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AbstratGeneti Programming is apable of automatially induing symboli omputer pro-grams on the basis of a set of examples or their performane in a simulation. Math-ematial expressions are a well-de�ned subset of symboli omputer programs andare also suitable for optimization using the geneti programming paradigm. Theindution of mathematial expressions based on data is alled symboli regression.In this work, geneti programming is extended to not just �t the data i.e., get thenumbers right, but also to get the dimensions right. For this units of measurementare used. The main ontribution in this work an be summarized as:The symboli expressions produed by geneti programming an bemade suitable for analysis and interpretation by using units of mea-surement to guide or restrit the searh.To ahieve this, the following has been aomplished:� A standard geneti programming system is modi�ed to be able to indueexpressions that more-or-less abide type onstraints. This system is used toimplement a preferential bias towards dimensionally orret solutions.� A novel geneti programming system is introdued that is able to indueexpressions in languages that need ontext-sensitive onstraints. It is demon-strated that this system an be used to implement a delarative bias towards1. the exlusion of ertain syntatial onstruts;2. the indution of expressions that use units of measurement;3. the indution of expressions that use matrix algebra;4. the indution of expressions that are numerially stable and orret.� A ase study using four real-world problems in the indution of dimensionallyorret empirial equations on data using the two di�erent methods is pre-sented to illustrate the use and limitations of these methods in a frameworkof sienti� disovery.





v
Resume(Abstrat in Danish)Genetisk programmering er i stand til at produere omputer programmer, automa-tisk pa baggrund af eksempler pa programmernes virkning i en simulering. Damatematiske udtryk er en velde�neret delmangde af symbolske omputer program-mer og kan disse ogsa bestemmes under genetisk programmerings paradigmet. Em-pirisk bestemmelse af matematiske udtryk kaldes symbolsk regression.I dette arbejde bliver genetisk programmering udvidet til, et varktoj der ikke bare"�tter data", men ogsa giver korrekte fysiske dimensioner. De vasentligste bidrag idette arbejde opsummeres ved:Symbolske udtryk, udledt ved hjalp af genetisk programmering kan gorestilgangelige for analyse og fortolkning, ved at lade dimensionsbetragt-ninger stotte eller begranse sogerummet.Dette er opnaet ved at� Et standard genetisk programmerings-varktoj er blevet modi�eret til at pro-duerer udtryk som hovedsagligt er dimensionelt konsistente. Dette modi�-erede system er anvendt til at malrette genetisk sogning mod dimensioneltkorrekte udtryk via sakaldt "preferential bias".� Et nyt genetisk programmeringsvarktoj er blevet introdueret, som kan pro-duere udtryk baseret pa kontekst-folsomme bibetingelser. Det er blevetdemonstreret at dette system kan implementere malrettet sogning som viasakaldt "delarative bias" giver mulighed for at1. udelukke visse syntaktiske udtryk,2. produere udtryk baseret pa fysiske dimensioner,3. produere udtryk der involverer matrix algebra,4. produere udtryk som er numeriske stabile og korrekte,� Der er endvidere udfort et empirisk studie der er baseret pa �re praktiske prob-lemer og de to metoder, som involverer udtryk med korrekte fysiske dimen-sioner og derved illustrerer muligheder og begransninger indenfor automatiskdata-analyse.





vii
PrefaeThis thesis has been submitted in partial ful�lment for the degree of Dotor ofPhilosophy. The work doumented in this thesis has been arried out both at DHI| Water & Environment and the Department for Mathematial Modelling, Setionfor Digital Signal Proessing at the Tehnial University of Denmark. The work wassupervised by Professor Lars Kai Hansen of the DTU and Dr. Vladan Babovi ofDHI | Water & Environment.During the Ph.D. study a number of onferene papers and journal papers havebeen written.Aepted Journal Papers and Book Chapters� Maarten Keijzer and Vladan Babovi. Delarative and preferential bias ingp-based sienti� disovery. Geneti Programming and Evolvable Mahines,to appear 2002.� Vladan Babovi and Maarten Keijzer. On the introdution of delarativebias in knowledge disovery omputer systems. In P. Goodwin, editor. Newparadigms in river and estuarine management. Kluwer, 2001.� Vladan Babovi and Maarten Keijzer. Geneti programming as a modelindution engine. Journal of Hydroinformatis, 2(1):35-61, 2000.� Vladan Babovi and Maarten Keijzer. Foreasting of river disharges in thepresene of haos and noise. In J. Marsalek, editor, Coping with Floods:Lessons Learned from Reent Experienes, Kluwer, 1999.� Vladan Babovi, Jean Philip Dreourt, Maarten Keijzer and Peter FriisHansen. Modelling of water supply assets: a data mining approah. UrbanWater, to appear 2002.Conferene Papers� Maarten Keijzer, Vladan Babovi, Conor Ryan, Mihael O'Neill, and MikeCattolio. Adaptive logi programming. In Lee Spetor et.al., eds, Pro-eedings of the Geneti and Evolutionary Computation Conferene (GECCO-2001), 2001.� Maarten Keijzer, Conor Ryan, Mihael O'Neill, Mike Cattolio, and VladanBabovi. Ripple rossover in geneti programming. In Julian Miller et.al.,Geneti Programming, Proeedings of EuroGP,2001



viii � Maarten Keijzer and Vladan Babovi. Geneti programming within a frame-work of omputer-aided disovery of sienti� knowledge. In Darell Whitley,et.al., Proeedings of the Geneti and Evolutionary Computation Conferene(GECCO-2000), 2000.� Maarten Keijzer and Vladan Babovi. Geneti programming, ensemblemethods and the bias/variane tradeo� | introdutory investigations. In Ri-ardo Poli et.al., Geneti Programming, Proeedings of EuroGP'2000, 2000.� Maarten Keijzer and Vladan Babovi. Dimensionally aware geneti pro-gramming. In Wolfgang Banzhaf et al., Proeedings of the Geneti and Evo-lutionary Computation Conferene, volume 2, 1999.� Maarten Keijzer, J.J. Merelo, G. Romero, M. Shoenauer. Evolving Ob-jets: a general purpose evolutionary omputation library In Pierre Collet,EA-01, Evolution Arti�ielle, 5th International Conferene on EvolutionaryAlgorithms, 2001.� Maarten Keijzer and Vladan Babovi. Error orretion of a deterministimodel in Venie lagoon by loal linear models. In Modelli omplessi e metodiomputatzionali intensivi per la stima e la previsione, 1999.� Mihael O'Neill, Conor Ryan,Maarten Keijzer and Mike Cattolio. Crossoverin Grammatial Evolution: The Searh Continues. In Julian Miller et.al., Ge-neti Programming, Proeedings of EuroGP,2001.� Kim J�rgensen, Berry Elfering,Maarten Keijzer, and Vladan Babovi. Anal-ysis of long term morphologial hanges: A data mining approah. In Pro-eedings of the International Conferene on Coastal Engineering, Australia,2000.� Vladan Babovi,Maarten Keijzer, and Magnus Stefansson. Optimal embed-ding using evolutionary algorithms. In Proeedings of the Fourth InternationalConferene on Hydroinformatis, Iowa City, USA, 2000.� Vladan Babovi, Maarten Keijzer, and Marek Bundzel. From global toloal modelling: A ase study in error orretion of deterministi models. InProeedings of the Fourth International Conferene on Hydroinformatis, IowaCity, USA, 2000.� Vladan Babovi, Maarten Keijzer, David R. Aquilera, and Joe Harrington.An evolutionary approah to knowledge indution: Geneti programming inhydrauli engineering. In Proeedings of the World Water & EnvironmentalResoures Congress, 2001.� Vladan Babovi and Maarten Keijzer. A Gaussian proess model applied tothe predition of water levels in Venie lagoon. In Proeedings of the XXIXCongress of the International Assoiation for Hydrauli Researh,2001.� Vladan Babovi and Maarten Keijzer. An evolutionary algorithm approahto the indution of di�erential equations. In Proeedings of the Fourth Inter-national Conferene on Hydroinformatis, 2000.



ix� Vladan Babovi and Maarten Keijzer. Computer supported knowledge dis-overy | A ase study in ow resistane indued by vegetation. In Proeed-ings of the XXVIII Congress of the International Assoiation for HydrauliResearh, 1999.� Vladan Babovi and Maarten Keijzer. Data to knowledge | the new sien-ti� paradigm. In D. Savi and G. Walters, editors, Water Industry Systems,1999.Submitted Journal Papers� Maarten Keijzer and Vladan Babovi. Knowledge fusion in data drivenmodeling. Mahine Learning.� Vladan Babovi and Maarten Keijzer. Rainfall runo� modelling based ongeneti programming. Nordi Hydrology.



xAknowledgementsFirst and foremost I would like to thank Vladan, not only for onvining me to tryto obtain a Ph.D. in Denmark by joining him in his Talent projet, but also for hisinsistent enthusiasm and his many valuable ontributions to this work. Althoughas a Ph.D. thesis, this work is neessarily authored by me alone, most of the viewsthat are expressed in this work have been jointly developed.Lars Kai and his group at the DTU have been very helpful. Although right fromthe start I've taken an almost diametrially opposite path from the group's researhby onentrating on the use of symboli expressions rather than `sound' numerialproedure, these `numeris' did have a profound inuene on the work. I havelearned a lot from the group.Conor Ryan, Mihael O'Neill and Mike Cattolio deserve mentioning for the manyintense and onsiderably less intense disussions we held during the various onfer-enes and workshops in the past three years. One of the tangible results of thesedisussions is the ALP system whih is based on Mihael and Conor's `GrammatialEvolution' system. I hope we an ontinue to ooperate in the future.The Ph.D. and this thesis were funded by the Danish Researh Counil under TalentProjet 9800463 entitled "Data to Knowledge { D2K". This funding is greatlyappreiated.

Deventer, May 1, 2002Maarten Keijzer



xi
Contents
Abstrat iiiResume (Abstrat in Danish) vPrefae vii1 Introdution 12 Geneti Programming 52.1 Evolution at work:Geneti & Evolutionary Computation . . . . . . . . . . . . . . . . . 52.2 Standard Geneti Programming . . . . . . . . . . . . . . . . . . . . 72.2.1 The Primitives . . . . . . . . . . . . . . . . . . . . . . . . . 82.2.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 92.2.3 Variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.2.4 Measuring Performane and Wrapping . . . . . . . . . . . . 112.2.5 Auxiliary parameters and variables . . . . . . . . . . . . . . 132.3 Multi-Objetive Optimization . . . . . . . . . . . . . . . . . . . . . 132.4 Implementation Issues . . . . . . . . . . . . . . . . . . . . . . . . . 162.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Symboli Regression 213.1 The Conentration of Suspended Sediment . . . . . . . . . . . . . . 243.2 Symboli Regression on the Sediment Transport Problem . . . . . . 283.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



xii CONTENTS4 Indution of Empirial Equations 334.1 Units of Measurement as a Type System . . . . . . . . . . . . . . . 364.2 Language, Bias and Searh . . . . . . . . . . . . . . . . . . . . . . 374.3 Typing in Geneti Programming . . . . . . . . . . . . . . . . . . . 394.4 Expressiveness of Type Systems . . . . . . . . . . . . . . . . . . . . 404.5 Typed Variation Operators . . . . . . . . . . . . . . . . . . . . . . 434.5.1 Broken ergodiity . . . . . . . . . . . . . . . . . . . . . . . 434.5.2 Loss of diversity . . . . . . . . . . . . . . . . . . . . . . . . 444.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 Dimensionally Aware Geneti Programming 475.1 Coered Geneti Programming . . . . . . . . . . . . . . . . . . . . 485.1.1 Calulating the Coerion Error for the uom system . . . . . 495.1.2 Wrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 515.2 Example: Sediment Transport . . . . . . . . . . . . . . . . . . . . . 515.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 An Adaptive Logi Programming System 576.1 Logi Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 586.2 An Adaptive Logi Programming System . . . . . . . . . . . . . . . 616.2.1 Representation and the Mapping Proess . . . . . . . . . . 636.2.2 Baktraking . . . . . . . . . . . . . . . . . . . . . . . . . 816.2.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 816.2.4 Performane Evaluation . . . . . . . . . . . . . . . . . . . . 826.2.5 Speial Prediates . . . . . . . . . . . . . . . . . . . . . . . 826.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 826.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.5 ALP, ILP and CLP . . . . . . . . . . . . . . . . . . . . . . . . . . . 886.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897 Appliations for the ALP System 917.1 Appliations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.1.1 A Sensible Ant on the Santa Fe Trail . . . . . . . . . . . . . 927.1.2 Interval Arithmeti . . . . . . . . . . . . . . . . . . . . . . 987.1.3 Units of Measurement . . . . . . . . . . . . . . . . . . . . . 1037.1.4 Matrix Algebra . . . . . . . . . . . . . . . . . . . . . . . . 1117.2 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167.3 The Art of Geneti Programming . . . . . . . . . . . . . . . . . . . 117



CONTENTS xiii8 Experiments in Sienti� Disovery 1198.1 Problem 1: Settling Veloity of Sand Partiles . . . . . . . . . . . . 1208.2 Problem 2: Settling Veloity of Faeal Pellets . . . . . . . . . . . . 1218.3 Problem 3: Conentration of sediment near bed . . . . . . . . . . . 1228.4 Problem 4: Roughness indued by exible vegetation . . . . . . . . 1238.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.6 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . 1248.6.1 Bias/Variane Analysis . . . . . . . . . . . . . . . . . . . . 1268.6.2 Settling veloity of sand partiles . . . . . . . . . . . . . . . 1298.6.3 Settling veloity of faeal pellets . . . . . . . . . . . . . . . 1308.6.4 Conentration of suspended sediment near bed . . . . . . . 1308.6.5 Additional roughness indued by vegetation . . . . . . . . . 1318.6.6 Summary of the quantitative analysis . . . . . . . . . . . . . 1318.7 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 1328.7.1 Interpretability of unonstrained expressions . . . . . . . . . 1338.7.2 Settling veloity of sand partiles . . . . . . . . . . . . . . . 1338.7.3 Settling veloity of faeal pellets . . . . . . . . . . . . . . . 1348.7.4 Conentration of suspended sediment near bed . . . . . . . 1368.7.5 Additional roughness indued by vegetation . . . . . . . . . 1378.7.6 Summary and sope of GP-based sienti� disovery . . . . 1388.8 Disussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1399 Conlusion 141List of Tables 145List of Figures 148Bibliography 151



xiv CONTENTS



1
Chapter 1IntrodutionPhysial onepts are free reations of the human mind, and are not,however it may seem, uniquely determined by the external world.-Albert Einstein and Leopold Infeld, 1938The formation of modern siene ourred approximately in the period between thelate 15th and the late 18th entury. The new foundations were based on the utiliza-tion of a physial experiment and the appliation of a mathematial apparatus inorder to desribe these experiments. The works of Brahe, Kepler, Newton, Leibniz,Euler and Lagrange personify this approah. Prior to these developments, sienti�work primarily onsisted of olleting the observables, or reording the `readings ofthe book of nature itself'.This sienti� approah is traditionally haraterized by two stages: a �rst one inwhih a set of observations of the physial system are olleted, and a seond onein whih an indutive assertion about the behaviour of the system | a hypothesis| is generated. Observations present spei� knowledge, whereas hypotheses rep-resents a generalization of these data whih implies or desribes observations. Onemay argue that through this proess of hypothesis generation, one fundamentallyeonomizes thought, as more ompat ways of desribing observations are proposed.Although this view of the dispassionate sientist observing fats and produingequations is popular, it is not all there is to say about the proess of sienti�disovery. In the years that lead to Kepler's famous laws of planetary motion,he introdued and abandoned various informal models of the solar-system. Thesemodels initially took the form of a olletion of embedded spheres (Holland et al.,1986)(pp. 323-325). It was only when he abandoned the idea of planets movingin irular orbits around the sun and replaed it with ellipses that he was able topostulate his laws. Kepler is not unique in this; the proess of the formulation ofsienti� law or theory usually takes plae in the ontext of a mental model of thephenomenon under study: using the right onept to explain the equation providesadditional justi�ation for these equations. Finding a proper oneptualization of theproblem is as muh a feat of sienti� disovery as the formulation of a mathematialdesription or explanation of a phenomenon.Today, in the beginning of the 21st entury, we are experiening yet another hangein the sienti� proess as just outlined. This latest sienti� approah is one



2 CHAPTER 1. INTRODUCTIONin whih information tehnology is employed to assist the human analyst in theproess of hypothesis generation. This omputer-assisted analysis of large, multi-dimensional data sets is sometimes referred to as a proess of Data Mining andKnowledge Disovery. The disipline aims at providing tools to failitate the on-version of data into a number of forms that onvey a better understanding of theproess that generated or produed these data. These new models ombined withthe already available understanding of the physial proesses | the theory | anresult in an improved understanding and novel formulation of physial laws and animproved preditive apability.One partiular mode of data mining is that of model indution. Inferring modelsfrom data is an ativity of deduing a losed-form explanation based solely on ob-servations. These observations, however, always represent (and in priniple onlyrepresent) a limited soure of information. The question emerges how this, a lim-ited ow of information from a physial system to the observer, an result in theformation of a model that is omplete in the sense that it an aount for the entirerange of phenomena enountered within the physial system | and to even desribethe data that are outside the range of previously enountered observations. Theon�dene in model performane an not be based on data alone, but might beahieved by grounding models in the domain so that appropriate semanti ontentis obtainable. These models an then be used to reinfore, inspire or abandon thesientists' view of the problem.The overall goal of the approah is then to subtly hange the proess of sienti�disovery. Rather than having the sientist `read' the data, invent a oneptualiza-tion (an informal model) of the problem using this data in order to �nally providea formal expression that desribes the oneptualization and thus the phenomenon,the sienti� disovery proess envisioned here removes the need for the sientistto work with only the raw data to inspire a oneptualization of the proess understudy. What is attempted here is to automatially generate expressions that usehigh level physial onepts | units of measurement | to provide an approximate,but interpretable view of the data. It is thought that suh approximate expressions,one analyzed, an help the sientist in understanding the data better. Finally, onethe oneptualization is trustworthy, a formal expression an be proposed that iseither build out of (parts of) the automatially generated expressions or is builddiretly out of the informal model itself.The prototypial yle of observation, imagination, formalization and testing thatis assoiated with sienti� disovery is then extended to inlude an automatedmodelling step between observation and imagination. By providing tentative for-malizations based on data and high-level physial onepts, the sientist is freedfrom examining measurements only: examining well-�tted, possibly meaningful ex-pressions is thought to be an task that an inspire novel oneptualizations of theproesses under study. As suh an automated method is biased only to the avail-able data and to these high-level onepts, it would be free to propose approximatesolutions to the problem that are radially di�erent from ontemporary thought.Understanding how suh a di�erent approximation �ts in the sienti� frameworkmight lead to an enhaned or maybe even di�erent approah to desribing thephysial system.In order to reate suh a system, we need model indution algorithms that produemodels amenable to interpretation next to the ability to �t the data. The inter-



3pretation of these models should then provide the additional justi�ation that isneeded to use the model with more than just statistial on�dene. Clearly, everymodel has its own syntax. The question is whether suh syntax an apture thesemantis of the system it attempts to model. Certain lasses of model syntax maybe inappropriate as a representation of a physial system. One may hoose a modelwhose representation is omplete, in the sense that a suÆiently large model anapture the data's properties to a degree of error that dereases with an inreasein model size. Thus, one may deide to expand Taylor or Fourier series to a adegree that will derease the error to a ertain, arbitrarily given degree. However,ompleteness of the representation is not the issue. The issue is in providing anadequate representation amenable to interpretation.The present work is an attempt to make the models produed by the tehnique of ge-neti programming more suitable to be used within a sienti� disovery framework.It ritially uses units of measurement as the apparatus to ground the models in thephysial domain. Units of measurement have been hosen as they embody a formalsystem for manipulating physial onepts suh as lengths, veloities, aelerationand fores. Manipulating numbers using arithmeti is then aompanied with ma-nipulating units of measurement. The units of measurement are proposed to forma suitable set of high-level onepts to be used in sienti� disovery. The resultingsymboli expressions produed by this system are fully dimensioned: the sientistworking with the system an analyze and interpret the equations by translating theformal de�nition of the units bak to the respetive physial onepts.In the sienti� disovery proess that is proposed here, the sientist still plays apivotal role. Although the proess of reating equations from data is done usingautomated means, the important proess of interpretation, analysis and embeddingthe proposed hypotheses in an existing or new theory remains �rmly in the hands ofthe sientist. The equations that are disovered form both an empirial formulationof the relationships in the data and a tentative proposal of the physial oneptsthat are manipulated by the formulation. It is thought that the sientist usingthese tentative proposals an more eÆiently set up, test and refute models for theproblem under study.This work will fous on the de�nition and omparison of methods that inorporateunits of measurement in the searh. The thesis forwarded in this work an then besummarized as:The symboli expressions produed by geneti programming an bemade suitable for analysis and interpretation by using units of mea-surement to guide or restrit the searh.To examine this, several paths will be traversed. Two geneti programming systemswill be developed: one that guides the searh to (more-or-less) dimensionally orretexpressions, the other that restrits the searh to only those expressions that aredimensionally orret. The work is then organized as:� Chapter 2 gives a brief overview of geneti and evolutionary omputation,in partiular the tehnique of geneti programming. The onept of multi-objetive optimization in the ontext of evolutionary searh will be desribed.



4 CHAPTER 1. INTRODUCTIONMulti-objetive optimization, in partiular using the onepts of Pareto opti-mality, enables searhing in a spae where the trade-o�s between the obje-tives are not known beforehand.� Chapter 3 introdues the standard form of induing expressions using genetiprogramming. This is alled symboli regression. Here it will be argued thatalthough geneti programming is apable of induing mathematial (symboli)expressions, interpretability is not a natural by-produt of these equations.� Chapter 4 will lay some groundwork for the rest of the thesis. It will fouson what it means to indue an empirial equation, and will briey desribetwo ways of inorporating knowledge about the units of measurement in thesearh.� Chapter 5 desribes the tehnique alled Dimensionally Aware geneti pro-gramming. Rather than abiding to the units of measurement at all ost, itimplements a preferene toward dimensionally orret equations. It balanesthe ability to �t the data with the ability to use the units in a orret way.� Chapter 6 introdues the system used for implementing Dimensionally Cor-ret geneti programming. Due to the ontext-sensitivity of the onstraintspresent in this system, the expressiveness of a Logi Programming languageis used. The searh strategy in this Logi Programming system is a genetialgorithm, its task is to optimize paths through the searh tree de�ned by aLogi Program.� Chapter 7 applies this novel system in a series of experiments involving theexlusion of syntatial onstruts, the use of interval arithmeti, the use ofunits of measurement and �nally the indution of orret sentenes in matrixalgebra. These four experiments are used to highlight the versatility of theapproah.� Finally, Chapter 8 ompares the two approahes. On four real-world prob-lems, the dimensionally aware approah will be ontrasted with the dimension-ally orret approah to model indution. The experiments will be ondutedon the basis of quantative measures | ability to provide well-�tted orretequations | and on the quality, the interpretability of the expressions.� Chapter 9 onludes the thesis.



5
Chapter 2Geneti Programming
2.1 Evolution at work:Geneti & Evolutionary ComputationIn `The origin of speies', Charles Darwin (Darwin, 1859) introdued the priniple ofnatural seletion as a unifying view for the origin and further evolution of organismsin nature. Using similar priniples the �eld of Evolutionary Computation taklesdiÆult problems by evolving approximate solutions inside a omputer. Startingwith a primordial diversity of random solutions, repeated seletion and variationare applied to improve the quality of the solutions. The basi riteria for evolutionto our | be it in vitro as in biology or in silio, with omputers | have beensummarized by the biologist Maynard-Smith (Maynard-Smith, 1975) as:� Criterion of Feundity Variants leave a di�erent number of o�spring; spe-i� variations have an e�et on behaviour and behaviour has an e�et onreprodutive suess;� Criterion of Heredity O�spring are similar to their parents: the opyingproess maintains a high �delity;� Criterion of Variability O�spring are not exatly the same as their parent:the opying proess is not perfet.These riteria are neessary ingredients for evolution to our and are used to solveproblems by employing an Evolutionary Algorithm. Suh an evolutionary algorithmoperates on populations of andidate solutions, eah solution is graded aordingto its performane and onstitutes a basis to improve upon for future generations.In its most basi form, an evolutionary algorithm works on a population of solutions,P , whih is subjet to the iteration:Pt+1 = v(s(Pt)) (2.1)



6 CHAPTER 2. GENETIC PROGRAMMINGwhere the funtions s and v are alled seletion and variation operators respetively.Starting with a randomly generated population P0, this algorithm is applied for manyiterations, alled generations. The seletion funtion s implements the riterion offeundity: it makes sure that solutions that have above average performane reeivemore opies in the next generation. The seletion funtion is thus used to enforethe goal of the optimization proess; getting the best solution possible. Theseseleted solutions (opies) are subsequently proessed by the variation operator v.The variation operator usually applies random, undireted hanges, and is supposedto balane the heredity and variability riteria. Too muh variation and the evolutionwill degrade to a random searh, too little variation and the population of tentativesolutions will evolve to a population of lones only.The seletion operator uses the performane of the solutions to give above averageperforming instanes more opies in the next generation. An objetive funtionneeds to be de�ned that an alulate this performane. In the most simple ase,this funtion returns a salar value that alulates some objetive value. Thus givensome funtion that alulates the performane of an individual and a populationsize n, the seletion funtion assigns opies for the next generation. It an do thisthrough one of many ways.� Proportional Seletion Create n opies of individuals proportional to theperformane of solutions, the variation operators will then be applied to thisnew population;� Trunation Seletion For a number m < n, selet the best m individualsfrom the population, add n�m randomly seleted opies from these m bestindividuals to obtain a new population1, the variation operators will be appliedto these n�m opies;� Tournament Seletion For some k, the tournament size, repeatedly seletk individuals at random, and put the best of those k in the next generationafter applying the variation operators until n opies are assigned.The de�nition of this basi evolutionary algorithm is representation-free. It doesnot mention what form of solutions should be onsidered, and in e�et, many rep-resentations are used in the �eld of evolutionary omputation. The best knownevolutionary algorithm is the geneti algorithm (Holland, 1980; Goldberg, 1989),that typially uses �xed length bitstrings as the representation of hoie. Other,older, work involved �nite state automaton (Fogel et al., 1966) and real valued ve-tors (Rehenberg, 1965; Shwefel, 1995). This work has evolved into the separatebut related �elds of evolutionary programming and evolution strategies. Currently,many problem-dependent representations are in use for pratial appliations.One the representation is hosen, variation operators need to be de�ned. Thesimplest of suh operators is the mutation operator that makes a small randomizedhange to the representation: in the ase of bitstring ipping one or several bits isa ommon operation; when using oating point values a small Gaussian hange an1This seletion mehanism is usually de�ned in a slightly di�erent way, where the variationoperator enlarges the population and the seletion operator redues it; but the de�nition given hereis equivalent with this. It is presented in this way to keep it in line with the abstrat evolutionaryalgorithm in Equation 2.1.



2.2. STANDARD GENETIC PROGRAMMING 7be applied. Often also a reombination operator is de�ned: this is alled rossover.The rossover operator reombines the information in two solutions to reate oneor two new solutions. It does this in a randomized fashion. Its purpose is to explorenew ombinations of parts of the solution, in the hope that this leads to a new levelof performane.Not any ombination of representation, seletion and variation makes sense however.Variation of solutions need to be orrelated in some way with the performane ofsolutions. In its strongest form this means that a small hange in the representationof the solution should be aompanied with a small hange in the performane ofthe solution. Another orrelation that is often hypothesized is the exploitation ofbuilding bloks in the problem. These are partial representations (shemata) whoseworth in omplete solutions are as independent as possible from the ontext they areused in. By reombining building bloks, new high-performing solutions might beobtained. The interplay between the performane of solutions, the representationof solutions and the variation of representations is a major researh area in the �eld.Below, geneti programming is desribed. With this method, the representationsthat are being evolved are omputer programs that try to solve a spei� prob-lem. It is an attempt to perform automati programming in the sense outlined bySamuel (Samuel, 1959), where omputers are programmed by telling them what todo, not how to do it.2.2 Standard Geneti ProgrammingKoza's monograph \Geneti Programming, on the programming of omputers bynatural seletion" (Koza, 1992) marks the beginning of the �eld of geneti pro-gramming. It ontains a wealth of examples where a basi geneti programmingsystem was used to solve problems in various �elds of arti�ial intelligene. Theruial insight in the book was the observation that many, if not most problems inarti�ial intelligene an be stated as:Given a problem X, �nd a omputer program that solves X.Together with a method to automatially �nd omputer programs | geneti pro-gramming | this guideline was powerful enough to solve a wealth of problems takenfrom the arti�ial intelligene literature. Thus instead of using speialisti repre-sentations like neural networks, deision trees, horn lauses or frames, the genetiprogramming method tries to solve problems by relying on a single representationframework: that of omputer programs2.Geneti programming as envisioned by Koza does not proess omputer programsin the same way as human programmers do. There's no �le of statements written inASCII, no pesky syntax with various speial symbols like semi-olumns that an bemisplaed to produe a syntatially meaningless result, no myriad of data types thatannot be mixed. The standard single-typed geneti programming system operatesusing an abstration of omputer programs | an already parsed expression, typially2The primitive funtions and variables used inside the omputer programs vary however fromappliation to appliation



8 CHAPTER 2. GENETIC PROGRAMMINGrepresented in a parse tree. The use of a parse tree representation in a genetialgorithm was pioneered by Cramer (Cramer, 1985).There's nothing speial about parse trees other than that it irumvents issues ofa purely syntatial nature and suggest a few natural variation operators. If onewere to try to optimize program snippets in C for instane, one ould try to proeedby using a geneti algorithm using the ASCII harater set. Say that by hane afuntion suh asdouble solution(double x, double y){ return x * y + sqrt(0.3);}would evolve, and arbitrary variation operators are allowed, it is easy to see that thepossibility of introduing syntatial errors is immense. Changing a single haraterto an arbitrary other harater would in most ases result in a syntati error.Geneti programming irumvents this problem by only onsidering the relevantpart of the syntax in a omputer friendly format | the parse tree. For all pratialpurposes the C-style funtion above an be desribed by the parse tree+*x y sqrt0.3where no information about the omputation that is performed is lost, but a fewsyntati issues are leared up. The number of arguments for eah funtion anbe dedued from the number of hildren of a node and also issues of operatorpreedene are resolved. The parse tree thus represents an unambiguous way ofomputing the funtion. It is this property that is also employed by ompilers.These generally use parse trees as an intermediate representation before generatingmahine ode.The parse tree also provides inspiration to the issue of variation. As a parse treedeomposes a omputation into a hierarhy of subomputations, varying these sub-omputations at the various levels in the tree is a natural way of obtaining newprograms. Setion 2.2.3 will go into more detail on how to vary solutions in stan-dard geneti programming.2.2.1 The PrimitivesA parse tree is omposed of funtion symbols | the inner nodes | and terminalsymbols | the leafs of the tree. De�ning these funtion and terminal symbolsis an inherently problem dependent issue. If the problem is one of regression, itwould be natural to inlude the independent variables in the terminal set and leta variety of mathematial funtions form the funtion set. If the problem is oneof simulated robotis, various sensor information ould be used as terminals orbranhing instrution. The output of the program or side-e�eting funtions ouldthen be used as e�etuators.



2.2. STANDARD GENETIC PROGRAMMING 9Finding a symboli expression based on some data is a entral problem in this work.Typial funtion and terminal sets that are used here involve simple mathematialfuntions, operating ultimately on the independent variables, the terminals. Themost ommonly used funtion set in this work is:F = fplus/2, times/2, minus/2, divide/2, sqrt/1gwhere the number behind the funtion name indiates the arity of the funtion.The terminal set onsists of the independent variables and a speial terminal: a realvalued onstant. In Koza's original setup suh onstants were initialized at random,but were not hanged during the run. Here we will however use a speial mutationoperator for these onstants. A terminal set involving independent variables x, yand randomly initialized onstants will be denoted as:T = fx; y;RgThere are only vague guidelines for hoosing a partiular funtion and terminal set.In general one tries to �nd a suitable high-level set of funtions aompanied bya set of terminals that are most desriptive for the problem at hand. There isinherently some arbitrariness in this seletion. It is however quite aepted thatvery low-level funtions are not very useful: although logially omplete, �ndinga real-valued funtion using only the nand operator is onsidered to be a wasteof time due to the enormous size of the parse trees one needs to even implementsimple funtions. The funtion and terminal set is usually hosen in suh a way thatdi�erent, powerful solutions an be implemented by relatively small parse trees. Thefuntion set de�ned above an already desribe all rational funtions of arbitrarydegree, and the sqrt funtion allows frational powers as well.2.2.2 InitializationUsing the primitives, it is possible to generate well-formed parse trees. This an bedone in several ways. One of the simplest is the grow method, where a primitive |be it a funtion or terminal | is seleted uniformly at random, and as long as thereare unresolved subtrees, the proess is repeated. When a prespei�ed depth or sizelimit is reahed only terminals are hosen. An example of this proess is depitedin �gure 2.1Another method developed by Koza is the full method. Here funtion nodes arealways hosen until the prespei�ed-spei�ed depth limit is reahed. At that pointonly terminal nodes are hosen. The tree in Figure 2.1 ould equally well havebeen reated by the full method if the depth limit was set at the low value of 3.Using the grow and full method eah for 50% of the population is known as theramped-half-and-half initialization method.As the primitives are hosen uniformly from the available primitives, the expetedsize of the trees varies onsiderably with the sizes of the funtion and terminal set.In Setion 6.2.1 the gambler's ruin model will be used to analyze the grow method.An overview of alternative tree initialization routines and an empirial omparisonbetween those an be found in (Luke and Panait, 2001).



10 CHAPTER 2. GENETIC PROGRAMMING(i) �# # (ii) �+# # # (iii) �+x # #(iv) �+x y # (v) �+x y sqrt# (vi) �+x y sqrt0.3Figure 2.1: Creating a tree. Empty spots (denoted by #) are reursively �lled inuntil the tree is ompleted.+�x y sqrt0.3�x +y z
�R

++y z sqrt0.3�x �x yFigure 2.2: Example of a subtree rossover where the parents on the left produethe hildren on the right by exhanging the two irled subtrees.2.2.3 VariationGiven a parse tree where the internal nodes represent the funtions and the leafsthe terminals, many variation operators an be de�ned. Two basi operators willbe desribed here: subtree mutation and subtree rossover. These operators arevery simple: subtree mutation replaes a randomly hosen subtree in a tree witha randomly generated subtree, while subtree rossover swaps two randomly hosensubtrees in the parents to reate a new tree. Figure 2.2 gives an example of subtreerossover.Choosing subtrees randomly from all available subtrees implies some bias towardsseleting smaller subtrees. This omes naturally from the parse tree representationwhere subtrees an be omposed of subtrees themselves. When randomly hoosingsubtrees from a tree omposed of binary funtions, slightly more than 50% of thesubtrees are terminals; randomly hoosing nodes in the tree will then in more thanhalf of the ases result in hoosing a terminal. As terminals are the smallest partsof trees, this results on average in an exhange of a minimal amount of information.To ounter this, Koza (Koza, 1992) took the pragmati approah of seleting aninternal node (a funtion) 90% of the time and a terminal 10% of the time. Many



2.2. STANDARD GENETIC PROGRAMMING 11x y t (x+ y)�p0:3 error0.0 1.0 0.55 0.54772 0.00227740.2 0.6 0.45 0.48990 0.039900. . . . . . . . . . . . . . .0.9 0.1 0.6 0.54772 0.0522770.8321Table 2.1: Example of evaluating a funtion indued by geneti programming onthe available data, where t is the target variable.other approahes have been de�ned however to implement some other distributionon the seletion of subtrees (Langdon, 1999; Harries and Smith, 1997).One speial mutation operator is used here that selets a onstant | if present |in the tree and hanges its value a little | usually by adding a normally or Cauhydistributed number.2.2.4 Measuring Performane and WrappingThe main feedbak to an evolutionary algorithm is the performane measure. Theperformane measure is used by the seletion funtion to determine whih programsreeive more variants in the next generation. Often the performane measure is asingle salar value, but more than a single performane riterion an be used as well.One would then enter the area of evolutionary multi-objetive optimization. A goodperformane measure for any evolutionary searh methods gives an as �ne-graineddi�erentiation between ompeting solutions as possible, fousing on the eventualuse of the program and avoiding giving false information. An example of evaluatinga mathematial funtion on some data is given in Table 2.1.In this work, two error measures are mainly used for reporting results. One is theroot mean squared error (RMS error, or RMSE), de�ned asRMS(y; t) =vuut 1(N � 1) NXi (yi � ti)2using the symbols y and t as the model outputs and the target outputs on a dataset of size N respetively. The RMS error an be used to obtain a performanemeasure stated in the same units as the target variable. Another measure that isused here is the normalized RMS error (NRMS), whih is de�ned as:NRMS(y; t) = RMS(y; t)std(t)where std is the standard deviation measure. The NRMS error measure sales theerror in suh a way that a predition of the average in the target data has an NRMSerror of 1:0.



