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ABSTRACT

Juha Kilkki

AUTOMATED FORMULATION OF OPTIMISATION MODELS FOR STEEL BEAM
STRUCTURES

Lappeenranta 2002
85 pages and 14 appendices at 30 pages
Acta Universitatis Lappeenrantaensis 140
Diss. Lappeenranta University of Technology
ISBN 951-764-713-1, ISSN 1456-4491

Over 70% of the total costs of an end product are consequences of decisions that are made during
the design process. A search for optimal cross-sections will often have only a marginal effect on
the amount of material used if the geometry of a structure is fixed and if the cross-sectional
characteristics of its elements are property designed by conventional methods. In recent years,
optimal geometry has become a central area of research in the automated design of structures. It
is generally accepted that no single optimisation algorithm is suitable for all engineering design
problems. An appropriate algorithm, therefore, must be selected individually for each optimisa-
tion situation.

Modelling is the most time consuming phase in the optimisation of steel and metal structures. In
this research, the goal was to develop a method and computer program, which reduces the model-
ling and optimisation time for structural design. The program needed an optimisation algorithm
that is suitable for various engineering design problems. Because Finite Element modelling is
commonly used in the design of steel and metal structures, the interaction between a finite ele-
ment tool and optimisation tool needed a practical solution. The developed method and computer
programs were tested with standard optimisation tests and practical design optimisation cases.

Three generations of computer programs are developed. The programs combine an optimisation
problem modelling tool and FE-modelling program using three alternate methdos. The modelling
and optimisation was demonstrated in the design of a new boom construction and steel structures
of flat and ridge roofs.

This thesis demonstrates that the most time consuming modelling time is significantly reduced.
Modelling errors are reduced and the results are more reliable. A new selection rule for the
evolution algorithm, which eliminates the need for constraint weight factors is tested with optimi-
sation cases of the steel structures that include hundreds of constraints. It is seen that the tested
algorithm can be used nearly as a black box without parameter settings and penalty factors of the
constraints.

Keywords: optimisation model, steel structure, differential evolution, evolution algorithm, opti-
misation

UDC 519.85 : 624.014.2
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NOMENCLATURE
a constant, exponent
b width
c(x) cost function or fitness
d diameter of the piston rod
di discrete value of the i-th discrete variable
dp distance between satisfying solution and ideal solution
e eccentricity
f(x) objective function
fd design stress
fck critical stress of compression
fmax function value of the worst feasible solution in a population
fj violation of the j-th constraint
f0 ideal solution
f objective function vector
f' part of objective function vector
fi i-th objective function (i = 1,...,nf)
fy yield stress
g gap
gi i-th inequality constraint (i = 1,...,m)

i
g i-th inequality geometric constraint (i = 1,...,m)
gmin minimum gap
g inequality constraint vector
g' part of inequality constraint vector
g(x) inequality constraint function
h height
hi i-th equality constraint (i = 1,...,q)
h equality constraint vector
h(x) equality constraint function
i index, radius of gyration
j index
jrand randomly generated index
k index
l length
m mass, number of inequality constraints
melem element mass
mtot total mass
n number of design variables, length of the code vector, number of parameters
nh safety factor against buckling of the hydraulic cylinder
nD number of discrete variables
nC number of continuous variables
nf number of objective function in multi-criteria optimisation
npk number of discrete parameter in set Dk
p factor on global criterion, hydraulic pressure, weighting exponent
pmax maximum pressure
pmin minimum pressure
q index, number of constraints
r penalty coefficient
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r1, r2, r3 randomly chosen population indices
t thickness
u trial vector
ui i-th design variable of the trial vector
wi i-th weighting coefficient
x* point corresponding to the maximum or minimum value
x scalar variable
xC vector of continuous variables
xD vector of discrete variables
x design variable vector
x' part of design variable vector
xi i-th design variable
x coordinate in global coordinate system
x' coordinate in element coordinate system
xi

l lower limit of i-th design variable vector
xi

u upper limit of i-th design variable vector
xC vector of continuous variables
xD vector of discrete variables
y coordinate in global coordinate system
y' coordinate in element coordinate system
y input vector, vector
y' part of input vector
z coordinate in global coordinate system
z' coordinate in element coordinate system
A cross-sectional area
C constant
CR mutation probability
D domain, diameter of the piston, set of discrete variables
Di set of discrete values for the i-th variable
E modulus of elasticity
F force, differential factor, working or nominal load
Fcr buckling load
Fd design load
Fy, Fz shear forces
G shear modulus, generation
Gmax last generation
h scheme, height
H scheme string
I moment of inertia
L span length
Lc buckling length
M bending moment
MR bending resistance
Mx torsional force
My, Mz bending moments
N normal force, fatigue life
NR normal force resistance
NRt tension resistance
NF number of function evaluations
NP population size
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γ buckling factor
γF partial safety factor of the load
γj partial safety factor of the joint
γm partial safety factor of the material
δ deflection
δmax maximum deflection
ε error
η efficiency factor
θ angle of rotation, angle between beams
θ(G, x) iteration dependent function
λ slenderness ratio
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λ(G) feed back function
ν Poisson's ration, number of violated constraints
σ stress
ψ factor
� feasible area in optimisation problem
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1 INTRODUCTION

1.1 Background

A customer sets requirements and wishes for capacity, dimension and mass. The laws of physics
set strict constraints. A new construction must be designed with adequate strength and, if public
or environmental safety is a concern, standards and sometimes legislation set strict requirements
for reliability and safety. Manufacturers and designers pursue the lowest possible fabrication costs
and good profit while end users are concerned with total life-cycle cost. There are always numer-
ous design alternatives that fulfil these requirements without exceeding constraints and the
process of selection constitutes a problem of optimisation.

It is a generally accepted truth that no single optimisation algorithm is suitable for all engineering
design problems. An appropriate algorithm, therefore, must be selected individually for each
optimisation situation. Choosing the optimisation algorithm and formulating the problem re-
quires, at least, some basic knowledge about optimisation theory and a certain degree expertise
about the structure itself. For this reason there is normally a high threshold for using optimisation
algorithms in engineering work.

The total cost of a steel structure includes those for material, fabrication, transportation and
erection. Material cost includes both unfinished materials and semi-finished members such as
beams, columns and bracings. Fabrication costs include in-shop processes like cutting, welding
and painting as well as transporting the fabricated sections to the construction site. Erection costs
include the costs of the connection elements like bolts and electrodes and the labour cost.  Sarma
and Adeli have prepared a recent review of cost optimisation of for steel structures (Sarma, K.
2000).

It has been argued that over 70% of the total costs of an end product are consequences of deci-
sions that are made during the design process. For this reason significant investments are usually
made to ensure the effectiveness of this process and to train designers. Researchers in this field
have proposed different flow charts both to describe and assist in the design process. These
normally consist of sequential steps and feedback loops that should be followed to reach the
design goal. Also, different kinds of question lists, tables or image maps are employed to stir up
a designer’s imagination and creative skills to help him find some real new alternatives (Eske-
linen, H. 1999).  Taipale has emphasized that the optimisation of a structure must also always
include an economic study (Taipale, J. 1999).

For fabricated metal structures, a search for optimal cross-sections will often have only a marginal
effect on the amount of material used if the geometry of a structure is fixed and if the cross-
sectional characteristics of its elements are properly designed by conventional methods. The
geometry of the structure determines, to a large extent, its structural efficiency. In recent years
optimal geometry has become a central area of research in the automated design of structures.
(Fuchs, M. B. 2001).

1.2 Relevant published works

Computer aided design and analysis programs are feature common in most types of design work.
This may include functional simulation by means of highly accurate virtual prototypes (Mikkola,
A. 1997). Linear or non-linear finite element analysis (FEA) is used to determine both stresses
and deflections. For fatigue-loaded structures, crack growth can be simulated with finite element
(FE) based fracture mechanics.
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A large number of potential optimisation algorithms exist. For more complicated systems, it is
possible to link programs and algorithms together (Dulikravich, G. S. et al. 1999). It has been
shown that evolution based optimisation algorithms can be used to achieve good solutions, but
there is usually a serious problem with analysis time. When the time for a single analysis is short,
i.e., a few milliseconds, there is usually no problem with evolution-based algorithms. However,
virtual prototypes are non-linear systems consisting of complex interaction between flexible
element, rigid motion, hydraulic circuits and control systems. Simulating one second of prototype
working time usually requires 5 to 15 minutes of central processing unit (CPU) time. In some
cases the computation time can be reduced by distributed cost function evaluation.

In order for an optimisation algorithm to be used in the process of design, the engineer must
create a general configuration in which the numerical values of the independent design variables
have not been fixed. Steps for formulating the optimisation problems are (Siddal, J. N. 1982): 1)
A configuration of general form is selected. 2) The design variables must then be explicitly
defined. These are the quantities x1, x2, ..., xm that the designer knows can be adjusted during the
design process. 3) The input specifications must also be carefully defined. Many quantities, like
loads on the structure, are fixed inputs. 4) Next, design characteristics considered important as
optimisation criteria are defined and written with a functional expression. 5) Potential failure
modes are identified and formulated as constraints. 6) Additional constraints are formulated as
required to ensure that the configuration is not violated and the design does not lie outside the
region of validity of the mathematical model. Other innate requirements of the design, e.g.,
geometric constraints, are also formulated. The easiest type is a simple size limitation. For exam-
ple, a configuration constraint for a tube is that the outside diameter must be greater than the
inside diameter. The design has to stay in the region where the mathematical model is known to
be valid.  7) Equality constraints and state variables are eliminated by substitution where possible.
Any state variables that cannot be eliminated must be added to the list of design variables. The
expressions are converted to any standard form required by the computer program being used.

Figure 1.1 provides one method of visualising the planning and design process developed by Pahl
et al. (Pahl, G. et al. 1996). The planning and design process can be divided into the phases:
planning and clarifying the task, conceptual design, embodiment design and detail design. At the
initial phases of product development, a product idea is needed that looks promising given the
market situation, company needs and economic outlook. The purpose of clarification of the task
is to collect information about the requirements that have to be fulfilled by the product, and also
about the existing constraints and their importance.

The conceptual design phase determines the principle solution. If required by the optimisation
technique, a set of starting values for the independent variables is selected. This concretisation
involves selecting preliminary materials, producing a rough dimensional layout, and considering
technological possibilities. It is possible to assess the essential aspects of a solution principle and
review the objectives and constraints. The construction structure or overall layout of a technical
system is determined during the embodiment design. Detail design is the phase of the process in
which the arrangement, forms, dimensions and surface properties of all individual parts are finally
decided, the materials specified, production possibilities assessed, and costs are estimated. Quite
often correction must be made and the preceding steps repeated. The crucial activities are optimi-
sation of the principle, layout, forms, materials and production. They influence each other and
overlap to a considerable degree. An example of this type of systematic approach toward design
is presented in Figure 1.1 and is general enough to be utilised within most technical research
areas.
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Requirement list, (Design specification)

Task
Market, company, economy

Plan and clarify the task:
Analyse the market and the company situation

Find and select product ideas
Formulate a product proposal

Clarify the task
Elaborate a requirements list

Develop the principle solution:
Identify essential problems

Establish function structures
Search for working principles and working structures

Combine and firm up into concept variants
Evaluate against technical and economic criteria

Define the construction structure:
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Check for errors, disturbing influences and minimum costs
Prepare the preliminary part lists and production and

assembly documents
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Refine and improve layouts

Evaluate against technical and economic criteria
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Figure 1.1 Steps of the planning and design process according to Pahl  et al. (Pahl,
G. et al. 1996).
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In discussing constraints, it should be pointed out that the definition requires an understanding
of the technology. In this way structural design is much more demanding than conventional
mechanical engineering design. Every possible mode of failure must be included since the com-
puter will go on blindly searching for optimum, unmonitored by the designer’s judgement to stop
it from entering dangerous uncharted regions. However, if the designer is faced with a failure
mode that he or she cannot formulate mathematically, it still may be possible to preclude failure
by a very approximate conservative constraint, although at the risk of some loss of optimality
(Siddal, J. N. 1982). That leads to the situation where the optimisation model consists on hun-
dreds of constraints. High number of constraints is not a problem when using evolutionary
algorithms but the modelling is time consuming.

There are numerous potential difficulties in formulating the optimisation model. Physical or
engineering expressions often include dangerous mathematical formulas that cause problems if
a variable is allowed to become negative:

, log( ) and ax x x

and when x is zero in cases

log( ) and ax
x

The qualification area of the formulas has to be taken into account.

Integer and discrete variables are very common in engineering design. For example, an integer
variable occurs when the quantity of some identical components is a variable. Discrete variables
usually arise from discrete standard sizes of readily available materials. Integer programming
methods are available, but these are slow and unreliable. There is some risk that the rounding will
move the design away from its optimum value or into infeasibility if integer and discrete variables
are treated as continuous during optimisation and rounded to the nearest integer or discrete value.
(Siddal, J. N. 1982). Some discrete values are also dependent on other previously selected values,
e.g., the rod and the piston rod diameter of a hydraulic cylinder are directly dependent on the
chosen cylinder diameter.

One of the first problems in defining design variables is to decide which quantities should be
given initially specified values and which should be considered variables. Material properties can
be varied, but in most cases it is more practical to pre-select materials and their properties based
on experience. Variables may also be limited arbitrarily to reduce the complexity of the problem.
On the other hand, there is the danger that some variables will be overlooked. (Siddal J. N. 1982).

Many elegant solutions and methods for optimisation of steel structures are presented in optimi-
sation textbooks, conference proceedings and scientific papers. The problem is that these methods
are quite often focused on one specific optimisation case and are based on some specific codified
design norm. Farkas and Jármai have presented a large collection of solutions for optimum steel
structures and cost calculation and optimisation of welded steel structures (Farkas, J. et al. 1997,
Jármai, K. et al. 1999). Shrestha and Ghaboussi  (Sherestha, S. M. et al. 1998) have proposed a
methodology, which uses a genetic algorithm (GA) to evolve optimum shape designs for skeletal
structures. In this method, all three shape aspects of skeletal structures, sizing, geometry and
topology, are simultaneously considered. The members are chosen from a set of discrete member
sizes. The local strengths of the joints are not considered. Tanskanen (Tanskanen, P. 2000) has
proposed a modified evolutionary structural optimisation method (MESO). The method is imple-
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mented in problems involving linearly elastic planar structures under static single loading condi-
tions. Ohsaki et al. (Ohsaki, M. et al. 1998) have formulated the topology optimisation problem
of trusses for specified eigenvalue of vibration by means of semi-definite programming.

Takada et al. have presented an optimisation of shear wall allocation in three dimensional (3D)
frames by the branch-and-bound method. The allocation design of shear walls in a multi-storied
3D building system has been reduced to a design problem of appropriate selections of wall
sections from a large number of discrete candidates. The problem is one of combinatorial opti-
mality. (Takada, T. et al. 2001).

Optimisation of both geometry and cross-section of a truss structure has made by Gil. The geo-
metric design problem is defined by unknown nodal coordinates and is combined with a paramet-
ric design problem defined by the cross-sections. The methodology combines a full stress design
optimisation with a conjugate gradient optimisation. (Gil, L. et al. 2001).

Several commercial design and optimisation software packages provide tools for optimising
specific complex engineering systems. Software Engineus, for example, combines genetic algo-
rithms, expert systems, and object-oriented programming with numerical optimisation and
annealing simulation. It has been applied in the design of an aircraft engine turbine, a molecular
electronic structure, a cooling fan, a direct current (DC) motor, an electrical power supply, nuclear
fuel rods, and the aerodynamic and mechanical 3D design of turbine blades.

Tong has presented an optimisation procedure for the minimum weight optimisation with discrete
variables for truss structures subjected to constraints with respect to stresses, natural frequencies
and frequency response (Tong, W.H. 2000). The first step in this method is to find a feasible basic
point by defining a global normalised constraint function and using a difference quotient method.
The second step is to determine the discrete values of the design variables by analysing the
difference quotient at the feasible basic point and by converting the structural dynamic optimisa-
tion process into a linear zero-one programming. A binary number combinatorial algorithm is
employed to perform the zero-one programming.

Fuchs deals with optimisation for maximum stiffness of controlled truss-type structures subjected
to a class of unknown disturbances. A constant volume constraint was imposed on the truss.
Because the selection of a single “optimal” structure is very sensitive, he presents a methodology
to design numerous sub-optimal, or near-optimal, structures (Fuchs, M. B. 2001).

Erbatur et al. report the development of a computer-based systematic approach for discrete
optimal design of planar and space structures composed of one-dimensional elements. A genetic
algorithm is used as the optimiser. An approach based on a proposed multilevel optimisation is
tested (Erbatur, F. et al. 2000).

Hayalioglu has presented the optimum design of geometrically non-linear elastic-plastic steel
frames with discrete design variables. Large displacement restrictions are considered in the
optimum designs. However, the algorithm is time consuming and requires non-linear analyses of
a large number of frames. (Hayalioglu, M. S. 2000).

Manickarajah has used an evolutionary method in the optimum design of frames with multiple
constraints. The optimisation proceeds by slowly removing inefficient or low stressed material
and/or gradually shifting material from the strongest part of the structure to the weakest part. The
method involves two steps. First, design variables are scaled uniformly to satisfy the most critical
constraint. In the second step, a sensitivity number is computed for each element depending on
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its influence on the strength, stiffness and buckling load of the structure (Manickarajah, D. et al.
2000).  A related method for evolutionary structural optimisation to resist buckling has been
proposed by Rong J. H. et al for maximising the critical buckling load of a structure of constant
weight (Rong, J. H. et al. 2000).

