
Diss. ETH No. 16589

Efficient Design Space Exploration
for Embedded Systems

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH

for the degree of
Doctor of Sciences

presented by
SIMON KÜNZLI

Dipl. El.-Ing.,
Swiss Federal Institute of Technology Zürich, Switzerland

born August 4, 1975
citizen of Switzerland

accepted on the recommendation of
Prof. Dr. Lothar Thiele, examiner

Prof. Dr. Luca Benini, co-examiner

2006
Examination date: April 20, 2006

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 81

Simon Künzli

Efficient Design Space Exploration
for Embedded Systems

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich
for the degree of Doctor of Sciences

Diss. ETH No. 16589

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Luca Benini, co-examiner

Examination date: April 20, 2006

Abstract

Design space exploration is an important factor in embedded systems
design. During several steps in a state-of-the-art design flow, designers
have to decide between many design alternatives. The decisions are lo-
cated at various levels of abstraction. In addition, the choices affect several
design goals, the alternatives therefore represent a multi-criteria decision
problem.

Further, the space of possible solutions is normally very large, i.e.,
many design alternatives exist. As a consequence, exhaustive search of
the design space is prohibitive, and more sophisticated techniques have
to be used to find “good” solutions. To judge the quality of a new design,
the performance of a system for a given application is one core criterion.
Potential performance metrics are memory demand, response time, or
data throughput of an application. As a consequence, one may ask the
following questions:

• How can we assess the performance of a new design for a certain
application?

• How do we find new design points in the design space?

• How can we automate the design space exploration process?

In this work, we investigate several aspects of design space exploration
problems and try to answer these questions. In particular, we identify and
discuss the building blocks for a design space exploration framework,
namely design evaluation, search strategies, and design representation.
Based on these building blocks, the main contributions of this work can
be described as follows:

• A new hybrid method for performance evaluation of embedded sys-
tems is presented. The new method allows the combination of exist-
ing methods for performance analysis. In particular, these methods
can be analytic or simulation-based. We provide the required inter-
faces for this combination.

ii

• We describe a new evolutionary multi-objective optimisation algo-
rithm, that directly incorporates the user’s preferences based on
performance indicators. It is easy to use and shows superior perfor-
mance on test benchmarks and on design space exploration prob-
lems.

• A novel software framework for design space exploration is pre-
sented. Using the framework we can re-use existing software blocks
and need to implement only a few components that represent the
specific problem.

Kurzfassung

Die Erforschung des Entwurfsraums ist eine wichtige Tätigkeit im Rah-
men des Entwurfs von Eingebetteten Systemen. Wenn Systeme nach aktu-
ellen Entwurfsabläufen entwickelt werden, müssen die Entwickler immer
wieder zwischen verschiedenen Entwurfsalternativen auswählen. Diese
Entscheidungen werden auf verschiedenen Abstraktionsebenen getrof-
fen. Zusätzlich haben diese Entscheide Auswirkungen auf verschiedene
Entwurfsziele, die Auswahl der Entwurfsalternativen stellt deshalb ein
Mehrziel-Optimierungsproblem dar.

Der Entwurfsraum der möglichen Lösungen ist normalerweise sehr
gross, d.h. es existieren viele verschiedene Alternativen für den Entwurf.
Als Konsequenz kann nicht jede Lösung im Suchraum untersucht wer-
den, sondern es müssen geeignete Methoden angewendet werden, um in
einem Teil des Suchraumes die “guten” Lösungen zu finden. Die Perfor-
manz einer solchen Lösung für eine gegebene Anwendung ist ein Kern-
kriterium, um die Qualität des Systems zu ermitteln. Mögliche Metriken
zur Bestimmung der Performanz sind Speicherverbrauch, Antwortzeit
oder Datendurchsatz einer Anwendung.

Als Folge dieser Überlegungen kann man sich die folgenden Fragen
stellen:

• Wie kann man die Performanz eines neuen Entwurf für eine gege-
bene Anwendung bestimmen?

• Wie finden wir überhaupt eine neue Lösung im Entwurfsraum?

• Wie kann die Suche nach neuen Entwürfen automatisiert werden?

In dieser Arbeit untersuchen wir verschiedene Aspekte der Entwurfs-
raumsexploration und versuchen auf die obigen Fragen Antworten zu
finden. Die einzelnen Bausteine für eine automatisierte Exploration,
nämlich die Evaluation einzelner Lösungen, unterschiedliche Suchstrate-
gien und die Repräsentation der Lösungen werden vorgestellt. Basierend
auf diesen Bausteinen können wir nun die Hauptbeiträge dieser Arbeit
präsentieren:

iv

• Wir präsentieren einen neuen hybriden Ansatz zur Performanz-
Analyse von Eingebetteten Systemen. Die neue Methode kombi-
niert existierende Verfahren, insbesondere Simulation und analyti-
sche Verfahren, und beschreibt auch die notwendigen Schnittstellen
zwischen diesen.

• Ein neuer evolutionärer Algorithmus für die Mehrzieloptimierung
wird vorgestellt, welcher Benutzerwünsche an die Suche, ausge-
drückt durch Performanz-Indikatoren, direkt berücksichtigt. Der
Algorithmus ist einfach zu benutzen und liefert für Probleme, bei
welchen es um die Erforschung des Entwurfsraums geht, gute Re-
sultate.

• Wir beschreiben ein Programm-Framework, welches für die Ent-
wurfsraumsexploration verwendet werden kann. Mit dem Frame-
work kann man schon bestehende Software-Blöcke wiederverwen-
den und muss nur wenige Komponenten, die das aktuelle Problem
beschreiben, neu implementieren.

v

I would like to thank

• Prof. Dr. Lothar Thiele for being my advisor, letting me doing my
own work very independently, but also always finding the time to
have fruitful discussions if needed.

• Prof. Dr. Luca Benini for his agreement to be my co-examiner, for
the interesting discussions on performance evaluation, and for the
possibility to visit his lab in Bologna.

• Andreas Meier for always being ready to help and his moral support
during the last weeks before submitting this thesis.

• Dr. Lennart Meier for the discussions about proper German lan-
guage, hyphens, and all the other things that are to be discussed in
a shared office.

• Prof. Dr. Samarjit Chakraborty for the collaboration and being my
office mate in the first two years of my PhD studies. Starting to
work with him was a very smooth dive into research, and also a
great pleasure.

• all my colleagues at TIK with whom I had lots of interesting discus-
sions, sometimes ending rather late and off-topic.

The work presented in this thesis was partly supported by the In-
novation Promotion Agency CTI/KTI through project number 5500.2.
This support is being gratefully acknowledged.

vi

Contents

1 Introduction 1
1.1 Embedded System Design 1
1.2 Contributions . 4
1.3 Overview . 5

2 Design Space Exploration of Embedded Systems 7
2.1 A Simple Example: Design Space Exploration of Cache Ar-

chitectures . 8
2.2 Abstraction Layers in Design Space Exploration 11
2.3 Design Evaluation . 13
2.4 Exploration Method . 14
2.5 Summary . 16

3 Design Evaluation 17
3.1 Example Systems . 18

3.1.1 Network Processor 18
3.1.2 Multiprocessor Platform MPARM 18

3.2 Performance Analysis . 19
3.3 Formal Performance Analysis 25

3.3.1 Event Models and Resource Capabilities 25
3.3.2 Analysing a Single Task 27
3.3.3 Multiple Streams on a Resource 30
3.3.4 Complex Systems with Multiple Resources 32
3.3.5 Adaptation for Design Space Exploration 36
3.3.6 Example System 1: Network Processor 38

3.4 Simulation-based Performance Analysis 39
3.4.1 Example System 1: Network Processor 40
3.4.2 Example System 2: Multiprocessor Platform 44

3.5 Comparison between Simulation and Formal Method . . . 45
3.5.1 Example System 1: Network Processor 45
3.5.2 Example System 2: Multiprocessor Platform 59
3.5.3 Concluding Remarks 61

3.6 Combination of Simulation with Formal Method 63

viii Contents

3.6.1 Interfaces between Simulation and Formal Method 63
3.6.2 Benefits of hybrid approach 66
3.6.3 Example System 2: Multiprocessor Platform 66

3.7 Event Trace Generation . 70
3.7.1 Requirements and Quality Assessment 71
3.7.2 General Event Trace Generation 72
3.7.3 Implementation . 76
3.7.4 Results . 79

3.8 Summary . 82

4 Search Strategies 85
4.1 Multi-Objective Evolutionary Algorithms 86

4.1.1 Pareto dominance 87
4.1.2 Selection . 89
4.1.3 Variation . 92

4.2 Performance Indicators for Search Algorithms 95
4.2.1 Additive ε+-indicator 95
4.2.2 Multiplicative ε-indicator 96
4.2.3 Coverage Indicator 96
4.2.4 Hypervolume Indicator 97
4.2.5 Binary Hypervolume Indicator 98

4.3 Indicator-Based Evolutionary Algorithm 99
4.3.1 Motivation . 99
4.3.2 Preliminaries . 101
4.3.3 Indicator-Based Selection 101
4.3.4 Improving Robustness 107

4.4 Summary . 108

5 Tools and Applications 113
5.1 EXPO: A General Framework for Design Space Exploration 113

5.1.1 Software Architecture 114
5.1.2 PISA . 115

5.2 Applications of Framework 119
5.2.1 Packet Processors . 119

5.3 Different Search Algorithms 128
5.3.1 Benchmark Applications 128
5.3.2 Test Cases . 129

5.4 Summary . 142

6 Conclusions 143
6.1 Contributions . 143
6.2 Future Work . 144

Contents ix

A The EXPO Tool Framework 145
A.1 Interface Specification . 146
A.2 Interface Gene . 147
A.3 Interface Analyzer . 147

B Approximations for Real-Time Calculus 149

Bibliography 169

x Contents

1
Introduction

An embedded system can be defined as information-processing system
that is embedded into its environment. Embedded systems are mostly
dedicated to a certain application domain where they are customised to
fulfil special-purpose tasks. Examples for embedded systems are proces-
sors in cars, mobile phones, or even coffee machines.

Embedded systems are ubiquitous, there are surveys that report of
more than 50 embedded processors in an average household in the year
2002 (e.g. in [MSB+02]). Marwedel in [Mar03], and also Wolf in [Wol01]
report that high-end cars even contain more than 100 processors at the
beginning of the 21st century.

Designing an embedded system is a difficult task because the require-
ments change for every new system. The design flow has therefore to be
flexible and generic enough to cope with the requirements and design
constraints that a new design possibly imposes. The complexity of em-
bedded system design is aggravated by the lack of generally accepted
architectures, unlike in the domain of general purpose processors.

There are many different approaches to capture the embedded system
design flow. In the next section, we will discuss a few examples and try
to extract the principles common to all the methods.

1.1 Embedded System Design
Many design methods have been proposed and discussed over the last
few decades. For software development, there is the waterfall design

2 Chapter 1. Introduction

flow introduced by Royce [Boe88], in which the main design steps are
performed one after the other from high abstraction levels to lower ones,
starting from requirements, leading over architectural decisions and soft-
ware integration, to testing and maintenance of the developed software.
In this design model, there is only little feedback to the next-higher ab-
straction level. This top-down approach is ideal, but not realistic, because
most design projects involve several revisions.