12 CHAPTER 2. GENETIC PROGRAMMINGIn geneti programming, often the output of the programs is wrapped, that is, theoutput is hanged in suh a way that it an be used by the performane alulation.Here the use of wrapping and its inuene on the performane measure will be illus-trated in two problem domains: lassi�ation and regression. Two wrappers will bedisussed that are apable of enlarging the solution spae for geneti programming.Wrappers for Classi�ation Consider a problem in binary lassi�ation. Here theobjet of searh is a program that lassi�es input ases as belonging to a ertainlass or not. One possibility of takling suh a problem is to only onsider funtionsthat return boolean values: if the program returns true for a ertain input ase it willbe interpreted as a positive, otherwise a negative. This is the general approah whenthe inputs are boolean variables, but for input data that is real-valued a di�erentapproah is usually adopted. In that ase, real valued funtions are used and theoutput of the program is interpreted as a sore: a real valued ordinal variable.Usually a �xed uto� value is set: sores falling above the uto� will be lassi�edas positive, and negatives otherwise. The use of an arbitrary uto� value to be ableto interpret a real valued outome as a binary lassi�ation is a �rst example of awrapper funtion.Wrappers an however vary in their ability to make optimization easy or diÆult.In the ase of the binary lassi�ation problem an arbitrary uto� value an makeoptimization needlessly diÆult. Evolving a lassi�er against a �xed uto� valuemakes this value very important for the lassi�ers. This might hinder the searh inunforeseen ways as it biases the searh towards lassi�ers that disriminate optimallyin the ontext of this arbitrary value. A better approah would be to alulate theoptimal uto� value for eah lassi�er independently. Here the wrapper funtionwould examine the full range of sores produed by the lassi�er and will �nd thatuto� value that produes the optimal disrimination between the positive andnegative ases. This an be aomplished with a single pass through a sore arrayand is usually feasible omputationally.As the sores produed by the lassi�ers are ordinal, the atual values are irrelevant,it is the relative order that matters. By not imposing an arbitrary uto� point,but using the implied optimal uto� after the evaluation, the lassi�ers are lessonstrained in the sore range: in partiular adding a onstant value to the lassi�erwill not hange its performane. This inreases the number of solutions to theproblem and an thus help the evolutionary searh in �nding good lassi�ers.Wrappers for Regression For regression a similar wrapper an be de�ned. Usu-ally in regression problems, the objet of searh is an expression that minimizessome least squares error riterion. A straightforward approah would then be touse this error as the performane measure. It will thus onstrain the searh to ex-pressions that are as lose to the target values as possible. However, this will alsoonstrain the searh to expressions that have the proper slope and interept that ispresent in the data: for example, an expression that produes outputs that have thesame shape as the desired output but is struturally wrong with a ertain onstantvalue, will have the squared value of this onstant added to its error for every ase.However, using standard (fast) methods of linear regression on the outputs of theexpression an identify suh struturally di�erent slopes and interepts and sale the



2.3. MULTI-OBJECTIVE OPTIMIZATION 13output of the expression to the appropriate range. This again makes the programsinvariant against these transformations and inreases the solution spae. With alarger spae of solutions, the searh is more likely to �nd a good expression. Usinglinear regression, for any well-de�ned expression f(x), it is possible to alulatea and b suh that the squared error between the target values and the wrappedexpression a+ b � f(x) is minimal. This alulation is linear in the number of asesthat are onsidered.Even though the slope and interept an be alulated linearly with the numberof ases, it is possible to irumvent the use of suh a wrapper entirely duringthe run. If one were to employ Pearson's squared orrelation oeÆient3 as theperformane measure, no slopes and interepts need to be alulated during the run:the orrelation measure already alulates a squared error equivalent, regardless ofthe slope and interept. At the end of the run, the best expression an then bewrapped and used for making preditions.An interesting side-e�et of using a orrelation oeÆient is that it is unde�ned whenthe preditions are onstant. Interestingly enough, in running geneti programmingusing a squared error measure some runs onverge prematurely on an expressiononsisting of a onstant only, whih usually represents the average value of thetarget data. Using a orrelation oeÆient as the performane measure will identifysuh an expression and by giving it the worst possible performane value, suhexpressions are e�etively ulled.These are two examples of using some knowledge about the performane measureto enlarge the solution spae for geneti programming. Suh triks are not neessaryfor more standard regression and lassi�ation methods, as these usually solve theproblems of arbitrary uto�s, slopes and interepts by making these expliit in themodel arhiteture. For example, in arti�ial neural networks �nding the properinterept is aomplished by adding so-alled bias nodes to the neural network:the gradient based searh tehniques will set the weights from these bias nodesto appropriate values. This setion showed that for geneti programming a similare�et an be ahieved at the output level by employing smart wrappers.2.2.5 Auxiliary parameters and variablesA few auxiliary parameters and variables need to be set before running a genetiprogramming system. One of the most important of these is the population size.However, not muh is known on the optimal or even minimal population size ingeneti programming. Other parameters involve the rate of applying the variationoperators, the exat way of performing seletion and the maximum size or depththe trees are allowed to grow to.2.3 Multi-Objetive OptimizationOften, the quality of a solution an not be easily aptured in a single number.For instane, when designing a power plant, both the ost of building a plant and3This is the orrelation oeÆient found in statistial pakages, de�ned as: � ov(x;y)std(x)std(y)�2



14 CHAPTER 2. GENETIC PROGRAMMINGthe risk of the plant blowing up and taking ountless lives needs to be minimized.These objetives are usually ontraditory and very hard to balane at the outset ofdesigning a plant. Building a plant that has a minimal risk involves implementingountless seurity measures, eah osting money. Avoiding to implement any seu-rity measures at all will be very heap, though the people living near the plant mightnot be happy with suh an inseure plant in their viinity. Without knowing thefull distribution of designs that balane ost and risk, it is diÆult if not impossibleto judge whih balane of objetives is optimal. This is the area multi-objetiveoptimization applies to.The simplest form of multi-objetive optimization involves a weighting sheme,where the relative importane of the objetives are �xed at the outset. In theexample, these weights are multiplied with the ost value and the risk value, andsubsequently added together to obtain a single salar value that judges a design.This proess involves a priori assumptions on the relative worth of the objetives, andin the plant example would require an objetive judgement about the ost of takinga human life. There will quite likely be some disagreement about this monetaryvalue between the owners of the plant and the inhabitants of the neighbourhood.Without some knowledge about the trade-o�s involved in building the plant i.e.,thus without a set of designs that balane ost and risk, suh a disussion would bemade using a priori arguments only, quite likely not leading to any level of agreementbetween the parties involved.If there is no agreement how to translate one objetive into another objetive, howdoes one measure the quality of a solution? This is where the onept of Paretodominane an help. Instead of giving an absolute (salar) judgement for a solution,a partial order is de�ned based on dominane. A solution is said to dominate anothersolution when it is better on one objetive, and not worse on the other objetives.Thus a solution a dominates a solution b if and only if 9i : oi(a) < oi(b) and8j 6=ioj(a) � oj(b). This assumes without loss of generality that the objetivefuntions o1; : : : ; om need to be minimized. A solution is said to be non-dominatedif no solution an be found that dominates it.The de�nition of the dominane relation gives rise to the de�nition of the Paretooptimal set, also alled the set of non-dominated solutions. This set ontains allsolutions that balane the objetives in a unique and optimal way. An example ofsuh a set is depited in Figure 2.3. Sine there is no single salar judgement, this setusually ontains a wealth of solutions. As there is no notion present of one objetivebeing more important than another, the aim of multi-objetive optimization is toindue this entire set. Piking a single solution from this set is then an a posteriorijudgement, whih an be done in terms of onrete solutions with onrete trade-o�s, rather than in terms of possible weightings of objetives.The question for multi-objetive optimization is now how to �nd this Pareto optimalset. One approah would be again a weighted approah, where the weights are variedbetween runs and for eah unique weighting sheme a solution is obtained. Thiswould require many runs to estimate the Pareto set and the granularity of the weighthanges needs to be estimated or assumed.An evolutionary multi-objetive approah avoids the granularity and multiple runsissues altogether by using the wealth of solutions present in the evolving populationto �nd a balane during a single run of the algorithm. It thus tries to �nd and storethe Pareto optimal set in the population. Many onrete algorithms to ahieve
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Objective 1Figure 2.3: An estimate of the Pareto optimal set using two objetives. The obje-tives are: o1 = x2 and o2 = (x� 2)2this have been proposed, we will fous here on the non-dominated sorting genetialgorithm II (NSGA-II) (Deb et al., 2000).A non-dominated sorting GA assigns ranks to solutions by �rst �nding the set ofnon-dominated solutions in the urrent population. These are removed from thepopulation and assigned rank 1. As these solutions are removed, a new so-alledfront of non-dominated solutions is now present in the remainder of the originalpopulation. This seond front is extrated and assigned rank 2. This proedure isrepeated until no more solutions are present in the population: eah solution getsa rank aording to the pass that is used to extrat it. It was shown that thisproedure an be implemented in O(n2), where n is the population size (Deb et al.,2000).All solutions in the population have now been assigned an integer rank. Without anyfurther proessing, this algorithm will not �nd a good estimate of the Pareto optimalset. A population onsisting purely of lones is for instane a point of onvergene.Repeated seletion ating upon a �nite population will ensure onvergene to thispoint due to stohasti sampling e�ets. What is needed is a mehanism to spreadout the population over the entire front.All solutions taken from the same front have the same integer rank. The NSGA-IIalgorithm will break ties by alulating the uniqueness of a solution in the front,�lling in the frational part of the rank with this uniqueness value. The value isdetermined by alulating the distane in objetive value spae between a solutionand its nearest neighbours. The uniqueness value is then alulated by sortingeah front for eah objetive and alulating the distane between eah solutionand its two nearest neighbours. Solutions at the extremes get `highest' distane.



16 CHAPTER 2. GENETIC PROGRAMMINGSubsequently, for all objetives this distane value is summed, saled to valuesbetween zero and one, and subtrated from the integer rank. In this way theinteger value still denotes the rank of the individuals, while the frational part isused as a tie-breaker with ompeting solutions of the same integer rank. Solutionswith more unique trade-o�s will have a better rank then solutions in more populatedareas. The population an now be sorted on this rank and trunation seletion anbe used.The sorting is performed for eah objetive and eah front. The omputationalomplexity of this proedure is at most O(n logn). The overall omplexity of thisproedure thus remains at O(n2).The NSGA-II algorithm is very robust and makes it possible to perform an adequatesearh for a Pareto optimal set. It is used throughout this text (Chapters 5, 7 and8) whenever a multi-objetive problem is addressed.2.4 Implementation IssuesEvaluating individual programs for their performane is in most non-trivial applia-tions the most time-onsuming task. Muh e�ort has undergone into making thisevaluation as fast as possible. Two main methods of representing parse trees inthe C programming language are in use: a pointer tree implementation and a tokenstring implementation. The pointer tree implementation has as its main advantagethat oding manipulations on the trees is very natural and an be very fast; it has asa drawbak however that memory management is non-trivial. If one ignores memorymanagement, the time involved in alloating and de-alloating nodes an lead tosub-optimal performane. Beause in this representation pointers to the hildrenof a node needs to be kept, it also has a relatively high memory footprint. Thetoken string representation on the other hand is very parsimonious beause it onlyneeds to keep an identi�er to the node (a token) per element in the string. An arityfuntion that returns the arity of a node given the identi�er an be used to keep thestring syntatially orret when applying the variation operators. String operationson modern omputers are very fast and memory management is also less of an issue.However, it is quite a bit more umbersome to keep a string syntatially orret,whih makes this representation less suitable for rapid development.For a review of pointer tree and token string implementations, the reader is referredto (Keith and Martin, 1994) that presents a omparative study of several implemen-tations and the orresponding evaluation funtions. The paper fouses on how tomake traversing the tree as fast as possible as a typial evaluation funtion requiresthat the parse tree is traversed multiple times. Another interesting approah waspioneered by Handley (Handley, 1994), where subtree sharing was used to redueevaluation time. It was experimentally shown that with using subtree sharing theamount of memory that needs to be used to store a population an be signi�antlyless when ompared to a string-based approah (Keijzer, 1996). This is not obviousas a (sub)tree based approah needs to store indies or pointers next to some fun-tion identi�ation token, while a string based implementation only needs to storethe token.



2.4. IMPLEMENTATION ISSUES 17Vetorized Evaluation Here we will desribe a method that in the ase of afuntion and terminal set that do not have side-e�ets requires only a single passthrough the tree, regardless of the amount of data points. This method is by nomeans new, in the numerial omputation literature it is known as vetorized eval-uation, and in e�et this was used by Handley (Handley, 1994) to ahe previouslyperformed omputations. It is reviewed here, as it an be used without regard tosubtree sharing and ahing and the bookkeeping neessary to implement these. Ithas to the best of the author's knowledge as suh not been presented in the genetiprogramming literature before. It an be implemented in pratially any tree-basedimplementation to speed up evaluation onsiderably.Consider a lassi�ation or regression task where the funtion and terminal set arepurely funtional by nature: there are no side-e�ets when evaluating a funtionand there exists a large set of data points. The usual approah of evaluating atree on a data point is to reursively go down the tree to evaluate a single ase.Using reursion is however fairly slow ompared to iteration. By vetorizing theevaluation, all ases will be evaluated for eah node in the tree. The tree is thenreursively traversed only one.To illustrate the vetorized evaluation proedure, some C++ ode is presented inFigure 2.4. It assumes that eah subtree has a node identi�ation number and apointer to the hildren trees. It also assumes the existene of the auxiliary (global)funtions pop_ontainer and push_ontainer that dispense and re-take pre-alloated ontainers from a (growing) stak and a funtion get_variable_valuesthat returns a ontainer with the values for a spei� variable for all ases. Theliberal use of the address operator an in C ode be replaed by a pointer withoutany di�erene. It is used here to simplify the syntax.This evaluation funtion will return a ontainer ontaining the output for all datapoints. After the performane has been evaluated it an be re-used by using thepush_ontainer funtion. Copying the variable values is wasteful, espeially on-sidering that terminals are often the most numerous elements in the tree. This anbe resolved by modifying the ontainer storage funtions to reognize the ontain-ers ontaining the variable values and subsequently refraining from using in-plaealulations. This is not done here as this would make the implementation moreinvolved then neessary. The vetorized evaluation presented here ahieves its task:it an evaluate a tree on an entire dataset with a single reursive traversal throughthe tree. It does this at a ost of keeping a number of vetors proportional to thedepth of the tree. Replaing reursion by iteration in this way is expeted to speedup evaluation onsiderably on problems that use non side-e�eting funtions and alimited number of onditional branhing instrutions. As traversing the tree is doneonly one per evaluation, no speial attention needs to be given to optimizing thetree traversal routine. Most notably, the swith statement in the routine is onlyexeuted one for every node in the tree regardless of the amount of data that ismanipulated.It is maybe interesting to note that, when used with for example the bitset<size_t>template lass in the standard C++ library (Stroustrup, 1997)(pp. 492-496) as theontainer lass, this proedure is equivalent with sub-mahineode geneti program-ming (Poli and Langdon, 1999). The bitset lass implements optimized vetorizedlogial operations on bitstrings stored parsimoniously in integers, and there is thenno need to manually implement evaluation and paking/unpaking proedures.
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ontainer& Tree::evaluate(){ swith(nodeId){ ase plus :{ ontainer& 0 = hild[0℄.evaluate();ontainer& 1 = hild[1℄.evaluate();// assuming a properly vetorized addition// funtion defined on the ontainer lass0 += 1;// 1 is not needed anymorepush_ontainer(1);return 0;}// other funtionsdefault : // assume this is a variable{ onst ontainer& v = get_variable_values(nodeId);ontainer& result = pop_ontainer();result = v; // opyreturn result;}}}Figure 2.4: C++ snippet for performing vetorized evaluation. It assumes a properlyde�ned ontainer lass and a method of storing and retrieving a growing number ofthese ontainers. In this example, the ontainer lass needs to be able to performvetorized evaluation, but this an also be done in the ode itself.



2.5. SUMMARY 192.5 SummaryThis hapter presented a very short introdution in geneti programming. For amore thorough introdution into the subjet of geneti programming, the reader isreferred to Koza (Koza, 1992) and Banzhaf et al. (Banzhaf et al., 1998). The mainfous in this hapter was in providing the bare essentials to understand the evo-lutionary omputation approah in general and geneti programming in partiular.The material desribes a few onepts that will be used in subsequent hapters. Afew triks and tips have been desribed here that have been developed for pratialappliations employing geneti programming. These tehniques involving wrappingand vetorized evaluation have never made it into a separate paper and the oppor-tunity of writing this thesis was taken to give them an audiene.
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Chapter 3Symboli RegressionAlthough geneti programming an be used for various automati programmingtasks, this text will fous on the indution of mathematial expressions on data.This is alled symboli regression (Koza, 1992), to emphasize the fat that theobjet of searh is a symboli desription of a model, not just a set of oeÆientsin a prespei�ed model. This is in sharp ontrast with other methods of regression,inluding feedforward arti�ial neural networks, where a spei� model is assumedand often only the omplexity of this model an be varied.The regression task an be spei�ed with a set of input, independent, variablesx and a desireded output, dependent variable, t. The objet of searh is then toapproximate t using x and oeÆients w suh that:t = f(x;w) + �where � represents a noise term. With standard regression tehniques the funtionalform f is prespei�ed. Using linear regression for example, f would be:f(x;w) = w0 + w1x1 + : : : wnxn (3.1)Where the oeÆients w are found using least square regression. In matrix formthis would read: f(x;w) = wxwhere the bias oeÆient w0 has been ommited for reasons of larity. The nonlineartehnique of regressing a feedforward arti�ial neural network would introdue anauxillary transfer funtion g (usually a sigmoid) and would use the mapping:f(x;w) = wo � g(whx) (3.2)Here the oeÆients w are usually alled weights: wh are the weights from theinput nodes to the hidden nodes and wo are the weights from the hidden nodes



22 CHAPTER 3. SYMBOLIC REGRESSIONto the output layer. Again bias weights for eah layer in the neural network areommited in the equation. Due to its funtional form, alulating the error gradientfor the weights of suh an arti�ial neural network is straightforward and has linearomplexity in the number of weights.In ontrast with these tehniques, geneti programming applied to the task of sym-boli regression does not use a prespei�ed funtional form. It uses low-level primi-tive funtions. These funtions an be ombined to speify the full funtion. Givena set of primitive funtions taking one argument h1; : : : ; hu, and a set of funtionstaking two arguments g1; : : : ; gb, the overal funtional form indued by geneti pro-gramming an take a variety of forms. The funtions h and g are usually standardarithmetial funtions suh as addition, subtration, multipliation and division butould also inlude trigonometri, logial, and transendental funtions. An examplefuntion ould be: f(x;w) = h1(g2(g1(x3; w1); h2(x1)))But any legal ombination of funtions and variables an be obtained. This parti-ular funtion an be depited in tree form as:h1g2g1x3 w1 h2x1Filling in some onrete primitive funtions for the abstrat symbols h and g anlead to the tree: sqrt�+x3 w1 expx1Or as an expression f(x;w) =p(x3 + w1) expx1The objet of searh is then a omposition of the input variables, oeÆients andprimitive funtions suh that the error of the funtion with respet to the desiredoutput is minimized. The shape and the size of the solution is not spei�ed atthe outset of the optimization (although typially a maximum size is given) and isanother objet of searh. The number of oeÆients to use and whih value theytake is another issue that is determined in the searh proess itself. The system isalso free to exlude ertain input variables from the equation, it an thus performa form of dimensionality redution. By the use of suh primitive funtions, genetiprogramming is in priniple apable of expressing any funtional form that use thesefuntions: in partiular given a suÆiently expressive funtion set, it is apable of



23expressing a linear relationship suh as in Equation 3.1 or a non-linear relationshipsuh as the arti�ial neural network in Equation 3.2.Geneti programming is not the only system apable of induing symboli expres-sions on data. A well known omputational work on the indution of equationson data is the program BACON (Langley et al., 1987). In ontrast with genetiprogramming, the BACON system explores the searh spae of possible expres-sions using various heuristis. These take the form of numerial omparisons: iffor instane two terms (variables or already indued expressions) appear to inreasetogether, an expression will be onsidered that takes the ratio of the two terms.Similarly, when one term inreases while the other dereases and does this in anon-linear way, the produt between the terms will be onsidered.The heuristis in the BACON system thus relate the numerial values between termswith the symboli manipulations that will be onsidered. It will thus produe anexpression where all the funtions that are applied have this heuristi justi�ation.This presupposes that any mathematial relationship between sets of data an beinrementally build using these heuristis. Furthermore, when the data is pollutedby noise, onepts suh as jointly inreasing or dereasing values beome diÆultto measure. The appliation of the heuristis would then need further parametersthat need to be set with regard to estimates of the noise.With geneti programming, the possible transformations are not limited to someset of numerially motivated heuristis. As desribed in Chapter 2, the variationoperators are randomized, while the overall performane of a omplete expression isused as the guide to selet expressions. The expressions that are indued in this waythen do not neessarily have to abide some internal struture that is inrementallyjusti�ed. It is thus apable of performing `reative' omputations as long as thatdereases the error. This has as a drawbak that the expressions that are induedan beome too reative, to the point that they are hard to understand.A geneti programming system performing symboli regression is thus required to�nd the shape of the equation, the omposition of primitive funtions, the useof input variables, the use and values of oeÆients plus the omplexity of thisomposition all in a single optimization pass. Furthermore, no gradient informationis available about the omposition of funtions1, nor numerial heuristis on thestruture of the funtions are employed. The only feedbak the system reeives isthe overall performane of a given expression on the data given some error funtion.This is a daunting task and the question an be asked why one would try to �ndan expression in suh a way when alternatives suh as arti�ial neural networks areavailable. If one is purely interested in approximating some data, the expressivepower of geneti programming provides no immediate bene�t over other methods.For example: even though with the proper set of primitive funtions the spae ofarti�ial neural networks is only a subset of the expressions that an be indued bygeneti programming, it has been shown that a feedforward arti�ial neural networkof suÆient omplexity an already approximate any mapping (Park and Sandberg,1991). The question of whih tehnique is more apable of optimizing some dataan then not be resolved a priori using the expressiveness of the methods as themain argument. Any omparison would be empirial. It is then expeted to �ndases where neural networks outperform geneti programming and vie versa.1Though gradient information an sometimes be used to optimize the oeÆients (Tophy andPunh, 2001).



24 CHAPTER 3. SYMBOLIC REGRESSIONEven though the issue of expressiveness does not give an immediate bene�t ofgeneti programming over for instane arti�ial neural networks in the ontext of itsapability in approximating some data, this expressiveness is the main subjet of thistext. In ontrast with neural networks, geneti programming is apable of providinganswers in the symboli language of mathematis, while arti�ial neural networksan neessarily only provide answers in the form of sets of numbers, weights, validin the ontext of a prespei�ed funtional form (Equation 3.2).This ontrast between induing symboli expressions by geneti programming andmatries of numbers by regression beomes more pronouned when approximatingthe data is not the only objet of searh. In sienti� disovery for example, ob-taining some adequate �t is not enough. To fully inorporate some results in thebody of sienti� work, it is neessary that some form of understanding about theexpressions that are indued is ahieved. The expressions thus need some furtherjusti�ation before they an be used as models of the phenomenon under study.3.1 The Conentration of Suspended SedimentAs a red thread through this work, the problem of �nding an expression that preditsand/or desribes the onentration of suspended sediment near the bed of a streamis used. Not only is this problem aompanied with some extra-ordinary high qualitydata, it has been studied intensively by various researhers. This researh has leadto an empirial equation for this proess that an be used as a benhmark equation.Below, symboli regression is used to obtain expressions that �t this data.Bakground The bottom onentration of suspended sediment is a key param-eter within the mehanis of sediment transport. Here the aim is to develop anempirial formulation for the bed onentration b, de�ned at an elevation of a fewgrain diameters from the bed. This seems to be more reasonable from a physialpoint of view then de�ning the referene onentration further from the bottom,sine already a few diameters away from the bed the sediment partiles are keptin suspension by the turbulene of the uid rather than by grain-to-grain ollisions,and should therefore be regarded as sediment in suspension.It is normally aepted that the pro�le of suspended sediment onentration is welldesribed by the Rouse (Rouse, 1939) distribution: = a�D � yy aD � a�z (3.3)in whih z = ws�uf (3.4)In equation (3.3)  denotes volume onentration of suspended sediment; a de-notes a referene onentration at a distane a above the bed; y denotes vertialoordinate, measured upward from the bottom; and D denotes water depth.



3.1. THE CONCENTRATION OF SUSPENDED SEDIMENT 25In equation (3.4) z denotes Rouse parameter; � denotes von K�arm�an onstant(� 0:40); uf shear veloity; and ws settling veloity of suspended sediment.If the value a appearing in Equation 3.3 is known, the suspended load transportan be easily found as: qs = Z Da (y)u(y)dy (3.5)where u denotes ow veloity; and D water depth. The integration of Equation 3.5was performed by Einstein (Einstein, 1950) who assumed the onentration pro�leto be given by Equation 3.3 and a logarithmi variation of the veloity along thevertial.The onentration pro�le (y) is usually alulated by aepting the di�usion on-ept for suspended sediment. In steady uniform ow, this leads to a balane betweenthe downward settling of sediment due to gravity and the upward di�usion assoi-ated with turbulent utuations i:e:ws+ �s ��y = 0 (3.6)where �s denotes di�usion oeÆient for the suspended sediment, whih is normallytaken to be proportional to the eddy visosity of the ow �.�s = �� = ��ufy �1� yD� (3.7)where � denotes momentum orretion fator. If the paraboli distribution of �sgiven by (3.7) is inserted in (3.6), the pro�le of suspended sediment onentrationgiven by (3.3) an be obtained by diret integration. The Rouse number z is nowdesribed by: z = ws��uf (3.8)In the speial ase in whih the referene level a in (3.3) is taken equal to thedistane from the bed to the lower limit of the suspended sediment layer Æ, thereferene onentration a beomes equal to the bed onentration b.One major problem with regard to the bed onentration b is the de�nition ofthe distane Æ. Einstein (Einstein, 1950) suggested Æ to be of the order of twiethe grain size of the bed material d, and assumed the bed onentration to beproportional to the onentration of bed load partiles. Further analysis and sheet-ow experiments showed that the thikness of sheet-ow later Æ inreases with theShields parameter � aording to: Æs = 10�d (3.9)where: � = u2f(s� 1)gd (3.10)where d denotes median grain diameter (usually indiated as d50); g aeleration ofgravity; and s relative density of sediment.



26 CHAPTER 3. SYMBOLIC REGRESSIONData A total number of 10 data sets were utilized in the determination of b (Guyet al., 1966). The experiments onsisted of a number of alluvial hannel tests withthe aim to determine the e�ets of the grain size and of water temperature on thehydrauli and sediment transport variables.The tests were performed in two di�erent umes: the larger one was 8 ft (2.44 m)wide, 2 ft (0.61 m) deep and 150 ft (45.72 m) long. Its slope ould be adjustedbetween 0 and 0.015, and the water disharge between 0 and 22 fs (0-0.613 m3/s).The smaller ume was 2 ft (0.61 m) wide, 2.4 ft (0.76 m) deep and 60 ft (18.29 m)long. Its bottom slope ould be varied between 0 and 0.10 and the water dishargebetween 0 and 8 fs (0-0.227 m3/s).A di�erent kind of sand was used for eah set of the tests. The median size d variedbetween 0.19 and 0.93 mm, while the geometri standard deviation �g (de�ned byEquation 3.11) ranged from 1.25 to 2.07.�g = 0:5 �d84d50 + d50d16 � (3.11)where d50 denotes median partile size of the sediment; and d16 and d84 partilesizes for whih 16% and 84% of the sediment is �ner by weight.The hydrauli onditions of the individual tests were adjusted by hanging thedisharge, the slope, or both, and the water and sediment were re-irulated untilequilibrium onditions were reahed. A signi�ant drawbak of these data sets isthe limited range of water depth overed (from 0.06 to 0.41 m). Apart from that,the tests omprise a wide range of situations, both from the point of view of thehydrauli parameters as well as the bed materials used, the transport rates measured,and the bed forms present, making them very attrative for the derivation of anexpression for the near bed onentration in pure urrent ow.Table (3.1) summarizes the quantities used in the problem of determination ofonentration of suspended sediment near bed. It is interesting to observe thatonly �, ws and d50 represent `raw' observations. Shear veloities uf and u0f arealulated on the basis of raw observations as:uf =pgDI (3.12)u0f =pgD0I (3.13)where I denotes water surfae slope; and D0 denotes the boundary thikness layerde�ned through: vu0f = 6 + 2:5 ln D0kN (3.14)with v denoting mean ow veloity; and kN bed roughness � 2:5d.Human Proposed Relationship for Near-bed Conentration Generally, thenear-bed onentration of suspended sediment b depends on: (i) the e�etiveshear stress exerted on the bed by the ow � 0; (ii) the harateristis of the bed



3.1. THE CONCENTRATION OF SUSPENDED SEDIMENT 27variable desription uom� kinemati visosity m2=sws settling veloity m=sd50 median grain diameter mg gravity aeleration 9:81m=s2uf shear veloity m=su0f shear veloity related to skin frition m=sb onentration of sediment near the bed dimensionlessTable 3.1: Units of measurement of the independent and the dependent variablesfor the problem of determining the onentration of sediment near the bed.material (size d, density �s); and (iii) the harateristis of the uid (density �,kinemati visosity �). Appliation of dimensional analysis leads to the funtionalrelationship b = ��0; [g(s� 1)d℄0:5w ; �� (3.15)where � denotes a ritial value of Shields parameter for initiation of motion. Itshould be noted that, for a given bed material, the fall veloity w an be uniquelyde�ned in terms of the kinemati visosity � (whih in turns depends on watertemperature) and of the grain size d, so that w in (3.15) an be e�etively replaedby � and T.(Zyserman and Freds�e, 1994) followed an approah initially adopted by (Gariaand Parker, 1991) for the seletion of an expression for b, namelyb = Axn1 + Axnm (3.16)where A, m, and n are onstants and x a suitable ombination of the independentdimensionless parameters. The hoie of the funtional form (3.16) is driven by thefat that b beomes zero when x does as well as b onverging to the limiting valuem for high values of x.The �tting (Zyserman and Freds�e, 1994) yielded values A = 0:331, m = 0:46and n = 1:75, resulting inb = 0:331(�0 � 0:045)1:751 + 0:3310:46 (�0 � 0:045)1:75 (3.17)The proposed relationship ompares well to values of near-bed onentration ob-tained from independent data sets. It also provides an improved auray oversimilar expert-generated expressions and is universally regarded as the formulationdesribing the onentration of suspended sediment near bed.