A method for optimum design of steel frames with frequency constraints has been proposed by
Salajegheh (Salajegheh, E. 2000). In order to reduce the number of frequency analyses that are
required in the optimisation process, the frequencies are approximated during each design cycle
(Salajegheh, E. 2000). Kameshki has used a genetic algorithm in the design of non-linear steel
frames with semi-rigid connections. The design algorithm eventually achieves a frame of mini-
mum weight by selecting appropriate sections from a catalogue of standard steel sections. He has
used a non-linear empirical model to include the moment-rotation relation of beam-to-column
connections. (Kameshki, E. S. et al. 2001). The conceptual design of buildings based on genetic
algorithms has been presented by Miles et al. (Miles, J. C. et al. 1999). The system, called
BGRID, employs a genetic algorithm to search for viable design options. The design process is
focussed on determining the layout of columns based on a large number of criteria. These include
lighting requirements, ventilation strategies, limitations introduced by the available sizes of
typical building materials and the available structural system. The genetic algorithm is used more
as a search engine as opposed to an optimisation tool.

The use of discrete optimisation techniques in reliability-based design of truss structures has been
studied by Strocki et al. The problem is formulated as the minimisation of structural volume
subjected to constraints on the computed reliability of individual components. Cross-sectional
areas of truss bars and coordinates of the specified truss nodes are considered as discrete and
continuous design variables. The specified allowable reliability indices are associated with
specific limit states. These limit states are 1) admissible displacements of the chosen truss nodes,
2) admissible stress or local buckling of the elements, or 3) global loss of the stability. Transfor-
mation and controlled enumeration methods are employed to solve the optimisation problem
(Stocki, R. et al. 2001).

The finite element method (FEM) is a widely used engineering tool. However, finite element
analysis (FEA) does not provide direct and clear conclusions about the strength of a steel struc-
ture. The FE-results have to be processed based on strength analysis principles. Mesh sizes and
element types have to be chosen based on experience at the start of the modelling process. Beam
elements are commonly used in the analysis of the steel structures. Solid or thin shell elements
are selected commonly in the fatigue analysis when the area subject to damage is highly local.
Typically, the size of this local area is equal to the plate thickness. However, most design code
based strength computations are based on nominal forces or stresses in a structure. In the case of
non-redundant structures, the nominal forces can usually be solved by hand calculation while
computerized FE analysis is used for statically indeterminate structures. In most cases the de-
signer must first construct a geometric model, which is then solved for the various load cases to
determine the limiting case for the structure. Strength of the structure is often calculated by
comparing the calculated resistances of the details of the structure to the forces calculated by the
FE analysis. This procedure is time consuming and does not assist in the formulation of an
optimisation model.

Several commercial FE-programs contain optimisation packages, but these packages are difficult
to link to common design code based calculations. Another disadvantage is that the optimisation
models are still complex and time consuming to build. The common trend in FE-program devel-
opment is toward better efficiency. FE-models can contain more degrees of freedom and the
analysis can be non-linear. These kinds of programs are very useful in the aviation and car indus-



7

tries where a single FE-model may contain over 100 million elements. These FE-models usually
require parallel computing and expensive hardware. However, for the vast majority of engineering
applications, more economical programs and methods for the design and optimisation of the steel
structures is required.

Object oriented programming can greatly improve the implementation efficiency, the ability to
extend and ease of maintenance of large software systems (Lichao, Y. 2001). In this research
project, the programs have been developed using object-oriented programming. This greatly
simplifies the task of utilising already developed classes in the future versions of the work.
Lämmer et al. have presented a means for integrating object-oriented construction and simulation
models. In their study, it was noticed that a common product model that can reflect all the neces-
sary facets and stages of the process does still not yet exist. The integration of design and simula-
tion models in structural engineering, primarily based on computer-aided design (CAD) and finite
element modelling, is an essential requirement for efficient data flow between existing program
solutions (Lämmer, L. et al. 2001).

1.3 Scope of the thesis

This thesis focuses on the technical fields of mechanical engineering design and structural engi-
neering design. Subjects addressed in this work are common for machines fabricated from steel
components and actuators such as hydraulic cylinders, pneumatic cylinders and electric motors,
gears and bearings. The design problems treated are the dimensioning and selection of compo-
nents and materials.

The early version of the optimisation program, OPTIMAZE, was developed in the research and
development project, "On-line optimisation of metal structures" (Kilkki, J. 2000). The FE-
program Advanced Graphical Interactive Frame Analysis Package (AGIFAP) was first developed
in the Laboratory of Steel Structures at Lappeenranta University of Technology (LUT) but was
later further developed by the author (Kilkki, J. 2001).

In frame structures, elements carry bending loads while in truss structures elements carry axial
loading. A typical steel structure and an idealised truss are shown in Figure 1.2. In most practical
design problems, the design variables are discrete due to the availability of standard sizes for the
steel members and practical limitations related to both construction and manufacturing. The
phases of the design of the truss are presented in Figure 1.3. These are:

1) Loads on the structure are clarified and the most dangerous load combinations are deter-
mined.

2) Height of the structure is decided. The type of the truss and cross member division is se-
lected.

3) Preliminary selection of the beams. Resistance of the most heavily loaded joint is calcu-
lated

4) Real forces of the beams are calculated
5) Strengths of the joints are calculated
6) Deflection of the truss is calculated
7) Cross members and the joints of the cross members are designed

In this thesis, phases 3 to 6 are automated by incorporating a suitable automation algorithm
according to Figure 1.4.
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pinned joint

Figure 1.2 A typical steel structure and the idealised truss structure. Pinned joints do
not carry bending moments.
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Figure 1.3 Phases of the design of the truss structure in common design method.

1)

2) 7)

3, 4, 5, 6)

Automated optimi-
sation model formu-
lation and optimisation

Figure 1.4 The new automated optimisation model formulation of the truss structure
in the new design method.
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1.4 The research methods

The research problem has been to formulate and solve a model for steel truss structures using
automated optimisation. Efficiency of the optimisation algorithm itself has been checked using
common test functions for evolution algorithms. The main goal of the research project was to
investigate the possibilities for automating the modelling of the optimisation models. Modelling
tools were tested with real-life steel structure design problems and defects and inadequacies of
the modelling tool were examined and used as inputs for further development of the later model-
ling tools. Quantitative assessment of the modelling tools is a difficult task and the suitability of
the developed modelling tools has been reported by presenting the good and bad features in this
thesis.

The effect of the modelling tools enhancement was tested and is presented in this thesis through
the optimisation problems of one boom structure and three truss structures. Previously reported
applications for the modelling tools include, e.g., the optimisation of an I-beam cross section
(Kilkki, J. et al. 2001). Unpublished but interesting cases also include the optimisation of a
harbour crane and the shape optimisation of a back box for a paper machine. In the paper machine
case, the developed modelling tool has been linked to the commercially available Fluent 5.0 and
Gambit programs. Analysis time of the objective function was about 20 minutes. Objective
function evaluations were distributed in parallel to three multi-user operating system (UNIX)
workstations. The modelling software and optimisation program have also been used in a virtual
prototype study of damping parameters for a paper machine roll (Sopanen, J. et. al. 2000).

Principles of the new modelling tool

Research and development work

Testing in practical optimisation work

Improvements

First idea

Find another
solution

Final tool

No

Yes

Figure 1.5 Process of the research and development work.

Figure 1.5 presents a flow chart of how the research has proceeded. After the initial idea to
develop the common optimisation program was conceived, a first version of the modelling and
optimisation program was developed. This program was tested on several practical optimisation
cases. Experience with the program was used as feedback to define needed improvements for the
program. Eventually, further improvements to the modelling tool proved futile so that a new type
of solution was required. Advantages and disadvantages observed in one modelling tool provided
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important input for the development of newer tools. The eventual modelling tool required three
of the large iteration loops shown in Figure 1.5 and countless smaller improvements.

1.5 Overview of the dissertation

This thesis focuses on the subject of the integration of optimisation in design engineering work.
A new method for integrating the global optimisation algorithm in the design of steel structures
is presented. The optimisation algorithm itself is a version of the Differential Evolution (DE)
algorithm.

Chapter 1 in this thesis presents the background, motivation of the writer to the presented study,
an introduction to the research method used, and a summary of the features of the work though
to be original.

In Chapter 2, those methods and tools that are fundamental to the thesis research are presented.
The optimisation methods are discussed briefly together with the global optimisation methods.
Specific attention is given to the theoretical background and limitation of the evolution algo-
rithms. Characteristics of the optimisation algorithm form one set of constraints for the modelling
tools and these are presented in some detail.

The optimisation model definition method developed during this research project is presented in
Chapter 3. This chapter presents two computer programs. The first is an optimisation modelling
and solving program that automatically formulates the design while the second is a modified
finite element FE analysis program that is used to evaluate the constraints and objective functions.

Chapter 4 presents the numerical output produced by the developed and modified programs. The
optimisation portion of the program is first tested using numerous standard test functions and
optimisation problems. The optimisation system, consisting of both the modelling and FE analysis
programs, is then tested on several large steel structures optimisation problems. These structures
are a hydraulically driven multi-redundant boom and several truss structures.

Results of the new modelling and optimisation tool are discussed in Chapter 5. Advantages and
disadvantages of the method are presented and evaluated. This chapter presents important infor-
mation for future development of design optimisation tools for steel structures.

Chapter 6 presents a summary and important conclusions of this dissertation.

1.6 Contribution of the dissertation

In this thesis, a method is presented to utilise the differential evolution optimisation algorithm in
the design of mechanical engineering steel structures. The main problems associated with optimi-
sation in mechanical engineering are presented. Two significant problems are 1) the interaction
between designer, optimisation model and optimisation algorithm, and 2) the definition and
formulation of the optimisation model. A solution of these problems is presented. Three model-
ling programs have been developed that assist in the interaction between an optimisation model
and the designer. These programs help the designer to formulate and solve an optimisation model.
The first program uses graphical components, which consists of mathematical formulas, - tables
of discrete components and finite element solvers. The finite element method is commonly used
in the design of the steel structures. This thesis presents an automated optimisation model formu-
lation of the FE-model. Modelling tools have been developed taking advantage of object oriented
programming techniques. The optimisation modules of these programs are tested with evolution
algorithm test problems.
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The first assumption is that design costs are lower when the strength of the design can be checked
immediately after the finite element model is completed. The second assumption is that design
costs decrease further if the finite element model can be optimised right after modelling.

The common aim of this thesis is to combine a modern evolution based optimisation algorithm,
engineering design and the finite element analysis. This thesis focuses on the technical area
represented by the intersection of the three ellipses in Figure 1.6.

OPTIMISATION

FEADIMENSIONING

Figure 1.6 The intersection of the ellipses is the focus of this thesis.

The following claims in this thesis are considered to be original:

1. Three unique combinations of optimisation problem modelling tools and FE-modelling
program have been created.

2. An optimisation tool consisting of editable components is developed and demonstrated in
engineering design applications.

3. A compiled optimisation tool for FE-modelling and optimisation is created and demonstrated
in mechanical equipment.

4. An automated formulation of the optimisation model of the steel beam structures is developed
and tested in real optimisation problems of steel structures. The most time consuming model-
ling time is reduced.

5. A new selection rule for the evolution algorithm that eliminates the need for constraint weight
factors is tested with optimisation cases of the steel structures. That is a remarkable advantage
for optimisation of steel structures which contain hundreds of constraints. Result is that the
algorithm can be used nearly as a "black box" and reduces the optimisation and modelling
time.
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2 SURVEY OF EXISTING METHODS

2.1 Finite element method

The finite element method is a numerical procedure for solving continuum mechanics problems
with an accuracy acceptable to engineers. In structural analysis the displacement method is
normally used. This means that displacements of discrete locations within the structure are the
primary unknowns to be computed. Stress is a secondary variable and is computed from dis-
placements based on a suitable constitutive relationship (Cook, R. D. 1981).

Real-life structures can normally be modelled as the sum of individual parts. Figure 2.1 shows
an example of a truss structure, which is labelled using the symbols used throughout this manu-
script. Truss distortion can be defined completely based on displacements at the nodes of the
model. Forces and moments can be defined for both the i- and j-ends of the beams. These forces
and moments can be utilised directly to evaluate the failure resistance of the structure, e.g.,
according a desired design code or norm.

y 

x 

F 

1 2 

3 

2 

3 

3 

Figure 2.1 Nodes and elements of the finite element model. Element identifiers (IDs)
are circled.

2.2 Limit state design

The central concepts of the limit state design are explicit reference to 'limit states', the definition
of the nominal loads and stresses used in calculations in terms of statistical concepts and the use
of the partial safety factor format.

'Limit sates' are the various conditions in which a structure would be considered to have failed
to fulfil the purposes for which it was build. There is a general division into ultimate and service-
ability limit states. The former are those catastrophic states which require a large safety factor in
order to reduce their risk of occurrence to a very low level and the latter are the limits on accept-
able behaviour in normal service. All these limit states require structural calculations (Dowling,
P. J. 1988).

The limit states for which steelwork is to be designed are ultimate limit states and serviceability
limit states. Ultimate limit states are: strength (included general yielding, rupture, buckling and
transformation into a mechanism, stability against overturning and sway, fracture due to fatigue,
excessive deflections and brittle fracture. When the ultimate limit states are reached, the whole
structure or part of it collapses. Serviceability limit states are deflection, vibration (for example,
wind-included oscillation), reparable damage due to fatigue, corrosion and durability, plastic
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deformations and the slip of the friction joints. The serviceability limit states, when reached,
make the structure or part of it unfit for normal use but do not indicate that collapse has occurred
(Mac Kinley, T. 1987, B7 1996).

Factored loads are used in design calculations for strength and stability. Factored load F is a
working or nominal load multiplied by relevant overall load factor γF. The overall load factor
takes account of the unfavourable deviation of loads from their nominal values and the reduced
probability, that various loads will all be at their nominal value simultaneously.

The uncertainty of the material is taken account by the partial safety factor γm. The design strength
of the material is taken account by

d y mf f γ= (2.1)

The strength resistance R of the detail is calculated using the design strength fd. The structure is
supportable if the strength resistance is greater than the design load F (factored load).

( ) ( )m F, ,R x F xγ γ> (2.2)

2.3 Optimisation

The aim of structural optimisation is always the minimisation or maximisation of a defined
objective function, e.g., cost of materials and labour, structural weight, or storage capacity.
Problems of structural optimisation may be generally classified as sizing, shape or layout optimi-
sation. Sizing optimisation relates to the cross-sectional dimensions of one- or two-dimensional
structures. The cross-sectional geometry is partially prescribed so that the cross-section can be
fully described by a finite number of variables. Geometric shape optimisation refers to the shape
of the centroidal axis of bars and the middle surface of shells. It also includes boundaries of continua
or interfaces between different materials in composites. Layout optimisation consists of three simulta-
neous operations: 1) topological optimisation, i.e., the spatial sequence or configuration of mem-
bers and joints, 2) previously mentioned geometrical shape optimisation, and 3) optimisation of
the cross-sections. (Rozvany,  G. I. N. 1992).

Optimisation is the act of obtaining the best result under a given set of circumstances or restraints.
The ultimate goal is to minimise the effort required or maximise the desired benefit. Optimisation
can be defined as the process of finding the conditions that give the maximum or minimum value
of a function. The minimised or maximised function is termed an objective function. Point x*

corresponds to the minimum value of function f(x) in Figure 2.2. The identical point x* corre-
sponds to the maximum value of the function  - f(x) (Rao, S. S. 1978).

x

  f(x)

x*

  f(x)

Figure 2.2 The function f(x) and the optimum point x*.
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During an optimisation procedure, a search is made for the objective function that satisfies the
inequality and equality constraints as follows:

( ) 1min ( ,..., ,..., )
( ) 0 1,2,...,
( ) 0 1,...,

i n

j

j

f x x x
g j m
h j m q

=
≥ =
= = +

x x
x
x

(2.3)

where n is number of unknowns and q is the number of constraints. The functions may be continuous
or the unknowns may be defined by series of discrete values. Typically it is requited that the variables
are positive (xi ≥ 0), or that their upper and lower limit may be prescribed with box limits

l u
i i ix x x≤ ≤ (2.4)

The functions f, g, h may be linear or non-linear. In structural synthesis problems the number of
constraints is characteristically larger than that of variables (q ≥ n).

2.3.1 Discrete and continuous variables

In optimisation problems, functions can be continuous or discrete. Discrete variables are, e.g., the
thickness, width and height of a fabricated hollow section while the cut length is usually a con-
tinuous variable. Discrete variables may also be connected to other variable or variables. For
example, material cost is usually dependent on material strength and quality.

Integer programming methods are usually slow and unreliable. One practical approach is to
initially treat the discrete variables as continuous. After the optimum solutions are found, the
continuous values can be rounded to nearest acceptable discrete value. There is a risk, however,
that the rounding procedure moves the solution away from optimum or moves to an infeasible
solution. It is, therefore, necessary to check values against to the constraints.

Each design variable may be regarded as one dimension in a design space. In cases with two
variables, the design space reduces to a planar problem. In the general case of n variables, an n-
dimensional hyperspace is required.

The optimal design problem can be expressed in the following form:
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(2.5)

where f and gi are objective and constraint functions, respectively. Components of the mixed
variable vector x are divided into nC continuous variables expressed as xC ��, where xl and xu

are lower and upper limits, and nD discrete variables, expressed as xD. Dk is the set of discrete
values for the k-th discrete variable. The set Dk consists of npk discrete parameters. Values for
these parameters are, for example, selected from a table of standard sizes. Values corresponding
to these parameters depend directly on the choice of one of the discrete variables xDk (k � [1, nD]).
For example if a certain beam cross-section is chosen as one of the discrete nD parameters, beam
values like section modulus and area are fixed. The derivatives �f/�xDk and �gi/�xDk (i = 1,...,m)
cannot be computed (Giraud-Moreau, L. et al. 2002).
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2.3.2 Objective Functions

Optimisation means minimisation or maximisation of the real value objective function f:�n
��

over the vector space �n. The goal is to obtain a minimum or maximum value for f(x), when x
∈ �⊂ �n. The objective function should usually be formulated in such a way that it closely
describes the optimisation goal. In structural engineering problems weight or total cost are usually
chosen.  In practical applications, one objective function rarely represents the only measure of the
performance of a structure. Objective function of the problem f(x) or constraint functions g(x):
�

n→�
p and h(x): �n →�

q can be non-linear. Non-linear in this sense means that a valid function
does not exist such that f(x + y) = f(x) +f(y) for all x, y or such that f(αx) = αf(x) for all x. For non-
linear optimisation problems, the logarithm and exponent functions often cause severe scaling
problems because small differences in values for some variable can cause large changes in
objective functions (Haataja, J. 1995).

