

MULTIOBJECTIVE GENETIC ALGORITHM APPROACHES TO

PROJECT SCHEDULING UNDER RISK

by

MURAT KILIÇ

S ubmitted to the Graduate School of Engineering and Natural Sciences

in partial fulfillment of

the requirements for the degree of

Master of Science

Sabancı University

Spring 2003

MULTIOBJECTIVE GENETIC ALGORITHM APPROACHES TO

PROJECT SCHEDULING UNDER RISK

APPROVED BY:

 Prof. Dr. Gündüz Ulusoy …………………….

 (Thesis Supervisor)

 Associate Prof. Dr. Funda Sivrikaya �erifo�lu …………………….

Assistant Prof. Dr. Bülent Çatay ……………………...

DATE OF APPROVAL: 18.08.2003

� Murat Kılıç 2003

All Rights Reserved

iv

ACKNOWLEGEMENTS

I am extremely grateful to my thesis supervisor, Prof. Gündüz Ulusoy, for his

continuous support, encouragement, guidance and invaluable comments. This study

would be impossible without his comments and guidance.

I would like to thank my thesis committee members, Associate Prof. Dr. Funda

Sivrikaya �erifo�lu and Assistant Prof. Dr. Bülent Çatay for their comments, their time

spent on my thesis and serving on my thesis committee.

I would like to thank my friend Ercan Erol for his support during the software

development process; his support enabled me to develop the software.

I would like to thank my office mates Ekim Özaydın and Gülay Arzu �nal for their

support. I want to send my special thanks to Nuri Mehmet Gökhan for his

encouragement, endless support and comments. His comments helped the development

of this study most of the time.

Finally, I would like to thank my family and Helin El whose support keep me

alive.

v

ABSTRACT

MULTIOBJECTIVE GENETIC ALGORITHM APPROACHES TO PROJECT

SCHEDULING UNDER RISK

In this thesis, project scheduling under risk is chosen as the topic of research.

Project scheduling under risk is defined as a biobjective decision problem and is

formulated as a 0-1 integer mathematical programming model. In this biobjective

formulation, one of the objectives is taken as the expected makespan minimization and

the other is taken as the expected cost minimization.

As the solution approach to this biobjective formulation genetic algorithm (GA) is

chosen. After carefully investigating the multiobjective GA literature, two strategies

based on the vector evaluated GA are developed and a new GA is proposed. For these

three GAs first the parameters are investigated through statistical experimentation and

then the values are decided upon. The chosen parameters are used for the computational

study part of this thesis.

In this thesis three improvement heuristics are developed also to further improve

the GA solutions. The aim of these improvement heuristics is to decrease the expected

cost of the project while keeping the expected duration of the project fixed. These

improvement heuristics are implemented at the end of the proposed GA and used to

improve the results of the proposed GA.

Finally the GAs and improvement heuristics are tested on three different sets of

problems. The results are evaluated by pairwise comparisons of algorithms and of

heuristics. Also an approximation of the true Pareto front is generated using the

commercial mathematical modelling program, GAMS©. The results are compared to

that approximation and they seem comparable to that solution. The results of the

improvement heuristics are also compared against each other and the performance of

the heuristics is reported in detail.

vi

ÖZET

R�SK ALTINDA PROJE Ç�ZELGELEME PROBLEM�NE GENET�K ALGOR�TMA

ÇÖZÜM YAKLA�IMLARI

Bu tezde risk altında proje çizelgeleme problemi ele alınmı�tır. Risk altında proje

çizelgeleme problemi iki amaçlı karar problemi olarak tanımlanmı� ve 0-1 tamsayılı

matematiksel programlama modeli olarak formüle edilmi�tir. �ki amaçlı bu modelde, bir

amaç beklenen proje süresinin en küçüklenmesi di�er amaç ise beklenen proje

maliyetinin en küçüklenmesidir.

Bu probleme çözüm yakla�ımı olarak genetik algoritma (GA) seçilmi�tir. Çok

amaçlı GA literatürü detaylı olarak incelendikten sonra vektör de�erlendirmeli GA

üzerine iki strateji ve ayrıca yeni bir GA önerilmi�tir. Bu GAlar için parametreler

üzerinde yapılan istatistiki deneyler sonucunda uygun parametre de�erleri seçilmi�tir.

Seçilen parametreler yapılan çalı�malarda kullanılmı�tır.

Bu tezde ayrıca GA sonuçlarını geli�tirmek üzere üç tane sezgisel yöntem

önerilmi�tir. Bu sezgisel yöntemlerin amacı, beklenen proje süresini sabit tutarken

beklenen proje maliyetini azaltmaktır. Sezgisel yöntemler önerilen GA’nın sonuna

eklenmi� ve bu algoritmanın sonuçlarını geli�tirmek amacıyla kullanılmı�tır.

Son olarak, GAlar ve sezgisel yöntemler üç farklı problem sınıfı üzerinde

sınanmı�tır. Sonuçlar üzerinden algoritmaların ve sezgisel yöntemlerin ikili

kar�ıla�tırmaları yapılmı�tır. Ayrıca GAMS© ticari matematiksel programlama yazılımı

kullanılarak Pareto yüzeyinin bir yakla�ımı yapılmı�tır. Önerilen GA’nın sonuçlarının

bu yakla�ımla da yakın oldu�u görülmü�tür. Sezgisel yöntemlerin ise ikili

kar�ıla�tırması yapılmı� ve bu kar�ıla�tırmaların sonuçları rapor edilmi�tir.

vii

TABLE OF CONTENTS

1. INTRODUCTION AND PROBLEM DEFINITION... 1

2. DETERMINISTIC PROJECT SCHEDULING ... 2

2.1. Elements of Project Scheduling Problem (PSP) ... 2

2.1.1. Activities ... 2

2.1.2. Precedence Relations... 2

2.1.3. Resources .. 3

2.1.3.1. Renewable Resources.. 3

2.1.3.2. Nonrenewable Resources .. 3

2.1.3.3. Doubly Constrained Resources ... 4

2.1.3.4. Partially Renewable Resources ... 4

2.2. Objectives Employed in Project Scheduling Problems... 4

2.2.1. Makespan Minimization.. 4

2.2.2. Net Present Value Maximization .. 4

2.2.3. Quality Maximization ... 5

2.2.4. Cost Minimization... 5

2.3. Network Representation of Projects ... 5

3. MULTIOBJECTIVE OPTIMIZATION PROBLEM... 7

3.1. Statement of the Multiobjective Optimization Problem (MOP)........................... 7

3.1.1. Ideal Vector and Ideal Decision Vector .. 8

3.1.2. Pareto Optimum .. 8

3.1.3. Pareto Front ... 9

3.2. Multiobjective Optimization... 10

3.2.1. Weighted Sum Approach .. 10

3.2.2. Goal Programming .. 11

3.2.2.1. Weighted Goal Programming.. 11

3.2.2.2. Lexicographic Goal Programming .. 12

3.2.2.3. MINMAX Goal Programming .. 12

viii

3.2.3. Goal Attainment .. 13

3.2.4. The ε-Constraint Method .. 14

3.2.5. Genetic Algorithm Based Solution Approaches to MOP 15

3.2.5.1. Vector Evaluated Genetic Algorithm .. 15

3.2.5.2. Nash Genetic Algorithms: Noncooperative Approach........................ 16

3.2.5.3. Weighted Min-Max Approach Based GA... 17

3.2.5.4. Two Variations of the Weighted Min-Max Strategy........................... 19

3.2.5.5. The Contact Theorem to Detect Pareto Optimal Solutions 20

3.2.5.6. A Nongenerational Genetic Algorithm ... 20

3.2.5.7. Randomly Generated Weights and Elitism ... 21

3.2.5.8. Multiple Objective Genetic Algorithm.. 22

3.2.5.9. Nondominated Sorting Genetic Algorithm ... 23

3.2.5.10. Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II 25

3.2.5.11. Niched Pareto Genetic Algorithm ... 28

3.2.5.12. Strength Pareto Evolutionary Algorithm... 29

3.2.5.13. Pareto Archived Evolution Strategy.. 29

3.2.5.14. Pareto Envelope-based Selection Algorithm..................................... 30

3.2.5.15. The Micro-Genetic Algorithm for Multiobjective Optimization 30

3.2.6. Multiobjective Evolutionary Algorithm Performance Metrics 32

3.2.6.1. Error Ratio (ER) .. 32

3.2.6.2. Two Set Coverage (CS)... 33

3.2.6.3. Generational Distance (GD) .. 33

3.2.6.4. Maximum Pareto Front Error (ME) .. 33

3.2.6.5. Average Pareto Front Error ... 34

3.2.6.6. Spacing (S) .. 34

3.2.6.7. Distributed Spacing (DS) .. 35

3.2.6.8. Hyperarea and Hyperarea Ratio (H, HR) .. 35

3.2.6.9. Overall Nondominated Vector Generation and Ratio (ONVG,
ONVGR) .. 36

3.2.6.10. Generational Nondominated Vector Generation (GNVG)................ 36

3.2.6.11. Nondominated Vector Addition (NVA).. 36

4. PROBLEM DEFINITION AND SOLUTION APPROACHES 37

4.1. Problem Description ... 37

4.2. Mathematical Formulation of the Problem ... 38

ix

4.3. Solution Approach .. 41

4.3.1. Genetic Algorithms Employed.. 41

4.3.1.1. The Chromosome Representation and the Management of the Genetic
Algorithms Employed .. 41

4.3.1.2. VEGA Based Strategies .. 43

4.3.1.2.1. Strategy 1... 44

4.3.1.2.2. Strategy 2... 45

4.3.1.3. Proposed Genetic Algorithm ... 45

4.3.2. Heuristics to Improve the GA Results .. 46

4.3.2.1. An Improvement Heuristic Based on Continuous Cost vs Duration
Model.. 47

4.3.2.2. An Improvement Heuristic Based on GA Results............................... 52

4.3.2.3. From Start Improvement Heuristic ... 53

5. TESTING AND COMPUTATIONAL STUDY .. 55

5.1. Performance Metric... 55

5.2. Parameter Setting .. 56

5.3. Comparison of GAs .. 58

5.3.1. Comparison with the Approximation of the True Pareto Front 58

5.3.2. Pairwise Comparison of GAs.. 61

5.3.2.1. Comparison of VEGA Strategies .. 62

5.3.2.2. Comparison of VEGA Strategy 1 with the Proposed GA 62

5.3.2.3. Comparison of VEGA Strategy 2 with the Proposed GA 62

5.4. Comparison of the Improvement Heuristics ... 63

5.4.1. FS Improvement Heuristic Results ... 63

5.4.2. CCDM Improvement Heuristic Results .. 64

5.4.3. GAB Improvement Heuristic Results ... 64

5.5. Computational Times of the Study ... 65

6. CONCLUSION AND FUTURE RESEARCH DIRECTIONS.................................. 67

6.1. Conclusion .. 67

6.2. Future Research Directions... 68

6.2.1. Solution Approach Related Future Research .. 68

6.2.2. Problem Formulation Related Future Research .. 69

REFERENCES ... 70

REFERENCES NOT CITED ... 72

x

APPENDIX - A .. 73

APPENDIX - B... 78

xi

LIST OF FIGURES

Figure 2-1 (a) The AON representation; (b) AOA representation.................................... 6

Figure 3-1 Pareto front of a biobjective problem ... 9

Figure 3-2 Goal attainment approach sample graph (Coello, 2000)............................... 14

Figure 3-3 Schematic of VEGA selection (Coello, 2000) .. 15

Figure 3-4 Noncooperative Nash genetic algorithm (Périaux et al., 1998).................... 17

Figure 3-5 NSGA ranking mechanism for a biobjective problem.................................. 23

Figure 3-6 The nondominated sorting genetic algorithm (Bagchi, 1999) 25

Figure 3-7 Crowding distance calculation (Deb et al., 2002)... 26

Figure 3-8 NSGA-II procedure (Deb et al., 2002) ... 27

Figure 3-9 Micro-GA for multiobjective optimization (Coello et al., 2002) 31

Figure 3-10 Hyperarea calculation for a biobjective minimization problem
(Knowles & Corne, 2001)... 35

Figure 4-1 Project scheduling model elements... 37

Figure 4-2 Chromosome representation ... 42

Figure 4-3 Middling individuals in VEGA... 43

Figure 4-4 Example project network (AON).. 46

Figure 4-5 Example activity graph. .. 48

Figure 4-6 Example of piecewise linear curve fitting on an activity.............................. 50

Figure 4-7 CCDM improvement heuristic procedure... 52

Figure 4-8 GAB improvement heuristic procedure .. 53

Figure 4-9 FS improvement heuristic procedure .. 54

Figure 5-1(a) Hyperarea of the front, (b) maximum area bounded by origin and
maximum points. .. 56

Figure 5-2 Comparison of proposed GA results with approximation of true Pareto front
.. 59

Figure 5-3 Comparison of proposed GA results with approximation of true Pareto front
.. 60

Figure 5-4 Comparison of proposed GA results with approximation of true Pareto front
.. 60

xii

Figure A-1 MOGA pseudocode.. 73

Figure A-2 NSGA pseudocode ... 74

Figure A-3 NSGA-II pseudocode ... 74

Figure A-4 NPGA pseudocode ... 75

Figure A-5 NPGA-II pseudocode ... 75

Figure A-6 SPEA pseudocode .. 76

Figure A-7 SPEA-II pseudocode .. 76

Figure A-8 PAES pseudocode .. 77

Figure A-9 PESA pseudocode .. 77

xiii

LIST OF TABLES

Table 4-1 Risk states for an activity ... 40

Table 4-2 Mode generation and nondominated mode selection 47

Table 5-1 Parameters chosen for GAs .. 57

Table 5-2 Population size and generation sizes for different problem groups and for
different algorithms... 58

Table 5-3 Percent deviations of the GAs from the approximation of true Pareto front . 61

Table 5-4 EHR values for problem classes... 62

Table 5-5 Result summary of CCDM improvement heuristic.. 64

Table 5-6 Result summary of GAB improvement heuristic ... 64

Table 5-7 Computational times of the study in milliseconds ... 66

Table B-1 Experiment parameters used in parameter setting tests 78

Table B-2 EHR values according to problem and algorithm, true Pareto front
approximation (TPFA).. 80

Table B-3 Results of heuristics according to the problem.. 82

1

1. INTRODUCTION AND PROBLEM DEFINITION

The aim of this thesis is to develop an effective solution to the problem of project

scheduling under risk. Project scheduling under risk has not been studied extensively in

the literature (Ulusoy, 2002). The model for project scheduling under risk can be

summarized as follows.

Each task (activity) contains different number of risks and each risk has an impact

and a probability of occurrence associated with it. Risks only affect the duration of the

related task when they occur. A project manager can decrease the probability of

occurrence and impact of each risk by taking some preventive measures. These

preventive measures have a cost. A penalty cost based on the tardiness of the project, an

overhead cost based on the project duration and a labor cost based on the daily labor

needs of each task are the components of the cost function of the model. The model has

no resource constraints. The risks are assumed to be independent with their impacts

being additive.

There are a number of objectives in project scheduling and most project managers

are trying to achieve more than one objective simultaneously. Hence, multiobjective

approach to this problem has been adopted in this thesis. Makespan minimization and

cost minimization objectives are chosen as the two objectives to be adopted by the

decision maker.

Chapter 2 of the thesis summarizes the basic concepts of the deterministic project

scheduling problem elements. Chapter 3 of the thesis summarizes the basics of

multiobjective optimization and introduces the multiobjective evolutionary algorithms.

Chapter 4 explains the problem and the proposed solution approaches. Chapter 5 gives

the details of the computational study and the results of this study. Chapter 6 includes

the conclusion and the proposed future research directions.

2

2. DETERMINISTIC PROJECT SCHEDULING

2.1. Elements of Project Scheduling Problem (PSP)

2.1.1. Activities

Activities are non-divisible parts of project. Activities are also called as jobs,

operations and tasks. Each activity must be completed in order to finish the project.

Activities may have modes, which determine duration, resource and cash flows.

2.1.2. Precedence Relations

For some reason, some tasks may need a set of tasks to be completed in order to

start. For example, these precedence relations may occur according to technological

requirements. Consider, e.g., a building project. Clearly, activity “roof tiling” may only

be started if another activity “erecting walls” has been finished. The precedence

relations are given by sets of immediate predecessors indicating that an activity may not

be started before each of its predecessors is completed (Hartmann, 1999).