28 CHAPTER 3. SYMBOLIC REGRESSION3.2 Symboli Regression on the Sediment Trans-port ProblemStraightforward appliation of symboli regression The data in the sedimenttransport problem are aompanied with units of measurements that desribe thevarious data �elds. In standard regression, dimensioned variables annot be usedwithout any pre-proessing. Usually one employs some form of pre-proessing, beit applying Bukingham's �-theorem (Bukingham, 1914), or reating an ad-hoset of dimensionless values using the original data. It is also possible to salethe variables to unit variane, by alulating the standard deviation and divide theoriginal measurement by this value. As the standard deviation of a measurement isstated in the same units as the measurement itself, this saling will render the pre-proessed data dimensionless. Any form of manipulation is subsequently formallyallowed.Here we use the data as is to be used for geneti programming. To meet the formalrequirements (but not the intent) of modelling using units of measurement, it issimply assumed that the data is divided by a onstant of magnitude one stated inthe same units as the original data. This onveniently avoids the issues of dealingwith units of measurements whih will be takled in later hapters.After dividing the data in a training set and a test set, a geneti programming systemis applied that tries to �nd an expression that �ts the data. The language onsistof the observations f�; ws; d50; uf ; u0fg, and additionaly the gravity aelerationonstant g set at 9:81m=s2. Also inluding arbitary onstant values, the full terminalset is desribed by: T = f�; ws; d50; uf ; u0f ; g;RgThe funtion set is:F = fplus/2, times/2, minus/2, divide/2, sqrt/1gUsing a standard geneti programming setup, using 50 independent runs, the best�tting expression on the training set was:b � 0:284 ��u 0f � ws�3 �u 0f � g��g + u 0f + ufuf � g � g�5uf �1 g + 13:0  ws + g3u 0f wsuf �1�g + u 0fg ��1!uf �10B�u 0f � 11:3 gu 0f�u 0f � ws�2 � g21CA�10BB�g +0BB�d50 +vuut�u 0f � ws�2 wsg4 + g1CCA�2 g + u 0fws + u 0f � uf � ws + g2��1!�11A�11CA 12



3.2. SYMBOLIC REGRESSION ON THE SEDIMENT TRANSPORTPROBLEM 29A few observations an be made at this point. The solution produed by symboliregression on the raw observations presented above is very omplex. It manipulatesthe variables in a variety of intratable ways, using high order polynomials andrepeated square roots. If we were to ompliate things by adding trigonometri andtransendental funtions, the geneti programming system would quite likely �nd away to use this enhaned expressive power to obtain a better �t on the training data.It is quite likely that the net result would beome an even more inomprehensibleset of manipulations.Another problem with this equation is that it does not use the units of measurementproperly. No information about these units was given, and it is would have beenquite unlikely to get a dimensionally orret result. However, the absene of thedimensions makes the equation even harder to omprehend.Pre-proessing An approah more in line with the pratie in physis is to pre-proess the variables to render them dimensionless. Applying the �-theorem usingthe variable d50 and the onstant g to perform the transformation, it is possible toredue the number of independent variables by using the transformation:�1 = wsd�0:550 g�0:5�2 = ufd�0:550 g�0:5�3 = u0fd�0:550 g�0:5�4 = �d�1:550 g�0:5As b is already dimensionless no pre-proessing needs to be done on this variable.Running a geneti programming system using the � variables as input produed asthe best expression: b ��3 ��1 �3262�3�1 � �3 � 1p�3 + �2 3�4�1�3�1��2 + 34:2� 1:09�2 2�4 1p�3��2 � �3�4 ��1 � �4 + �3 + �2 2p�3 (2�3 � �1 + �4 )!�1 + �3 + �4 �3��2 p�3�4 � p�3�4 � �3 + �2 p�3 ��3 + �3�2 �4 ��1 �4�2!��3 + 0:054�2�2��1 �57:1�3�1 + 33:3� 76:6 (�3 + �1 )�1�2�4 � �2�3 ��1 �4�1!�1��1 (57:1� �3 )p�3 + �2 3�4 �3 (�2 + 0:54) � �2 �4 2�57:1�1�1 + 33:3� 93:2 1�3 �1 � 1p�3 (�3 � �4 + 8:81)�1��1!�1



30 CHAPTER 3. SYMBOLIC REGRESSIONDatasets Zysermann & Freds�e SR (Raw Values) SR (�-theorem)train 0.051 0.038 0.035test 0.047 0.047 0.054train + test 0.049 0.041 0.046Table 3.2: Comparison of the benhmark formulation produed by sientists andthe formulations found by symboli regression (SR) using the raw values or thepre-proesed values. The error measure that is used is the Root Mean SquaredError (RMS). The benhmark formulation was indued using all data, the split intest and training set presented here was used in the symboli regression experiment.This equation is also extremely omplex, quite possibly unneesarily so. Althoughthe equation is dimensionally orret, it is suh by virtue of the inputs being dimen-sionless. All arithmetial operations are then allowed. To interpret this expression,an additional translation needs to be performed, where the variables are translatedinto their original de�nition.In these two experiments it was not attempted to redue the omplexity of the equa-tions. Geneti programming prationers often use some form of parsimony pressureto inuene the size of the solutions (Zhang and M�uhlenbein, 1994; Zhang andM�uhlenbein, 1996; Iba et al., 1994; Zhang, 2000; de Jong et al., 2001). This mighthelp somewhat, though the main problems of the two experiments | ignorane ofunits, or extensive pre-proessing | will remain.Even though is not lear what data is used to indue Equation 3.17, a ompari-son on the performane on the di�erent sets used in the experiment is presentedin Table 3.2. The performane of human indued equation, whih uses Shield'sparameter �0, omes from the fat that this partiular variable is already highly or-related with the onentration. Performing a linear regression on �0 alone produesan expression that has a RMS error of 0:050, slightly worse than the performaneof the benhmark equation 3.17.3.3 SummaryUsing symboli regression alone does not seem to help muh in providing inter-esting hypotheses in this domain. When using `raw' observations, the resultingexpression an beome very omplex very easily. No attention is given to the unitsof measurement, it merely presents a numerial reipe to map input numbers to apreditive value. This predition might be good or bad, depending on some statis-tial estimate of the generalization error. The expressions that are produed mightbe symboli, the language that is used seems to be alien: it does not give the usermuh information about the proess underlying the data.Relying on dimensionless values does not help either. It has the same problems withthe omplexity of the solutions. In e�et, the dimensionless values help to furtherobfusate the relationships found by their reliane on an extra translation step.Although the ability to �t the data is reasonable, the symboli regression runs donot add muh to our understanding of the problem. It thus presents a similarblak-box model similar to those produed by arti�ial neural networks. The only



3.3. SUMMARY 31approah that seems to be feasible is to attempt to ontrol the size of the solutionsso that short solutions are produed. Analyzing suh short solutions might be pos-sible, though then still interpretation needs to be performed mainly using numerialarguments. This is not muh di�erent from interpreting a small arti�ial neuralnetwork.In the ase of the sediment transport problem, the Shield's parameters that wereprovided were highly orrelated with the target variable, on their own they alreadyprovide a robust estimate. Often however, formulating suh a parameter is exatlythe objet of searh.
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Chapter 4Indution of EmpirialEquationsSuppose that we are given the task to model an unknown or poorly understoodsystem. In suh situations a logial starting point is the design of measurementampaigns and the olletion of data. One usually measures foring variables (theones that are outside the system) and simultaneously the response of the system inview of the hange of the state of the system (state- or internal variables), and thehange in orresponding output of the system (resulting funtions). After enoughdata of suÆient quality are olleted, one an attempt to identify the system.Then, three possible senarios an our (Kompare, 1995):1. Nothing useful an be onluded from the observations. This an happenif the measuring ampaign was poorly designed, or nor arried out over asuÆiently long period of time, or if relationships among variables simply donot exist. More measurements, or redesigned more elaborate observations areneeded to improve the situation.2. Sometimes we may end up with a statistial, blak box model. With thisategory of models we will be able to predit the proper behaviour of thesystem, although we will not be able to haraterize its intrinsi struture andbehaviour. In other words, we will be able to say what the model does, butnot how. In addition to this, we will not be able to guarantee the behaviourof suh model in regions not overed by the data from whih the modelwas onstruted. This is due to the fat that the model overs only therelationships found within the given data.3. In some ases we may be able to reognize patterns within the data andform from these patterns inferene about basi proesses in the observed sys-tem. After repeated measurements we should be able to develop a oneptual(mehanisti) model. Suh a model is a so-alled white box, or transparentmodel and we should be able to say what the model desribes and how itsperformane is ahieved. Due to the oneptual bakground of the model, weare muh more ertain that the model will represent reality. This also helpswhen using the data out of the range in whih model was onstruted.



34 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSQuite obviously, the likelihood of us being able to onstrut a oneptual model foran unknown or poorly understood system inreases with both the quality and thequantity of the observed data. To make the most of some experimental data, it isgenerally desirable to express the relation between the variables in a symboli form:an equation. In the view of the approximate nature of this funtional relation, suhan equation is desribed as empirial. No partiular stigma should be attahed tothe name sine many ultimately reognized hemial, physial and biologial lawshave started out as empirial equations.Sienes devote partiular attention to the development of a symbol system, suhas a sheme of notation in mathematis, together with more re�ned representationsof physial and oneptual proesses in the form of equations in the orrespondingsymbols. Eah equation an be regarded as a olletion of signs, whih onstitutesa model of an objet, proess or event. Data, on the other hand, remain as meredata just to the extent that they remain a olletion of signs that does not serve asa model.From this point of view, the indution of an equation within a symbol system repre-sents a means of better onveying the meaning or semanti ontent enapsulated inthe data. Indution of an equation orresponds to �nding a model. In this proessthe information ontent is very little hanged, or even unhanged, but the meaningvalue is ommonly inreased immensely. Sine it is just this inrease in meaningvalue that justi�es the ativity of substituting equations for data, there is a greatinterest in proesses that indue equations from data.Chapter 3 showed that the use of symboli regression as suh does not provide thisinrease in meaning value diretly. The interpretation of the symboli expressions ishindered by the size but even more by the seemingly arbitrariness of the omputa-tions that are performed. The system that produes these expressions is only guidedby numerial measures suh as the error it makes. The omputations that are per-formed inside the expressions are then tailored to get this error down in whateverway possible. With symboli regression there is no expliit means to reate expres-sions that an be interpreted by a sientist, and no means to justify the use of theexpressions that transends statistial statements about the performane. Withoutsuh means, interpretability of the expressions is oinidental. What is needed is amethod that an help in the interpretation of the expression and the sub-steps thatare taken in the omputation. If the omputation de�ned by the expression an berelated to the physial proess that it models, it is possible to onsider it a hypoth-esis of the system, instead of a blak box. The method to aid in this interpretationthat is onsidered here is the use of units of measurement.Throughout siene, the units of measurement of observed phenomena are used tolassify, ombine and manipulate experimental data. Measurement is the pratieof applying arithmeti to the study of quantitative relations. Every measurementis made on some sale. Aording to Stevens, to make a measurement is simplyto make `an assignment of numerals to things aording to a rule | any rule'(Stevens, 1959). There is a lose onnetion between the onept of a sale andthe onept of an appliation of arithmeti. Units of measurement are the namesof these sales. Simple unit names suh as `kilogram', `seond', 'degrees are usedfor fundamental and assoiative sales. Complex unit names, suh as `kg m s�1'are used for derivative sales.



35Common methods for �nding equations based on data usually involve a dimensionalanalysis (whih attempts to remove issues of sale) and subsequent urve-�ttingby hand or automati means. An example of this was given in Chapter 3. Here itis suggested that an approah in whih the dimensions | physial units of mea-surement | of the data an be used as an additional soure of information inorder to help reating expressions, as well as heking their validity and usefulness.Rather than ignoring dimensions altogether, or proposing dimensionless formulae(i.e., expressions based exlusively on dimensionless numbers), the objetive is toreate fully dimensioned formulae. It is postulated that suh formulae an be easierinterpreted. Then, if a fully dimensioned expression is obtained, it an provide abasis for the reation of a mehanisti, white box model.Using units helps in transforming physial onepts into mathematial expressions.If a physial onept or physial manipulation is sensible and numerially analogousto some appliation of arithmeti, the substitution of the resulting equation to betterdesribe the data is justi�ed. The reverse is however not neessarily true: not everyappliation of arithmeti on measurements is rooted in physial reality. For example:the addition of the lengths of two stiks an orrespond with a proposal to ombinethe stiks to form one longer stik. The results produed by the addition thendesribe the length of the ombined stik. In an experimental situation this mightor might not be a sensible proposal. Dividing the two length of these stiks anhave a variety of interpretations: it an orrespond with the sine of the angle thetwo stiks make in the ase the stiks are part of a triangle, but it an also be anoperation to normalize the lengths in the ase they are independent measurements.Without referene to the physial experiment that is desribed, it is impossibleto determine the exat meaning of suh an appliation of arithmeti. Relating adimensioned formulation to the physial experiment is then the role of the humanuser. The dimensioned formulae are tentative proposals: the units of measurementthat are manipulated by the formulae form a guide to their interpretation.To ahieve the goal of reating fully dimensioned formulae, geneti programmingis used. One of the advantages of geneti programming over other methods forregression is the symboli nature of the solutions that are produed. In the nat-ural sienes for instane, a symboli answer in a language the user understands,mathematis, provides a great bene�t over methods that produe oeÆients in aprespei�ed model. This is espeially pronouned in empirial modelling of unknownphenomena where an underlying theoretial model does not exist. As was shown inChapter 3, the solutions produed by geneti programming an not be interpretedat all times. The size of the solutions produed an hinder interpretation, whilesetting the size to low limits an hinder the searh eÆieny.The goal of this approah is simple: to reate a geneti programming system thatprodues equations that are easier to interpret by domain speialists. The systemis thus applied to the area of sienti� disovery. The GP-produed equationsare supposed to form a set of hypotheses in and about the domain, stated inthe symboli language of equations. Rather than produing blak-box solutions toproblems, the aim is to provide statements where the units of measurement help ininterpreting the expression and ultimately help in forming an enhaned view of theproblem.



36 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSOperation TypeAddition/Subtration ([x; y℄! [x; y℄! [x; y℄)Multipliation ([x; y℄! [v; w℄! [x+ v; y + w℄)Division ([x; y℄! [v; w℄! [x� v; y � w℄)Square Root ([x; y℄! [x=2; y=2℄)a ([x; y℄! [0; 0℄! [x; y℄)Transendental Funtions ([0; 0℄! [0; 0℄)Table 4.1: The type system de�ned by the physial units of measurement. It de�nesonstraints in the ase of addition and subtration where the units of the operandsneed to be the same, in the ase of trigonometri, hyperboli, exponential and manyother funtions the units of the operands need to be dimensionless. Multipliation,division and the square root funtion are always de�ned, but introdue arithmetialmanipulations on the types. Finally, the power funtion a is only de�ned when theseond operand is a onstant, whose value will inuene the output type. Here theatual value of the expression inuenes its type.4.1 Units of Measurement as a Type SystemConsider a variable v measured in units LxT yMz where L, T and M are thedimensions of length, time and mass respetively and x, y and z the orrespondingexponents. When one of the exponents is unity and the other exponents zero, theunit of v is referred to as a base unit. When all exponents are zero the unit isalled dimensionless. In all other ases we speak of derived units. Furthermore,vetor notation for the units suh that u = [x; y; z℄ is used to denote the vetorof exponents. This vetor of exponents ontains all information neessary to makestatements about the units of measurement of variable v.For example: u = [1;�2; 1℄ de�nes a derived unit of fore, whether it is measuredin kg m=se2 or in lbs ft=se2. Although in this paper the SI units of measurementare used, other units suh as for example inome per apita an also be de�ned. Fornotational onveniene a smaller system, onsisting of two physial dimensions isused below (Table 4.1). This generalizes trivially to arbitrary numbers of dimensions,physial or otherwise.The term type system is used to refer to the ombination of type spei�ationsof variables and onstants together with the type spei�ations of the operators.The notation for this type system is borrowed from the typed �-alulus, in whih(T ! U ! V ) denotes a funtion that requires two arguments of type T and U andreturns a value of type V . The types in the units of measurement (uom) systemare then real valued vetors.The onstraints on the mathematial operators involved in uom problems are spe-i�ed as follows: eah operator an impose onstraints on its operands (for instaneequality requirement in the ase of addition) or it an speify manipulations in or-der to produe the output type from the input types as for example in the ase ofmultipliation. Several onstraints and manipulations are de�ned within the uomsystem as spei�ed in Table 4.1.Along with the de�nition of the independent and dependent variables and possiblytyped onstants, this type system de�nes an unountably in�nite number of types,



4.2. LANGUAGE, BIAS AND SEARCH 37where any real-valued vetor of the appropriate size is a data type in its own right.If all variables and onstants are dimensionless, the language redues to an untypedlanguage. In this ase, no manipulations an introdue non-zero exponents.The existene of derived units makes this type system more omplex than the typesystems usually used in omputer languages: these de�ne only base types suh asfloat, int and string, the only way to ombine them is to put them in strutsor tuples.4.2 Language, Bias and SearhWith de�ning the type system for the units of measurement, a language of ex-pressions in this type system is de�ned. Several routes an be taken at this point.The most obvious is to implement this type system in geneti programming in suha way that the system will only indue expressions that are dimensionally orret.This is the area where Strongly Typed Geneti Programming is employed. Belowa review of suh systems is presented, together with some argumentation on howmany of the existing systems are either not powerful enough to express the languageof dimensionally orret expressions, or why they are not expeted to perform wellon this partiular problem domain. This disussion leads to the formulation of a newstrongly typed geneti programming system whih is fully desribed in Chapter 6.However, stritly abiding the onstraints imposed by this type system might not bethe most appropriate approah to reate useful expressions i.e., workable hypothe-ses that provide maximum insight into the problem. Although `getting the unitsright' has been hammered into many sientists and engineers, it is important toonsider that with the automati indution of expressions based on data and unitsof measurement it is not tried to indue sienti� law from examples, or even tomake a statement about ause and e�et. The goal is to reate a good performingexpression that helps in the analysis of auses, an enhaned oneptualization ofthe problem, whih might ultimately form the basis of a new empirial law. Thislaw should be proposed by the domain expert however, as the hypothesis generationengine envisioned here an only provide expressions; not justi�ations.Interpreting arithmeti applied to measurements is not lear ut. A mathematialoperation an apply to many things whih are diÆult, if not impossible, to interpretas a realisti desription of a physial proess. Above, examples were given aboutthe possible meanings a simple division of two length measurements an have:depending on the experimental layout of the measurements this division operatoran indiate a measurement of the sine of an angle or a simple normalization. Thesame holds for other operations. Although the units of measurement provide someinformation about the use of the variables, applying arithmeti on those variablesneeds further justi�ation that goes beyond formal means.Modelling using units of measurement balanes on the border between ausativemodelling and modelling by assoiation. As any statistial textbook warns: or-relation does not equal ausation. Trying to redue the error for some model isjust a partiular form of maximizing orrelation between a model and a dependentvariable. Limiting the independent variables to foring variables and inluding theunits of measurement in the searh might inlude some ausative element in the



38 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSsearh. However, restriting the lass of sentenes that might be produed to thosethat abide all the restritions in the measurements might miss out on important as-soiations between measurements. Even more, a formally orret manipulation anbe meaningless. Taking the ar tangent of a ratio of two weight measurements willformally produe an angular measurement, but there is no physial interpretationof the angle between two weights.Beause model indution is used in areas where no preditive theory exists 1, itan not be established that everything that is measured is relevant in exatly theform (units) that it is measured in. It might turn out that a ertain measurementis assoiated with a related property of the problem, stated in di�erent units. Forexample, a measurement in length units might be best used as if it was stated insurfae units | simply beause the measured value determines the value along oneaxis of a surfae variable, while the value along the other axis is onstant. Suha variable stated in length units would then be proportional to the unmeasuredsurfae variable. By strongly abiding to the units in the problem, suh a use of thisvariable will never be onsidered, possibly leading to the premature onlusion thatthe partiular set of measurements is useless.One partiular solution to these kind of problems is to introdue onstants statedin arbitrary units. Then it is possible to multiply the example variable measured inlength units with a onstant value stated in length units to obtain the desired mea-surement in surfae units. This will however defeat the entire purpose of modellingusing units of measurement: the units of any measurement an then be trans-formed to any other unit by multiplying it with an appropriate onstant. We aneven perform this as a pre-proessing step, leading to a symboli regression set upas presented in Chapter 3.As a formal system, the use of units of measurement poses a few more problems.Given the existene of onstants stated in arbitrary units it is easy to trivialize dimen-sional orretness by making liberal use of these onstants. If arbitrary dimensionedonstants are absent, it is quite likely that modelling will not sueed as experimen-tally olleted data annot vary or measure everything that is relevant. Any givenmeasurement might be indiative for a range of units. A variable stated in lengthunits might be proportional to a retangular surfae if the other axis of the retangleis kept onstant. Likewise, a set of length measurements an be proportional to aset of veloity measurements if all experimentation is performed using a �xed periodof time. The details on the possible roles a single variable an take is determined bythe physial setup of the experimentation and an be hard to exhaustively speifybeforehand.The use of a dimensionally (more or less) orret expression an however be great forthe sientist. By balaning dimensions, an expression stated in some partiular unitsan point to phenomena in the problem that are not obvious. By analyzing suhformulae, the sientist might be able to update a mental piture of the phenomenonunder study and gain new insight. This analysis needs to be performed with respetto the way the data is produed: the experimental setting. This setting is onlypresent in a watered down form for the model indution engine, in the form of unitsof measurements.Abiding rigorously to the units of measurement implements a delarative bias. As it1If suh theory did exist, we would not bother performing preditive modelling.



4.3. TYPING IN GENETIC PROGRAMMING 39involves a type system, this partiular form of bias is alled semanti bias (Muggle-ton and Raedt, 1994). A delarative bias imposed on a language redues the set ofsentenes that an be derived: it thus restrits the searh. It is however not a prioriguaranteed that this bias is justi�ed in a set of empirially olleted data. It wasattempted to show that a delarative bias to using only the units in the experimentalsetup an be misleading in at least two ways: dimensionally orret expressions arenot guaranteed to be meaningful, as not all formally allowed arithmeti operationswill have a physial interpretation; and formally inorret expressions an be mean-ingful when a measurement is assoiated with another phenomenon to whih it isproportional.To also investigate formally inorret expressions, it might then be worthwhile toexamine ways of guiding the searh rather than restriting it. Changing the searhto make it more likely that a ertain lass of sentenes is produed is alled imple-menting a preferential bias (Muggleton and Raedt, 1994). A system that uses apreferential bias towards dimensionally orret expressions is presented in Chapter 5.It is hypothesized that suh a system | whih allows errors in the units to our| provides a more fertile ground for the ultimate goal of modelling using units ofmeasurement: understanding the data better by analyzing expressions that �t thedata well.Apart from the possibility that formally inorret expressions an provide additionalinformation, the use of a preferential bias might also help simply as an enhane-ment of the searh apabilities of the system | even when ultimately only orretexpressions are onsidered.4.3 Typing in Geneti ProgrammingStrongly typed geneti programming (Montana, 1995) was the �rst of many ap-proahes that onstrain the allowable programs in geneti programming by meansof a type system. The purpose of a strongly typed system is to make only thoseprograms well-formed that are type orret. It thus attempts to redue the searhspae to the spae of orretly typed programs. It thus introdues a delarative biasin the searh spae.Tree Based GP Montana's work introdued the onept of a generi funtion ingeneti programming. A generi funtion is well-de�ned over all or a well-de�nedsubset of available types. As an example: in Table 4.1, the onstraints on the uomtype system are de�ned as generi funtions.Strongly typed geneti programming aims at initializing and maintaining a popula-tion onsisting of orretly typed programs. The goal is to optimize the programswith respet to some objetive funtion. When these programs are representedas trees, most e�ort is devoted to de�ning a suitable initialization routine and astrongly typed subtree rossover.Several approahes have followed upon this work. The following are disussed here:ontext free grammars (point typing) (Gruau, 1996; Whigham, 1996a), paramet-ri polymorphism (generi typing) (Yu and Clak, 1998), inheritane (subtyping)



40 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONS(Haynes et al., 1996), and logi grammars (Wong and Leung, 1997). These ap-proahes share the use of a tree representation in order to store the program alongwith the type information, together with the de�nition of variational operatorsthat manipulate this tree representation. Most notably, a strongly typed subtreerossover is de�ned that exhanges parts of the programs while keeping the typeinformation in the tree up to date and orret.Developmental GP As an alternative to using trees as the representation, de-velopmental approahes have been proposed (Banzhaf, 1994; O'Neill and Ryan,2001). Here linear strings of bits or integers are maintained, that are mapped intoan expression using some derivation proess. Developmental GP makes a distin-tion between an untyped genotype | the string | and a typed phenotype | thederivation tree and ultimately the expression generated by the string.In ontrast with tree based approahes, the variational operators in developmentalGP are simple and untyped: the string representation is diretly manipulated and allissues onerning typing are handled in the derivation proess. These systems arestrongly typed as they only produe orretly typed expressions. The main di�erenewith tree based approahes lies in the absene of strongly typed variation operators.String based systems an employ syntati onstraints suh as ontext free gram-mars (CFGs), whose ontent is a disjuntion of prodution rules. This implementsa delarative bias in the form of a syntati bias (Muggleton and Raedt, 1994).Reently however, grammar-based approahes have been suessfully extended touse logi programs (Keijzer et al., 2001a) that an model ontext-sensitive infor-mation. Chapter 6 is devoted to the introdution of this logi programming baseddevelopmental system.4.4 Expressiveness of Type SystemsA ontext free grammar (CFG) an implement only a limited type system, and thereis no notion of generi funtions. Beause of this, a CFG needs a separate symbolfor eah type in the grammar. This is alled point typing. As an example, onsiderthe usual arithmetial funtion set and two terminals, x and y. The set of parsetrees an be de�ned by the ontext free grammar:Grammar 1 A Lisp-style grammar using a single type:<expr> ::= x |y |(sqrt <expr>) |(+ <expr> <expr>) |(* <expr> <expr>) |(- <expr> <expr>) |(/ <expr> <expr>).where the CFG symbol <expr> is of type double. The types and arity of thefuntion set are hidden in the prodution rules for <expr>. An equivalent grammar



4.4. EXPRESSIVENESS OF TYPE SYSTEMS 41treating T and F as terminal symbols whih produes sentenes in a more C-stylelanguage is:Grammar 2 A ontext-free grammar for symboli regression:<expr> ::= <terminal> |<mon op>(<expr>) |(<expr> <bin op> <expr>).<terminal> ::= x | y.<mon op> ::= sqrt.<bin op> ::= + | * | - | /.The type system indiretly implemented by this grammar is de�ned as: <expr> and<terminal> are of type double, <mon op> is of type (double ! double) and<bin op> is of type (double ! double ! double). By adding more symbols,other types an be inorporated in the grammar. Customarily, the <terminal>symbol is de�ned as a separate symbol from the <expr> symbol even though theyhave the same type.There is no apparent bene�t for preferring one grammar over the other. In theliterature, Koza-style geneti programming uses (albeit impliitly) the �rst, whileusers of CFG based geneti programming seem to prefer the seond (Whigham,1996a; O'Neill and Ryan, 2001). Although the use of di�erent grammars an resultin a radially di�erent performane, it is in general not possible to hoose an optimalor even a good grammar in advane.Although a ontext free grammar an be used to speify the syntax of an arbitraryomputer language, the importane of suh syntatial issues is very limited. Inontrast with parsing, generating sentenes in a spei� omputer language is trivialwhen the omputation that needs to be performed is represented in an unambiguousformat. A parse tree is suh a format. If pure syntatial issues | suh as whereto put a semi-olumn | are hardly relevant, why are ontext free grammars inommon use in geneti programming?One reason for using ontext free grammars is to implement a type system thatan be used to onstrain the expressions that an be produed. When the funtionset is omposed of | say | logial funtions and arithmetial funtions, a ontextfree grammar an be used to make sure that boolean and real-valued types do notget mixed. The type system that an be implemented with a ontext free grammaralone is however severely limited as eah type needs to be represented by a set ofprodution rules.Another potential bene�t in using ontext free grammars was identi�ed by Whighamas the possibility of hanging the bias of a geneti programming system by hang-ing the grammar, while leaving the language (the set of possible sentenes that anbe expressed) intat (Whigham, 1996b). As it is diÆult to �nd a good grammarin advane, Whigham experimented with hanging the grammar during optimiza-tion (Whigham, 1996a).



42 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSContext free grammars are not well suited to model the uom system. Sine there isan unountably in�nite number of types present in the uom system, a full spei�a-tion is impossible. There have been implementations for a subset of the uom system(Ratle and Sebag, 2000), where all integer units in the range [�2; 2℄ have been mod-elled using the restrited funtion set of f+; �;�; =g. Sine this gives 5 di�erenttypes per dimension, a full spei�ation of the grammar (exluding funtions suhas sqrt) for a problem stated in LTM requires 53 = 125 di�erent symbols, eahhaving many rules (for example, the multipliation and division operators requiringup to 125 rules per type):<exp in 0 0 0> ::=(<exp in 0 0 0> * <exp in 0 0 0>) |(<exp in 1 0 0> * <exp in -1 0 0>) |(<exp in 2 0 0> * <exp in -2 0 0>) |...[followed by 122 more definitions for multipliation℄.Due to the tediousness of writing suh a grammar by hand, (Ratle and Sebag,2000) used a grammar generation routine. A more detailed disussion of the e�e-tiveness of suh a grammar in ombination with a strongly typed subtree rossoveris postponed until Setion 4.5.Typing through inheritane (subtyping) is more expressive than using CFGs. Theapproah is used in modern Objet-Oriented languages and in its most basi formmodels an is-a relationship. Although existing, the support for generi funtionsis limited. For example suppose that a base type objet is de�ned as well as twoderived types integer and oat. To de�ne a generi list, in the subtyping approahone would need to reate a type objet list2. It is now possible to add integers andoats to the list through their anestor objet. When retrieving an element fromthis list however, one retrieves something of type objet, rather then an integer oroat. In general a runtime hek must to be performed in order to determine thetype of the objet. If the goal is to reate a list of integers, a whole new typeinteger list needs to be de�ned, dupliating the funtionality of the objet list. Asthe uom system requires generi funtions where the atual type of the operandsis required to alulate the output type, the subtyping approah seems not to besuitable.Strongly typed GP through parametri polymorphism (generi typing) (Yu andClak, 1998) is modelled on the basis of modern funtional languages suh asHaskell, that have their roots in the typed �-alulus. It presents a omplete typesystem where type variables and thus generi funtions play a prominent role. Forthe previous example, given two types integer and oat, it is possible to de�ne ageneri list by the type spei�ation [T ℄, where T denotes a type variable, or pa-rameter (hene the name parametri polymorphism). A funtion ons an easily bede�ned to be of the type (T ! [T ℄ ! [T ℄), meaning that the �rst argument is oftype T , the seond argument a list of T s and it returns a list of T s. A uni�ationproedure infers the types in the tree generation routine, and ensures that for exam-ple no oat an be added to a list of integers. Parametri polymorphism enhaned2In fat, the Java language gives suh a list-of-objets in its standard library.



4.5. TYPED VARIATION OPERATORS 43with type arithmeti is well suited for implementing a strongly typed version of theuom system. In this paper logi programming is used in order to implement thistype system.Similarly to ontext free grammars, logi grammars do not form a type-system perse, but rather a de�nition of a (omputer) language. Logi grammars are morepowerful than ontext free grammars sine additional | semanti | informationan be manipulated as well. A logi grammar is usually translated into a logiprogram that an parse and generate sentenes in the language. Chapter 6 willintrodue a system for performing strongly typed geneti programming on logiprograms diretly.4.5 Typed Variation OperatorsMost strongly typed geneti programming systems rely on strongly typed rossoveroperators that attempt to keep the expressions orret at all times by only swappingtype-ompatible sub-expression. Two a priori arguments in favour of relaxing thetype onstraint for the variational operators are identi�ed here: a general argumentinvolving ergodiity of the searh spae and a spei� argument involving loss ofdiversity for subtree rossover.4.5.1 Broken ergodiityStrongly typed geneti programming systems vastly redue the size of the searhspae (Montana, 1995) by exluding all but orretly typed formulations. For enu-merative or random searh this onsiderably aelerates the searh proess. How-ever, for algorithms utilizing some notion of a neighbourhood, a redued searhspae may be detrimental, espeially when the resulting spae is fragmented withrespet to the neighbourhood funtion. In the ase of simulated annealing for in-stane, an a priori requirement for global onvergene is that the searh spae isergodi: any point in the searh spae needs to be onneted to any other point ina �nite number of steps. When this ondition is not met, the searh method is saidto su�er from broken ergodiity (Palmer, 1982). Broken ergodiity implies that theresults strongly depend on the initial onditions. The apparent fous on `proper'initialization in the geneti programming literature already points at the existeneof a problem.As an example of fragmentation, onsider the uom system with strongly typedsubtree rossover and mutation. For example, let us onsider a node that adds twoveloities [m=s℄+ [m=s℄. Both of the veloities are alulated in subtrees below theaddition node. One these types are instantiated, subtree rossover and mutationare fored to treat the arguments of the addition as veloities. The variationaloperator annot hange one of the arguments to, say, a subtree stated in units oflength as this would produe an inonsistent tree. There is therefore no path toinrementally transform the addition of veloities to an expression stated in otherunits, no matter how bene�ial for the performane of the expression this might be.The system is always fored to treat the expression as being a statement in veloityunits.



44 CHAPTER 4. INDUCTION OF EMPIRICAL EQUATIONSUsing strongly typed variation operators, all hanges to an expression (be it usingrossover or mutation) are made in the ontext of the types present in the unhangedpart of the expression. This has the potential to lead to a strong dependene onthe initial population, where the typing struture of the best performing expressiondetermines a template the rest of the optimization has to onform to. As thistemplate is hosen relatively arbitrarily (it is hosen on the basis of a limited sampleof randomly generated programs that might have undergone only a few rounds ofseletion and variation), this an have a strong impat on the ability to searh well.4.5.2 Loss of diversityAnother problem for tree-based geneti programming in the ontext of a type-system lies in the availability of geneti material (subtrees) to be reombined usingstrongly typed subtree rossover. Consider a system based on a tree-based stronglytyped approah, using strongly typed variational operators working on a type-systemontaining T types (or a ontext free grammar with T non-terminal symbols). Sinea strongly typed subtree rossover only swaps subtrees of the same type, the odebase of subtrees present in the population is e�etively partitioned into T di�erentsubspaes: one for every type. There is also only a limited apaity of types thatan be present in any one individual due to limitations of size.Although strongly typed subtree rossover is apable of reating new subtrees, it isusually not apable of reating new types: exhanging material of the same type willgenerally not hange the type of the node above the exhange spot. An exeptionis the exponentiation rule (see Table 4.1) where the value of the onstant inuenesthe type. Exhanging onstants with di�erent values will hange the type of theexpression, potentially leading to a type error3.Due to the e�ets of repeated seletion and subtree dupliation by subtree rossover,it an be expeted that number of distint subtrees for any one type will be only asmall fration of all available subtrees (Keijzer, 1996). The mutation operators arethen solely responsible for introduing new types in the population, leading to theexpetation that subtree rossover will loose its e�etiveness during the run.4.6 SummaryThis hapter lays some groundwork for the hapters that follow. The goal andmethod of this thesis is identi�ed: making the equations produed by geneti pro-gramming more suitable for analysis and interpretation by the use of units of mea-surement as a type system.The system of units of measurement is de�ned in the notation of the typed �-alulus, where the units are desribed by a vetor of exponents. These vetorsform the types in this system. Beause the number of types as suh is unountablyin�nite, simple type systems annot ater for this level of expressiveness. It was3When using ontext sensitive grammars, suh errors annot in priniple all be heked synta-tially, therefore (Wong and Leung, 1997) implemented a semanti validation proedure to hekif all onstraints are satis�ed after a subtree rossover event.