2.3.3 Constraints

The objective function can be computed over an entire vector space; however, some solutions to
the function are not feasible for technical reasons. Constraints are often associated with the
violation of some physical law. The set of all feasible designs forms the feasible region � or the set
of all points which satisfy the constraints constitutes the feasible domain of f(x). Boundary points
satisfy the equation gj(x) = 0. Interior points satisfy the equation gj(x) < 0. Exterior points satisfy the
equation gj(x) > 0. An example of an inequality constraint is presented in the Figure 2.3.

x

  f(x)

g(x) ≤ 0

x*

 f(x)

Figure 2.3 Function f(x) with inequality constraint g(x).

Several methods have been proposed for handling constraints. These methods can be grouped into five
categories: 1) methods preserving the feasibility of solutions, 2) methods based on penalty functions,
3) methods that make a clear distinction between feasible and infeasible solutions, 4) methods based
on decoders and 5) hybrid methods. Three methods for handling constraints are presented in this
thesis, one based on penalty functions, one method on search for a feasible solutions and a new hybrid
method presented by Lampinen (Lampinen, J. 2002).

2.3.3.1 Methods based on penalty functions

The most common approach for handling constraints, especially inequality constraints, is to use
penalties. The basic approach is to define the fitness value of an individual  i by extending the domain
of the objective function f using

( ) ( )i i if f Q= ±x x (2.6)

where Qi represents either a penalty for an infeasible corresponding variable i, or the cost for repairing
such a variable, i.e., the cost of making it feasible. It is assumed that if variable i is feasible, then Qi
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= 0. There are at least three main choices to define a relationship between an infeasible individual and
the feasible region of the search space (Coello, C. A. 1998, Michalewicz, Z et al. 1999):

1) an individual might be penalised just for being infeasible, i.e., no information is used about how
close it is to the feasible region;

2) the degree of infeasibility can be measured and used to determine its corresponding penalty; or

3) the effort of repairing the individual, i.e., the cost of making it feasible, might be taken into
account.

The following guidelines related to the design of the penalty functions have been derived (Coello, C.
A. 1998, Michalewicz et al. 1999):

1) Penalties that are functions of the distance from feasibility perform better than those, which are
merely functions of the number of violated constraints.

2) For a problem having few constraints and few full solutions, penalties that are solely functions of
the number of violated constraints are not likely to find solutions.

3) Successful penalty functions are constructed from two quantities: the maximum completion cost
and the expected completion cost. The completion cost is defined as the cost of making an infeasi-
ble solution feasible.

4) Penalties should be close to not less than the expected completion cost. The more accurate the
penalty, the better will be the final solution. When a penalty often underestimates the completion
cost, a search may not yield a solution.

Usually, the penalty function is based on the distance of a solution from the feasible region, �. A set
of functions fj (1 ≤ j ≤ m) is used to construct the penalty, where the function fj measures the violation
of the j-th constraint as follows:

( )
( )

( )
max 0, ( ) if 1

if 1
j

j
j

g j m
f x

h m j q

� ≤ ≤�= �
+ ≤ ≤��

x

x
(2.7)

Dynamic penalty techniques also exist in which penalties change over time. Individuals are evaluated
at generation using:

1
( ) ( ) ( ) ( )

m

j
j

c f C G fα β

=
= + × �x x x (2.8)

where C, α and  β are constants defined by the user and m is the number of inequality constraints. This
dynamic function progressively increases the penalty from one search generation to the next. In this
case, the quality of the discovered solution is very sensitive to changes in the values of the parameters.

Adaptive penalty functions are constructed so that one component receives a feedback from the search
process. Feedback for the penalty function is constructed as: 

2

1
( ) ( ) ( ) ( )

m

j
j

c f G fλ
=

= + �x x x (2.9)

The function λ(G) in the above expression is updated every search generation G as:
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where cases 1 and 2 denote situations for which the best individual in the last generation was always
feasible (case 1) or was never feasible (case 2). Parameters β1 , β2 ≥ 1, and β1 ≠ β2 to avoid cycling.
The penalty component λ(G +1) for the generation G +1 is decreased if all best individuals in the last
generation were feasible or is increased if they were all infeasible. The drawback of this dynamic
penalty approach is how to choose the generational gap and how to define the values of β1 and β2.
(Coello, C. A. 1998).

2.3.3.2 Methods based on a search for feasible solutions

There are few methods that emphasise the distinction between feasible and infeasible solutions in the
search space. In one method, each individual is evaluated by the formula:

( ) ( )
1

( ) ( ) ,
m

j
j

c f r f Gθ
=

= + +�x x x x (2.11)

where r is a constant. The original component θ (G, x) is an additional iteration dependent function,
which influences the evaluations of infeasible solutions. A modification to this approach is imple-
mented with the tournament selection operator and with the following evaluation function:
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where fmax is the function value of the worst feasible solution in the population. An objective function
is not considered in the evaluation an infeasible solution. There is no need for the penalty coefficient
r here, because the feasible solutions are always evaluated to be better than infeasible solutions and
infeasible solutions are compared purely based on their constraint violations (Michalewicz, Z. et al.
1999).

The technique is expected to behave well if the assumption of the superiority of feasible solutions over
infeasible ones holds. The technique will fail in cases where the ratio between the feasible region and
the whole search space is too small, unless a feasible point is introduced in the initial population.

2.3.3.3 Methods without penalties

It is also possible to work with constraints without the aid of penalty functions. For the sub-population
guided by the objective function, the evaluation of such a function for a given vector x is used directly
as the fitness function, with no penalties of any sort. For all the other sub-populations, the algorithm
used was the following:

( )
( )
( ) ( )

if ( ) 0.0 then ( )

else  if 0 then
j j g c g

ν c ν

c f
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≠ = −

=

x x x

x

x x

(2.13)

where gj(x) refers to the constraint corresponding to sub-population j +1, and ν refers to the number
of constraints that are violated. Each sub-population associated with a constraint will try to reduce the
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amount by which that constraint is violated. If the evaluated solution is infeasible but does not violate
the constraint corresponding to that sub-population, then the sub-population will try to minimise the
total number of violations. This in turn influences other sub-populations in the effort of driving the
genetic algorithms to the feasible region. This approach aims at combining the distance from feasibil-
ity with information about the number of violated constraints, which is the same heuristic normally
used with penalty functions.

Because the number of constraints will normally be greater than one, the other sub-populations will
drive the GA toward the feasible region. In fact, the sub-population evaluated with the objective
function will be useful to keep diversity in the population and will render the use of sharing techniques
unnecessary. The behaviour expected under this scheme is that, even in the event that there are only
few feasible individuals at the beginning, gradually more solutions will be produced that are feasible
with respect to some constraints. (Coello, C. A. 2000)

2.3.3.4 Hybrid method

Lampinen has introduced a new method for constraint handling (Lampinen, J. 2002). The proposed
modification for the differential evolution DE algorithm's selection rule is mathematically expressed
as follows:
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Thus, when compared with the corresponding member, xi,G, of the current population, the trial vector,
ui,G+1, will be selected if any one of the following three conditions are satisfied:

1. It satisfies all constraints and provides a lower or equal objective function value. In this
case both of the compared solutions are feasible, or

2. It is feasible while xi,G is infeasible, or
3. It is infeasible, but provides a lower or equal value for all constraint functions

In the case of an infeasible solution, the selection rule does not compare the objective function
values. No selective pressure exists towards the search space regions providing low objective
values combined with infeasible solutions. However, a selective pressure towards regions where
constraint violation decreases does generally exist. For this reason an effective selection pressure
will be applied for finding the first feasible solution. The result is fast convergence toward the
feasible regions of the search space.
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In this algorithm, if both the compared solutions are feasible, the one with lower objective func-
tion value is selected as being better. A feasible solution is considered better than infeasible one.
If both the compared solutions are infeasible, the situation is less obvious. The candidate vector
can be considered less infeasible, and thus better than the current vector, if it does not violate any
of the constraints to a degree greater than the current vector or if it violates at least one fewer of
the constraints.

When the candidate vector can be considered equally as good as the compared current population
member, it is allowed to continue into the new population. This rule helps avoid the stagnation phe-
nomena (Lampinen, J. 2000).

2.3.4 Local and global optimisation

An optimisation problem involves searching for a local minimum point for the problem given by, x*

� � � �n, where

** n)    ( ) with all            so that  -   <  ,   >  0.f( f ε ε≤ ∈ ⊂x x x xx � � (2.15)

is valid. However, if the objective function is non-convex there may be numerous local minima
and global optimisation methods will need to be used to ensure that the solution represents the
absolute minimum of the objective function that is feasible for the given set of constraints.

Figure 2.4 shows a function f(x) that has various extreme values.  Local minima of the function
exist at points x1 and x4 while point x2 represents a local maximum. At point x3 the first derivative
is zero but a sign change does not occur so no local maximum or minimum exists. This point is
an inflection point because the second derivative changes sign. Point x6 represents the global
minimum while point x7 represents the global maximum.

x1 x3x2 x4 x5 x6 x7

f(x)

Figure 2.4 Function f(x).

Global optimisation methods may deterministic or heuristic. Some methods use deterministic methods
in a part of the heuristic method. An optimisation problem is deterministic if values of the objective
functions are known exactly and they can be summarised.

2.3.5 Multi-criteria optimisation

Multi-criteria optimisation goes back as far as the work of Parades in 1898. Interest in the field
of optimisation theory increased dramatically in the late 1960s. Since then, many studies have
been published on multi-criteria optimisation. Most of these deal with the theory of decision
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making from a general point of view. A few publications can be found in the field of optimum
engineering design (Eschenauer, H. et al. 1991, Farkas, J. et al. 1997).

A multi-criteria optimisation problem can be formulated as follows: Find x such that

)(opt  = )( * xx ff (2.16)

such that
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x
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solutions of this problem are termed Pareto optima. Different methods for generating Pareto
optimal solutions to some multi-criterion optimisation problems have been developed, e.g., linear
weighting methods, distance methods, constrained methods and hybrid methods.

Linear weighting methods define a weighted objective function which is the sum formed by linearly
scaling all the objective criteria. If the weighting coefficients are denoted by wi, i = 1,2,...,nf, this scalar
optimisation problem takes the form (Farkas, J. 1997, Haataja, J. 1995)
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It is possible to determine the Pareto optimum for a problem by varying these weight coefficients. The
effect of weighting coefficients on the weighted objective is slight if the values of the individual
component objective functions differ greatly. Normalising Eq. 2.19 with virtual ideal-solution fi0 can
avoid this problem. Normalised weighting better reflects the importance of the weighting coefficient
wi than does non-normalised weighting
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Distance methods can also be used to generate the Pareto optimal solution. These methods are based
on the minimisation of the distance dp between the attainable set and some chosen reference point fi0
 in the criterion space. The method is expressed as

pmin  ( )d x (2.20)

with the common form of distance function written as
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The solution differs greatly depending to the chosen value of p. Deviations in the absolute sense
are as follows:
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When p = 1 the equation is Euclidean metric and with p = �, Chebysev metric. Jármai has pre-
sented the use of relative deviation (Jármai, K. 1989):

( )
f

1/ 0

p 0
=1

- ( )
 =   when  1

i

ppn
i i

i i

f fd w p
f

� �
� � ≤ ≤ ∞
� �� �
�

xx (2.24)

One possibility is to replace the original multi-criterion problem with a scalar problem where one
criterion is chosen as the objective function and all the other criteria are moved into the constraints.

2.3.6 Stopping conditions

In order to determine when an optimal or at least a sufficiently good solution has been achieved, a
stopping condition must be introduced. A stopping condition is based on the assumption that the
probability of improving optimality can not be increased without an undue amount of additional effort.
The possibility to raise optimality is low in the case of evolution algorithms if individuals of the
population are almost identical. An optimisation problem should be solved several times to ensure
the optimality.

2.3.7 Optimality

The design of complex, real world systems involves a search for “just the right” combination of
components that achieves the property known as “optimality”. Yet, optimality in the conventional
sense usually ignores a vital measure of system performance: stability. The designs that are
optimal in the conventional sense are often particularly vulnerable to the phenomenon of instabil-
ity. Figure 2.5 presents a non-linear function of a single variable. The possible values of x range
from 0.0 to 1.0. The function has two main peaks.  The highest is centred about 0.2 while another,
somewhat lower but much broader peak is centred at about 0.7. A designer must perform a
sensitivity analysis to determine the suitability of the optimal area. In most cases, a slightly lower
but broader peak is more optimal than a mathematically optimal peak which is high but narrow
(Ignizio, J. 1999). Production tolerances or restrictions may result that a mathematically optimum
solution is useless from an engineering point of view.

f(x)

1.00.2 0.7

x

Figure 2.5 The illusion of the optimality. The lower and broader peak is more opti-
mal than the narrower but higher peak in the practical matter.
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2.3.8 Optimisation

In mechanical engineering work, many variables are discrete and functions can be discontinuous.
These features of a mechanical design problem limit the choice of the optimisation method.
Random search algorithms are usually suitable when variables are discrete and functions are
discontinuous. Random search algorithms do not ensure that the optimal point found is the exact
solution, but many authors have demonstrated that the convergence probability approaches unity
as the number of iterations becomes large, G→∞ (Viitanen, S. 1997). Although these algorithms
need numerous iterations to converge, they are suitable for many kinds of optimisation problems.

Efficiency of an algorithm depends heavily on the optimisation problem. Random search methods
are less sensitive to the characteristics of the problem than are other optimisation algorithms.
However, the use of random search algorithms in mechanical engineering work is very limited.
 This is largely the result that these algorithms are unknown and their benefit has been demon-
strated in only a few special cases. In these cases the problem and solving algorithm are usually
modified for the case. This arises the potential that random search algorithms could be much more
widely employed in day-to-day engineering work.

Optimisation methods in engineering applications have the potential to increase efficiency,
economy and reliability and thus the overall competitiveness of an engineering construction.
Correct material and component selection result in lower product costs. Simultaneously the
resistance of a structure to higher loads is possible.

2.3.9 Evolutionary algorithms

Evolutionary computation techniques are stochastic optimisation methods, which are conven-
iently presented using the metaphor of natural evolution: a randomly initialised population of
individuals evolves following the Darwinian principle of the survival of the fittest. The probabil-
ity of survival of the newly generated solutions depends on their fitness. Fitness or cost describes
how well a solution performs with respect to the optimisation problem at hand. Better solutions
are kept with a high degree of probability while the worst are rapidly discarded. One of the main
advantages of evolutionary computation techniques is that they do not impose severe mathemati-
cal requirements for the optimisation problem. They require only an evaluation of the objective
function. They can handle non-linear problems defined on discrete, continuous or mixed search
spaces. These may be unconstrained or constrained. Evolutionary algorithms are naturally global
optimisation algorithms (Michalewicz, Z. et al. 1999).

Genetic algorithms are useful when the variable space is large. Optimised functions can be
discontinuous, or variables can be discrete.

Differential Evolution DE is a simple yet powerful population-based, direct-search algorithm for
globally optimising functions defined on totally ordered spaces, including especially functions
with real-valued parameters (Price, K. V. 1999).

2.3.9.1 Genetic algorithms

Genetic algorithms have been used to solve structural optimisation problems. They apply the
principle of survival of the fittest into the design of structures. They also have the ability to deal
with discrete optimum design problems and do not require functions to be derivated as in classical
optimisation. The genetic algorithm was originally proposed by Holland in 1975.
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Genetic algorithms are based on an artificial model of the evolution process in nature. A genetic
algorithm maintains a population of alternative solutions for the optimisation problem to be
solved. Alternative solutions are individuals of the population. News generations of solutions will
be created about individuals using a specific reproduction scheme. The dominating principle is
that the best individual solution of the population has the best chances to survive to the next
generations of populations. The better or “fittest” is considered to be that with the lowest cost-
function. The cost-function is assigned to each individual with respect to the specified design
targets and design constraints for the optimisation problem. An individual with a low cost-
function value has a higher probability of surviving to the next generation than does an individual
with a high value. It is termed elitism if some of individuals are transferred directly to the next
generation.

Less “fit” individuals do not survive to the next generation. They will be replaced by the re-
combinations (or crossovers) of better individuals. Combining randomly chosen parts of the better
individuals creates a new individual. Two good solutions have a high probability of combining
the best properties of each. The child is better than its parents. Only the solutions that are possible
to recombine with existing individuals are permitted. Mutations are created in the population at
random intervals. A better individual will replace a weak mutation but, at the same time, a new
solution has been created that was not possible based on the recombination of existing individu-
als.

One of the characteristics of genetic algorithms is that the coding must be done based on the
parameter set rather than on the parameters themselves. A second characteristic is that a search
is made from a population of points rather than a single point. A third characteristic is that GA
uses objective function information, not derivatives or other auxiliary knowledge. The final
characteristic is that it uses probabilistic transition rules, not deterministic rules.

Genetic algorithms require the natural parameter set of the optimisation problem to be coded as
a finite-length string over some finite alphabet. Solution space vectors can be coded to a genetic
code using values zero and one, x � {0,1}n or x � �n. The similarity of the code vectors can be
illustrated with schemes where the scheme is a string

( ) { }1 2, n iH = h ,..., ,  0,1,* ,  i = 1,...,n,h h h ∈ (2.25)

In this equation the symbol * correspond to zero or one. The schema (0,*,1,1,*) correspond to the
set of code vectors {(0,0,1,1,0), (0,0,1,1,1), (0,1,1,1,0), (0,1,1,1,1)}. The set of the binary code
vectors corresponds to 3n different schema, where n is a length of the code vector.

GA uses probabilistic transition rules to guide their search. A random choice is used as a tool to
guide the search space with likely improvement.

