posterior distribution, and

is denoted at time t as p(x(t)|zθ̇(t), r(t), zθ̇(t−1), r(t−1), . . .). We first seek to obtain a

156



recursive equation linking the posterior of x(t) to that of x(t−1). We write:

p (x(t)|zθ̇(t), r(t), zθ̇(t−1), r(t−1), . . .) =
p(x(t), zθ̇(t), r(t)|zθ̇(t−1), r(t−1), . . .)

p(zθ̇(t), r(t)|zθ̇(t−1), r(t−1), . . .)
(7.1)

= α · p(zθ̇(t), r(t)|x(t)) · p(x(t)|zθ̇(t−1), r(t−1), . . .) (7.2)

= α · p(zθ̇(t)|x(t)) · p(r(t)|x(t)) · p(x(t)|zθ̇(t−1), r(t−1), . . .),

(7.3)

where α is a normalization term. In (7.1) we have used the definition of conditional prob-

abilities. In the middle term of the right-hand side of (7.2) we have assumed that the

measurements at time t only depend on the current state x(t) (by the Markov assump-

tion). Finally in (7.3) we assumed that, given x(t), the measurements zθ̇(t) and r(t) are

independent. We can express the right-most term of (7.3) as a function of the probability

distribution of the previous state x(t−1):

p(x(t)|zθ̇(t−1), r(t−1), . . .) =

∫
p(x(t)|x(t−1)) · p(x(t−1)|zθ̇(t−1), r(t−1), . . .)dx(t−1),

(7.4)

where again we used the Markov assumption to write p(x(t)|x(t−1), zθ̇(t−1), r(t−1), . . .) =

p(x(t)|x(t−1)). We therefore obtain the following recursive estimator, known as Bayes

filter [31, 38]:

p(x(t)|zθ̇(t), r(t), zθ̇(t−1), r(t−1), . . .) = α · p(zθ̇(t)|x(t)) · p(r(t)|x(t))×∫
p(x(t)|x(t−1)) · p(x(t−1)|zθ̇(t−1), r(t−1), . . .)dx(t−1) (7.5)

Given the posterior at time t − 1 and a set of measurements, we can use Bayes’ filter to

obtain the posterior at time t.

A conventional EKF is often used to maintain the distribution p(x(t)) by linearizing

the prediction and measurement functions and modeling the noise terms as Gaussian [7,8].

These two constraints allow the distribution over x(t) to be approximated as a Gaussian.

The advantage to such a representation is that the distribution can be represented using

157



only a small number of parameters (a mean vector and covariance), and updated very effi-

ciently. If, however, the prediction and measurement models are not easily linearized and

the noise terms are not Gaussian, then the EKF typically does an increasingly poor job of

approximating the true distribution over x, often leading to filter divergence [29, 74].

An alternate technique for representing p(x(t)) is to maintain a set of sample states

drawn from the distribution [31]. Good techniques exist to sample from distributions even

when the distribution itself cannot be represented, and statistics such as the mean, variance

and higher order moments of the distribution can be computed directly from the samples

instead of from the distribution parameters.

MCL [31,37] is a form of robot localization using Importance Sampling [40], in which

samples from a target distribution p(x) are desired but cannot be drawn directly. Instead,

samples are drawn from some known proposal distribution q(x(t)) that does permit direct

sampling. Each sample is assigned an importance weight p(x(t))/q(x(t)), and the set of

weighted samples can be used in place of the distribution p(x(t)). In sampling problems

where the target distribution changes over time, the sample weights can be updated directly

to reflect the new distribution, although finite numerical precision can cause the sample

weights to converge eventually to 0. To avoid this problem, in Importance Sampling Re-

sampling [44], the weighted samples are periodically resampled according to their weights

to generate a new set of uniformly weighted samples.

In the localization problem, our target distribution p(x(t)) is the posterior p(x(t)|zθ̇(t), r(t), zθ̇(t−
1), r(t−1), . . .). Under the assumption that we do not have a parametric representation of

this distribution (i.e. we do not use an EKF), we maintain a set of particles where the ith

particle x[i](t) is written:

x[i](t) = [x[i](t), y[i](t), θ[i](t), θ̇[i](t)]. (7.6)

We assume that we have a motion simulator p(x(t)|x(t−1)) that models the dynam-

ics of our agent, just as we do in Kalman filtering (prediction model). We can therefore

sample from the prediction model, that is given a state at t − 1, the simulator can be used

to propagate the state to instant t. We also assume that we have a model for the measure-
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ments (again, just as in Kalman filtering) in the form of likelihood functions for the IMU

p(zθ̇(t)|x(t)) and for the range measurements p(r(t)|x(t)). The measurement likelihood is

simply the product of those two functions.

Given the posterior at time t − 1, let us use as proposal distribution q(x(t)) the distri-

bution of predicted states:

q(x(t))=

∫
p(x(t)|x(t−1))p(x(t−1)|zθ̇(t−1),r(t−1),...)dx(t− 1). (7.7)

The importance weights are then given by:

p(x(t))/q(x(t)) =
p(x(t)|zθ̇(t), r(t), . . .)∫

p(x(t)|x(t−1))p(x(t−1)|zθ̇(t−1), r(t−1), . . .)dx(t− 1)
(7.8)

= α · p(zθ̇(t)|x(t)) · p(r(t)|x(t)), (7.9)

where we have used Bayes filter equation (7.5) to simplify the second equation. We there-

fore conclude that the importance weights p(x(t))/q(x(t)) are simply proportional to the

measurement likelihood.

We summarize the MCL algorithm below.

0) Initialize the set of nS sample
{
x[i](0)

}
i=1...nS

by drawing them according to some

initial distribution, t = 1.

1) For i = 1 . . . nS do:

(j) Propagate x[i](t−1) one step in time to obtain x̂[i](t) using the prediction model

p(x(t)|x(t−1)).

(jj) Assign importance weight to x̂[i](t) given the measurements zθ̇(t) and r(t) using

the likelihood function p(zθ̇(t)|x̂(t)) · p(r(t)|x̂(t)).

2) Resample nS new samples
{
x[i](t)

}
i=1...nS

from
{
x̂[i](t)

}
i=1...nS

according to their

importance weights.

3) t ← t + 1, go to 1).
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If the measured ranges are unbiased, the measurement models p(r(t)|x(t)) and p(zθ̇(t)|x(t))

will be sufficient to unambiguously determine the agent position given measurement of

three beacons.