4.6. SUMMARY 45shown that spei�ally a ontext-free grammar an not be used to speify all possibletypes in this system.A brief review of strongly typed geneti programming is given, showing that themost ommon approah to ensure type orretness of expressions is by employ-ing operators that keep all types orret at all times. Some arguments are givenwhy strongly typed variation operators are not neessarily the optimal approah toensure this type orretness. A brief hint is given that in developmental genetiprogramming systems untyped variation operators an be used. This will be ex-plored in depth in Chapters 6 and 7, where a developmental geneti programmingsystem is introdued that an implement the units of measurement type system infull generality, without the need for strongly typed variation operators.The term delarative bias is assoiated with strongly typed geneti programming.In the units of measurement system, the language of all possible expressions isredued to only those expressions that are dimensionally orret. Delarative biasis a method of introduing bakground knowledge from the problem domain intothe searh. By reduing the number of well-formed expressions, a searh speedupis expeted (Montana, 1995). Above it is argued however that suh a speedup anonly be expeted when enumerative of random searh are used; the introdutionof delarative bias in searh tehniques that employ some form of neighbourhoodfuntion | suh as geneti programming and simulated annealing | might hinderthe searh in unforeseen ways by breaking the ergodiity in the neighbourhoodfuntion de�ned by the searh operators.Chapter 5 will however introdue a method where the information about the unitsof measurement is not taken as an a priori redution of allowed expressions. Itwill implement the units of measurement as a preferene rather than a onstraint.This will be alled a preferential bias, where the searh spae is not redued, butextra information about the amount of typing error is inluded in the performaneevaluation. A multi-objetive searh is then used to �nd the optimal balane betweenthe �t on the data and the type onsisteny of the proposed formulations.
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Chapter 5Dimensionally Aware GenetiProgrammingStrong typing is not the only approah imaginable to obtain expressions that useunits of measurement. Due to possible problems with ergodiity, but also beausethe partiular set of units that are used in the experimental setup annot be expetedto present the best possible set, a less strit approah might be worth investigating.Suh an approah is the oerion based approah introdued here.Rather then insisting on keeping the expressions orretly typed at all ost, theapproah relies on a set of oerion funtions of arity 1, that map one type intosome other type, any other type. Coerions in omputer languages are often usefulwhen the type system prevents otherwise sensible operations. Without oerions,it would for instane be hard to add an integer value to a oating point value; anoperation that from a mathematial point of view should not pose any diÆulties.As oerion funtions irumvent a type system, too many oerions make the odehard to read and interpret. With the oered geneti programming approah thenumber of oerions is used as a seond objetive, oerions are thus allowed whenthey help in better solving the primary objetive, while gratuitous oerions arepunished when alternatives are present.The main philosophy behind this approah is that while type orretness an helpin reating readable and interpretable omputer programs, a rigorous adherene toa spei� type system might exlude the indution of well-performing expressions.By refusing to view the onstraints imposed by a partiular type system as hardonstraints, it is expeted that this leads to a more eÆient searh. Furthermore, alimited number of typing errors an be quite aeptable if it helps the performane.Beause it is not lear what the optimal balane between type orretness andperformane is at the outset of the experimentation, a multi-objetive strategy basedon Pareto optimality is used. This has an advantage over penalty funtions (Yu andBentley, 1998) that no a priori hoie has to be made about the balane betweenperformane and type orretness. Due to the existene of oerion funtions,inorretly typed expressions are not viewed as illegal expressions, as they an stillbe exeuted. More importantly even, a run results in a front of non-dominated



48 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMINGsolutions that balane performane and type orretness in unique ways. Inspetingthe exat balane ahieved between type violations and performane an highlightproblems in the problem de�nition and might lead to additional insight.5.1 Coered Geneti ProgrammingThe name Coered Geneti Programming is hosen as the general name for thisapproah. Rather then avoiding to generate inorretly typed parse trees, the treesare repaired by inserting oerion funtions. The appliation of a oerion funtionis assoiated with a oerion error that is supposed to model the `badness' of thepartiular oerion that is applied.The system thus depends on the de�nition of a omplete set of oerion funtions.When all types an be oered into eah other using suh funtions, the oerionapproah to typing an be de�ned as follows:1. Set up a basi (single-typed) geneti programming system using all funtionsand terminals, without the set of oerion funtions. No e�ort is made toensure that the types math, other than making sure that a funtion has asmany arguments as its arity (i.e. all binary funtions are of the generi form(T ! U ! V ).);2. Before evaluation, repair the tree by reursively mathing atual types. If andwhen a type violation ours:� insert the appropriate oerion funtion;� add the assoiated oerion error to the total oerion error for theprogram;3. evaluate the repaired tree;4. return the evaluation result together with the total oerion error.The oerion error of a program is used as a seond objetive in a multi-objetivesearh. Thus, rather than onstraining the searh to type-orret formulations only,all expressions an be inferred. Type orretness is viewed as a soft onstraint,and the searh is guided rather than fored to abide these onstraints. It thusimplements a preferential bias towards orret solutions rather then the delarativebias used by strongly typed geneti programming. At the end of a run, typially aPareto front of non-dominated solutions is delivered; it is up to the user to judgewhih balane between the ability to solve the problem and type orretness is themost appropriate for the problem at hand.Appliability of the approah The oerion approah to typing is suitable forany language where the types have a more-or-less meaningful oerion into eahother. The language of units of measurement possesses this, but also a languagethat mixes integers, oats and booleans have suh `natural' translations.If these `natural' oerion funtions an not be de�ned however, a strongly typedapproah might be worth investigating. An example of this would be a language



5.1. COERCED GENETIC PROGRAMMING 49that allows string manipulations together with numeri operators. It is not learhow to oere a string into a number in a sensible way or vie versa.The oerion approah is related to repair-based algorithms that are used in runtimetyped geneti programming systems (Yu and Bentley, 1998). There is one ruialdi�erene: repair based algorithms do not in general use the e�ort that is needed inrepairing expressions to guide the searh. There is therefore no seletion pressuretowards �nding expressions that do not need repair. Coered geneti programmingdoes provide suh pressure. It will tend to avoid expressions that need exessiveamounts of repair.5.1.1 Calulating the Coerion Error for the uom systemFor the uom system a single oerion funtion that only passes its argument anbe de�ned: oere : ([x; y℄! [u; v℄)oerion-error = ju� xj+ jv � yjwhih states that the oerion funtion an transform a type stated in a uominto a type within any other uom . This is equivalent to multiplying the inputtype with a onstant of magnitude unity and uom [u � x; v � y℄. The oerionerror is aumulated through the expression and is used as an additional objetive.In previous work (Keijzer and Babovi, 1999) the oerion error has also beenalled goodness-of-dimension. The goal of the oerion approah within the uomsystem is to �nd a trade-o� between dimensionally orret formulations and well-�tted formulations. The oerion approah provides a graeful degradation whenno orret formulations that �t the data well an be found.As this oerion funtion does not alulate anything | it simply returns the valueof its arguments | no atual manipulations to the expression are neessary. Whilealulating the oerion error, the algorithm onsiders oerions only at the followingnodes:� At the root node: when the uom of the expression di�ers from the desireduom;� At addition and subtration nodes: when the two arguments di�er, one argu-ment is oered into the uom of the other argument;� At transendental nodes: when the argument di�ers from the dimensionlessuom, a oerion takes plae.The algorithm for alulating the oerion error is reursively applied at all possibleoerion points and selets that set of oerions that gives the smallest oerionerror. The addition and subtration nodes are onstrained to oere the uom of oneargument into the other and not both to some third potentially more optimal uom .Binary funtions suh as multipliation and division propagate the onstraints, and



50 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMINGthus alulate the produt of possible oerions. As an example: onsider a treeusing a length measurement, a time measurement and a veloity measurement inthe following way. *+m s +m/s mThis expression is learly inorret, it adds lengths to time measurements and lengthsto veloities. To alulate the minimal oerion error, two arrays of values aremaintained: one to store the oered units of the tree, the seond to store theoerion error. The terminals are initialized with arrays storing the input dimensionsand a oerion error of 0. Calulating these arrays at the addition node will resultin the following struture: *[s,m℄ [2,2℄[m℄[0℄ [s℄[0℄ [m m/s℄ [1 1℄[m/s℄[0℄ [m℄[0℄For the �rst addition branh, the information ontained in the arrays [s,m℄[2,2℄,indiates that to obtain an expression stated in seonds, the �rst argument of thefuntion (the length measurement) needs to be oered. This oerion involves ane�ort (the oerion error) of 2: the length measurement should be multiplied witha onstant stated in units of time per length to obtain a time measurement. Theother option is to oere the variable in unit time to a variable in units of length.To obtain suh a length measurement, it needs to be multiplied with a onstantin veloity units. For the seond addition branh a similar alulation is made.Beause there the arguments to the funtion only di�er in the time dimension, theoerion error is 1. The multipliation node distributes the tentative outputs of theaddition nodes by onsidering all possible output units. Beause no oerion errorsan be made at this point, it will simply add the assoiated oerion errors of itsarguments. The alulation will then look like:[ms, m, m2, m2/s℄[3,3,3,3℄[s,m℄ [2,2℄[m℄[0℄ [s℄[0℄ [m m/s℄ [1 1℄[m/s℄[0℄ [m℄[0℄The possible outputs of this tree is thus one of [ms, m, m2, m2/s℄. Suppose thatthe target uom for this problem is an aeleration. Coering the arrays of possibleoutputs to an aeleration will result in:[m/s2, m/s2, m/s2, m/s2℄ [6,5,6,5℄Then, the minimal oerion error for this expression is the seond or the fourth seriesof oerions, orresponding with a oerion error of 5. Considering the seond seriesof oerions will produe the orret expression:



5.2. EXAMPLE: SEDIMENT TRANSPORT 51* (m/s2)1/s2 * (m)+ (s)*s/m m s + (m/s)m/s *1/s mwhere the oerions that are (impliitly) applied are shown in boldfae. Although inpriniple the use of binary funtions suh as multipliation and division an involvean exponential e�ort in alulating the oerion error of expressions, in pratie(due to the pressure on minimizing oerions) the omputation is feasible.The oerion error is then used as a seond objetive that is to be minimized inthe searh. This oered geneti programming system applied to problems involvingunits of measurement is alled Dimensionally Aware Geneti Programming (DAGP).The name indiates that even though the system uses the dimensions in the data, itis only `aware' of them, not fored to abide them at all ost. The primary motivationfor the de�nition of this DAGP was the suspiion that for many pratial problemsnot all relevant data would be measured and that this data is not always statedin the optimal units for induing expressions (Setion 4.2). Making the systemaware of the uom in the problem desription, rather than rigorously abiding themis thought to provide a more robust system than a strongly typed approah.5.1.2 WrappingOften with geneti programming, methods an be devised that enlarge the solutionspae by making use of wrappers. Setion 2.2.4 introdued wrappers for regressionand lassi�ation. When induing fully dimensioned empirial equations, anotheropportunity for wrapping the output arises.In the system desribed above, the oerion error made at the output level (the rootnode of the tree) was inluded in the overall oerion error of the expression. Anexpression that is dimensionally onsistent, but produes an output in the wrongunits will thus have a non-zero oerion error. By relaxing this onstraint to allowany output units, the solution spae is again enlarged. The wrapper that will beused then takes the form of a multipliation by a onstant, stated in suh unitsthat the overall output is stated in the orret units. Suh dimensioned onstantsat the output level are part of standard sienti� pratie and produed normalizingonstants suh as Chezy's roughness oeÆient (stated in m0:5=s2).5.2 Example: Sediment TransportThe sediment transport problem was more fully desribed in Setion 3.1. Theterminal set is presented here again in Table 5.1, and the funtion set onsists ofthe usual:



52 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMINGF = fplus/2,times/2,div/2,minus/2,sqrt/2gName uom desription� m2=s kinemati visosityuf m=s sheer veloityu0f m=s sheer veloity related to skin fritionws m=s settling veloityd50 m median grain diameterg 9:81m=s2 gravity aelerationb dimensionless onentration of suspended sedimentTable 5.1: Dimensioned terminal set for the sediment transport problem.Optimizing on the oerion error de�ned in Setion 5.1.1, and on the normalizedroot mean squared error (NRMS), the typial result of a dimensionally aware genetiprogramming run is a front of non-dominated solutions that balane between au-ray on the training data and oerion error. Suh a front is depited in Figure 5.1.This �gure is typial in that there exists a trade-o� between the error on the dataand the oerion error. This is not at all obvious as the dotrine of dimensionalanalysis in siene seems to suggest that dimensionally inorret formulations areexpeted to be wrong. These equations might be `wrong' when looking at thedimensions only, but they do sueed in modelling the data well.The reason for dimensionally inorret expressions to evolve and have better a-uray than the dimensionally orret expressions has its origins in two separatereasons. Firstly, there are simply more dimensionally inorret expression thandimensionally orret ones. The number of mathematial relations that an bemodelled with an inorret expression is larger then that of dimensionally orretexpressions, as the spae of inorret expressions ontains all arithmetial funtionsusing the funtions and variables. Seondly the data is olleted and measuredthrough empirial means: not all relevant phenomena an be measured in suh aproess and it is not guaranteed that the spae of dimensionally orret modelsontains a solution.With this trade-o� expliitly modelled in the front of non-dominated solutions,the user's judgement enters the equation. The di�erene in error between the bestdimensionally orret equation and the best equation �tted on the data in Figure 5.1is suÆiently large to examine some other equations. In this partiular ase it wouldseem wise to also examine the formulations that have a oerion error lose to 0:5and a NRMS value lose to 0:44, and ontrast them with the dimensionally orretexpression that evolved in the same run. A oerion error of 0:5 is fairly low: it anfor instane be aused by an addition of a length measurement with a measurementstated in the square root of length as the only violation of the onstraints. Whetherthis inonsisteny weights up against the level of improvement is neissarily asubjetive hoie.Performing many independent runs results in a set of fronts of non-dominated solu-tions. From these again a front an be formed (see Figure 5.2). This is ultimatelythe set the user has to hoose from. Also here a trade-o� between performane
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NRMS errorFigure 5.1: A typial front of non-dominated solutions produed in a single run ofthe dimensionally aware system. Almost invariably, a balane between goodness-of-�t and oerion error exists in the front of solutions.on the data and dimensional orretness an be observed, areful examination ofthe formulae an provide additional insight into whih units need to be violated toobtain a better �t on the data.Interpretability Using a version of dimensionally aware geneti programming, inprevious work (Keijzer and Babovi, 2000b) the following equation was indued forthis problem. b � 1:121� 10�5�1 + 100u0fwsgd50 � u0f � wsu0f + ufThis formula is dimensional orret, and furthermore it uses the most relevant phys-ial properties in the relevant ontext. For example, the dimensionless term u0fwsgd50is e�etively a ratio of shear and gravitational fores. Shear fores are representedby u0f , `responsible' for elevating sediment partiles into the stream, while the grav-itational term gd50ws is `responsible' for settling the partiles. The remaining groupu0f�wsu0f+uf is a ratio of resultant energy near the bed and of the total available energyin the ow transporting the partiles.The formula thus introdues two dimensionless terms, eah being relevant to theproblem. Three soures of information lead to the indution of the expression:� the input output relation present in the data;



54 CHAPTER 5. DIMENSIONALLY AWARE GENETIC PROGRAMMING

0

1

2

3

4

5

0.3 0.35 0.4 0.45 0.5

C
oe

rc
io

n 
E

rr
or

NRMSFigure 5.2: Overview of all fronts of non-dominated solutions produed by 50 inde-pendent runs of a dimensionally aware geneti programming system. The front ofthis set is depited with additional irles.� the units of measurement desribing the dependent and independent variablesin the problem;� the user that seleted this expression, symbolially manipulated it and triedto interpret it.The �rst two soures are automated, while the third step ritially depends on auser that tries to distill meaning out of the proposed relationship. The expliit useof the units of measurement helped in �nding a link between the expression and thephysial world. Several of suh tentative relationships have been proposed above.5.3 SummaryThe method of using oerion rather than strong typing was �rst introdued in (Kei-jzer and Babovi, 1999), where it was applied to the problem of induing expressionsin the language of units of measurement. The partiular ombination of typing asoerion on problems involving units of measurement is alled `Dimensionally AwareGP', abbreviated to DAGP. The details of the alulation of the oerion errorin (Keijzer and Babovi, 1999) are slightly di�erent from those presented here.Even though DAGP is apable of optimizing well, it has a drawbak in that it relieson a multi-objetive searh strategy to balane �tting apability and oerion error.The omputational omplexity of this multi-objetive searh strategy (NSGA-II) is



5.3. SUMMARY 55quadrati in the population size. For pratial appliations, this limits the populationsize that an be used. The spei� alulation of the oerion error used here is inthe worst ase exponential in the depth of the tree. In pratie upper bounds onthe number of oerions that are maintained an be employed: this is not likely tohave adverse e�ets, as a tree with a large number of potential oerions, will havea very large oerion error. The pressure on minimizing this oerion error helps inavoiding suh large omputations, but a maximum number an be easily set to ullexpressions with an exessive amount of possible oerions.To investigate the apabilities of DAGP in ontrast with a dimensionally orretapproah, an implementation of a strongly typed geneti programming is needed.As was shown in Setion 4.4, systems that an handle only ontext-free onstraintsor that use typing through inheritane are not apable of expressing the languageof units of measurement in full generality. A form of parametri polymorphism thatallows expliit type alulations is needed.To ahieve this a new geneti programming system is de�ned. This is alled anAdaptive Logi Programming system and will be introdued in Chapter 6. It isbased on a developmental geneti programming system alled Grammatial Evolu-tion (O'Neill and Ryan, 2001), but is extended to handle arbitrary logi programsinstead of ontext-free grammars only. Setion 7.1.3 will ontrast the untypedrossover used in ALP, with a typed rossover on problems involving units of mea-surement.The experiment performed here is anedotal in nature. It highlights some issuesthat arise when using the DAGP method of induing dimensioned equations, inpartiular the Pareto front that is produed by this method. Although it is easierto use a system that produes a single best answer, it is thought that partiularlyin an exploratory endeavour suh as sienti� disovery the many alternatives thatare expliitly delivered makes the system more useful for the sientist using it.With the de�nition of this strongly typed geneti programming system in Chapter 6and its sope in Chapter 7, it is then �nally possible to ompare symboli regression,dimensionally aware geneti programming and strongly typed geneti programmingon the problem of �nding empirial equations on data. This omparison involvingfour real-world unsolved problems an be found in Chapter 8.
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Chapter 6
An Adaptive LogiProgramming System
Logi Programming makes a rigorous distintion between the delarative aspetof a omputer program and the proedural part (Burke and Foxley, 1996). Thedelarative part de�nes the meaning of the program: the set of all fats that anbe dedued. The proedural part aims at derives these fats.The programming language Prolog is a onrete implementation for the Logi Pro-gramming paradigm, where the proedural aspet is implemented using a depth-�rstsearh-strategy through the rules (lauses) de�ned by a logi program (Sterling andShapiro, 1994).Due to its delarative nature, logi programming is very suitable for de�ning om-puter languages and onstraints on them. Suh a logi program then onsists of ade�nition of all valid omputer programs. In e�et, the logi program de�nes botha parser and a generator for the language. The language an take the form of sim-ple algebrai expressions; a robot steering language; onstrained languages suh asalgebrai expression in the language of physial units of measurements and matrixalgebra; as well as logi programs themselves. If the latter is the ase, one normallyspeaks of Indutive Logi Programming (ILP) (Muggleton and Raedt, 1994).When suh a logi program is run using the Prolog searh strategy, it will enumerateall possible omputer programs in the domain de�ned by the logi program. Whenthe searh is for that partiular omputer program that performs best on someproblem, and the number of possible programs is large, suh an enumeration is nota viable searh strategy.An alternative for the depth-�rst searh strategy of Prolog is examined here. Avariable length geneti algorithm is used to speify the hoie to make at eahhoie-point in the derivation of a query. This hybrid of a variable length genetialgorithm operating on logi programs is given the name Adaptive Logi Program-ming.



58 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMheadz }| {pred( funtor(Var1, Var2)) : � bodyz }| {pred(Var1)| {z }literal , pred(Var2)| {z }literal .| {z }lauseFigure 6.1: The struture of a lause in a logi program.6.1 Logi ProgrammingThe basi onstrut in logis programs is a term. A term is a onstant, a variable ora ompound term. Constants denote partiular elements suh as integers, oatingpoint values and atoms, while variables denote a single but unspei�ed element.The symbol for an atom an be any sequene of haraters. It an be quoted toavoid onfusion with other symbols (suh as variables). Symbols for variables aredistinguished by beginning with an upperase letter or an undersore.A ompound term omprises a funtor and a sequene of one or more terms alledarguments. A funtor is haraterized by its name, whih is an atom, and its arityor number of arguments. Constants are onsidered funtors of arity 0. Syntatiallyfuntors have the form f(t1; t2; : : : ; tn) where the funtor has the name f and isof arity n. The ti's are the arguments. A funtor f of arity n is denoted f=n.Funtors with the same name but di�erent arities are distint. Terms are groundif they ontain no variables; otherwise they are non-ground. Goals are atoms orompound terms, and are generally non-ground.A logi program onsists of lauses onsisting of a head and a body. See Figure 6.1for the struture of a lause. Clauses themselves an be thought of as ompoundterms in their own right, they are haraterized by their prinipal funtor :-/2. Thehead and the body are the two arguments for this funtor. The terms ourring asprinipal funtors in the body are alled literals, to emphasize that they are literallyused i.e., they are evaluated. A lause with an empty body is alled a fat. Theterm prediate is reserved for a set of lauses that share the same funtor (nameand arity) in the head of the lause. Finally a logi program is de�ned as a set ofsuh prediates.With all the de�nitions and notational onventions in plae, onsider the logiprogramsym(x).sym(y).sym(X + Y) :- sym(X), sym(Y).sym(X * Y) :- sym(X), sym(Y).whih reursively de�nes the prediate sym/1. The derivation funtor :-/2 shouldbe read as the impliation sign  . This program delares the omplete and in�niteset of legal expressions ontaining the atoms x and y and the funtions of addition+/2 and multipliation */2. This logi program is equivalent with the ontext freegrammar:



6.1. LOGIC PROGRAMMING 59<sym> ::= x.<sym> ::= y.<sym> ::= <sym> + <sym>.<sym> ::= <sym> * <sym>.Logi programming has its roots in prediate logi. Clauses are universally quanti�edover the variables. The third lause in the program above an be translated inprediate logi as8X;Y : sym(X + Y ) sym(X) ^ sym(Y ) (6.1)Thus: X+Y is a sym if X and Y are syms. This is the delarative reading of the lause.The proedural reading would be: to show that sym(X+Y) is valid, show that bothsym(X) and sym(Y) are valid. In ontrast with the program, a query onsists of aterm where the variables are existentially quanti�ed. For example, the query?- sym(X).an be interpreted as the inquiry 9X : sym(X) i.e., is there suh an X? Whenrunning this query in Prolog it produes the following sequene of solutions:X = x;X = y;X = x + x;X = x + y;X = x + (x + x);X = x + (x + y);X = x + (x + (x + x));...From this sequene, the general operation of the depth �rst lause seletion inProlog an be inferred. It �rst examines the �rst lause of the program: sym(x).Binding the variable X to the atom x gives the �rst instane of the sequene. Abinding suh as this is usually desribed in a substitution format: [x/X℄. Whenthe user asks for the next solution, the system baktraks: a ag gets set at thislause, the binding of X is undone and Prolog will examine the next lause: sym(y).This will result in the substitution [y/X℄. Baktraking for a seond time involvessubstituting X with X1 + X2 (Prolog will provide fresh variables wherever a onitmight arise). This is denoted as: [(X1 + X2)/X℄. The goal stak is updated withtwo new goals: sym(X1) and sym(X2). The Prolog engine will now try to resolvethese two goals, in the �rst instane resulting in the bindings [x/X1℄ and [x/X2℄.The full set of bindings will then be: [x/X2℄ [x/X1℄ [(X1 + X2)/X℄ , whih anbe simpli�ed to [(x+x)/X℄. The return value will thus be X = x + x.Extrapolating this sequene it is easy to see that without bounds on the depth orsize of the derivation, the depth-�rst lause seletion strategy employed in Prolog



60 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMwill never generate an expression that ontains the multipliation harater. If suhlimits are employed, Prolog will eventually generate suh expressions, though thisan take a long time.A logi program as suh does not de�ne how to obtain solutions, it simply de�nes allpossible expressions of this simple omputer language. One of the many interestingfeatures of logi programming is that there is no strit de�nition of input and output.The same program an be used both for generating expressions as well as for parsingexpression. When running the query ?- sym(x + x * y) in Prolog, the programwill return with the answer yes, indiating that indeed, the expression x + x * yis a member of the set sym. The parsing and generating parts an be mixed: thequery sym(X + X*Y) would enumerate all possible bindings for the variables X andY.Although in this example program input and output an be mixed, not all prediatesan be written that way. This leads to the de�nition of the mode of the variables in aprediate. A variable ourring in the head of a lause an be input, output, or both.The mode is stritly speaking not a part of the Prolog language, though severalvariants have been de�ned to use the mode of prediates to produe more eÆientode. In some logi programs that are used to generate sentenes in Chapter 7, thenotion of mode will be used to write more eÆient programs.Logi programming is a onvenient paradigm for speifying languages and on-straints. A prediate an have several arguments that an be used as attributes.These attributes an be used to onstrain the searh spae. For example, the logiprogram and querysym(x,1).sym(y,1).sym(X+Y,S) :-sym(X,S1), sym(Y,S2), S is S1+S2+1.sym(X*Y,S) :-sym(X,S1), sym(Y,S2), S is S1+S2+1.?-sym(X, S), S<5.Program 6.1.1: Logi program de�ning a set of expressions together with their size.spei�es all expressions of size smaller than 5. The desriptive power of a logiprogram, makes it an ideal andidate for implementing attribute logi and onstraintlogi programming. It is this onvenient representation of data, program struturesand onstraints that the geneti algorithm will try to exploit in this work.Formally, a Logi Programming system is de�ned by Seleted Literal De�nite lauseresolution (or SLD-resolution for short), and an orale funtion that selets the nextlause or the next literal. This orale funtion is in Prolog implemented as:� Selet �rst lause� Selet �rst literal� Baktrak on failure
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Figure 6.2: The searh tree spanned by the logi program ontaining the lausessym(x) and sym(X+Y) :- sym(X), sym(Y) Prolog will always hoose the leftmostbranh �rst.Prolog thus tries to enumerate the entire domain with a depth �rst strategy, but itan get trapped in an in�nite derivation. Figure 6.2 presents the searh tree that isspanned by a simple logi program ontaining the fat x/0, and the funtion +/2.In this ase all the solutions are present on the left side of the tree, thus Prolog anenumerate them. Changing the order of the lauses would transfer all the solutionsto the right side of the tree, and without a depth limit, Prolog would not be ableto derive a single instane of the set.Due to the non-deterministi de�nition of the expressions, Logi Programming isa onvenient paradigm to de�ne onstrained expressions. Parsing expressions andgenerating expressions an in priniple be done with the same program. The goalof this approah is to generate expressions from some onstrained set of omputerprograms. In partiular the goal is to generate that omputer program that performsbest on some objetive funtion. Prolog is apable of enumerating all omputerprograms given their de�nition in a logi program. When the number of possiblesolutions grows, this enumeration is not a viable searh strategy, espeially sinethe ordering of the lauses in the program determine the enumeration order. Inthe examples above, expressions ontaining a multipliation operator an only begenerated after all valid expressions ontaining the other operators are generated.To realistially searh in the spae of expressions de�ned by a set of prediates,the Adaptive Logi Programming system is introdued. It replaes the �rst lauserule in Prolog with a string of hoies that represents an arbitrary path through thesearh tree. A variable length geneti algorithm is used to searh this spae of pathsthrough the logi program.6.2 An Adaptive Logi Programming SystemGrammatial Evolution (O'Neill and Ryan, 2001) aims at induing arbitrary om-puter programs based on a ontext-free spei�ation of the language. It employs avariable length integer representation that spei�es a sequene of hoies made in



62 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM(0) sym(x).(1) sym(y).(2) sym(X + Y) :- sym(X), sym(Y).(3) sym(X * Y) :- sym(X), sym(Y).goal stak substitutions odon value?- sym(X).?- sym(X1), sym(X2). [(X1 + X2)/X℄ 2?- sym(X2). [y/X1℄ 1?- sym(X3), sym(X4). [(X3 * X4)/X2℄ 3?- sym(X4). [x/X3℄ 0?- [y/X4℄ 1Table 6.1: Deriving a solution from a logi program by guiding the seletion oflauses by a string of integers.the ontext-free grammar. This sequene of hoies represents a path through theontext-free grammar and thus a sentene in the language the grammar de�nes.Due to the spei� representation of a sequene of hoies no type informationneeds to be maintained in the evolving strings. Furthermore, no ustom mutationand rossover operators need to be designed: simple variable length string operatorsare used. In the GE-system, the hoies are alled odons to emphasize a biologialanalogy with triplets of nuleotides enoding a hoie for a spei� protein.In the Adaptive Logi Programming system (ALP) we similarly use a sequene ofodons as the base representation, but rather than hoosing between the produtionrules of a ontext-free grammar, the odons are used to make a hoie between thelauses in a logi program. The sequene of hoies thus represents the lause-seletion funtion operating together with SLD-resolution on the logi program. Itde�nes a path through the searh tree.To give an example of the proess, onsider Program 6.1, and a sequene of hoies[2; 1; 3; 0; 1℄. The derivation of an instane is shown in Table 6.1. The initial queryis sym(X). By hoosing lause 2| the addition lause | two new goals are induedand a variable binding is made that introdues two new logi variables. At everystep in the derivation, the �rst literal in the goal stak is seleted. When a fat isseleted, no new literals appear in the goal stak and a logi variable is bound to aground term.The result of this proess is a list of variable substitutions:[(X1 + X2)/X℄[y/X1℄[(X3 * X4)/X2℄[x/X3℄[y/X4℄.whih ultimately leads to the uni�ation: X = y + x*y. This symboli expressionis produed in the form of a parse tree, not unlike the S-expressions used in LISP,and they an readily be aessed and evaluated1. The depth-�rst lause seletionof Prolog is thus replaed by a guided seletion where hoies are drawn from thegenotype. The genotype represents a path through the searh tree (an example of1The algebrai notation used to present these programs are supported by Prolog for notationalonveniene.



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 63Seletion Prolog Modi�ationClause First Found From GenotypeLiteral First Found From GenotypeOn Failure Baktrak RestartTable 6.2: Possible modi�ations to the seletion funtion. The ALP system usedhere is identi�ed in boldfae.suh a searh tree an be found in Figure 6.2). The �rst unresolved literal is hosento be the �rst to derive. It is possible to replae this with guided seletion as well,be it in the same string or in a separate string. Together with a hoie whether to dobaktraking or not, this leads to Table 6.2 whih gives an overview of the parts ofthe Prolog engine that an be replaed. Table 6.2 thus de�nes a family of adaptivelogi programming systems. Here we will fous on the system that orresponds withmodi�ed lause seletion using baktraking. This was ompared with a setup thatdid not employ baktraking, and it was shown that for more onstrained programs,baktraking is indeed helpful (Keijzer et al., 2001a).There are some pratial problems assoiated with replaing literal seletion. Inmany appliations, a logi program onsists of a mix of non-deterministi prediates(suh as the sym/1 and sym/2 prediates above) and deterministi prediates (suhas numerial assignment and omparison operators). The deterministi prediatesoften assume some variables to be bound to ground terms, evaluating them out oforder would lead to runtime errors. The system studied here, whih uses baktrak-ing, enapsulates the Prolog language as a speial ase: the string ontaining an(in�nite) number of zeros is equivalent with running the program through Prolog.A logi program is thus used as a formal spei�ation of a set of parse trees, thesequene of hoies is used to steer the searh proess to derive a parse tree, anda small external program is used to evaluate the parse trees. See Figure 6.3 for thetypial ow of information. The sope of the system are then logi programs wherethere is an abundane of solutions that satisfy the onstraints, whih are subse-quently evaluated for performane on a problem domain. In some irumstanes,when the objetive funtion an be eÆiently evaluated in Prolog, the externalprogram is not neessary.6.2.1 Representation and the Mapping ProessLike Grammatial Evolution, the ALP system studied here is a member of the familyof Developmental GP systems (DGP) (Banzhaf et al., 1998)(pp. 250-255). In DGPa distintion is made between the representation the variation operators at uponand the omputer program that is enoded by this representation. Using a biologialanalogy, the internal representation is alled the genotype and the omputer programthe phenotype. The mapping proess to go from a genotype to a phenotype is thenseen as a developmental proess, hene the name developmental GP. In the ase ofALP, the developmental proess that is used to derive a omputer program takesitself plae in the ontext of a full-edged programming environment: the exeutionof a logi program.
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Figure 6.3: Overview of the ALP system: the sequene of hoies is used in thederivation proess to derive a spei� instane for sym(X), this instane is passedto the evaluation funtion. The alulated objetive funtion value is returned tothe geneti algorithm.



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 65The representation that is used in the ALP system is a variable length string onsist-ing of integers alled odons | named suh to emphasize another biologial analogy| Given n prediates, eah having the number of lauses C = [1; 2; : : : ; n℄, thevalue of the integers are restrited to lie in the range [0;Qni i), the produt ap-pears for reasons given below. When there is a single prediate in the program, theintegers deode simply to a lause in the prediate. As an example, onsider thesimple program:(0) sym(x).(1) sym(X + Y) :- sym(X), sym(Y).Beause the number of lauses in this program equals 2 and there is only oneprediate involved, the genotype is equivalent with a bitstring, where a 0 denotesthe terminal x and 1 denotes the addition funtion. This program was alreadyenountered above in Figure 6.2. It is now lear that the odons enode a hoiefor the path to take through the searh tree: 0 enodes a hoie for the left branh,1 enodes a hoie to the right. When using suh a simple program that ontains asingle prediate without additional onstraints, there is a one-to-one orrespondenebetween the string of odons and the form of the resulting expression:1 1 0 0 0 1 0+ + x x x + xTable 6.3: Correspondene between a path through a logi program and the symbolsthat are indued.the parse tree of the resulting program will then be:++x x xThis diret orrespondene holds for any single-prediate program that does notintrodue additional onstraints on the expressions that are indued.The two extra bits at the tail of the bitstring in Table 6.3 are unexpressed in theresulting program. They will be kept in the genotype as they might get expressedafter a rossover or mutation event. It is quite possible that the program is not�nished when there are no more hoies left in the string. In that ase, one ofseveral mehanisms an be employed:1. destrution: the string gets the worst possible performane value;2. repair: the string is extended with random integers until it �nds a solution;3. reuse: the string gets wrapped and the reading restarts at the beginning untilsome maximum level of wrappings is reahed (O'Neill and Ryan, 2001);4. Prolog: the string is extended with an in�nite number of zeros (i.e., theun�nished logi program is exeuted using Prolog).



66 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMFrom these hoies the �rst one, destrution, is used here. Destruting the genotypewill result in a failure rate for the algorithm. The destrution method is mainlyhosen for its simpliity: the repair method would involve hanging the genotypein the mapping proess, and it would have the disadvantage that when onsideringmore onstrained programs a large runtime overhead an be indued. It has thisin ommon with the Prolog method. This overhead ours when the un�nishedexpression is loated in a branh of the searh tree that does not ontain solutions,or only ontains equations that are too long. Esaping suh a branh involvesexamining all possible paths in that branh until the searh depth is exeeded,baktraking would then be employed to �nd another branh.The wrapping method has as a disadvantage that it is not guaranteed to �nish.In partiular, when using a simple program suh as the one above, the wrappingmethod is guaranteed not to �nish as the same un�nished tree would be usedrepeatedly.There are thus three possible outomes of the mapping proess: (i) the string isompletely mapped into an expression with no spare odons left, (ii) the string ismapped into an expression with spare odons left, or (iii) the string is mapped intoa partially ompleted expression. The last outome is onsidered a failure.Properties of the enoding for simple programs.Consider a simple (Koza-style) language onsisting of t terminals [x1; : : : ; xt℄, uunary funtions [h1; : : : ; hu℄, and b binary funtions [f1; : : : ; fb℄. The language ofparse trees an then be modelled by the single prediate logi program:expr(x1).� � �expr(xt)expr(h1(X)) :- expr(X).� � �expr(hu(X)) :- expr(X).expr(f1(X, Y)) :- expr(X), expr(Y).� � �expr(fb(X, Y)) :- expr(X), expr(Y).Program 6.2.1: General program for performing 'Koza'-style geneti programming.Inlusion of higher arity funtions is straightforward.every odon in a string will now deode into a spei� lause if it is used in theontext of the query ?- expr(X). Obviously, ternary and higher arity funtions anbe atered for as well.As there is a one-to-one orrespondene to an element in the string and the lausein the logi program it enodes for, the size of the goal stak during the generationof an expression an be written in terms of the odons of the string. De�ne thefuntion:



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 67b(x) = number of literals in the body of lause x minus onethus: b(x) = 8<: �1 if x < t : terminal0 if t � x < t+ u : unary1 if t+ u � x : binary (6.2)De�ne the funtion g, the number of literals on the goal stak after k odons areused from string s as: g(s; k) = g0 + kXi=1 b(si) (6.3)Where g0 is the initial state of the goal stak (usually 1). Then a string s of lengthN will deode to a omplete expression when the following ondition is satis�ed:9k � N : g(s; k) = 0 (6.4)The validity of this ondition an be heked using the orrespondene betweenthe funtion g and the number of literals on the goal stak. Initially, there are g0literals on the goal stak. When a binary funtion is added, one literal is poppedfrom the goal stak, and two are added. For a terminal, one literal is removed andfor a unary funtion, one is removed and one is added. Finally, when there are noliterals left i.e., the goal stak is empty, g equals zero and the query (and thus theexpression) is �nished.In e�et, using programs of this simple form, the string of integers is simply a pre�xenoding of the parse trees under onsideration, with the possibility of not fullyspeifying the omplete parse tree.Initialization and the Gambler's Ruin Model Given these logi programs, it isimportant to know what the probability is of generating a legal string, given that werandomly generate hoies. This obviously depends on the proportion of variables,unary funtions and binary funtions that are present in the program. These aredenoted here by t, u and b respetively, and the total number by C = t + u + b.Examining Equation 6.4 for string length 0, there is 1 unresolved literal, the originalquery. For eah odon we add to the string, this number an inrease, derease orstay the same, depending on what value is drawn (Equation 6.2). If the number ofunresolved literals drops to zero at any point, Equation 6.4 de�nes that the stringwill enode a legal expression regardless of the odons that appear after that point.This situation is muh like the situation of a gambler in a asino. The gambler hasa starting fortune, and an plae bets, that are won or lost. Given a �xed probabilityof winning a bet p and of losing a bet q, what is the probability that the gamblerwould be ruined? This is known as the gambler's ruin model.Generating a string of random odons with a �xed probability is equivalent withsuessively plaing bets; the pay-o� funtion is given by Equation 6.2. A bet



68 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMis lost when a terminal is drawn, while a bet is won when a binary funtion isdrawn. Drawing a unary funtion does not hange the fortune (i.e., the number ofunresolved literals in the goal stak). The gambler starts with an initial fortune ofg0 = 1 unresolved literal, the initial goal. When the gambler runs out of literals, thefortune is lost and the gambler is ruined. In this ase the gambler's ruin orrespondswith the ALP system's gain: it suessfully derived an expression.When uniformly generating odons from the range [0; C), the probabilities of win-ning respetively losing are: p = b=C and q = t=C. It is well known that witha starting apital of g0 and a stopping apital of T , the gambler goes home withapital T with probabilityPillegal =8<: ( qp )g0�1( qp)T�1 when p 6= qg0T when p = q (6.5)In our ase, the start apital is 1 unresolved literal, while the gambler never stopswithout any bounds on the size of the genotype. The probability of the tree not�nishing is thenPillegal = limT!inf qp � 1qpT � 1 = � 0 if q > p1� q=p if q < p (6.6)and if p = q, Pillegal = limT!inf 1T = 0 (6.7)Thus if the probability of drawing a terminal is equal or larger than the probability ofdrawing a binary funtion, the probability of ending up with a string that enodes alegal parse tree will tend to 1. However, when there are more binary funtions thanterminals, the probability of obtaining a legal string will onverge to q=p. Thus if nolimits on the tree are employed only a fration of the trees an ever be generated.The expeted hange in the size of the goal stak after randomly seleting a lauseis simply p� q, the goal stak is thus expeted to grow when there are more binaryfuntions than terminals. Without bounds on the size or depth of the trees, theexpeted size of the trees is thus in�nite when p >= q, as it grows at every step.When p < q, the expeted size is the point where we expet the goal stak to beof size 0, this is simply 1q�p .The proess of reating a random tree and its inuene on the size of the goalstak is depited in Figure 6.4. The small graph depits the size of the goal stak(the funtion g(s; k) from Equation 6.3) with inreasing string length for somerandom hoies. As the graph of the size of the goal stak in these simple prediateprograms ontain all information about the shape of the parse tree that is produed,this graph will be alled the shape graph. When and if the size of the goal stakdrops to zero, the query is ompleted and a valid expression is obtained. The shapeof the expression that results is depited on the right of Figure 6.4.
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staksize string length

ffx hx x
Figure 6.4: Creating a tree using a random walk. Depited are the shape graphwith the orresponding tree. The tree is reated in a depth �rst manner.By making the probabilities of seleting the lauses in the program dependent onthe length of the string, in prinipal an expeted shape graph an be enfored onan initial population.Ripple rossover It was stated above that to reate a hild, the rossover usedin ALP grafts a randomly hosen suÆx of one string upon a randomly hosen pre�xof another, the points are hosen independently in the expressed part of the string.In the ontext of the programs de�ned in Table 6.2.1, this rossover has a verylear e�et on the parse trees that are enoded by the strings. This e�et wastermed ripple rossover (Keijzer et al., 2001b). Although it resembles a variablelength one-point rossover from geneti algorithms, the term one-point rossoverhas been used to desribe a very di�erent operator for geneti programming (Poliand Langdon, 1998). Therefore, the term ripple rossover will be used heneforthto designate the spei� rossover used in the GE and ALP systems.Consider the program:(0) expr(x).(1) expr(f(X,Y)) :- expr(X), expr(Y).The string of hoies will be onstruted from the two letter alphabet [0; 1℄ withthe mapping de�ned by the de�nition above. A string maps into a parse tree in thefollowing way:[1; 1; 1; 1; 0; 0; 0; 0; 1; 0; 0℄!enodes f1f2f3f4x5 x6 x7 x8 f9x10 x11
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staksize string length

pre�xsuÆx unexpressed ode
Figure 6.5: Splitting a tree into a pre�x and suÆx.The symbols in the expression are subsripted with the loation in the genotypethat is used to enode them. Splitting the tree after the �fth position will result inan un�nished tree and a set of subtrees:[1,1,1,1,0℄ !enodes f1f2f3f4x5 X6 X7 X8 X9

[0,0,0,1,0,0℄ !enodes x1 x2 x3 f4x5 x6where the upperase logi variables X6 : : :X9 indiate that the expression is un�n-ished. The rossover point ourring after x5 has the e�et of removing all subtreesto the right of the point. Figure 6.5 depits the splitting proess in terms of theshape graph. Cutting the string thus results in utting all the subtrees to the rightof the string, leaving in this ase 4 un�nished subtrees. The suÆx of the string en-odes these subtrees. When another string is splied in a similar way, swapping thetails results in grafting missing subtrees from one tree upon the other tree. Whenthe number of subtrees enoded by the tail is smaller than the number demandedby the head of the string, the resulting tree will enode an un�nished tree.The example given here used a string that deodes to a full tree without any spareodons. In pratie, there is often a tail of unexpressed ode for any given string. Ifthe string [0; 0; 0; 1; 0; 0℄ from above would be used as a genotype, it would enodethe expression x and would have three spare subtrees that an get expressed whenneeded. This is depited in Figure 6.5 as well, where the suÆx is used as a treein its own right: the minimum value of the goal stak funtion g(s; k) lies at �3:there are therefore three unexpressed subtrees present. The tail of unexpressed odean then funtion as a bu�er of spare subtrees.