A simple genetic algorithm is composed of three operators: reproduction, crossover and mutation.
Reproduction is a process in which individual strings are copied according to their objective
function values or fitness values. Copying strings according to their fitness values means that
strings with a higher value have a higher probability of contributing one of more offspring in the
next generation. The reproduction operator can be implemented in algorithmic form by creating
a biased roulette wheel where each current string in the population has a roulette wheel slot sized
in proportion to its fitness. Each time a new offspring is required, a “spin of the roulette wheel”
yields the reproduction candidate.
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After reproduction, simple crossover proceeds in two steps. First, members of the new reproduced
strings in the mating pool are mated at random. Second, each pair of strings undergoes crossing
over as follows: an integer position k along the string is selected uniformly at random between
1 and the string length less one [1, n - 1]. Two new strings are created by swapping all characters
between positions k + 1 and l inclusively.

Mutation is the occasional random alteration of the value of a string position with small probabil-
ity. This means changing a 1 to a 0 and vice versa. Mutation is needed because some potentially
useful genetic material is lost in spite of the fact that mating only occurs between better solutions.

A characteristic set of individuals or parameter vectors {xi}, i = 1,..., NP are selected for an initial
population P1. After that, two individuals are crossbred. Individuals are selected with a suitable
strategy. The descendant is transformed with an occasional mutation. Less successful individuals
can be removed from the population. The candidates of the solution are compared with the
objective function f(x). (Goldberg, D. E. 1989, Haataja, J. 1995)

2.3.9.2 Differential evolution algorithm

The differential evolution algorithm DE was first introduced by Storn and Price (Storn, R. 1995).
It can be categorised into the class of evolutionary optimisation algorithms (EA). It is a simple
yet powerful population based, direct-search algorithm for globally optimising functions defined
on totally ordered spaces, including, especially, functions with real-valued parameters.

DE generates a randomly distributed initial population PG=0 of NP n-dimensional object variable
vectors xj,i,G. The term randj[0,1] represents a uniformly distributed random variable that ranges
from zero to one. A new random variable is generated for each value of j. After initialisation, the
population is subjected to repeated generations, G = 1,2,...,Gmax of mutation, recombination and
selection. DE employs both mutation and recombination to create one trial vector uj,i,G+1, for each
vector xj,i,G. The indices r1, r2 and r3 are randomly chosen population indices that are mutually
different and also different from i, which indexes the current object vector.  Both CR and F are
user-specified control variables. CR represents a probability and ranges from 0 to 1. F is a scaling
factor that belongs to the interval (0, 2). An individual of the next generation is created by adding
a weighted difference of the corresponding components of two other individuals or parameter
vectors according equation

Genetic algorithm

1) Generate start population P1 = {xi}, i = 1,..., NP
2) Set generation G = 1
3) Evaluate PG
4) If solution satisfies termination condition set  x*i = xi and terminate iteration else select
best individuals from population  PG to population PG+1
5) Crossover individuals of the population PG+1
6) Generate mutations in population PG+1
7) G = G + 1 and go to step 3.
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After each child vector is evaluated according to the objective function, its cost is compared to
the cost of its parent. If the child vector has an equal or lower cost to the parent vector, it replaces
its parent vector in the population. If the cost of child vector is greater than the cost of its parent,
the parent vector is retained.

The selection scheme is elitist because all individuals in next generation G + 1 are equal or better
than counterparts in the current G population according equation
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The evolutionary cycle in DE repeats until the task is solved, all vectors converge to a point, or
no improvement is seen after many generations.

A reason for stagnation of the DE algorithm is that the reproduction operation is capable of
providing only a finite number of potential trial solutions. If none of the new solutions is able to
replace a member of the current population during the selection operation, the algorithm will
stagnate. The probability of stagnation depends on how many different potential trial solutions
are available and their capacity for entering the population of the following generation. Thus, it
depends on population size NP, differential factor F, mutation probability CR, current population
and objective function (Lampinen, J. 2000).
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2.4 Parallel processing

Computational time and cost is one of the major limitations when applying evolutionary optimi-
sation algorithms with computationally costly objective functions. Evolutionary algorithms
require a relatively high number of objective function evaluations during the evolutionary process
and parallel computation is often essential (Lampinen, J. 1999b).

The parallel computing with optimisation with evolution algorithm is researched widely. In this
thesis, the possibilities of the parallel computing are presented briefly to demonstrate how the
higher efficiency of the optimisation can be achieved when the capacity of one personal computer
(PC) is not adequate.

Evolutionary algorithms are well suited for parallel computational problem solving techniques.
Their parallel implementation is generally considered to be straightforward. It has been shown,
that the parallel computation of DE-algorithm will be both easy to implement and the efficiency
of the distributed computations will be near 100 percent (Lampinen, J. 1999b).

The advantages of the distributed DE algorithm are effectiveness, efficiency, robustness and
flexibility. The reduction in computation time is approximately linear with respect to added
processor capacity. A distributed DE algorithm does not require any disadvantageous modifica-
tions to the differential evolution algorithm. Both steady-state and generational reproduction of
individuals can be used

In terms of efficiency, the computational overhead due to distribution is low and load balancing
is good. Usage of a heterogeneous network of computers does not degrade the performance. High
variance of the evaluation times of the objective function does not degrade the performance.
Waiting time due to file access collisions, with a high number of slave processes is a trivial
problem that can be solved by using two or more pairs of shared communication interface files.

File of
unevaluated
individuals

File of
evaluated

individuals

Master PC

Slave PC
i+1

Slave PC
i

Slave PC
n

Figure 2.6 Example about distributed optimisation (Lampinen, J. 1999b).

The computations can be considered robust in that a software or hardware failure of a slave
process does not crash the whole system. Two or more master processes can be used to make the
system resistant against master process failures. Slave processes can be added or removed during
the optimisation process, thus improving flexibility. The number of slave processes is not limited
by the population size and more than one master process can be used. DE may run in background
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or with a low priority in multitasking environments. Heterogeneous cluster of PCs in Ethernet can
be used.

There are a few problems associated with the distributed DE algorithm. The distributed DE
algorithm is neither yet well known nor thoroughly proven. It can results in some more traffic on
a network. Updating slave processes is laborious if a high number of workstations are used for
computation. Distributed DE algorithm is suitable only in case of a computationally expensive
objective function.

2.5 Summary

This chapter has provided a brief technical background for finite element, limit state design,
optimisation algorithms and computational techniques using in the current research project.

The Differential Evolution optimisation algorithm has been selected as the optimisation algorithm
because it is a powerful direct-search algorithm. A Genetic Algorithm is a binary coded while DE
is a floating point coded algorithm. The optimisation algorithm used in this thesis, can handle
both discrete and continuous variables.

A penalty based constraint-handling method was tested in the first modelling and optimisation
program generation. The final program version included only the new constraint handling method
without penalties. This has reduced the modelling time.

Six multi-criterion optimisation methods were available and tested in the first modelling and
optimisation program generation. The user has to select the criterion and corresponding weighting
coefficients and ideal values.

The DE is a probabilistic optimisation algorithm. The property values of the individuals are
monitored. The user makes the decision if the optimisation is stopped after a specified number
of generations or if the deviation of the properties of the individuals gets lower than a pre-set
deviation value.

The design of complex, real world systems involves a search for “just the right” combination of
components that achieves the property known as “optimality”. In most cases, a slightly lower but
broader peak is more optimal than a mathematically optimal peak which is high but narrow. In
this thesis, the stability of the optimal solution with real-life engineering cases has not considered.

Evolution algorithms are naturally parallel optimisation algorithms. The distributed optimisation
has been demonstrated with time consuming objective function, which included heavy virtual
prototype simulation. An automated building of the optimisation model was included into the FE-
modelling program.
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3 DEVELOPMENT OF A MODELLING AND OPTIMISATION TOOL

3.1 General

As discussed in Chapter 1 of this thesis, the main goal of the research project has been to investi-
gate the possibilities for integrating automated modelling techniques, FE analysis, and an optimi-
sation tool. The research problem has been the formulation and solving of a model for steel truss
structures using automated optimisation. In order to accomplish this goal, it was necessary to
develop three different versions of the optimisation program. This chapter describes some impor-
tant innovations made from one program generation to the next.

The object-oriented programming (OOP) technique has been shown to significantly improve the
extendibility and reusability of software. It also enables and encourages modular design of soft-
ware so that the modules or components can be reused for multiple purposes. A carefully de-
signed framework or architecture can significantly reduce the effort required for maintaining and
extending the software (Gorlen, K. E. et al. 1990). The FE-program is inherently modular and is
particularly amenable to OOP (Yu, L. et al. 2001). For these reasons OOP techniques were
employed during program development.

The modelling tool developed in this research study was linked to an easy-to-use FEA-program
developed at Lappeenranta University of Technology. The FE-program, called AGIFAP, is a
finite element analysis package for three dimensional frame type structures. Two-node beam type
elements are used in the AGIFAP program. Each element has 14 degrees of freedom:  6 transla-
tion, 6 rotation and 2 warping degree of freedom (AGIFAP Version 5.51, User guide 1995). The
coordinate system and positive forces and moments of the element are presented in Figure 3.1.
The interface and the data handling of the AGIFAP program have been developed during this
project so as to reflect object oriented programming. Only linear finite element modelling and
solving has been used in this study.

x

z

y

i-node

j-node

Ni

Nj
Mxj

Mxi

Mzi

Mzj

Myj
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Fyi

Fzi
Fyj

Fzj

Figure 3.1 Forces of the beam element of the AGIFAP finite element program.

As mentioned in Chapter 2, most current structural design codes used in Europe are based on
limit state design concepts. For this reason, design computations are based primarily on the limit
state design method. Some exceptions to this rule have been made because machines components,
like hydraulic cylinders, are generally designed based on allowable load rather than limit state
design concepts. The design program transcends both the structural design and machine design
worlds and, therefore, includes the different design philosophies used by these different design
spheres. For this reason geometric constraints have not been processed with safety factors.
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3.2 First generation program

The first phase, in what turned out to be a three-stage optimisation program development process,
was to construct a modelling tool that uses graphical components for the model formulation. This
program version was called “Optimaze”. The graphical components were constructed so that the
design could graphically select first the type of component desired, and then easily define the
parameters of that component. Three different types of components were available to describe a
structural model. These included math components, which represent mathematical objective
functions or restraints, e.g. buckling resistance of a beam is given as a mathematical relationship
between applied loads and beam cross-section properties. Math component formulas can be
edited as needed by the user in this program.  Table components are also used. This means that
properties of the component are determined based on numerical information in table form. A
typical table component would be a rectangular hollow section (RHS) beam for which the manu-
facturer defines discrete beam sizes, thickness, yield strength, etc. A component is selected from
the table component during the optimisation.

The final component type is a finite element component. The optimisation model was build by
linking the input and output variables of the components. Tables of the components can include
both geometric and performance properties of the components. For example, the hydraulic
cylinder catalogue includes this type of information. This feature allows the program to automati-
cally select a cylinder from the catalogue during the optimisation.

The FE-components served as interface components between the optimisation model and the FE
analysis program. This is illustrated in Figure 3.2. The input and output variables of the FE-model
were linked to the optimisation model using these components.  For example, in the case of the
geometric design of a truss structure, the optimisation algorithm provided the set of instructions
to the FE-component, which then formulated a FE-model that could be processed by the FE-
analysis software. As the FE analysis program was evaluating the designed structure, the FE
component produced a data file for the optimisation program describing the developed model.
Results from the FE analysed were then processed by the FE-component before being communi-
cated to the optimisation algorithm.

FEC

DEC

model file
result file

linking

initial model

FE-solver

AGIFAP

Figure 3.2 Data transfer between DE-component (DEC), FE-component (FEC),
optimisation model, AGIFAP and FE-solver.
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One special math component in the model is the differential evolution component (DEC). This
component contains the optimisation algorithm. The DEC component consists of three parts: 1)
the definition of the design variables, 2) the objective functions, and 3) the constraints. Other
components are linked to the DEC and other components with special relations. For example, the
outputs of certain components will naturally form the inputs of other components. Output from
a table component that searches a catalogue for some suitable design element will be linked to
the input of a subsequent component. This link transfers the parameters that describe the selected
element. This linking between elements is illustrated in Figure 3.3. In this Figure (MC) represents
math components, (TC) represents table components and (FEC) is a FE component. The optimi-
sation model, or the group of objectives and constraints, is constructed using components: MC,
TC and FEC. Values of the objectives and constraints are transmitted to the corresponding
components of the differential evolution algorithm.

DEC (desing variables)

TC

DEC (objectives) DEC (constraints)

MC

MCMC

MCMC

FEC

OM

Figure 3.3 An example about the optimisation model (OM).

The input vector of a component may contain part of the design variable vector or the entire
vector. Similarly the input may contain all or parts of the constraint vector or other intermediate
variable vectors created by other components and the evolution algorithm. The components of
the optimisation model and the input and output vectors are illustrated in the Figure 3.4. Inputs
for the DEC component contain all constraint, g, and objective function, f, information. The
output is a population of design vectors, x. Other components, like math components MCk do not
necessarily have the entire design vector as an input, but instead may require only a portion of that
vector, x’.

The vectors, y’, in this figure represent intermediate pieces of information that are created by
some components and utilised by other components. Similarly, a single math components may
produce as an output a subset of design constraints, g’.



31

f g

x

DEC

MC1

x'

MCk

x'

f'

y'

y'

g'

g'

y'

f' y'

OM

Figure 3.4 The components of the Optimaze-program. The differential evolution
component (DEC) and the model components (MCi) lie on the optimisation model
(OM) form.

Meriäinen has used the Optimaze program in the virtual design of the mechatronic machine. The
modelling tool includes a special component (ADAMS-component), which makes use of the
ADAMS dynamic simulation software. The ADAMS component in this case operated very much
like a FE-component. The component first constructed an input-file for the virtual prototype
solver. A virtual prototype using ADAMS was made and evaluated for every objective function
evaluation. The ADAMS-component was then used to bring the simulation results back into the
optimisation program. Combining optimisation and simulation software using internal macros
and text files created the software environment.

In this case the optimisation problem was the design of a hydro-mechanical crane. Results of the
optimisation process for this example problem were especially promising and indicated that the
virtual prototypes can be used in the optimisation of machines with the used software environ-
ment (Meriläinen, V. 2000). A sketch of the crane is presented in Figure 3.5. Virtual prototyping
can be defined as a software-based engineering discipline that includes modelling a system as
well as simulating and post-processing the results. The modelling of a system involves creating
a set of equations that define the physics of the system being studied. The simulation consists of
the numerical solution of these equations as a function of time. The post-processing of the results
refers to the visualisation of three-dimensional behaviour by traditional diagrams or more illus-
trative animation (Mikkola, A. 1997).

Figure 3.5 A hydromechanical crane (Meriläinen, V. 2000).
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3.3 Second generation program

The main innovation between first and second-generation programs was the inclusion of a new
open graphic library (OGL) interface for the FE analysis program. In the first version, the graphi-
cal user interface was a separate program, but in the second generation the user interface was
integrated. The input and output vectors are immediately of use in the optimisation program. This
step eliminated some of the relational definitions between variables that were previously required.
The main disadvantage in this approach, however, was that the math and other components
needed to be pre-compiled.

The structure of the second-generation program is shown in Figure 3.6. Use of OGL required that
the FE solver, AGIFAP, needed to be modernised. The previously used FE components were no
longer used and these functions were now built directly into the AGIFAP-program. The objective
function and constraint functions vectors are part of AGIFAP in this generation.

The new modelling tool was developed using pre-compiled math components and the finite
element solver was linked to the graphics of the new AGIFAP version. The FE-model was built
in a pre-compiled math component and the FEA-results were read to the optimisation program
through this component.

DEC

Model FEA OGL-graphics

f, g x

f', g', y'

x'

AGIFAP

Figure 3.6 The communication between the optimisation model and FEA in the
phase two optimisation program.

3.4 Third generation program

As work on the various optimisation programs progressed, the advantages that could potentially
be provided by automatic FE-optimisation modelling became obvious. Manually formulating the
optimisation model was a particularly laborious task and an automatic tool would be a great time
saving tool. The developed FE-optimisation modelling tool is able to generate the objective
functions, constraints and the design variables automatically as part of the conventional FE-
modelling operation. The user activates the objectives, constraints and design variables during
the FE modelling process. As the structural optimisation proceeds, the FE-model monitors the
changes of the structure during the optimisation.

In the third-generation program, the optimisation modelling tool is integrated with the FE-
modelling program. An FE-model is constructed in a conventional manner, but the program is
able to generate simultaneously and automatically also an optimisation model based on the user-
built FE-model. At the start of a design task, the designer constructs a preliminary FE model in
much the same way as he would using some commercially available pre-processing software.
After the FE-model is ready, the user can select and activate the objective functions, constraints
and design variables of the FE-model. The FE-model automatically generates the input and output
vectors for the optimisation function.
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Because the optimisation algorithm was implemented in the FE-optimisation modelling tool,
there was some loss of flexibility from the math components. However the optimisation-
modelling tool can be implemented to the original optimisation-model-modelling tool as new FE-
component. The forces and deflections of the structure can be examined by the user directly with
the optimised FE-model. The constraints of the FE-model are programmed according the Finnish
design code B7 (B7 1996).

The second major innovation in moving from the second to the third generation of the program
was the inclusion of constraint classes. Previous versions defined constraints in terms of func-
tions. With automated modelling techniques, however, the inclusion of constraint classes is much
less time consuming for the designer and adds flexibility.

3.4.1 Optimisation algorithm

For all three program versions, the selected optimisation algorithm is a floating-point encoded
evolutionary optimisation algorithm. There are several variants of DE and the particular version
used was DE/rand/1/bin scheme as defined by Price (Price, K. V.1999).

In the first two generations of the program, penalty function based constraint handling was used.
In the final version, constraints were handled without penalty factors by a hybrid constrain han-
dling method developed by Lampinen (Lampinen, J. 2002). Details of this constraint handling
method have been previously presented in section 2.3.3.4 of this thesis. The new constraint handling
method made it possible to reduce the optimisation time, because useless FEA calculations can
be recognised in advance thus bypassing the time-consuming calculation process. (Lampinen, J.
2002).