7.3 Modeling of the Biases, the Agent, and the Measure-

ments

As we have previously argued, the ranges are positively biased (Chapter 4). In order to

accurately estimate the position of the agent, it is necessary to jointly estimate the agent

position and the set of beacon biases b(t) = {b1(t), . . . , bnB(t)}. The gyro, in addition

to giving noisy measurements, also has a bias that evolves over time. We therefore also

included the gyro bias g(t) as a state variable to be estimated. The ith particle x[i](t) is then

written:

x[i](t)=
[
x[i](t), y[i](t), θ[i](t), θ̇[i](t), g[i](t), b

[i]
1 (t),. . . , b[i]

nB
(t)

]
, (7.10)

where b
[i]
j (t) is the bias estimate of the jth beacon for particle i. In order to estimate the

biases b(t) with the particle filter, we need a proposal distribution (cf. equation 7.7) and

a likelihood model (cf. equation 7.9). Our likelihood model does not change as a result

of estimating biases, but we need to modify the proposal distribution to model how these

biases change over time.

7.3.1 Beacon bias dynamics modeling

We construct the probabilistic model of beacon bias transition by looking at actual UWB

measurements. Recall from Chapter 4 that the biases are positive, and that they are locally

constant and tend to change in discrete increments. As the agent moves, we can therefore

expect the biases to either remain constant or change to a significantly different value. Let

us then first define the rate of beacon bias change rchange, which is the expected number

of times the bias changes per second and per beacon. This rate typically depends on the

environment, but we found that the particle filter performed well even for inaccurate values

of rchange. In our experimental results, we set rchange = 1 Hz. At each time step dt, the
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probability that the bias of the jth beacon changes for a given particle is rchangedt. When

this is the case, the particle’s jth bias value is assigned a uniformly distributed random

number between 0 and b
[i]
j − ε or between b

[i]
j + ε and β, where β is the maximum value the

bias can take, and ε is a positive number smaller than β. The role of ε is to ensure that the

bias change is sufficiently large, in order to model the fact that when the bias changes, it is

likely to change to a value significantly different from the previous one (e.g. in Figure 4-

4, it jumps from 1m to 1.5m). Our bias motion model is therefore a uniform distribution

notched about the current bias, where the notch has a width of 2ε. In practice, we set ε to

be equal to 3 standard deviations of the beacon measurement noise, in order to ensure we

do not mistake measurement noise for bias change.

Figure 7-2: At time t + 1, with probability rchangedt a new bias value is sampled for b
[i]
j

according to the pictured distribution. Otherwise b
[i]
j retains its current value.

We may have been tempted to simply model the bias transition as a Gaussian centered

at the current bias value. This would have been advantageous since it would have enabled

us to use an EKF, which is more efficient than MCL. However such modeling does not

agree with the measurements presented earlier, especially with the discrete nature of bias

transitions. Simulations showed in fact that the resulting estimation performs poorly. The
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non-linearities of bias transition must be kept in order to achieve accurate localization, and

therefore makes our problem non-amenable to the EKF format.

7.3.2 Agent dynamics modeling

The probabilistic model of the agent’s dynamics is as follows:

g[i](t) = g[i](t−1) + N(0, σ2
g) (7.11)

θ̇[i](t) = θ̇[i](t−1) + N(0, σ2
θ̇
) (7.12)

θ[i](t) = θ[i](t−1) + θ̇[i](t−1)dt (7.13)

x[i](t) = x[i](t−1) + V cos(θ[i](t))dt (7.14)

y[i](t) = y[i](t−1) + V sin(θ[i](t))dt (7.15)

where V is the (known) translational velocity, and σg and σθ̇ are the standard deviations of

the noise for the gyro and the gyro bias, respectively. N(0, σ2) is a normally distributed ran-

dom number with mean 0 and variance σ2. In our experimental results, σg = 0.001rad.s−1

and σθ̇ = 3rad.s−1.

7.3.3 Measurement model

The measurement model assumes not only that the gyro measurements are independent of

the beacon measurements, but also that the beacon measurements are independent of each

other. Therefore, for a given particle x[i](t), the likelihood is a product of nB + 1 factors.

The first factor is the likelihood of the current measurement zθ̇(t), which we model as a

normal distribution:

p(zθ̇(t)|x(t)) = N(θ̇, σ2
zθ̇

), (7.16)

where σzθ̇
= 0.1rad.s−1.

The nB remaining factors are the likelihoods of the current nB range measurements

given each particle’s position x(t) and its nB beacon biases {b[i]
1 (t), b

[i]
2 (t), . . . , b

[i]
nB(t)},

p(ri(t)|x(t), bi(t))=N(||x(t)−yi(t)||−bi(t), σ
2
rf ), (7.17)
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where yi(t) is the location of the ith beacon, and the σrf is the error in the range sensor taken

from the sensor specification. This was specified as σrf = 0.025m for our experiments.

This value in fact was a slight underestimate; using the range measurements from the equal-

bias points on the plateau (x < −4m) in the room experiment (Figure 4-4) showed the

variance to be σrf = 0.03m.

7.4 Experimental Results

In this section we describe our simulation and then compare the results for different cases.

We only had access to actual UWB signal data for a single transmitter, so the second signal

is simulated. Although in theory three beacons are necessary to unambiguously localize

an agent in 2D, two beacons are sufficient in our scenario because we use an IMU and the

agent’s initial position is known, so that the ambiguity is removed.

7.4.1 Experimental Setup

An agent travels at a constant speed of 1m.s−1 along a corridor in an office building. It

carries a rate gyro providing its instantaneous heading angle rate, and receives range mea-

surements from two beacons at a rate of 10Hz. The range measurements from those two

beacons are positively biased by b(t). For the bias of one beacon, we use the actual range

measurements from a physical transmitter (as described in Chapter 4). For the second bea-

con, we simulated range measurements and a bias profile. The map of the environment is

shown in Figure 7-3. We assume that the agent knows its initial state since prior to entering

the building it can use GPS to determine its exact location. We show the results of the

estimation using the particle filter for the following cases:

• Case 1: the agent uses only its IMU to estimate x(t);

• Case 2: the agent uses its IMU and beacon range to estimate x(t), but does not

estimate b(t);

• Case 3: the agent uses its IMU and beacon range, estimating the joint distribution

over x(t) and b(t).
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We also compare our results against an EKF with outlier rejection.

Case 1 Results

The accuracy of the IMU used in the simulation is poor, and the resulting estimated path

(Figure 7-3(a)) does not track the true trajectory, as the gyro noise quickly dominates.

Case 2 Results

The results shown in Figure 7-3(b) are better than in Case 1, but the path estimate oscillates

about the true trajectory, yielding a position error of more than 1m on average. This is

due to the fact that the ranges have unmodeled bias. The position estimate oscillates as the

particle filter tries to best adjust to the changing biased measurements.