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 71Thus, under the operation of ripple rossover, the genotype falls apart in two piees:a pre�x that enodes an un�nished parse tree, and a suÆx that enodes a olletionof subtrees.A Bias indued by Ripple Crossover It is possible to show some bias that isindued by ripple rossover when there is no tail of unexpressed ode. Equation 6.3de�ned the number of goals in the goal stak for a string after k odons weretranslated, as: g(s; k) = g0 + kXi=1 b(si)where the funtion b returns the number of literals in the body of the lause minus1 and g0 is the initial state of the goal stak. Ripple rossover selets rossoverpoints at random in the string and subsequently splits the string in a pre�x and asuÆx. If the size of the goal stak for the pre�x string is larger than the numberof subtrees ontained in the suÆx string, the mapping proess will not be able toprodue a omplete expression.To larify the relationship between the size of the goal stak (the shape graphde�ned by the funtion g(s; k)) and the shape of the enoded tree, two extremeases are examined here: left-skewed and right-skewed binary trees. Consider a leftskewed tree with orresponding shape graph:fffx x x x
The pre�x enoding of this tree is [f; f; f; x; x; x; x℄. Furthermore, onsider theright skewed tree:fx fx fx xwhose pre�x enoding is [f; x; f; x; f; x; x℄. In terms of the goal stak (and thusthe shape graph), a left skewed tree needs a larger stak than a right skewed tree.When rossing these trees using ripple rossover, the shapes are rossed over as well(Figure 6.7).
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GenerationFigure 6.6: Typial failure rate with a ripple rossover that reates a single hild.The ripple rossover used in previous work (Keijzer et al., 2001b; Keijzer et al.,2001a), reated one hild only, and put it bak in the population without regard toit being legal or not. This typially leads to a high failure rate in the beginning ofthe run. Figure 6.6 depits the typial shape of the failure rate during a run. Inthe �rst generation, the failure rate rises sharply, depending on the program thatis used lying between 1/4 to 1/3 of all rossovers. Subsequently, when a tail ofunexpressed ode forms, the failure rate drops, but as an be seen in the graph,even at generation 100, the failure rate is still signi�ant.In priniple this ould be remedied by (i) hoosing the point for the suÆx dependingon the size of the goal stak at the point hosen for the pre�x, or (ii) reate twohildren, one using the �rst parent as pre�x, the other using the seond parent as thepre�x. For the type of programs studied here, it would then be guaranteed to reateat least one valid o�spring beause for two strings s1 and s2 with rossover pointsk1 and k2 it holds that g(s1; k1)� g(s2; k2) � 0, and/or g(s2; k2)� g(s1; k1) � 0.The equality holds when both are valid. Thus for two given rossover points, thereis always an o�spring that is valid.It was hosen to use this seond method as the �rst method is not guaranteed tosueed: the size of the goal stak for the �rst point an demand more subtreesthan the seond parent an deliver. This ould again be �xed by hoosing the pointsin an even more restrited fashion, but one of the purposes of ripple rossover isto have a simple, untyped and unrestrited rossover. Although the informationabout the size of the goal stak ould be used to guide the rossover points, itwas hosen to use the simple method of reating two o�spring given two rossoverpoints, putting the �rst one that sueeds in deoding to an expression bak in thepopulation.Figure 6.7 shows the e�et of this rossover in terms of the shape graph of theindividuals. When one o�spring is invalid, the other individual is neessarily valid
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�R invalidvalid

Figure 6.7: The e�et of ripple rossover on the shape graph for two parents notontaining any unexpressed ode. The rossover points are indiated with a smallirle. If one o�spring is invalid, the other is neessarily valid and will have a tail ofunexpressed ode.and will have a tail of unexpressed ode. By seleting the valid o�spring always,no invalid individuals an enter the population. A side-e�et of the proedure isthat the tail of unexpressed ode quikly forms and that it will onsist of ode thathas undergone seletion. This is an important di�erene from generating a tailat random, as there is then for example no guarantee that the tail enodes validsubtrees.Using this proedure will guarantee legal o�spring when using single prediate pro-grams without additional onstraints, but the bias towards right-skewed trees usedas the pre�x remains. However, left-skewed trees are very suitable to be used assuÆxes, simply beause they enode for more subtrees then their right-skewed oun-terparts. They will initially beome unexpressed, but are stored in the populationand due to ripple rossover and mutation an soon beome expressed again.In the presene of a symmetri funtion set, this bias towards right-skewed expres-sions has no reperussions for the ability to express solutions. In e�et, there isa memory advantage in preferring right-skewed expressions as the size of the goalstak is kept at low values. The e�et of ripple rossover on asymmetri funtionsets is a left for future study.For the sake of ompleteness, a balaned tree with orresponding shape graph isdepited below. fffx x fx x ffx x fx x
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staksizeFigure 6.8: The e�et of a mutation on the goal stak. The mutation point isindiated with a irle.Ripple Mutation Many mutations an be de�ned, but here we fous on a singlepoint mutation. A point is hosen in the string and replaed with a random integerfrom the admissible range. This mutation also has a rippling e�et on the expressiontree that is enoded in the string. Consider again the string and mapping:[1; 1; 1; 1; 0; 0; 0; 0; 1; 0; 0℄!enodes f1f2f3f4x5 x6 x7 x8 f9x10 x11Replaing the fourth element 1 with a 0, results in:[1; 1; 1; 0; 0; 0; 0j0; 1; 0; 0℄!enodes f1f2f3x4 x5 x6 x7 x8 f9x10 x11All variable to the right of the mutation point have shifted their loation in thetree, and the last four odons have beome unexpressed. If one were to mutate aterminal into a binary funtion however, parts of the tail of unexpressed ode wouldget expressed again. In the absene of suh a tail however, the resulting expressionwould be invalid. In the early generations when there is no or little unexpressedode, ripple mutation would thus be biased to sample expressions that are shorterthan the parent. As it would reate unexpressed ode in that proess, this e�etwill lessen in later stages of the run.One of the harateristis of ripple rossover and ripple mutation is the disregard



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 75for the struture of the trees that are derived (i.e. the shape graph). Beauseof this hanges propagate to the right of the tree, in partiular the seond andsubsequent arguments of the root node are subjet to hange relatively easily. Theripple variation operators are then expeted to be fairly destrutive.Multiple prediates and polymorphism.Until now the programs that are onsidered used a single prediate without addi-tional onstraints, but multiple prediates are an obvious extension. Consider theprogram:expr(x).expr(X) :- bin op(X, A1, A2), expr(A1), expr(A2).bin op(X + Y, X, Y).bin op(X * Y, X, Y).Here we have two prediates expr/1 and bin op/2, eah having two lauses. Thereare several options for enoding suh a program in a string of hoies. For ontext-free grammars whih translate diretly to a logi program suh as the one above,O'Neill and Ryan de�ned an upper bound for the odons in the string (usually 256)(O'Neill and Ryan, 2001) . Given a set of n prediates with a orresponding numberof lauses [1; : : : ; n℄ and given a prediate r, the mapping rule used is (O'Neilland Ryan, 2001): hoie(r) = odon mod r (6.8)This modulo rule makes sure that the odon value is mapped into the interval [0; r)and thus represents a valid hoie for a lause. As the odons themselves are drawnfrom the interval [0; 256), the mapping rule is degenerate: many odon values mapto the same hoie of rules. Unfortunately, in the ase of the program onsideredhere, this mapping rule introdues a linkage between the lauses of the di�erentprediates. As we have two prediates, eah having two lauses, the modulo rulewill map all even odon values to the �rst lause and all odd values to the seondlause, regardless of the prediates that are used. Above it was shown that therossover and mutation operators an shift the loation of the subtrees when usinga single prediate. In the ase of multiple prediates, this shift in loation an alsoresult in a shift in prediates: a odon value that previously enoded for a lausein one prediate an be re-interpreted to enode for a lause in another prediate.This property of this developmental geneti programming system is alled intrinsipolymorphism (Keijzer et al., 2001b).As Program 6.2.1 indues a �xed mapping for even and odd odon values, wean restrit our attention to bitstrings. In the ontext of the two prediate logiprogram, we an have the following mapping:



76 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM[1; 0; 1; 1; 0; 0; 0℄!enodes expr+ expr* x x xWhere the name expr is used to denote the use of the reursive expr/1 lause. Thefuntion symbols + and � have been put at the loation where they are derived.The string of hoies then orresponds again with a depth �rst traversal of thederivation tree. Due to Prolog's operator handling, the atual parse tree that isprodued by the query will look like: +*x x xMutating the third element of the string will result in:[1; 0; 0; 1; 0; 0; 0℄!enodes expr+ x expr+ x xThis is quite a signi�ant hange. This single mutation event hanged the expression((x�x)+x) into (x+(x+x)). It is instrutive to inspet what happened. Changingthe third element left the �rst two elements intat. The third element used toenode for the reursive expr rule, but is replaed by the non reursive rule, theterminal x. Beause of this hange, the fourth element of the string whih used toenode for the multipliation lause of the string is re-interpreted as an enodingfor the reursive expr lause. Similarly, the �fth element that used to enode forthe terminal expr is hanged into the addition operator as it is evaluated in theontext of the prediate bin op.Thus by hanging a single element in the string, the string is again split into a pre�xand a suÆx. This time the suÆx is reinterpreted. Changing the third element fromexpr to x hanges the derivation tree and the suÆx that will be reinterpreted to:expr+ x E2 [1 0 0 0℄
where the variable labelled E2 indiates that the derivation is not omplete until asubtree starting with the expr/1 prediate is produed. The odon that used toenode for the seond lause of the bin op prediate (multipliation) will now bere-interpreted as the seond lause of the expr prediate, thus:



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 77expr+ x exprB1 E3 E4 [0 0 0℄
The next odon to insert into the derivation tree used to enode for the �rst lausein the expr prediate, but the searh proess has reahed the bin op prediate atthis point in the derivation. Hene the �rst lause in this prediate will be used, theaddition. expr+ x expr+ E3 E4 [0 0℄
The rest of the derivation proess will not demand any re-interpretations, thus theremaining odons an be simply inserted as terminating x's.In this ase, the modulo rule thus de�nes a �xed transition when the odons areinterpreted in the ontext of di�erent prediates. The terminal x impliitly enodesfor the addition operator + and vie versa, while the reursive expr lause is linkedto the multipliation operator in the bin op prediate. This linkage depends on theordering of the lauses as well as the number of lauses per prediate2.This linking between lauses of di�erent prediates in the ontext of the variationoperators introdues a bias in the searh proess. This bias is undesirable beauseit depends on the layout of the program and its impat on the searh is not lear.In e�et this means that the order in whih the lauses are de�ned are expeted tomake a di�erene to the searh eÆieny.To remove this bias the mapping rule is hanged. Given again our set of lauses for nprediates [1; : : : ; n℄, the odon values are now taken from the interval [0;Qni i).The mapping rule is subsequently hanged to:hoie(r) = odonQr�1i=1 i mod r (6.9)This rule is simply the standard method for mapping multi-dimensional matries intoa ontiguous array of values. The prediates form the dimensions, with the numberof lauses as the oordinates. With this rule, every legal odon value enodes aunique set of lauses, one from eah prediate. In the program disussed here,2When using two prediates having 2 and 3 lauses, together with odons drawn from [0; 6) alltransitions are possible.



78 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMthere are two prediates, eah having two lauses. The odons are thus drawn from[0; 4). Eah odon value now enodes for a unique set of lauses:odon expr bin op expr bin op0 0=1 = 0 mod 2 0=2 = 0 mod 2 x +1 1=1 = 1 mod 2 1=2 = 0 mod 2 expr +2 2=1 = 0 mod 2 2=2 = 1 mod 2 x *3 3=1 = 1 mod 2 3=2 = 1 mod 2 expr *By using this mapping rule, the representation in e�et beomes polyploid : thesingle string of integers is isomorph with a set of n strings, eah enoding thelause to hoose when it is evaluated in the ontext of eah prediate. The ativeelement is determined by whih prediate is ative in that part of the exeutionof the logi program generating the expression. All other elements at the sameloation are reessive, mutations on them do not have an e�et on the resultingexpression.For an example of this polyploidity, onsider the following enoding:[1; 0; 3; 3; 2; 2; 0℄ = � expr : [1; 0;1; 1;0;0;0℄bin op : [0;0; 1;1; 1; 1; 0℄ �! +*x x xwhere the elements in bold are the ative elements of the set of strings. As in thispartiular program we have three terminating lauses and one reursive one, onlythe reursive lause determines how the rest of the string is interpreted.If we again onsider a mutation in the third element, several things an happen.If we mutate the integer 3 to the integers 0 or 2, the lause enoded for hangesfrom the reursive expr (lause 2) to the terminal expr (lause 1), by virtue of themapping rule de�ned in Equation 6.9. Given that the hange happens be 3 ! 0,the individual will ultimately deode to:[1; 0; 0; 3; 2; 2; 0℄ = � expr : [1; 0;0;1; 0;0;0℄bin op : [0;0; 0; 1;1; 1; 0℄ �! +x *x xBeause the lauses belonging to di�erent prediates are independently enoded,the integer on the �fth position now enodes both the terminal expr and themultipliation bin op. When the integer 3 at the third position is hanged to theinteger 1 however, nothing hanges diretly in the phenotype, as the third elementwill still enode for the reursive expr. The mutation is thus neutral. Even thoughthe oding is degenerate as many integer values deode to the same lause, thereis no redundany: if the odon would be used in a later generation in the ontextof the prediate bin op, it would enode for the addition funtion rather than themultipliation.Thus, every loation in the genotype an enode for a unique lause for eah predi-ate. This gives the genotype in priniple the opportunity to enode many di�erenttrees, whih tree is derived depends on the ontext it is used in. Whether thisapability is helpful in searh and optimization needs to be asertained. What itdoes ahieve is make the system independent of the order in whih the lauses arede�ned by removing linkages between the order of lauses in di�erent prediates.



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 79Ripple rossover does not look at the names of the prediates to pik rossoverpoints. It is thus quite ommon that it will selet a pre�x that ends in one prediateand a suÆx that used to start with another prediate. This re-interpretation ofgeneti material will then happen quite often. It is left for future work to examinethe worth of this intrinsi polymorphism.Context-Sensitive ProgramsA logi program is apable of using ontext-sensitive information. Consider Pro-gram 6.2.2 that alulates the bounds of an expression.interval(x, 1, 10).interval(y, -5, 5).interval(X + Y, L, U) :-interval(X,Lx, Ux),interval(Y, Ly, Uy),L is Lx + Ly,U is Ux + Uy.interval(-X, L, U) :-interval(X, Lx, Ux),L is -Ux,U is -Lx.interval(X * Y, L, U) :-interval(X,Lx, Ux),interval(Y, Ly, Uy),B1 is Lx * Ly, B2 is Lx * Uy,B3 is Ux * Ly, B4 is Ux * Uy,L is min(min(B1, B2), min(B3,B4)),U is max(max(B1, B2), max(B3,B4)).interval(1 / X, L, U) :-interval(X,Lx, Ux),ath(A is 1/Lx, ,fail), % fail on math exeptionsath(B is 1/Ux, ,fail), % idemsign(A) + sign(B) =\= 0, % make sure the interval% does not ontain zeroL is min(A,B),U is max(A,B).interval(sqrt(X), L, U) :-interval(X,Lx, Ux),Lx >= 0,L is sqrt(Lx), U is sqrt(Ux).Program 6.2.2: A ontext-sensitive program that alulates the the numerial in-terval for an expression and only derives those expressions that are well-de�ned



80 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMThis logi program is apable of generating expressions that are guaranteed toavoid a division by zero or taking the square root of a negative number, given thespei�ed range of the terminals. It will furthermore alulate bounds on the rangeof the expression. In this program, the lower and upper bound L and U are usedas attributes in the program and their values are used in the lause that handlesdivision to make sure that no expression will be derived that an theoretially divideby zero. This is done by heking whether the bounds of the argument ontainzero. Likewise the square root funtion is proteted by heking whether the lowerbound of the argument is smaller than zero. This is one example of the onvenieneof the logi programming paradigm to speify onstraints.When inreasing the number of onstraints, are must be taken that it is still feasibleto derive numerous solutions. The aim of the ALP system is not to �nd a single ora small set of feasible solution, but to �nd the best expression under a number ofrelatively mild onstraints.In the example program, a query of the form ?- interval(X, 0, 1). would askthe system to �nd a program that lies exatly within the spei�ed interval. The�nd a feasible solution is then a searh problem in its own right, let alone �ndingan expression that will �t some data well.It is again instrutive to see what happens with the funtion trees when a mutationor rossover event ours. As Program 6.2.2 uses a single prediate, the genotypephenotype mapping is monomorph, there is no re-interpretation of geneti material.Consider the mapping: [+; �; x; y; sqrt; x℄!enodes xy +pxand [+;+; x; y; sqrt; x℄!enodes x+ y +pxFor reasons of larity, the integers in the string have been replaed with the symbolsfor the funtors they enode for3. Now suppose the �rst string is ut after the �fthposition, leaving [+; �; x; y; sqrt℄ and the seond is ut after the �rst position, thusleaving [+; x; y; sqrt; x℄. After merging the parts, the omplete string will read:[+; �; x; y; sqrt;+; x; y; sqrt; x℄. Without the additional onstraints on the squareroot funtion, this string would enode for:[+; �; x; y; sqrt;+; x; yjsqrt; x℄!enodes xy +px+ ywhere the tail [sqrt; x℄ is unexpressed. However, when using this string of odonsin the logi program 6.2.2, the following situation would our:interval(sqrt(X), L, U) :-interval(X,Lx, Ux), % X gets bound to x+y% Then Lx = -4, Ux = 15Lx >= 0, ... % fail! Lx equals -43This an be done beause there exists a one-to-one mapping between odon value and thelause that is seleted.



6.2. AN ADAPTIVE LOGIC PROGRAMMING SYSTEM 81The lause thus fails beause the subtree sqrt(x+ y) an possibly inlude a math-ematial error. The baktraking mehanism will now try to redo the last goal thatsueeded, whih was in this ase interval(y,-5,5). Reading the next odonsfrom the genotype would result in generating sqrt(x), whih, when added to x leadsto a orret expression. The real mapping would thus be:[+; �; x; y; sqrt;+; x;y; sqrt; x℄!enodes xy +qx+pxThe odon enoding y above thus disappears from the derivation, and the subtreeat the bak is used in its plae. By using baktraking, performing a rossover isnot an all or nothing proposition: if a onstraint gets violated in a rossover, thereis still a possibility of reating a valid expression by simply trying to apply the nextodon. In Setion 7.1.1 it will be shown that it is possible to e�etively use thismehanism to onstrain the searh spae without removing the e�etiveness of thevariation operators.6.2.2 BaktrakingTo enable baktraking, the system maintains a list of lauses that have been tried ateah point in the resolution proess. One a failure ours beause some onstraintshave been violated or a maximum depth is reahed, the system extrat a new odonfrom the genotype, and the mapping rule is applied. When the odon deodes toan untried lause the proess ontinues. However, when the odon deodes to analready tried lause | that has already proven to fail | the odon will deode tothe next untried lause that is appliable. If there is no suh lause, the proedurewill start at the beginning of the list of appliable lauses. When no more hoiesremain, thus all lauses are tried and all failed, the system will baktrak to theprevious level.With this proedure, the ALP system is equivalent with Prolog when it is run inthe ontext of a genotype ontaining only zeros. When a failure ours, the seondlause is tried, and so on.6.2.3 InitializationInitialization is performed by doing a random walk through the grammar, maintain-ing the hoies made, baktraking on failure or when a spei�ed depth limit isreahed. After a suessful derivation is found, the shortest, non-baktraking pathto the omplete derivation is alulated. An ourrene hek is performed and ifthe path is not present in the urrent population, a new individual is initialized withthis shortest non-baktraking path. Individuals in the initial population will thusonsist solely of non-baktraking derivations to sentenes.As a maximum depth limit is used, the possible problem of not reating viableo�spring indiated in Setion 6.2.1 is not enountered. By making uniform randomhoies in the initialization proedure, it is however sensitive to the distributionof terminal and binary funtions in the logi program. It is not lear at this pointwhat the reperussions of hanging this initialization proedure are when using more



82 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMheavily onstrained programs than the ones onsidered in Setion 6.2.1. Therefore,it was hosen to use the initialization proedure desribed here to reate a refereneimplementation that produes a fully viable initial population without lones. Thisreferene implementation an be used to hek possible improvements against.6.2.4 Performane EvaluationThe performane of expressions (omputer programs) is typially alulated in aspeial module, written in a ompiled language suh as C. This program walksthrough the tree struture and evaluates eah node. This is however not neessaryif the performane an be readily evaluated in the logi program itself. The queryinvestigated typially has the form: �nd that derivation for expression(X), suhthat eval(X;F ) returns the maximal or minimal F . Typially, the top level prediatefor this system will have the form:objetive(F) :- expression(X), eval(X,F).This prediate is alled by the system with a non-grounded (free) F. The prediateexpression/1 will derive a parse tree, the eval/2 prediate will evaluate the parsetree and bind the objetive funtion value to F.6.2.5 Speial PrediatesAll Prolog built-in lauses suh as assignment (is/2) are evaluated in Prolog di-retly. This is done as often suh lauses are deterministi and depend on the Prologdepth-�rst searh strategy, or they expet some variables to be bound to groundterms. Calls to external libraries are evaluated diretly as well.Often, there is a need for arbitrary real valued and integer onstants to appearin the expressions. A prime example is symboli regression. In previous work, areursive logi program was used to derive and evaluate suh onstants (Keijzeret al., 2001a).In the urrent implementation of the ALP system, two speial prediates are usedthat an retrieve integer and oating point values. These are alled ext int/2 andfp/1 respetively. Those values are stored in a separate string, whih is kept at thesame length as the string of hoies. Although this involves storing many valuesthat are not expressed, for the urrent purposes the additional memory overheaddoes not present diÆulties.The derivation engine reognizes these prediates, and retrieves values from thegenotype. This way, variation operators an be de�ned on those onstants, whihthen o-evolve with the string of hoies.6.3 SummaryIn the preeding setions, the ALP system is outlined, disussing programs using asingle prediate, programs using multiple prediates and programs that have addi-tional, ontext sensitive onstraints. Some variation operators have been disussed,
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Figure 6.9: Overview of the genotype used in the ALP system for a program on-sisting of three prediates. It uses a separate string for eah prediate in the pro-gram (although this is in the implementation paked in a single string) togetherwith a string of oating point values. The hoies made in the resolution of thelogi program determine a path through the genotype, while it is possible thatonstraint-violating odons get ignored. Usually a tail of unexpressed ode evolves,that ontains unexpressed geneti material. The expressed ode is in general a smallfration of the omplete geneti ode.together with baktraking and initialization. Figure 6.9 depits the genotype ofthe individuals that are used in the ALP system. The representation undergoingvariation and seletion is depited with multiple strings, one for eah prediatein the program. In pratie these strings are paked in a single string, using thelinearization formula from Equation 6.9.There an be a massive amount of unused information in suh an individual: at everyloation there is only one oding element, when the string is �nished deoding intoa omplete expression, the rest of the string is ignored.Pre�xes and suÆxes are entral in the ALP system. Not only does ripple rossoverexpliitly manipulate these strutures, they also have a straightforward interpretationin terms of the searh tree for the logi program. A pre�x determines a partial paththrough the searh tree; it thus e�etively sets the starting point for the searh.The suÆxes on the other hand enode ontinuations of these searh paths. Whenworking with reursively de�ned programs, these ontinuations enode for similarpaths in di�erent ontexts.The mapping proess that de�nes how the genotype gets translated into a om-puter program is depited in Figure 6.10. The genotype gets impliitly translatedinto a string of integers that represents the shortest non-baktraking path to thegoal-state. When induing omputer programs, the goal-state is equivalent to asuessfully indued omputer program given the onstraints.Although it is possible to �nd some biologial analogies between this mapping pro-ess and the translation-transription yle in DNA, these are not engineered into
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Figure 6.10: Overview of the mapping proess. The multiple strands represent aseletion from one of the prediates in the program, this seletion proess results ina single string of hoies. This string of hoies is translated into a parse tree.the system with the purpose of mimiking their biologial ounterparts in the vaguehope that when nature uses suh onstruts they might be useful, but are diretonsequenes of the hoie to indue arbitrary length searh paths through a logiprogram. The design hoies are made to enhane the optimization proess in ALP,not to mimi any natural phenomenon. Multiple strands of geneti material ap-peared when the linkages between lauses belonging to di�erent prediates wereremoved. A logial result of this hoie is that the "translation" at one part of thestring inuenes the "transription" further to the right.The emergene of unexpressed ode is a logial onsequene of the use of ripplerossover. Ripple rossover operates very unlike any variation operator appearing innature, it is however a relatively easy and sensible operator to apply to the reursivelyde�ned programs onsidered here. The appearane of illegal strands of ode that donot get expressed is aused by the use of a baktraking mehanism. Baktrakingis used beause it proved to be invaluable when using ontext sensitive onstraints(Keijzer et al., 2001a).6.4 Related WorkWong and Leung (Wong and Leung, 1997) hybridized logi programming and ge-neti programming in their system LOGENPRO. In LOGENPRO, one de�nes agrammar onsisting of syntati and semanti de�nitions in the form of a De�niteClause Grammar (DCG). This grammar is transformed into a logi program by au-tomati means in suh a way that next to the parse tree for the expressions thatare evaluated, a parse tree of information about the derivation is generated. Thisseond parse tree desribes the rules that are applied and the variable substitutionsthat are made. This is the struture that is manipulated by the variation operators.



6.4. RELATED WORK 85Due to the semanti onstraints, some fairly intriate subtree rossover and muta-tion operators are used. Even then, a semanti validation | heking whether thenewly reated parse tree is aepted by the logi program { needs to be performed.Ross (Ross, 1999) desribes a similar system that uses De�nite Clause TranslationGrammars (DCTG). The di�erene between a DCTG and a DCG lies in the expliitseparation between syntax and semantis in the DCTG, while the DCG mixes thesyntax and semantis in the body of the lauses. Like in (Wong and Leung, 1997),the DCTG in (Ross, 1999) is translated into a logi program and parse trees ofthe derivation proess are manipulated. The rossover desribed in (Ross, 1999)seems to only use type information ontained in the prediate names and arity atthe heads of the lauses and swaps derivation subtrees that ontain the same head.A semanti veri�ation (running the Prolog program on the derivation tree), issubsequently performed.In both approahes the variation operators are strongly typed, and subsequently thenumber of allowable rossover pairs in the parse trees an be signi�antly redued.This is in stark ontrast with the ALP system, where all parts of the string anbe subjet to rossover with any other part of any other string. Another di�er-ene between these approahes and the ALP system lies in the method of reatingexpressions. Espeially in the approah outlined by Ross (Ross, 1999), the stritseparation between ontext-free syntati rules used to generate sentenes and thesemanti validation used to validate the expressions an lead to a wasteful generateand test yle in the algorithm. The LOGENPRO system on the other hand triesto push the test-yle inside the rossover operator, leading to a potentially moreeÆient system. However, the net e�et of both approahes is that rossover isrestrited to swapping subtrees that diretly lead to a valid program. The rossoveroperator is thus strongly typed.The ALP system on the other hand is not onstrained to use logi grammars as itworks with logi programs diretly. Although a logi program is eminently suitableto de�ne a logi grammar, logi programs an also take more diret, onstrutive,approahes towards generating strutures. The use of untyped variation operatorstogether with a fault tolerant mapping method is also very di�erent from the treebased geneti programming systems desribed above.As an example of the di�erene between a grammatial approah and a onstrutiveapproah, onsider the problem of generating a permutation of a list of items. Suha permuted list an be needed as a subtask for a larger programming task. It isalready not perfetly lear how to approah this problem using a grammar as wewant to transform one sequene into another sequene. Grammars are usually usedto de�ne legal sentenes, not transformations. Assume for the sake of simpliityhowever that the objet is to reate a permutation of a �xed length list [1; 2; : : : ; 10℄.In a grammatial approah, one approah would be to de�ne the syntax to be a listof length 10, where the elements are numbers. In a DCG this would look likenumber(1).. . .number(10).list([℄, 0).list([N|L℄, Sz) ! number(N), list(L, S), f Sz =:= S + 1 g.list10(L) ! list(L, 10).



86 CHAPTER 6. AN ADAPTIVE LOGIC PROGRAMMING SYSTEMWhih would de�ne all lists ontaining the numbers 1 to 10. The urly brakets areused to indiate the semanti heks, the funtor =:=/2 denotes arithmeti equality.The important thing to notie is that it presents a syntatial de�nition, whih iseminently suitable for parsing lists. The hek for the size is a small semantiomponent. However, we are interested in a permutation, thus there is a need tohek if a number already ours in the list. A straightforward implementation ofthis would be to simply hek if the number already ourred:perm list([℄,0).perm list([N|L℄, Sz) ! number(N), perm list(L, S),fnot(member(N,L)), Sz =:= S+1g.perm list10(L) ! perm list(L,10).This will indeed de�ne all possible permutations, but in the proess of generatingthem, it would generate all possible sublists, disarding the illegal lists. This is not aproblem when parsing a possible permutation, but when generating suh a list it anbe very wasteful. Although possibly less wasteful ways of de�ning a grammar forthis problem are imaginable, the main point to be made is that many onstrutionssuh as permuted lists are not best modelled by a grammar, making a distintionbetween a ontext-free syntax together with semanti onstraints. Although forparsing sentenes the grammatial approah is suÆiently powerful, for generatingsentenes a more proedural approah seems to be needed. ALP an deliver suha onstrutive approah: in a logi program, it is possible to de�ne a permutationproedurallyint(0, ).int(N,Z) :- int(N1,Z), N is N1+1, N < Z.permute([℄,[℄).permute(List,[PermHead|PermRest℄) :-length(List, L),L > 0,int(Choie,L), % hoose an integernth0(Choie, List, PermHead), % get the hoie and% make it the headdelete nth0(Choie, List, Smaller), % reate smaller listpermute(Smaller,PermRest).The prediate permute/2 transforms an arbitrary list into a permuted version ofthe same list. It does this by making an arbitrary hoie from the input list andputting that one at the head of the output list. The element that is hosen getsdeleted from the input list and the algorithm reurses. It ultimately hinges on theprediate int/2, that selets an integer bounded above by the length of the list4.The program thus de�nes a proedural way of permuting a list, it is diÆult toidentify grammatial elements in this small program. Furthermore, this programis generi, it does not make any assumption about the ontents of the list. Theprediate permute/2 is set up to do a permutation of any list.4When randomly generating strings, the int/2 prediate is heavily biased towards samplingthe lowest numbers. Therefore ALP uses the speial prediate ext int/2 (See Setion 6.2.5) thatretrieves an integer from the genotype.