Also some activities may have some other type of precedence relations. To handle

these situations generalized precedence relations (GPRs) are defined. These are named

as start-start (SS), finish-finish (FF), finish-start (FS) and start-finish (SF). Minimal

time lag and maximal time lag are other features to describe the precedence relationship

between two or more tasks.

3

Most of the time, the statement of the project is in the form of a set of activities

and the immediate precedence relations among them. If activity u precedes activity v, it

is written as u� v (Elmaghraby, 1995).

In some cases GPRs are also used to define the relationship between two

activities. While defining GPRs start times of activities (i.e. start time of activity a s(a))

and finish times of activities (i.e. finish time of activity b f(b)) must be identified. Some

examples of GPRs can be stated as follows:

s(b) ≥ s(a) + 1 (SS; denotes, b can start one time unit after a starts)

s(b) ≥ f(a) + 3 (FS; denotes, b can start three time unit after a finishes)

f(b) ≥ f(a) + 5 (FF; denotes, b can finish five time units after a finishes)

f(b) ≥ s(a) + 2 (SF; denotes, b can finish two time units after a starts)

2.1.3. Resources

Material, money, manpower, which are needed to perform the tasks of the project

are called the resources. Resources are very important in project scheduling since they

define the type of the problem. If at least one of the resources is constrained, the

problem is called resource-constrained project scheduling problem (RCPSP). Resources

are mostly classified according to category. Category based classification includes four

type of classes, which are renewable, nonrenewable, doubly constrained and partially

renewable classes (Kolisch and Padman, 2001).

2.1.3.1. Renewable Resources

Renewable resources are constrained on a period basis only. That is, regardless of

the project length, each renewable resource is available for every single period.

Examples of this class are machine, manpower and equipment.

2.1.3.2. Nonrenewable Resources

Nonrenewable resources are limited over the entire planning horizon, with no

restrictions within each period. The classic example is the budget of a project.

4

2.1.3.3. Doubly Constrained Resources

Doubly constrained resources are constrained both on the period and planning

horizon basis. Budget constraints that limit capital availability for the entire project as

well as limiting its consumption over each time period are an example of this type of

resource.

2.1.3.4. Partially Renewable Resources

Partially renewable resources limit the utilization of some resources within a

subset of planning horizon. An example is that of a planning horizon of a month with

workers whose weekly working time, not the daily time, is limited by the working

contract. It has been shown that partially renewable resources can depict both renewable

and nonrenewable resources.

2.2. Objectives Employed in Project Scheduling Problems

2.2.1. Makespan Minimization

In this type of PSP, the objective is to minimize the makespan (i.e. the time span

between the starting time and the ending time of the project). The solution of this type

of problems generates a time-critical path.

2.2.2. Net Present Value Maximization

Maximization of the net present value (NPV) of cash flows throughout the project

is taken as the objective in these types of problems. Expenses and payments are types of

cash flows and the timing of these cash flows occur depending on contract types. For

example, expenses might be paid at the beginning of tasks and progress payments might

occur at the end of a defined set of tasks.

5

2.2.3. Quality Maximization

Maximizing the quality of the project is one of the more important objectives for

project managers. That is why quality maximization is also taken as an objective in

PSPs. The problem with this objective is its quantitative definition and the agreement of

different stakeholders on this definition.

2.2.4. Cost Minimization

In the type of problems with this objective, costs such as those occurring from the

realization of an activity, resource usage and earliness / tardiness penalties are to be

minimized.

Besides these well-known objectives, some other objectives are also employed.

These performance measures are represented based on timing of activities. Some

examples of such objectives are “minimizing the total earliness of activities” and

“minimizing the total tardiness of activities”. The combinations of these objective

functions are also employed in project scheduling leading to multiobjective project

scheduling problems. In this thesis, cost minimization and makespan minimization are

chosen as the objectives to achieve.

2.3. Network Representation of Projects

In general, two representations, activity-on-arc (AOA) and activity-on-node

(AON), have been commonly used to capture project networks, resulting in an event-

based or activity-based representation, respectively. In the AOA representation, nodes

represent events and arcs represent activities. Dummy activities are used to preserve the

precedence relations and dummy nodes capture the start and completion of the project.

In the AON representation, activities are represented by nodes and precedence relations

are represented by directed arcs (Kolisch and Padman, 2001).

In Figure 2.1(a) and (b), AOA and AON representations of a project, which has

four activities (a,b,c,d) and the following precedence relations are illustrated

respectively.

6

∅ � a, b; a � c, d; b � d; c, d � ∅ .

 (a) (b)

Figure 2-1 (a) The AON representation; (b) AOA representation.

The AON representation of a project is more direct, more frugal and unique. On

the other hand, AOA representation has some advantages against AON representation.

These advantages can be summarized from two points of view.

From representational point of view, it is easy to graphically identify the events of

the project in AOA representation. It is easier to visually identify the finished activities

up to occurrence of an event. Finally, AOA representation is preferred when it is desired

to give a visual representation of the duration of the activities, and then the arc length is

made proportional to the duration of the activity (Elmaghraby, 1995).

From analytical point of view, it is easy to capture the information of more

complex precedence relationships such as generalized precedence relationships. AOA

type of representation is also advantageous when one tries to construct mathematical

models that depend on the definition of nodes, such as linear models for optimal time-

cost trade-off.

d

c

b

a a c

b d

1

2

3

4

7

3. MULTIOBJECTIVE OPTIMIZATION PROBLEM

Most real world problems have multiple objectives to achieve. This situation

creates a set of problems in Operations Research (OR) called multiobjective

optimization problems (MOPs). In order to deal with MOPs, plenty of techniques have

been developed in OR. Many approaches have been suggested, going all the way from

naively combining objectives into one to the use of game theory to coordinate the

relative importance of each objective. The fuzziness of this area lies in the fact that there

is no accepted definition of "optimum" as in the single-objective optimization. Hence, it

is difficult to even compare the results of one method to another method’s results

because, normally, the "best" answer corresponds to the most preferable solution by the

so-called decision maker (DM) (Coello, 2000).

3.1. Statement of the Multiobjective Optimization Problem (MOP)

Multiobjective (also called multiperformance, multicriteria or vector) optimization

can be defined as the problem of finding a vector of decision variables which satisfies

constraints and optimizes a vector function whose elements represent the objective

functions. These functions form a mathematical description of performance criteria

which are usually in conflict with each other. Hence, the term "optimize" means finding

such a solution which would give the values of all the objective functions acceptable to

the designer (Coello, 2000).

Formally, we can state the problem as follows (in this thesis, if not otherwise

stated, all the objectives of MOP are taken as minimization):

[]1 2() (), (),..., ()
T

kMin f X f X f X f X= (3.1)

subject to:

() 0 1,2,...,ig X i m≥ = (3.2)

8

() 0 1,2,...,ih X i p= = (3.3)

where X=[X1, X2,…, Xn]T is the n dimensional vector of decision variables and T stands

for the transpose. In the formulation, k represents the number of objectives, m is the

number of inequality constraints and p is the number of equality constraints.

Some terms need to be defined to further investigate the MOP.

3.1.1. Ideal Vector and Ideal Decision Vector

Assume that we have k objective functions fi(X) (i=1,2,…,k) which can be solved

on the decision vector space X separately. Let fi
0 be the optimum for the ith objective.

The decision vector X0(i) corresponding to this solution is denoted by:

0() 0() 0() 0()
1 2, ,...,

Ti i i i
nX X X X� �= � � (3.4)

where 0()i
jX is the decision variable (j=1,2,…,n) of 0()iX .

For this multiobjective problem, set of optimum solutions constitutes a vector of

optimum solution values (f0) in k dimensional space and this vector is called the ideal

vector.

0 0 0 0
1 2, ,...,

T

kf f f f� �= � � (3.5)

The solution vector corresponding to this ideal set of solutions called the ideal

decision vector.

3.1.2. Pareto Optimum

X* is Pareto optimal, if there exists no feasible vector X that decreases some

criterion without causing a simultaneous increase in at least one other criterion.

Formally, X* is Pareto optimal, if for every X∈F (where F denotes the feasible region of

the problem), either (Coello, 2000)

))()((*

),...1{

XfXf ii
ki

=∧
∈

 (3.6)

or there is at least one i∈{1,…k} such that

)()(*XfXf ii > . (3.7)

where ∧ means some.

9

Another formal description can be given as follows; X* is Pareto optimal if there

is no X∈F such that (Ehrgott, 2000)

)()(*XfXf ii ≤ for i =1,2,…k (3.8)

and

)()(*XfXf jj < for some j∈{1,2,…k} (3.9)

 The set of Pareto optimum solutions is called the set of noninferior or

nondominated solutions, also called the Pareto set.

3.1.3. Pareto Front

Pareto front is the union of all nondominated solutions of the problem. For

example, in a biobjective problem if the problem is solveable in the continuous domain

Pareto front would be a continuous curve. Most of the time it is not possible to find an

analytical representation of the Pareto front. In such a case, an adequate number of

solutions are calculated to represent the Pareto front through a discrete set of points.

Figure 3.1 demonstrates the concept of Pareto front in a biobjective problem, where the

Pareto front is marked with a bold line.

Figure 3-1 Pareto front of a biobjective problem

f1

f2

F

10

3.2. Multiobjective Optimization

Multiobjective optimization techniques, as it is mentioned, typically result in more

than a single solution. For this reason, to decide on the optimum, we need a DM who is

capable of choosing the right solution from the set of solutions. This selection is one of

the most challenging activities in multiobjective optimization. Three types of

multiobjective optimization solution technique are available depending on the timing of

the DM’s selection.

Priori Preference Articulation: DM combines the differing objectives into a scalar

cost function. This effectively makes the MOP singleobjective prior to optimization.

Progressive Preference Articulation: Decision making and optimization are

intertwined. Partial preference information is provided upon which optimization occurs,

providing an “updated” set of solutions for the DM to consider.

Posteriori Preference Articulation: DM is presented with a set of Pareto optimal

candidate solutions and chooses from that set (Van Veldhuizen and Lamont, 2000a).

3.2.1. Weighted Sum Approach

This method consists of adding all the objective functions together using

weighting coefficients for each one. As a result, the multiobjective optimization

problem is transformed into a scalar optimization problem and the problem is

represented in the following form (Coello, 2000).

1

()
k

i i
i

Min w f X
=
� (3.10)

subject to:

() 0 1,2,...,ig X i m≥ = (3.11)

() 0 1,2,...,ih X i p= = (3.12)

where wi ≥ 0 are the weighting coefficients.

It is usually assumed that 1
1

=�
=

k

i
iw . But these weighting coefficients do not

proportionally reflect the relative importance of the objectives, but are only factors

which, when varied, locate points in the Pareto set.

11

If we want wi to closely reflect the relative importance of the objective functions,

we need to normalize the objective functions. This normalization is achieved by using a

multiplier ci (ci = 1/fi
o). After this normalization, the objective function becomes:

ii

k

i
i cXfw)(min

1
�

=

 (3.13)

subject to constraints as represented in Equations 3.11 and 3.12.

3.2.2. Goal Programming

In goal programming (GP), DMs have to assign targets or goals (bi) that they wish

to achieve for each objective. Then, these bi values and the associated objectives are

used to form a constraint. In order to represent the constraints in equality form, the

positive (ni) and the negative (pi) deviation variables are added to constraints. Thus the

problem is transformed to the following form:

)(
1

i

k

i
i pnMin +�

=

 (3.14)

subject to:

() 1,2,...i i i if X n p b i k+ − = = (3.15)

X∈F n≥ 0 p≥ 0

The aim in GP is to minimize the deviations between the achievements of the

goals. The achievement process can be accomplished with different methods. Each one

of these methods leads to a GP variant. Three variants, weighted goal programming

(WGP), lexicographic goal programming (LGP) and MINMAX GP are mentioned

below (Romero, 1991).

3.2.2.1. Weighted Goal Programming

In WGP, different than GP the objective function is generated from the sum of

weighted deviations. To form the objective function of the WGP, the DM must assign

different weights to the negative and positive deviations. After these additions to the

GP, the objective function for WGP becomes the following, where the other constraints

remain the same as in GP.

12

)(
1

i

k

i
iii pnMin�

=

+ βα (3.16)

Obviously, the weights β will be zero when the desired achievement of the goal is

greater than the established target. Similarly, the weights α will be zero when the

desired achievement of the goal is less than the established target.

3.2.2.2. Lexicographic Goal Programming

In LGP, the DM generates a lexicographic objective function that has an

importance ranking of objective function deviations. At each phase of LGP solution, the

element of lexicographic objective function at this rank tried to be achieved.

The lexicographic objective function of the general MOP is as follows (assuming

that lexicographic objective function has q elements).

1 2(,), (,),... (,)qLex Min a h n p h n p h n p� �= � � (3.17)

 The LGP is solved through multi-phase approach. At first step the first element is

minimized, at this level some variables are fixed and then second model is solved. This

operation goes until the solution of q models has been made. If there are resources in the

problem, the solution process may stop when the resources are exhausted. The model

for solution’s first step is given below as an example.

First Step Model of Solution:

),(1 pnhMin (3.18)

subject to:

iiii bpnXf =−+)(i = 1,2,…k (3.19)

X∈F n≥ 0 p≥ 0

3.2.2.3. MINMAX Goal Programming

In this GP variant, the aim is to minimize the upper level of total weighted

deviation for all of the objectives. The following model summarizes the aim of the

MINMAX GP at a glance.

dMin (3.20)

subject to:

13

dpn iiii ≤+ βα i = 1,2,…k (3.21)

iiii bpnXf =−+)(i = 1,2,…k (3.22)

X∈F n≥ 0 p≥ 0

3.2.3. Goal Attainment

In this approach, DM decides on two vectors: The weight vector

[]1 2, ,..., kw w w w= and the goal vector []1 2, ,..., kb b b b= . To find the best compromise

solution X*, we solve the following problem:

αMin (3.23)

subject to:

0)(≤Xg j j = 1,2,…,m (3.24)

0)(=Xhl l = 1,2,…,p (3.25)

()i i ib w f Xα+ ≥ i = 1,2,…,k (3.26)

where α is a scalar variable and is unrestricted in sign. The weights are positive and are

normalized as follows:

1

1
k

i
i

w
=

=� (3.27)

Figure 3.2 describes how this approach behaves in the context of a biobjective

problem. It is obvious from the Figure 3.2, that the solution to the MOP by goal

attainment approach occurs at the intersection point of the feasible region and the sum

vector (Coello, 2000).

14

Figure 3-2 Goal attainment approach sample graph (Coello, 2000)

3.2.4. The εεεε-Constraint Method

This method is based on minimizing one (the most preferred or primary) objective

function and considering the other objectives as constraints bound by some allowable

levels εi. The method may be formulated as follows:

1) Find the minimum of the rth objective function, i.e., find X* such that
*() ()r r

X F
f X Min f X

∈
= (3.28)

subject to additional constraints of the form

ii Xf ε≤)(for i=1,2,…,k and i ≠ r (3.29)

where εi are assumed values of the objective functions, which we do not wish to exceed.

2) Repeat step (1) for different values of εi. The information derived from a well-chosen

set of εi can be useful in making the decision. The search is stopped when the decision

maker finds a satisfactory solution.

It may be necessary to repeat the above procedure for different indices of r

(Quagriella and Vicini, 1998).

F
f1

*

w
b1

f1

f2

b+αw

b

b2 f2
*

15

3.2.5. Genetic Algorithm Based Solution Approaches to MOP

GA solution approach to multiobjective optimization is one of the most widely

used in the OR literature. GAs constitute approximately 70% of the metaheuristic

approaches published between 1991 and 2000 (Jones et al. 2002).

There are a large number of GA based solution approaches for MOPs. These

approaches will be summarized in the following sections.

3.2.5.1. Vector Evaluated Genetic Algorithm

Vector evaluated genetic algorithm (VEGA) is the first algorithm which is

presented to solve MOPs. In this algorithm, k subpopulations of (N/k) individuals are

created where N is the total population size and k is the number of objectives. An

individual in subpopulation j is evaluated according to the performance on jth objective

function to form its fitness value. After this step all the individuals in sub-populations

are shuffled together and genetic operators are applied to these to form the next

generation. VEGA is demonstrated in Figure 3.3 for a better understanding of the

algorithm.

Figure 3-3 Schematic of VEGA selection (Coello, 2000)

VEGA is an easy algorithm to implement. On the other hand, it has some

problems. This problem is speciation, which is described as “the evolution of species

Apply
genetic

operators

Shuffle sub-
populations

Create sub-
populations

Individual 1

Individual 2

Individual N

.