Case 3 Results

In this case the beacon biases are estimated and the results of Figure 7-3(c) show a very

close tracking of the true path. The reason for such good performance comes from the fact

that the beacon biases are being estimated: the particle likelihoods incorporate the biases,

so the measurements can still be used with confidence. Figure 7-4 shows the bias estimates

for beacon 1 and beacon 2.

We also show an EKF with outlier rejection. Since only two beacons are present, there

is not enough redundancy to ensure sufficient measurement updates, so the results are poor,

as shown in Figure 7-3(d).

7.4.2 Systematic Comparison

Cases 1, 2 and 3 and the EKF with outlier were performed over 100 simulation runs. The

mean and variance of the average position error over the path are shown on Figure 7-5.

The mean error of Case 1 is not surprisingly much worse than the other two mean errors,

and Case 3 provides localization with twice the accuracy of Case 2. Estimating the beacon

biases doubles the average accuracy in this example. The level of accuracy achieved (a few

tenths of centimeters) is satisfactory for indoor navigation.
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Figure 7-3: Path estimate for (a) Case 1 (IMU only), (b) Case 2 (IMU and beacons, but no
bias estimation), (c) Case 3 (full pose and bias estimation) (d) EKF with outlier rejection.

It should be noted that in this example the beacon biases were limited to a maximum

of 1m, so that the errors are fairly limited. If the biases increase (in Figure 4-4 some equal

1.5m), then we can expect Case 2 to perform increasingly worse as the estimator has to

reconcile measurements increasingly inconsistent. However we expect the PF with bias

estimation (case 3) to remain accurate even for large biases, since they are estimated and

removed from the measurements.

7.5 Conclusions

Once the beacons are on the ground, we have shown that localization can be improved

by coupling measurements from an onboard IMU and ranges from UWB beacons. This

method has been shown to overcome the presence of biases in the range measurements,
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which is the main factor currently limiting the accuracy of indoor localization systems.

We showed that a particle filter can be used to simultaneously estimate the state of the

agent and the beacon measurement biases. Experimental results incorporating real and

simulated UWB measurements demonstrated the efficacy of the particle filter approach,

which enabled us to localize the agent within a few tenths of a meter. Although these

results are based on a limited set of data, we believe that this example shows the validity of

our concept to provide a realistic solution to the challenge of accurate indoor geolocation.

The results are indeed encouraging, but more work is needed. In particular more UWB

range measurements should be performed in order to further validate the beacon bias model.

Then a 6-DOF model should be implemented with a 3-axis IMU. Since this will introduce

many more states, we recommend implementing a Rao-Blackwellized particle filter (or

Mixture Kalman filter) [23]. This variant factors some states in a KF format, while retaining

the “particle” format for some. In our case the agent’s states can be propagated and updated

using an EKF, while the beacon biases can remain in the particle format. This should yield

significant computational savings, while keeping the crucial non-linear modeling of the

bias transitions.
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Figure 7-4: Estimates of the biases of beacon 1 (left) and beacon 2 (right) are shown by the
solid line. Note that the bias of beacon 1 comes from actual UWB measurements described
in Chapter ??. Beacon 2 is simulated, and its bias is artificial induced.
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Figure 7-5: Mean error between the true position and its estimate after 100 simulation runs
for Cases 1, 2, 3 and the EKF. The standard deviation is shown.
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Chapter 8

Summary and Recommendations

8.1 Summary

We proposed a strategy for the planning and deployment of WSNs divided into 3 phases,

Phases I, II, and III. This framework addresses the optimization challenges of the planning

process, and takes into account the major sources of uncertainty inherent to the deployment

process, so that the WSN deployed on the ground performs as best as possible.

We first outlined a general purpose algorithm for Phase I, the Multi-Objective Genetic

Algorithm. We showed that its flexibility to different mission scenarios with multiple ob-

jectives makes it ideally suited to the planning of Phase I in general. We also showcased

the benefits of Phase I on a few examples. Because the performance of WSNs strongly

depends on the layout of the network, using a smart algorithm to place the sensors yields

far superior designs than approaches without planning.

We then proposed an approximation algorithm for Phase II. Numerical studies indicated

that the deployment of the network can have a strong influence on the performance of the

WSN once it is on the ground. We showed in particular that the choice of the drop sequence

is important and thus justifies the need for Phase II.

We followed these general results by a specific WSN application, localization in GPS-

denied environments. We started by motivating the use of UWB signals to infer ranges

between agents and beacons. Because of its high resolution, UWB is able to provide high

ranging accuracy, even in the kind of harsh environments typically found in GPS-denied ar-
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eas (indoor, urban canyon, etc.). However we also noted some limitations of UWB ranging,

namely the presence of positive biases in the range measurements due to NLOS propaga-

tion, and the increase of the measurement variance with distance.

Using these observations we then derived the Position Error Bound (PEB), a lower

bound on the localization accuracy. The PEB accounts for both the bias in range mea-

surements and the increase of the variance with distance. Not only is the PEB useful in

general to analyze the localization accuracy throughout an area, but it can also serve as the

objective to be minimized when placing the beacons.

We then developed a placement algorithm, RELOCATE, which finds the beacon con-

figuration that minimizes the PEB. RELOCATE was shown to converge to the optimal

solution in the special case when a single agent location is considered and when the range

measurements are unbiased and have a constant variance. Numerical studies showed that

it also works very well in more general scenarios, where the average or expected PEB is

minimized over a path, and where the quality of the range measurements varies with the

agent’s position. We showed that this algorithm can be used for the initial planning of

Phase I, as well as when incremental planning is needed, such as in Phases II and III. The

benefits of planning the network with RELOCATE were again outlined.

Finally a Monte Carlo localization (MCL) method was developed to fuse the range

measurements from the UWB beacons and inertial measurements from an onboard IMU,

so as to optimally estimate the state of an agent moving through a GPS-denied environ-

ment. This algorithm was shown to provide high positioning accuracy, notably thanks to

its ability to accurately estimate the bias embedded in the range measurements. Once the

network is deployed on the ground, the MCL then optimally uses the resources at hand to

complete the mission objective. All aspects of Phases I, II, and III were covered on this lo-

calization example, and for each phase we demonstrated the importance of smart algorithm

in planning, deploying, and operating the WSN.

In conclusion we have shown in this thesis that smart algorithms should be used for

the planning and deployment of WSN, as they can greatly influence the performance of the

network once it is on the ground.
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8.2 Recommendations for Future Work

We have shown that the deployment process has a strong impact on the performance of the

WSN, thus the need for Phase II. However we have limited our analysis to an approximation

algorithm, especially when it comes to the selection of the drop sequence. More work is

needed on this problem.