This behaviour is better captured with the spiral design flow [Boe88],
where several versions of a system are built. Early versions are simple
in nature, where later systems are more and more complex. On each
design level, the design steps requirements, construction, and testing are
performed. A possible drawback of the spiral model is that it may take too
long, if too many spirals are performed (see [Wol01]). A design method
that is based on a first prototype construction which is then improved
in several iterations is called successive refinement design flow [Wol01].
The difference between these design flows lies in the point in time when
design steps are taken at what level of accuracy, but not in the design
steps itself.

Wolf identified 5 major steps embedded system design [Wol01]. These
are (1) the definition of requirements that can be functional as well as
non-functional, and (2) the specification of the system behaviour. The
specification serves as contract between the designers and the customers.
In step (3) the architecture design, the overall structure of the system is
designed, then it is partitioned into component blocks for hardware and
software parts. In this step, system-level design decisions are made, such
as allocation and binding of software blocks to hardware resources. The
work presented in this thesis helps the designer to make these decisions.
Step (4) deals with the design of the individual hardware and software
components, and finally the whole system is integrated and tested in step
(5).

Ernst proposes three main types of design tasks which can be identified
in all design flows for embedded systems in [Ern03]:

• component/subsystem interfacing

• system verification

• system optimisation and design space exploration

These steps can be identified in many design flows implemented by
commercial or academic methodologies. Examples are the SpecC de-
sign flow, COSYMA, the IMEC tool flow, Ptolemy II, and OCTOPUS
(see [Mar03] and references therein).

As an example, we look at the SpecC design flow. Starting from an
executable specification in SpecC, the next step performed in the SpecC

1.1. Embedded System Design 3

H
ie

ra
rc

h
ic

a
l

Im
p
le

m
e
n
ta

ti
o
n

Embedded System Requirements

Platform Function Platform Architecture

System Integration

Perf. & Power Analysis & Platform Conf.

Software Assembly Hardware Assembly

Communication Refinement

Communication Integration and Synthesis

Hier. RTL Design Plan.

D
e

s
ig

n

E
x
p

o
rt

S
o

C
P

la
tf

o
rm

C
o

n
fi
g
u

ra
ti
o

n

Synthesis, Place & Route

Hardware/Software Co-Verification

Emb. SW Integration

Simulink, UML, SystemC, C/C++, SDL S
p

e
c
if
y

H
ie

ra
rc

h
ic

a
l

Im
p
le

m
e
n
ta

ti
o
n

Embedded System Requirements

Platform Function Platform Architecture

System Integration

Perf. & Power Analysis & Platform Conf.

Software Assembly Hardware Assembly

Communication Refinement

Communication Integration and Synthesis

Hier. RTL Design Plan.

D
e

s
ig

n

E
x
p

o
rt

S
o

C
P

la
tf

o
rm

C
o

n
fi
g
u

ra
ti
o

n

Synthesis, Place & Route

Hardware/Software Co-Verification

Emb. SW Integration

Simulink, UML, SystemC, C/C++, SDL S
p

e
c
if
y

Fig. 1: Graphical representation of the design flow as developed within the SpeAC
project.

design flow [GZD+00] for embedded systems is an architecture explo-
ration. After this step, a chosen architecture with allocation, partitioning
and scheduling is validated.

The design flow proposed in the European project SpeAC is shown
in Figure 1. The design flow tackles different views of a design, namely a
module and a system view across various levels of abstraction. At the de-
sign specification, for instance UML, Matlab/Simulink, SDL, C/C++ can be
used separately or combined within one design. Afterwards SystemC can
be used for integrating heterogeneously specified modules into a single
simulation model. In Figure 1, also the steps at lower abstraction levels are
shown. In the design flow, refinement steps occur at all levels of abstrac-
tion. Here, too, there are design space exploration tasks to be solved, e.g.
at the platform configuration step, during the communication refinement,
but also at low levels of system synthesis and placement/routing.

As a result of this short survey, we can identify the design task of design
space exploration common to all proposed embedded system design flows.
This thesis exactly deals with issues related to this task and proposes new
models and methods for design space exploration. They should assist a
designer in finding a good design. The next chapter discusses the various
aspects of design space exploration and introduces a reader into the topic.
This thesis is based on the following journal publications, conference

4 Chapter 1. Introduction

papers, and book chapters: [CKT+03b], [KTZ06], [KTZ05b], [KBTZ04],
[CKT03a], [TCGK02a], [TCGK02b], [ZK04], [KPBT06], and [KT06].

1.2 Contributions
In this thesis, we present results that ease the task of design space explo-
ration for embedded systems. The main contributions are presented in
the following.

1. We describe a new, compositional performance evaluation method
for embedded systems. The new method combines existing ap-
proaches for system-level performance analysis, namely a formal
method and a simulation-based approach. To enable this combina-
tion, we define the interfaces needed between the different perfor-
mance evaluation methods. As a core of the approach, we propose
a method to generate simulation stimuli from analytical models. In
addition, we introduce a measure to assess the quality of a gener-
ated simulation trace with respect to its analytical description. In
order to show the applicability of this new approach for perfor-
mance evaluation, we implemented an example system for such
a combined performance evaluation consisting of a multiproces-
sor system-on-a-chip. It is based on existing models for simulation
and analytical models extended by the needed interfaces for the
combination, including an implementation of the simulation trace
generation algorithm. This combined model was then used for a
case study of an application running on a multiprocessor system.

2. A new evolutionary algorithm IBEA is presented that directly in-
corporates user preferences. Most popular evolutionary search algo-
rithms incorporate methods to quickly find solutions close to the op-
timal solution (fast convergence), but also to keep diversity among
the solutions. These methods are built-in and cannot be changed
by the user. Our new algorithm is more generic in the sense that it
allows the user to explicitly advise the algorithm what optimisation
goal it should pursue. Furthermore, the new algorithm is easy to use,
as it reduces the number of parameters that have to be set by a user
compared to other existing black-box optimisation algorithms. This
is achieved by an adaptive scaling such that the algorithm works
independently of the objective values given to the algorithm. We
discuss the performance of the new algorithm IBEA compared with
many other state-of-the-art multi-objective optimisers on several
test problems.

1.3. Overview 5

3. We present a generic software framework to perform design space
exploration runs. Using the framework, only a few problem-specific
parts have to be implemented to explore a certain design space, other
parts can be reused. The tool implements the PISA interface such
that many popular multi-objective optimisers can easily be reused
without any implementation effort. Like this, the development time
for a new design space exploration tool that matches a user’s needs
is shortened and the developers can concentrate on the problem-
specific parts of the exploration tool. It offers the user a convenient
graphical user interface and is completely written in Java. We used
the framework for two example design space exploration problems,
namely a cache optimisation example and for packet processor ar-
chitectures. The former was used to introduce the framework and
to discuss the main components of a design space exploration prob-
lem. The packet processor example is more involved and was used
as benchmark application to evaluate the performance of different
randomised search algorithms for a real-world application.

1.3 Overview
In the following, we give an overview over the contents of this thesis:

• Chapter 2 gives an overview over the various topics that are in-
volved in the process of design space exploration. We give a clas-
sification of existing approaches to design space exploration based
on the abstraction level and the exploration method used.

• Chapter 3 covers performance evaluation methods for single de-
sign points in the space of possible designs. We investigate a formal
method for system-level performance analysis, show how it can be
adapted to be used for design space exploration. We then compare
the formal method with a simulation-based approach and finally
propose a new performance evaluation method that combines sim-
ulation with the formal method.

• Chapter 4 discusses the different search strategies that exist for
multi-objective optimisation problems. Further we propose a new
evolutionary algorithm that directly incorporates user preferences.
The performance of the new search algorithm is compared to other
established algorithms in a case study.

• Chapter 5 describes tools and applications of the work presented
in the previous chapters. It gives an overview over the EXPO tool

6 Chapter 1. Introduction

framework, a generic framework for design space exploration that
was used for several exploration problems presented in this thesis.
Further, the tool was used as a benchmark problem for evolutionary
algorithms and the results of a case study are also presented in this
chapter.

• Chapter 6 concludes the thesis with an outlook for future research
and a summary of the contributions.

2
Design Space

Exploration of
Embedded Systems

Design space exploration is a central step in embedded system de-
sign [Ern98]. There may be many different design alternatives that im-
plement a given system specification. These different implementations
have to be explored and judged for their quality such that a designer
can make a decision which system alternative to implement. Therefore,
during the exploration phase, many design alternatives have to be eval-
uated. Design alternatives may consist of different hardware component
allocations, different mappings of software tasks to resources, different
scheduling policies implemented on shared resources as well as lower
level design parameters such as clock frequency or bus widths.

In actual design flows presented by Marwedel in [Mar03], design space
exploration can be found embedded into the design process. For example,
in the SpecC design flow [GZD+00], design space exploration is performed
after having an executable specification to find an appropriate allocation,
partitioning and scheduling. After the exploration, in the SpecC design
flow design validation is performed.

The IMEC tool flow also involves design space exploration at several
stages as part of the design flow. During the exploration phase, the map-
ping of tasks to processors is optimised [WMY+01] as well as data transfer

8 Chapter 2. Design Space Exploration of Embedded Systems

and data storage [CdGS98].
Design space exploration is often a problem involving multiple crite-

ria. The design alternatives normally represent a trade-off between differ-
ent optimisation goals. For instance, if we consider cost and performance
as optimisation goals, a processor that can run at higher clock speeds is
usually more expensive.

In the following sections, we will introduce a simple example for
design space exploration that will guide us through the remainder of
this chapter, categorise existing approaches to design space exploration
according to their abstraction layer, and cover the different aspects that
play a role in the design space exploration process for embedded systems.

2.1 A Simple Example: Design Space Explo-
ration of Cache Architectures

Before we describe the components needed for design space exploration
in detail, let us consider a simple example application – the design of
a cache subsystem – that will be used throughout the remainder of this
chapter for illustration purposes. Note, that it is not the purpose of the
example to present any new results in cache optimisation.

Suppose we want to optimise the architecture of a cache for a prede-
fined benchmark application. Restricting ourselves to Level 1 data caches
only, the design choices include the cache size, the associativity level, the
block size, and the replacement strategy. The goal is to identify a cache
architecture that (1) maximises the overall computing performance with
respect to the benchmark under consideration and (2) minimises the chip
area needed to implement the cache in silicon.

Nr. Parameter Range
1 # of cache lines 2k, with k = 6 . . . 14
2 Block size 2k Bytes, with k = 3 . . . 7
3 Associativity 2k, with k = 0 . . . 5
4 Replacement strategy LRU or FIFO

Tab. 1: Parameters determining a cache architecture.

In Table 1, all parameters and possible values for the cache architec-
ture are given. A design point is therefore determined by three integer
values and a Boolean value. The integers denote the number of cache
lines, the cache block size and the cache associativity; the Boolean value
encodes the replacement strategy: false denotes FIFO (first-in-first-out),

2.1. A Simple Example: Design Space Exploration of Cache Architectures 9

....

....

....

cache block size

number of
cache lines

cache
associativity

1

2

3

4
replacement
strategy

Fig. 2: Illustration of the considered design choices for an L1 data cache architecture.

true denotes LRU (least recently used). Figure 2 graphically depicts the
design parameters. The values for the number of cache lines, block size
and associativity have to be powers of 2, due to restrictions in the tools
used for evaluation of the caches.