6.4. RELATED WORK 87This example also illustrates some possible problems with typed rossovers in on-strained domains. In the list/2 prediate de�ned above, even though the de�nitionis reursive, the hek for the size of the list implies a very stringent onstraint fora subtree rossover. Only rossovers that swap lists of the same size are valid, allother rossovers are invalid. ALP, using an inherently more messy mapping proess,would however be able to migrate any part of the string enoding a list to any otherpart, as long as it an deode to a list of the proper length. The tail of unexpressedode would be helpful to ahieve this.Subtree and substring rossovers in the ALP system It is however possible toimplement a subtree rossover in the ALP system by utilizing information gatheredabout the evolution of the goal stak and the prediate that was used at every pointin the derivation. Seleting a rossover point k1, its subtree is spanned by the �rstpoint k2 > k1 suh that: g(s; k2) = g(s; k1)� 1Where g(s; k) is the goal stak funtion de�ned in Equation 6.3. The point k2is the point where all the unresolved literals pushed on the stak by the prediateenoded by sk1 are resolved and removed from the goal stak, whih in turn meansthat all arguments needed by the prediate used at point k1 have been bound toground terms.The ondition an be simpli�ed tog(s; k2)� g(s; k1) = g0 + k2Xi=0 b(si)� g0 � k1Xj=0 b(sj) =k2Xi=k1 b(si) = �1The ondition that it is the �rst point that has this property makes sure that weswap a single subtree. Subtree rossover is then a speial ase of a general struturepreserving two-point rossover on strings, where given two strings s1 and s2 withrossover points k1 < k2 and l1 < l2g(s1; k1)� g(s1; k2) = g(s2; l1)� g(s2; l2)Interpreted in terms of the goal stak, this ondition simply states that the dif-ferenes in goal stak size for the substrings must be equal to eah other. Whenswapping substrings that abide this onstraint, the integrity of the goal stak is guar-anteed and no tail of unexpressed ode is needed. This does however not neessarilywork for programs with multiple prediates and ontext-sensitive onstraints.In terms of the shape graph, a subtree is simply the �rst point to the right that isloated one noth lower than the urrent level. In terms of the shape graph andthe parse tree this an be depited as
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Figure 6.11: Subtree rossover on the shape graph.ffx x ffx x x
With the additional provision that two subtrees an only be exhanged when theyenode for a lause in the same prediate, this subtree rossover is equivalent withthe subtree rossover outlined by Ross (Ross, 1999). It has the additional bene�tthat instead of having a semantial validation hek and possible diret failure inthe ase of ontext-sensitive onstraints, the derivation proess would still be ableto re-interpret the rest of the string and possibly return a omplete expression.Figure 6.11 depits the proess of subtree rossover in terms of the shape graph.6.5 ALP, ILP and CLPIndutive Logi Programming (ILP) aims at induing logi programs. based ondata (Muggleton and Raedt, 1994). As logi programs themselves an be readilyexpressed as parse trees in a logi program5, ALP ould oneivably be used toindue logi programs. Even in that ase, a large di�erene between ILP and ALPwould remain: ILP usually works by transforming an overly spei� logi program(the set of all positive and negative examples) into a more general program, usingvarious heuristis to asertain whih generalizations are allowed.5logi programming shares this ability with LISP



6.6. SUMMARY 89ALP usually operates in a onstrutive way, reating a parse tree (in this ase a logiprogram) out of an indutive de�nition of possible parse trees (logi programs).However, due to ALP's ability to use transformations and proedural rules as well,it might be possible to onstrain ALP in suh a way that it will only use those rulesthat are used in ILP. In that ase ALP an be used merely as an alternative to depth�rst searh in a highly onstrained searh spae. The worth of this approah is notexplored further here.Constrained Logi Programming (CLP) tries to �nd solutions in heavily onstrainedsearh domains de�ned by logi programs (Ja�ar and Maher, 1994). Here the objetof searh is usually a single or small set of solutions that abide the onstraints. ALPis is general not apable of signi�antly optimizing expressions when generatinga single solution is a diÆult searh problem in its own right. Creating the �rstgeneration should then already solve the problem. ALP works best when there is anabundane of solutions of di�erent merit | whih is the ase in program indution.However, in Setion 7.1.2 and Chapter 8, it will be shown how in some irumstanesdelarative (hard) onstraints an be transformed to preferential (soft) onstraints.Using a multi-objetive searh then provides a viable approah to optimize in thepresene of diÆult onstraints.6.6 SummaryIn this hapter the adaptive logi programming system has been outlined. Partiularattention was given to the mapping proess from a string of odons (a path througha logi program) and the resulting parse tree that de�nes the omputer program.The e�et of the variation operators on the string of odons was examined in theontext of simple programs, syntatially onstrained programs and semantiallyonstrained programs.The shape graph was introdued to visualize the shape of a parse tree generatedby a path through a logi program. This shape graph is de�ned as the numberof literals on the goal stak for eah point in the tree generation proess. In thease of simple single prediate programs without onstraints, the shape graph givesall information needed to implement struture preserving one point and two pointrossovers.ALP, being not bound to a grammatial formalism but to the apabilities of aTuring-omplete programming environment, might have promise as a powerful androbust approah to the problem of automati program indution in the ontext ofsyntati and semanti onstraints. The next hapter is devoted to a feasibilitystudy of ALP's untyped variation operators and to some limited ase studies inproblems involving a variety of onstraints.
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Chapter 7Appliations for the ALPSystemThe ALP system is implemented using SWI-Prolog1. SWI-Prolog de�nes a two-wayC API, that allows to all Prolog from C (used by the resolution engine) and C fromProlog (used for evaluation of parse trees). The geneti algorithm is implementedusing the evolutionary objets library2. The system is apable of performing multi-objetive optimization, using the elitist non-dominated sorting algorithm NSGA-II(Deb et al., 2000).The general optimization yle in the algorithm that is used onsists of a variationstep in whih the population is doubled in size, using a tournament seletion of size2 to obtain the parents, and a subsequent seletion step in whih the population issorted and halved. In evolutionary strategy terminology this is a (�+�) strategy withan additional tournament seletion step. In the ase of multi-objetive optimization,the sorting is based on linear ranking, onsisting of an integer value that designateswhih front the individual belongs to, and a frational value that is used to breakties. This frational value represents the uniqueness of the individual in its frontof non-dominated solutions. The NSGA-II algorithm improved upon the originalNSGA algorithm by removing the dependene on a sharing parameter (Deb et al.,2000).This algorithm is strongly elitist as a new individual has to improve upon at leastone individual in the previous generation in order to be inluded in the breedingpopulation for the urrent generation. One of the rami�ations of this hoie isthat there is no straight reprodution in the system, all newly added individuals willhave undergone some form of variation.7.1 AppliationsHere we will examine the feasibility of the ALP system on various appliationswith varying onstraints. First a small experiment showing how some bakground1http://www.swi.psy.uva.nl/projets/SWI-Prolog2http://www.soureforge.net/projets/eodev



92 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMStrategy (�+ �)Population Size (�) 500No. of Generations 100No. of runs 100Crossover Probability 0.97Constant Mutation 0.03Maximum depth at init 6Maximum depth 15Table 7.1: Parameters for the ALP system used for nearly all experiments.knowledge about the funtion set on the arti�ial ant problem an be used to removevarious soure of redundany. Seondly, the system is used to �nd an equation thatis well-adapted to some data set, while at the same time is onstrained to �ndequations that produe outputs that are provably in the right domain. The programuses interval arithmeti to ahieve this. Thirdly, the system is tried upon the problemof �nding a dimensionally orret equation. Finally the system is onstrained toprodue equations in the language of matrix algebra.The main aim of these experiments are to give a proof of priniple that the adaptivelogi programming system introdued here is apable of dealing with a wide rangeof appliations. The appliations involving interval logi, units of measurement andmatrix algebra are important to make geneti programming more suitable for usein sienti� and engineering settings. The arti�ial ant problem is more of a toyproblem, but points to the possibility of extending the power of geneti programmingby disallowing some a priori bad or redundant onstruts.Eah of the programs studied here have ontext-sensitive onstraints. Where theperformane between subtree rossover and ripple rossover are ompared, the sub-tree rossover is modi�ed to have a seond try with new rossover points if arossover does not produe a valid o�spring. This to level the �eld somewhat3.The omparative experiments performed here are mainly used as evidene on thelarge di�erene between ripple rossover and subtree rossover when applied toinduing expressions subjet to ontext-sensitive onstraints.7.1.1 A Sensible Ant on the Santa Fe TrailThe arti�ial ant problem has been studied intensively in (Langdon and Poli, 1998)whih showed that it is a diÆult problem with multiple ridges and loal optima.The goal is to �nd a omputer program that steers an ant over a trail of foodpiees, eating as muh food as possible. The trail that is used is the well-knownSanta Fe trail that ontains 89 piees of food. The suess riterion for an arti�ialant program is then to steer the ant to eat these 89 piees of food within 600 steps.The logi program that de�nes the spae of allowable ant programs an be statedas follows.3As desribed in Setion 6.2.1 ripple rossover was modi�ed to attempt a reversal of roles forpre�xes and suÆxes in ase of failure.



7.1. APPLICATIONS 93ant(move)ant(left)ant(right)ant(iffoodahead(X,Y)) :- ant(X), ant(Y).ant(seq(X,Y)) :- ant(X), ant(Y).Program 7.1.1: Program for induing an arti�ial ant.The move atom indiates a move forward by the ant, left and right turn the ant90 degrees on the grid, the iffoodahead instrution branhes on the informationwhether there is a food pellet present in the ell the ant is faing, while the seqoperator simply applies its arguments in sequene. A program onsisting of theseinstrutions is iteratively applied until time runs out.In the usual geneti programming notation of terminal and funtion sets, this logiprogram above an be desribed by: T = f move/0, left/0, right/0g and F =f iffoodahead/2, seq/2 g. The Program 7.1.1 will be extended to implement afew ontext-sensitive onstraints.The spae of possible ant programs ontains many ine�etive piees of ode thatan be identi�ed even before trying to �nd a program for a spei� trail. It is forexample ine�etive to let the ant move left and subsequently move right without anyommands in between as its overall state would not have hanged. Furthermore,diretly nesting iffoodahead/2 alls is also ine�etive as the outome of the hekis already known. This embodies knowledge about the semantis of the funtionset. We might also assume that if there is food ahead, moving toward the foodseems to be a good idea.These onstraints are readily implemented in the ALP system. For this an ant/3prediate will be used. As usual, the �rst argument will be used to indue the om-puter program that is evaluated. The seond argument is used to speify the inputonstraints, onstraints that are imposed by the aller, while the third argumentis used to speify some output onstraints: onstraints subsequent lauses need toabide.The start lause is of the form ant/1 that alls ant/3, not demanding any on-straints on the program (signi�ed by the empty list [℄), and ignores the outputonstraints (the undersore symbol). Thus:ant(X) :- ant(X,[℄, ).The sequene operator is used to propagate the onstraints.ant(seq(X,Y),In,Out) :- ant(X, In, C), ant(Y, C, Out).The two additional arguments In and Out get imposed on the arguments of thesequene operator. The intermediate variable C is used to propagate the onstraintsfrom the �rst subexpression to the other.



94 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMThe lause that indues the move atom is de�ned as followsant(move, C, [℄) :- \+ member(no move, C).where \+ is the Prolog symbol for negation by failure: it will only sueed whenthe exeution of its argument fails. The member/2 funtion is a built-in lause, andis exeuted in Prolog diretly. This lause onstrains the move atom to be onlyappliable when the set of onstraints does not ontain the no move atom. A movefurthermore removes all onstraints, it thus returns the empty list [℄. Turning toleft:ant(left, C, [no right℄) :- \+ member(no left, C).Is appliable only when there is no no left onstraint. It imposes a no rightonstraint to the next ation. So when the ant turns left, it will not immediatelyturn right, beause:ant(right, C, [no left℄) :- \+ member(no right, C).For the iffoodahead funtion the following onstraints are imposed:ant(iffoodahead(X, Y), In, Out) :-\+ member(no if, In),ant(X,[no left, no right, no if℄, OutLeft),ant(Y, [no move, no if℄, OutRight),intersetion(OutLeft, OutRight, Out).The �rst literal in the body of the lause imposes the onstraint that the lause anonly be used when there is no no if onstraint pending. Furthermore it spei�esthat when food is spotted, turning is not allowed, whih will neessarily lead toa move as the next ation (note that due to the propagating of onstraints anynumber of intermediate sequene operators an our as long as the �rst ationthat is applied is a move). When there is no food ahead however, moving is notallowed: this will mean that a onstrution suh as `iffoodahead(seq(move,X),seq(move,Y))' is not allowed, as this ould equivalently (and shorter) be spei-�ed as `seq(move,iffoodahead(X,Y))'. For both branhes, it is not allowed toimmediately hek for food again. The lause will return the intersetion of theonstraints imposed by the two branhes, thus if both branhes end with imposingthe same onstraint(s) these will be propagated to the next ation.This in e�et implements information about some immediate redundanies in thefuntion set for the arti�ial ant problem. It redues the searh spae by disallowingspei� ombinations of ode. No knowledge about the trail is inluded in theprogram, the onstraints are imposed to remove redundanies and to take onemaybe sensible ation: when there's food spotted, eat it.



7.1. APPLICATIONS 95The e�ets of subtree rossover and ripple rossover in the ontext of these on-straints are expeted to be quite di�erent. In the ase of subtree rossover, at-tempting to move a subtree to an illegal ontext will result in a failure. Considerfor example inserting the subtreeseqleft move into loation X of seqright Xthus trying to form the tree seqright seqleft moveThe onstraint against turning would make this tree invalid. When using ripplerossover however, the baktraking operator would simply skip the left ationand the intermediate tree would beomeseqright seqmove YWhih is as suh invalid. If there is however still geneti material left, possibly inthe tail of unexpressed ode, the resolution proess would use that to �ll in thevalue of Y and then reate a valid tree. As the onstraints in this grammar onlyexlude ertain pairs of ations or onditions, the baktraking operator is expetedto be relatively suessful in reating valid o�spring.The e�et of using these onstraints is dramati in the ability of ALP to �ndsolutions to the problem. Figure 7.1 shows the umulative probability of suessover the generations for both ripple rossover and subtree rossover for both logiprograms. The suess rate for solving the problem goes to 97% for ripple rossover,while subtree rossover's performane goes to 80%. On the standard formulationof the problem, suess rates are muh lower. We annot onlude that ripplerossover together with baktraking is better suited to handle the onstraints,as the suess rates on the standard formulation of the problem already show asigni�ant advantage for ripple rossover. It appears that for this type of problemthe more destrutive variation applied through ripple rossover has a bene�t overthe more loalized hanges of subtree rossover. This is espeially pronouned inthe later stages of the run, where umulative suess for subtree rossover levelso�, while the runs using ripple rossover keep �nding solutions.It is however instrutive to examine the failure rate of both methods. These aredepited in Figure 7.2. Initially the failure rates of both methods peak when the�rst illegal rossovers our. Very soon however, the tail of unexpressed ode beginsto form and together with the baktraking mehanism, the failure rate of ripplerossover drops to very low values. The failure rate of subtree rossover on theother hand initially rises and levels o� at a rate of 5%. In both ases the rossoveroperators have two tries in reating a valid individual. Due to the elitist trunationseletion method that is used, invalid individuals only slow down the searh. The
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Figure 7.1: Probability of suess in eating 89 piees of food sattered on theSanta Fe trail for subtree rossover and ripple rossover using the straightforwardProgram 7.1.1 and the `sensible' ant program.
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Figure 7.3: The evolution of the average size of the population on the arti�ial antproblems.5% invalid individuals that are reated by subtree rossover would mean that thegeneti algorithm e�etively proesses 475 individuals per generation rather than500.It is lear from this experiment that the `sensible' program helps in solving theproblem faster than the straightforward program, regardless of the variation operatorthat is used. The `sensible' program uses ontext-sensitive onstraints to introduesome a priori information to exlude redundant subexpressions.By reduing the searh spae to exlude ertain onstruts, an impliit bias towardsshorter solutions is introdued. It was estimated in (Langdon and Poli, 1998) thatthe spae of possible ant programs has a high density of solutions of a relative shortsize. Figure 7.3 shows the evolution of the size of the population undergoing bothrossover operators. The `sensible' ant onstraints indue populations ontainingprograms that are signi�antly shorter than when using the unonstrained de�nitionof possible ant programs.Conluding the ExperimentAlthough the `sensible' ant-problem studied here is a toy problem, the way theonstraints are introdued point to a more general appliation: disallowing ertainonstruts beause they are redundant or meaningless. This an often be identi�edjust examining the de�nition and desription of the funtion set. It proved to befairly easy to disallow some ommonly ourring fragments from the ant programs,the redued searh spae allowed to searh with great suess. Many funtionsets have known redundanies or allow nonsensial ombinations. By using a logi



98 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMprogramming approah it is possible to disallow spei� onstruts. This an beontrasted with a pure syntatial approah (ontext-free grammars), where it isonly possible to express what is allowed.A possible appliation of this tehnique in symboli regression would be to spei�-ally disallow nesting of some funtions. For example, the lauseexpr(exp(X),C) :- \+ member(no exp,C), expr(X, [no exp|C℄).would disallow nested exponentiation funtions. In the pratie of performing sym-boli regression it ours fairly often that suh nested expressions appear, and theirpresene makes it usually diÆult to interpret the equation. When using a subtreerossover using suh a grammar, any attempt of inserting a subtree ontaining anexp funtion underneath an exp funtion that is already present would lead to afailure. Using ripple rossover with baktraking, suh an o�ending operation wouldsimply be skipped and the next instrution would be read from the genotype. Whihof the two approahes is the best annot be answered onlusively at this point.7.1.2 Interval ArithmetiThe solutions provided by geneti programming in the area of symboli regressionan exhibit several types of over�tting behaviour; the most destrutive ones ourwhen arithmetial errors are indued. When the funtion sets inlude funtions thatare not de�ned in the full range of possible inputs suh as division and the squareroot funtion, the operators are usually proteted (Koza, 1992) to return defaultvalues in the ase of an error. Unfortunately, this protetion only works well whenthe arithmetial error ours in the training set: if errors our on a di�erent set,the default values are plainly returned, whih might lead to strange behaviour of theexpressions. For the division operator, proteting just a division by zero does notsolve the problem of ill-de�ned expression: onsider Figure 7.4 where an expression istrained on the indiated data points and subsequently evaluated over the full range.It indues an asymptote and the usual protetion mehanism will only protet thepoint where the atual division by zero ours. Values lose to this point will leadto a predition of arbitrary large values.A method to avoid mathematial errors and alulate the domain of an expressionis to use interval arithmeti that alulates upper and lower bounds for eah part inthe expression. Interval arithmeti is readily expressed in the ALP system, the logiprogram 6.2.2 that was used to illustrate the use of baktraking implements this.The program alulates the theoretial upper and lower bounds of an expression.The logi program that generates expressions and their bounds while avoiding math-ematial exeptions is used on a sediment transportation problem whih has beendesribed in Setion 3.1. Here we are interested in induing an empirial formulathat predits the onentration of sediment near the bed of a stream. A onen-tration annot have arbitrary values, it is onstrained to lie within 0 and 1, where1 means omplete saturation. To implement suh onstraints, we an use the logiprogram 6.2.2 de�ned in Setion 6.2.1.
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Figure 7.4: An automatially indued expression using the indiated points as thetraining set. It is evaluated over the full domain. Note that the usual protetionmehanism of disallowing a division by zero would not eliminate the asymptoteitself. This leads to wildly inaurate values in the neighbourhood of the invalidpoint.
The terminals for this problem will be the variables � and �0 that are dimensionlessvariables (Shields parameters) that are derived from measured variables. The lowerand upper bounds for these variables are empirially determined by examining thedataset, but in priniple these ould be set to theoretial values. Beause the lowerbounds are lose to zero for the dependent and independent variables, they wereset to 0. Now the objet of searh is an expression that (i) �ts the data well, and(ii) keeps within bounds. This is easiest to set up with a multi-objetive searh,espeially onsidering the fat that the interval prediate alulates worst asebounds4. It was however not tried to alulate better bounds in the grammar forfear of overomplexifying the logi program.This leads to the following setup:

4Consider for example a variable x with a data range of [�1; 1℄, and the expression x � x. Theinterval that is alulated for this expression would be [�1; 1℄, while in reality, the minus sign wouldalways anel out, leaving the tighter bounds of [0; 1℄.



100 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMinterval(theta, 0, 6.08).interval(theta_p, 0, 1.98).\* Rest of the interval/3 prediate, see Program 6.2.2 *\interval_error(O, L, U) :-O is abs(L-0) + abs(U-0.55). % bounds for b [0,0.55℄objetive([O1,O2℄) :-interval(X, L, U),eval(X,O1), % evaluate on datainterval_error(O2, L, U). % alulate the interval errorwhere the objetive/1 prediate is alled by the resolution engine. The rest of thede�nition of the interval/3 prediate an found in Program 6.2.2 whih de�nes theinterval arithmeti for addition, multipliation, subtration, division and the squareroot funtion. It returns two objetive values that will be handled by the NSGA-IIalgorithm (Deb et al., 2000). Not only will ALP try to indue an expression thatfollows the data range, the use of Program 6.2.2 also removes the need of usingproteted algebrai operators, as the expression is guaranteed to be valid in thedomain de�ned by the input variables.ResultsTo obtain a baseline measure of the performane of the system, �rst a set of 100runs are performed where the seond objetive is not used. Here the operators areproteted in the data range, thus divisions by zero are impossible and square rootsof negative numbers an also not our, but there is no seletion pressure towardsexpressions that follow the desired data range. The errors on the data are reportedas normalized root mean squared errors.Next to this experiments are performed that use the seond objetive: the intervalerror. All runs are performed on the same training data for the sediment transporta-tion problem. As the multi-objetive run ends up with a front of non-dominatedsolutions, in a post-proessing step a hoie must be made from this front. It wasdeided that the best performing expression on the data that had an interval errorsmaller than 0.1 would be seleted. It was not insisted to have an exat math onthe bounds beause the bounds alulated in the logi program are not tight.Although no onlusive evidene an be expeted from applying a system on asingle problem, two questions will be investigated. The �rst question is onernedwith the optimization ability: does the addition of a seond objetive help or hinderthe searh for a well-�tted expression? The seond question is onerned withthe performane of the expressions on the test-set: does the addition of a seondobjetive optimized on the data range help in avoiding over�tting?Figure 7.5 shows the evolution of the training performane for subtree and ripplerossover on both the multi- and single objetive problems. The use of a single
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Figure 7.5: Evolution of the mean performane on the training set for the multi-objetive and single objetive runs. The mean performane is alulated as anaverage over the performane of the best expression in a generation.objetive leads to signi�antly better results on the training set than the multi-objetive setup. Table 7.2 shows the results of a two-tailed t-test on the meanperformane at the �nal generation.When evaluating the expressions on the test set however, these di�erenes disappear.Figure 7.6 shows the performane of the seleted expressions from eah run on thetestset. Even though the best of those are very similar in their ability to generalize,the worst performing expressions taken from the single objetive runs do howevershow a large over�t. Note that with the normalized RMS measure used here, anerror of 1.0 would be produed by an expression that has a onstant value | themean of the target signal. Expressions that on the test set sore worse than an errorof 1.0 are thus worse than the performane of a onstant. This level of over�ttingSubtree MO Ripple MO Subtree RippleSubtree MO 0.62 10�6 10�7Ripple MO 0.62 10�6 10�7Subtree 10�6 10�6 0.29Ripple 10�7 10�7 0.29Table 7.2: Probability that the di�erene in observed mean performane in the �nalgeneration is aused by random e�ets using a two tailed t-test on the trainingset. The label `MO' designates the multi-objetive runs. There's no signi�antdi�erene between subtree rossover and ripple rossovers; the di�erenes betweenthe multi-objetive runs and the single objetive runs is however signi�ant.
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Figure 7.6: Performane of the seleted expressions of the multi-objetive and singleobjetive runs on the testset. The error measure that is used is the normalized RMSerror, whih is de�ned in suh a way that an error of 1 is ahieved by a orretpredition of the target average.an be alled destrutive. The use of a seond objetive that selets expressions ontheir ability to be valid in a prespei�ed output range seems to help in reduing thelevel of destrutive over�tting behaviour.Conluding the ExperimentThe interval program used here is a general approah to symboli regression wherethe issue of proteted mathematial operators is solved. If the ranges on the inputvariables are set orretly, there is no possibility that mathematial exeptions our.If the bounds are set to theoretially known values, it is likewise guaranteed that theexpressions indued by this program are well-de�ned for all possible input values.Here an approah was examined where the orret range of the output intervalwas used as a seond objetive in a multi-objetive searh. The onstraints, thusimposed, did not hamper the searh for a well-�tting equation by muh. It didhowever help in avoiding over�tted equations. This is to be expeted as the outputsof the expressions that are indued in this way are guaranteed to lie within a ertaindata range.The use of interval arithmeti in symboli regression an take many forms. Primarilyit an take are of avoiding the indution of destrutive under and overows in theinput-output mapping. By guiding the searh to �nd expressions that produeoutputs in the appropriate data range, destrutive over�tting an be avoided. Theresulting expressions are then provably in the right range for all possible inputs.



7.1. APPLICATIONS 103A multi-objetive approah might also not be the only approah that an ahievethis. As often, a tailor made wrapper an help. By using the program for intervalarithmeti, the output bounds of eah indued expression are known. It is thena fairly simple matter to �nd a slope and an interept suh that the bounds ofthe expression oinides with the desired output range. This an for instane beahieved with the following lause:saled_interval(I+S*X) :-interval(X,L,U),ath(S is 0.55/(U-L),_,fail), % 0.55: new rangeI is - L*0.55/(U-L).Whih will indue expressions that are always in the right domain. It is up to thegeneti algorithm to �nd an expression subjet to this saling that will �t the datawell.Although the onstraints imposed by interval arithmeti are fairly simple and anbe programmed into a regular geneti programming system without muh trouble,the use of the logi programming representation made it possible to use it withoutany hanges to the searh engine. It shows the versatility of the approah, where ahange in the de�nition of logi programs an help in �nding more reliable solutions.7.1.3 Units of MeasurementIn the physial sienes, data represents areful observations of a physial systemunder study. Apart from the raw numbers that are olleted, units of measurementof the observed variables provide additional information about the physial proess.In Chapter 5 a method was proposed that utilized the information in the units ofmeasurement in a preferential manner: a multi-objetive strategy was used to min-imize both the error on the data and the error in the dimensions of the evolvingexpressions. The expressiveness of the ALP system an however be used to delar-atively onstrain the searh suh that only dimensionally orret formulations willbe onsidered. In fat, takling problems involving units of measurement was themain inspiration for de�ning the ALP system.A omparison between delarative and preferential methods of formula indution inthe ontext of units of measurements an be found in hapter 8.The problem used here involves the sediment transport problem, already enoun-tered in Chapters 3 and 5. In ontrast with the approah outlined in Chapter 5, thesystem is onstrained to generate only dimensionally orret equations. It thus usesa delarative bias towards the use of units of measurements. Another approah forthis lass of problems is studied in (Ratle and Sebag, 2000) where a ontext freegrammar is generated that models a subset of the language of units of measurement.Implementation of the units of measurement system in a Logi ProgramThe onstraints imposed by the units of measurement an be e�etively imple-mented in a logi program. In order to implement the system a prediate uom/2 is



104 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMde�ned. The �rst argument of the prediate provides the algebrai expression andthe seond argument a list ontaining the exponents of the units suh that the fat`uom(ws,[1,-1℄)' for example denotes an input variable ws stated in the units oflength over time: a veloity.
For addition and subtration, the program needs to ensure that both arguments areof the same type, thus:
uom(X + Y, UOM) :-uom(X, UOM),uom(Y, UOM).

Although this lause an be used for both modes (input and output) of the seond(UOM) argument of the prediate, the behaviour of the ALP system will be di�erentfor eah mode. If the UOM argument is bound to a ground term i.e., it spei�es theneed for a partiular unit of measurement, the reursive alls to �nd the argumentsX and Y will be onstrained to be stated in these measurements. If on the otherhand the UOM argument is not grounded, the reursive proedure to �nd the X partof the addition is unonstrained. However, after the indution of this �rst part,the UOM argument will have been bound to a ground term: the units of the �rstargument. The searh for the Y part of the expression is then onstrained to bestated in the same units as the �rst part of the expression. In this ase no speialases needed to be onsidered, but below the meta-logial prediate ground/1 willbe used to hek for groundedness or non-groundedness of the inputs.
For multipliation and division, two lauses need to be de�ned: one when the UOMvariable is de�ned (grounded) and another when it is not de�ned. This is neessarybeause in the ase when the units are known beforehand, a di�erent alulationneeds to be performed then when they are indued by the arguments of the expres-sions. It was hosen to implement this using a helper prediate multipliation/3,to make it possible for the genotype to ode for the operation, and subsequently letbaktraking help in hoosing the appropriate lause. The following set of lausesimplements multipliation (implementation of division is similar):



7.1. APPLICATIONS 105uom(X*Y, UOM) :-multipliation(X,Y,UOM).multipliation(X, Y, UOM) :-ground(UOM), % is UOM set to a value?uom(X, UOMx), % get the units for the �rst argumentall(minus(UOM, UOMx, UOMy)), % alulate the units for the% seond argument% suh that y = output - xuom(Y, UOMy). % onstrain the expression% to be of units UOMymultipliation(X, Y, UOM) :-not(ground(UOM)), % is UOM unknown?uom(X, UOMx),uom(Y, UOMy), % Do not onstrain the unitsall(plus(UOMx, UOMy, UOM)). % Calulate the output units:% output = x + yThe prediates minus/3 and plus/3 perform subtration and addition on lists ofexponent values. They are wrapped inside Prolog's built-in all/1 prediate tomake sure that they are evaluated in Prolog diretly (See Setion 6.2.5). Theground/1 prediate heks whether the variable is bound to a ground term. In the�rst lause, that only applies when the units are grounded, the �rst argument forthe multipliation is found in an unonstrained way. Subsequently, the di�erenebetween the output and this argument's units is alulated, the result are the unitsthe seond argument needs to be stated in to obtain a onsistent formulation. Whenno units are demanded, both the �rst and the seond argument are indued withoutonstraints on the units they're stated in. They are added together to alulatethe output units. The two lauses for applying multipliation are thus de�ned fordi�erent modes.In the experiments desribed below one additional funtion is used, sqrt/1, de�nedas:uom(sqrt(X), UOM) :-square root(X,UOM).square root(X, UOM, C) :-ground(UOM), % is UOM set to a value?all(mult(UOM, 2.0, UOMx)), % multiply by twouom(X, UOMx). % onstrain the operandsquare root(X, UOM, C) :-not(ground(UOM)), % is UOM unknown?uom(X, UOMx), % �nd an operand (unonstrained)all(mult(UOMx, 0.5, UOM)). % alulate the output UOMWhere the mult/3 prediate alulates a multipliation with a salar value.Together with lauses de�ning the variables and retrieving onstant values (whih



106 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMare onstrained to dimensionless units in order to disallow arbitrary oerions), thislogi program implements the system in full generality. The ALP system evolvespaths through the logi program that result in orretly typed expression, whih aresubsequently subjet to evaluation on the available observations.The Sediment Transport ProblemFor the �rst set of experiments the sediment transport problem is revisited. The in-puts for this program are the independent variables, together with their dimensions,represented as a list of exponents.uom(X,U) :- leaf(X,U).leaf(nu, [2,-1℄). % kinemati visosityleaf(uf, [1,-1℄). % shear veloityleaf(uf_p, [1,-1℄). % sheer vel. related to skin fritionleaf(ws, [1,-1℄). % settling veloityleaf(d50, [1,0℄). % median diameter of sand grainsleaf(9.81, [1,-2℄). % gravity aelerationleaf(C, [0,0℄) :- % dimensionless onstantfp(C). % obtain float from genotypeThis logi program delaring the uom then de�nes a searh where most onstraintsare ontext-sensitive. Beause of this, subtree rossover will �nd it diÆult toexhange subtrees, as it does not have a fallbak mehanism in ase onstraints areviolated. Apart from the ase where there is no desired output unit and the entireexpression onsists of non-linear operators, subtree rossover will only be able toexhange subtrees that are stated in the same units. It will then be onstrained toonly searh in the spae of units that are present in the initial generation.The untyped ripple rossover however will be able to exhange expressions statedin arbitrary units. The baktraking mehanism helps in reinterpreting the remain-der of the string to indue a orret formulation. By using the helper prediatemultipliation/3, division/3 and square root/2 that de�ne the operationof the program in the ase of di�ering modes, the baktraking mehanism willwork as intended. When a multipliation is hosen for instane, seleting the lausefor the wrong mode (for instane the lause that heks for groundedness when theUOM is ungrounded), would only lead to skipping a single odon, the next odonwill automatially ode for the proper lause.It is unfortunately not lear what onsequenes breaking up the program in severalprediates has for subtree rossover. Subtree rossover will exhange subtrees start-ing with the same prediate, and thus when seleting a multipliation/2 predi-ate in one tree, it will searh for the same prediate in the other tree. When suha tree is found, but the modes of the prediates di�er, the rossover will fail. Theseletion of subtrees is done randomly, thus the probability of seleting a prediatewill be determined by its frequeny of ourrene in the tree. Whigham (Whigham,1996a) advoates setting a priori probabilities for the seletion of di�erent non-terminals (prediates) in a ontext-free grammar. This would however add another