.

.

.

Sub-population 1

Sub-population 2

Sub-population k

Individual 1

Individual 2

Individual N

.

.

.

.

Individual 1

Individual 2

Individual N

.

.

.

.

Population
(Size N)

k Sub-Populations are
created and evaluated

Individuals are
mixed

Population
(Size N)

Generation (t) Generation (t + 1)

16

within a population that excels in some respect” in genetics. This problem arises

because this technique selects individuals who excel in one dimension without looking

at other dimensions. The potential danger is that we could evolve with middling

performance individuals. Middling implies an individual with acceptable performance,

perhaps above average in all objectives, but not outstanding when measured by any

particular function. Speciation is undesirable because it is opposed to goal of finding a

compromise solution (Coello, 2000).

In some GAs genders are also used to model the subpopulation based fitness

assignment of VEGA. In these algorithms, each individual is assigned one of the k

different genders at initial population. Fitness values of the individuals are calculated

according to their genders just as in VEGA. For mating, sexual attractors are used to

model the sexual attraction that occurs in nature. The mutation operator is restricted

only slightly, to avoid changes in the sex of an individual. The reproduction operator

does not change the sex of the individual that is copied (Coello, 2000).

3.2.5.2. Nash Genetic Algorithms: Noncooperative Approach

For an optimization problem with k objectives, a Nash strategy consists of k

players, each optimizing its own criterion. However, each player has to optimize his

criterion given that all the other criteria are fixed by the rest of the players. When no

player can further improve its criterion, it means that that the system reached a state of

equilibrium called Nash equilibrium. For a biobjective problem, let E be the search

space for the first criterion and W the search space for the second criterion. A strategy

pair (X,Y) ∈ ExW is said to be a Nash equilibrium if and only if:

),(),(inf YXfYXf E
EX

E
∈

= (3.30)

(,) (,)infW W
Y W

f X Y f X Y
∈

= (3.31)

where inf means inferior or nondominated.

Figure 3.4 describes how this approach works in the context of a biobjective

problem.

It is obvious that exchanges between players must be as frequent as possible to

speed up the convergence of the algorithm (Périaux et al., 1998).

17

Figure 3-4 Noncooperative Nash genetic algorithm (Périaux et al., 1998)

3.2.5.3. Weighted Min-Max Approach Based GA

In this approach, the first generation is generated randomly. Chromosomes are

formed to represent a solution and a corresponding weight list for objectives. For each

generation min-max optimum solution procedure, described below, is processed.

A point X* is min-max optimal, if for every X (where FX ∈) the following

recursive formula is satisfied.

Step 1:
*

1() { ()}i
X F i I

v X z XMinMax
∈ ∈

= (3.32)

and then I1 ={i1}, where i1 is the index for which the value of zi(X) is maximal where

zi(X) is described as follows.

'
()

()
o

i i
i o

i

f X f
z X

f

−
= (3.33-a)

''
()

()
()

o
i i

i
i

f X f
z x

f X

−
= (3.33-b)

where zi
’(X) and zi

’’(X) are relative deviations from the objectives’ optimum value and

zi(X) found from the formula below.

Optimizes XM-1

Y is fixed by P2

Generation M-1

Optimizes YM-1

X is fixed by P1

Optimizes XM

Y is fixed by P2

Generation M

Optimizes YM

X is fixed by P1

Optimizes XM+1

Y is fixed by P2

Generation M+1

Optimizes YM+1

X is fixed by P1

Player 1 = Population 1 Player 2 = Population 2

Sends XM-1 Sends YM-1

Sends XM Sends YM

18

' ''(()) { (), ()}i I i i iz X Max z X z X∈∀ = (3.34)

If there is a set of solutions FX ⊂1 that satisfies Step 1, then apply:

Step 2:

1 1

*
2

,

() { ()}i
X X i I i I

v X z XM in M ax
∈ ∈ ∉

= (3.35)

and then I2 ={i1, i2}, where i2 is the index for which the value of zi(X) in this step is

maximal.

After the intermediate steps the kth step is as follows.

Step k:

11 11

*

,

() { ()}
k k

k i
X X i I i I

v X z XM in M ax
− −∈ ∈ ∉

= (3.36)

where {v1(X*), … , vk(X*)} is the set of optimal values of fractional deviations ordered

nonincreasingly.

 After this solution procedure is employed for all of the chromosomes, the

following utility function U is used to evaluate the fitness of the chromosomes.

�
=

=
k

i i

i
i F

F
WU

1
* (3.37)

where Fi
* are the scaling parameters for the objective criterion, k is the number of

objective functions and Wi are the weighting factors for each objective function Fi.

 In this approach, a sharing function with the form below is also used.

�
�

�
	

�
�

�
�

<��

�

�
��
�

�
−=

otherwise

d
d

d shij
sh

ij

ij

,0

,1
)(

σ
σφ

α

 (3.38)

where normally α=1, dij is a metric indicative of the distance between designs i and j,

and σsh is the sharing parameter that controls the extent of sharing allowed. The fitness

of a chromosome i is then modified to

()

1

()

i
s i M

ij
i

f
f

dφ
=

=
�

 (3.39)

where M is the number of chromosomes located in the vicinity of the ith chromosome.

 The performance of the algorithm is closely related to the parameter values that

are chosen. The authors use α=1 and chose a value between 0.01 and 0.1 for σsh.

 Finally a mating restriction is used not to make crossover between chromosomes

within a certain radius. It is also suggested not to make crossover between individuals in

19

a radius of 0.15 (σmat=0.15 where σmat represent the radius of mating restriction) (Coello,

2000).

3.2.5.4. Two Variations of the Weighted Min-Max Strategy

These two variations of Min-Max based approach are given as parts of

Multiobjective Optimization of Systems in the Engineering Sciences (MOSES) by

Coello and Christiansen (1999). First of these variants is described by the following

steps.

1. The initial population is formed such a way that none of the individuals are

infeasible.

2. The user should give a list of weights for k objectives and a generation is solved by

the min-max optimum approach. For each of the weight lists provided by the user, a

generation is solved and the best compromise solution is selected to list for the DM.

Different from the weighted Min-Max based GA in this variant the weights are not

coded as a part of the chromosomes, they are given by the user for each generation.

3. After the n processes are employed (n=number of weight combinations provided by

the user, also number of generations), a final file is generated for the DM containing

n best results.

 This algorithm uses crossover and mutation, which are not restricted to give only

feasible solutions. If an operator (crossover or mutation) gives an infeasible solution, it

is replaced by one of its parents.

 Second variant employed in MOSES can be summarized by the similar following

steps. Different from the first variant the second variant uses sharing and binary

tournament selection.

1. The initial population is formed such a way that none of the individuals are

infeasible.

2. By exploring the population at each generation, the local ideal vector is produced.

This is done by comparing the values of each objective function in the entire

population.

3. The binary tournament selection is done by comparing the two individuals with the

local ideal vector. The individual, which is less deviated from the local ideal vector,

20

wins the tournament. If a tie occurs sharing is used to decide the winner. The

individual, which is in a less crowded region, wins the tournament in case of a tie.

 Just as in the first variant this algorithm also gives n best solutions to the DM to

decide on (Coello and Christiansen, 1999).

3.2.5.5. The Contact Theorem to Detect Pareto Optimal Solutions

This algorithm is based on the contact theorem to determine relative distances of a

solution vector with respect to the Pareto set. A solution is initially generated at random,

and is considered to be Pareto optimal. Its fitness is 1d , which is an arbitrarily chosen

value called the starting distance. Then more solutions are generated and a distance

value is computed according to the formula below.

1

()
()

k
il i

l
i il

f X
z X

f
φ

=

� �−= � �
� �

� for l=1,2,…lp (3.40)

where lp is the number of Pareto optimal solutions found so far, φi(X) is the solution’s ith

objective value and fil is the ith objective value for lth Pareto solution.

In the following step, the minimum value of the set { })(Xz l and its

corresponding index l* are found. This value is called)(* Xz
l

. The procedure identifies

the Pareto solution closest to the newly generated solution. If the generated solution is

Pareto optimal, the fitness is assigned according to the formula below.

)(** XzdFitness
ll

+= (3.41)

 After the first generation,
l

d is defined using the maximum value of the distances

from all existing Pareto solutions. If the newly generated solution is not a Pareto

solution, then its fitness is computed using

)(** XzdFitness
ll

−= (3.42)

and Fitness=0 in case a negative value results from this expression (Coello, 2000).

3.2.5.6. A Nongenerational Genetic Algorithm

A nongenerational GA uses nongenerational selection in which fitness of an

individual is calculated incrementally. The idea comes from the learning classifier

21

systems, where it was shown that a simple replacement of the worst individual in the

population followed by an update on the fitness of the rest of the population works

better than a traditional (generational) GA. In this approach, the MOP with k objective

functions is transformed into a biobjective problem. One of the objectives is the

minimization of domination count (weighted average of the number of individuals that

have dominated this individual so far when the individual is compared with a random

group of individuals) and the other is the minimization of the moving niche count

(weighted average of the number of individuals that lie close according to a sharing

function). This biobjective optimization problem is then transformed into a single

objective optimization problem by taking a linear combination of these two objectives

(Coello, 2000).

3.2.5.7. Randomly Generated Weights and Elitism

This algorithm uses randomly generated weights and elitism to solve the MOP.

Randomly generated weights transform the MOP objectives to a scalar objective to

form fitness and by the help of elitism some part of the nondominated set is passed to

the next generation. The algorithm uses the following steps to solve the MOP.

1. Generate the initial population randomly.

2. Compute the values of k objectives for each individual in the population. Then

determine the nondominated solutions and keep them in the set NOND and keep

the other solutions in the set CURRENT.

3. If L represents the number of individuals in NOND and M is the size of CURRENT,

then select (M-L) individuals for crossover using the procedure below.

• Let r1, r2,…, rk random numbers in the interval [0,1]. The fitness function for each

individual is

�
=

=
k

i
ii XfwXf

1

)()((3.43)

 and wi is

k

i
i rrr

r
w

+++
=

...21

. (3.44)

• Select a parent with probability:

22

{ }�
∈

−
−=

CURRENTX

CURRENTfXf
CURRENTfXf

XP
)()(

)()(
)(

min

min (3.45)

where fmin(CURRENT) is the minimum fitness in the current population.

4. Apply crossover to the selected (M-L) pairs of parents. Apply the mutation to the

newly generated solutions.

5. Randomly select L solutions from NOND. Then add L solutions to the (M-L)

solutions generated in the previous step to construct a population of size M.

6. Go to step 2, if stopping condition is not satisfied. If stopping condition is satisfied,

report the solutions (Coello, 2000).

3.2.5.8. Multiple Objective Genetic Algorithm

The Multiobjective Optimization Genetic Algorithm (MOGA) developed by

Fonseca and Fleming (1993) is an algorithm which uses Pareto ranking and sharing on

fitness values.

In this algorithm, an individual’s rank corresponds to the number of individuals in

the current population by which it is dominated (Fonseca and Fleming, 1995). Consider,

for example, an individual Xi of generation t dominated by pi
(t) individuals in the current

generation (Coello, 2000).
)(1),(t

ii ptXrank += (3.46)

Nondominated individuals are, therefore, all assigned the same rank, while

dominated ones are penalized according to the population density in the corresponding

region of the trade-off surface. Fitness is assigned by interpolating, for instance,

linearly, from the best to the worst individuals in the population, and then averaging it

between individuals with the same multiobjective rank.

By combining Pareto dominance with partial preference information in the form

of a goal vector in MOGA, Fleming and Fonseca have also provided a means of

evolving only a given region of the trade-off surface. While the basic ranking scheme

remains unaltered, the now Pareto-like comparison of the individuals selectively

excludes those objectives that already satisfy their goals. Specifying fully unattainable

goals causes objectives never to be excluded from comparison, which is the original

Pareto ranking. Changing the goal values during the search alters the fitness landscape

23

accordingly and allows the DM to direct the population to zoom in on a particular

region of the trade-off surface (Fonseca and Fleming 1995).

MOGA pseudocode is given in the Appendix-A in Figure A.1.

3.2.5.9. Nondominated Sorting Genetic Algorithm

Nondominated sorting genetic algorithm (NSGA) is based on the ranking of

nondominated solutions. Beside this ranking concept, in NSGA, a “dummy fitness” is

also defined. In NSGA, the initial population is generated randomly and the

nondominated solutions of this population are assigned rank 1. After this step, rank 1

individuals are temporarily taken out and the nondominated solutions are identified

which are assigned rank 2. This ranking mechanism (Figure 3.5) continues until all the

individuals in the population are ranked. According to their ranking all the individuals

are assigned a dummy fitness value starting from N (N=population size) for rank 1 and

smaller values as the rank increase (Bagchi, 1999).

Figure 3-5 NSGA ranking mechanism for a biobjective problem

NSGA also employs fitness sharing and niche formation techniques. In NSGA,

individuals are sharing the dummy fitness according to a niche count. The niche count

mi is an estimate of how crowded is the neighborhood (niche) of an individual i (Horn et

al., 1994). So, the niche count for an individual is based on the distance between the

individual and the others. Distance (dij) may be defined in two possible ways. The

phenotypic distance between two individuals is measured based on the difference in the

decoded problem variables while their genotypic distance is measured based on the

f1

f2

♦

Rank 1
Rank 2
Rank 3

♦ Rank 4

24

difference in the coded problem variables between those two individuals (Bagchi,

1999). The shared fitness and niche count calculations for NSGA are as follows:

iii mff /' = (3.47)

where fi
’ is the shared fitness function, fi is dummy fitness value and mi is niche count.

� �
= =

==
N

j

N

j
jiiji XXdShdShm

1 1

)),(()((3.48)

Sh (dij) is the sharing function. Sharing function (Sh (dij)) is a decreasing function

of dij, such that Sh (0)=1 and Sh [d ≥ σshare]=0. For such a sharing function σshare is called

niche radius. A typical sharing function is the triangular sharing function given as

follows (Horn et al., 1994).

Sh [d] = 1 – d/σshare for σshare ≥ d (3.49)

Sh [d] = 0 for σshare < d (3.50)

 A detailed flowchart that explains how NSGA works is given in Figure 3.6.

NSGA does not use elitist strategy to reach a nondominated set. Unlike NSGA,

elitist nondominated sorting algorithm (ENGA - an enhancement of NSGA) uses elitist

strategy. Like NSGA, ENGA uses nondominated sorting, niche formation, and sharing

of fitness based on Pareto ranking. Also like NSGA, ENGA first produces the progenies

through crossover and mutation but it uses a different selection procedure. It first ranks

the candidate constituents of the next generation by performing an additional

nondominated sorting of the combined parents and progenies pool. A controlled fraction

of the individuals in this combined pool is then selected to form the next generation,

ready to mate and propagate their nondominating schema characteristics. Thus each

generation may end up containing several members of the parent chromosomes if they

are good enough to outrank (in the nondomination sense) some of the newly created

progenies. This selection procedure let the good parents live in the next generation and

this makes the algorithm elitist (Bagchi, 1999).

NSGA pseudocode is given in the Appendix-A as Figure A.2.

25

Figure 3-6 The nondominated sorting genetic algorithm (Bagchi, 1999)

3.2.5.10. Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II

NSGA-II is a multiobjective GA based on NSGA. However, Deb et al. (2002)

called this algorithm as NSGA-II. This new algorithm differs from NSGA in a number

of different points. In NSGA-II, nondominated sorting mechanism has been changed,

density estimation and crowded comparison operator is used instead of niche formation

and finally elitist strategy is added to algorithm. These new concepts should be

summarized as follows.

In NSGA-II, for sorting purposes, we calculate two entities: (1) domination count

np, the number of solutions which dominate the solution p; and (2) Sp, a set of solutions

that the solution p dominates.

All solutions in the first nondominated front will have their domination count as

zero. For each solution p with np=0, each member (q) of the set Sp is visited and their

domination count is reduced by one. In doing so, if for any member q the domination

START

Initialize Population,
Gen = 0

Front = 1

Population
Classified

Reproduce According
to Dummy Fitness

Crossover

Mutation

STOP

GEN = GEN +1

Gen <
Maxgen ?

Identify Nondominated
Individuals

Assign Dummy
Fitness

Share Fitness on the
Current Front

Front = Front + 1

No

No

Yes

Yes

26

count becomes zero, it is put in a separate list Q. These members belong to the second

nondominated front. This process continues until all fronts are identified.