The first objective according to which the cache parameters are to
be optimised is the CPI (cycles per instruction) achieved for a sample
benchmark application, and the second objective is the chip area needed
to implement the cache on silicon. To estimate the corresponding objective
values, we used two tools, namely sim-outorder of SimpleScalar [BA97]
and CACTI [SJ01] provided by Compaq. The first tool served to estimate
the CPI for the benchmark compress95 running on the plain text version
of the GNU public license as application workload. The smaller the CPI
for compress95 for a particular solution, the better is this solution for
this objective. The second tool calculated an estimate for the silicon area
needed to implement the cache. The smaller the area, the better is the
cache for the area objective.

The cache subsystem design space exploration example was per-
formed using the EXPO tool framework described in Chapter 5 of this
thesis. We used the randomised search algorithm SPEA2 [ZLT02] to per-
form the optimisation.

The design space with all solutions is shown in Figure 3. These design
points have been generated using exhaustive search in order to compare
the heuristic search with the Pareto front of optimal solutions. The Pareto

10 Chapter 2. Design Space Exploration of Embedded Systems

0.52

0.53

0.54

0.55

0.56

0.57

0.58

0.59

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70

silicon area [cm^2]

C
P

I
fo

r
c
o

m
p

re
s
s
9
5

40 generations

all design points

Fig. 3: All 540 possible design points determined using exhaustive search and the design
points found by the multi-objective search algorithm SPEA2 after 40 generations.

front denotes the set of solutions that are Pareto-optimal, i.e. the solutions
that are not dominated by any other solution in the solution set. A solution
A dominates another solution B, if A is at least as good as B in all criteria
and strictly better in at least one criterion.

The front of non-dominated solutions found for the cache example
with SPEA2 after a typical optimisation run with 40 generation for a
population size of 6 solutions is marked with circles. The details of the
solutions in the population after 40 generations are given in Table 2.

Although the cache design space exploration problem is simple in na-
ture, one can make some observations which also hold for more involved
exploration problems. The two objectives, namely the minimisation of
the silicon area and the minimisation of the CPI, are conflicting, resulting
in an area vs. performance trade-off. This results in the fact that there
is not a single optimal solution, but a front of Pareto-optimal solutions.
All points on this front represent different promising designs, leaving the
final choice for the design of the cache up to the designer’s preference.

The reduction of the problem to a single-objective optimisation prob-
lem, e.g., using a weighted-sum approach is difficult already for this
simple example, because it represents a true multi-objective problem. It is
not at all clear how to relate area to performance, which would be needed
for the weighted-sum approach.

Figure 4 shows how the design space exploration is embedded into a

2.2. Abstraction Layers in Design Space Exploration 11

No. CPI Area Design Parameters
1 0.5774 0.001311 LRU 27 cache lines block size 8 d. m.
2 0.5743 0.001362 LRU 27 cache lines block size 8 2 sets
3 0.5622 0.022509 FIFO 28 cache lines block size 64 8 sets
4 0.5725 0.002344 LRU 27 cache lines block size 16 2 sets
5 0.5488 0.024018 LRU 210 cache lines block size 32 8 sets
6 0.5319 0.027122 LRU 210 cache lines block size 32 16 sets
7 0.5666 0.002898 LRU 26 cache lines block size 32 2 sets
8 0.5653 0.003629 FIFO 26 cache lines block size 64 d. m.
9 0.5307 0.044902 FIFO 210 cache lines block size 64 8 sets

10 0.5626 0.004907 LRU 26 cache lines block size 64 2 sets

Tab. 2: Details of 10 non-dominated solutions for the simple example of a cache explo-
ration found after a typical design space exploration run. These solutions are
marked with circles in Figure 3.

hierarchical design trajectory for embedded systems. If we consider our
example to be on the current abstraction level, the evaluation of a solution
leads to requirements for sub-components on the lower level, e.g. the
area on silicon that is available for the implementation in our example.
In addition, the evaluation provides properties of the component to the
higher level of abstraction. The various abstraction layers for design space
exploration are discussed in the next section. In the later sections, we
use the cache example to introduce the building blocks for design space
exploration.

2.2 Abstraction Layers in Design Space Explo-
ration

There are many existing approaches that make use of an automated or
semi-automated design space exploration in embedded systems design.
Exploration of implementation alternatives happens at various levels of
abstraction in the design. These various layers are described next and
existing design space exploration approaches are classified accordingly:

• Logic Design and High Level Synthesis: Here, one is concerned with
the synthesis of digital logic starting from either a register-transfer
specification or a more general imperative program. The manual de-
sign of dedicated computing units is also included. Typical design
choices concern speed vs. implementation area vs. energy consump-
tion, see e.g. [BBB01, CSH00].

12 Chapter 2. Design Space Exploration of Embedded Systems

Generation of
new design points

Estimation of
non-functional
properties

Design
Decision

properties of
sub-components

properties of
component

input stimuli and
requirements for

component design

input stimuli and
constraints for

sub-components

current level
of abstraction

lower level
of abstraction

higher level
of abstraction

Fig. 4: Embedding of exploration in a hierarchical design trajectory for embedded sys-
tems.

• Programmable Architecture: The programmable architecture layer
contains all aspects below the instruction set. For example, it con-
tains the instruction set definition, the microprocessor architecture
in terms of instruction level parallelism, the cache and memory
structures. There are numerous examples of exploration on this
level of abstraction; they concern different aspects such as caches and
memories [GG03, SC99, SCK04], or the whole processor architecture,
especially the functional unit selection [HHBS99, PSZ03, RCR04].

• Software Compilation: This layer comprises all ingredients of the soft-
ware development process for a single task, such as code synthesis
from a model-based design or a high-level program specification.
Within the corresponding compiler, possible exploration tasks are
code size vs. execution speed vs. energy consumption. There are
attempts to perform a cross-layer exploration with the underlying
processor architecture, see e.g. [ZTB00b, APS04].

• Task Level: On the task level, the whole application is partitioned
into tasks and threads. Therefore, the task level refers to operating
system issues like scheduling, memory management and arbitration
of shared resources. Typical trade-offs in choosing the scheduling
and arbitration methods are energy consumption vs. average case
vs. worst case timing behaviour, see e.g. [BBTZ01].

• Distributed Operation: Finally, there exist applications that run on
distributed resources. The corresponding layer contains the hard-

2.3. Design Evaluation 13

ware aspects of distributed operation (such as the design of com-
munication networks) as well as methods of distributed scheduling
and arbitration. On this level of abstraction, which is sometimes
called system level, one is interested in the composition of the
whole system that consists of various computing and communi-
cation resources. System-level design not only refers to the struc-
ture of the system, but also involves the mapping of application
to the architecture and the necessary (distributed) scheduling and
arbitration methods. This highest level of abstraction seems to be
especially suited for exploration methods, see e.g. results on the
communication infrastructure [LRD04, ETZ00], on distributed sys-
tems [ABD+04] or multiprocessor systems and systems-on-chip, e.g.
[ARS98, GVNG98, GVH02, BTT98, TCGK02a].

The above approaches combine several important aspects such as the
integration of the exploration into the whole design process, the specific
estimation method used to evaluate the properties of design points and
finally the method that is used to perform the actual exploration.

2.3 Design Evaluation
There are a lot of different criteria for which one could try to optimise an
embedded system. Besides the “classic” non-functional properties, such
as power consumption, silicon area or resource utilisation, the implemen-
tation cost or manufacturability are also examples for design criteria.

Common to all the criteria is the need for a tool to evaluate a design
point in the design space. Based on the representation of the solution
such a tool captures the quality of a design (cf. Figure 5). The quality
of a property can normally be expressed using a number. In that case,
two design points can be compared for this property and a designer can
immediately see, which one of the two design points is better with respect
to the design criterion in question, based on this number.

Dependent on the level of abstraction, the evaluation tools are based on
formal methods, simulation or even measurements. One requirement for
the design evaluation of a single design point in design space exploration
is evaluation time. If the evaluation for a single design point takes too
much time, the method is prohibitive for exploring a huge design space.
Nevertheless, it may be possible to use the evaluation method in a later
phase for a pruned design space.

Performance evaluation of embedded systems is covered in more
detail in Chapter 3. A formal performance evaluation method is intro-
duced and compared with an existing established performance evaluation

14 Chapter 2. Design Space Exploration of Embedded Systems

design

evaluation

design

evaluation

representation of

design point

system

properties

Fig. 5: A design evaluation method takes the representation of a design point as input
and provides the system properties as output.

method, namely simulation. We show that in order to speed up the eval-
uation time, we can use approximations for the formal method. Further,
we propose a new evaluation method that combines simulation-based
approaches with analytical methods.

For the cache example introduced in Section 2.1 we use two different
tools to assess the performance number for a given solution. On one
hand side, we use SimpleScalar [BA97], an instruction set simulator to
retrieve the cycles per instruction (CPI) for a benchmark application.
The evaluation of the cache architecture for CPI is therefore based on
simulation. On the other hand, to obtain the area in silicon needed to
implement the cache we use CACTI [SJ01], a tool that is based on formal
analysis.

2.4 Exploration Method
The existing approaches for design space exploration can also be clas-
sified in a way that is orthogonal to the abstraction layers, namely the
methods that are applied to perform the exploration itself. This way it
becomes apparent that the exploration process is largely independent of
the abstraction level.

If only a single objective needs to be taken into account in optimisation,
the design points are totally ordered by their objective value. Therefore,
there is a single optimal design (if all have different objective values).
The situation is different if multiple objectives are involved. In this case,
design points are only partially ordered, i.e. there is a set of incomparable,
optimal solutions. They reflect the trade-offs in the design. Optimality in
this case is usually defined using the concept of Pareto-dominance: A
design point dominates another one if it is equal or better in all criteria
and strictly better in at least one. In a set of design points, those are
called Pareto-optimal which are not dominated by any other. Using this
notion, available approaches to the exploration of design spaces can be
characterised as follows:

2.4. Exploration Method 15

1. Exploration by hand: The selection of design points is done by the
designer himself. The major focus is on efficient estimation of the
selected designs, e.g. [GVNG98].

2. Exhaustive Search: All design points in a specified region of the design
parameters are evaluated. Very often, this approach is combined
with local optimisation in one or several design parameters in order
to reduce the size of the design space, see e.g. [SC99, ZSXS03].

3. Reduction to a Single Objective: For design space exploration with
multiple conflicting criteria, there are several approaches available
that reduce the problem to a set of single criterion problems. To
this end, manual or exhaustive sampling is done in one (or several)
directions of the search space and a constraint optimisation, e.g.
iterative improvement or analytic methods is done in the other, see
e.g. [CSH00, GG03, LRD04, RCR04].

4. Black-box Randomised Search: The design space is sampled and
searched via a black-box optimisation approach, i.e. new design
points are generated based on the information gathered so far and
by defining an appropriate neighbourhood function (variation op-
erator). The properties of these new design points are estimated
which increases the available information about the design space.
Examples of sampling and search strategies used are Pareto Simu-
lated Annealing [CJ98] and Pareto Tabu Search, e.g. [APS04, PSZ03],
evolutionary multi-objective optimisation [ABD+04, BTT98, ETZ00,
TCGK02b], or Monte Carlo methods improved by statistical esti-
mation of bounds, e.g. [BBB01]. These black box optimisations are
often combined with local search methods that optimise certain de-
sign parameters or structures, e.g. [BBTZ01].

5. Problem-dependent Approaches: In addition to the above classifica-
tion, one can find also a close integration of the exploration with
a problem-dependent characterisation of the design space. Several
possibilities have been investigated so far:

• Use the parameter independence in order to prune the design
space, e.g. [GVH02, PG02].

• Restrict the search to promising regions of design space, e.g.
[HHBS99].