In practical applications, the objective and constraint functions are often computationally expen-
sive. It is unnecessary to evaluate the objective function for candidate individuals already deter-
mined to be infeasible. The strategy outlined in Figure 3.7 was, therefore, implemented in the
third program version as a means of avoiding unnecessary and time-consuming evaluations of the
objective and constraint functions.

Numerous pieces of information were monitored during the optimisation process: population
generation, fitness, best population, performance of the FE-model, selection criteria data, and
statistics about design variables in the population. Statistical information included minimum and
maximum values together with mean value and the standard deviation. The fitness function is a
measure of how well the new populations perform with respect to the objective functions and is
the sum of the deviations of the design variables of the population. If the value of the fitness
function is not decreasing, it is an indication that some numerical problem exists or that an
optimum solution has been reached. In either case, continued optimisation is useless if the value
of the fitness function is stagnate or increasing.
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Figure 3.7 The optimised implementation of the method was used for avoiding un-
necessary evaluations of the objective/constraint functions involved.

3.4.2 The structure of the developed FE-program

In the following sections, various aspects of the AGIFAP finite element analysis program are
presented. These are organised in a hierarchical structure consisting of classes. In the following
sections, classes are denoted by bold text. The main class hierarchy of the FE-program is:
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TMain
TOGLwindow
TModel
TElements

TNode
TCSection
TMaterialProperty
TNodalForceOfElement

TNodes
TRestraint
TNodalLoad
TNodalPointCoordinate
TDisplacement

TMass
TArea
TNodalLoads
TCSections
TMaterial
TInputVector
TOutputVector

The OGLwindow and TModel belong to the primary or first class of the program. The TModel
class contains model data: TElements, TNodes, TNodalLoads, TCSections, TMaterials,
TInputVector and TOutputVector. These secondary classes are visible and the member func-
tions of these classes are available throughout the model. TInputVector class and contains data
of the design variables of the optimisation model while TOutputVector contains information
about restraints, design variables, and upper and lower limits of the design variables and the
objective functions. The optimisation program is linked to the FE-model through TInputVector
and TOutputVector.

The TMass class calculates the sum of the mass of the elements in the model. The TArea class
is the sum of the area of the elements that would require painting. TCSections class includes
calculation routines of cross section properties and the geometry of the available cross sections
in the FE-model. TCSection class of the TElements class contains the cross section properties
and geometry of the element.

The OGLwindow class is the 3D-graphical interface to the structure of the finite element model.
The graphical interface uses the open graphic library functions (OGL-functions). The graphical
interface can be used during the optimisation as a means of monitoring the finite element model.

The AGIFAPwin is a finite element program which consists of the pre- and post-processors and
the analysis program. The AGIFAPwin can be used on ordinary finite element modelling and
analysis. The program is compatible with classes of the Opitmaze-modelling and optimisation
program. The optimisation model of the steel structure is easy to build. First, the model of the
finite element model is build by using AGIFAPwin program. The finite element model is saved
to a text file. The content of the text file is same as the model file of the AGIFAPwin-program.
The design variables and the properties of the design variables can be selected. Now the optimi-
sation program is opened and a new FE-component is created on the canvas of the optimisation
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model. The AGIFAPwin model is loaded to the FE-component. The component is now ready to
link to the optimisation model if the design variables, constraints and the objective functions were
defined in the modelling phase of the AGIFAPwin-model. The constraints of the FE-model are
pre-programmed and in the class of the TElements and the TNodes. The graphical view of the
FE-model can be monitored during the optimisation.

After the FE-model is generated, the restraints and the objective functions can be calculated with
various values of the design variables.

3.4.3 Structure of the program

Figure 3.8 illustrates the progression of the optimisation program. The design variable vector x
is transferred from the output vector of the differential evolution algorithm to the FE-modelling
tool. The FE-model is then automatically updated first by adjusting the x, y, and z nodal coordi-
nates. The nodal position is updated only if it is a design variable and the node is not associated
with geometric constraint in the FE-model. Geometrically constrained node coordinates are
associated with the master nodes. Based on the output vector of the differential evolution algo-
rithm, the dimensions of the profiles are updated and the cross-section properties and the geomet-
ric constraints are solved. The finite element model is produced only if none of the geometric
constraints is violated. Otherwise the FE-model is unnecessary because the result is useless. The
FE-model is solved and result is read back to the FE-model.

DE-optimisation
algorithm

Finite element
analysis

Graphics of the
finite element

model

FE-modelling tool

f, g

x

Update node
coordinates

Calculate geometric
constraints

If active
constraints

Solve FE-model

Update properties

Evaluate constraints

Yes

No

Figure 3.8 DE-optimisation algorithm uses finite element modelling tool and finite
element analysis through design vector x, objective function vector f and constraint
vector g.

Yield stresses of beams are selected from a table (Appendix 1) depending on the material and the
thickness of material. All remaining constraints are solved according the limit state dimensioning.
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The current version of the programs evaluates numerous constraint conditions for the beams:
eccentric buckling, tension-, compression-, and bending resistances. Local strength of the T-, K-
and KT-joints are also evaluated using formulas of the appendices (7, 8 and 9).

Lengths and masses of the beams are calculated for later use. The total mass of the structures is
evaluated as an objective.

Following this extensive set of analysis, the values of the objective function f and constraint
functions g, are moved to the input vector of the differential evolution algorithm. The optimisa-
tion algorithm controls the finite element model graphics updating. Usually the graphics is
updated according the best-known solution.

3.4.3.1 Commands and classes

Essential classes and commands are presented in the sections 3.4.3.2 - 3.4.3.11 of this thesis.
Constraint classes are presented by command tables as shown in Table 3.1. The class where the
command belongs is presented on the first line of the table. The needed parameters are listed after
a command presented on the second line. Extra data is presented on the last line if necessary.

Table 3.1 Structure of the command table.

TclassName
COMMAND Parameter 1 Parameter 2 .... Parameter n
Extra data

3.4.3.2 Class TElement
An element is presented in Figure 3.9.  The element has an element ID-number and ID-number
for both i-node and j-node.

Element IDi-Node ID j-Node ID

Figure 3.9 Definition of the i- and j-nodes of the element.

A TElement class contains several classes, which contains the constraint handling of the ele-
ments. There are also classes for parameters, objectives and databases. TGeometry class defines
the cross section of the element and TProperty contains physical properties of the cross section.
TMaterial class includes the material properties. Nodes of the element are defined by TNode
class. Constraint classes of the element are TBendignResistance, TCentricBuckling, TTensil-
eResistance, TCompressionResistance, THydraulics, TObjectives class contains the mass
calculation of the element. TDatabase class contains the cross section dimensions of the select-
able rectangular hollow section profiles. The TElement class is presented in Table 3.1.

The element definition and classes are presented in Table 3.2. A command ELEMENT creates
an element, which has two node IDs, material ID, profile ID and rotation angle.
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Table 3.2 Definition of the element.

TElement
ELEMENT Element

ID
i-Node ID j-Node ID Material

ID
Profile ID Rotation

class TElement
{

public:
TGeometry *Geometry;
TProperty *Property;
TMaterial *Material
TNode *iNode;
TNode *jNode;
TBendingResistance *BendingResistance;
TCentricBuckling *CentricBuckling;
TTensileResistance *TensileResistance;
TCompressionResisance *CompressionResistance;
THydraulics *Hydraulics;
TObjectives *Objectives;
TDatabase *Database;

}

3.4.3.3 Class TNode

A node in Figure 3.10 is defined by coordinates in a cartesian global coordinate system.

z

y

x

Node ID

Figure 3.10 Definition of the node in the cartesian global coordinate system.

A class TNode contains the coordinates of the node and the joint constraints TKjoint, TTjoint
and TKTjoint. A command NODE creates a node, which is defined by x, y and z coordinates.
The TNode class and NODE-command are presented in Table 3.3.

Table 3.3 Definition of the node.

Tnode
NODE Node ID x-coordinate y-coordinate z-coordinate
class TNode
{

public:
TNodalPointCoordinate *NodalPointCoordinate;
TKjoint *Kjoint;
TTjoint *Tjoint;
TKTjoint *KTjoint;

}

The T-, K- and KT-joints can also be a part of a 3D-structure. The current program is limited in
that joints must be planar. 3D-joints, like double K-joints, for example would need a new joint
class but are not considered on this thesis.
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3.4.3.4 Class TCentricBuckling

The parameters of the buckling constraints are presented in Table 3.4. The constraint is activated
for element ID. A command CENTRICBUCKLINGY belongs to a class TCentricBuckling. The
constrained buckling direction is to direction of the element y-axis. Parameters γ and α are
buckling factors, γm is a safety factor. The factor α represents the shape of the beam cross section
and factor γ depends on the fixing of the beam ends according the Figure 3.11. The constraint
formulas are presented in Appendix 2. Forces and an element are presented in Figure 3.12.

γ = 1.0 γ = 2.1 γ = 0.6 γ = 1.2 γ = 0.8

Figure 3.11 Buckling length Lc = γ � L factors.

FF Element id

Figure 3.12 Forces and element ID of the buckling element.

Table 3.4 Definition of the centric buckling constraint.

TcentricBuckling
CENTRICBUCKLINGY Element ID γ α γm

Default value of the safety factor γm, is 1.0.

3.4.3.5 Class TBendingResistance

A bending moment of the beam element is presented in Figure 3.13. The bending moment resis-
tance is calculated individually for both element ends because the ratio of normal force and
moment can be different on i-end and j-end.

M1 Element ID

i-Node ID j-Node ID

F1

M2

F2

Figure 3.13 Bending moment of the beam element.

A command BENDINCONST and class TBendingResistance are presented in Table 3.5. The
formulas of the bending resistance MR are presented in Appendix 3. The equations do not handle
the combination of the bending and shear forces. The bending resistance formulas are for cross
section classes 1, 2 and 3. Parameters of the command are node ID and material safety factor γm.
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Table 3.5 Definition of the bending constraint.

TbendingResistance
BENDINGCONST Element ID Node ID γm

Default value of the safety factor γm, is 1.0.

3.4.3.6 Class TTensileResistance

An element under tension is presented in Figure 3.14. The only parameter of the command
TENSIONCONSTRAINT is the partial safety factor of the material. Constraint is presented in
Table 3.6 and formulas of the tension resistance NRt is presented in Appendix 4.

FF Element ID

Figure 3.14 Definition of the tensile constraint in the optimisation model.

Table 3.6 Definition of the tensile resistance constraint.

TtensileResistance
TENSIONCONSTRAINT Element ID γm

Default value of the safety factor γm, is 1,0.

3.4.3.7 Class TCompressionResistance

A constraint of the compressed element is quite similar as element under tension. A compressed
element is presented in Figure 3.15 and the formulas of the tension resistance NRt is presented in
Appendix 5.

FF

Figure 3.15 Definition of the compression constraint in the optimisation model.

The only parameter of the command TENSIONCONSTRAINT is a material safety factor γm
presented in Table 3.7.

Table 3.7 Definition of the compression resistance constraint.

TTensileResistance
TENSIONCONSTRAINT Element ID γm

Default value of the safety factor γm = 1,0
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3.4.3.8 Class THydraulics

A hydraulic cylinder and corresponding element are presented in Figure 3.16. The command
CYLINDERCONSTRAINT creates buckling constraint of the hydraulic cylinder. The parameters
of the command are presented in Table 3.8. In the FE-model the hydraulic cylinder is a circular
hollow section beam. The beam is selected using the element ID number. The piston node ID is
needed to set the direction of the orientation of the hydraulic cylinder. The diameter of the circular
beam in the FE-model is equal to the diameter of the piston rod. The piston diameter and the
piston rod diameter are selected from the table of the hydraulic cylinders using table ID. The table
of the hydraulic cylinders is presented in the Appendix 6. Forces of the hydraulic cylinder are
calculated using the maximum pressure pmax and minimum pressure pmin of the hydraulic system
and the diameter D of the piston and the diameter d of the piston rod. The friction and the other
losses of the force are calculated using the efficiency factor η. The material of the hydraulic
cylinder is defined by the factors E and fy. The safety factor nh is applied. Constraint formulas of
the hydraulic cylinder is presented in Appendix 7.

∅D ∅d

FF

Piston node ID
Element ID FF

Figure 3.16 Definition of the hydraulic cylinder in the optimisation model.

Table 3.8 Definition of the hydraulic cylinder.

THydraulicCylinder
CYLINDERCONSTRAINT Elem ID Piston node ID Table ID η pmin

pmax E fy nh d
D

Default value of the safety factor nh, is 3.5.

3.4.3.9 Class TTjoint

A T-joint can fail in several ways. The failure modes are listed in Figure 3.17. An upper flange
of the chord may break by yielding if the ratio of diagonal width and a chord width is small
(Figure 3.17a). In Figure 3.17b is presented a wide chord with thin web. The diagonal is smaller
than chord. The diagonal may cut through the upper flange of the chord (Figure 3.17c). The mode
presents a joint with strong chord with thin diagonal when the diagonal under tension can break.
The wide and thin walled diagonal may buckle locally like in Figure 3.17d. The cross section of
the low and thin walled chord may ultimately yield as in Figure 3.17e. In Figure 3.17f, the widths
of the chord and diagonals are equal. The high and thin walled chord can buckle locally. The
compressed flange of the thin walled and wide chord may buckle locally (Figure 3.17f). These
failure modes are used in the classes TTjoint, TKjoint and TKTjoint sections. (Rautaruukki
steel products designers guide 1998)

In this thesis and in the computer program, the cross-sections are limited to square and rectangu-
lar hollow sections. The program could be extended to also handle circular hollow sections
(CHSs) with only a moderate amount of work. 



42

a) b) c)

d) e) f)

g)

Figure 3.17 Local braking modes of the joints of the chord and diagonals
(Rautaruukki steel products designers guide 1998).

Dimensions of the T- and Y-joint are presented in Figure 3.18. The corresponding element model
and element numbering are presented in Figure 3.19. A user has to select one node and three
connecting elements from the FE-model.

b1

h0

b0

h 1 t1

θ1
t0

Figure 3.18 Dimensions of the T- or Y- joint.

Elem 0 ID Node ID

Elem 1 ID

Elem 2 ID

Figure 3.19 Definition of the T-or Y-joint in the FE-model.
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Parameters of the command TJOINT are presented in Table 3.9. Element IDs 0, 1 and 2 have to
be selected in a clockwise orientation starting from the chord beam. Selected elements must be
connected to the same node. A joint has its own safety factor, γj, while the material safety factor
is γm0. The constraint formulation is presented in Appendix 8.

Table 3.9 Definition of the T-joint.

TTjoint
TJOINT Node ID Elem ID0 Elem ID1 Elem ID2 γm0 γj

Default values of the material safety factor γm0 and the joint safety factor γj, are 1,0.

3.4.3.10 Class TKjoint

Dimensions of the K-joint are presented in Figure 3.20. The joint consists of the upper or lower
chord and two bracing. Manufacturability sets minimum gap g between braces. The gap causes
the eccentricity e, which causes additional moments in the joint. Corresponding FE-model and
element numbering are presented in Figure 3.22. Accurate joint model should be constructed with
rigid element as shown in Figure 3.21. In this thesis, the affect of the eccentricity is ignored.

b1, 2

h0

b0

h1 h 2 t1, 2

e

g
θ2θ1

t0

Figure 3.20 The geometry and the dimensions of the K-joint.

e
Rigid element

Figure 3.21 Finite element model of the K-joint with eccentricity e.

Elem 0 ID Node ID

Elem 1 ID Elem 2 ID

Elem 3 ID

Figure 3.22 Definition of the K-joint in the optimisation program.
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The definition of the command KJOINT is presented in Table 3.10. The node ID is the intersec-
tion node of the chord and diagonal elements. The gap is not modelled but it is calculated in the
constraint equations. The eccentricity is not modelled in the finite element model and the addi-
tional bending moment is not considered. The joint has a safety factor γj, which is automatically
set to 1,0. The material safety factor γm0 is usually set to 1,0. The constraint formulas are pre-
sented in Appendix 9.

Table 3.10 Definition of the K-joint.

TKjoint
KJOINT Node ID Elem 0 ID Elem 1 ID Elem 2 ID Elem 3 ID Gap g

γm0 γj

Gap g is the measure in Figure 3.20. Default values of the material safety factor γm0 and the joint
safety factor γj, are 1,0.

3.4.3.11 Class TKTjoint

Dimensions of the KT-joint are presented in Figure 3.23. The strength calculation of the KT-joint
is quite similar than K-joint. KT-joint has two gaps g1 and g2. The gap depends on dimensions
of the intersecting beams and the angles θ1 and θ2 and selected eccentricity e.  The user defines
a minimum gap, gmin, in this application. The formulation of the gap and constraints are presented
in Appendix 8. The element numbering of the elements 0 - 4 is presented in Figure 3.24.

b1, 2, 3

h0

b0

h1 h 2 t1, 2, 3

e

g1

θ2θ1
t0

h3

g2

Figure 3.23 The geometry and the dimensions of the KT-joint.

Elem 0 ID Node ID

Elem 1 ID Elem 2 ID

Elem 4 ID

Elem 3 ID

Figure 3.24 Definition of the KT-joint in the FE-model.

Parameters of the command KTJOINT are presented in Table 3.11. The elements 0 - 4 must joint
at the same node. The user has to define only the minimum gap gmin. Material safety factor is γm0

and joint safety factor γj. The constraint formulas are presented in Appendix 10.
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Table 3.11 Definition of the KT-joint.

KT-joint
KTJOINT Node ID Elem 0 ID Elem 1 ID Elem 2 ID Elem 3 ID Elem 4 ID

gmin γm0 γj

Default values of the material safety factor γm0 and the joint safety factor γj, are 1,0.

3.4.3.12 Geometry constraints of the FE-model

Geometry constraints of the FE-model are needed to keep nodes on a particular line or plane in
the FE-model space during the optimisation. A situation is illustrated in the Figure 3.25. The
slave nodes from 2 to 7 are kept on the line between master nodes 1 and 8. The nodes of the lower
chord are kept on same xy-plane with node 9. The coordinate of the master node is commonly the
design variable in the optimisation model. The master node is first moved to the new position
during the optimisation and slave nodes move to new positions according to this.