In NSGA-II, density estimation metric and the crowded comparison operator are

used to preserve diversity. Density estimation metric provides an estimate of the density

of the solutions surrounding a particular solution in the population and is calculated as

the average distance of two points on the either side of this point along each of the

objectives. This quantity idistance serves as an estimate of the perimeter of the cuboid

formed by using the nearest neighbors as the vertices (crowding distance). In Figure 3.7,

the crowding distance of the ith solution in its front (marked with solid circles) is the

average side length of the cuboid (shown in a dashed box). In the figure, points marked

in filled circles are solutions of the same front.

Figure 3-7 Crowding distance calculation (Deb et al., 2002)

The crowding distance computation requires sorting the population according to

each objective function value in ascending order of magnitude. Thereafter, for each

objective function, the boundary solutions (the solutions with smallest and largest

function values) are assigned an infinite distance value. All other intermediate solutions

are assigned a distance value equal to the absolute normalized difference in the function

values of the two adjacent solutions. This calculation is continued with other objectives.

The overall crowding distance value is calculated as the sum of individual distance

values corresponding to each objective. Each objective function is normalized before

calculating the crowding distance. A solution with a smaller value of this distance

measure is, in some sense, more crowded by other solutions.

Crowded comparison operator (n�) guides the selection process at the various

stages of the algorithm toward a uniformly spread-out Pareto optimal front. Assume

Cuboid

i i+1

f1

f2

i-1

27

every individual i in the population has two attributes: (1) nondomination rank (irank) and

(2) crowding distance (idistance).

A partial order of n� can be defined as follows.

ji n� if (irank< jrank) or;

irank = jrank and (idistance> jdistance)

That is, between two solutions with differing nondomination ranks, the solution

with a better rank is chosen. Otherwise, if the two solutions belong to the same front,

then we prefer the solution that is located in a less crowded region.

The algorithm starts with a randomly generated population (P0). Each solution is

assigned a fitness (or rank) equal to its nondomination level and minimization of the

fitness is assumed. At first, by using binary tournament selection, recombination, and

mutation operators, an offspring population of Q0 is created with a size N (population

size). After this step elitist strategy is implemented (Deb et al., 2002).

For a generation (t), first a combined population of Rt = Pt ∪ Qt is formed with a

size of 2N. Then the Rt is sorted according to nondomination and grouped. Best

nondominated set is called F1, second best set is called F2 and so on. The first set (Fj)

that the sum of individuals (beginning from F1) is determined. The set Fj is sorted

according to crowding distance and k of the individuals of Fj (where �
−

=

=
1

1

j

i
iFk) is

passed to generation t+1. (Figure 3.8)

Figure 3-8 NSGA-II procedure (Deb et al., 2002)

Pt

Qt

F1

F2

F3

Nondominated
Sorting

Crowding Distance
Sorting

Rejected

Rt

Pt+1

28

NSGA-II pseudocode is given in the Appendix-A in Figure A.3.

3.2.5.11. Niched Pareto Genetic Algorithm

The Niched Pareto Genetic Algorithm (NPGA) is an approach that employs

fitness sharing and niche formation techniques. In NPGA, to avoid convergence and

maintain multiple Pareto optimal solutions, tournament selection is altered in two ways.

Firstly, Pareto domination tournament is added and then, actually when a tie occurs,

sharing is implemented to determine the winner.

In Pareto domination tournaments, two candidates for selection are picked at

random from the population. These two candidates are compared with a sample set of

solutions, which is randomly selected from the population. If one candidate is

dominated by the comparison set (with a size tdom) , and the other is not, the latter is

selected for reproduction. If neither or both are dominated by the comparison set, then

sharing is used to choose the winner.

Sharing which is employed in NPGA is not different from the technique that is

employed in NSGA, but in NPGA the fitness function decision is left to the person who

implements the algorithm, i.e., there is no defined fitness function. Horn et al. (1994)

suggest triangular sharing, but different functions can also be employed. NPGA

degrades the fitness to the shared fitness in the same manner that is used in NSGA

(iii mff /' =).

When the candidates are either both dominated or both nondominated, it is likely

that they are in the same equivalence class, i.e., in the partial order induced by the

domination relation. Since the purpose is to maintain diversity it is not necessary to

degrade the fitness function if the tournament selection is used. The niche count will be

used to order the two candidates. The candidate with a lower niche count will be the

winner of the tournament. This type of sharing is called equivalence class sharing.

The performance of the NPGA is somewhat sensitive to the amount of domination

versus sharing pressure applied. This means the parameters tdom and σshare play a critical

role in the success of NPGA (Horn et al., 1994).

In NPGA-II, Pareto ranking and tournament selection are used. Niche counts in

the NPGA-II are calculated using individuals in the partially filled next generation. This

is called continuously updated fitness sharing (Coello et al., 2002).

29

NPGA and NPGA-II pseudocodes are given in the Appendix-A in Figure A.4 and

Figure A.5, respectively.

3.2.5.12. Strength Pareto Evolutionary Algorithm

The Strength Pareto Evolutionary Algorithm (SPEA) uses an archive containing

nondominated solutions previously found (so called the external nondominated set). At

each generation, nondominated individuals are copied to the external nondominated set.

For each individual in this external set, a strength value is computed. This strength is

similar to the ranking value of MOGA, since it is proportional to the number of

solutions to which a certain individual dominates. The fitness of each member of the

current population is computed according to the strengths of all external nondominated

solutions that dominate it. Additionally, a clustering technique called “average linkage

method” is used to keep diversity (Zitzler and Thiele, 1999, Coello et al., 2002).

SPEA-II has three main differences with respect to its predecessor. First, it

incorporates a fine grained fitness assignment strategy which takes into account for each

individual the number of individuals that dominate it and the number of individuals by

which it is dominated. Second, it uses a nearest neighbor density estimation technique,

which guides the search more efficiently. Third, it has an enhanced archive truncation

method that guarantees the preservation of boundary solutions (Zitzler et al., 2001,

Coello et al., 2002).

SPEA and SPEA-II pseudocodes are given in the Appendix-A in Figure 8.6 and

Figure 8.7, respectively.

3.2.5.13. Pareto Archived Evolution Strategy

Pareto archived evolution strategy (PAES) consists of a (1+1) evolution strategy

(i.e., a single parent that generates a single offspring) in combination with a historical

archive that records some of the nondominated solutions previously found. This archive

is used as a reference set against which each mutated individual is being compared, just

like the tournament competitions that are used in NPGA.

PAES also uses a novel approach to keep diversity, which consists of a crowding

procedure that divides objective space in a recursive manner. Each solution is placed in

30

a certain grid location based on the values of its objectives. A map of such grid is

maintained, indicating the number of solutions that reside in each grid location. Since

the procedure is adaptive, no extra parameters are required except for the number of

divisions of objective space. Furthermore, the procedure has a lower computational

complexity than traditional niching methods (Coello et al., 2002).

PAES pseudocode is given in the Appendix-A in Figure A.8.

3.2.5.14. Pareto Envelope-based Selection Algorithm

Pareto envelope-based selection algorithm (PESA) uses a small internal

population and a larger external (or secondary) population. PESA uses the same

hypergrid division of phenotype space to maintain diversity. However, its selection

mechanism is based on the crowding measure used by the hypergrid previously

mentioned. This same crowding measure is used to decide what solutions to introduce

into the external population (i.e, the archive of nondominated vectors found along the

evolutionary process).

The revised form of PESA is also generated as PESA-II, the only difference of

PESA-II is that it uses region-based selection. In region-based selection, the unit of

selection is a hyperbox rather than an individual. The procedure consists of selecting a

hyperbox and then randomly selecting an individual within such hyperbox.

PESA pseudocode is given in the Appendix-A in Figure A.9.

3.2.5.15. The Micro-Genetic Algorithm for Multiobjective Optimization

A micro-genetic algorithm is a GA with a small population size and

reinitialization process. The way in which micro-GA works is illustrated in Figure 3.9.

First, a random population is generated. This random population feeds the population

memory, which is divided into two parts: a replaceable and a non-replaceable portion.

The non-replaceable portion of the population memory never changes during the entire

run and is meant to provide the required diversity for the algorithm. In contrast, the

replaceable portion experiences changes after each cycle of the micro-GA.

31

Figure 3-9 Micro-GA for multiobjective optimization (Coello et al., 2002)

The population of the micro-GA at the beginning of each of its cycles is taken

from both portions of the population memory so that there is mixture of randomly

generated individuals (non-replaceable portion) and evolved individuals (replaceable

portion). During each cycle micro-GA undergoes conventional genetic operators. After

the micro-GA finishes one cycle, two nondominated vectors are chosen from the final

population and they are compared with the contents of the external memory. If either of

them remains as nondominated after comparing it against the vectors in this external

memory, then they are included there. This is the historical archive of nondominated

vectors. All dominated vectors contained in the external memory are eliminated.

The micro-GA uses three forms of elitism: (1) retain nondominated solutions

found within the internal cycle of the micro-GA, (2) use a replaceable memory whose

N

Y

Initial
Population

Nominal
Convergence ?

Replaceable Non-Replaceable

Population Memory

Selection

Crossover

Mutation

Elitism

New
Population

Filter

External
Memory

Random
Population

Micro-GA
Cycle

Fill in both
parts of the
population
memory

32

content is partially refreshed at certain intervals and (3) replace the population of the

micro-GA by the nominal solutions produced, i.e., the best solutions found after a full

internal cycle of the micro-GA.

3.2.6. Multiobjective Evolutionary Algorithm Performance Metrics

What metrics might adequately measure a Multiobjective Evolutionary

Algorithm’s (MOEA) results or allow meaningful comparison of specific MOEA

implementations? Appropriate metrics must be selected upon which to base MOEA

performance claims, and as the literature offers few quantitative MOEA metrics,

proposed metrics must be carefully defined to be useful. Additionally, no single metric

can entirely capture total MOEA performance, as some measure algorithm effectiveness

and others efficiency. Temporal effectiveness and efficiency may also be judged, e.g.

measuring a MOEA’s progress each generation. All may be considered when judging a

MOEA against others. Following are possible metrics developed for use in analyzing

these experiments, but they should not be considered as a complete list (Coello et al.,

2002).

3.2.6.1. Error Ratio (ER)

Error ratio is the ratio of the number of solutions that are in the true nondominated

front (PFtrue) and to the number of solutions in the algorithm’s nondominated front

(PFknown). The following is the mathematical formula of error ratio.

1

n

i
i

e
ER

n
==
�

 (3.51)

where n is the number of solutions in PFknown and

0 if solution , 1,...,

1 otherwise.
true

i

i PF i n
e

∈ =

= �
�

 (3.52)

33

3.2.6.2. Two Set Coverage (CS)

Two set coverage is a comparative metric, which can be termed relative

coverage comparison of two sets. Consider X, Y ⊆ X as two sets of phenotype of

decision vectors. CS is defined as the mapping of the order pair (X,Y) to the interval

[0,1].

{ }; :
(,)

a Y b X b a
CS X Y

Y

∈ ∃ ∈ ≥
= (3.53)

where b a≥ means b dominates a.

If all the points in Y are dominated or are equal to points in X, then by definition

CS=1. CS=0 implies the situation when none of the points in Y is dominated by X

(Knowles and Corne, 2001).

3.2.6.3. Generational Distance (GD)

This metric is a value representing in the average how far PFknown is from PFtrue

and is defined as :

1/

1

()
n

p p
i

i

d
GD

n
==
�

 (3.54)

where n is the number of vectors in PFknown. For the case of p=2 and di is the Euclidean

distance in the objective space between each vector and the nearest member of PFtrue.

GD = 0 indicates that PFtrue= PFknown; any other value of GD indicates that PFknown

deviates from PFtrue with a higher value of GD implying higher deviation.

Also, the kernel can be modified as (drel(i)-dave) for a relative comparison where

drel(i) is the relative distance between two consecutive PFknown fronts for the last two

generations. Here, dave is the average of the distances drel(i) across a region. This is

similar to an empirical convergence metric.

3.2.6.4. Maximum Pareto Front Error (ME)

It is difficult to measure how well a set of vectors compares to another. For

example, in comparing PFknown to PFtrue, one wishes to determine how far apart the two

34

sets are and how well they conform in shape. This particular metric determines a

maximum error band which, considered with respect to PFknown, encompasses every

vector in PFtrue. Put in another way, this is the largest minimum Euclidian distance

between each vector in PFknown and the corresponding closest vector in PFtrue. This

metric is defined as:

1/
1 1 2 2max(min () () () ()) ,

p pi j i j p

ij
ME f X f X f X f X= − + − (3.55)

where i=1,…,n1 and j=1,…,n2 index vectors respectively in PFknown and PFtrue, and p=2.

A result of ME=0 indicates PFknown ⊆ PFtrue; any other result indicates at least one

vector in PFknown is not in PFtrue.

3.2.6.5. Average Pareto Front Error

This metric also attempts to measure the convergence property of an MOEA by

using distance to PFtrue. From each solution in PFknown, its perpendicular distance to

PFtrue is determined by approximating PFtrue as a combination of piecewise linear

segments with the average of these distances defining the metric value.

3.2.6.6. Spacing (S)

This metric aims to measure the spread (distribution) of vectors throughout

PFknown. Spacing is proposed to measure the range (distance) variance of neighbouring

vectors in PFknown. Spacing is defined as:

2

1

1
() ,

1

n

i
i

S d d
n =

= −
− � (3.56)

where ()1 1 2 2min () () () () , , 1,..., ,i j i j
i jd f X f X f X f X i j n d= − + − = is the mean of

all di and n is the number of vectors in PFknown. A value of zero for this metric indicates

all members of PFknown are equidistantly spaced. Note that the vectors composing PFtrue

in objective space may not be uniformly spaced.

35

3.2.6.7. Distributed Spacing (DS)

Distributed spacing is similar to spacing and it aims to measure how well a

MOEA has distributed Pareto optimal solutions over a nondominated region. This

metric is defined as:

1
1/

1

(())
q

p pi i

i i

n n
DS

σ

+

=

−= � (3.57)

where q is the number of desired optimal points and the (q+1)th subregion is the

dominated region, ni is the actual number of individuals in the ith subregion of the

nondominated region, in is the expected number of individuals in the ith subregion of

the nondominated region, p=2 and 2
iσ is the variance of the individuals serving the ith

subregion of the nondominated region. For this metric, a low performance measure

characterizes an algorithm with a good distribution capacity.

3.2.6.8. Hyperarea and Hyperarea Ratio (H, HR)

Hyperarea (H) metric calculates the hyper volume of the multi-dimensional region

enclosed by the PFknown and a “reference point”, hence computing the size of the region

PFknown dominates. Hyperarea calculation for a biobjective minimization problem is

given in Figure 3-10.

Figure 3-10 Hyperarea calculation for a biobjective minimization problem
(Knowles & Corne, 2001)

Hyperarea ratio is the ratio of the hyperarea of PFknown (H1) to the hyperarea of the

PFtrue (H2).

f1

f2

H

Nondominated Points

Reference Point

36

1

2

.
H

HR
H

= (3.58)

3.2.6.9. Overall Nondominated Vector Generation and Ratio (ONVG, ONVGR)

Most MOEAs add PFcurrent to PFknown each generation, possibly resulting in

different cardinalities for PFknown. This metric then measures the total number of

nondominated vectors found during MOEA execution and is defined as:

knownONVG PF= (3.59)

It is difficult to specify what good values for ONVG might be. PFknown’s

cardinality may change for different MOPs. Reporting the ratio of PFknown’s cardinality

to the discretized PFtrue’s gives some feeling for the number of nondominated vectors

found versus how many exist to be found. This metric is then defined as:

.known

true

PF
ONVGR

PF
= (3.60)

3.2.6.10. Generational Nondominated Vector Generation (GNVG)

This metric tracks how many nondominated vectors are produced at each MOEA

generation and is defined as:

() .currentGNVG PF t= (3.61)

3.2.6.11. Nondominated Vector Addition (NVA)

As globally nondominated vectors are sought, one hopes to add new

nondominated vectors to PFknown at each generation t. This metric is then defined as:

() (1) .known knownNVA PF t PF t= − − (3.62)

However, this metric may be misleading. A single vector added to PFknown(t)’s

size may also remain constant for several successive generations even if GNVG ≠ 0.