• Investigate the structure of the Pareto-optimal set of design
points, for example using hierarchical composition of sub-
component exploration and filtering [ARS98, SCK04].

16 Chapter 2. Design Space Exploration of Embedded Systems

• Explicitly model the design space, use an appropriate abstrac-
tion, derive a formal characterisation by symbolic techniques
and use pruning techniques, e.g. [NSK02].

Finally, usually an exhaustive search or a black-box randomised
search is carried out for those parts of the optimisation that are
inaccessible for tailored techniques.

From the above classification, one can state that most of the above
approaches use randomised search techniques one way or the other, at
least for the solution of subproblems. This observation does not hold for
the exploration by hand or the exhaustive search, but these methods are
only feasible for small design spaces with a few choices of the design
parameters. Even in case of a reduction to a single objective or in the
case of problem-dependent approaches, sub-optimisation tasks need to be
solved, either single objective or multi-objective and randomised (black-
box) search techniques are applied.

2.5 Summary
In this chapter, we introduced design space exploration as a central step
in embedded system design. The main building blocks for a design space
exploration are the problem specification, the design representation, the
evaluation of a single design point and the exploration method. We re-
vised existing approaches and classified them according to the abstraction
layer and to the exploration method used.

Based on the concepts introduced in this chapter, the remainder of this
thesis further investigates issues related to design space exploration. In
the following, Chapter 3 is dedicated to performance evaluation of single
design points. In Chapter 4, we will introduce evolutionary algorithms
as exploration method. The performance of different algorithms is inves-
tigated and a new evolutionary algorithm is proposed. In Chapter 5, we
present a tool framework for design space exploration and applications
thereof.

3
Design Evaluation

The evaluation of design points is one of the building blocks for design
space exploration of embedded systems. There are many different prop-
erties of an embedded system a designer can be interested in. In [VG01],
the authors present a long list of such potential design metrics, including
power consumption, size, unit cost and performance for given applica-
tions.

In this chapter, we look at performance analysis techniques for embed-
ded systems. First, we discuss existing approaches in Section 3.2. We then
introduce Real-Time Calculus as formal method to assess performance
numbers of a system in Section 3.3. Next, we briefly introduce simulation-
based approaches for performance evaluation. These simulation-based
approaches are then used for a comparative study with Real-Time Calcu-
lus.

After revising these existing approaches and discussing their use for
design space exploration, we present the main results achieved in this
work that are related to performance evaluation. Namely, we introduce a
new approach to performance analysis, which combines Real-Time Calcu-
lus with a simulation-based approach in Section 3.6. Further, the necessary
interfaces for this combination are described and we present a case study
based on a multiprocessor platform. In the last section of this chapter, we
look more carefully at the interface needed to couple Real-Time Calcu-
lus with simulation, and propose a generator for simulation traces that
comply with a formal load specification.

Throughout this chapter, we use two example embedded systems. The

18 Chapter 3. Design Evaluation

example system 1 is a hypothetical network processor architecture which
is built around a PowerPC processor. The example system 2 consists of
an architecture with multiple ARM cores connected through a parame-
terisable interconnection network. Both example systems were modelled
with analytical techniques as well as for simulation and are introduced in
the next section.

3.1 Example Systems
3.1.1 Network Processor

Figure 6 shows a hypothetical network processor architecture built out
of blocks from an existing core library [IBMa, IBMb]. In the figure, PPC
refers to the PowerPC 440 core, and PLB and OPB refer to two buses
called the Processor Local Bus and the On-chip Peripheral Bus provided
by the CoreConnect [IBMb] architecture for interconnecting cores and
custom logic. For our example, we assume a simple network packet for-
warding application running on this architecture. The numbers on the
arrows in this figure either indicate actions that are to be performed by
the different blocks as a packet flows through the architecture, and they
are ordered according to the numbering. The system is described in more
detail in [Wor01].

From Figure 6 it is possible to construct a task graph considering the
appropriate packet transfers from one resource to another. This task graph
together with a model for the hardware resources can then be used for
formal analysis as we will see later in this chapter. With this analysis
we can compute the load on the different buses (such as the OPB and
the PLB), the on-chip memory requirement of this architecture to store
the buffered packets in front of each resource, and the end-to-end packet
delays.

3.1.2 Multiprocessor Platform MPARM

MPARM is a multi-processor virtual platform [LAB+04]. Its purpose is
the system-level analysis of design tradeoffs in the usage of different
processors, interconnects, memory hierarchies and other devices.

It consists of a parameterisable number of ARM7 processor cores and
an AMBA interconnection network [AMB]. The platform includes several
memory devices, which can be used as private or shared memories (cf.
Figure 7).

For the examples presented in this chapter, we investigated 2 differ-
ent applications running on this system architecture. First, we looked
at a pipelined matrix multiplication application with 8 pipeline stages

3.2. Performance Analysis 19

PPC SDRAM

PLB

OPB

EMAC EMAC

Bridge

1

3

4 2

5

6

7
8

9

10
11

12

Packet in Packet out

Separate read

and write busSideband

signals

Fig. 6: A system-level model of a network processor. The figure shows the path that
a packet follows through the architecture. The numbers on the arrows indicate
the different actions involved (which are explained in Table 3) while the packet
travels through the architecture, and specify the order in which these actions are
executed.

mapped on 4 processor cores. We investigated 2 different scenarios with
a different mapping of the tasks to the computing resources as shown in
Figure 8. In one mapping, we tried to balance the load among the proces-
sors, for the other mapping, the goal was to minimise the communication
needed between the processors.

Second, we analysed a GSM encoder application mapped to 2 proces-
sors. The application was partitioned into 2 tasks and the tasks commu-
nicate through a FIFO queue located in the shared memory. This second
example will be used for the case study of the new hybrid approach for
performance analysis in Section 3.6.

3.2 Performance Analysis
Recently, many processing devices for embedded systems are designed as
systems-on-chip (SoC) [Wol01]. Using this design paradigm, a complete

20 Chapter 3. Design Evaluation

Step Action
1 Sideband signal from EMAC to bridge (indicating that a new

packet has arrived)
2 Bridge gets a ”buffer descriptor” (BD) from the SDRAM
3 Packet is sent from EMAC to bridge over the OPB
4 Packet is sent from bridge to SDRAM over the PLB write bus
5 Sideband signal from Bridge to PPC (indicating that the new

packet has been stored)
6 CPU get buffer descriptor over the PLB read bus
7 CPU gets packet header over the PLB read bus
8 CPU processes header, and stores it back to SDRAM over the PLB

write bus
9 Sideband signal from bridge to CPU (indicating that the packet

can be sent out)
10 Bridge gets buffer descriptor over the PLB read bus
11 Bridge gets packet over the PLB read bus
12 Packet sent out to specified a EMAC over the OPB

Tab. 3: Sequence of actions for every processed packet in the architecture model shown
in Figure 6.

Communication Architecture

Private
Memory

Private
Memory

Shared
Memory

Semaphore
Slave

Slave Port Slave Port Slave Port Slave Port

Snoop Port
Slave Port

Master PortMaster Port Snoop Port

ARM7ARM7

Interrupt
Slave

Fig. 7: MPARM platform architecture.

3.2. Performance Analysis 21

CPU0 CPU1 CPU2 CPU3

Scenario 2Scenario 1

CPU0 CPU1 CPU2 CPU3

0

1
2

3 4

5

6

7

0

1

2

3

4

5

6

7

Fig. 8: Mapping of the matrix multiplication tasks T0–T7 to the 4 processors for the two
scenarios discussed in the example.

system consisting of computing, storage and communication resources
is integrated on the same chip. Such a system may consist of several IP
cores and dedicated hardware, as the Cell processor announced recently
by Sony, IBM and Toshiba [PAB+05].

The complexity of these SoC designs, coupled with issues like short
time-to-market and low cost, have led to new design paradigms such
as platform-based design [KMN+00]. These are based on the concept of
reuse at several levels of abstraction, where designers rely on the use of
intellectual property blocks or cores from some library (such as the IBM
Blue Logic Core Library [IBMa]), or on cores provided by a third-party
vendor. Since such cores are already pre-designed and verified, a designer
can now concentrate on the overall system rather than the individual
components, and also reduce the number of steps required to translate a
system-level design into a final product.

Analysing such system platforms to verify timing and other system
properties pose a major challenge because they depend on the interfaces
and properties (such as arbitration schemes on buses) of the different
cores, and also on the RTOS and other components of the software plat-
form. The problem gets aggravated in the context of embedded systems
because of their generally heterogeneous architecture, where different
scheduling and resource sharing strategies are used on the different buses
and processors.

Performance evaluation of embedded systems can be broadly divided
in two main areas: simulation-based approaches and formal methods.
Most of the existing approaches rely on simulation (for example VCC
[VCC] and Seamless [Sea]), and hence suffer from the problems of high
running time, incomplete coverage and failure to identify corner cases.
The last two problems are aggravated by the fact that in many cases system
integrators do not have a full understanding of the functionality and
the interfaces of the different cores, but only understand their high-level
input/output behaviour. Therefore, if guarantees on system properties are

22 Chapter 3. Design Evaluation

required then some form of static formal analysis is inevitable.
The trend for simulation-based performance analysis goes to full sys-

tem simulation. Tools as Mentor Graphics’ Seamless [Sea] support the
co-simulation of complete hardware-software systems. In order to cope
with the high simulation times caused by the increased complexity of the
designed systems, simulation is used also on higher levels of abstraction
in early design phases.

In [CB02] a modelling framework is presented which is composed
of independent application, system and traffic models. The application
is modelled using the Click modular router from MIT [KMC+00]. Click
consists of a collection of software modules for describing various router
functionality. Such modules in Click are called elements, and by putting
together different elements in the form of a graph (which is called a
configuration) it is possible to construct IP routers, firewalls, QoS routers,
etc.

The framework in [CB02] is based on compiling Click modules for
the Alpha ISA [Alp92]. The architecture to be evaluated is simulated
using SimpleScalar [BA97] and it implements the Alpha instruction set.
The compiled Click modules are then executed on this architecture. By
simulating this execution using different traffic traces, the profiled code
yields various information such as instruction count, details regarding
cache behaviour, etc. These are then used to compute various performance
metrics for the architecture being evaluated, related to packet latency,
bandwidth and resource utilisation. For elements which do not have any
software implementation (such as dedicated hardware units for header
parsing) and can not be simulated, the profile and external dependencies
need to be provided manually by the user.

In contrast to this approach, the work done in [Wor01] models an
architecture in SystemC [GLMS02]. This work mostly focuses on the com-
munication subsystem and the memory organisation of an architecture.
The models are then simulated on packet traces and performance metrics
such as bus utilisation, memory fill levels, and packet delays are evalu-
ated. This work forms the basis of the simulation results that we use in
this chapter and further details on it are given in Section 3.4.

The MPSoC simulation platform described in [MAS+05] combines
a cycle-accurate simulation of a parameterisable communication infras-
tructure with instruction set simulators for the processing elements and
therefore represents a framework that allows us to simulate complete em-
bedded systems consisting of software and hardware. In contrast to the
approaches presented in [Wor01] and [CB02] this framework can be used
to evaluate both communication and computation parts of an embedded
system.

Besides the simulation-based performance evaluation methods, for-

3.2. Performance Analysis 23

mal methods are emerging that enable the analysis of whole systems
using holistic [PEP05] and compositional approaches. In particular, the
system can be analysed using models of the individual components that
can be later composed to system models that capture the complete sys-
tem [RJE03, HHJ+05].