More UWB range measurements should also be performed in order to validate the mod-

eling described in Chapter 4. In particular a better understanding of the bias dynamics and

the increase of variance with distance is crucial. Another interesting question is whether

velocity information can be inferred from the UWB signals, potentially through Doppler

effect.

Some practical issues remain unresolved. In particular we assumed perfect clock syn-

chronization between the transmitter and receiver, an assumption unlikely in practice. So-

lutions to this problem like round-trip measurement have been mentioned, but they need to

be implemented and validated in practice. At a deeper level, understanding and quantify-

ing how the synchronization error impacts the accuracy will help in designing a practical

system.

The RELOCATE algorithm seems to have a lot of potential. In particular its ability

to incorporate uncertainty in modeling and beacon placement should be exploited. Also,

because the PEB is flexible to range measurements with vastly different characteristics

(from narrow-band to UWB), RELOCATE can be used to plan localization networks that

use any kind of signals, from 802.11 to UWB.

The MCL presented in Chapter 7 should be generalized to a more realistic scenario,

where the agent has 6 degrees of freedom and carries a 3-axis IMU with gyroscopes and

accelerometers. In order to cope with the increase in variables, a Rao-Blackwellized par-

ticle filter (or Mixture Kalman filter) should be implemented, and we expect it to perform

well. Also, the method can be extended to several agents moving through the same area.

These agents may have the ability to estimate their relative distance and share position in-

formation. The impact of this collaborative localization is interesting and deserves more

attention.
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Finally a complete simulation of the WSN planning and deployment process should be

implemented to demonstrate the combined power of all the phases. A specific scenario such

as the localization example can be used, and an actual deployment of agents and beacons

can be performed.
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Appendix A

Additional Case Studies for the MOGA

A.1 Case Scenarios 3 and 4

In the third study (CS3), movements in and out of a circular area are to be detected. This

is akin to CS1, except that there are no threats to the sensors. In the fourth one (CS4), a

square area is to be uniformly covered by the WSN, so that every point in it can be moni-

tored. These case studies (including CS1 and CS2 described in chapter 3) are basic mission

scenarios that can form the building blocks (or primitives) of a more complex mission sce-

nario. For example, consider a factory suspected to manufacture dangerous chemicals. An

area close to it may have been identified as a possible location for waste disposal, and

chemical sensors are to cover it uniformly in order to analyze the soil (CS4). Also, seismic

sensors placed around the plant can detect the movements in and out of it, which gives and

indication of the plant’s activity (CS2 or CS3, depending on the threat level). All these

sensors must then relay their data to a HECN placed nearby. A Multi-Objective Genetic

Algorithm (MOGA) can then be used to find non-dominated network designs. It is shown

that the exact same MOGA works in all cases, which shows its flexibility and its possible

use for more complex missions built upon these basic building blocks.
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A.2 Results for CS3

The facility considered is a circle of radius 3, centered on the origin, as shown in Figure A-

1. It is assumed that there are no threats to the sensors, and the goal is to obtain as much

coverage with as few sensors as possible. Like in CS2, the sensors cannot be placed inside

the facility.
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Figure A-1: Map for CS3 and CS4, with the HECN in the upper-right corner.

The first objective is the detection, as defined in CS2 (3.5). Lines are generated around

the circle, and the calculation is the same as before. The second objective is the number of
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sensors, to be minimized. Again, these two objectives are competing since placing more

sensors yields a better coverage.

The objectives graph is shown in Figure A-2. The points part of the APF are linked

by a line. The APF shows the trade-off between coverage of the area versus number of

sensors. This optimization took 20 minutes to complete. Figure A-2 also displays the

layout with almost complete detection (obtained with 6 sensors). These results are intuitive,

the MOGA provides the actual numerical values of the trade-off. The goal of this example

is to show that the same MOGA than in CS1 and CS2 can be used. This is shown again in

the following example.

A.3 Results for CS4

The area is a square of side 6, centered on the origin, as shown on Figure A-1. The two

objectives are the coverage from CS1 (3.2) and the number of sensors. The goal is to cover

uniformly the whole square, that is the WSN must be able to detect any movement inside

the area, not only in and out. These two objectives are again competing.

The objectives graph produced by the MOGA is shown in Figure A-3, and 3 non-

dominated designs are plotted on Figure A-4. These results agree again with the intuition,

showing that the MOGA finds optimal layouts (notice the symmetrical structures that ap-

pear). This illustrates the flexibility of this algorithm to the modeling and the choice of

objectives. This optimization took 25 minutes to complete.
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Figure A-2: Objectives graph for CS3 and design with largest detection.
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Figure A-4: Non-dominated designs with 5, 7, and 9 sensors.
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Appendix B

Additional proofs for Chapter 5

B.1 Biases as additional parameters

As we mentioned at the beginning of Chapter 5, the biases were treated as additional noise

terms. Another approach would be to treat them as additional parameters to be estimated,

as in [77, 78]. Our goal here is to show that if we follow this approach with the bias

distribution of (4.9), the information from NLOS beacons is not taken into account in the

PEB.

Let us assume that the m first beacons are NLOS, while the others are LOS. We assume

the variance of the measurements does not depend on the distance.

The vector to be estimated is l = (xA, yA, b1, ..., bm), where pA = (xA, yA) is the po-

sition and b = (b1, ..., bm) is the vector of biases from the m NLOS beacons. We divide

l into nonrandom and random components: the position pA and the biases b, respectively.

The a priori joint probability density function of b, fb(b), is given by (4.3). For simplicity

we assume that K(i) = 1 for all i, and β(i) is the maximum bias (just as in Section 5.2.3).

Since we will have to take derivatives, we add some artificial zero-mean Gaussian noise of

variance σ2
b . As σb goes to zero, we converge to the exact pdf.