37

4. PROBLEM DEFINITION AND SOLUTION APPROACHES

4.1. Problem Description

In the problem under consideration, project scheduling under risk is modelled in

order to represent the effects of identified risks that may occur during activities. The

model is a mixed integer programming model whose aim is to minimize the expected

cost of the project.

The model contains different elements when it is compared to traditional project

scheduling models. In the hierarchical order, the model contains depicted elements in

Figure 4.1.

Figure 4-1 Project scheduling model elements

In this model, the activities of the project have identified risks. These risks

represent the events that may occur during the activities and it is assumed that these

events affect only the duration of the activities.

Project

Activity1 Activityj ActivityJ

Risk1 Riskn RiskNj

State1 Statek StateKjn

38

As is the case in real life, the model also covers the preventive measures that may

be taken against the risks. These preventive measures are modelled by the states of the

risks. States have a probability of occurrence and an impact. In the model, if there is no

preventive measure taken against the risk, this situation is represented by choosing state

1. In the model, increasing the level of preventive measure corresponds to increasing the

index of the state chosen which decreases the level of the risk.

The cost function of the model covers four different costs that may occur during

the project, these are overhead cost, labor cost, risk reducing cost and penalty cost.

These cost functions are explained in greater detail in the mathematical formulation of

the model.

4.2. Mathematical Formulation of the Problem

The problem is formulated here as an optimization problem to minimize the

expected project cost under risks. It is assumed that the risks are independent and their

impacts are additive at the activity level. It is further assumed that all the risks

associated with an activity are identified and the risks are static throughout the project

life. The problem is represented on an activity-on-node (AON) network with one

starting and one ending node.

For a complete understanding of the model, first the notation is explained, then

the complete model is stated and finally the important parts of the model are explained

step by step.

Notation:

{J}: Set of activities j=1,…,J;

{Pj }: Set of immediate predecessors of activity j;

{Lj}: Set of resource types for activity j;

{Nj}: Set of risks n assigned to activity j;

dj: Duration of activity j with no risks involved;

Cp: Unit penalty cost of being late;

Co: Unit cost of overhead;

Tplan: Due date set for the project;

Kjn: Number of states for the probability of occurrence of risk n on activity j;

39

Pjnk: Probability of risk n’s occurrence, for activity j at state k;

Ijnk: Impact of risk n, if it occurs, for activity j at state k;

Clj: Unit cost of resource type lj;

Cjnk : Cost of reducing the risk level from state 1 level to state k level for risk n at

activity j;

Wlj: Number of workers of type lj assigned to activity j;

E(TC): Expected total cost;

ESTj: Earliest start time of activity j;

EFTj: Earliest finish time of activity j;

EFTJ: Expected makespan of the project;

dj
’: Expected duration of activity j under risk;

y: Expected lateness of project;

1, if the state is chosen for risk of activity
0, otherwise

th th th

jnk

k n j
X

= � 	
� �

;

Model:

'

1 1 1 1 1

() * * * * *
j jn j

j j

j

N K LJ J

p jnk jnk o J l j l
j n k j l

MinE TC y C C X C EFT W d C
= = = = =

= + + +��� �� (4.1)

subject to:

1 0EST = (4.2)

{ } 2,...,j i jEST Max EFT i P j J= Ι ∈ = (4.3)

' 1,...,j j jEFT EST d j J= + = (4.4)

'

1 1

* * * 1,...,
j jnN K

j j j jnk jnk jnk
n k

d d d X I P j J
= =

= + =�� (4.5)

1 0 1,..., ; 1,...,jn jC j J n N= = = (4.6)

1

1 1,..., ; 1,...,
jnK

jnk j
k

X j J n N
=

= = =� (4.7)

, if

0, otherwise
J plan J planEFT T EFT T

y
− >

= � 	
� �

 (4.8)

{0,1} 1,..., ; 1,..., ; 1,...,jnk j jnX j J n N k K∈ = = =

This is a 0-1 integer programming model which aims to minimize expected total

cost (Equation 4.1) of the project. This cost is represented as the sum of four cost

components. The first cost component is the penalty cost and formulated as the product

40

of unit penalty cost and lateness. Second component of the cost function is the risk

reducing cost. The third component is the overhead cost and it is the product of unit

overhead cost and makespan. Final component is the labor cost of the project.

Equations through 4.2 to 4.4 are the critical path method (CPM) equations for

forward recursion.

Equation 4.5 is used to calculate the expected duration of an activity. While

calculating the expected duration of an activity, the additional risk related durations are

added to normal activity duration. As an example, assume we have an activity having

one risk and three states (Table 4.1) where TU and MU stand for time unit and

monetary unit, respectively. The expected duration of the activity can be calculated as

follows, if the second state is chosen.

d’
x= 20 + 0.6 * 0.5 * 20 = 26 TU

Table 4-1 Risk states for an activity

Activity X Duration (d): 20 (TU) 1XL = W1X = 3

State Probability of Occurrence
(Pjnk)

Impact
(Ijnk)

Cost (MU)
(Cjnk)

1 0.7 0.5 0
2 0.6 0.5 150
3 0.6 0.4 300

As it is seen in Table 4.1 and stated by Equation 4.6 the first state of the risks has

a zero cost and this state is named as the base case. This corresponds to the real life

situation of taking no preventive measures against a risk. Thus no cost is incurred.

Finally, Equation 4.7 assures the selection of one and only one state for each of

the risks.

The decision variables for the model are 0-1 variables. There are (
1 1 1

1
j jnN KJ

j n k= = =
���)

number of variables. For small sized problems, it is straightforward to solve such a

problem with a mathematical programming solver. But for large problems, this problem

is a computationally costly problem to solve. The solution approach suggested for this

problem is the topic of next section.

41

4.3. Solution Approach

The problem solved in this thesis is biobjective. The first objective is to minimize

the expected total project cost. The second objective to achieve is the minimization of

the expected makespan. These two objectives are obviously conflicting. Equations 4.9

and 4.10 represent the two objectives to be achieved.

'

1 1 1 1 1

() * * * * *
j jn j

j j

j

N K LJ J

p jnk jnk o J l j l
j n k j l

MinE TC y C C X C EFT W d C
= = = = =

= + + +��� �� (4.9)

max() JMinE C EFT= (4.10)

Multiobjective optimization with posteriori preference articulation is a developing

topic in the OR literature. GAs constitute a popular solution procedure for this group of

problems. As evidence of this popularity is that approximately 70% of the metaheuristic

approaches suggested and published between 1991 and 2000 are GAs (Jones et al.,

2002). Since GA uses parallel search techniques and multiobjective optimization

problems have several nondominated solutions, this problem class and the solution

procedure make a perfect match. Because of this reason, in this thesis, GAs are used to

solve the problem.

After solving the biobjective problem some of the solutions need further

improvement for decreasing expected total cost while keeping the critical path fixed.

For this reason, three improvement heuristics are proposed.

4.3.1. Genetic Algorithms Employed

4.3.1.1. The Chromosome Representation and the Management of the Genetic
Algorithms Employed

In this study, direct representation is used for encoding a solution to the problem.

Each gene corresponds to a risk in the chromosome and the number in the gene

represents the state that will be chosen for this risk.

42

The number of risks in the problem determines the number of genes in the

chromosome and an extra three bit portion is added to display the expected makespan,

expected total cost and fitness values. The chromosome representation is depicted in

Figure 4.2.

Figure 4-2 Chromosome representation

Decoding: The number in the gene represents the state that will be chosen for the

risk.

Selection Mechanism: Random wheel selection is used. The fitness values of all

individuals are summed up and the fitness of each individual is normalized by dividing

to this total. Then a random number is chosen and this random number is used to find

out which individual will be selected.

Crossover: One point crossover is used for the GA. A number is chosen between

one and the number of risks. This is used as the cutting point, where the two

chromosomes are cut. The parts that have been generated by cutting operation are

crossed and two new individuals are generated.

Mutation: Bit mutation is used. The value on the randomly chosen gene of the

chromosome is replaced with another value also randomly generated.

Generation Cycle: First generation is generated randomly. Then the later

generations are generated based on this first generation.

While generating the later generations an operator is chosen with the specified

probabilities (i.e. crossover is chosen with a probability of Pc, mutation is chosen with a

probability of Pm and reproduction is chosen with a probability of (1-(Pc+Pm))). Then

the chromosome(s) is (are) chosen according to the operator. Finally, the chosen

operator is applied to the chosen chromosome(s).

Different than the traditional GA approach these operators are applied in a parallel

fashion rather than the serial application of the crossover and mutation operators.

Gene

. . .

Number of risks is equal to number of genes. Exp. Cmax, Exp.
Cost, Fitness

43

After defining how the GA routine works, multiobjective GA’s can be defined.

Before applying the improvement heuristics to the problem, two strategies based on the

VEGA (Vector Evaluated Genetic Algorithm) and a new genetic algorithm are used.

These algorithms are explained in greater detail in the following subsections.

4.3.1.2. VEGA Based Strategies

In the original VEGA (see section 3.2.5.1), the fitness function is calculated after

dividing the population into subpopulations. Subpopulations contain equal number of

individuals and these individuals are evaluated according to the objective of the

corresponding subpopulation they are in. This evaluating frame has a drawback called

speciation. This problem arises because this technique selects individuals who excel in

one dimension without looking at other dimensions. The potential danger is that the

procedure evolves without generating middling performance individuals. Middling

refers to an individual with acceptable performance, perhaps above average in all

objectives, but not outstanding when measured by any particular function. This problem

is depicted in Figure 4.3. In the figure, filled circles are identified by VEGA; others

represent the middling individuals, which could not be identified.

Figure 4-3 Middling individuals in VEGA

Middling individuals are the results of VEGA and this type of a solution is

undesirable. To avoid the middling problem of VEGA two strategies are proposed here.

These strategies bring a dynamic subpopulation sizing to the algorithm. Rather than

dividing the population equally, they divide the population according to a parameter.

f1

f2

44

In these strategies, firstly, the problem is solved for each of the objectives. The

values of these solutions constitute a basis for comparison. When the problem is solved

with the objective of minimizing expected total project cost, a solution with a cost value

C* is obtained. When the problem is solved with the objective of minimizing expected

project duration, a solution with a makespan value Cmax
* is obtained. These two values

are called the ideal values of the objectives.

The two strategies based on VEGA are developed to avoid clusters on the

endpoints of the Pareto front. The distance from ideal points of the objectives are

measured for each generation and the next generation’s subpopulation sizing is done

according to these distances. The distance calculation method determines the strategy.

4.3.1.2.1. Strategy 1

In the first proposed strategy, the distance between the ideal value of the objective

and generation’s best individual for this objective (Cmax
b,Cb) value is measured. The

following formula represents the distances for the objectives, d1 represents the distance

for the expected total cost and d2 represents the distance for the expected makespan.

1

*

*

bC C
d

C
−= (4.11-a)

*
max max

2 *
max

bC C
d

C
−= (4.11-b)

After calculating the distances, the normalized distances are Nd1 and Nd2

calculated as shown below.

1
1

1 2

d
Nd

d d
=

+
 (4.12-a)

2
2

1 2

d
Nd

d d
=

+
 (4.12-b)

 Assume these values are calculated in generation t and the generation size for the

genetic algorithm is N. Then for generation t+1, subpopulation sizes become Nd1*N and

Nd2*N, respectively. So, in generation t+1, (Nd1*N) individuals will be evaluated

according to objective one; (Nd2*N) individuals will be evaluated according to objective

two.

45

4.3.1.2.2. Strategy 2

Second strategy is based on the same intuition with the first strategy, only differs

in the distance measurement. Assume population size for GA is N. The following

formulas show the difference.

1

*

*
1

N
i

i

C C
d

C=

� �−= � �
� �

� (4.13-a)

*
max() max

2 *
1 max

N
i

i

C C
d

C=

� �−
= � �� �

� �
� (4.13-b)

4.3.1.3. Proposed Genetic Algorithm

This new algorithm is a mixture of NSGA-II and NPGA. For each generation

generated, fitness is calculated by the help of two components. First component is

similar to the Pareto domination tournament of NPGA. But in this algorithm we do not

compare an individual with a group of individuals; rather we compare the individual

with the entire population. The number of individuals dominated by the individual is

represented by Ndom. The ratio of domination, Rdom, represents the first component.

1
1

dom
dom

pop

N
R

N
+=
+

 (4.14)

 The second component called the nearest neighbourhood radius, NNR, is given

below which is the division of nearest individual’s distance (dnearest) to the maximum

distance in the generation (dmaxgen).

max

nearest

gen

d
NNR

d
= (4.15)

The product of these two components becomes the fitness value.

* domFitness NNR R= (4.16)

Rdom is used to evaluate the fitness of an individual in nondomination sense. By the

help of Rdom, in each generation individuals are compared with all individuals.

NNR behaves like a sharing function in this algorithm. Similar to but simpler than

NSGA-II, NNR finds the nearest individual for all individuals and divides the distance

between them to the maximum distance in the population. So, if an individual is closer

to its nearest neighbour, it is assumed that, it is in a crowded region.

46

By multiplying Rdom and NNR fitness of an individual in the nondomination sense

and the sharing concept are combined.

In the proposed GA, elitism is employed as well. During the evolution process,

the nondominated individuals in each generation are carried to the next generation and

the other individuals are formed by using the mutation and crossover operators.

4.3.2. Heuristics to Improve the GA Results

The GA result to the problem gives a makespan and a cost value. The expected

cost values may not be satisfactory if it tells us to invest on reducing risk in noncritical

activities.

Assume we have project consisting of seven activities with the following network

(Figure 4.4). For one solution, the activities on thick lined arcs (1-2-5-7) are on the

critical path.

1

2

3

5

4

6

7

Figure 4-4 Example project network (AON)

For such a solution, the aim of the heuristic is to avoid investing more money than

needed to the non-critical activities to reduce their risks, while not changing the risk

structure of the activities on the critical path and hence, the makespan.

In this problem, we specify a limit on expected project duration and fix modes of

some activities on the critical path that have been chosen by GA. Then we try to

minimize the expected cost while preserving the critical path. This problem is a special

case of discrete time/cost trade-off problem, which is shown to be NP hard by De et al.

(1997). In their paper, they have shown that under a due date constraint multi-mode

project scheduling problem with the cost minimization as the objective, is an NP hard

problem. This problem is similar to the problem that we are trying to solve.

47

First we need to transform our problem to the multi-mode project scheduling

problem. This process can be done by choosing every possible combination of states to

different modes. Assume we have an activity with two risks having two states each. For

such an activity we can find (2*2) four modes. Then for increasing the solvability of the

problem we can also perform a domination search along the modes and we can

eliminate the dominated modes. Table 4.2 demonstrates the mode generation and

nondominated mode selection.

Table 4-2 Mode generation and nondominated mode selection

Mode
No

State chosen
for Risk 1

State chosen
for Risk 2 Cost Duration Domination Statue

1 1 1 5443.20 38.88 Dominated (by mode 2&4)
2 1 2 5034.60 33.39 Nondominated
3 2 1 5587.00 31.05 Dominated (by mode 4)
4 2 2 5178.40 25.56 Nondominated

For the modes of activities the duration column represents the expected durations

of activities when these states are chosen. The cost for an activity represents the sum of

expected labor cost and the risk reducing costs, which constitute a local trade-off with

the expected duration. After identifying the nondominated modes we have a discrete

time/cost trade-off problem, whose critical activities have only one mode. Since the

multi mode project scheduling problem under a due date with the cost minimization as

the objective is NP hard, we can say that our problem is also NP hard. Different than the

discrete time/cost trade-off problem in our problem the critical activities have only one

mode.

Exact solution approaches to this problem are given by Demeulemeester et al.

(1996). These solution approaches seemed computationally very costly so that heuristics

are tried to be generated. The following sections describe the various heuristics

proposed to solve our problem.

4.3.2.1. An Improvement Heuristic Based on Continuous Cost vs Duration Model

Continuous form of project crashing problems has been widely studied. A large

number of methods are proposed. Among others Fulkerson (1961) used network flows

to generate the project cost curve, Siemens (1971) generated a heuristic by defining

effective cost slopes for activities, Goyal (1975) improved Siemens’ approach and

48

Robinson (1975) used dynamic programming to solve the problem. Nowadays these

problems can be solved by computers optimally and very quickly.

In this continuous cost vs. duration model based (CCDM) improvement heuristic,

first, all the nondominated modes of the problem are identified and they are scattered on

a graph as given below. After identifying all the modes and scattering we try to fit a

linear curve to these modes. By doing so we can transform our problem to a continuous

project crashing problem, which is easier to solve.