Especially for the domain of network processors, which is the appli-
cation domain for the first example used in this chapter, an analytical
performance model is considered in [FW02]. Here the different compo-
nents that make up the architecture, and the interconnection among these
components (the so called architecture template) is fixed. The design deci-
sions that are to be made in deriving a concrete architecture from such a
template, consist of choosing the values of the various parameters such
as the bus width, cache sizes, etc. The architecture considered consist of a
number of multi-threaded processors organised in clusters. Each cluster
consists of a number of processors, each having its own cache, and the
cluster communicates with an off-chip memory using its own memory
interface. The parameters that can be changed are the number of threads
running in each processor, the cache sizes, the number of processors in
each cluster, the number of clusters in the network processor, the width of
the memory channels, etc. For evaluating a set of parameters, an analyti-
cal model for multi-threaded processors proposed by Agarwal [Aga92] is
used. Most of this work can be viewed as a model for the cache/memory
subsystem of a network processor architecture. The analytical model is
then evaluated on a benchmark workload [WF00] consisting of a mix
of header-processing and payload-processing applications. For each ap-
plication, properties such as load and store instruction frequencies and
instruction and data cache miss rates are measured using processor and
cache simulators. These values are then used to evaluate an architecture
in terms of its processing power per unit chip area.

A general approach to timing analysis for heterogeneous systems was
presented in [RE02] and [RZJE02]. It is based on identifying architectural
components for which analysis methods are already known in the litera-
ture, and then combining these to obtain a compositional description of
the complex system-level timing behaviour. The main contribution of this
work is a method to adapt outgoing event streams from one component to
match the input event model of another component which is required to
process this outgoing stream. This gives a means for formally composing
different architectural components and reasoning about the behaviour of
the entire system.

The main drawback of this approach is that it can only accommodate
standard event models like purely periodic, periodic with jitter, periodic
with bursts, and sporadic. In practice, the event streams involved in a sys-
tem usually do not conform to any of these standard models. But while

24 Chapter 3. Design Evaluation

analysing such systems, these streams are approximated by some stan-
dard model which minimises the error. This introduces several modelling
complexities, and when worst case bounds for a system are required,
such approximations using standard event models give overly conserva-
tive bounds. These analytical methods are embedded into the SymTA/S
tool, described in [HHJ+05].

The analytical model [TCGK02a, TCGK02b] that is discussed in more
detail in Section 3.3 and used for the comparative study in Section 3.5 uses
a model for both the architecture and the traffic traces on which the ar-
chitecture is evaluated. In contrast to the work in [FW02] the architecture
layout or the topology in this case is not fixed. Therefore, different com-
binations of processors, buses and their interconnection can be modelled
and evaluated.

Actually, there is no sharp division into simulation-based approaches
and formal methods for system-level analysis. There exist approaches
that abstract communication internals in system simulation and use
transaction-level modelling in SystemC [CG03]. Lahiri et al. present a
combined approach to communication analysis which uses simulation
for parameter extraction and then a formal method for fast performance
analysis [LRD04]. Bobrek et al. also combine simulation with an analytical
method in [BPN+04], with focus on the analysis of shared resource con-
tention. They simulate parallel execution of threads and record accesses to
shared resources, while a formal analysis model is then used to determine
the adjustment of the timing caused by the shared resource contention.

The formal methods used for design space exploration throughout
this thesis is introduced in Section 3.3. In Section 3.4, we will revise ex-
isting simulation-based approaches that were used for the case studies
presented in this thesis. Results obtained by these simulation-based ap-
proaches are compared with the results obtained by the system-level
formal performance analysis model in Section 3.5. For a realistic network
processor architecture, we consider performance metrics as the line speed
or the end-to-end throughput that can be supported by the architecture,
or the on-chip cache/memory requirement of the architecture. Finally, we
present a new approach to performance analysis in Section 3.6 that is
inspired by the idea of core-based design and represents a hybrid ap-
proach consisting of simulation-based and formal analysis components.
The hybrid approach is applied in a case study for multiprocessor SoC
performance evaluation. The automated way the interfaces between the
different domains are provided makes this new approach also suitable for
design space exploration.

3.3. Formal Performance Analysis 25

3.3 Formal Performance Analysis
In this section, we introduce Real-Time Calculus as a framework for for-
mal performance analysis of embedded systems.

3.3.1 Event Models and Resource Capabilities

We describe the event model which forms the basis of the formal per-
formance analysis framework presented in this section and also a means
of modelling the processing capability of resources which process event
streams. It may be noted that in contrast to previous work on the per-
formance evaluation of distributed embedded systems which relies on
statistical bounds (see for example [KM98]) we are interested in analysing
architectures and deriving worst-case bounds on system properties like
response times, on-chip memory requirements and loads on various com-
ponents. We also show how standard event models such as periodic or
periodic with jitter can be represented by our event model.

Event models. For a given event stream, let R(t) denote the number
of events that arrive in the time interval [0, t]. Further, assume that the
number of events arriving within any interval of time is bounded above
by a right-continuous sub-additive function called the upper arrival curve,
denoted by αu. Similarly, a lower bound on the number of events arriving
is given by a lower arrival curve αl. R, αu and αl are related by the following
inequality:

αl(t − s) ≤ R(t) − R(s) ≤ αu(t − s), ∀0 ≤ s ≤ t (3.1)

Therefore, αl(∆) and αu(∆) can be interpreted as the minimum and
maximum number of events arriving within any time interval of length
∆. Any standard event model can be represented in our model by an
appropriate choice of αl and αu. For example, a periodic event stream
with period p can be represented by an αl and αu, both of which are
staircase functions of step width p and height 1, with αl(t) = 0 for all t < p
and αu(t) = 1 for all t < p. This is because within any time interval of
length less than p, the minimum number of events that can be seen is
zero, and within any time interval of length p+, the minimum number of
events that can be seen is equal to one. Similarly, the maximum number
of events that can be seen within any time interval of length p and p+ is
one and two respectively. See Figure 9(a) for a graphical representation of
the arrival curves for a periodic event stream.

Following the same reasoning, the class of event streams with period
p and jitter j can be represented by an upper and a lower arrival curve
of the form shown in Figure 9(b). Given any particular instance of such
a periodic with jitter event stream, the corresponding upper and lower

26 Chapter 3. Design Evaluation

arrival curves would lie within the arrival curves shown in Figure 9(b),
and therefore these curves represent the upper and lower bounds on the
maximum and minimum number of events that can arrive within any
time interval for any event stream with period p and jitter j.

p 2p p-j p+j

2j

pp

pp

pp

pp

pp

pp

pppp

pp

(a) (b)

events# events

Fig. 9: (a) Upper and lower arrival curves describing a purely periodic event stream
with period p. (b) Upper and lower arrival curves of the class of event streams
with period p and jitter j.

At the same time, given any finite length arbitrary event trace and a
real number ∆, it is possible to determine the values of αl(∆) and αu(∆)
corresponding to the event trace, by sliding a window of length∆ over the
trace and recording the minimum and maximum number of events lying
within the window respectively. The upper and the lower arrival curves
corresponding to the trace can be determined by following this procedure
for different values of ∆. The sliding window procedure is described in
more detail in Section 3.6 and is used for the combination of the different
approaches.

Processing capability. Similar to the upper and lower arrival curves,
we use βu and βl to denote upper and lower service curves of a resource with
the following interpretation. If C(t) denotes the number of processing units
(might be in terms of processor cycles, time units, etc.) available from the
resource over the time interval [0, t], then the following inequality holds.

βl(t − s) ≤ C(t) − C(s) ≤ βu(t − s), ∀0 ≤ s ≤ t. (3.2)

Hence, βu(∆) and βl(∆) give an upper and lower bound on the resource
capability over any time interval of length ∆.

There exist several possibilities to obtain the service curves describing
a resource:

3.3. Formal Performance Analysis 27

• They can be extracted from benchmark simulation runs, where sim-
ple workloads are processed by the resource.

• They can be obtained from data sheets describing the resource.

• They can be obtained from measurements of a real system.

3.3.2 Analysing a Single Task

Assume the scenario from Figure 10. In this figure, a processing element is
shown (circle on the right). It is associated with a buffer to store incoming
events waiting to be processed. On the processing element a task that
that has to be executed for each of the events is implemented. By this,
the computing capabilities of the resource are being modified. Further, an
event stream is given with the corresponding arrival curves denoting the
worst-case bounds for event arrivals. These events are stored in the buffer
if needed and processed by the processing element.

αl

αu

event stream f processing task

Fig. 10: Processing element executing a single task to process event stream f .

If we know the system from Figure 10, i.e. the upper and lower arrival
curves αu and αl, and in addition know the processing element’s comput-
ing capabilities described with service curves βu and βl, we can compute
the description of the event stream after being processed. We can also
compute the remaining service that can be offered by the resource after
the event stream has been processed. We denote the event stream leaving
the resource after being processed with arrival curves αu′ and αl′. We also
call these arrival curves “outgoing”. Similarly, we denote the comput-
ing capabilities remaining in the resource with service curves βu′ and βl′.
Figure 11 gives a graphical representation for the curve processing. The
curves can be related by the following expressions.

αl′(∆) = min{ inf
0≤µ≤∆

{sup
λ>0

{αl(µ + λ) − βu(λ)}
+βl(∆ − µ)}, βl(∆)} (3.3)

αu′(∆) = min{sup
λ>0

{ inf
0≤µ<λ+∆

{αu(µ) + βu(λ + ∆ − µ)}

28 Chapter 3. Design Evaluation

−βl(λ)}, βu(∆)} (3.4)

βl′(∆) = sup
0≤λ≤∆

{βl(λ) − αu(λ)} (3.5)

βu′(∆) = max{inf
λ>∆
{βu(λ) − αl(λ)}, 0} (3.6)

equations

(3.3)-(3.6)

Fig. 11: Simple processing node for arrival curves.

These results are based on generalising ideas from network calculus
as applied to the domain of communication networks (see [BT01] for
details), and hold specifically for infinite event streams that span over
time t = −∞ to t = +∞. Therefore, these are suited for modelling event
streams such as periodic, sporadic, etc., which do not have any specific
starting time (see also [CKT03a]). For modelling finite length event traces,
the relations used in [TCGK02a, TCGK02b] may be used.

Moreover, it is not only possible to compute the outgoing event stream
and the remaining resources for a given task, but also bounds on the delay
experienced and backlog of unprocessed events. Assume αl and αu be the
lower and upper arrival curves of an event stream entering a node whose
input service curves are given by βl and βu. Then the maximum delay
experienced by an event and the maximum number of backlogged events
from the stream waiting to be processed can be given by the following
inequalities.

delay ≤ sup
t≥0

{
inf{τ ≥ 0 : αu(t) ≤ βl(t + τ)}

}
(3.7)

backlog ≤ sup
t≥0
{αu(t) − βl(t)} (3.8)

3.3. Formal Performance Analysis 29

backlog

delay

αu(∆)

∆

β̄l(∆)

#
of

ev
en

ts

Fig. 12: Graphical representation of equations (3.7) and (3.8)

In Figure 12, a graphical interpretation of the Equations (3.7) and (3.8)
is given. The maximum delay corresponds to the maximum horizontal
distance between the upper arrival curve (αu) and the lower service curve
(βl), whereas the maximum backlog corresponds to the maximum vertical
distance between the two curves. For a physical interpretation of these
inequalities, we refer the reader to [BT01]. Lastly, if βu and βl′ are the initial
upper service curve and the lower remaining service curves of a resource,
then its long-term utilisation in the worst case can be given by:

utilisation = lim
∆→∞

βu(∆) − βl′(∆)
βu(∆)

(3.9)

In order to apply the equations (3.3)–(3.6) we have to make sure that
both, the arrival curves and the service curves use the same units. Often
the arrival curves describe the minimum and maximum number of events
in an interval ∆, but the service curve give bounds on the number of
processor cycles per time interval ∆. In order to be able to correctly use
the equations for remaining service and outgoing event stream, we have
to scale the input curves accordingly.