The joint pdf of b therefore is:

fb(b) =
m∏

i=1

1

β(i)

[
Q

(
bi + β(i)/2

σb

)
−Q

(
bi − β(i)/2

σb

)]
. (B.1)
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The joint probability density function of the range measurements, conditioned on l, is now a

zero-mean Gaussian with variance σ2 (where σ2 is the variance of the range measurements,

which we assumed constant):

f(r| l) ∝
m∏

i=1

e−(ri−di−bi)
2/2σ2

nB∏
i=m+1

e−(ri−di)
2/2σ2

, (B.2)

which is the equivalent of (4.9). The Fisher Information Matrix is replaced by its Bayesian

version [93]:

J = JD + JP, (B.3)

where:

JD = Er,b

{
[∇l ln (f(r|l))] [∇l ln (f(r|l))]T

}
, (B.4)

JP = Eb

{
[∇l ln (fb(b))] [∇l ln (fb(b))]T

}
. (B.5)

We have:

∇l ln (f(r|l)) =
1

2σ2




∑m
i=1 cos θi

(
ri−di−bi

σ2

)
+

∑nB
i=m+1 cos θi

(
ri−di

σ2

)
∑m

i=1 sin θi

(
ri−di−bi

σ2

)
+

∑nB
i=m+1 sin θi

(
ri−di

σ2

)

r1−d1−b1
σ2

...
rm−dm−bm

σ2




(B.6)

=
1

2σ2


HT

NLOS HT
LOS

Im 0


 ·V, (B.7)
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where Im is the identity matrix of size m,

V =




r1 − d1 − b1

...

rm − dm − bm

rm+1 − dm+1

...

rnB − dnB




, (B.8)

and

H =


HNLOS

HLOS


 =




cos θ1 sin θ1

...
...

cos θnB sin θnB


 . (B.9)

We can now calculate the first component of the FIM:

JD =
1

4σ4
Er,b






HT

NLOS HT
LOS

Im 0


 ·V ·VT ·


HNLOS Im

HLOS 0






 (B.10)

=
1

4σ4


 HT

NLOS HT
LOS

Im 0


Er,b

{
V ·VT}


HNLOS Im

HLOS 0


 (B.11)

=
1

4σ2


 HT

NLOS HT
LOS

Im 0


 ·


HNLOS Im

HLOS 0


 (B.12)

=


 HTH HT

NLOS

HNLOS Im


 , (B.13)

where we have used the fact that Er,b

{
V ·VT

}
= σ2InB .

The derivation of JP is similar to that of the importance coefficients in Section 5.2. We

need to obtain the gradient of pb(b) with respect to l. The derivative with respect to pA are

0, and those with respect to b turn out to lead to the importance coefficients A(β(i), σb) of
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(??), where we make the dependence on σb explicit. We obtain:

JP =




0 0 0 . . . 0

0 0 0 . . . 0

0 0 A(β(1), σb)
...

... . . .

0 0 A(β(m), σb)




. (B.14)

The Bayesian FIM is therefore:

J = 1
4σ2




HTH HT
NLOS

1 + 4σ2A(β(1), σb)

HNLOS
. . .

1 + 4σ2A(β(m), σb)




. (B.15)

To obtain the PEB we need to invert this matrix. Given a partitioned matrix M

M =


 A B

C D


 , (B.16)

its inverse is given by [9]:

M−1 =


 Q −QBD−1

−D−1CQ D−1 + D−1CQBD−1


 , (B.17)

with Q = (A−BD−1C)−1. We let A = HTH , B = HT
NLOS, C = HNLOS and D is a m×m

diagonal matrix with diagonal elements equal to 1 + 4σ2A(β(i), σb) for i = 1 . . .m. We

are only interested in the 2x2 upper left elements, so all we need is 4σ2Q = 4σ2(HTH −
HT

NLOSD
−1HNLOS)

−1. We have:

Q = (HT
LOSHLOS + HT

NLOSHNLOS −HT
NLOSD

−1HNLOS)
−1 (B.18)

= (HT
LOSHLOS + HNLOS(I −D−1)HNLOS)

−1 (B.19)
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=




∑nB
i=1 Ci cos2 θi

∑nB
i=1 Ci cos θi sin θi

∑nB
i=1 Ci cos θi sin θi

∑nB
i=1 Ci sin

2 θi



−1

, (B.20)

where Ci = 1 for the LOS beacons, and Ci = 4σ2A(β(i), σb)/(1 + 4σ2A(β(i), σb)) for the

NLOS beacons. The PEB on the position estimate is the trace of this matrix. We have:

PEB =
√
T {4σ2Q} (B.21)

= σ

√
4
∑nB

i=1 Ci

(
∑nB

i=1 Ci cos2 θi)(
∑nB

i=1 Ci sin
2 θi)− (

∑nB
i=1 Ci cos θi sin θi)2

. (B.22)

We can now make σb go to 0 in order to model the bias statistics as a uniform distribu-

tion. From (??) we see that if σ goes to 0, then the importance weight goes to infinity. This

in turns means that Ci = 1 for i = 1 . . .m. Therefore the PEB is equal to:

PEB = σ

√
4(nB −m)

(
∑nB

i=m+1 cos2 θi)(
∑nB

i=m+1 sin2 θi)− (
∑nB

i=m+1 cos θi sin θi)2
(B.23)

We recognize here the PEB when the information of the NLOS beacons is disregarded (it

is actually equal to the standard deviation times the GDOP given by the LOS beacons).

We conclude that if we model the bias statistics as in Chapter 4 and consider the biases

as additional parameters to be estimated, the PEB does not depend on the NLOS beacons.

However our analysis in Chapter 5 shows that the PEB can in fact be lowered by the NLOS

information if the biases are treated as noise.

B.2 Simplification of matrix J

Referring to (5.7), let us examine the generic element in the sum of the upper left element

of J. For i 6= j we have:

Er

{
1

fi(ri|pA)

1

fj(rj|pA)

∂fi(ri|pA)

∂xA

∂fj(rj|pA)

∂xA

}
= Er

{
1

fi(ri|pA)
∂fi(ri|pA)

∂xA

}
·

Er

{
1

fj(rj |pA)

∂fj(rj |pA)

∂xA

}
(B.24)
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since the measurements from beacons i and j are independent. We can write:

Er

{
1

fi(ri|pA)

∂fi(ri|pA)

∂xA

}
=

∫ +∞

−∞

1

fi(ri|pA)

∂fi(ri|pA)

∂xA
fi(ri|pA)dri (B.25)

=

∫ +∞

−∞

∂fi(ri|pA)

∂xA
dri. (B.26)

We know that fi(ri|pA) is a continuous function of (ri, xA). It is also easy to show that

its derivative ∂fi(ri|pA)
∂xA

(see equation (5.9)) is also continuous, and that its absolute value is

integrable in ri for all xA. We can therefore exchange the integral with the derivative so

that:

∫ +∞

−∞

∂fi(ri|pA)

∂xA
dri =

∂

∂xA

∫ +∞

−∞
fi(ri|pA)dri = 0 (B.27)

since
∫ +∞
−∞ fi(ri|pA)dri = 1. The same holds for the derivative with respect to yA.
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Appendix C

Maximum Likelihood Estimation in

Chapter 5

In this appendix we describe the non-linear least-squares (NLLS) method used in Chapter 5

to estimate the location of the agent given a set of range measurements.