550

650

750

850

950

1050

1150

18 19 20 21 22 23 24 25

Duration

C
os

t Modes
Linear (Modes)

Figure 4-5 Example activity graph.

The continuous form of the problem is represented by the following mathematical

model if all the activities of the project can be approximated by a line segment as seen

in Figure 4.5.

Notation:

{J}: Set of activities j=1,…,J;

{Pj }: Set of immediate predecessors of activity j;

{K}: Set of critical activities k (subset of J);

{U}: Set of non-critical activities u (subset of J);

ESTj: Earliest starting time of activity j;

EFTj: Earliest finishing time of activity j;

pk: Duration of the activities on the critical path;

su: Slope of the curve for noncritical activities (note that slope is negative);

tu: Duration of the activities on the noncritical path;

au: The endpoint of curve, smallest duration;

49

bu: The endpoint of curve, largest duration;

CPL: Critical path length;

Model:
'()*u u u

u U

Min d a s
∈

−� (4.17)

subject to:

1 0EST = (4.18)

max{ } 2,...,j i jEST EFT i P j J= Ι ∈ = (4.19)

' 1,...,j j jEFT EST d j J= + = (4.20)

'
k kd p for k K= ∈ (4.21)

 JEFT CPL≤ (4.22)

'
u u ua d b for u U≤ ≤ ∈ (4.23)

This model is valid for the situations where the modes can be represented by a

single line segment. Most of the time, this line segment would not be adequate to

represent all the modes of an activity accurately. For such cases, the modes of the

activity is tried to be represented by a piecewise linear function. For projects containing

such activities another model is needed. The following model is used for the situations

where the cost function of the activities are represented by piecewise linear functions

(see Figure 4-6).

For piecewise linear function generation, first a continuous curve is fitted on the

nondominated modes (gray line in Figure 4-6). Then the continuous curve is

approximated by three connected line segments (black line segments on Figure 4-6).

This approximation of the continuous curve by a piecewise linear function is based on

one of the methods proposed by Wei and Wang (2003). In this method, authors propose

to use tangents to the continuous curve. The first line is drawn tangent to the curve at

the beginning point and the last line is drawn tangent at the ending point. The other lines

are drawn tangent at the points between the beginning and ending point, which are

equally away from other tangent points. The intersection points of the tangent lines

constitute the beginning and ending points of segments. As the number of segments

increases the precision of the piecewise linear approximation increases.

50

4000

4500

5000

5500

6000

6500

7000

10 15 20 25 30 35 40 45

Duration

C
os

t

Modes Poly. (Modes) Linear (Poly.)

Figure 4-6 Example of piecewise linear curve fitting on an activity

Notation:

{J}: Set of activities j=1,…,J;

{Pj }: Set of immediate predecessors of activity j;

{K}: Set of critical activities k (subset of J);

{U}: Set of noncritical activities u (subset of J);

ESTj: Earliest starting time of activity j;

EFTj: Earliest finishing time of activity j;

pk: Duration of the critical activity k;

su
m: Slope of the mth segment of curve for noncritical activities (note increasing

negative slope as m increases);

d’
u: Duration of the noncritical activity u;

au
m: The endpoint of mth segment of curve, smallest duration of segment;

bu
m: The endpoint of mth segment of curve, largest duration of segment;

Mu: The number of segments of the cost curve for activity u;

Xu
m: Duration on segment m of noncritical activity u;

CPL: Critical path length;

Model:

1

*
uM

m m
u u

u U m

Min X s
∈ =
�� (4.24)

subject to:

1 0EST = (4.25)

max{ } 2,...,j i jEST EFT i P j J= Ι ∈ = (4.26)

51

' 1,...,j j jEFT EST d j J= + = (4.27)

' fork kd p k K= ∈ (4.28)

 0 () for ; 1,...,m m m
u u u uX b a u U m M≤ ≤ − ∈ = (4.29)

' 1

1

for
uM

m
u u u

m

d a X u U
=

= + ∈� (4.30)

JEFT CPL≤ (4.31)

The appropriate model is solved by using GAMS©. The durations for noncritical

activities are taken from the GAMS© solution and then the modes are found. To find the

modes of noncritical activities, for each noncritical activity, if the duration found

corresponds to a nondominated mode’s duration, then we assign this mode to that

activity. Otherwise, we find the nondominated mode with the closest but smaller

duration and assign this mode to that activity. Then, for each noncritical activity, we

calculate the slacks and the earning per duration value that will result if the activity is

performed at its next higher duration mode. Starting with the highest earning per

duration activity, we expand the activities without violating the slacks. These operations

(the operations after finding the mode from appropriate model solution – starting point

assignment) are repeated until no slack exists or there is no further mode to expand to.

The earning per duration ratio is the ratio of the expected cost decrease to

expected duration increase between the respective nondominated modes of the activity.

For the activity shown in Table 4-2, this value is (from mode 4 to mode 2) 18.37

(=(5178.4-5034.6)/(33.39-25.56)).

Figure 4.7 explains this improvement heuristic more explicitly.

52

Figure 4-7 CCDM improvement heuristic procedure

4.3.2.2. An Improvement Heuristic Based on GA Results

In this GA results based (GAB) improvement heuristic, rather than finding the

starting points for the noncritical activities with a continuous model, the GA results are

taken as the starting points. The GA may result with the dominated modes for

noncritical activities. In these situations, the nondominated mode with a lower duration

is found and these are taken as starting points for the heuristic. From this point on, this

heuristic is the same as the continuous model based heuristic. First, the earning per

duration values and slacks are calculated. Then beginning from the highest earning per

duration value, we expand the activity durations. The operations after the starting point

assignment are repeated until no slack exists or there is no further mode to expand to.

A step by step procedure for the GAB improvement heuristic is given in Figure

4.8.

Step 1 - For each noncritical activity,

 Determine the nondominated modes.

 Fit a continuous curve to these nondominated modes.

 Determine a piecewise linear underestimator for the continuous curve.

Step 2 - Using the appropriate model, solve a minimum cost problem keeping the

project duration fixed.

Step 3 - For each noncritical activity, if the duration found corresponds to a

nondominated mode’s duration, then assign this mode to that activity.

Otherwise, find the nondominated mode with the closest but smaller duration

and assign this mode to that activity (starting point assignment).

Step 4 - For each noncritical activity, calculate the slack and the earning per duration

value that will result if the activity is performed at its next higher duration

mode.

Step 5 - Starting with the highest earning per duration activity, expand the activity

without violating the slacks.

Step 6 - If there are other activities whose slacks are appropriate for expansion, go to

step 4; else stop.

53

Figure 4-8 GAB improvement heuristic procedure

4.3.2.3. From Start Improvement Heuristic

In this from start (FS) improvement heuristic, the starting point assignment is

done from scratch. Every noncritical activity is assigned the nondominated mode with

the lowest duration as the starting mode. From this point on this heuristic is the same as

the others. First, the earning per duration values and slacks are calculated. Then

beginning from the highest earning per duration value we expand the activity durations.

The operations after the starting point assignment are repeated until no slack exists or

there is no further mode to expand to.

The procedure for FS improvement heuristic is given in Figure 4-9.

Step 1 - For each noncritical activity,

 Determine the mode in which GA results.

If the mode is nondominated assign it as the starting point for this

activity,

 else if the mode is dominated, find the nondominated mode with a

 lower but closest duration value.

Step 2 - For each noncritical activity, calculate the slack and the earning per duration

value that will result if the activity is performed at its next higher duration

mode.

Step 3 - Starting with the highest earning per duration activity, expand the activity

without violating the slacks.

Step 4 - If there are other activities, whose slacks are appropriate for expansion, go to

step 2; else stop.

54

Figure 4-9 FS improvement heuristic procedure

Step 1 - For each noncritical activity,

Find the nondominated mode with the lowest duration and assign this

mode as starting point for this activity.

Step 2 - For each noncritical activity, calculate the slack and the earning per duration

value that will result if the activity is performed at its next higher duration

mode.

Step 3 - Starting with the highest earning per duration activity, expand the activity

without violating the slacks.

Step 4 - If there are other activities, whose slacks are appropriate for expansion, go to

step 2; else stop.

55

5. TESTING AND COMPUTATIONAL STUDY

Parameter setting for GAs has been a difficult issue in most of the GA

implementations. For problems, which have a single objective, it is easier to compare

the results of different parameters. But in multiobjective optimization problems, as it is

mentioned in the Section 3.2.6, it is difficult to compare the results of different

algorithms or the different sets of parameters for the same algorithm. Since the results

are needed to be compared, first a multiobjective performance metric is defined. Then

the determined parameter sets are compared according to this metric. Finally, as the

computational study, the algorithms and improvement heuristics are examined on a set

of problems.

5.1. Performance Metric

As the performance metric, “extreme hyperarea ratio (EHR)” is developed based

on the idea of hyperarea ratio. In hyperarea ratio, the hyperarea resulting from the use of

the algorithm is divided to the hyperarea of the true Pareto front. This metric is a

subjective but good measure to compare the results of the problems whose true Pareto

fronts are known. But if the problem’s true Pareto front is not known, it is impossible to

use this metric.

For the problems used in this thesis the true Pareto fronts are not known, so

another metric is needed to be developed. This metric is the ratio of the hyperarea of the

front (Figure 5.1(a)) to the area bounded by the origin and maximum points of the two

objective (Figure 5.1(b)).

As it is depicted on Figure 5.1, the EHR becomes as follows.

H
EHR

A
= (5.1)

56

(a) (b)

Figure 5-1(a) Hyperarea of the front, (b) maximum area bounded by origin and
maximum points.

This ratio is used to determine the parameters of the GAs and to compare the

different algorithms.

5.2. Parameter Setting

For determining GA parameters, first a bound is determined for the number

individuals that will be generated. This is defined as the point, after which

nondominated solutions will be found seldomly. A large number of experiments are

done on a project with twenty-five activities. After these experiments a conservative

bound of fifty thousand is determined.

After determining the total number of individuals that will be generated, some

probabilities for crossover and mutation are determined. Also to determine the effect of

population size and the number of generations these values are also tested in parameter

setting experiments. For the determined values a set which contains sixty experiments is

considered for parameter setting tests. These experiment parameters are given in the

Appendix-B in Table B.1.

These experiments are done for a set of fifteen problems which contains five

problems of projects with fifteen activities, five problems of projects with twenty-five

activities and five problems of projects with thirty-five activities.

f1

f2

H

Nondominated Points

Reference Point
(maximum of f1 and f2)

f1

f2

A

57

After solving the problems with three algorithms (VEGA Strategy 1, Strategy 2

and proposed GA) the statistical testing is done on the EHR values.

For statistically testing the significance Systat© is used. As the method to

determine the significance one-way ANOVA is used. In one-way ANOVA the

experiments are taken as factors and the corresponding EHR values for problems are

taken as dependent variables. This test determines whether the means of the

experiments are different at a statistically significant level. Based on the results of the

tests the parameters of GAs are chosen.

For VEGA strategies, after applying ANOVA, the results of experiments did not

differ statistically. So, the best average valued set is chosen for further experimentation.

For the proposed GA the results differ at a confidence level of 5%. This shows

that results are different but the different samples are identified on pairwise comparison.

Since it is not possible to compare all sixty experiment results, the best average valued

set is chosen for the proposed GA.

The chosen parameters for the algorithms are given in Table 5.1.

Table 5-1 Parameters chosen for GAs

 VEGA Strategy 1 VEGA Strategy 2 Proposed GA
Probability of Crossover 0.30 0.75 0.15
Probability of Mutation 0.60 0.15 0.75
Generation Size 100 100 250
Population Size 500 500 200

Although a conservative bound of fifty thousand evaluations has been determined

for the chromosomes to be generated, the parameter setting experiments showed that as

the size of the search space increases further exploration is needed. After determining

this need, an increase for the number of chromosomes to be generated has been applied.

Table 5.2 shows the population size and generation size for the problem groups and for

the different algorithms. As can be observed in Table 5.2, as the number of activities

increases, so does the number of evaluations performed in each GA. But the number of

evaluations given in Table 5.2 does not represent the real number of evaluations for the

proposed GA. For the proposed GA, the number of evaluations is less than the number

of evaluations given in Table 5.2 because the proposed GA uses elitism. The individuals

that are nondominated in a generation are carried into the next generation, so the

number of individuals generated by the operators is less than the population size for

58

each generation. Depending on the problem the number of individuals evaluated is

nearly 20 percent less than the number given in Table 5.2.

Table 5-2 Population size and generation sizes for different problem groups and
for different algorithms

VEGA Strategy 1 VEGA Strategy 2 Proposed GA Number of
Activities in

Problem Pop. Size Gen. Size Pop. Size Gen. Size Pop. Size Gen. Size

15 500 100 500 100 200 250
25 500 150 500 150 200 375
35 500 200 500 200 200 500

5.3. Comparison of GAs

The GAs that are used to solve the problem are tested on 60 problems. These 60

problems include equal number of problems consisting of fifteen, twenty-five and

thirty-five activities.

For comparing GAs, EHR is used. EHR is calculated for each of the problems.

EHR may be used for comparing the algorithms but it does not evaluate the

performance of the algorithm with the true Pareto front. Since an exact evaluation for

the algorithm is needed an approximation of the true Pareto front is found and proposed

GA is compared with it.

5.3.1. Comparison with the Approximation of the True Pareto Front

The approximation of the true Pareto front is done by using the mathematical

programming software GAMS©. For approximating the true Pareto front, beginning

from the maximum makespan the makespan objective is added to the model as a

constraint. Since makespan is added as a constraint to the model, the model becomes a

single objective model.

First, maximum makespan is taken as the constraint and the model is solved for

the objective of cost minimization. Then, the result of the solved model is taken and the

makespan is decreased by 0.01 from the result level and added as constraint again. This

procedure is repeated until the minimum makespan reached.

59

The approximation of the true Pareto front founded by the GAMS© and the results

gained from the 60 experiments of the proposed GA runs are plotted on the graphs.

These figures showed that proposed GA is comparable to the GAMS© solution

procedure. The following three figures (Figures 5.2 - 5.4) show the results that are

obtained from these comparisons.

Figure 5.2 shows that the GA results are comparable to approximation of the true

Pareto front.

FN4 Results

70000

72000

74000

76000

78000

80000

82000

84000

86000

88000

90000

165 170 175 180 185 190 195 200 205 210

Project Duration

C
os

t o
f P

ro
je

ct

GAMS Results GA Results

Figure 5-2 Comparison of proposed GA results with approximation of true Pareto front

In Figure 5.3, the GA results perform better than GAMS© results. This seems

impossible but since GAMS© has some tolerances to stop the search for some problems

this may be possible. Also decreasing the makespan constraint by 0.01 may lead to skip

some solutions in between.

60

FN3 Results

84000

86000

88000

90000

92000

94000

96000

98000

100000

190 200 210 220 230 240 250

Project Duration

C
os

t o
f P

ro
je

ct

GAMS Results GA Results

Figure 5-3 Comparison of proposed GA results with approximation of true Pareto front

TF2 Results

155000

160000

165000

170000

175000

180000

185000

260 270 280 290 300 310 320

Project Duration

C
os

t o
f P

ro
je

ct

GAMS Results GA Results

 Figure 5-4 Comparison of proposed GA results with approximation of true Pareto front

Figure 5.4 shows that the approximation of the true Pareto front may also

dominate the GA results. The problem results shown in this graph belongs to a problem

with thirty-five activities. On the other hand, Figures 5.2 and 5.3 are the results of

problems with fifteen activities. This may lead to the conclusion that as the size of the

problem increases the need for exploration in GA increases.

61

The EHR values for the approximation of the true Pareto front are also calculated.

The average EHR value for the true Pareto front approximation is 0.2573. This value is

very close to the average EHR value of proposed GA, which is 0.2404. When the EHR

values are investigated one by one for all the problems, most of the time EHR value of

the approximation is too close to the proposed GA’s EHR value. These values are given

in Table A.2 in the Appendix-B.

When the EHR values of the approximation of the true Pareto front and GAs are

statistically analysed, it is observed that they differ in a statistically significant way. In

Table 5.3, percent deviations of GAs from the approximation of the true Pareto front are

given.

The values in Table 5.3 show that VEGA Strategies 1 and 2 lead to similar results

when compared to the approximation of true Pareto front. The results of the proposed

GA are significantly better than the VEGA strategies and comparable to the

approximation of true Pareto front.