For event event stream or packet flow f , let wf be its worst-case per
event processing requirement on the resource, b f the best-case processing
requirement. From now on, we will assume wf and b f to be defined in time
units, i.e. the resource takes between b f and wf time units to process each

30 Chapter 3. Design Evaluation

event of the stream f . To take these different processing requirements into
account, we scale ᾱl

i and ᾱu
i appropriately before using Equations (3.3)–

(3.6). ᾱl(∆) and ᾱu(∆) denote lower and upper event arrival curves, in
other words, they give bounds on the number of events that can arrive in
any interval ∆. Hence we have,

αu = wf ᾱ
u, αl = b f ᾱ

l (3.10)

We scale the lower arrival curve with b f — and not wf or the average
execution requirement — to ensure that the resulting, scaled arrival curve
still represents a correct lower bound. Similarly, we scale the upper arrival
curve with wf . This procedure may introduce an error due to uncertainties
caused by the variable execution requirement, but it is conservative and
the resulting bounds are valid and safe. Using these scaled arrival curves,
we can now compute the remaining service curves as shown in Figure 13.

The outgoing arrival curves representing the processed event stream
can be computed using scaled service curves (as depicted in Figure 13):

β
u
= �βu′/b f �, β

l
=
βl′/wf � (3.11)

In [MKT04] and [Max05], Maxiaguine et al. present workload curves,
a further refinement of the scaling to reduce the error introduced and pro-
vide more accurate results. Workload curves capture variable execution
times of tasks more accurately than just using best-case and worst-case
execution times.

Now, we know how to calculate the outgoing event stream in form
of arrival curves and the remaining resources in form of service curves,
if we look at a single event stream for which a task has to be processed
on a single resource. Next, we will look at the case, where multiple event
streams have to be processed on the resource.

3.3.3 Multiple Streams on a Resource

If multiple event streams have to be processed by a resource, some sort
of scheduling is necessarily involved. Scheduling means that some mech-
anism has to decide which event stream should be served at a certain
point in time. In the next paragraphs we will have a closer look at a
priority-based scheduling scheme.

Let us assume that there are n event streams entering a resource whose
processing capability is bounded by the service curves βl and βu. Each
event stream i is constrained by the arrival curves ᾱl

i and ᾱu
i and let the

streams be ordered according to their priorities, i.e. stream 1 has the
highest priority and stream n the lowest.

In the case of static priority scheduling, the resource processes the
event streams in the order of decreasing priority, and the resulting arrival

3.3. Formal Performance Analysis 31

equations

(3.3)-(3.6)

equations

(3.10)

equations

(3.11)

equations

(3.3)-(3.6)

Fig. 13: Curve processing including scaling of arrival and service curves.

and service curves are computed using Equations (3.3)–(3.6). For the event
stream 1, the service curves of the unloaded resource serve as an input.
For the ith event stream, the input service curve is equal to the remaining
service curve after processing the (i − 1)th stream, for i ≥ 2. This can be
formally stated as follows: βu

1 = β
u, βl

1 = β
l, βu

i = β
u′
i−1, β

l
i = β

l′
i−1, i = 2, . . . , n,

where βu′
i−1 and βl′

i−1 for i = 2, . . . , n are determined from βu
i−1, βl

i−1, αu
i−1 and

αl
i−1 by applying Equations (3.5) and (3.6). Lastly, the remaining service

curve after processing all the event streams is given as follows: βu′ =
βu

n
′, βl′ = βl

n
′. This can be used to process other event streams, possibly

using a different scheduling discipline, in a hierarchical manner.

If other scheduling policies (such as EDF, GPS) or arbitration schemes
in case of communication resources (such as TDMA) should be used, this
results in a changed arrangement of the single processing nodes compared
to the one shown for priority-based scheduling in Figure 14. Note that
also the available service curves for the individual tasks may be changed.
For further information about other scheduling policies to be used with
Real-Time Calculus the reader is referred to e.g. [TW05],[TCGK02a].

32 Chapter 3. Design Evaluation

equations

(3.3)-(3.6)

equations

(3.3)-(3.6)

Fig. 14: Curve processing for 2 event streams using a priority-based scheduling.

3.3.4 Complex Systems with Multiple Resources

In this section, we extend the analysis method to platform architectures
containing more than one resource. An example for such an architecture is
given in Figure 6. It describes an hypothetical example network processor
architecture. The numbered arrows denote the sequence of steps that is
performed by the architecture to forward a packet from one network
interface to the other. The architecture is introduced in more detail in
Section 3.3.6.

Event streams flow through a network of resources based on the order
in which they need to be processed. From the arrival curves describing the
input load to a resource, we can compute the outgoing arrival curves with
Equations (3.3) and (3.4). The arrival curves of an outgoing event stream
from a resource serve as input arrival curves to another resource. Similarly,
the processing capability of a resource is reduced by the processing of the
incoming event stream. The remaining processing capability, as captured
in the outgoing upper and lower service curves is used to process other
event streams.

This model of an architecture can be represented as a scheduling net-
work. The nodes of this network represent event processing functions
that are implemented on the various resources. The inputs to each such
node are the arrival curves of an event stream that is to be processed,
and the service curve of the resource, representing the processing capa-
bility available to the function that is being implemented on the resource.

3.3. Formal Performance Analysis 33

The outputs describe the resulting arrival curves of the processed event
streams and the remaining service curves of the (partially) used resource.
These arrival and service curves then serve as inputs to other nodes of
the scheduling network. Note that “resources” in our framework refer to
both communication (such as buses) and computation (such as proces-
sors) resources. The exact construction of the scheduling network for an
architecture depends on the scheduling policies on the different architec-
tural components, an example of which is shown in the next section.

Given a scheduling network corresponding to an architecture, it is pos-
sible to determine the timing properties (such as jitter and burst lengths)
of the processed event streams from their outgoing arrival curves. Further,
it is also possible to determine properties of the architecture such as the
on-chip memory requirement and the loads on the different components
such as processors and buses.

3.3.4.1 Analysis using a Scheduling Network

In Section 3.3.2 we described how to compute the delay and backlog
experienced by an event stream passing through a single resource node
processing the stream. For this we characterised the event stream using
its arrival curves and the resource node using its service curve and also
derived formulas for the maximum utilisation of this resource and the
outgoing arrival and resource curves. Now we extend these results to
consider the case where the event stream passes through multiple resource
nodes as shown in Figure 6.

The outgoing arrival curves capture the characteristics of the processed
event stream (for example its burstiness and long term rate), which might
be different from the characteristics the stream has before entering the
resource. Similarly the outgoing service curve indicates the remaining
process capability of the resource after processing the event stream. The
idea now is to use this outgoing arrival curve as an input to another
resource node (more precisely, the resource node where the next event
processing task as given by task graph described above is implemented).
In the same way, the outgoing service curve of the first resource is used
to process events from a possibly second stream. This procedure can be
illustrated using a scheduling network. For example, Figure 15 shows the
scheduling network corresponding to the event traversal through the
architecture shown in Figure 6.

In general, multiple event streams enter an embedded system and
are processed by the different resources in the order specified by the
task graph described above. As events from several streams arrive at
a resource, they are served in an order determined by the scheduling
policy implemented at the resource. For example, many buses use a fixed

34 Chapter 3. Design Evaluation

in

OPB

target resource nodes (output service curves),

used to compute remaining processing/communication capability

source resource nodes (input service curves)

in

out

source and target

packet nodes

input arrival

curves
(derived from traces)

final ouput

arrival curves

PLB read

in

out

Get BD

Transfer Packet

to Memory

Get Buffer-

Descriptor (BD)

PLB write

in

out

Transfer Packet

to Memory

out

Transfer

Packet Header

Store Modified

Packet Header

Get BD

Transfer Packet

to EMAC

Transfer Packet

to EMAC

Memory Status

Update

Fig. 15: The scheduling network for the architecture given in Figure 6.

priority bus arbitration scheme. Other scheduling policies might be FCFS
and round robin. We illustrate the analytical model here assuming that
all the resources use fixed priority. However, the model can be extended
to incorporate other scheduling policies as well (see [TW05]).

Let us assume that there are n event streams f1, . . . , fn arriving at a
resource r, which serves these streams in the order of decreasing priorities,
i.e. f1 has the highest priority and fn the lowest. For each event of the
stream fi, some task ti implemented on r processes the event and this
requires at most w(ti, r) processing units from r. b(ti, r) denotes the best
case execution requirement. For example, w(ti, r) might be the number of
processor instructions, or bus cycles in case r is a communication resource.
We henceforth denote w(ti, r) by wi, and b(ti, r) by bi, when it is clear which
resource is being referred to. Each event stream fi arriving at r is associated
with its upper and lower arrival curves ᾱu

i and ᾱl
i respectively and receives

a service from r which can be bounded by the upper and lower service
curves βu

i and βl
i respectively. The service available from r in the unloaded

state (i.e. before any of the event streams f1, . . . , fn are served) is bounded
by the upper and lower service curves βu and βl respectively.

3.3. Formal Performance Analysis 35

In the fixed priority scheme r services the flows in the order of de-
creasing priorities and the remaining service curve after processing an
event stream is used to serve the lower priority streams. The resulting
arrival curves and the remaining service curves can be computed using
Equations (3.3)–(3.6) given in Section 3.3.2.

Since events from different streams might have different maximum
processing requirements given by w1, . . . ,wn, and also different minimum
processing requirements given by b1, . . . , bn the arrival curves first need to
be scaled as described in Section 3.3.2 to calculate the remaining service
curves using Equations (3.5)–(3.6), as shown in Figure 13.

Similarly, to calculate the outgoing arrival curves, we first need to
scale back the service curves as follows. If βu and βl are the service curves

for a resource node, then β
u
= �βu/bi� and β

l
=
βl/wi�. The floor/ceiling

functions are used since a subsequent resource node can start processing
an event only after the task implemented on r finishes processing it. Using
these adapted service curves, we can then compute the outgoing arrival
curves describing the processed event stream using Equations (3.3)–(3.4).

3.3.4.2 Scheduling Network Construction

Using the results in the last section we now describe the procedure for
constructing a scheduling network. This can then be used to determine
properties of the architecture such as the on-chip memory requirement,
the end-to-end delay experienced by packets and the utilisation of the
different on-chip resources such as processors and buses.

The inputs necessary for constructing such a network are the task
graph which denotes for each event stream the sequence of processing
tasks that are to be executed on any event of the flow and the target ar-
chitecture on which these tasks are mapped. Furthermore, the scheduling
policy on the resources also influences the scheduling network construc-
tion.