Upper chord

CL

Lower chord

1
2

3
4

5
6

7
8

109 11 12

slave node
master node z-coord.

z-coord.
z

x

Figure 3.25 The definition of the geometric constraints in the FE-model. The master
nodes correspond to design variables.

Parameters of the command GEOMCONST are presented in Table 3.12. Constrained node is
interpolated between x, y and z-positions of the nodes A and B.

For example, the geometry constraint of the node 2 of the upper chord is defined by command
GEOMCONST,2,0,0,0,0,1,8 and the geometry constraint of the node 10 is defined by command
GEOMCONST,10,0,0,0,0,9,9. The z-position of the node 2 is interpolated between node 1 and
8. The z-position of the node 10 is same as the z-position of the node 9.

Table 3.12 Definition of the FE-model geometry constraint.

TGeomConstraint
GEOMCONST Node ID Node Ax ID Node Bx ID Node Ay ID Node By ID

Node Az ID Node Bz ID
The Node ID coordinate is same than Node A ID if Node A ID = Node B ID
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3.5 Summary

Finite element analysis plays an important part in the design of steel structures as a means of
calculating deflections and forces. The FE-analysis program called AGIFAP has been selected
to form one basic element of the FE-analysis tool. An object-oriented framework for AGIFAP has
been applied to ensure that routines in the program are re-useable and extendable.

Early versions of the AGIFAP program were developed by Steel Structures Laboratory at Lap-
peenranta University of Technology. The Windows version with of the program with OpenGL-
graphics was developed in co-ordination between OME-Software Company and the author of this
thesis. The automated formulation program for  the optimisation models for steel beam structures
(third generation program) was developed by the author.

The optimisation and modelling program has evolved through three program versions during this
study. The first generation modelling tool uses graphically editable components. Components can
include mathematical formulas, tables and links to external programs like FE- and simulation
software. It is a time consuming process to link the optimisation model to the external FE-model,
if many nodal coordinates, element properties and material properties are defined as variables.
The program is without the FE-model monitoring during the optimisation. The differential
evolution algorithm with penalty factor based constraint handling was selected as the optimisation
algorithm.

A FE-model was monitored with 3D-graphics during the optimisation in the second-generation
optimisation program. The FE-model and mathematics were ready-compiled and non-editable.
The optimisation algorithm was The Differential Evolution algorithm with penalty factor based
constraint handling.

In the third program generation, the time consuming process of linking the optimisation model
to the FE model was automated. Elements and nodes of the FE-modelling program include the
classes of the constraints and objectives, for example, TTjoint, TCentricBuckling and TObjec-
tives. In this way, the optimisation model is built up simultaneously with the FE-modelling. A
FE-model was monitored with 3D-graphics during the optimisation. Constraints were handled
without penalty factors by a new constraint handling method. The new constraint handling
method made it possible to reduce the optimisation time, because useless FEA calculations can
be recognised in advance thus bypassing the time-consuming calculation process. Limit state
design method, including ultimate limit states and serviceability limit states, is the most common
design method for steel structures and is therefore used in this program.

The automated FE-modelling and optimisation tool includes several constraint classes, which are
included into classes of the FE-program. Each node and element in the FE-program and FE-model
have their own constraints. The formulas of the constraints are presented in appendices. The
development of these classes has eliminated the time consuming work of trying to define all these
constraints for an optimisation FE-model. The FE-modelling tool includes additional functions
for defining master and slave nodes for truss structures. Slave node or nodes follow the geometry
defined by master node or nodes, during the optimisation when master nodes moves in a design
space.
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4 VERIFICATION AND APPLICATIONS

This chapter demonstrates the numerical capabilities of the automated optimisation program. The
optimisation portion of the program is first tested using eight standard test functions and optimi-
sation problems. The optimisation system, including both the modelling and FE analysis pro-
grams, is then tested on several large steel structures optimisation problems. These structures are
a hydraulically driven multi-redundant boom and two truss structures.

4.1 Test functions

The optimisation program and the computer code for the differential evolution algorithm is tested
using eight common test functions for evolutionary algorithms. These test functions are presented
in Table 4.1.

Table 4.1 Test functions.

Function no. Reference Additional data
1 - Rastrigin 10 D
2 Floudas C.A. and Pardalos P.M. 1987 -
3 HockW. and Schittkowski K. 1981 problem no. 113
4 Hock W. and Schittkowski K. 1981, problem no. 116
5 Koziel S. and Michaelewics Z. 1999 -
6 Hock, W. and Schittkowski, K. 1981 problem no. 100
7 Himmelblau, D. 1972 problem no. 16

Functions 2-7 are referenced and evaluated by Lampinen. (Lampinen, J. 2002)

Table 4.2 Values of eight test functions.

f CR/F/NP NF f(x*) test values f(x*) best know values

1 0.05/0.8/20 450 f(0,0,0,0,0,0,0,0,0,0 ) = 0 f(0,0,0,0,0,0,0,0,0,0 ) = 0

2 0.9/0.9/20 80 000 f(1,1,1,1,1,1,1,1,1,3,3,3,1 ) = -15 f(1,1,1,1,1,1,1,1,1,3,3,3,1) = -15

3 0.95/0.9/25 10 000 f(2.33049, 1.95136, -0.47740,
4.36576, -0.62455, 1.03814,
1.59420) = 680.63006

f(2.330499, 1.951372, 0.4775414,
4.365726, -0.6244870, 1.038131,
1.594227) = 680.6300573

4 0.95/0.9/35 80 500 f(579.3067, 1359.9706, 5109.9708,
182.0177, 295.6012, 217.9823,
286.4165, 395.6012) = 7049.2481

f(579.3040, 1359.975, 5109.970,
182.0175, 295.6012, 217.9825,
286.4163, 395.6012) = 7049.248021

5 0.95/0.9/15 4 455 f(14.0950, 0.84296 ) = -6961.814 f(14.095, 0.84296) = -6961.81381

6 0.95/0.9/25 175 000 f(1.95068, 2.78901, 8.80989,
5.05910, 1.02631, 1.42293,
0.96093, 9.57055, 9.57323,
7.34134) = 15.17491

f(2.171996, 2.363683,  8.773926,
5.095984, 0.9906548, 1.430574,
1.321644, 9.828726, 8.280092,
8.375927) = 24.3062091

7 0.95/0.9/15 18 825 f(78.000, 33.000, 27.071, 45.000,
44.969) = -31025.5602

f(78.000, 33.000, 27.071, 45.000,
44.969) = -31025.5602

CR mutation probability, F differential factor, NP population size, NF function evaluations
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Results from the numerical experiments are given in Table 4.2. Details of the different test
functions are presented in Appendix 11. These tests are intended to confirm that the optimisation
algorithm is utilised properly. In this table, CR is the mutation probability, F is the differential
factor, NP is the population size, and NF is the number of function evaluations. In all cases the
test values of the optimisation function and the design variables are identical or nearly identical
to the best known published values.

4.2 Design of new industrial product – the multi-redundant boom

4.2.1 The structure

The first industrial case to be presented is that of a multi-redundant tripod boom. This type of
boom could, for example, be employed in a drilling tractor used in mining and quarrying. In
principle, the tripod boom is an open loop spatial manipulator, which includes two three-degree
of freedom (DOF) parallel modules connected in series. This type of mechanism can cover a large
workspace and act redundantly. In practice, the tripod boom consists of two modules. Each
module consists of three hydraulic cylinders, one telescope, and triangular connection plates. A
schematic diagram of the structure and these different components is presented in Figure 4.1.

The modular concept is similar to that presented by Innocenti (Innocenti, et al. 1993). The three
cylinders are connecting to the vertices of the connection plates while the telescope is connected
to the middle of the plate. Different types of joints would be needed in order for the boom to
reach different working areas and to achieve different degrees of freedom. The tripod boom -
structure presented here differs significantly from conventional parallel and special structures.
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9

Figure 4.1 The geometry, dimensions and the loads of the multi redundant boom.

The principle difference between a tripod boom and a normal parallel structure is with regard to
the achievable working area. Depending on the joint selections, the tripod boom can reach a very
versatile working area. It can even reach behind corners; an operation impossible with parallel
structures. Several of the numerous joint combination alternatives for the telescopes are presented
in Figure 4.2. Ultimately, the selected joint was the joint combination I. It was determined that
this would produce a boom more economical to fabricate. The working area for this type of boom
structure is illustrated in Figure 4.3.



49

I

II

III

IV

V

VI

Z

X

Figure 4.2 Six joint combination alternatives of the telescopes (Lagsted, A. et al.
1999b).

One significant advantage of a tripod boom over a normal spatial structure is the increased
flexibility. With properly selected joints a tripod boom structure can compensate the deformation
of the end of the boom. The cylinders cause mechanical synchronisation, which rotates the
connection plates so that undesirable rotation of the boom tip is eliminated. It is also possible to
vary the angle of the cylinders so as to increase or decrease the rigidity of the structure. Structural
stiffness is converted to hydraulic stiffness.

Figure 4.3 The working area of the multi-redundant boom (Lagsted, A. et al.
1999b).

4.2.2 Parameters

To describe the boom structure, a total of 9 design parameters were required. Bounds had to be
set for discrete variables xi. Lower and upper bounds have to set for discrete variables and for
continuous variables. For components selected from a table of available sizes, the lower bound
is usually xi

l = 1 and the upper bound, xi
u, is the number of possible discrete values. Limits are set

in practice automatically when the user is selecting allowed components from a database.

Design variables of the boom are presented in Table 4.3. Height of the mounting and end plates
is between 300 and 2 000 mm. The end plate is expected to be smaller than the mounting plate.
The length of the telescopes is allowed to vary between 1 000 mm to 3 000 mm and the total
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length of the boom is expected to be from 2 000 mm to 6 000 mm. Lower hydraulic cylinders in
both modules are identical.

Table 4.3 Design variables of the boom. Element numbers corresponds to numbering in Figure
4.1.

Design variable Variable name Element no. xl ≤≤≤≤ xi ≤≤≤≤ xu

Height of the mounting plate h1 - 300   ≤ x1 ≤ 2000 mm
Height of the end plate h2 - 300   ≤ x2 ≤ 2000 mm
Length of the telescopes l1 = l2 - 1000 ≤ x3 ≤ 3000 mm
Hydraulic cylinder Cyl12 14 1 ≤ x4 ≤ 20
Hydraulic cylinder Cyl13 13 1 ≤ x5 ≤ 20
Hydraulic cylinder Cyl14 17 1 ≤ x6 ≤ 30
Hydraulic cylinder Cyl15 16 1 ≤ x7 ≤ 20
Telescope profile Tel1 1 1 ≤ x8 ≤ 125
Telescope profile Tel2 2 1 ≤ x9 ≤ 125

4.2.3 Constraints

Constraint exists between several sets of variables, for example the yielding strength of a steel
plate is dependent on the plate thickness. When components are selected from a component
database, most of the dimensions for the component depend on the selected component. For
example, when using a hydraulic cylinder database, the diameter of the cylinders depends on the
selected cylinder and cannot be freely selected by the designer. In some cases the length of a
cylinder may be continuous variable within some allowable region. Table 4.4 summarises the
constraints used for the boom structure.

For the boom structure, the constraints relate primarily to the performance of the six individual
cylinders in terms of adequate buckling strength and force. Fatigue capacity of the two telescop-
ing beams and maximum deflection of the boom end under full load are also important con-
straints.

Fatigue strength of the telescopes is evaluated by formulas presented in Appendix 12. Material
partial safety factor �m = 1.3 and γF = 1.0. The fatigue class (FAT) for the welded joint of the
rectangular section and plate is 45. In order to achieve an infinite fatigue life, N>5⋅106, the fatigue
resistance, ∆σR, is computed as 33.2 MPa. (Hobbacher, A. 1996)
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Table 4.4 Constraints of the boom structure.

Constraint Constraint name Constraint
buckling of hydraulic cylinder g1 N12 ≤ Fcr12

buckling of hydraulic cylinder g2 N13 ≤ Fcr13

buckling of hydraulic cylinder g3 N14 ≤ Fcr14

buckling of hydraulic cylinder g4 N15 ≤ Fcr15

buckling of hydraulic cylinder g5 N16 ≤ Fcr16

buckling of hydraulic cylinder g6 N17 ≤ Fcr17

adequate of hydraulic force g7 F12 ≤ Fmin12

adequate of hydraulic force g8 F13 ≤ Fmin13

adequate of hydraulic force g9 F14 ≤ Fmin14

adequate of hydraulic force g10 F16 ≤ Fmin16

adequate of hydraulic force g11 F17 ≤ Fmin17

adequate of hydraulic force g12 F15 ≤ Fmin15

fatigue life for telescope 1 g13 ∆σS,d1 ≤ ∆σR,d1

fatigue life for telescope 2 g14 ∆σS,d2 ≤ ∆σR,d2

maximum deflection of boom
end and full force 50 mm

g15 δ ≤ δmax

4.2.4 Objectives

Table 4.5 presents the objectives of the optimisation problem. The weight objective includes the
weight of the steel structure and the total length of the boom. The weight of various working
attachments for the boom is difficult to determine and uncertain. In this optimisation exercise,
attachment weigh is defined as 10% of the total weight of the steel structure.

Working area for the boom is related to the length and is set to be as large as possible. In a tunnel
mining operation, for example, the working will not vary significantly. However, when a hall is
quarried the working area is more significant. Minimum adjusting time, as the boom moves from
one position to the next, is an important consideration because a vehicle will typically drill dozens
of charge hole from a single location. Drilling accuracy may be unsatisfactory if deflection is too
large. This requirement is not part of the objective function to be minimised but was previously
set as a constraint.

Table 4.5 Objectives of the optimisation model.

Objectives Weight wi Ideal value fi0

Total weight of the steel structure
i = 1

minimisation 0.05 400 kg

Total length of the boom
i = 2

maximisation 0.95 4 000 mm



52

The total mass of the boom is calculated by the equation:

6 2 2

1 hc, ap, tel,
1 1 1

i i i
i i i

f m m m
= = =

= + +� � � (4.1)

where mhc,i is the mass of the hydraulic cylinder piston rod i, map,i is the mass of the attachment
plate i and mtel,i is the mass of the telescope i. The mass is minimised because this gives a logical
direction for the optimisation process. The total mass is not very important and, therefore, the
weight factor for mass is much lower than that for boom performance as seen from Table 4.5. The
weighting method was as follows:
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Mass minimisation guides the optimisation algorithm to search for more lightweight components
when available. The large working area is the most important criterion, but mass will dominate
the optimisation if the weighting factor is too large.

4.2.5 Databases

The optimisation program made use of the databases presented in appendices 6 and 13. The
databases contain hydraulic cylinders and cross sections of the telescopes. There are 125 possible
rectangular hollow sections and 20 hydraulic cylinders in these databases.

4.2.6 Results

The optimised height h1 of the mounting plate was 680 mm and height h2 of the end plate was 370
mm. The combined length l1+l2 of the telescopes was 3 400 mm. The total mass of the boom was
570 kg. The selected telescope profile was 250x250x12.5. Selected hydraulic cylinders were
80x56 (elements 12, 13 and 15) and 63x45 (elements 15, 16 and 17). The evolution of the optimi-
sation FE-model is presented in Appendix 14.

Figure 4.4 The physical prototype of the boom.
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The maximum deflection constraint is activated during the optimisation. In addition, the fatigue
life constraint is activated. This is a requirement, because the length of the boom is maximised
and forces in welded joints are high.

A photograph of the completed prototype structure is presented in Figure 4.4. Lagstedt presents
a static flexibility and kinematics study of a tripod boom with different joint combinations. Wu
developed the control system and measured the performance of the boom (Kilkki, J. et al. 2002,
Wu, H. et al. 2002, Lagstedt, A. et al. 1999a, Lagsted, A. et al. 1999b).

4.3 Flat roof

The second case study reported here is that of a KT-truss structure. When the design is imple-
mented such that the loads are applied through the joints, this type of structure is suitable for very
long span lengths. The number of the beam elements is low and the joints are modelled as simple.
The buckling length of the upper chord is long which may lead to a relatively heavy chord as
compared to the structures.

The strength of the upper chord of the KT-structure is better than that for the K-truss because the
upper chord is supported at more positions. The joints of the lower chord are more difficult to
fabricate for a KT-structure. Figure 4.5 shows both the K- and KT truss structure.

Limit state design concepts are used and clearly defined ultimate limit state criteria are defined
for the truss members and joints. A serviceability limit state criteria for truss deflection is also
defined.

KT-truss

K-struss

KT-truss

CL

Figure 4.5 The K- and KT-structure.

The phases of the design of the truss are presented in Figure 1.3. These are:
1) Loads on the structure are clarified and the most dangerous load combinations are deter-

mined.
2) Height of the structure is decided. The type of the truss and cross member division is se-

lected.
3) Preliminary selection of the beams. Resistance of the most heavily loaded joint is calculated..
4) Real forces of the beams are calculated.
5) Strengths of the joints are calculated.
6) Deflection of the truss is calculated.
7) Cross members and the joints of the cross members are designed.

In traditional optimisation the phases 3 to 6 should be repeated until the solution is satisfactory.
In automated formulation phases 3 to 6 are included to the optimisation. The positions of the
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joints, the height of the structure and beam cross sections can be design variables. Constraints and
objectives of the optimisation model are generated by the nodes and elements.

4.3.1 Structure

The truss structure shown in Figure 4.6 is optimised. The dimensions of the beam sections are the
design variables. The slave nodes follow the z-coordinate of the master node thus ensuring that
the lower chord remains straight. The symmetry line is denoted by (CL). Actually, the K-joint on
symmetry line would require a symmetry K-joint constraint, which is not considered on this
thesis.

RHS ID1

RHS ID2

RHS ID3

z-coord

master node slave node

CL

10 kN10 kN10 kN10 kN 10 kN10 kN 5 kN

h1

x

z

9

14 000

Figure 4.6 A flat roof structure. The z-coordinate of the node 9 is the design variable.