The range measurements are described by (4.1) as r = d(pA) + ε, where r is the

vector containing the nB range measurements, ε is a vector of nB independent, zero-mean

Gaussian random variables, and d(pA) is the vector containing the nB distance components.

We assume that we have some prior estimate p0
A of pA, with covariance P0, and we call

R the covariance of the measurement error ε. Our goal is to find the value of pA that will

minimize the following non-linear weighted least-squares L

L = (pA − p0
A)T P−1

0 (pA − p0
A) + (r− d(pA))T R−1(r− d(pA)). (C.1)

Let Dp0
A

be the Jacobian of d(pA) at p0
A, that is,

Dp0
A

= ∇pAd|p0
A
. (C.2)

By taking the gradient of J we obtain

∇pAJ = (pA − p0
A)T P−1

0 − (r− d(pA))T R−1DpA . (C.3)
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We define GT(pA) as the right-hand side of this equation, and we desire find the value of pA

which verifies G(pA) = 0. Since this equation is non-linear, we use the Newton-Raphson

method to find a solution. The procedure is as follows for each agent location [47]:

1. Guess pA;

2. Calculate d(pA) and DpA;

3. Find P−1
1 = P−1

0 + DT
pA

R−1DpA (which is equal to ∇pAG(pA));

4. Compute G(pA);

5. Compute dpA = −P1G(pA);

6. Stop if ‖dpA‖ < δ;

7. Otherwise pA := pA + dpA, go to 2).

We use this NLLS method on a set of nA given agent locations. The initial guess p0
Aj

for agent point pAj
(j ∈ {1, ..., nA}) is sampled from a Gaussian distribution centered at

pAj
, with a variance of 0.1m2. The actual value of the variance does not influence the final

result. We therefore initialize the covariance at:

P0 =


 0.1 0

0 0.1


 . (C.4)

The measurement covariance is taken to be:

R =


 (10−3)2 0

0 (10−3)2


 , (C.5)

that is the value of the variance at 1m. The NLLS algorithm is then run until convergence

to the least-squares estimate p̂Aj
given the range measurements. We thus obtain a NLLS

estimate for each agent point.
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The comparison with the PEB must be done with care. Recalling the PEB expression

(5.4), the mean square error (MSE) for agent location j is defined by as

MSEj =

√√√√ 1

nS

nS∑

k=1

{(
xA − x̂Aj

(k)
)2

+
(
yA − ŷAj

(k)
)2

}
, (C.6)

where nS is the number of times each agent location is estimated, and
(
x̂Aj

(k), ŷAj
(k)

)
is

the kth estimate of agent location j. Having a value of the MSE for each agent location, we

can then obtain MSE90 as the value of the MSE for 90% of the agent locations (to mirror

the definition of PEB90).
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Appendix D

Additional proofs for Chapter 6

D.1 Additional Results on the Coordinate Transform

Following the definitions of Section 6.3.1, we derive more results that will be helpful for

visualizing the complex vectors and using them in the subsequent proofs.

Lemma D.1 (Fundamental relationships). The following relationships hold:

zi(θ) + Ai = e−2jθir(θ), ∀ i = 1, . . . , nB (D.1)

r(θ) = |zi(θ) + Ai|, ∀ i = 1, . . . , nB (D.2)

Proof. These results follow directly from the definitions.

Corollary D.2. For k = 1, . . . , nB, zk(θ) is the vector starting at (0, 0) and ending on the

circle of radius r(θ), centered at (−Ak, 0).

Proof. This follows from (D.1), which states that zk(θ) is obtained by rotating vector r(θ)

by −2θk, and adding vector (−Ak, 0) to it (the latter is equivalent to a translation along the

negative real axis).

Corollary D.3. If θi is varied while all other θk remain fixed, zi(θ) rotates about (0, 0) by

an angle −2θi, but its magnitude does not change. However all the other zk(θ) rotate and

change magnitude as θi varies.
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Proof. Equation (6.2) states that zi(θ) depends on θi only through e−2jθi , which appears

as a factored term, so that the norm of θi does not depend on θi. For all the other vectors

however, the dependence on θi is through Aie
−2jθi , which is inside the sum and cannot be

factored out.

Corollary D.4. Let θ = (θ1, . . . , θi, . . . , θnB). If θi is changed to θ̃i such that zi(θ̃) lies

on the real axis (with θ̃ = (θ1, . . . , θ̃i, . . . , θnB)), then the resulting r(θ̃) is equal to |Ai −
|zi(θ)||, i.e. it does not explicitly depend on the actual value of the new θ̃i.

Proof. According to Corollary D.3, when θi varies to θ̃i the magnitude of zi(θ̃) does not

change, so that |zi(θ̃)| = |zi(θ)|. Also, according to Corollary D.2 the tip of zi(θ̃) is on

the circle of radius r(θ̃) centered at (−Ai, 0). But since both (−Ai, 0) and zi(θ̃) are on the

real axis, we have |zi(θ̃) + Ai| = |Ai − |zi(θ̃)||, which by (D.2) is equal to r(θ̃).

These corollaries help to to visualize the vectors zk(θ) and r(θ) in the plane. This is

illustrated in Figure D-1 for 3 beacons. The beacons are placed at θ1, θ2 and θ3, and the Ak

are assumed constant with A3 = 3, A2 = 2, and A1 = 1.3. As indicated in Corollary D.2,

the 3 corresponding vectors z1(θ), z2(θ), and z3(θ) all lie on circles of equal radius r(θ),

respectively centered at (−A1, 0), (−A2, 0), and (−A3, 0).

If θ3 varies while θ1 and θ2 remain fixed, z3(θ) will rotate about (0, 0) with its mag-

nitude unchanged (Corollary D.3). Note that since the tip of this vector must always lie

on the circle of radius r(θ) centered at (−A3, 0), this radius will change as z3(θ) rotates.

Note in particular that r(θ) will be minimum when z3(θ) lies on the negative real axis. In

that case the radius is then equal to |A3 − |z3(θ)|| (Corollary D.4). This is an important

observation that will be key to proving the correctness of RELOCATE.

D.2 Corollary of Lemma 6.3

Note that Corollary 6.4 is in accordance with our observation about Fig. D-1: when rotating

zi, the error radius is minimized when zi lies on the negative real axis. This is just what θ∗i

does.
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Figure D-1: Plot of the zk(θ) for 3 beacons, with A1 = 1.3, A2 = 2 and A3 = 3. Note that
the 3 vectors lie on the circles of equal radius (equal to r(θ) = |Ak + zk(θ)|) centered on
(−Ak, 0), for k = 1 . . . 3.