Table 5-3 Percent deviations of the GAs from the approximation of true Pareto front

Problem
Type

VEGA
Strategy 1

VEGA
Strategy 2 Proposed GA

Overall 24.26 23.67 6.44
15 Activities 18.50 19.05 5.62
25 Activities 23.88 21.82 4.74
35 Activities 30.40 30.14 8.97

5.3.2. Pairwise Comparison of GAs

GA results are compared according to the runs that are made on 60 problems with

the selected parameters. For each problem-GA pair the EHR values are calculated and

these values are used to compare the algorithms. EHR values for each problem and the

algorithm is given in Table B.2 in the Appendix-B. Average EHR values for the

problem classes are given in Table 5.4.

62

Table 5-4 EHR values for problem classes

Problem
Type

VEGA
Strategy 1

VEGA
Strategy 2 Proposed GA

Overall 0.1951 0.1964 0.2404
15 Activities 0.2177 0.2161 0.2522
25 Activities 0.1918 0.1968 0.2395
35 Activities 0.1757 0.1763 0.2295

The ANOVA is applied to the GA results, which shows that these three

algorithms differ at zero confidence level. This result leads us to make pairwise

comparisons.

5.3.2.1. Comparison of VEGA Strategies

For comparing VEGA strategies the EHR values of 60 problems are used. These

values are used to decide whether the strategies differ in a statistically significant way.

The results show that the difference of these two strategies is not statistically

significant. The mean values for these strategies are also too close to differentiate. The

mean EHR values for Strategy 1 and Strategy 2 are 0.1951 and 0.1964 respectively.

5.3.2.2. Comparison of VEGA Strategy 1 with the Proposed GA

When the VEGA Strategy 1 is compared with the proposed GA, the results show

that proposed GA is better than the VEGA Strategy 1. The applied hypothesis test is

also a proof of this statement. These two algorithms differ at zero confidence level.

Their mean EHR values are 0.1951 and 0.2404 for VEGA Strategy 1 and proposed GA

respectively.

5.3.2.3. Comparison of VEGA Strategy 2 with the Proposed GA

The applied hypothesis test showed that, up to zero confidence level these two

algorithms have different results. The mean EHR values are 0.1964 and 0.2404 for

63

VEGA Strategy 2 and proposed GA respectively. So we can conclude that proposed GA

performs better than VEGA Strategy 2.

5.4. Comparison of the Improvement Heuristics

The improvement heuristics are implemented at the end of the proposed algorithm

and the nondominated solutions found by the algorithm are further improved by these

heuristics. The results for the improvement heuristics are compared according to two

criteria: Average value of the improvement (expected cost decrease) and the ratio of the

number of improved solutions to the number of nondominated solutions found.

Average value of improvement (AI) is the average of expected cost decrease from

the nondominated GA solution level to improvement heuristic result level expressed in

percentage.

1

()*100 /
GA Hl
i i

GA
i i

C C
AI l

C=

−= � (5.1)

where l is the number of Pareto optimal solutions, Ci
GA is the expected cost of ith Pareto

optimal solution in which GA resulted, Ci
H is the expected cost after the improvement

heuristic is applied to the Pareto solution i.

5.4.1. FS Improvement Heuristic Results

The early computational results showed that FS improvement heuristic almost

surely does not improve the quality of the results. The solutions of the thirty problems

are analyzed and FS improvement heuristic has not improve any of the solutions. Based

on these unsatisfactory results, further investigation of this heuristic is terminated at this

point.

The results for CCDM improvement heuristic and GAB improvement heuristic

are given in Table B.3 in the Appendix-B.

64

5.4.2. CCDM Improvement Heuristic Results

This improvement heuristic has improved most of the solutions. On the other

hand, since an exact linear underestimator to the modes of the problem has not been

used, some of the expected cost values increased instead of decreasing. Table 5.5 shows

the overall results and the results according to problem classes.

Table 5-5 Result summary of CCDM improvement heuristic

Problem
Type

Number of
Nondominated

Solutions

Average
Improvement

(%)

Number of
Solutions
Improved

Ratio of
Improved

Solutions (%)
Overall 2546 0.50 1948 76.51

15 Activities 717 0.16 422 58.86

25 Activities 848 0.63 693 81.72

35 Activities 981 0.71 833 84.91

The results show that as the problem size increases the performance of the

improvement heuristic gets better. This may be the result of the deteriorating

performance of GA as the problem size increases. Since GA can not explore the search

space adequately, there remains more area for the improvement heuristic.

5.4.3. GAB Improvement Heuristic Results

GAB improvement heuristic has improved more solutions than the CCDM

improvement heuristic but the quality of the results differ slightly. Table 5.6 represents

the performance of the GAB improvement heuristic.

Table 5-6 Result summary of GAB improvement heuristic

Problem
Type

Number of
Nondominated

Solutions

Average
Improvement

(%)

Number of
Solutions
Improved

Ratio of
Improved

Solutions (%)
Overall 2546 0.27 2039 80.09

15 Activities 717 0.19 421 58.72

25 Activities 848 0.32 723 85.26

35 Activities 981 0.30 895 91.23

65

This improvement heuristic has not decreased the expected cost of the solutions as

much as the CCDM improvement heuristic but the number of solutions improved are

higher for this heuristic, and hence the ratio of improved solutions.

The average improvement values of the GAB improvement heuristic are not as

high as the CCDM improvement heuristic. This may be the result of the starting points

of the two improvement heuristics. Since GAB improvement heuristic starts from the

GA result, which may be a local optimum, the GAB improvement heuristic might not

be able to move away from this local optimum.

It might be conjectured that CCDM improvement heuristic may be more effective

if a more precise piecewise linear underestimator is used. But as the precision of the

estimator increases, the effort to generate the underestimator and to solve the continuous

model will increase. This leads to a trade-off to be resolved between the computational

cost and decreased cost by the CCDM improvement heuristic.

When considering the improvement results of both heuristics these results may

seem unsatisfactory and thus the improvement heuristics may seem unnecessary. The

improvement heuristics serve the purpose of finding the cost savings associated with

some noncritical activities in the final solution and thus avoiding a trivially inferior

solution. The risks associated with some noncritical activities might have been reduced

at a cost. But expected duration of these activities might be further increased without

affecting the critical path length. Thus savings can be realized by reducing the states of

the associated risks and allowing for longer expected activity duration.

5.5. Computational Times of the Study

The computational times of the GAs, CCDM improvement heuristic and true

Pareto front approximation (TPFA) are given in Table 5.7. These values are the average

of five problems’ computational times from each problem class. The computational

times of GAB improvement heuristic cannot be given since they are very small and thus

cannot be measured accurately.

66

Table 5-7 Computational times of the study in milliseconds

Problem
Type

Vega
Strategy 1

Vega
Strategy 2

Proposed
GA TPFA CCDM

15 Activities 1768 3807 6339 167075 17588

25 Activities 4472 7658 10094 443936 23385

35 Activities 8907 12964 16291 849036 27976

As it is clearly seen from the Table 5.7 the computational times of the TPFA are

very high compared to GAs. TPFA is computationally costly in these relatively small

problems. For big problems it may be very costly to generate the TPFA because of

excessive computational time and limitations of mathematical programming softwares.

When GAs are compared, it is clear that VEGA strategies have smaller

computational times compared to the proposed GA. As it is seen from the Table 5.7 as

the problem size increases, the difference between computational times of VEGA

strategies and the proposed GA decreases.

67

6. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

6.1. Conclusion

According to limited computational study made on three different sets of

problems, the results give the opportunity of giving some conclusions on the

performance of the algorithms and improvement heuristics.

The GAs that are used in solving the problem of project scheduling under risk can

not be compared with the true Pareto front, since true Pareto front is not known. Thus

results are compared with the approximation of the true Pareto front and the results of

GAs are compared with each other.

The graphs given for the approximation of true Pareto front and the GA results

show that these two are comparable. Even for some cases, GA results in better solutions

because of the early termination of GAMS© due to the tolerance employed on the

objective function value obtained. These results show that the proposed GA results are

comparable to the approximation of the true Pareto front.

When VEGA strategies are compared with each other the results show that these

two algorithms did not differ statistically. The hypothesis test applied to the results of

these algorithms show that their performances do not differ. Also the means of the

results for these two algorithms are too close to differentiate.

The proposed GA seems better than the two VEGA strategies. When pairwise

comparisons of VEGA strategies are made with the proposed GA, the hypothesis test

results show that the proposed GA performs better than the two VEGA strategies. The

mean values and the robust difference between EHR values of these algorithms prove

that the proposed GA is better.

When the improvement heuristics are tried to be compared, it is difficult to come

up with a performance criterion for comparison. There are three improvement heuristics

proposed, one of which has been eliminated because of the unsatisfactory results.

68

FS improvement heuristic is eliminated from computational study after the

unsatisfactory results that are taken from the early computational studies.

The CCDM improvement heuristic and GAB improvement heuristic are compared

according to two criteria. One of them is the average improvement for the

nondominated solutions and the other is the ratio of solutions improved, i.e., with their

expected costs decreased. When these two criteria are taken together it is impossible to

compare the results. When the performance criteria are taken one by one, it then

becomes possible to compare. The CCDM improvement heuristic is better when the

results are compared according to the average improvement. When the heuristics are

compared according to the ratio of solutions improved, the GAB improvement heuristic

seems to perform better.

6.2. Future Research Directions

Two possible research directions are proposed here. One of them is related with

the problem formulation and the other is related with the solution approach.

6.2.1. Solution Approach Related Future Research

There may be different approaches other than GAs for solving multiobjective

optimization problems. Those methods will be the other metaheuristic methods which

need posteriori preference articulation. Also the methods with priori preference

articulation and the methods with progressive preference articulation may be used, in

case, real problem data and decision maker preference data are available.

The other future work topic may be the use of GAs for comparison purposes, for

which promising results have been reported. One such algorithm is NSGA-II.

Comparing the proposed algorithm with NSGA-II is another future research direction.

For the problem solved, another solution approach may be using the modes

instead of risks to select. For this approach first the nondominated modes will be

identified then the search may be done along these modes. This approach may also

decrease the size of search space and increase the quality of the results.

69

6.2.2. Problem Formulation Related Future Research

For problem formulation related future research there are two possible directions.

The first is related with the content of problem. The second direction is related with an

extension of the formulation.

 The problem formulation may be extended by using dependent risks instead of

independent risks. The risks may be replaced with the risks that affect other risks. This

formulation will be more realistic to represent the real life situations.

Adding resource constraints to the formulation is another topic that will make the

problem formulation more realistic.

The impacts and probability of occurrences are assumed to be discrete in the

problem formulation. However, these may be formulated using continuous functional

forms.

70

REFERENCES

1. Bagchi, T,P., Multiobjective Scheduling by Genetic Algorithms. Kluwer
Academic Publishers, Boston, 1999.

2. Coello Coello, C.A., An Updated Survey of GA-Based Multiobjective
Optimization Techniques. ACM Computing Surveys, Vol: 32-2, 109-143, 2000.

3. Coello Coello, C.A.; Christiansen, A.D., MOSES : A Multiobjective
Optimization Tool for Engineering Design. Engineering Optimization, Vol: 31,
337-368, 1999.

4. Coello Coello, C.A.; Van Veldhuizen, D.A.; Lamont, G.B., Evolutionary
Algorithms for Solving Multi-Objective Problems, Kluwer Academic Publishers,
New York, 2002.

5. De, P.E.; Dunne, J.; Ghosh, J.B.; Wells, C.E., Complexity of the Discrete Time-
Cost Tradeoff Problem for Project Networks. Operations Research, Vol: 45-2,
302-306, 1997.

6. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T., A Fast and Elitist
Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on
Evolutionary Computation, Vol: 6-2, 182-197, 2002.

7. Demeulemeester, E.L., Herroelen, W.S., Elmaghraby, S.E., Optimal Procedures
for the Discrete Time/Cost Tradeoff Problem in Project Networks. European
Journal of Operational Research, Vol: 88, 50-68, 1996.

8. Ehrgott, M., Multicriteria Optimization. Springer Verlag, Berlin, 2000.

9. Elmaghraby, S.E., Activity Nets: A Guided Tour Through Some Recent
Developments. European Journal of Operational Research, Vol: 82, 383-408,
1995.

10. Fonseca, C.M.; Fleming, P.J.; An Overview of Evolutionary Algorithms in
Multiobjective Optimization. Evolutionary Computation, Vol: 3-1, 1-16, 1995.

11. Fulkerson, D.R., A Network Flow Computation for Project Cost Curves.
Management Science, Vol:7, 167-178, 1961.

12. Goyal, S.K., A Note on “A Simple CPM Time/Cost Tradeoff Algorithm”.
Management Science, Vol: 21-6, 718-722, 1975.

13. Hartmann, S., Project Scheduling Under Limited Resources, Springer Verlag,
Berlin, 1999.

14. Horn, J.; Nafpliotis, N.; Goldberg, D.E., A Niched Pareto Genetic Algorithm for
Multiobjective Optimization, in Proceedings of the First IEEE Conference on
Evolutionary Computation, edited by Michalewicz, Z., IEEE Press, Piscataway
NJ, 1994.

71

15. Jones, D.F.; Mirrazavi, S.K.; Tamiz, M., Multiobjective Metaheuristics: An
Overview of the Current State-of-the-Art. European Journal of Operational
Research, Vol: 137-1, 1-9, 2002.

16. Knowles, J.; Corne, D., On Metrics for Comparing Non-Dominated Sets. In
Congress on Evolutionary Computation (CEC'2002), Vol: 1, 711-716, IEEE
Service Center, Piscataway, New Jersey, 2002.

17. Kolisch, R.; Padman, R., An Integrated Survey of Deterministic Project
Scheduling. Omega, Vol: 29, 249-272, 2001.

18. Périaux, J.; Sefriou, M.; Mantel, B., GA Multiple Objective Optimization
Strategies for Electromagnetic Backscattering, in Genetic Algorithms and
Evolution Strategies in Engineering and Computer Science, edited by
Quagliarella et al., John Wiley & Sons, Chichester, 1998.

19. Quagriella, D.; Vicini, A., Coupling Genetic Algorithms and Gradient Based
Optimization Techniques, in Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science, edited by Quagliarella et al., John Wiley &
Sons, Chichester, 1998.

20. Robinson, D.R., A Dynamic Programming Solution to Cost-Time Tradeoff for
CPM. Management Science, Vol: 22-2, 158-166, 1975.

21. Romero, C., Handbook of Critical Issues in Goal Programming, Pergamon
Press, Oxford, 1991.

22. Siemens, N., A Simple Time/Cost Tradeoff Algorithm. Management Science,
Vol: 17-6, 354-363, 1971.

23. Ulusoy, G., Proje Planlamada Kaynak Kısıtlı Çizelgeleme, in Yöneylem
Ara�tırması Halim Do�rusöz’e Arma�an, edited by Erkip, N., Köksalan M.;
ODTÜ Basım ��li�i, Ankara, 2002.

24. Van Veldhuizen, D.A.; Lamont, G.B., Multiobjective Evolutionary Algorithms:
Analyzing The State-Of-The-Art. Evolutionary Computation, Vol: 8-2, 125-147,
2000a.

25. Wei, C.C.; Wang, C.M.F., Efficient Approaches of Linearization in Project
Compression. Computers & Industrial Engineering, Vol: 44, 695-706, 2003.

26. Zitzler, E.; Thiele, L., Multiobjective Evolutionary Algorithms: A Comparative
Case Study and Strength Pareto Approach, IEEE Transactions on Evolutionary
Computation, Vol: 3-4, 257-271, 1999.

27. Zitzler, E.; Laumanns, M.; Thiele, L., SPEA2: Improving the Strength Pareto
Evolutionary Algorithm. Technical Report 103, Computer Engineering and
Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH)
Zurich, Zurich, Switzerland, 2001.

72

REFERENCES NOT CITED

1. Brooke, A.; Kendrick, D.; Meeraus, A.; Raman, R.; GAMS© A User’s Guide.
GAMS Development Corporation, Washington, 1998.

2. Chang, C.K.; Christensen, M.J.; Zhang, T., Genetic Algorithms for Project
Management. Annals of Software Engineering, Vol: 11, 107-139, 2001.

3. Elmaghraby, S.E., On Criticality and Sensitivity in Activity Networks.
European Journal of Operational Research, Vol: 127, 220-238, 2000.

4. Gardiner, P.D.; Stewart, K., Revisiting the Golden Triangle of Cost, Time and
Quality: The Role of NPV in Project Control, Success and Failure. International
Journal of Project Management, Vol:18, 251-256, 2000.