4.3.2 Constants

Constraints of the KT-truss model are presented in Table 4.6. A six gap truss is to be optimised.
The span of the entire truss would be 48 000 mm so the length of the half truss that is modelled
is 14 000 mm. Material in this exercise is selected as S355.

Table 4.6 Constraints of the flat roof.

Constant Constant name Value
Gaps n 6
Total length L 24 000 mm
Material fy 355 MPa (nominal)

4.3.3 Design variables

In this case, only the profiles of the truss element are to be optimised. Optimisation parameters
are presented in Table 4.7. Only rectangular hollow section profiles are considered.

Table 4.7 Design variables of the KT flat roof truss.

Design variable Design variable name Value
Upper chord RHS1 1 ≤ x1 ≤ 125
Lower chord RHS2 1 ≤ x2 ≤ 125
Main bracing RHS3 1 ≤ x3 ≤ 125
Height h1 -6 000 ≤ x3 ≤ - 500
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4.3.4 Constraints

The ultimate limit states for the beam elements of the truss included tensile strength, compression
strength, buckling strength and bending strength. The ultimate limit states for the T-, K- and KT-
joints are: yielding of the top of the chord, buckling of the chord web, cutting of the chord,
breakage of the main bracing, and shearing of the chord.

Serviceability limit state constraint is the maximum deflection of the truss structure: g1 = L/300
- max{δnode i} ≥ 0. A total of 334 inequality constraints are used in the optimisation model.

4.3.5 Objectives

The minimised objective of the optimisation is the total mass of the truss structure.

tot elem( )
n

i
i

m f m= =�x (4.4)

4.3.6 Databases

The optimisation program made use of the profile databases presented in Appendix 13. These are
the same databases as were used for the telescope structure for the multi-redundant boom. The
database contains 125 possible rectangular hollow sections.

4.3.7 Results

The resulting optimise truss structure is summarised in Table 4.8. The objective function, which
was defined as minimum mass, attained a minimum value of 376 kg. The optimisation program
required a total of 15 880 function evaluations.

Table 4.8 Optimised design variables in the ridge roof.
Design variable Variable name Value Profile

Upper chord RHS1 27 RHS 100x100x3

Lower chord RHS2 16 RHS 80x80x4

Brace RHS3 6 RHS 60x60x2.5

Height h1 -1 306 -

The automated modelling and the integrated FE-analysis routine significantly reduced the model-
ling time. The modelling time of the optimisation model is almost equal to the modelling time
of the FE-model. The small extra work comes form the definition of the master and slave nodes.
The ultimate and serviceability constraints also have to be activated.

The automatic constraint handling in the objective function inside the DE-algorithm eliminated
the setting time of penalty factors. Usually there is no clear rule as to how penalty factor should
be set and it is very time consuming to try different values of the penalty factors for each con-
straint.

4.4 Ridge roof

The third design case is that of a ridge roof truss. Two cases where investigated.  All web bars
are the same profile in the A-case. The web bars may be different in the B-case. The FE-models
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are half models, because the loading is assumed to be symmetrical. The symmetry line is denoted
by CL. The K-joint on the symmetry line requires a symmetry K-joint constraint.

4.4.1 Structure A

Truss A is a ridge roof KT-structure presented in Figure 4.7.  During the automated formulation
of the optimisation model (third generation program), the designer constructs a preliminary FE-
model of the steel beam structure. Certain fixed dimensions of the structure determine the posi-
tions of some of the nodes. The constraints and objectives are associated with the elements and
nodes. The span and number of the cross members determine the x-coordinates of the nodes in
the case of the ridge roof. Joint positions for every joint type are designated by selecting the
corresponding node in the FE-model. Similarly the chords and braces of each joint are specified
via  the corresponding beams in the FE-model. Bending and buckling constraints of the selected
beams are defined. The designer does not have to know in advance which beams are under
compression or tension. Constraints are activated automatically during the optimisation depend-
ing on compression and tension force of the beam element. The deflection constraint is defined
by limiting the z-deflection of the node 8 to a maximum value of span/300. Z-coordinates of
nodes 8 and 9 are selected as design variables and the upper and lower limits of the z-coordinates
are defined. When the nodes 1 and 8 are selected as master nodes and 2 to 7 are selected slave
nodes, nodes 2 to 7 are forced to form a straight upper chord during optimisation. Positions of
nodes 2 to 7 are interpolated between nodes 1 and 8. Z-coordinates of the nodes 10 to 12 follow
the Z-coordinate of master node 9.

The profile tables for the upper chord, lower chord and brace are selected. An optimisation model
is formulated automatically from this data. The designer selects the population size of the DE
optimisation algorithm. 3D-graphics of the model and the optimisation results are monitored
during the optimisation. Profiles are selected from the table presented in the Appendix 13 which
contains 125 profiles.

In conventional optimisation (first generation program) a FE-model is separated from the optimi-
sation model. Data transfer, e.g. node coordinates, profile cross section dimensions, material
properties, forces, moments and deflections, between the optimisation model and the FE-model
needed to be constructed individually for each optimisation case. First, a designer should con-
struct the FE-model and write functions for positions of the nodes. Dimensions of the beam cross
sections from a profile database and material properties would then be linked to the FE-model.
Forces and moments of the elements and deflections of the nodes were linked back to the optimi-
sation model considering the orientation of each element. This procedure has the disadvantage
that dozens of insecure links between FE-model and optimisation model could be produced. The
optimisation model should contain 1) local strength constraints of T-, K- and KT-joints, 2)
stability and compression constraints of compressed beams, 3) tension constraints of tensed
beams, 4) bending constraints of bended beams 5) deflection constraint of the node 8 and 6) the
total mass of the steel beam structure.

4.4.2 Design variables

The optimisation parameters are presented in Table 4.9. Only rectangular hollow section profiles
are considered.
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Table 4.9 Optimisation parameters of the case A.

Design variable Variable name xi
l ≤≤≤≤ xi ≤≤≤≤ xi

u

Upper chord RHS1 1 ≤ x1 ≤ 125
Lower chord RHS2 1 ≤ x2 ≤ 125
Brace RHS3 1 ≤ x3 ≤ 125
Height H1 0 ≤ x4 ≤ 6000
Height H2 -4 000 ≤ x5 ≤ -500
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Figure 4.7 Ridge roof A.

4.4.3 Structure B

The truss B is a ridge roof KT-structure presented in Figure 4.8. The Z-coordinates of the nodes
8 and 9 (or heights h1 and h2) are design variables. Master nodes and slave nodes act in a fashion
similar to case A. The upper and lower chord profiles and all web bars are design variables. The
case B should be much more difficult than A-case, because there is much more active geometric
constraints of the K- and KT-joints. T-joint constraints are calculated for nodes 1, 2, 4 and 6, K-
joint constraints are calculated for nodes 3, 5, 7 and KT-joint constraints are calculated for nodes
9, 10 and 11. Lower chord and upper chord profiles are selected from the table as in case A and
profiles of the braces are selected individually for every brace. This should make the optimisation
case much more difficult because the geometric constraints K- and KT-joints will be activated
with many profile combinations. This means, that the constraint handling method must first find
some feasible solution or solutions before the real optimisation can be started.
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Figure 4.8 Ridge roof B.

4.4.4 Design variables

The optimisation parameters are presented in Table 4.10. Only rectangular hollow section profiles
are considered. Lower chord and upper chord profiles are selected from the table like in the case
A and profiles of the braces are selected individually for every brace. This should make the
optimisation case much more difficult because the geometric constraints K- and KT-joints will
be activated with many profile combinations. This means, that constraint handling method have
to find first some feasible solution or solutions before the real optimisation can be started.

Table 4.10 Optimisation parameters of the case B.

Design variable Variable name xi
l ≤≤≤≤ xi ≤≤≤≤ xi

u

Upper chord RHS1 1 ≤ x1 ≤ 125
Lower chord RHS2 1 ≤ x2 ≤ 125
Brace RHS3 1 ≤ x3 ≤ 125
Brace RHS4 1 ≤ x4 ≤ 125
Brace RHS5 1 ≤ x5 ≤ 125
Brace RHS6 1 ≤ x6 ≤ 125
Brace RHS7 1 ≤ x7 ≤ 125
Brace RHS8 1 ≤ x8 ≤ 125
Brace RHS9 1 ≤ x9 ≤ 125
Brace RHS10 1 ≤ x10 ≤ 125
Brace RHS11 1 ≤ x11 ≤ 125
Brace RHS12 1 ≤ x12 ≤ 125
Height h1 0 ≤ x13 ≤ 6000
Height h2 -4000 ≤ x14 ≤ -1 000
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4.4.5 Constraints

Ultimate limit states for beam elements are tensile strength, compression strength, buckling
strength and bending strength. The ultimate limit states for the T-, K- and KT-joints are: yielding
of the top of the chord, buckling of the chord web, cutting of the chord, breakage of the main
bracing, sharing of the chord.

The serviceability limit state constraint is the maximum deflection of the truss structure L/300.

There are total 336 inequality constraints in the optimisation model.

4.4.6 Objective

The minimised objective of the optimisation is the total mass of the truss structure.

tot elem( )
n

i
i

m f m= =�x (4.5)

4.4.7 Databases

Optimisation program uses databases presented in Appendix 13. Databases contain the cross
sections of the telescopes. There are 125 possible rectangular hollow sections.

4.4.8 Results

The optimisation results of the case A are presented in Table 4.11 The corresponding objective
function (total mass) is 528 kg. The number of function evaluations was 6 720.

The results of the case B are presented in Table 4.12. The corresponding objective function (total
mass) is 483 kg. The number of function evaluations was 1 215 000.

The proposed solutions for the ridge roof truss are not necessarily here optimal. Additional tests
would need to be performed to ensure that an optimal design is achieved. The thesis has put
greater attention on the automated formulation method rather than the solving of a particular case.
Ensuring the reliable optimal solutions would require very strict tests of the computer program.
The constraint functions have been tested but the developed computer program is quite large and
bugs in the structure of the program and dynamic memory handling can cause unexpected errors.
Solving times were several hours because the FE-models were transferred to the FE-solver and
results of FE solution were transferred back from FE-solver by text files. The dynamic link library
(DLL) FE-solver was developed earlier during this study but it was not implemented on third
generation program. DLL version of the FE-solver transfers the FE-model and results directly in
the computer memory and optimisation times will be much shorter.

Table 4.11 Optimised design variables in the case A
Design variable Variable name Value Profile

Upper chord RHS1 41 RHS 120x120x4

Lower chord RHS2 27 RHS 100x100x3

Brace RHS3 16 RHS 80x80x4

Height h1 1 751 mm -

Height h2 -1 000 mm -
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 Table 4.12 The optimised design variables in the case B.
Design variable Variable name Value Profile
Upper chord RHS1 49 RHS 140x140x4
Lower chord RHS2 36 RHS 110x110x4
Brace RHS3 6 RHS 60x60x2.5
Brace RHS4 2 RHS 40x40x2
Brace RHS5 7 RHS 60x60x3
Brace RHS6 9 RHS 70x70x2
Brace RHS7 6 RHS 60x60x2.5
Brace RHS8 6 RHS 60x60x2.5
Brace RHS9 9 RHS 70x70x2
Brace RHS10 3 RHS 50x50x2
Brace RHS11 4 RHS 50x50x2.5
Brace RHS12 15 RHS 80x80x3
Height h1 588 mm -
Height h2 -1 103 mm -

The structure is statically determined and the member forces are independent from member sizes.
T-, K- and KT-joint constraints and especially KT-joint constraints are very sensitive to the
member sizes and therefore unexpected results can occur. Additional computer time may have
produced slightly better solutions and the possibility of programming errors exists.

4.5 Summary

The optimisation portion of the program was first tested using eight standard test functions and
optimisation problems. This included testing the differential evolution algorithm, constraint
handling and also input and output vectors. This was done to ensure that the differential evolution
algorithm performed properly. In all eight cases, the test values of the optimisation function and
the design variables are identical or nearly identical to the best-known published values. The
optimisations are not necessarily completed in the case of the ridge roofs and some further
optimisation would perhaps be possible. Development of the automated formulation method was
the most important aspect of this study. Solving times were several hours but it is expected that
this could be much shorter with DLL version of the FE-solver, which transfers the FE-model and
results directly in the computer memory.

The optimisation system, including optimisation algorithm, automated modelling routine and FE
analysis programs, was then tested on several large steel structures optimisation problems. These
structures were a hydraulically driven multi-redundant boom, a flat roof truss structure, and a
ridge roof KT-structure. The progressive boom construction was selected as an optimisation case,
because it was completely new concept and the structure of the best construction was uncertain.
The optimisation of the steel structure of the boom showed that the preliminary supposition was
right. Two steel structures were selected for test cases for third generation modelling and optimi-
sation program, because these includes quite few elements but numerous geometric constraints,
which make almost all solutions infeasible. This is a demanding challenge for the optimisation
algorithm. The FE-model, which has constructed from 14-degree of freedom elements, is a
challenge for modelling tool.
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The first generation modelling and optimisation program was editable and flexible to use. It
includes editable mathematical components, editable table components and linking components
to external programs. In the case of steel structures, the optimisation model and FE-model need
dozens or hundreds of links. In addition, the linking is not easy because each element has its own
orientation and this complicates the reading of the FE-analysis results. Progress of the optimisa-
tion is uncertain because the FE-program does not monitor the FE-model during the optimisation.
This program offers the possibility of multi criterion optimisation with six different multi-criteria
weighting methods.

The external connection between optimisation program and FE-model was eliminated by devel-
oping a new program with a ready compiled FE-modelling tool with 3D monitoring. However,
a ready-compiled FE-model is suitable for only one case and cannot be recycled for a new FE-
model. This was a major motivation for developing an automated formulation.

An automated formulation of the optimisation model of the steel beam structures is the most
powerful tool for optimisation of steel structures. The optimisation model is build up simultane-
ously with the FE-model. The user has to define some geometric constraints and optimisation
parameters of the optimisation algorithm and the model is ready for solving. The FE-model,
individuals, generations, fitness values and constraints are monitored during the optimisation. The
user gets immediately feedback from the optimisation process and possible modifications to the
optimisation model can be made quickly.

The Differential Evolution algorithm is easy to use. The population size is the only parameter that
has to be changed for most optimisation cases. The new constraint handling method does not need
the penalty factors or other penalty coefficients. This is a great advantage in optimisation of steel
structures, because these can include hundreds of constraints.
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5 DISCUSSION

In the early stages of this research project, after it was decided to link the FE analysis program
to an optimisation algorithm, it was discovered that the development of a workable optimisation
model was the most time consuming aspect of the entire optimisation process. For rather simple
geometric cases, such as those found in textbooks, the modelling is rather straightforward. For
real-life engineering structures, with perhaps dozens of elements and hundreds of constraints the
task is formidable. Publications are full of solutions and applications considering “nice” optimi-
sation models and optimisation results. The modelling process and the effort required to perform
the modelling is seldom reported.

Optimisation is common in the automotive and aviation industries where the volume of the
production is large or in the aerospace industry where extremely high costs for individual compo-
nents are allowed. The vast majority of mechanical engineering work, however, has not imple-
mented optimisation on a wide scale because of the lack of flexibility of most modelling tools.
For many engineering companies in the Nordic regions, production runs are usually measured in
hundreds of components per year. This demands that an optimisation tool cannot be designed for
a specific type of component, but must flexible enough so as to be usable for a variety of struc-
tures. Smaller companies are often not aware or not interested in optimisation because there is
no cheap and easy modelling and solving tools. In some cases the goal of the optimisation is only
to find a feasible solution and not always, e.g., to minimize weight or maximize profit.

Optimisation methods can be employed in a variety of ordinary design situations to achieve
practical and serviceable solutions. Engineers at all industrial companies are busy, and the optimi-
sation modelling has to be easy and not time consuming. The AGIFAP Win FE-program is easy
to use and relatively inexpensive when it compared to the large commercial FEM-packages.
Optimisation linked to an easy-to-use FE-modelling tool should add the interest to the optimisa-
tion of the steel structures.

5.1 Modelling

5.1.1 Modelling tool

Three generations of modelling and optimisation programs were developed during the course of
this research project. The first modelling tool focused to the modelling by means of components.
The math components are flexible and editable. The ready component libraries could be readily
used and the component were easy to copy and modify. The finite element analysis program was
linked to the optimisation program by means of FE-components.

This modelling tool was suitable for small optimisation problems and could also be applied in
larger more complex problems. However, some optimisation problems were found to be too time
consuming and difficult to model with a reasonable degree of effort. The truss structures were one
example. A truss structure includes hundreds of constraints and large amount of forces, moments
and deflections that must be transferred between the FE-analysis package and the optimisation
model. Mistakes during transfer are easy to make and difficult to notice and isolate.

Orientation of specific beam elements strongly affects the development of the optimisation model.
Forces and moments depend on rotation angle and orientation of the beam element. For example,
the very common beam element shown in Figure 5.1 has 12 degrees of freedom. The nodes have
to move to new positions during the optimisation if the node coordinates are chosen as design
variables.
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Figure 5.1 The orientation and rotation of the beam element. Coordinates x’, y’ and
z’ are the local coordinates of the element. Angle α is a rotation angle of the element.

Figure 5.2 illustrates the concept of slave nodes and how they are programmed to follow the
master nodes in the finite element model. In this case, parametric formulas the coordinates of
every node are needed.

Upper chord

CL
1

2
3

4 5
6

7 8

109 11 12

slave node
master node z-coord.

z

x

Figure 5.2 Slave nodes follow the master nodes.

5.1.2 Finite element model with optimisation model

The third and final program developed in this project has focused primarily on the automatic
formulation of the optimisation model during FE-modelling. The FEM-program was modified
to build the optimisation input and output vectors simultaneously with the FE-modelling. A FE-
model is constructed in a conventional manner. Elements and nodes contain objective and con-
straint functions. Constraint functions are deflection, tension, compression, bending, fatigue,
hydraulic cylinder, buckling and strengths of the T-, K- and KT-joints. The user activates the
objectives, constraints and design variables during the FE modelling process. Design variables
can be, for example, the coordinates of the nodes and the cross section properties of the beam
elements. Automation significantly reduced the modelling time and errors. A designer does not
have to write constraints, objective functions and functions of the node coordinates. All selections
are made with a graphical interface of the computer program. The designer can also select tables
where the beam dimensions are selected during the optimisation.