7.1. APPLICATIONS 107set of parameters to the system. The impat of these parameters on the searh isdiÆult to determine, as it is quite likely that their importane depends on the stateof the population.This program is designed with the possibility of baktraking in mind and is thustilted in favour of the untyped variational operator alled ripple rossover. The maindrawbak for typed subtree rossover is however not easily solvable: due to it mostlyexhanging subtrees of the same type (units), it will be heavily biased towards thetypes present in the initial population. The units of measurement language has anin�nitude of possible types, leading to the assumption that subtree rossover willbe ine�etive in this domain. This a priori drawbak of subtree rossover on theunit of measurement problem was the primary motivation that lead to reating theALP system. With this system in plae, together with an implementation of subtreerossover, it is �nally possible to hek whether this assertion is founded.The desired output for this problem is a dimensionless quantity, a onentration.Two experiments were performed, one where the desired output is given and oneexperiment where no desired output is given. The seond experiment thus seeksfor a dimensionally onsistent formulation stated in any units. It is quite ommonfor empirial equations to multiply the resulting equation with a onstant stated insome units to obtain an equation stated in the desired units of measurement5, thisis usually a residual oeÆient that tries to desribe some unmodelled phenomena.In that ase the searh is for an expression that is internally onsistent, withoutneessarily inferring the desired dimension. In the logi program this is aomplishedwith the following goals:(1) ?- uom(X,[0,0℄).(2) ?- uom(X, _).Where the undersore symbol ` ' denotes an unnamed variable. The experimentswere run for 300 generations.From Figure 7.7 and Figure 7.8 it an be inferred that subtree rossover is notapable of optimizing well on this problem. In ontrast with this, ripple rossoversearhes reasonably well, the average performane is in both experiments signi�-antly better than subtree rossover, even the less onstrained subtree rossoverexperiment is not able to improve upon the fully onstrained ripple rossover runs.On the problem setup where the expression an be stated in arbitrary units (i.e. thegoal statement is of the seond form), ripple rossover is apable of outperformingthe human-indued equation on average6.Settling veloity of Faeal PelletsTo investigate if the lak of searh apabilities when employing a subtree rossoveris strutural or oinidental, a seond experiment is performed using a di�erentdataset. The objet of searh in this ase is to �nd a dimensionally orret expressionthat desribes the settling veloity of faeal pellets. This problem is de�ned withthe following variables and query:5A famous example is Chezy's roughness oeÆient, stated in the unit m1=2=s.6This is however the performane on the training set only.
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Figure 7.7: The evolution of the average performane for subtree rossover andripple rossover on the sediment transportation problem. The problem setup requiresthe expressions to be stated in dimensionless units. The performane of a human-proposed alternative formulation is depited with a straight line.leaf(l, [1,0,0℄). % length of the pelletleaf(w, [1,0,0℄). % width of the pelletleaf(rhos, [-3,0,1℄). % density of sea waterleaf(flrhos, [-3,0,1℄). % density relative to fresh waterleaf(9.81, [1,-2,0℄). % gravity aelerationleaf(X,[0,0,0℄) :- % dimensionless onstantfp(X)?- uom(X,[1,-1,0℄).than the sediment problem desribed above purely from the perspetive of obtaininglegal expressions. Not only is the dimension of mass added, there's no obvious wayto manipulate the variables in length units with the variables stated in density units.In order to produe a valid expression, the gravity aeleration term must be used.The simplest expression that abides all onstraints is of the form pgl or pgw. Theonly degree of freedom that is allowed is multiplying this basi expression with anarbitrary expression stated in dimensionless units.Due to the highly onstrained nature of this problem, it was neessary to inrease thedepth at initialization to 8. This to allow the reation of 500 unique individuals inthe �rst generation. Figure 7.9 shows the average performane of the two systems.Again, subtree rossover gets stuk at a suboptimal performane fairly early in therun.
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Figure 7.8: The evolution of the average performane for subtree rossover andripple rossover on the sediment transportation problem. The problem setup allowsthe expressions to be stated in any units, as long as they are internally onsistent.The performane of a human-proposed alternative formulation is depited with astraight line.
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Figure 7.9: The evolution of the average performane for subtree rossover andripple rossover on the settling veloity of faeal pellets problem. The problemsetup requires the expressions to be stated in veloity units.To appreiate the diÆulty in searhing in this onstrained spae, onsider thefailure rates depited in Figure 7.10. For both rossovers, failure rates are high.Interestingly enough, the failure rate of subtree rossover is muh lower than thefailure rate of ripple rossover. This quite obviously does not mean that subtreerossover searhes more e�etively as it's �nal performane is muh worse than thatof ripple rossover.Inspetion of the resulting expressions for the subtree rossover runs showed thatmore than half of the expressions produed at the end of the run are of the partiularform pgw + gw. These runs onverged on this expression fairly rapidly as legalrossovers on this struture produe very often lones. As there was no mutationpresent, this expression forms a loal optimum in the searh. The runs employingripple rossover were able to indue a diversity of well-performing expressions.Conluding the ExperimentsIt has been veri�ed that the ALP system in ombination with ripple rossover isapable of searhing in the area of dimensionally orret equations. The use ofa subtree rossover is however problemati. The existene of a great diversity ofpossible types in this type of problem prevents subtree rossover from searhingwell.Again, no mutation was used. As ripple rossover is apable of reating new types,whereas subtree rossover is not, the omparison is not ompletely fair. However,implementing a typed mutation in this highly onstrained set of possible expressions
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Figure 7.10: The evolution of the failure rate for subtree rossover and ripplerossover on the settling veloity of faeal pellets problem.is not without problems itself. A typed subtree mutation routine would involve thefresh initialization of a subtree starting from a spei� ontext. For the pelletsproblem, this initialization was in itself a non-trivial task. Experiments with aninitialization operator used as a mutation showed that a signi�ant runtime penaltyis assoiated with using this operator. It relies heavily on baktraking to �nd anexpression in the onstrained domain and suggests the use of extra parameters toontrol the speed and quality of the operator.Ripple rossover has a high mutation avour. Individuals undergoing ripple rossoverare subjet to re-interpretation of geneti material and have a tail of unexpressedode that an beome used again. This tail is a store of geneti material that atleast in one ontext has lead to a �nished expression. The runtime penalty forusing the tail is lower than that of using a strongly typed mutation operator. Thestrings involved are always �nite: if the end of the string is reahed during thederivation proess, the individual is marked invalid. As the individuals here areinitialized without a tail, this tail is formed exlusively from geneti material thathas undergone seletion. In partiular this means that the string of integers in thetail enode for at least one �nishing derivation in one partiular ontext. Revisitingthat ontext enables the re-reation of that expression.7.1.4 Matrix AlgebraMatrix algebra de�nes a set of very powerful mathematial expressions. It allowsgrouping of for instane spatial and temporal data into a small set of variablesymbols. There have been a few attempts at induing expressions in matrix algebra



112 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMby means of evolutionary omputation (Montana, 1995; Martin et al., 1999), buteither no experimental results were given (Martin et al., 1999), or the proposedimplementation did not implement the onstraints in a general fashion, and wereable to only indue expressions within a given set of matrix dimensions (Montana,1995).The use of logi programming in speifying the onstraints allows writing a programthat is apable of induing orret matrix expressions given arbitrary sized inputmatries.The problem studied here is a problem in the indution of a rainfall-runo� modelfor the Orgeval river, loated in Frane. The model uses past preipitation and triesto predit the disharge, the amount of water owing through the river at a ertainpoint in time. This data was sampled at hourly intervals. It was hosen to limitthe preipitation data to one week of observations prior to the preditions. In e�etthis means that there are 7� 24 = 168 inputs for eah predition.In this setting, regular symboli regression would have to ope with 168 terminals,even disregarding the use of moving averages that are sensible to add in a prepro-essing step (See for instane (Whigham and Crapper, 1999) where some movingaverages were introdued for a rainfall-runo� appliation). In ontrast with this,using the language of matrix algebra, these 168 terminals are replaed by a singleterminal: a vetor of 168 observations. The system is allowed to index the vetorand to apply summation and averaging operators, leading to the inlusion of all po-tential moving averages and lump sums in the spae of possible programs. The useof vetors and matries allows a onise symboli formulation of a solution involvingall input variables.The operations that are used are split in several groups:1. matrix algebra (sum, matrix produt, vetorized produt)2. aggregating (sum, mean)3. onatenation4. indexing (selet a range of values from an input variable)5. non-linear unary operators (sqrt, log, exp)The implementation of these operators is non-trivial, and the ALP system is pushedto its limits in aommodating for them. Here we will disuss the key lauses. Themain prediate is matrix/3. As usual, the �rst argument to the funtion is thesymboli expression that is to be generated. The seond an third arguments arethe dimensions of the matrix: the number of rows and the number of olumns.As we are interested in the a single value as output, the toplevel query will bematrix(X,1,1).There are a number of binary funtions de�ned that only work properly on matri-es of the same size. These are addition and subtration, but also element-wisemultipliation and division. These all have the form:matrix(f(X,Y), R, C) :- matrix(X, R, C), matrix(Y, R, C).



7.1. APPLICATIONS 113where f is the funtion in question (the funtion name f does not appear in thelogi program, it is used here to indiate a number of lauses, all varying on thissame theme). For matrix multipliation the number of rows of the �rst argumentsneeds to be equal to the number of olumns in the seond arguments. In a lausethis beomes:matrix(X * Y, R, C) :- matrix(X, R, N), matrix(Y, N, C).The output dimensions are thus the outer dimensions of the input matries. Theinner dimensions are unonstrained, but one set (by induing an expression for X),they funtion as a onstraint. There is an exeption to these rules: when one ofthe matries is a salar, all operations are again allowed:matrix(f(S,X), R, C) :- matrix(S, 1, 1), matrix(X, R, C).Where f now ranges over all funtions de�ned so far.Aggregating values by applying an average or a summation is fairly intriate. Itwas tried to mimi the language used by speialized matrix algebra languages suhas Matlab and Otave. In these language an average operator is de�ned so that ifboth the number of rows and olumns are larger than one (i.e., it is a matrix), it willprodue a row vetor, applying the aggregation operator to the individual olumns,while if the input is a vetor it will return a salar value. The logi program wasenhaned to aommodate for these speial ases.The transpose of a matrix is simply de�ned asmatrix(transpose(X), R, C) :- matrix(X, C, R).Matrix based languages usually also aommodate onatenation of smaller matriessuh that they form larger matries. This is again only allowed when a regularmatrix an be formed. Thus depending on the type of onatenation | vertialor horizontal | either the rows or the olumns of the two arguments need to bethe same. Conatenation and aompanying onstraints are implemented in theprogram by heking these requirements.Indexing the variables an be used to reate moving averages. The syntax for amoving average of the �rst 20 elements with a stepsize of 2 for a olumn vetorpre would be mean(pre(1:2:20,:)). The dimensions of this vetor would be10 � 1. A fairly intriate mehanism is used here to make sure that a variable isseleted and that the indies seleted are in the proper range. Also here speialases for di�erent modes of the matrix dimensions are used.Beause suh moving averages an be seen as an extension of the terminal set, anadditional mehanism is used that hanges the program while deriving the expres-sion, suh that at any point, the system an add suh an indexed expression andsubsequently re-use it. This mehanism uses the meta-logial funtion assert/1,that an add lauses to a logi program. These are thus automatially de�ned ter-minals, and the algorithm is then apable of hanging the program while runningit.



114 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMNonlinear operators suh as log and exp are inluded as well. As they do notmanipulate the dimensions, but are just applied elementwise, no speial are hasto be taken to use them. If this appliation leads to mathematial exeptions, theexpression is marked invalid. There is thus no interval arithmeti applied here.The overall program de�ning the matrix expressions is quite intriate and althoughit works reasonably well, e�orts are underway to improve upon it.The system is trained using a sequene of 1000 hourly measurement points wherethe only input variable is de�ned as:matrix(pre,168,1)Identifying the preipitation of the last week suh that pre(1,1) is the urrentpreipitation and pre(168,1) is the preipitation one week in the past.ResultsOne of the best performing expressions on the training set was:-46.281 + 17.157 * exp(mean(pre).*mean([ pre(7:1:57);sum([pre(64:9:151);sum(pre(3:1:27))℄)℄))Due to its shortness, it was seleted and it ahieved admirable performane on thetesting data. The program ritially makes use of the square braket operator thatdenotes onatenation. The semi olumn means that the onatenation is performedover the rows. The inner term of sum([pre(64:9:151) ; sum(pre(3:1:27)℄)alulates a sum on a vetor of dimensions 11� 1, the �rst 10 elements are takenfrom the range starting at 64 hours in the past with stepsize 9, while the 11th and�nal element is in itself a sum of the more reent rainfall. The nested sums are asummation of 10+24 = 34 di�erent rainfall observations, that are onatenated tothe pre(7:1:57) term. The mean that is alulated of this vetor of dimension51 � 1 thus inludes as its 51st term, these 34 observations lumped together. Italulates a weighted average with the short term rain fall and the long term rainfallbeing more important than the medium term. The whole average is multiplied withthe mean rainfall in the week before and exponentiated to give the �nal predition.To appreiate the diÆulty in reating suh a model it is instrutive to ompare thegraph of the preipitation with the predited and atual ows in Figure 7.11. Al-though there's an obvious onnetion between rainfall intensity and the subsequentruno� in the Orgeval river, it is by now means a straightforward relationship dueto the spiked distribution of preipitation. In partiular, the model is apable ofprediting the peaks with admirable auray. This is important when foreastingoods. The method introdued here shows promise in induing equations that anmodel suh relationships. It does this without preproessing of the data other thansetting the maximum history (a week).The expression that is desribed above provides an additional view of the mainharateristis of the Orgeval athment. The moving averages and moving sumspropose some spei� intervals of observing the rainfall for the fast ow of the
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Figure 7.11: Graph of (a) the preipitation and (b) the predited and atual dis-harge on the rainfall-runo� problem.



116 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMathment (from 3 hours to 27 hours in the past), the medium ow of the athment(7 hours to 57 hours), and the low ow (larger than 64 hours in the past). Breakingup the ows in a athment in a ouple of suh `reservoirs' is standard pratie inbuilding a oneptual model. Here this breakup in the number of reservoirs andtheir temporal e�et on the runo� of the river has been automatially found.Conluding the ExperimentThe experiment performed for the rainfall-runo� problem is a �rst experiment intothe domain of matrix algebra using the expressiveness of the ALP system. Thisexperiment already provided a reasonable performane, but it is onjetured herethat better performane is possible by inluding some domain knowledge. Hardlyany of the runs used the matrix produt. It seemed not neessary to use this toindue the models. It was inluded in the funtion set beause it was thought that itwould make it possible to perform �ltering. It did not seem to be helpful. A possibleavenue of further researh might be to simplify the language to �rst let the evolvingprograms set up some moving averages, lump sums, maxima and minima based onindexing the available data, and subsequently let it indue a symboli expressionsthat ombines these proposed aggregate variables. A seond approah ould be toperform a simple linear regression on these variables.These approahes are however left for future work. The experiment desribed hereshowed that it is possible to indue expressions in the very promising area of matrixmanipulations.7.2 DisussionThe ALP system was originally developed to be able to searh in the area of dimen-sionally orret expressions. The use of untyped variation operators was hypothe-sized to be neessary to be able to searh in this area. The experiments performedon two real-world problems in this area in Setion 7.1.3 seem to on�rm this.The main problem with a typed rossover operator lies in its non-explorative naturein the spae of types: it is only apable of swapping subtrees that are of exatlythe same type: in the ase of typing with units of measurement, the number ofpossible types is very large and subsequently the number of legal rossover pointsan drop dramatially, leaving subtree rossover to fous on a small region of thesearh spae. The experiments did not employ a typed mutation operator to reatenew subtrees and possibly new types. The reason for not inluding suh an operatorlies in the runtime performane penalties assoiated with this operator.Ripple rossover works robustly on these problems. However, it annot be ruledout at this point that its main searh apabilities ome from it being simply agood global randomization operator. Even in that ase, one advantage of a ripplerandomizer is that the geneti material used in this randomization are ontained inthe genotype. The omputational e�ort in reating new solutions is then known.There exists some seletion pressure on this `randomizing' material to enode fora omputation that �nishes before it reahes the end; genotypes that do not havethis ability will on average produe more failures and will have greater diÆulty in



7.3. THE ART OF GENETIC PROGRAMMING 117multiplying. In domains where initialization is already a non-trivial problem in itselfthis property of enoding for ompleting the resolution proess is important in itsown right.The experiments in this hapter tried to highlight these di�erenes between theuse of a typed and an untyped rossover operator. It also showed that an untypedoperator suh as ripple rossover is feasible to use as a variation operator in highlyonstrained domains. It is however left for future work to implement and investigatethe use of typed mutation operators to help in searhing more eÆiently.7.3 The Art of Geneti ProgrammingIn the book "The Art of Prolog" (Sterling and Shapiro, 1994) Sterling and Shapirostate that writing an elegant and powerful Prolog program is a skill that an only belearned through pratie. Reognizing a onise logi program is one thing, writingone quite another.Compared to the programs used for the ALP system, writing a program for exeutionin Prolog is omparatively easy, as the exeution path of the system is deterministi.For the ALP system, this does not hold. The geneti programmer using the ALPsystem has to take into aount that the programs will be exeuted using anypath through the searh tree, and also that these paths are �nite. Also the e�etsof baktraking need to be onsidered in writing a logi program for generatingomputer programs. Fortunately, when deterministi alulations are needed, adiret all an exeute statements in the Prolog resolution model. This allows touse the eÆieny of Prolog whenever that is needed. Determining what to alulatedeterministially and what to generate by the geneti algorithm is another issue inwriting a logi program in the ALP system.In this hapter several logi programs were used, some with more suess thanothers. The program for the sensible ant was maybe fortunate: the way the on-straints were imposed redued the searh spae onsiderably. The program forinterval arithmeti was relatively straightforward, but transforming onstraints onthe range for the output to something manageable for a geneti algorithm involveda multi-objetive searh. It also showed the onveniene of the system in settingup wrappers.The program for generating expressions that are valid in the language of units ofmeasurement and in the language of matrix manipulations involved reating lausesfor multiple modes: lauses that handle the ase when the values of the attributesare known (grounded) and lauses when the values are unknown. It is expetedthat espeially the matrix algebra program will undergo onsiderable re�nementin the future. An interesting extension to this work would be the ombination ofinterval onstraints, units of measurements onstraints and matrix onstraints in asingle program, in order to indue short expressions that are mathematially stable,dimensionally orret and an be applied to massive amounts of data.Investing time in setting up a program suh that the ALP system an searh e�e-tively an be very rewarding: these programs are used to generate expressions inproblem domains, not just for single problem instanes. The art of geneti program-ming lies in the delaration of a generative program that is optimally attuned to the



118 CHAPTER 7. APPLICATIONS FOR THE ALP SYSTEMunderlying geneti algorithm. One suh a program has been written, subsequentappliation of the system involves setting up some spei� information for a probleminstane: the variables and desired outputs. It is expeted that both the genetialgorithm and the programs themselves need to undergo onsiderable re�nement.The experiments and disussion presented in this hapter indiate that the ombi-nation of logi programming to de�ne problem domains and a geneti algorithm to�nd optimal expressions for problem instanes is a sensible approah to the problemof automati indution of omputer programs to solve hard problems.
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Chapter 8Experiments in Sienti�Disovery
Chapter 4 outlined the main goal of the work: to use the information in the units ofmeasurement in a problem desription to make the expressions produed by genetiprogramming more amenable to interpretation and analysis. To ahieve this twomain approahes have been de�ned: Dimensionally Aware Geneti Programming(Chapter 5) that uses a preferential bias towards dimensionally orret expressions;and an Adaptive Logi Programming system (Chapter 6), where a delarative biasis implemented that an redue the searh spae to only those expressions thatare dimensionally orret. The logi program that implements the language ofdimensionally orret expression was presented in Chapter 7.In order to interompare performane a number of experiments are arried out,using the following settings:� Strongly Typed (STGP), using the program desribed in Setion 7.1.3.� Dimensionally Aware GP (DAGP), using a program to indue symboli ex-pressions and the oerion alulation desribed in Setion 5.1.1.� Symboli Regression GP (SRGP), using the same program as DAGP, butwithout the oerion alulation.These three settings have eah been applied to four di�erent problems, all usingthe ALP system. Eah problem involves a largely unsolved sienti� problem in itsown right. The problems are desribed below. The four problems have a ratherdiverse range of spei�ations: the available data vary from very sparse (57 ases)to abundant (4800 ases), while the spei�ation of the uom varies from poor todesriptive. These hoies were driven by the intention to examine the robustnessof the methods and the quality of the provided solutions.



120 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY8.1 Problem 1: Settling Veloity of Sand PartilesThe settling veloity of sand grains is an important parameter in the study of sedi-mentary proesses in a oastal environment. A number of di�erent settling veloityequations have been presented in the literature. This ase study onentrates onthe settling veloity of sand grains.BakgroundSand grain settling veloity data has been gathered and presented by Hallermeier(Hallermeier, 1981). The data (see also Table 8.1) onsists of the sand graindiameter d, the uid kinemati visosity � , and the relative density de�ned as0 = (� � �f )=�f . The data were organized in di�erent ranges of the alulatednon-dimensional Arhimedes Buoyany Index, de�ned as A = � ��f � 1� gd3�2 . It isquite obvious that only d and � represent raw observations, whereas 0 and A arederived from other raw observations (suh as � and �f ) whih were not diretlyavailable. It should be noted that suh a preproessing of raw observations intoderived quantities inevitably introdues a degree of bias. The authors opted touse raw observations and to avoid the use of derived quantities whenever possible.However, in this ase the observation of the density of sand � is not available, andthe derived quantities are employed instead. The data were limited to 115 di�erentlaboratory experiments.variable desription uomd sand grain diameter m� kinemati visosity m2=sA Arhimedes Buoyany Index dimensionless0 relative density dimensionlessg gravity aeleration: 981m=s2ws settling veloity m=sTable 8.1: uom of the independent and the dependent variables for the problem ofdetermining the settling veloity of sand.Human proposed relationshipsA large number of settling veloity equations for sand partiles have been proposed.Here, we present only the most aurate one proposed by Hallermeier (Hallermeier,1981). The Hallermeier equations were �tted using settling data involving �ne tooarse sand grains. These equations (in the gs unit system and for varying rangesof A) read:ws = gd2(���f )18� A � 39ws = �� ��f � 1� g�0:7 � d1:16�0:4� 39 < A � 104ws = ��( ��f � 1� gd0:91�0:5 104 < A < 3� 106



8.2. PROBLEM 2: SETTLING VELOCITY OF FAECAL PELLETS 1218.2 Problem 2: Settling Veloity of Faeal PelletsThe settling veloity of faeal pellets produed by marine organisms ontributes todi�erent oeani proesses inluding sedimentation rates, geohemial yles andnutrient availability. Beause faeal pellets are aggregates of smaller partiles, thepellet sinking rates an be muh larger than the rates of the individual partiles.This inreases the sedimentation ux and possibly the rate of partile deposition.Faeal pellets inuene sediment transport proesses in the benthi boundary layer,and an evaluation of faeal pellet settling rates ontributes to the study of sedimentmobility on the sea oor.BakgroundFaeal pellet settling veloity equations have been presented in the literature forboth pelagi and benthi organisms. Signi�antly larger pellets with higher settlingveloities are produed by these benthi organisms. The present ase study onen-trates on faeal pellets of benthi origin produed by the benthi feeder Amphiteissaphobranhiata.Human proposed relationshipsThe existing settling veloity equations for faeal pellets of benthi origin are basedon measured faeal pellet settling veloity data (Tahgon et al., 1984). Two mainapproahes are typially adopted by human analysts when approximating this dataset: (i) either equations are �tted to the data or (ii) equations are based on thedesription of natural sedimentary proesses.A number of equations presented in the literature (Tahgon et al., 1984), (Komarand Taghon, 1985) have been �tted to the data. (Tahgon et al., 1984) alu-lated the nominal diameter (dn) based on the equal volume sphere. They analyzedtwo separate groups of data: Group 1 (where 37 < Re < 178) onsisted ofpellets produed by feeding on < 61�m sediment fration and Group 2 (where45 < Re < 117) onsisted of pellets produed by feeding on 61- 250 �m sed-iment fration. Here Re denotes the Reynolds number alulated as Re = wsdn� .Taghon et al. (Tahgon et al., 1984) used a regression analysis to yield (in the gsunit system): ws = 1:30dn + �� 9:08 (8.1)(Komar and Taghon, 1985) used the pellets nominal diameter (dn) to produe thefollowing: ws = 0:275 (�flg)3 d4n� !0:2 (8.2)where �fl denotes the di�erene between the densities of fresh water and salt water.(Komar and Taghon, 1985) also found a relationship between the pellet settling



122 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYveloity (ws) and the settling veloity (wt) of the `equivalent' sphere i.e., the spherede�ned by the pellets nominal diameter. wt was alulated either using (Gibbs et al.,1971) or (Davies, 1945). They presented the following (in m/se) using (Gibbset al., 1971) ws = 0:824w0:767t (8.3)and using (Davies, 1945) ws = 1:08w0:686t (8.4)Although the original settling veloity data were measured in sea water it appearsthat (Komar and Taghon, 1985) used freshwater onditions in developing the aboveequations.In addition to these equations whih were purely �tted to data, a number of naturalsedimentary partile settling veloity equations have also been developed. How-ever, the auray of these equations is orders of magnitude worse than the �ttedequations. A full inter-omparison falls outside of the sope of the paper and theseequations are not analyzed here in further detail. Instead, the interested reader isreferred to (Babovi et al., 2001) for a more thorough survey and disussion.DataThe measured faeal pellet data (see Table 8.2) inlude length (l), width at widestpoint (w), density (�) and measured settling veloity (ws) for eah individual pellet.Settling veloities were measured in sea water.variable desription uoml pellet length mw pellet width at the widest point m�s density of salt water g=m3�fl density di�erene between salt and fresh water g=m3dn nominal diameter msf Corey shape fator sf = wplw dimensionlessg gravity aeleration 981m=s2ws settling veloity m=sTable 8.2: uom of the independent and the dependent variables for the problem ofdetermining the settling veloity of pellets.8.3 Problem 3: Conentration of sediment near bedThe desription of the sediment problem an be found in Chapter 3, here only theinputs and desired output is repeated.



8.4. PROBLEM 4: ROUGHNESS INDUCED BY FLEXIBLEVEGETATION 123Name uom desription� m2=s kinemati visosityuf m=s sheer veloityu0f m=s sheer veloity related to skin fritionws m=s settling veloityd50 m median grain diameterg 9:81m=s2 gravity aelerationb dimensionless onentration of suspended sedimentTable 8.3: Dimensioned terminal set for the sediment transport problem.8.4 Problem 4: Roughness indued by exible veg-etationThe inuene of rigid and exible vegetation on ow onditions is not well under-stood. Some laboratory experiments using physial sale modeling have been per-formed (Tsujimoto et al., 1993), (Larsen et al., 1990) but only over a limit rangeand with variable suess. Similarly, although �eld experiments are ontinuing, thedata availability remains poor.More reently, a numerial model has been developed with the intention of deepen-ing the understanding of the underlying proesses (Kutija and Hong, 1996). Thismodel is a one-dimensional vertial model based on the equations of onservationof momentum in the horizontal diretion. This numerial model is used here as anexperimental apparatus in the sense that this fully deterministi model is used asa soure of data. It is here further proessed in order to indue a more ompatmodel of the additional bed resistane indued by vegetation.The model takes into aount the e�ets of shear stresses at the bed and the addi-tional fores indued by ow through vegetation. For a more detailed desriptionand a disussion of the spei�s of the model, the reader is referred to (Kutija andHong, 1996).DataThe Kutija-Hong model, was in e�et used as a truthful representation of a physialreality, while providing the onvenienes of fast alulation and an ability to produeresults with any degree of sale re�nement.The model has been run with a wide range of input parameters in order to reatetraining data. Altogether, some 4800 training data were generated. The inputdata were varied in the ranges: 2.5 � hw � 4.0; 0.25 � hr � 2.25; 50 � m � 350;0.001 � d � 0.004; 0.4 � p � 1.0.This problem is rather di�erent from the three ase studies already desribed. Onone side this is the only problem where data were abundant (see Table 8.5). Onthe other side, even at the outset it is obvious that no observations about theexibility of the vegetation are provided (for example in a form of Young's modulus



124 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYof elastiity). So, it an already be stated that the problem is well overed bythe observations, but not by the uom, sine nothing an be postulated about thestrutural properties of the vegetation (whether it is grass, bamboo or a tree).variable desription uomhw water depth mhr reed height md reed diameter mm number of reed shoots per unit area dimensionlessp eddy-visosity approximation and its relation to the dimensionlessvegetated layer heightth theoretial value of Chezy's oeÆient m0:5=sin the absene of vegetationg gravity aeleration 9:81m=s2 measured value of Chezy's oeÆient m0:5=sTable 8.4: uom of the independent and the dependent variables for the problem ofdetermining the Chezy roughness oeÆient.8.5 Experimental SetupFor all problems the same setup was hosen. As the basi strategy, the elitist,non-dominated sorting GA II (NSGA-II) (Deb et al., 2000) was seleted. When asingle objetive is used, this algorithm redues to an elitist (�+ �) strategy. Table8.6 spei�es the various parameters used in the experiments. It was hosen toexperiment with a minimal funtion set onsisting only of basi arithmeti and asquare root funtion, regardless of the data. Table 8.5 summarizes the availabilityof data. The error funtion used here is the normalized root mean squared error.8.6 Quantitative ResultsComparing the three approahes is not a straightforward task, as we are onernedwith two di�erent objetives. On the one hand, an expression with a low generaliza-tion error is required. On the other hand, the expressions need to be interpretablein the symbol system used in physis. However, strit adherene to the uom systemmight not be the best approah in all ases, as the measured data may not provideExperiment Train Test Totalsand 78 37 115pellets 38 19 57sediment 171 86 257roughness 3200 1600 4800Table 8.5: Data availability.



8.6. QUANTITATIVE RESULTS 125Objetive 1 Minimize the normalized RMSObjetive 2 Minimize the dimension errorFuntion Set f+;�;�; =; sqrtgEither with or without type onstraintsPopulation Size 250No. of Runs 50No. of Generations 400Crossover Prob. 0.8Mutation Prob. 0.2Tournament Size 2Strategy elitist (250 + 250)Multi Objetive strategy NSGA IISize of Training Set 23 of the full setSize of Test Set remaining 13 of the full setOutput type Problem dependentTable 8.6: The parameters for the experimentsa omplete desription of all relevant phenomena in the problem. Sometimes, whenno adequate �t with a dimensionally orret formulation an be obtained, it mightbe more prudent to selet a formulation that has a good �t and a non-zero oerionerror. As DAGP produes a front of non-dominated solutions rather than a singlesolution, a seletion from the front needs to be made. Therefore the following threepost-proessing rules are used:� Selet the best �tting equation (DAGP-FIT). This hoie produes resultsthat are omparable with the symboli regression runs. No expliit interestin the dimensional orretness of the expression is enfored sine the seletedequations are from the high goodness-of-�t and low goodness-of-dimensionedge of Pareto front. This hoie is made in order to investigate whetherthe use of uom improves or hinders the searh for �nding well generalizingexpressions.� Selet the best �tting equation with a oerion error of 0 (DAGP-DIM). Thishoie restrits the aepted solutions to dimensionally orret expressionsonly. These results are diretly omparable to STGP.� Selet the best �tting equation with a oerion error smaller than 1 (DAGP-MID). This allows to tolerate a small oerion error if this helps the �ttingapability.These three post-proessing rules mehanize the seletion of expressions from thePareto front, making omparisons more objetive. Table 8.7 summarizes the om-parison between the three DAGP post-proessing rules and their adversaries. Thetable highlights systems that result in signi�antly better average performane onthe test sets for the four problems. This is therefore a measure of the reliability ofthe method to produe good results.The �rst olumn in Table 8.7 ompares the two methods that are apable of pro-duing dimensionally orret formulations. For the sand and roughness problems



126 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYExperiment Corret Almost Corret Not Corret(STGP DAGP-DIM) (STGP DAGP-MID) (DAGP-FIT SRGP)sand DAGP DAGP nonepellets none DAGP nonesediment none DAGP noneroughness DAGP DAGP noneTable 8.7: Results on the four problems, omparing the (50 run) average NRMSover the test set using a two-tailed t-test with a signi�ane level of 5%. Thelabel denotes the setting that was signi�antly better than its adversary, and `none'when there was no signi�ant di�erene. `Corret' denotes the test using onlydimensionally orret formulations. `Almost Corret' denotes a test between STGPand the best �tting formulation on the training set that has a oerion error lowerthan 1. `Not Corret' denotes the test between the best �tting expressions on thetraining set from DAGP and SRGP (Symboli Regression GP), without any regardto the oerion errors the expressions made.STGP DAGP-DIM DAGP-MID DAGP-FIT SRGPsand 0.36 / 0.36 0.32 / 0.28 0.28 / 0.25 0.27 / 0.24 0.25 / 0.24pellets 0.73 / 0.57 0.80 / 0.60 0.64 / 0.44 0.62 / 0.44 0.57 / 0.74sediment 0.63 / 0.65 0.60 / 0.62 0.49 / 0.56 0.42 / 0.55 0.41 / 0.55roughness 0.48 / 0.48 0.40 / 0.40 0.30 / 0.30 0.29 / 0.29 0.26 / 0.27Table 8.8: Comparison of the train / test errors. Average NRMS over 50 runs.DAGP produes signi�antly better results, while for the others no signi�ant di�er-ene is found. If a small dimension error is tolerated (DAGP-MID), DAGP performsequivalently to or better than STGP on all four problems. The omparison betweenDAGP-FIT and symboli regression in Table 8.7 shows that neither produes signif-iantly better results. The preferential bias in DAGP does not prevent �nding goodexpressions. Figure 8.1 provides a plot of the performane on the test set of the 50seleted individuals.In order to investigate the performane the di�erent systems ahieve on the testset, Table 8.8 summarizes the errors on both the training and the testing set.8.6.1 Bias/Variane AnalysisEven a quik referene to Tables 8.7 and 8.8 reveals that DAGP seems to be areasonable approah for this lass of sienti� disovery problems. In order to learnwhere this performane originates and to explain the �tting apabilities of the varioustyping systems, an additional analysis was arried out by deomposing the errorsinto bias and variane terms (Geman et al., 1992; Keijzer and Babovi, 2000a).Given N data points and M models, the deomposition is based on the followingequality:
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Figure 8.1: Overview of the 50 best performing expressions on the test set for thefour problems desribed in the text. (a) Settling veloity of sand. (b) Settlingveloity of faeal pellets. () Conentration of sediment. (d) Roughness indued byexible vegetation.



128 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY1NM NXi=1 MXj=1(ti � yij)2| {z }mean squared error = 1N NXi=1(ti � �yi)2| {z }bias2 + 1NM NXi=1 MXj=1( �yi � yij)2| {z }variane (8.5)where ti denotes the desired output, yij the ith output of the jth model, and�yi = 1=MPMj yij is the average model alulated as the average of all preditionsfor input i. The variane term does not depend on the desired output and measuresthe variability in the preditions of the expressions. The bias error measures theperformane of the ensemble, and is an indiation of the intrinsi apability ofthe method to model the phenomenon under study. The equality (8.5) is theempirial version of the deomposition; the theoretial version de�ned over in�nitedata inludes a term addressing the noise in the data. In the empirial equation,the noise is absorbed by the bias term.It is important to emphasize that the error due to bias is di�erent from the biasof the system. The bias of the system entails the tendeny to sample ertain kindof solutions more regularly than others. A heavily biased method will have a smallerror due to bias if and only if the introdued bias is appropriate for the problem.With an inappropriate bias, the error will grow. An unbiased method on the otherhand will always have a low bias error | however, it is the error due to varianethat explains the �tting apability.In an ideal setting, one an expet that biased methods generally have low varianeerror, while the level of bias error determines the appropriateness of the bias tothe problem at hand. This an be exempli�ed by onsidering a maximally biasedmethod that produes the same answer regardless of the data that is available.Suh a method will always have zero variane error as its preditions are alwaysthe same. The performane of the system is then ompletely determined by itsbias error, having a low bias error when the expression happens to �t the data, andhaving a large bias error otherwise.An unbiased method on the other hand an be identi�ed by a low bias error, thougha signi�ant variane error due to over�tting will remain. A prototypial exampleof suh a method is a nearest neighbour method, that uses the value of the mostsimilar point in the data to make a predition. This method is unbiased as near thestored points the average of all nearest neighbour models will produe the orretanswer. The error due to variane will however be equal to the noise in the data aseah individual predition will return a stored, noisy, data point. When preditionsare made further away from the stored data, this error due to variane will inrease.However, these are the two extremes. In realisti irumstanes the methods understudy an exhibit various ranges of biased/unbiased behaviour. The STGP systemis expeted to have a signi�ant bias, sine it only samples dimensionally orretequations, and from these it tries to �nd the best �tting one. At the same time,the SRGP method is expeted to have a low bias, due to the ability to �t thedata in whatever way, using the set of funtions that are available. DAGP tries tostrike some middle ground by allowing inorretly typed expressions to proliferate inaddition to orretly typed expressions. The bias introdued in DAGP is thus hopedto be less stringent than the bias of STGP, possibly leading to lower bias error.