5. Goldberg, D.E.; Genetic Algorithms in Search, Optimization & Machine
Learning, Addison Wesley Longman Inc., Reading, Massachusetts, 1989.

6. http://www.lania.mx/~ccoello (November, 2002)

7. http://gal4.ge.uiuc.edu/pubarch.html (November, 2002)

8. http://gal4.ge.uiuc.edu/technreprts.html (November, 2002)

9. Klein, R., Scheduling of Resource Constrained Projects. Kluwer Academic
Publishers, New York, 1999.

10. Laumanns, M.; Thiele, L.; Deb, K.; Zitzler, E., Combining Convergence and
Diversity in Evolutionary Multiobjective Optimization, Evolutionary
Computation, Vol: 10-3, 1-21, 2002.

11. Phillips, S., Project Management Duration/Resource Tradeoff Analysis: An
Application of the Cut Search Approach. Journal of the Operational Research
Society, Vol: 47, 697-701, 1996.

12. Vanhoucke, M.; Exact Algorithms for Various Types of Project Scheduling
Problems. PhD Dissertation, Katholieke Universiteit Leuven, Leuven, 2000.

13. Van Veldhuizen, D.A.; Lamont, G.B., On Measuring Multiobjective
Evolutionary Algorithm Performance. In 2000 Congress on Evolutionary
Computation, vol.1, pp. 204-211, IEEE Service Center, Piscataway, New Jersey,
2000b.

14. Zitzler, E.; Thiele, L.; Deb, K., Comparison of Multiobjective Evolutionary
Algorithms: Empirical Results. Evolutionary Computation, Vol: 8-2, 173-195,
2000.

73

APPENDIX - A

Figure A-1 MOGA pseudocode

Initialize population
Evaluate objective values
Assign rank based on pareto dominance
Compute niche count
Assigned linearly scaled fitness
For i=1 to G

Selection via stochatic universal sampling
Single point crossover
Mutation
Evaluate objective values
Assign rank based on pareto dominance
Compute niche count
Assign linearly scaled fitness
Assign shared fitness

End loop

74

Figure A-2 NSGA pseudocode

Figure A-3 NSGA-II pseudocode

Initialize population
Evaluate objective values
Assign rank based on pareto dominance in each wave
Compute niche count
Assigned shared fitness
For i=1 to G

Selection via stochatic universal sampling
Single point crossover
Mutation
Evaluate objective values
Assign rank based on pareto dominance in each wave
Compute niche count
Assign shared fitness

End loop

Initialize population
Generate random population – size M
Evaluate objective values
Assign rank based on pareto dominance – “sort”
Generate child population

 Binary tournament selection
 Recombination and mutation
For i=1 to G

With parent and child population
 Assign rank based on pareto dominance – “sort”
 Generate Sets of nondominated fronts

Loop (inside) by adding solutions to next generation starting from the
“first” front until M individuals found
Determine crowding distance between points on each front

Select points (elitist) on the lower front (with lower rank) and are outside a
crowding distance
Create next generation
 Binary tournament selection
 Recombination and mutation
Increment generation index

End loop

75

Figure A-4 NPGA pseudocode

Figure A-5 NPGA-II pseudocode

Initialize population
Evaluate objective values
For i=1 to G

Specialized binary tournament selection
 Only candidate 1 dominated : Select candidate 2
 Only candidate 2 dominated : Select candidate 1

Both candidates dominated or both not dominated :
 Perform specialized fitness sharing

Return candidate with lower niche count
Single point crossover
Mutation
Evaluate objective values

End loop

Initialize population
Evaluate objective values
For i=1 to G

Specialized binary tournament selection
Using degree of domination as rank
Only candidate 1 dominated : Select candidate 2
Only candidate 2 dominated : Select candidate 1
Both candidates dominated or both not dominated

Perform specialized fitness sharing
 Return candidate with lower niche count
Single point crossover
Mutation
Evaluate objective values

End loop

76

Figure A-6 SPEA pseudocode

Figure A-7 SPEA-II pseudocode

Initialize population
Create empty external set E
For i=1 to G

Copy nondominated members of P to E
Remove elemets from E which are covered by any other member of E
Prune E (using clustering) when the maximum capacity of E has been exceeded
Compute fitness of each individual in P and in E
Use binary tournament selection with replacement to select individuals from P+E
(multiset union) until the mating pool is full
Apply crossover and mutation

End loop

Initialize population
Create empty external set E
For i=1 to G

Compute fitness of each individual in P and E
Copy all nondominated individuals in P and E to E
Use the truncation ooperator to remove elements from E when the capacity of the
file has been extended
If the capacity of E has not been exceeded then use dominated individuals in P to
fill E
Perform binary tournament selection with replacement to fill the mating pool
Apply crossover and mutation to the mating pool

End loop

77

Figure A-8 PAES pseudocode

Figure A-9 PESA pseudocode

Repeat
Initialize single population parent p & add to archive (line 2)
Mutate p to produce child c and evaluate fitness

If p dominates c discard c
Else if c dominates p
 Replace p with c, and add c to archive
Else if (if c is dominated by any member of the archive)
 Discard c
Else apply test (p, c, archive) to determine which becomes the new
current solution and whether to add c to the archive

Until a termination criterion is true, return to line 2.

Generate a random (internal) population PI
Evaluate each member of PI
Initialize the external population PE to the empty set
While termination criterion has not been met

Incorporate nondominated vecors from PI into PE
Delete the current contents of PI
Repeat
 With probability Pc, select two parents from PE
 Produce a single child with crossover
 Mutate the child created in previous step
 With probability (1-Pc), select one parent
 Mutate the selected parent to produce a child
Until the population PI is filled

End while
Return the members of PE as the result

78

APPENDIX - B

Table B-1 Experiment parameters used in parameter setting tests

Experiment
No

Population
Size

Number of
Generations

Probability of
Mutation

Probability of
Crossover

1 100 500 0.15 0.15
2 100 500 0.30 0.15
3 100 500 0.45 0.15
4 100 500 0.60 0.15
5 100 500 0.75 0.15
6 100 500 0.15 0.30
7 100 500 0.30 0.30
8 100 500 0.45 0.30
9 100 500 0.60 0.30

10 100 500 0.15 0.45
11 100 500 0.30 0.45
12 100 500 0.45 0.45
13 100 500 0.15 0.60
14 100 500 0.30 0.60
15 100 500 0.15 0.75
16 200 250 0.15 0.15
17 200 250 0.30 0.15
18 200 250 0.45 0.15
19 200 250 0.60 0.15
20 200 250 0.75 0.15
21 200 250 0.15 0.30
22 200 250 0.30 0.30
23 200 250 0.45 0.30
24 200 250 0.60 0.30
25 200 250 0.15 0.45
26 200 250 0.30 0.45
27 200 250 0.45 0.45
28 200 250 0.15 0.60
29 200 250 0.30 0.60
30 200 250 0.15 0.75
31 250 200 0.15 0.15
32 250 200 0.30 0.15
33 250 200 0.45 0.15
34 250 200 0.60 0.15
35 250 200 0.75 0.15

79

 Table B-1 Experiment parameters used in parameter setting tests (cont’d)

Experiment
No

Population
Size

Number of
Generations

Probability of
Mutation

Probability of
Crossover

36 250 200 0.15 0.30
37 250 200 0.30 0.30
38 250 200 0.45 0.30
39 250 200 0.60 0.30
40 250 200 0.15 0.45
41 250 200 0.30 0.45
42 250 200 0.45 0.45
43 250 200 0.15 0.60
44 250 200 0.30 0.60
45 250 200 0.15 0.75
46 500 100 0.15 0.15
47 500 100 0.30 0.15
48 500 100 0.45 0.15
49 500 100 0.60 0.15
50 500 100 0.75 0.15
51 500 100 0.15 0.30
52 500 100 0.30 0.30
53 500 100 0.45 0.30
54 500 100 0.60 0.30
55 500 100 0.15 0.45
56 500 100 0.30 0.45
57 500 100 0.45 0.45
58 500 100 0.15 0.60
59 500 100 0.30 0.60
60 500 100 0.15 0.75

80

Table B-2 EHR values according to problem and algorithm, true Pareto front
approximation (TPFA)

Problem VEGA
Strategy 1

VEGA
Strategy 2 Proposed GA TPFA

FN1 0.2579 0.2474 0.2844 0.3022
FN2 0.2449 0.2487 0.2854 0.3082
FN3 0.2270 0.2227 0.2663 0.2842
FN4 0.2463 0.2381 0.2812 0.2878
FN5 0.2161 0.2186 0.2426 0.2519
FN6 0.2063 0.2050 0.2277 0.2293
FN7 0.1836 0.1982 0.2522 0.2605
FN8 0.1980 0.1945 0.2195 0.2278
FN9 0.1995 0.1939 0.2281 0.2333

FN10 0.1943 0.1995 0.2339 0.2387
FN11 0.1843 0.1846 0.2054 0.2125
FN12 0.2241 0.2178 0.2566 0.2768
FN13 0.2175 0.2057 0.2770 0.2868
FN14 0.1791 0.1733 0.2274 0.2671
FN15 0.2243 0.2283 0.2741 0.2933
FN16 0.2572 0.2566 0.2839 0.2898
FN17 0.2431 0.2454 0.2738 0.2832
FN18 0.1888 0.1991 0.2227 0.2421
FN19 0.2608 0.2563 0.2791 0.2957
FN20 0.2014 0.1880 0.2224 0.2805
EB1 0.1554 0.1595 0.2014 0.2027
EB6 0.1909 0.2016 0.2425 0.2600
EB8 0.2153 0.2169 0.2691 0.2857

EB10 0.1707 0.1752 0.2121 0.2235
EB11 0.1951 0.2024 0.2551 0.2720
EB12 0.1924 0.2036 0.2416 0.2493
EB13 0.1976 0.2046 0.2443 0.2642
EB14 0.1688 0.1780 0.2132 0.2244
EB18 0.2090 0.2155 0.2578 0.2652
EB20 0.1903 0.1927 0.2385 0.2430
EB21 0.2092 0.2200 0.2724 0.2726
EB22 0.1739 0.1809 0.2199 0.2224
EB23 0.1663 0.1707 0.2021 0.2055
EB26 0.2175 0.2173 0.2690 0.2873
EB28 0.1831 0.1825 0.2306 0.2516
EB30 0.2682 0.2650 0.2978 0.3348
EB33 0.1912 0.1934 0.2315 0.2497
EB35 0.1891 0.2015 0.2467 0.2599
EB39 0.1881 0.1772 0.2275 0.2344
EB40 0.1633 0.1774 0.2172 0.2316
TF1 0.1657 0.1598 0.2146 0.2307
TF2 0.1836 0.1732 0.2305 0.2475
TF3 0.1581 0.1573 0.2028 0.2359
TF4 0.1785 0.1714 0.2268 0.2475

81

Table B-2 EHR values according to problem and algorithm, true Pareto front
approximation (cont’d)

Problem VEGA
Strategy 1

VEGA
Strategy 2 Proposed GA TPFA

TF5 0.1995 0.1938 0.2562 0.2760
TF6 0.2111 0.2061 0.2705 0.2961
TF7 0.1709 0.1817 0.2263 0.2409
TF8 0.1899 0.1920 0.2369 0.2619
TF9 0.1589 0.1662 0.2273 0.2376

TF10 0.1858 0.1834 0.2432 0.2647
TF11 0.1715 0.1850 0.2444 0.2671
TF12 0.1902 0.1908 0.1911 0.2602
TF13 0.1807 0.1747 0.2396 0.2617
TF14 0.1919 0.1820 0.2536 0.2685
TF15 0.1783 0.1825 0.2318 0.2779
TF16 0.1586 0.1698 0.2214 0.2427
TF17 0.1399 0.1410 0.1930 0.2029
TF18 0.1678 0.1657 0.2154 0.2323
TF19 0.1489 0.1540 0.2116 0.2229
TF20 0.1839 0.1950 0.2522 0.2729

82

Table B-3 Results of heuristics according to the problem

(AI stands for average improvement, NSI stands for number of solutions improved and
RIS stands for ratio of solutions improved.)

CCDM Improvement
Heuristic

GAB Improvement
Heuristic Problem

Number of
Nondominated

Solutions AI
(%) NSI RIS

(%)
AI
(%) NSI RIS

(%)
FN1 38 0.68 36 94.74 0.44 29 76.32
FN2 38 0.10 24 63.16 0.01 18 47.37
FN3 37 0.28 37 100.00 0.18 35 94.59
FN4 45 -0.85 1 2.22 0.03 40 88.89
FN5 40 0.00 19 47.50 0.00 6 15.00
FN6 31 0.11 14 45.16 0.08 10 32.26
FN7 22 -0.20 6 27.27 0.29 21 95.45
FN8 39 0.14 22 56.41 0.03 11 28.21
FN9 33 0.39 18 54.55 0.34 20 60.61

FN10 39 0.33 25 64.10 0.20 21 53.85
FN11 35 -0.14 6 17.14 0.02 14 40.00
FN12 45 0.05 14 31.11 0.19 20 44.44
FN13 42 0.43 37 88.10 0.42 37 88.10
FN14 10 0.41 10 100.00 0.38 9 90.00
FN15 38 0.52 34 89.47 0.52 34 89.47
FN16 42 0.39 28 66.67 0.14 23 54.76
FN17 30 0.25 21 70.00 0.09 25 83.33
FN18 33 0.02 13 39.39 0.17 15 45.45
FN19 44 0.17 33 75.00 0.08 20 45.45
FN20 36 0.13 24 66.67 0.12 13 36.11
EB1 45 1.18 45 100.00 0.26 45 100.00
EB6 32 1.07 32 100.00 0.34 24 75.00
EB8 35 0.87 35 100.00 0.41 35 100.00

EB10 34 -0.41 12 35.29 0.31 31 91.18
EB11 46 1.12 45 97.83 0.48 36 78.26
EB12 35 0.61 35 100.00 0.31 35 100.00
EB13 46 0.70 40 86.96 0.38 33 71.74
EB14 40 0.29 24 60.00 0.25 40 100.00
EB18 59 0.47 50 84.75 0.38 47 79.66
EB20 45 0.53 30 66.67 0.20 40 88.89
EB21 49 -0.20 20 40.82 0.25 13 26.53
EB22 44 1.10 39 88.64 0.23 32 72.73
EB23 47 0.92 41 87.23 0.47 47 100.00
EB26 52 0.27 46 88.46 0.18 52 100.00
EB28 26 0.43 21 80.77 0.15 16 61.54
EB30 49 0.61 43 87.76 0.33 49 100.00
EB33 32 0.66 28 87.50 0.16 30 93.75
EB35 41 0.87 38 92.68 0.47 38 92.68
EB39 49 0.16 27 55.10 0.45 49 100.00
EB40 42 1.44 42 100.00 0.28 31 73.81

83

Table B-3 Results of heuristics according to the problem (cont’d)

CCDM Improvement
Heuristic

GAB Improvement
Heuristic Problem

Number of
Nondominated

Solutions AI
(%) NSI RIS

(%)
AI
(%) NSI RIS

(%)
TF1 48 1.12 44 91.67 0.44 48 100.00
TF2 61 1.32 61 100.00 0.13 60 98.36
TF3 44 1.08 44 100.00 0.31 44 100.00
TF4 46 0.48 34 73.91 0.33 46 100.00
TF5 51 0.67 50 98.04 0.24 50 98.04
TF6 37 0.97 35 94.59 0.24 35 94.59
TF7 51 0.18 22 43.14 0.01 14 27.45
TF8 43 0.79 43 100.00 0.28 43 100.00
TF9 43 0.13 22 51.16 0.25 43 100.00

TF10 47 0.03 20 42.55 0.34 47 100.00
TF11 38 1.52 36 94.74 0.51 38 100.00
TF12 63 0.34 46 73.02 0.02 44 69.84
TF13 55 0.45 55 100.00 0.14 30 54.55
TF14 47 0.40 44 93.62 0.49 47 100.00
TF15 54 0.43 46 85.19 0.23 53 98.15
TF16 49 0.97 42 85.71 0.40 49 100.00
TF17 42 0.94 36 85.71 0.42 42 100.00
TF18 56 0.76 55 98.21 0.42 56 100.00
TF19 44 0.71 36 81.82 0.42 44 100.00
TF20 62 0.88 62 100.00 0.36 62 100.00