In this third-generation program, the formulation of an optimisation model that could be linked
to FE analysis was both fast and easy to accomplish. This program version contained significant
improvements over the second-generation program because the constraint and objective functions
in the second generation were pre-compiled which caused a degree of inflexibility. Pre-compiled
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functions cannot be modified by the user. The program could be extended by developing more
constraint and objective functions.

5.2 Optimisation

The optimisation algorithm chosen for this program was the differential evolution DE algorithm.
DE-algorithm requires only a few parameters and can be easily modified by the user as required.
The three parameters are: the size of the population, the differential factor and the mutation
probability. A suitable differential factor can be fixed to 0.8 while a mutation probability of 0.95
is very suitable. These values have been confirmed by numerous tests made with the differential
evolution algorithm (Lampinen, J. 2000). This means that population size is, in practice, the only
that the user must give special attention to.

The third generation program was modified so that unnecessary FE-analyses could be avoided.
FE-analysis typically takes the majority of the analysis time when objective functions are being
evaluated. Most of the constraints for the optimisation model of a steel structure are geometric.
A FE-analysis is useless if one of these constraints is violated. Avoiding FE analysis of models
that violate one or mode of the geometric constraints greatly accelerated the optimisation process.

5.3 Optimisation of the steel structures

Two of the selected real-life test structures were plane trusses. Evaluation of 3D-structures is also
possible without modifications of the program. It was judged that the optimisation of a space truss
would only provide a small degree of extra information about the developed method.

Different roof structures were optimised by the developed FE-optimisation modelling tool.
Optimisation models were built simultaneously with the FE-modelling. The operator activated
various constraints. The designer must have sufficient experience to know generally the type of
structure needed, i.e., where the K- and KT-joints should be located and that beams must be
selected to connect the joints. The optimisation program itself, of course, determines the final
location of the joint and the best beam profile.  The selection of beams is important because other
elements can join to the same node, for example with 3D-structures.

The roles of various load combinations on a structure are not within the scope of this thesis. It is
assumed that the most severe load case has been defined before the optimisation of the structure.
The most dangerous load combination includes the partial safety factors of the load. The partial
material and joint safety factors are included to the constraints of the optimisation model. Con-
straint functions have some default values, which the user can modify before the optimisation.

Geometric constraints of the FE-geometry are important. This means that each time one node
position changes, it may be needed to also update other node coordinates. This can be made using
metric node coordinates, but this is time consuming and additionally there is a risk of the pro-
gramming errors.

5.3.1 Multi-redundant boom

The optimisation of a multi-redundant boom structure was also performed as part of this research.
This was done in conjunction with the Laboratory of Virtual Engineering and Mechatronics who
had responsibility for developing the new boom construction and its control system. The boom
is a good representative of an optimised structure because booms of this type must be functional,
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but also light and rigid. The boom was a new product concept and the construction was developed
during the past four years.

The optimisation analysis made for the boom construction shows that the assumptions about the
construction were generally correct. Other possible constructions were not optimal and therefore
rejected.

The boom construction has a geometric constraint, which is difficult to take into account in the
FE-optimisation modelling tool. The shape of the base plates was difficult to pre-program to the
FE-program and a flexible math-component was needed. In this case, the boom structure was
optimised by the intermediate phase program. The components were compiled and the shape of
the boom was found without great difficulty. The coordinates of the nodes were parametric
functions of the height, width and length of the boom.

5.3.2 Ridge roof B

The ridge roof case B was the most difficult optimisation problem. Each diagonal brace member
was selected individually from the cross section table that contained 125 alternatives. Geometry
of the K- and KT-joints were strictly constrained by the dimension ratios of the joining members.
The selection of the sufficient diagonals was time consuming. The FE-analysis was not performed
if the one of the geometric constraints was violated, thus saving significant computer time.
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6 CONCLUSIONS

The main goal of this research project was to investigate the possibilities for automating the
modelling of truss type structures in an optimisation program. During this thesis project, three
modelling and optimisation programs were developed and tested with practical mechanical
engineering optimisation problems. The final program made use of the observed limitations from
earlier program versions. The optimisation program combines a modern evolution based optimi-
sation algorithm, an automated modelling tool that greatly reduces the effort between different
model generations, and a finite element based analysis tool.

During the optimisation of real-life engineering structures, modelling was found to be the most
time consuming phase in the optimisation. This naturally led to the development of an automated
means for formulating the optimisation model. In total, three generations of modelling tools were
developed, each generation included improvements based on experienced gained with previous
generations. The first tool was flexible but was difficult to use when large optimisation models
needed to be formulated. The third modelling tool was integrated in the FE-modelling program
so that the user constructs a model suitable for optimisation during the process of constructing
the preliminary FE-model. Constraints and objective functions are created automatically and
require only minimal user input. A FE-model is constructed in a conventional manner. Elements
and nodes contain objective and constraint functions. Constraint functions are deflection, tension,
compression, bending, fatigue, hydraulic cylinder, buckling and strengths of the T-, K- and KT-
joints. The designer activates the objectives, constraints and design variables during the FE
modelling process. The members of the T-, K- and KT-joins have to be selected by the designer.

The user must also to select the interpolated slave nodes and master nodes so that multi-element
beams remain straight. Coordinates of the nodes are continuous design variables and measures
of the cross sections of the beam elements are discrete variables. The designer has to select tables
where the discrete beam dimensions are selected during the optimisation. Default values of the
constraints like safety factors can be changed by the user. The designer also has to select tables
from which the beam dimensions and material properties are chosen during the optimisation. All
selections are made with the aid of the graphical interface of the computer program. This automa-
tion reduces significantly the modelling time and errors. Constraints are not editable in this
version modern but limit state design concepts were used in the formulation of the constraint
classes.

Three main objectives were considered when developing the automated modelling tool: flexibil-
ity, speed and reliability. The final tool is a balanced compromise of objectives. Reliability and
speed are high if the constraints are compiled, but flexibility is then low minimum. High flexibil-
ity results in both poor reliability and low speed because a complex FE-model needs to be manu-
ally linked to the optimisation model. This is a very time consuming process and mistakes are
common.

The differential evolution algorithm used in this program can be used nearly as a black box. In
practice, the user has to select only the population size. This value can be selected after only a few
tests. The third modelling tool was tested with truss structures, which include from 200 to 300
constraints. Penalty functions are not needed in the final variation of the differential evolution
algorithm used here.

The optimisation algorithm is tested using common test functions used for the evolution algo-
rithms and was found to perform very well with only minor differences between the values
obtained here and published ideal values.
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The optimisation system, including optimisation algorithm, automated modelling routine and FE
analysis programs, was then tested on several large steel structures optimisation problems. These
structures were a hydraulically driven multi-redundant boom, a flat roof truss structure, and a
ridge roof KT-structure. The progressive boom construction was selected as an optimisation case,
because it was completely new concept and the structure of the best construction was uncertain.
The optimisation of the steel structure of the boom showed that the preliminary supposition was
right. Two steel structures were selected for test cases for third generation modelling and optimi-
sation program, because these includes quite few elements but numerous geometric constraints,
which make almost all solutions infeasible. This is a demanding challenge for the optimisation
algorithm. The FE-model, which has constructed from 14-degree of freedom elements, is a
challenge for modelling tool. Especially with case B of the ridge roof truss, the optimisation
model was easy to form. This problem was very complex in terms of element possibilities and
constraints and more computer time would be required to achieve a fully optimal solution.

6.1 Recommendations for further work

The goal of this project was not to develop a commercial optimisation program, but to demon-
strate the concept and usefulness of automated optimisation model formulation for steel struc-
tures. A professional software developer could probably suggest numeous improvements that
would result in a more efficient code. The libraries of joint types and profiles, for example, could
also be expanded to make the optimisation tool more useable in a variety of design tasks. The
current FE-model was written for FE-solver using text files. A future version could make use of
DLL-functions which is a much more rapid method of data transmission.

Math 1

Math 2 FEC 1
1

Table 1

FEM

Math 4 Math 5Math 3

FEA

DE

DE-optimisation algorithm

DE

Math

Optimisation modelling tool Automated FE-model optimisation tool

DE-optimisation algorithm

Figure 6.1 The linking of the optimisation modelling tool and the automated FE-
optimisation tool.

The flexibility and reliability of the entire optimisation modelling tool could probably be im-
proved by combining some features from the first-generation tool with the final program. The left
side of Figure 6.1 shows the structure of the first generation program while the right side of this
figure presents the third generation program. Flexibility could be gained by formulating the third
generation program as one element in the first generation program. It is expected that this process
would preserve the program reliability. The user can link the variable vector of the FE-component
to the flexible math components and write specialised objective or constraint functions. Very
complex user defined geometric constraints are possible because the user can link the math
component to the design variable vector of the FE-model.
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APPENDIX 1 THE YIELD STRENGTHS OF STEEL PLATES 1(1)

Table 1 Yield strength of the hot rolled steel plate (B7 1996).

Thickness (mm) Reh N/mm2     (Hot rolled steel plates)
S235 S275 S355

t ≤ 16 235 275 355
16 < t ≤ 40 225 265 345
40 < t ≤ 63 215 255 335
63 < t ≤ 80 215 245 325
80 < t ≤ 100 215 235 315
100 < t ≤ 150 215 225 295
150 < t ≤ 200 195 215 285
200 < t ≤ 250 175 205 275

Table 2 Yield strength of the hot rolled steel plate (B7 1996).

Thickness (mm) Reh N/mm2     (Hot rolled steel plates)
S275 S355 S420

t ≤ 16 275 355 420
16 < t ≤ 40 265 345 400
40 < t ≤ 63 255 335 390
63 < t ≤ 80 245 325 370
80 < t ≤ 100 235 315 360
100 < t ≤ 150 225 295 340



APPENDIX 2 THE BUCKLING RESISTANCE OF A COLUMN 1(1)

The buckling resistance of a column (B7 1996).

γ = 1.0 γ = 2.1 γ = 0.6 γ = 1.2 γ = 0.8γ = 1.0 γ = 2.1 γ = 0.6 γ = 1.2 γ = 0.8
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APPENDIX 3 BENDING RESISTANCE OF A BEAM 1(3)

The bending resistance is calculated as follows in the case of the double symmetric box beam or
I-beam in direction of the z-axis (Iy > Iz) (B7 1996).
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APPENDIX 3 BENDING RESISTANCE OF A BEAM 2(3)
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APPENDIX 3 BENDING RESISTANCE OF A BEAM 3(3)

The bending resistance of the beam:
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APPENDIX 4 TENSION RESISTANCE OF A BEAM 1(1)

Tension resistance (Rautaruukki steel products designers guide 1998).
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APPENDIX 5 COMPRESSION RESISTANCE OF A BEAM 1(1)

Compression resistance (Rautaruukki steel products designers guide 1998).
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APPENDIX 6 SERIE OF HYDRAULIC CYLINDERS 1(1)

The table of the hydraulic cylinders (Mannesmann Rexroth 1996).

∅D ∅d

ID D d
1 25 12
2 25 18
3 32 14
4 32 22
5 40 18
6 40 28
7 50 22
8 50 36
9 63 28

10 63 45
11 80 36
12 80 56
13 100 45
14 100 70
15 125 56
16 125 90
17 160 70
18 160 110
19 200 90
20 200 140



APPENDIX 7 BUCKLING RESISTANCE OF A HYDRAULIC CYLINDER 1(1)

The buckling of the hydraulic cylinder and the adequate force (Mannesmann Rexroth 1996).
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APPENDIX 8 STRENGTH OF T- AND Y-JOINTS 1(3)

The calculation of the T- and Y-joint of the trusses. Trusses are rectangular hollow sections
(Rautaruukki steel products designers guide 1998).
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APPENDIX 8 STRENGTH OF T- AND Y-JOINTS 2(3)
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APPENDIX 8 STRENGTH OF T- AND Y-JOINTS 3(3)
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APPENDIX 9 STRENGTH OF A K-JOINT 1(4)

The strength calculation of the K-joint of the trusses. Trusses are rectangular hollow sections
(Rautaruukki steel products designers guide 1998).
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APPENDIX 9 STRENGTH OF A K-JOINT 2(4)
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APPENDIX 9 STRENGTH OF A K-JOINT 3(4)
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APPENDIX 9 STRENGTH OF A K-JOINT 4(4)

Other constraints are:
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APPENDIX 10 STRENGTH OF A KT-JOINT 1(6)

The calculation of the KT-joint of the trusses. Trusses are rectangular hollow sections
(Rautaruukki steel products designers guide 1998).
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APPENDIX 10 STRENGTH OF A KT-JOINT 2(6)
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Yield of the chord flange. Beam 3
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The cut of the chord, Beam 0
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Cutting of the chord flange. Beam 1
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APPENDIX 11 TEST FUNCTIONS 1(5)

Test function 1

The function is also known as Rastrigin's function:

2

1
( ) ( cos(2 ))

with additional box constraints
[1, ], [ 5.12, 5.12] and 10
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i i
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f x nA x A x
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�

Test function 2

The function is presented by Floudas (Floudas, C.A. et al. 1987).
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Test function 3

The problem is no. 113 presented by Hock (Hock, W. et al. 1981).

( ) ( ) ( ) ( )
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Test function 4

The problem is no. 116 presented by Hock (Hock, W. et al. 1981).
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Test function 5

The function is presented by Koziel (Koziel, S. et al. 1999).
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Test function 6

The function is presented by Floudas (Floudas, C.A. 1987).
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Test function 7

The function is problem no. 100 presented by Hock (Hock, W. et al. 1981).
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Test function 8

The function is presented by Himmelblau (Himmelblau, D. 1997).
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APPENDIX 12 FATIGUE RESISTANCE 1(1)

The fatigue constraints of the multi-redundant boom are calculated according the IIW Fatigue
Recommendations (Hobbacher, A. 1996).
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where ∆σeq is an equivalent stress range, ∆σS,d is a design value of stress range caused by actions
and ∆σR,k is the characteristic stress range at the required number of stress  cycles.
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APPENDIX 13 CROSS-SECTIONS OF RECTANGULAR BEAMS 1(1)

(Rautaruukki steel products designers guide 1998)

ID H B T R ID H B T R ID H B T R
1 40 40 2 4 51 140 140 5.6 11.2 101 220 220 12.5 37.5
2 40 40 2.5 5 52 140 140 6 12 102 250 250 6 12
3 50 50 2 4 53 140 140 6.3 15.8 103 250 250 6.3 15.8
4 50 50 2.5 5 54 140 140 7.1 17.8 104 250 250 7.1 17.8
5 50 50 3 6 55 140 140 8 20 105 250 250 8 20
6 60 60 2.5 5 56 140 140 8.8 22 106 250 250 8.8 22
7 60 60 3 6 57 140 140 10 25 107 250 250 10 25
8 60 60 4 8 58 150 150 4 8 108 250 250 12 36
9 70 70 2 4 59 150 150 5 10 109 250 250 12.5 37.5

10 70 70 2.5 5 60 150 150 6 12 110 260 260 6 12
11 70 70 3 6 61 150 150 6.3 15.8 111 260 260 6.3 15.8
12 70 70 4 8 62 150 150 7.1 17.8 112 260 260 7.1 17.8
13 80 80 2 4 63 150 150 8 20 113 260 260 8 20
14 80 80 2.5 5 64 150 150 8.8 22 114 260 260 8.8 22
15 80 80 3 6 65 150 150 10 25 115 260 260 10 25
16 80 80 4 8 66 160 160 4 8 116 260 260 11 33
17 80 80 5 10 67 160 160 5 10 117 260 260 12.5 37.5
18 90 90 2 4 68 160 160 6 12 118 300 300 6 12
19 90 90 2.5 5 69 160 160 6.3 15.8 119 300 300 6.3 15.8
20 90 90 3 6 70 160 160 7.1 17.8 120 300 300 7.1 17.8
21 90 90 4 8 71 160 160 8 20 121 300 300 8 20
22 90 90 5 10 72 160 160 8.8 22 122 300 300 8.8 22
23 90 90 6 12 73 160 160 10 25 123 300 300 10 25
24 90 90 6.3 15.8 74 160 160 12 36 124 300 300 12 36
25 100 100 2 4 75 160 160 12.5 37.5 125 300 300 12.5 37.5
26 100 100 2.5 5 76 180 180 5 10
27 100 100 3 6 77 180 180 6 12
28 100 100 4 8 78 180 180 6.3 15.8
29 100 100 5 10 79 180 180 7.1 17.8
30 100 100 6 12 80 180 180 8 20
31 100 100 6.3 15.8 81 180 180 8.8 22
32 100 100 7.1 17.8 82 180 180 10 25
33 100 100 8 20 83 180 180 12 36
34 110 110 2.5 5 84 180 180 12.5 37.5
35 110 110 3 6 85 200 200 5 10
36 110 110 4 8 86 200 200 6 12
37 110 110 5 10 87 200 200 6.3 15.8
38 110 110 6 12 88 200 200 7.1 17.8
39 110 110 6.3 15.8 89 200 200 8 20
40 120 120 3 6 90 200 200 8.8 22
41 120 120 4 8 91 200 200 10 25
42 120 120 5 10 92 200 200 12 36
43 120 120 5.6 11.2 93 200 200 12.5 37.5
44 120 120 6 12 94 220 220 6 12
45 120 120 6.3 15.8 95 220 220 6.3 15.8
46 120 120 7.1 17.8 96 220 220 7.1 17.8
47 120 120 8 20 97 220 220 8 20
48 120 120 8.8 22 98 220 220 8.8 22
49 140 140 4 8 99 220 220 10 25
50 140 140 5 10 100 220 220 12 36

b

t

r

h

z

y



APPENDIX 14 EVOLUTION OF THE FE-MODEL 1(1)

The evolution of the boom FE-model during the optimisation. Pictures are screen captures.
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