8.6. QUANTITATIVE RESULTS 129STGP DAGP-DIM DAGP-MID DAGP-FIT SRGPsand 0.23 (0.19) 0.07 0.06 0.06 (0.04) 0.04pellets 0.28 0.30 0.19 0.19 104 (0.20)sediment 0.34 (0.29) 0.30 0.26 0.27 0.24roughness 0.14 0.10 0.06 0.05 0.03Table 8.9: Errors due to bias, normalized using the variane of the target vari-able. Errors between brakets have been alulated using the middle 90% of thepreditions, and are reported when they di�er from the unproessed values.STGP DAGP-DIM DAGP-MID DAGP-FIT SRGPsand 0.41 (0.30) 0.05 (0.01) 0.06 (0.01) 0.14 (0.01) 0.94 (0.03)pellets 0.11 (0.06) 0.08 (0.05) 0.07 (0.04) 0.07 (0.04) 106 (0.06)sediment 0.26 (0.03) 0.09 (0.06) 0.06 (0.03) 0.13 (0.03) 6.33 (0.03)roughness 0.12 (0.07) 0.04 (0.02) 0.02 (0.01) 0.02 (0.01) 0.04 (0.02)Table 8.10: Errors due to variane, normalized using the variane of the targetvariable. Errors between brakets have been alulated using the middle 90% of thepreditions.In order to estimate the errors due to bias and variane, a new bath of 500 runs wasset up for eah system and problem. The same test set as before was held bak, butfor eah run, a new training set of the same size was reated using a bootstrappedsample drawn with replaement from the original training set. This is done to avoidoverestimating the error due to bias and subsequently underestimating the error dueto variane that an be expeted when using a �xed training set for all runs.Tables 8.9 and 8.10 provide an overview of the errors due to bias and varianerespetively. These errors are normalized using the variane of the targets. It hasbeen reported (Keijzer and Babovi, 2000a) that for modelling algebrai expressionson the basis of data, geneti programming an quite regularly produe out of rangepreditions. In order to obtain a more robust measure of the bias, Tables 8.9and 8.10 also show post-proessed values for the bias and variane errors betweenbrakets whereby the highest and lowest 5% of the preditions were exluded fromthe alulation in Equation 8.5.8.6.2 Settling veloity of sand partilesExamination of the errors due to bias and variane, reveals that for the sand prob-lem, for STGP both terms are muh higher than for the other systems. This is astrong indiation that the bias introdued by the uom is not the most appropriatefor this problem. It fores STGP to sample solutions that are on average not �ttingwell (high bias error) and, given di�erent bootstrapped training data sets, evolvessolutions that are di�erent from eah other (high variane error). Figure 8.1(a)shows the performane on the test set for the 50 resulting expressions. These re-sults show that STGP invariably produes equations with similar poor performane.The three statistis: high bias error, high variane error when trained on di�erentdata sets, together with level performane when trained on the same data, indiate



130 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYthat STGP might su�er from premature onvergene due to broken ergodiity (seeSetion 4.5.1). Inspetion of the history of the runs on�rms this. At the initializa-tion stage, the delarative bias fores STGP to sample a spei� kind of solution (inthis ase of the general form p dg where  is some dimensionless term). The re-mainder of the run time is used to enhane the �t of this general solution by addingvarious dimensionless terms. This inreases the variane error. It appears that theonstraints that are enfored partition the searh spae whih drastially redue thenumber of admissible solutions. Strongly inuened by initialization, throughout therun STGP ontinues to sample only admissible setions of the searh spae withoutexploring the searh spae well enough. This results in premature onvergene andsub-level performane.On this same problem, the bias and variane errors for DAGP-DIM, whih produesexpressions from the same set as STGP, are omparable to the less onstrainedexpressions. This further reinfores the suspiion that STGP su�ers from prematureonvergene as it learly shows that the onstrained searh spae does ontain goodsolutions.8.6.3 Settling veloity of faeal pelletsFor the pellets problem Figure 8.1 shows a lear division between orretly andinorretly typed results; the latter perform muh better. The main ause for thisbehaviour an again be attributed to the error due to bias. The pellets problem isthe only problem with the presene of mass units (Table 8.2) whih in turn inreasesthe set of onstraints. A possible reason for the inability of any of the dimensionallyorret expressions to provide an adequate �t might lie in a poor onnetion betweenthe units of the measured data and the data itself. The uom themselves are alsopoorly onneted: the gravitational aeleration g was needed to make it evenpossible to represent dimensionally orret expressions (see Table 8.2). Sine thereare only two density units present, �s and �fl, there is only one way to use those ina dimensionally orret equation, whih is to divide them by eah other. The pelletsproblem seems to be underspei�ed both with respet to overage by data and withrespet to the hoie of measurements. Only when oerion errors are tolerated areasonable �t an be obtained. The poor data overage enables SRGP to over�tthe data, while the DAGP results remain remarkably regularized. Examination ofthe evolution of the size of the equations (Figure 8.2) shows that SRGP in generalevolves muh larger solutions than either STGP or DAGP. On the average, theSRGP expressions ontain more funtions than data points available.8.6.4 Conentration of suspended sediment near bedFor the sediment problem, not muh di�erene between the onstrained results anbe found. Both approahes perform well in modelling the data. Analysis on thetest set reveals that the onstrained approahes are as apable in �tting the dataas the unonstrained methods. However, the fashion in whih the unonstrainedmethods arrive at these results is instrutive: there is a muh smaller deline in errorfrom the train to the test set than for the unonstrained solutions. It appears that,for the sediment problem, the information ontained in the uom helps in obtainingsolutions that generalize well. It has been stated already in the problem desription



8.6. QUANTITATIVE RESULTS 131(Setion 8.3) that the data set overs all relevant physial phenomena. In this setupit seems that the knowledge provided by the uom is well orrelated with the data.8.6.5 Additional roughness indued by vegetationThe roughness problem is haraterized by abundane of systematially sampleddata with �xed inrements over the entire range of inputs. However, it has beenargued earlier (Setion 8.4) that the measurements were not omplete as nothinghas been reorded about the exibility of the vegetation. As the information aboutthe uom does not over all aspets of the problem, it an be expeted that the moreheavily biased methods would not bene�t as muh or ould even be hindered by thisinformation. Table 8.9 on�rms this: STGP has the highest bias error, followed byDAGP-DIM, DAGP-MID, DAGP-FIT and ultimately SRGP, whih has the lowesterror due to bias. The signi�antly better results of DAGP-DIM over STGP an forthe largest part be attributed to the lower variane error.8.6.6 Summary of the quantitative analysisQuantitatively speaking, for the four problems, it seems that the inlusion of knowl-edge about the uom is best done through expressing a preferene rather than im-posing syntatial onstraints. The preferential bias of DAGP does not exhibit theproblems related to broken ergodiity that haraterize the syntatial approah.Moreover, DAGP appears to be able to �nd good solutions even when the uominformation is only partially relevant. Furthermore, the delarative bias in STGPseems not only to introdue a high bias error when the onstraints are not par-tiularly relevant, but it also has a high error due to variane. STGP thus showsdisadvantages for being biased (a high bias error when the bias is not appropri-ate) and being an unbiased method (a high variane error). DAGP only shows thedisadvantage due to its biased nature, as its error due to variane is quite low.The omparison between DAGP and standard symboli regression is lear ut: theinlusion of the additional objetive based on oerion error does not prelude DAGPof searhing well. More importantly, the additional objetive seems to have anregularizing e�et on the produed solutions. Table 8.10 shows a onsiderablysmaller tendeny of DAGP to produe destrutively over�tted expressions. This isalso on�rmed by inspetion of Figure 8.1 where the SRGP runs routinely produeover�tted equations.The regularizing e�et an be most learly seen in the errors due to bias and variane.Though the errors due to bias are omparable between SRGP and DAGP-FIT, theerrors due to variane are signi�antly higher for SRGP. This is in aordane with�ndings reported in (Keijzer and Babovi, 2000a). However, it should be emphasizedthat regularization is not aused by the introdution of units of measurements perse, but rather the fashion in whih uom are introdued.Furthermore, and as illustrated in Figure 8.2, DAGP generally onsiders smallersolutions than either STGP and SRGP. This preferene to parsimonious solutionsseems to be another side-e�et of using the uom in a multi-objetive setting andhas been noted elsewhere (Keijzer and Babovi, 1999), whih might partially explainthe observed regularization e�et.
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Figure 8.2: Evolution of the average size for the pellets and roughness problems.The evolution of the size on the other two problems exhibit a similar trend as thegraph for the roughness problem.8.7 Qualitative ResultsIn order to provide an indiation of the quality of the solutions that are generated,a short analysis is provided below. This is an inherently subjetive proess as itinvolves the interpretation of the equations, and even more subjetive reasons suhas aestheti appeal. Judgements need to be made regarding the expressions inorder to determine whether the proposed interations are meaningful or oinidental.However, sine the amount of knowledge about the physial proesses is very limitedno de�nite statements about the physis should be expeted from the hypothesisindution engines.The expressions below are seleted by taking the best performing expressions overthe entire data set using both the training and testing sets. These expressionsare inspeted for their value in desribing the problem itself, with the aim to learnsomething about the interations ourring in the proesses under study and possiblyto guide further data olletion ampaigns. For eah method, only one expressionis examined. In a more realisti setting a short-list of interesting expressions wouldbe seleted and analyzed further. This is not done here, as it would inrease thealready high degree of subjetivity.The problems onsidered in this paper are from highly speialized sub-�elds ofhydraulis and the authors feel ill-equipped to address them here appropriately.Suh a disussion would also fall outside the sope of the present work. The aimof this analysis is not to selet the ultimate expression, but rather to point out theinterpretability in these equations. The expressions are simpli�ed and in onstantsthe �rst three signi�ant digits are presented.The quantitative results have already revealed that there is a trade-o� between theinformation ontained in the data (the numbers) and the information ontained inthe units of measurements. Sine dimensionally aware GP produes equations thatmore-or-less abide the onstraints, it is possible to investigate the expressions them-selves and possibly learn something about these disrepanies in order to understand



8.7. QUALITATIVE RESULTS 133the problem more fully.8.7.1 Interpretability of unonstrained expressionsConsider the best expression produed by symboli regression (SRGP) for the sed-iment problem in Formulation box 8.7.1. Although this formulation has the bestperformane over the training as well as over the test set of all expressions induedin this experiment, it would prove tough if not impossible to interpret this expres-sion. It is not only the sheer size of the formulation whih makes the exerise almostimpossible, but also the dimensionally inonsistent fashion in whih the variables areombined, provides no help in determining the physial interations for this problem.b ' 0:284 ��u 0f � ws�3 �u 0f � g��g + u 0f + ufuf � g � g�5uf �1 g + 13:0  ws + g3u 0f wsuf �1�g + u 0fg ��1! uf �10B�u 0f � 11:3 gu 0f�u 0f � ws�2 � g21CA�10BB�g +0BB�d50 +vuut�u 0f � ws�2 wsg4 + g1CCA�2 g + u 0fws + u 0f � uf � ws + g2��1!�11A�11CA 12
Formulation 8.7.1: The best expression for the sediment problem produed bysymboli regression (SRGP). Even though this formulation produes the best �t tothe training and test data (NRMS 0.36), it is very hard to distill some informationout of this equation.This \formula" is taken as an indiation of the sort of expression unonstrainedgeneti programming indues. Spae restritions prevent us from presenting thebest expressions SRGP produes for the other problems. It will suÆe to state thatthese do not provide a brighter piture.As has been stated in the introdution, one an also perform a dimensional analysisand transform all dimensioned variables to dimensionless groups of numbers. Usingthis approah one would avoid problems related to units of measurement, but er-tainly not guarantee reation of solutions of lower omplexity (Babovi and Keijzer,2000). Formulation 8.7.1 learly demonstrates the need for onstraints if one wantsto use GP in a knowledge disovery setting.8.7.2 Settling veloity of sand partilesThe best expressions for the sand problem an be found in Formulation 8.7.2. In allthree expressions a distint pattern emerges revealing a ommonly appearing sub-expression pg0d. This is not only dimensionally orret and physially relevant but



134 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYSTGP ws ' pg0d�1:223� 1:098pA�DAGP-DIM ws ' 0:447pg0d 8qA 12 0 14 � 1:93DAGP-MID ws ' 0:170 (gd0) 1732 0 116 d 18 g 14vuuuut1:43�vuuut 0rA� 1:994p0 � 0�Formulation 8.7.2: Hypotheses generated using STGP, DAGP-DIM and DAGP-MID for the sand problem. The NRMS errors of these equations are 0.26, 0.28 and0.22 respetively.it also redues the NRMS error to 0:40 when evaluated as is. In order to inreaseauray while remaining dimensionally orret, this basi expression is saled bythe dimensionless terms A and 0. The grain diameter d annot be involved inthis saling without sari�ing dimensional orretness. However, sine DAGP-MIDallows small dimensional errors, it an use the variable d and sueeds in signi�antlyreduing the error by manipulating d, A and 0. Internal onsisteny for DAGP-MIDremains; only the output units are di�erent from the desired uom.Another struture that emerges in these experiments reveals that it is bene�ial totake repeated roots of the variable A, most often three times, resulting in the term8pA. Further examination of the range of A reveals that 8pA � e� log(A). Takingthese bits of information together ould lead to an experiment where the desiredoutput is divided by the term pg0d and a symboli regression experiment inludingthe logarithm in the funtion set in order to �nd the optimal saling fator.These onsiderations and manipulations are desribed to indiate how this approah�ts in sienti� work. Sientists generally approah disovery from various angles:proposing tentative formulations, srutinizing them based on �rst priniples and alsoby manipulating expressions both symbolially and numerially. The indution ofdimensioned expressions using GP an provide a fertile ground for suh experimen-tation.8.7.3 Settling veloity of faeal pelletsThe expressions for the pellets problem an be found in Formulation box 8.7.3.STGP models the relationship by taking the square root of two terms relating gand a length term l, while DAGP-DIM produes a short expression relating thesettling veloity to the retangular surfae of the pellets l � w, saled by the ratioof densities. The equation indiates that the faeal pellet settling veloity inreaseswith inreased values of the nominal diameter and the di�erential (or oating)density. This general relationship has also been developed for the settling veloitiesof other types of partiles. The general equation desribing these relationships isgiven as:



8.7. QUALITATIVE RESULTS 135STGP ws ' s 150 gw � 0:0189 g�0:764w� 0:664 � (2w + l)�s �DAGP-DIM ws ' 0:144pg 4swl�fl�sDAGP-MID ws ' pgw10 + g 1316 � 4932 l 1916100�s� 1916Formulation 8.7.3: Hypotheses generated using STGP, DAGP-DIM and DAGP-MID for the pellets problem. The NRMS errors of these equations are 0.58, 0.60and 0.54 respetively.Equation A B CStokes Settling (Low Re) - Sphere 1 2 1High Re - Sphere 0.5 0.5 0.5Equation (8.2) 0.6 0.8 0.6Table 8.11: Typial parameters for various settling parametersws � �gAdBn ��� �f�f � (8.6)where values for A, B, and C are given in Table 8.11.The faeal pellet data examined here are in the intermediate Reynolds number range(37 < Re < 178), whih explains why the semi-empirial Equation 8.2 has valuesfor A, B and C lying between the range of the values for Stokes and High Re settling.Comparing Equation 8.2 with the expression indued with DAGP-DIM reveals thatthe dependene of the settling veloity on the geometrial properties is essentiallythe same (albeit in the DAGP-DIM ase the dependene is on l and w and not dn).Also, the power value is lower for the ratio of the relative density to the uid densitythan in Equation 8.2. Nevertheless, it an be onluded, that the DAGP-DIMequation has the same general form as other partile settling veloity equations. Itis only the dependene of the settling veloity on the geometrial properties and therelative partile density that is slightly di�erent from other ases.DAGP-MID produes an equation that �ts better than other approahes althoughin this ase it does not remain internally onsistent. Taking this equation as a pro-totypial example of a GP-generated hypothesis, it is possible to further manipulatethe expression manually. The purpose is to demonstrate how a domain speialistan use additional insights and symboli gymnastis to distill some meaning out oftentative formulations suh as the one above. For example, the power of the �flvariable of magnitude 49=32 is rather lose to the `nier' power of 48=32 = 1:5. Inthe same spirit, one an hange the ��19=16s term to ��24=16s = ��1:5s . After thesemanipulations, whih in e�et redue the error, the density term beomes a true



136 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYratio and their uom disappear in the overall expression. The simpli�ed expressionsreads: ws ' pgw10 + g 1316 l 1916 ��fl�s � 32100whih has an NRMS error of 0.53, however with a oerion error. The two termsdo point at separate e�ets in the physis of the settling of the pellets. The �rstterm depends on the width, while the seond term depends on the length and thedensities. Note that the STGP solution has a similar form, thus reinforing a `theory'that suh a deomposition represents a valid approah.8.7.4 Conentration of suspended sediment near bed
STGP b ' 0:0132 �u 0f � ws�2 ws2u 0fd50 uf g �6ws2 + 6 u 0f 2 � 5 u 0f ws�DAGP-DIM b ' �u 0f �9:87� 10�6 uf � 1:27� 10�4 u 0f �gd50DAGP-MID b ' 0:0143 �ws � u 0f � 138 (uf � ws) 18g uf 78u0f 18w 14sFormulation 8.7.4: Hypotheses generated using STGP, DAGP-DIM and DAGP-MID for the sediment problem. The NRMS errors of these equations are 0.46, 0.46and 0.42 respetively.For the sediment problem, DAGP-DIM produes an elegant formulation balaningthe shear fores with the median diameter of the settling partiles. No refereneto the settling veloity ws is made whih makes this formula more parsimoniousthan the STGP formulation. At this point one an also forward an argument of adi�erent nature. The �rst two ase studies were onerned with �nding reasonableexpressions for ws itself, whih is intrinsially diÆult to measure and haraterize,and onsequently inevitably polluted by noise. It appears that DAGP provides ahigh quality �t with `smoother' expressions (or at least depending on `smoother'variables).Finally and very importantly, it should be noted that all equations presented in For-mulation box 8.7.4 provide a higher degrees of auray than the human-generatedformula 3.17. Furthermore, equation 8.7.4 was �tted on entire data set with result-ing NRMS = 0:47.



8.7. QUALITATIVE RESULTS 137STGP  ' 3 hw pghr�1 1p2 hr + 2 d+ hw + 4 dm phr +shr p�pp+ 4 p2 + hrd (p+m)� (2 p+m)�1!DAGP-DIM  ' 1:58 4sg2 (hw � hr)h2w pmdh2rDAGP-MID  ' 1:87(hw (hw + d)) 18 (hw � hr) 316 p 532 g 3764h 1732r (dm) 14Formulation 8.7.5: Hypotheses generated using STGP, DAGP-DIM and DAGP-MID for the roughness problem. The NRMS errors of these equations are 0.27,0.26 and 0.20 respetively.8.7.5 Additional roughness indued by vegetationThe formulations for the roughness problem are presented in Formulation box 8.7.5.The STGP expression shows that using the uom does not neessarily lead to un-derstandable formulations. In the denominator it adds water depths and diametersof the reeds to form its dimensionally orret expression. It is diÆult to imaginethe physial signi�ane of this addition.The best formulations for DAGP-DIM and DAGP-MID ame from the same run,and loser inspetion reveals a high degree of similarity in the results. Rewriting theequations in the form of a produt of simple terms raised to a ertain power revealsstrutural similarity. Ignoring the onstant terms, for DAGP-DIM and DAGP-MIDrespetively this formatting results in the following expressions:h 12w (hw � hr) 14 p 14m� 14 d� 14 h� 12rhw(hw � d) 18 (hw � hr) 316 p 532m� 14 d� 14 h� 1732rThe two equations written in this form reveal a high degree of similarity. The powersof the seond | dimensionally inorret | expression are rather lose to the orretpowers in the �rst expression. The main di�erene between the dimensionally orretand the dimensionally inorret equation lies in the phw term, that appears in theDAGP-DIM equation. The dimensionally inorret expression uses 8phw(hw � d).Furthermore, removing the d variable from this expression does not inrease theerror. Replaing the phw term in the dimensionally orret equation with 4phw andresaling the formula, indeed redued the NRMS error from 0:26 to 0:20. This is asimilar proedure as outlined in Setion 8.7.3, where `strange' powers are roundedto nearest `nie' powers. The output units of this expression would however still bestated in inorret units. If this hw term was stated in surfae units however, theexpression would be dimensionally orret. One possibility to onsider is that theterm is used as a proxy for a variable that is stated in surfae units whih has valuesproportional to hw.



138 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERY8.7.6 Summary and sope of GP-based sienti� disoveryThe overall proess desribed in this study forms in the authors' opinion a �rstiteration of applying geneti programming in the domain of sienti� disovery. Asthe results produed by geneti programming are knowledge-rih, the hypothesesindued an be used to further re�ne the experimental setup or inspire a new set ofexperiments in an iterative fashion. In this study, the raw data were taken at faevalue and the expressions were indued and post-proessed by automati means. We�rmly believe that the post-proessing should be arried out by domain speialiststhat an use their bakground knowledge and sense of aesthetis to judge whih ofthe proposed hypotheses is the most appropriate formulation. Suh a judgement isnot o�ered here; related work (Babovi, 1996; Babovi and Keijzer, 1999; Baboviet al., 2001; Babovi and Keijzer, 2000) does attempt to selet an appropriateformulation and sets up a small theory of worth of the expressions produed by GP.These `theories' are set up after examining the hypotheses generated by GP andprovide ground for disussion and further experimentation. The qualitative analysesgiven above gave a few examples on how to use the hypothesis generated by GPto inrease the usability of the expressions and how they �t into sienti� work.Spei�ally it was shown that the sientist using systems like these an:� Exploit numerial similarity. A persistent repetition of onseutive rootstaken of a single variable in Setion 8.7.2 lead to the disovery of a numerialnear equivalene with a logarithmi relation in the domain. This inspired theproposal of a new experiment using GP that would inlude this logarithmirelation. Entering this di�erent sub-expression into the equation an also bedone manually.� Exploit syntati similarity to existing equations. Setion 8.7.3 showedthat one of the GP-indued expressions was quite similar to an existing,human-proposed expression, even though it used di�erent variables. ThisGP-indued equation used measurable variables rather than approximations.This an reinfore the aeptane of the existing equation and, by virtue ofthe new equation being stated using di�erent variables, suggest an extensionof this equation to a family of related equations | appliable to di�erentmeasurement olletion ampaigns.� Use symboli manipulations for manual improvement. Setion 8.7.3 alsopresented an possibility to improve a GP-indued equation by manual inter-vention. By hanging the powers of an expression we were able to improveboth the goodness of �t of the equation and its aestheti appeal. A sientist,intimately familiar with the domain, is even more likely to use suh manipu-lations to provide genuine advanes in model elegane and ability to explainthe data.� Use within-run syntati di�erenes to examine the desriptiveness ofthe data. In Setion 8.7.5, the di�erene between a well-�tting expressionthat was dimensionally inorret and a less aurate expression that was di-mensionally orret ould be narrowed down to a di�erene in a single term.These expressions evolved in the same run using DAGP. The term in questiondepended on a single variable stated in length units. It was possible to makethe well-�tted expression dimensionally orret by verifying that the variable



8.8. DISCUSSION 139stated in length units was used as a proxy for a variable, proportional tothe original, stated in surfae units. The de�nition of suh a variable and asubsequent new measurement ampaign to measure this variable ould leadto enhaned understanding of the physial proess. This is a very good ex-ample of the worth of more-or-less orret expressions as they an point todisrepanies in the problem desription.� Produe expressions that perform better than human-proposed ones.Finally and very importantly, GP is apable of produing expressions that arebetter than those developed by a sientist. From the four problems, there wasonly one instane (the sediment problem), where a human-proposed expressionwas stated solely in terms of available data. This allowed a diret omparisonbetween the GP-indued expressions and the human-proposed expression ontheir ability to �t the data (Setion 8.7.4). The GP-indued expressions didnot only perform better, they were also stated in more basi units, makinginterpretation easier.The main advantage of using geneti programming in sienti� disovery is itsability to generate a large number of di�erent, yet meaningful hypotheses in a veryshort amount of time. These hypotheses are based on the experimental data whilesatisfying onstraints and are stated in a language that is onsidered well suited forthese problems: mathematis. GP ontains no notion about the problem other thanthe onstraints and the available data. GP is thus able to propose solutions that arenon-intuitive and sometimes provoative. The time sale of human invention runson the sale of months, if not years. Using a hypothesis generator an onsiderablyaelerate this proess, one the sientist is able to interpret these hypotheses. Theuse of uom to onstrain or bias the searh has proven to be very helpful in thissetting.8.8 DisussionMany issues have surfaed in the preeding setions. Although it is learly possible toevolve dimensionally orret equations based on data a trade-o� has been observed.Allowing small dimensional errors an improve the ability to provide well �ttingequations, sometimes with radially better results. This prinipally ours whenthe uom of the problem de�nition does not provide a omplete overage of thedynamis of the system under study.Geneti programming is an opportunisti searh algorithm: it provides expressionsthat �t the data while satisfying the onstraints. Sine the only feedbak from theproblem domain is in the form of error funtions, the algorithm produes expressionsthat model the relationship in whatever fashion that redues this error. When thenumerial values of a partiular measurement are indiative of some other underlyingphenomenon that ould be stated in di�erent uom, the geneti programming systemuses the measurements in a very di�erent way than the uom presribe. It is thussuseptible of modelling by assoiation, where a set of numerial values are usedas a proxy for an underlying phenomenon. This holds in general for any form ofdata-driven modelling. The use of the uom serves two purposes: to redue thismodelling by assoiation, and to aid in interpreting the expressions.



140 CHAPTER 8. EXPERIMENTS IN SCIENTIFIC DISCOVERYThe resulting front of non-dominated solutions produed by DAGP makes it possibleto examine the di�erenes between the orret and the more-or-less orret expres-sions. As the expressions are usually related | they share the same evolutionaryhistory | it is insightful to examine the trade-o� between the oerion error andthe �t on the data. For the roughness problem this trade-o� was used to improveupon the expressions.Even though with STGP the searh spae is vastly redued in omparison to SRGP,no evidene is found that the redution of the searh spae leads to the evolution ofbetter solutions in a shorter amount of time. On the ontrary, the relaxation of theonstraints helped in evolving better �tting equations. This might be an artifat ofthis partiular appliation and use of units of measurement. Still it o�ers a strongase against the prevailing intuition that the redution of the searh spae helps insolving problems faster.
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Chapter 9ConlusionThis work introdued several approahes that enhane geneti programming to beable to indue symboli expressions on data while taking are of the units of mea-surement. The goal of this approah is to automatially indue expressions that anbe analyzed with numerial and symboli means by an informed user.It was shown in Chapter 3 that symboli regression as suh does not provide muhbene�t over other methods of regression. The use of the symboli nature of theexpressions indued by standard GP as a vehile for obtaining insight appears to beproblemati. As the only feedbak supplied to standard GP is the (numerial) error,the expressions are then mostly numerial reipes to redue this error.To obtain interpretable expressions, an approah that exploits the symboli natureof of geneti programming is developed. It ritially uses units of measurementas a method of typing the expressions. A ompletely typed result in this systemorresponds with a fully dimensioned mathematial relation. The derivative salesthat are proposed by suh an expression attempt to establish some relationshipbetween a physial proess and the automatially indued expression.Chapter 4 showed that units of measurement an be implemented using a typesystem where the exponents of the units are used as separate types. Mathematialoperations on the values then orrespond with operations on the types. It was shownthat ontext-free grammars annot model the system of units of measurement infull generality. A method based on parametri polymorphism enhaned with expliittype arithmeti seems to be needed. It was argued that to provide maximal aidin the explorative �eld of sienti� disovery, rigorously abiding this type systemis not neessarily the optimal approah. Two main problems with using the unitsof measurement as a formal system, subjet to purely formal manipulations, havebeen identi�ed.� Formally orret expressions an be meaningless.Units of measurement an not exhaustively speify an experimental setup.There are then several ways how meaningless expressions an be formed.A basi example of a meaningless expression would be the formally orretappliation of an arsine on a ratio of two weight measurements. Formally



142 CHAPTER 9. CONCLUSIONthis would produe an angular measurement, physially this manipulation ismeaningless.This might be onsidered a pathologial example, but in one of the asestudies the following situation was enountered. In the roughness problem,two length measurements were used in an addition: one measurement wasthe mean diameter of a plant, the other the water depth. It is questionablewhat the physial meaning is of this addition as not only the sales of the twovariables di�er enormously, the measurements themselves apply to di�erentdiretions in the experimental setting.� Formally inorret expressions an be meaningful.Beause physial experiments are limited in sope and beause it is unknownin advane what variables need to be ombined to provide the answer, manypossibly relevant variables are not measured, or are kept at onstant values.The values that are measured an then be equivalent (up to a multipliativeonstant) to a whole set of phenomena stated in di�erent units. A length mea-surement an be proportional to a veloity if all measurements are performedusing a onstant period of time. A length measurement an be proportionalto a retangular surfae measurement if the length at the other axis is keptonstant.The ase study on the roughness problem is again illustrative for the potentialmeaningfulness of formally inorret equations. In this problem, a formallyinorret expression was indued that ompared to its formally orret ounter-part `misused' a length measurement, the water depth, as if it were a surfaemeasurement. In the experimental setup, there was however no measurementof the width of the hannel or the bloking surfae of the plants. As the datawas produed by a numerial model, this width is likely to be kept onstant,maybe even impliitly. The inrease in auray of the inorret expressionover its formally orret ounterpart seems to support an hypothesis that inthe roughness problem, a `bloking surfae' measurement might be needed inthe formulation of an empirial equation. Regardless of whether this hypothe-sis is true, without onsidering formally inorret expressions, suh alternativeviews of the meaning of the variables in the experimental setup are impossible.It is then unlikely that a purely formal approah will be the ultimate tool in sienti�disovery. A formal approah is only likely to give the optimal answer if the user ana priori state that eah measurement an be ombined aording to formal rules toform meaningful results. This situation seems to be only obtainable in the ontextof a preditive theory or an empirial equation; suh a theory is exatly what isbeing searhed for.It is therefore laimed here that the designation of the input data in appropriateunits of measurement is as muh part of the proess of sienti� disovery as theformulation of ombinations of this data. It is important to note that the argu-mentation does not dispute the worth of units of measurement in forming modelsof physial proesses, but merely points at the diÆulties a purely formal view ofsienti� disovery brings.Apart from onsiderations about the nature of units of measurement, the exat wayto searh the spae of dimensionally (in)orret expressions through the means of



143geneti programming has been researhed. Two possible ways of biasing the searhof a geneti programming system have been identi�ed. One is the inlusion of theunits of measurement as a delarative bias, where the spae of possible expressionsis redued to those that are dimensionally orret. The other is the implementationof a preferential bias: here dimensional orretness is not seen as an all or nothingproposition, but a gradation between the severity of onstraint violations is usedto indue a set of expressions that balane auray on the data and dimensional(in)orretness.Two di�erent systems have been developed and desribed that implement these dif-ferent biases. The method that uses a preferential bias is desribed in Chapter 5. Itritially depends on a multi-objetive searh strategy to balane goodness-of-�t anddimensional orretness. The general method is based on oerion of types, appliedto the indution of expressions using units of measurement it is alled DimensionallyAware GP (DAGP).The system that implements the delarative bias is introdued in Chapter 6 andis applied to the indution of dimensionally orret expressions in Chapter 7. Itis used as a strongly typed geneti programming system (STGP). Although thisSTGP system uses a geneti algorithm as the main searh engine, it is envisionedthat other weak searh algorithms suh as simulated annealing an be applied aswell. This in ontrast with the DAGP system, where the multi-objetive searh thatis entral to its operations quite likely prevents a non population based searh tobe appliable.The omparative study between straightforward symboli regression, dimensionallyaware GP and strongly typed (dimensionally orret) GP in Chapter 8 showed thaton four real-world problems, a trade-o� exists between the information ontained inthe observations and the information ontained in the units of measurement. Theuse of units of measurement atually hinders the searh for aurate formulations,even though it helps in interpreting them. This was shown through the means ofa bias-variane analysis, where the error due to bias for dimensionally orret ex-pressions was found to be struturally higher than the bias error for less onstrainedexpressions. Even worse, the strongly typed (delarative) approah to the indutionof dimensionally orret expressions showed on one of the four problems that itan ombine a high bias error with a high variane error, thus exhibiting very poorsearh performane. It is hypothesized that this is aused by problems with theergodiity of the searh spae. The dimensionally aware approah does not exhibitthis problem, but rather shows a graeful degradation when onstraints are hard tosatisfy.Purely from the perspetive of searh towards dimensionally orret expressions, theDAGP approah already appears to be better suited for these types of problems thanthe STGP approah.Furthermore, if one ompares the dimensionally aware approah with standard sym-boli regression on the basis of purely the �tting apability, no signi�ant di�erenebetween the two methods is found. This indiates that the multi-objetive searhthat implements the preferential bias does not prevent the system of �tting thedata equally well as an unbiased system. The balane between obtaining a good�t on the data and presenting a dimensioned expression is thus able to give a goodsample of the range of possible expressions. On the one hand, the best �tted ex-pressions are not worse than what an be obtained from using a tehnique suh as



144 CHAPTER 9. CONCLUSIONsymboli regression, while on the other hand the dimensionally orret formulationsare not worse (and sometimes better) than what an be obtained using a stronglytyped system. This balane between well-�ttedness and dimensional orretness isdynamially established during the searh.The implementation of the preferential bias in a multi-objetive searh toward afront of non-dominated solutions helped in regularizing the solutions. A side-e�ettowards parsimonious solutions was observed and it is hypothesized that this is oneof the auses for the regularizing e�et. The method employing delarative biasdoes not exhibit these side-e�ets.It appears that the approah based on oerion ahieves the best balane amongstsatisfying the onstraints, �tting the data and regularization of the indued expres-sions. The (im)balane between the onstraints and the �tting ability expliitlyatered for in this dimensionally aware GP provides additional insights into theproblem.Using DAGP and STGP, several expressions have been found that provide a on-sistent hypothesis of the main harateristis of the physial proess. This demon-strates the value of the expressions that use units of measurement to help in theinterpretation of the results. It is this possibility of diretly interpreting the resultsthat distinguishes geneti programming from other methods. The modi�ationsto geneti programming presented here an deliver this interpretability in a moreprofound way than straightforward symboli regression.The overall goal of the work | aiding in the interpretation of the symboli resultsprodued by geneti programming | has been ahieved. By using additional infor-mation, units of measurement, as a type system, the geneti programming systemis fored to produe expressions that have some limited semanti ontent. This se-manti ontent an however not be extrated without any e�ort. The user is ritialin relating the appliation of arithmeti with the derivation of physial onepts.In the perspetive of measurement theory, the use of these systems without addi-tional human e�ort is unsound. Measurement theory presribes the proess of sub-stituting numbers for observables and ultimately substituting equations for physialproesses as a one way street: an arithmetial operation on two measurements anbe performed if and only if there is a meaningful physial analogy of this operationin the physial proess. Examples of this an be found in the experiments studiedhere. In the roughness problem: subtration of the reed height from the waterdepth is a meaningful operation as it desribes the length in the hannel wherewater an ow unhindered by vegetation. However, adding the water depth to thereed diameter appears to be meaningless, even though the operation is formallyorret.There is thus no formal guarantee that a well-�tted dimensionally orret expressionproposes a meaningful relation, hene the unsoundness of merely using units ofmeasurements to make equations meaningful. However, an informed user | thedomain speialist | an use the equations to �nd meaningful relations. As theequations are well-�tted to the data, there is a high likeliness that the relationshipsthat are proposed have some onnetion with the physial proess that is modeled.It is shown in this work that suh onnetions, an be found by examining theresulting equations. In partiular, it was shown that by not insisting on dimensionalorretness at all times (DAGP), better �tting expressions an be found, withoutneessarily sari�ing this interpretability.



145The main bene�t of these methods then lies in proposing well-�tted equations thatan be used to obtain a better insight in the physial proess that underly thedata. Rather than having the human sientist researh all possible ombinationsof variables and derivative measurements, while at the same time trying to obtainauray (a low error), the systems here automatially indue expressions with highauray and tentative relations. The sientist trying to interpret the expressionsfuntions as a reality hek. In the absene of a formal syntax and semantis ofphysial reality this human inuene is neessary.The system desribed in this work is envisioned to be a soure of additional infor-mation, to be used next to the measurements themselves. The sientist an usethe additional set of equations to more aurately desribe the physial proessunder study. Ultimately, the goal is to form an empirial equation together with ajusti�ation for its use. The system is apable of providing highly ompressed viewson this data in the form of symboli expressions. By balaning fores, veloitiesand length measurements, the equations produed by the system are not neessarilyblak box models whose performane an only be measured in their ability to reliably`explain' the variane in the data, but an be inspeted by the sientist and used asa vehile for interpretation and as a form of inspiration for alternative views of theproblem. By ombining the power of an automated system to produe equations,and the ingenuity of a human observer to form hypotheses from these equations, itis thought that the best of two worlds are ombined: fast exploration of the spaeof symboli desriptions by automati means and the reativity of a human mindto �nd a justi�ation or a refutation for the well-�ttedness of these expressions.This ombination of data-driven searh and knowledge-driven justi�ation is hopedto lead to new advanes in siene. The unbiasedness of data-driven searh mightlead the knowledge-driven proess of theory-formation to onsider novel oneptsor novel ombinations of existing onepts.
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