Corollary D.5. If beacon ip is selected for relocation at iteration p, the error radius r(θp+1)

after relocation will be equal to |Aip − |zip(θp)||

Proof. Since relocating beacon ip makes zip lie on the negative real axis (Corollary 6.4),

the result is a direct consequence of Corollary D.4.

Given the nB zk(θ
p) at iteration p, we can therefore easily calculate the error radius re-

sulting in relocating any of the beacons, so that the decrease in error radius can be predicted

beforehand.

D.3 Proof of Lemma 6.7: Optimal Convergence of RELO-

CATE

Proof. For a given value of θp, we write rp ∆
= r(θp), rp ∆

= r(θp), and zk
p ∆

= zk(θ
p) for all

k and p.
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Suppose that at iteration p RELOCATE produces a configuration θp such that all zk
p

are on the negative real axis, while rp > r∗. We first note that if nothing is done, the

algorithm “stalls” at this point: because RELOCATE is a coordinate descent algorithm, it

stops yielding improved results once a stationary point is reached (Lemma 6.6).

But we will show that by entering the INCREASE RADIUS routine in step (5), the algo-

rithm escapes this stationary point (notably by finding a configuration that is not stationary

and has a radius strictly smaller). We also will show that step (5) can only be satisfied a

finite number of times, so that is there are only a finite number of suboptimal stationary

points. This implies that RELOCATE will not stop until it reaches an optimal stationary

point. We show that this optimal stationary point is that with error radius equal to r∗.

Let us then assume that all the zk
p lie on the negative real axis. By Corollary D.4 we

then have rp = |Ak − |zk
p||. Since in addition the zk

p are negative real numbers, we either

have rp = Ak+zk
p or rp = −Ak−zk

p. But by (D.1) we also know that e−2jθp
krp = zk

p+Ak.

Combining these we conclude that we must have

rp

rp
=





e2jθp
k or

−e2jθp
k ,

(D.3)

so that the angles θp
k are equal modulo π/2. There therefore exists a partition (S, S) of

{1, . . . , nB} such that (6.3) can be written

rp =
∑

k∈S

Ak −
∑

k∈S

Ak. (D.4)

Without loss of generality we assume that θp
k = 0 for k ∈ S, and θp

k = π/2 for k ∈ S. We

therefore have rp = rp. Step (1) of INCREASE RADIUS is therefore feasible.

The set S cannot be empty, otherwise rp would be negative. Suppose that S is a sin-

gleton, so that rp = AS −
∑

k∈S Ak. This is only possible (i.e. it is only positive) if

S = {nB} and AnB >
∑nB−1

k=1 Ak. But in that case r∗ = AnB −
∑nB−1

k=1 Ak and rp = r∗,

which contradicts our assumption. S must then have at least 2 elements, so step (2) of

INCREASE RADIUS is feasible. Let l and m be 2 distinct indices of S.

Our strategy is as follows. The error radius cannot be reduced by relocating one sensor,
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which is what the normal operation of RELOCATE does. Instead we will relocate sensor

l to a location different than that given by (6.7). This will result in an error radius rp+1

greater than rp. But then we will show that relocating sensor m according to (6.7) will

yield an error radius rp+2 such that rp+2 < rp.

Assume then that at iteration p we relocate sensor l to θl. As a shorthand notation we

write zm
p+1(θl)

∆
= zm(θp

1, . . . , θl, . . . , θ
p
nB

). At iteration p + 1 sensor m will in turn be

relocated, this time to a θp+2
m given by (6.7). According to Corollary D.4 the resulting error

radius at iteration p + 2 is then equal to |Am − |zm
p+1 (θl) || (i.e. the actual value of θp+2

m

does not matter, what matters is the fact that by (6.7) zm(θp+2) will lie on the negative real

axis).

Let us then study how rp+2(θl) = |Am − |zm
p+1 (θl) || varies as a function of θl (where

we have made the dependence of rp+2 on θl explicit). In particular we want to show that

there exists a θl such that rp+2(θl) < rp. This is true if and only if

Am ∈
(

min
θl∈[0,π)

|zm
p+1(θl)| − rp, max

θl∈[0,π)
|zm

p+1(θl)|+ rp

)
. (D.5)

We write a1 = minθl∈[0,π) |zm
p+1(θl)|−rp and a2 = maxθl∈[0,π) |zm

p+1(θl)|+rp. Note that

a2 ≥ a1 since rp is non-negative. There therefore exists a θl such that rp+2(θl) < rp if and

only if the interval A ∆
= (a1, a2) contains Am.

Let us first obtain zm
p+1(θl) as an explicit function of θl. We have

zm
p+1(θl) = e−2jθp

mr(θp+1)− Am (D.6)

= e−2jθp
m

(∑

k 6=l

Ake
−2jθp

k + Ale
−2jθl

)
− Am (D.7)

= e−2jθp
m

(
rp − Ale

−2jθp
l + Ale

−2jθl

)
− Am (D.8)

= rp − Am + Al

(
e−2jθl − 1

)
, (D.9)

where the first equation is from (D.1), in the second we use (6.3) to expand the error vector,

in the third we write rp =
∑n

k=1 Ake
−2jθp

k , and in the fourth we use the fact that θp
l = θp

m =

0 since l and m belong to S. The extrema of |zm
p+1(θl)| are thus found at θl = 0 and

θl = π/2, and take the following values
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• |zm
p+1(0)| = |rp − Am|;

• |zm
p+1(π/2)| = |rp − Am − 2Al|.

We can now study the intervalA for the different cases, remembering that Al > 0, Am > 0,

and rp > 0.

• rp − Am − Al ≥ 0

In this case we have |zm
p+1(0)| = rp − Am and |zm

p+1(π/2)| = |rp − Am − 2Al|.
Since

|zm
p+1(0)| − |zm

p+1(π/2)| = rp − Am − |rp − Am − 2Al| (D.10)

= 2Al, or 2(rp − Am − Al), (D.11)

where both are non-negative, we conclude that the maximum of |zm
p+1(θl)| is achieved

for θl = 0, and the minimum for θl = π/2.

– If rp − Am − 2Al ≥ 0, then |zm
p+1(π/2)| = rp − Am − 2Al and:





a1 = (rp − Am − 2Al)− rp < 0 < Am

a2 = rp − Am + rp = 2(rp − Am) + Am > Am

(D.12)

where the second inequality holds because rp − Am ≥ Al > 0.