The scheduling network contains one source resource node and one target
resource node for each resource used in the architecture. Similarly, for each
event stream there is a source event node and a target event node. For each
processing task of an event stream there is a node in the network marked
with the task and the resource on which this task is implemented, e.g. if
task u is implemented on ru, we denote this by (u, ru). For two consecutive
tasks u and v of an event stream, if u is implemented on a resource ru and
v on a resource rv then there is an edge (drawn horizontally in Figure 15)
in the scheduling network from the node (u, ru) to (v, rv). For a given event
stream, if u and v are two tasks implemented on the same resource r and
u precedes v in the task graph, then there is an edge (drawn vertically in
Figure 15) from the node (u, r) to the node (v, r).

36 Chapter 3. Design Evaluation

The arrival curves of the event streams and the service curves of the
resources pass from one node to the next in the scheduling network and
get modified in the process, following Equations (3.3)–(3.6).

Now, we look at how the overall processing delay and the total backlog
can be bounded. For this we have to compute the accumulated lower service
curve. For a given event stream f , let αu

f be its upper arrival curve be-
fore entering the network processor. Suppose this stream passes through
nodes of the scheduling network which have their input lower service
curves equal to βl

1, . . . , β
l
m. Then the accumulated lower service curve βl used

to serve this event stream can be computed as follows.

β̂l
1 = βl

1

β̂l
i+1 = inf

0≤t≤∆

{
β̂l

i(t) + β
l
i+1(∆ − t)

}
, i = 2, . . . ,m − 1

βl = β̂l
m

We can give the end-to-end delay and the total backlog experienced
by events from stream f by:

delay ≤ sup
t≥0

{
inf{τ ≥ 0 : αu

f (t) ≤ βl(t + τ)}
}

(3.12)

backlog ≤ sup
t≥0
{αu

f (t) − βl(t)} (3.13)

Compared to independently deriving the delay and backlog at single
resources using inequalities (3.7) and (3.8) from Section 3.3.2 and adding
them, the inequalities (3.12) and (3.13) give tighter bounds.

3.3.5 Adaptation for Design Space Exploration

Equations (3.3)–(3.6) are clearly expensive to compute for general arrival
and service curves. Moreover, these equations need to be computed for all
the nodes of a scheduling network. Additionally, if these curves are to be
meaningfully derived out of packet traces (as shown later in this chapter),
then the resulting curves can be described by a few parameters such as
the maximum packet size, the short-term burst rate, and the long-term
packet arrival rate. In view of this, we propose a piecewise linear approx-
imation of all arrival and service curves. Using these approximations, the
Equations (3.3)–(3.6) can be efficiently computed, thereby avoiding the
computational bottleneck involved in dealing with general curves.

Each curve in this case is approximated using a combination of three
straight line segments. This allows us to exactly model an arrival curve in
the form of a T-SPEC [SW97], which is widely used in the area of commu-
nication networks. Figure 16 shows the resulting form of the upper and

3.3. Formal Performance Analysis 37

lower curves (both arrival and service). Here qu
1 represents the maximum

possible load on a resource for processing one packet. The slope ru of the
middle segment of the upper curve can be interpreted as the burst rate,
and the slope su as the (load on a resource due to the) long term packet
arrival rate. In the case of communication resources, qu

1 represents the
maximum packet size. The values of pu and pl

1, p
l
2 can be computed from

these parameters.

upper curve

� �()u � �()l

�

r

s

p

lower curve

�

r

s

q

pu

u

u

l
l

l

l

qu

2

qu

1

1

q
l

2

1

pl
2

Fig. 16: Piecewise linear approximations of the upper and lower (arrival and service)
curves.

Any upper (say γu) and lower (say γl) curves can now be written as
the following.

γu(∆) = min{qu
1 + ru∆, qu

2 + su∆}
γl(∆) = max{ql

2 + sl∆, ql
1 + rl∆, 0}

where,
qu

2 ≥ qu
1 ≥ 0, ru ≥ su ≥ 0, ru = su ⇔ qu

1 = qu
2

ql
2 ≤ ql

1 ≤ 0, 0 ≤ rl ≤ sl, rl = sl ⇔ ql
1 = ql

2

Using these approximated curves, the Equations (3.3)–(3.6) as well
as maximum delay and backlog can be evaluated efficiently. In the fol-
lowing, we will give the results for Equation (3.6) as an example for the
approximations implemented in the tool for design space exploration
presented in Chapter 5. We give the calculations for all the equations and
their derivation in Appendix B.

38 Chapter 3. Design Evaluation

Prop. 1: (Remaining Upper Service Curve) Given the lower arrival and upper service
curves αl = L(q1α, q2α, rα, sα) and βu = U(q1β, q2β, rβ, sβ) respectively, then the
remaining upper service curve βu′ = U(q1, q2, r, s) is determined as follows:

r =


0, if sβ < sα
rβ, ifsβ ≥ sα ∧ pβ < p1α

rβ − rα, if sβ ≥ sα ∧ pβ ≥ p1α

s =
{

0, if sβ < sα
sβ − sα, if sβ ≥ sα

q1 =


0, if sβ < sα
q1β, if sβ ≥ sα ∧ pβ < p1α

q1β − q1α, if sβ ≥ sα ∧ pβ ≥ p1α

q2 =

{
0, if sβ < sα
q2β − q2α, if sβ ≥ sα

3.3.6 Example System 1: Network Processor

In this section, we show how the results presented so far can be used
to formulate an analytical performance evaluation model for an example
network processor. The results here were originally derived in [TCGK02b]
and [TCGK02a]. In the following sections, we will use the same network
processor example modelled as a simulation system (see Section 3.4.1)
and compare the results using the two different evaluation methods for
this example system (see Section 3.5).

We view a network processor as a collection of different processing
elements (such as CPU cores, micro-engines, and dedicated units like
hardware classifier, cipher, etc.) and memory modules connected to each
other by communication buses. On each of these processing elements one
or more packet processing tasks are implemented. Depending on the se-
quence in which these tasks process a packet, and the mapping of these
tasks on to the different processing elements of the network processor,
any packet entering the network processor follows a specific sequence
through the different processing elements. The flow to which this packet
belongs is associated with its arrival curves. Similarly all the resources
have their associated service curves. As the packets of the flow move
from one processing element to the next, and also cross communication
resources such as buses, both, the arrival curves of the flow and the service
curves of the resources get modified following the Equations (3.3)–(3.6)
given in Section 3.3.2. Given this, the maximum end-to-end delay expe-
rienced by any packet, the on-chip memory requirement of the network
processor, and the utilisation of the different resources (both computation
and communication) can now be computed using Equations (3.7), (3.8)

3.4. Simulation-based Performance Analysis 39

and (3.9).
To formally state the above procedure, consider that for the set of flows

F entering the network processor, there is a task graph G = (V,E). Any
vertex v ∈ V denotes a packet processing (or communication) task. For
any flow f ∈ F, let V(f) ⊆ V denote the set of packet processing tasks
that have to be implemented on any packet from F. Additionally, a subset
of directed edges from E defines the order in which the tasks in V(f)
should be implemented on any packet from f . Therefore, if u, v ∈ V(f)
represent two tasks such that for any packet belonging to f , the task v
should be implemented immediately after task u, then the directed edge
(u, v) belongs to the set E. Hence, for each flow f there is a unique path
through the graph G starting from one of its source vertices and ending
at one of its sink vertices. The vertices on this path represent the packet
processing tasks that are to be implemented on packets from f .

3.4 Simulation-based Performance Analysis
Simulation-based approaches are widely used for performance evaluation
of embedded system. There exist many different approaches on various
abstraction layers. It’s beyond the scope of this thesis to give a com-
plete overview over all the existing approaches. In general, simulation is
well established and accepted by designers for performance evaluation.
In comparison to the formal approach presented in Section 3.3, simula-
tion deals with real workload inputs, i.e. non-functional and functional
properties of the system can be determined. In contrast to the worst-case
analysis that is performed with formal methods, simulation can be used
to determine the average-case behaviour. In the context of design space
exploration, the use of simulation-based approaches to performance eval-
uation is limited due to the often high running times.

SystemC [GLMS02],[SYS] is a system description language that can be
used to model the behaviour level of systems. It consists of a set of library
routines and macros implemented in C++, which makes it possible to
simulate hardware building blocks and concurrent processes written in
standard C++. SystemC supports the communication of C++ objects in a
simulated real-time environment. SystemC is both a description language
and a simulation kernel. The code written will compile together with the
library’s simulation kernel to give an executable that behaves like the
described model when it is run.

SystemC supports the simulation of a system at various levels of ab-
straction — from cycle-accurate up to the behavioural level. This fact,
together with the possibility of simulation of hardware and software de-
scribed with the same language are the main sources of success for this

40 Chapter 3. Design Evaluation

language.
In the remainder of this section, we briefly describe two simulation

frameworks for performance evaluation written in SystemC: (1) the ap-
proach presented in [Wor01, CKT+03b] used for network processors ar-
chitectures and (2) the platform described in more detail in [MAS+05] for
multi-processor system on a chip architectures.

3.4.1 Example System 1: Network Processor

In this section, we describe the methodology for performance evaluation
of the example network processor architecture introduced in Section 3.1.1
based on simulation, which forms the basis for comparing the results
obtained from the analytical framework presented in Section 3.3.6.

The work described in this section was done by Frédéric Worm. We
could reuse the performance models that he wrote in SystemC for his
Master’s thesis [Wor01] for our purposes. This section therefore gives
only an overview over the work presented in [Wor01] and more detailed
explanations concerning the models can be found there. Here, the primary
goal is to illustrate the abstraction level at which the different components
of the architecture are modelled for the simulator.

3.4.1.1 Modelling Environment and Software Organisation

The overall approach is based on using a library of reusable component
models written in SystemC. These include models for communication
resources, different memories, network interfaces, and processor cores.
Each of these models can be seen as an abstract description of an existing
hardware component which can be found from a core library [IBMa], or
can also be a model of a new component which does not exist yet. In an
architecture composition step the selected component models are com-
bined into a system model which is then evaluated through simulation.
To drive the simulation, either synthetic workloads can be used, or real
traffic traces can serve as workload. Synthetic traces can for instance be
traces with periodic packet arrival. During simulation, the model execu-
tion performance data is collected and stored to files, such that the data
can be evaluated later.

It is not necessary that every component model is implemented on the
same level of abstraction. The models are implemented as black boxes
having abstract interfaces. The components only interact through these
interfaces. This allows us to refine the individual components if a model
with more detail is needed for some component. It also supports easy
exchangeability among different models of the same component. Every
component model is separated into two layers—a so called abstract func-

3.4. Simulation-based Performance Analysis 41

tional layer and a data collection layer. The functional layer describes
the functional behaviour of a component and defines the component in-
terfaces, while the data collection layer exclusively deals with gathering
statistics which are used to evaluate different performance metrics. This
separation enables independent and selective refinements on the func-
tional layer and also flexible customisation of the data collection mecha-
nisms without interference among these layers.

EMAC OPB
PLB-OPB

Bridge
PLB Memory

Component Monitoring

Processor
Core

S
y
s
te

m
S

y
s
te

m
M

o
n

it
o

ri
n

g
M

o
n

it
o

ri
n

g
M

o
n

it
o

ri
n

g

W
o

rk
lo

a
d

W
o

rk
lo

a
d

Fig. 17: System evaluation and component evaluation of a network processor architec-
ture.