– If rp − Am − 2Al < 0, then |zm
p+1(π/2)| = −(rp − Am − 2Al) and:





a1 = −(rp − Am − 2Al)− rp = −2(rp − Am − Al)− Am < 0 < Am

a2 = rp − Am + rp = 2(rp − Am) + Am > Am

(D.13)

In both cases, we have a1 < Am < a2.

• rp − Am − Al < 0

In this case we have |zm
p+1(0)| = |rp−Am| and |zm

p+1(π/2)| = −(rp−Am−2Al).
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Since

|zm
p+1(π/2)| − |zm

p+1(0)| = −(rp − Am − 2Al)− |rp − Am| (D.14)

= −2(rp − Am − Al), or 2Al, (D.15)

where both are non-negative, we conclude that the maximum of |zm
p+1(θl)| is achieved

for θl = π/2, and the minimum for θl = 0.

– If rp − Am ≥ 0, then |zm
p+1(0)| = rp − Am and:





a1 = (rp − Am)− rp < 0 < Am

a2 = −(rp − Am − 2Al) + rp = Am + 2Al > Am

(D.16)

– If rp − Am < 0, then |zm
p+1(0)| = −(rp − Am) and:





a1 = −(rp − Am)− rp = −2rp + Am < Am

a2 = −(rp − Am − 2Al) + rp = Am + 2Al > Am

(D.17)

where the first inequality holds because rp > 0.

In both cases, we have again a1 < Am < a2.

We conclude that in any case Am ∈ A so that (D.5) is satisfied. Step (3) of INCREASE RADIUS

is therefore feasible. Let θp+1
l receive a value such that |Am − |zm

p+1(θp+1
l )|| < rp (just

choose θp+1
l = 0 or π/2 depending on the relative values of rp, Al and Am). At iteration

p+1 relocating sensor m according to (6.7) will then be guaranteed to yield an error radius

rp+2 strictly smaller than rp.

Each time the INCREASE RADIUS routine is entered, a smaller radius can therefore

be found. But in order to enter the INCREASE RADIUS routine in the first place, we

have also shown that θ must be such that (D.4) is verified. Since there are only a finite

number of partitions of (1, . . . , nB), the INCREASE RADIUS routine can only be entered a

finite number of times. We conclude that the error radius is guaranteed to decrease until it

converges to its optimal value r∗.
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A consequence of the convergence of RELOCATE to the global minimum is the fol-

lowing corollary, which strengthens Lemma 6.2.

Corollary D.6. There exists θ such that r(θ) = 0 if and only if AnB ≤
∑nB−1

k=1 Ak.

D.4 Derivation of the Expected Rate of Convergence of

RELOCATE

Proof. For any iteration p, let | cos(αM)| = mink 6=i | cos αk|, XM = | cos(αM)|, and Xk =

| cos(αk)| for all k. Note that the Xk are independent, identically distributed because of our

assumptions. We have

P {XM ≤ x} = 1− P {XM > x} (D.18)

= 1− P {(X1 > x) ∩ . . . ∩ (XnB > x)} (D.19)

= 1− P {X1 > x}n′ (D.20)

= 1− (1− P {X1 ≤ x})n′ , (D.21)

where P(A) denotes the probability of event A, and n′ = nB − 1. The pdf of XM can be

written as

fXM
(x) = n′(1− P {X1 ≤ x})n′−1fX(x), (D.22)

where fX(x) is the pdf of X1. The statistics of X1 are

P {X1 ≤ x} = P {| cos α| ≤ x} (D.23)

= P {cos α ≤ x | 0 ≤ α < π/2} (D.24)

= 1− 2 cos−1 x

π
. (D.25)

The pdf of X1 is then fX(x) = 2
π

1√
1−x2 , so that

fXM
(x) = n′

(
2

π

)n′
(cos−1 x)

n′−1

√
1− x2

. (D.26)
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We can now calculate the expected value of XM

E[XM ] =

∫ 1

0

xfXM
(x)dx (D.27)

=

(
2

π

)n′ ∫ 1

0

n′
(cos−1 x)

n′−1

√
1− x2

dx. (D.28)

(D.29)

By integrating by parts and replacing n′ by nB − 1 we obtain the desired result

E[τ ] =

∫ 1

0

(
2 cos−1 x

π

)nB−1

dx. (D.30)

D.5 Proof of Lemma 6.9: Minimization of Step (2) for

Piecewise Constant Importance Weights

Proof. Let ck = cos θk and sk = sin θk for any k. PEB(θip) can be written as

PEB(θip) =

√ ∑
k 6=ip

Ak + Aip(θip)

(
∑

k 6=ip
Akc2

k + Aipc
2
ip
)(

∑
k 6=ip

Aks2
k + Aips

2
ip
)− (

∑
k 6=ip

Akcksk + Aipcipsip)
2

=

√√√√ Aip + Aip(θip)

Aip/PEB
2

ip + Aip(
∑

k 6=ip
Ak(c2

ks
2
ip

+ s2
kc

2
ip
− 2cksipskcip))

= PEBip

√√√√ Aip + Aip(θip)

Aip(θip)G(θip)PEB
2

ip + Aip

, (D.31)

where Aip =
∑

k 6=ip
Ak(θk), PEBip is the PEB when sensor ip is removed, that is

PEBip =

√ ∑
k 6=ip

Ak(θk)∑
k 6=ip

Ak(θk)c2
k

∑
k Ak(θk)s2

k − (
∑

k 6=ip
Ak(θk)cksk)2

, (D.32)
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Figure D-2: When Aip(θip) is piecewise constant, PEB(θip) shows discontinuity at the 4
transitions between arcs (compare to Fig. 6-2). The minimum may not be at one of the 2
points given by (6.7).

and where

G(θip) =
∑

k 6=ip

Ak sin2(θip − θk). (D.33)

If Aip(θip) were constant with respect to θip , then PEB(θip) would be similar to the case

considered in Section 6.3, with 2 minima and 2 maxima in [0, 2π) (see Figure 6-2). How-

ever because Aip is piecewise constant, PEB(θip) is discontinuous at the L arc transitions,

as shown on Figure D-2.

For each arc there are several possibilities:

• PEB(θip) is monotonous, in which case the minimum PEB on this arc occurs at one

of its boundary;

• PEB(θip) is not monotonous on this arc:

– If there is no inflection point that is a minimum, the minimum PEB on this arc

occurs at one of its boundary;

– If there is at least one inflection point that is a minimum, the minimum PEB on
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this arc occurs at those. Its possible values are θ̃ip or θ̃ip + π, given by (6.7).

In any case, to find the minimum of PEB we only need to test its value at the boundary

points of each arc, and at θ̃ip and θ̃ip + π.
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