With the simulation framework, we can do a performance evaluation
either as a component-level evaluation or a complete system evaluation
using the data collected during simulation. These two ways are illustrated
in Figure 17. The component evaluation is based on the data collected
through the data collection layer of each component model. Examples
of such evaluation metrics can be memory fill levels, bus re-arbitration
counts, and the load on the different components. System specific aspects
of an architecture like the overall system throughput, or end-to-end packet
delays are evaluated using the system evaluation mechanism. In contrast
to the component evaluation approach, the data in this case is not gathered
within a specific component but is collected using the workload travelling
through the entire system (in the figure, this procedure is denoted with
system monitoring).

Figure 18 shows an overview of the entire simulation framework. The
abstract models are created based on specification documents. The models
are then enhanced with the component-specific and system-specific data
collection layer. Such models build the “Model Library” which is also

42 Chapter 3. Design Evaluation

shown in the figure. The models for the individual components can then
be composed together and the system can be simulated.

Model Library
Architectural

Level

Architecture Composition Environment

Architecture Editor
Model Editor for new models
Functional Validation

Simulation
Debugging

Data Collection

Monitored Data

System Level Evaluation
Rx/Tx rate
Throughput

Component Level Evaluation
Utilization
Memory Fill Level
Queue Length

Evaluation Results

Manual Modeling

SystemC & C++ Environment

Matlab Environment

Performance Evaluation Environment

Workload
Suite

Document
Library

Fig. 18: Overview of the simulation framework that is used for comparing the results
obtained by the analytical method.

3.4.1.2 Component Modelling

In this section we briefly describe how each component of the reference
network processor architecture is modelled in the simulation. This will
enable a meaningful comparison between the results obtained by this
simulation framework and those obtained from the analytical model of
the same architecture described in Section 3.3.6. The models for actual
designs are usually available from core libraries as hard or soft cores. The
SystemC models used for the simulation were created for the work done
in [Wor01] based on their specification. The following discussion below
refers to these SystemC models.

Bus Models. The bus models used in the reference architecture are based
on the CoreConnect bus architecture [IBMb], designed to facilitate core-
based designs. CoreConnect involves three buses: The Processor Local
Bus (PLB) is for interconnecting high performance cores with high band-
width and low latency demands, such as CPU cores, memory controllers

3.4. Simulation-based Performance Analysis 43

and PCI bridges. The On-Chip Peripheral Bus (OPB) hosts lower data
rate peripherals such as serial and parallel ports and UARTs. The PLB is
fully synchronous, has decoupled address, read and write data lines and
transfers on each data line are pipelined. Different masters may be active
on the PLB address, read and write data lines and access to the PLB is
granted through a central arbitration mechanism that allow masters to
compete for bus ownership.

The models used for the PLB and the OPB are both cycle accurate.
Both these models do not transfer any data nor consider any address, but
model the signal interchanging according to the bus protocol.

There is a third bus in CoreConnect, which we do not use in our study.
This is called the Device Control Register (DCR) bus, and is used for
reading and writing low performance status and configuration registers.

The features of the PLB that are modelled for our study include the
arbitration mechanism, the decoupled address and read and write lines, a
fixed length burst protocol, and a slave enforced arbitration mechanism.
The OPB is much less sophisticated compared to the PLB and most of its
features are modelled. For both the buses, the arbitration algorithm uses
a round robin strategy among the requesting masters on a given priority
level, and typically there are four priority levels.

Ethernet Core (EMAC) Model. The Ethernet core or EMAC is a generic
implementation of the Ethernet media access control (MAC) protocol,
supporting both half-duplex (CSMA/CD) and full duplex operations for
Ethernet, Fast Ethernet and Gigabit-Ethernet. The EMAC has two large
FIFOs to buffer packets, and two OPB interfaces—one for providing access
to its configurations and status registers, and the other is a bidirectional
interface to transfer data to and from the PLB-OPB bridge.

The model of the EMAC only contains receiving and transmitting
channels, where a receive channel can be considered as an input port and
a transmit channel as an output port.

The set of receiving channels constitutes the traffic input to the net-
work processor. Each one reads packet information from a real traffic trace
at a parameterisable rate. Within a receive channel there are two threads
of activity. The first one reads the input packet traces, and writes each
resulting packet into a FIFO. The second thread implements the com-
munication protocol with the PLB-OPB bridge and transfers packet to
memory as long as the FIFO is not empty. The transmit path consists only
of a transmit packet thread, which is active as long as packets are waiting
to be transferred for the appropriate port.

44 Chapter 3. Design Evaluation

PLB-OPB Bridge Model. The PLB-OPB Bridge is a specialised module
which combines pure bridge functionality with DMA capability, and it can
effectively handle packet transfer overheads. An EMAC communicates
with a PLB through the PLB-OPB bridge. Since as an OPB slave, the
EMAC can not inform the bridge of its willingness to transfer a packet,
the EMAC to PLB-OPB bridge interface has sideband signals to meet this
purpose. These do not form a part of the OPB bus, and nearly all signals
are driven by the EMAC and sampled by the bridge.

The PLB-OPB bridge is modelled as two independent paths, receive
and transmit, and both offer the bridge functionality and arbitrate among
active channels. Each path implements the PLB-OPB bridge to EMAC
communication protocol by driving the required sideband signals and
accessing buses. Bus accesses are concurrent and therefore both paths can
contend for their access, especially on the OPB.

Memory Model. The memory is accessed via the PLB and can either
be on-chip or off-chip. It is modelled in a high level way, where only
parameters like average or worst case transfer latency are considered.

Software Application and Timing. A simple high-level model of software
application is used. It primarily consists of the following. For each packet
the software can cause a pure delay without generating any PLB load,
representing processing time in the CPU. Second, there can be a PLB load
generated by the software (for example, this might consist of reading and
writing packets by the CPU to and from the memory). Lastly, the timing
model is based on using the PLB clock as the system time.

In Section 3.5, we will compare the results obtained with this simula-
tion framework written in SystemC with the results obtained using the
analytic model of the network processor.

3.4.2 Example System 2: Multiprocessor Platform

We present here a second simulation platform. In contrast to the last
section, this framework supports the cycle-true simulation of communi-
cation and computation subsystems. This platform was also used for a
comparative study (cf. Section 3.5) and for the new hybrid approach for
performance analysis presented in Section 3.6.

The MPARM system simulation environment [LAB+04], performs
functional, timing-accurate simulation of ARM-based multi-processor
systems and is also written in SystemC. MPARM provides a complete
analysis toolkit allowing to monitor performance and energy dissipation
(based on industry-provided power models) of platform components for

3.5. Comparison between Simulation and Formal Method 45

the execution of software routines as well as of an entire benchmark. The
simulation is cycle accurate and bus-signal accurate. Our virtual platform
leverages technology-homogeneous (0.13µm) power models of all system
components (processor cores, system interconnect, memory devices) pro-
vided by STMicroelectronics [LPB04, BZZ04]. The processor core models
take into account the cache power dissipation, which accounts for a large
fraction of overall power.

3.5 Comparison between Simulation and For-
mal Method

We present here the results of two comparative studies: (1) we analysed
the communication system for a packet processor architecture, and (2) we
analysed the performance of a multiprocessor platform for a distributed
application.

3.5.1 Example System 1: Network Processor

This section presents a comparison of the performance evaluation results
obtained by the analytical framework presented in Section 3.3 with the
results obtained by detailed simulations based on the models discussed
in Section 3.4. The results are obtained for the example network processor
architecture introduced in Section 3.1.1. The discussion of the results is
based on the assumption that there is a high confidence in the simulation
results.

The network processor architecture which we use as a basis for the
comparative study can be matched by many existing network proces-
sors (such as the family of processors described in [Pow]). The archi-
tectural components modelled in this study are from an existing core
library [IBMa].

We evaluate the reference architecture using three different perfor-
mance metrics:

1. The line speed or the end-to-end throughput that can be supported
by the architecture. This is measured using the utilisation of the
different components of the architecture and hence also identifies
the component which acts as the bottleneck. During a design space
exploration, identifying the utilisation of the different components
goes beyond measuring the overall throughput of the system be-
cause a designer in generally interested in identifying whether all
the components in the architecture have a moderately high utili-

46 Chapter 3. Design Evaluation

sation at the maximum supported line speed, or whether it is one
single component that acts as a bottleneck.

2. The maximum end-to-end delay that is experienced by packets from
the different flows being processed by the architecture.

3. The total on-chip buffer/memory requirements, or in other words,
the on-chip memory fill level.

The results of the analytical framework should be judged on the basis
of how closely the data related to these performance metrics for the ref-
erence architecture match those obtained using simulation. Rather than
absolute values, it is more interesting to analyse the behaviour of the ar-
chitecture (for example with increasing line speeds, or increasing packet
sizes for the same line speed), and see if the same conclusions can be
drawn from both the evaluation techniques. In addition to this trend
analysis comparison, we also take into account the time it takes to com-
pute the evaluation data by the analytical framework and compare it to
the simulation time required to generate this data.

3.5.1.1 Reference Architecture and Parameters

The system-level model of a network processor that is used for this study
is shown in Figure 6. The different actions that are executed while each
packet travels through this architecture, and the order in which they are
executed is given in Table 3. The model effectively deals with the com-
munication subsystem of the architecture, and the software application
running on the CPU core (indicated by PPC - PowerPC) is modelled as
simply performing two reads from the SDRAM and one write to the
SDRAM for every processed packet. The amount of data read or written
(and hence the traffic generated on the PLB), however, depends on the
packet size and this is appropriately modelled.

As seen in Figure 6, the architecture is composed of two Ethernet
media access controllers (EMACs), a slow on-chip peripheral bus (the
OPB), a fast processor local bus (the PLB) consisting of separate read and
write lines, a PLB-OPB bridge, a SDRAM and a processor core (PPC). Each
EMAC consists of one receive and one transmit channel, and is capable
of reading packets at parameterisable input rates.

In the simulation, the entire path of a packet through the modelled ar-
chitecture can be described as follows. First a receive channel of an EMAC
reads a packet from a file containing the packet traces (only packet lengths
are used, and all packets arrive back-to-back with a fixed inter-frame gap;
this is described in further details later), and allocates a packet record
which contains the packet length and the source EMAC identification.

3.5. Comparison between Simulation and Formal Method 47

This packet record models the packet inside the processor architecture
and generates a load equivalent to the size of the packet. The channel
then requests service to the PLB-OPB bridge via a sideband signal, which
is served following a bridge internal arbitration procedure. The PLB-OPB
bridge fetches a buffer descriptor for the packet (which is a data structure
containing a memory address in the SDRAM, where the received packet
is to be stored). This fetching operation involves the SDRAM and gener-
ates traffic on the PLB read bus, equal to the size of the buffer descriptor.
Following this, the received packet is stored in the SDRAM at the loca-
tion specified by the buffer descriptor. This involves the packet traversing
through the OPB to the PLB-OPB bridge, and then through the PLB write
bus to the SDRAM. This generates a load equal to the size of the packet,
on both the buses. Since data on the PLB is sent in bursts, the PLB-OPB
bridge schedules a PLB transfer only when sufficient data is gathered. As
the EMAC channel is served over and over again, the packet is written
part by part into the SDRAM. After the packet transfer is complete, the
bridge informs the EMAC receive channel via a sideband signal, and also
notifies the application software running on the processor core (again
by a sideband signal) that the packet is now available in the memory.
It is then processed by the software as soon as the processor becomes
available. This processing involves a buffer descriptor transfer from the
SDRAM to the processor core via the PLB read bus, followed by a packet
header transfer, again from the SDRAM to the processor core via the PLB
read bus. The packet header is then processed in the processor core (for
example implementing some lookup operation) and written back into the
SDRAM over the PLB write bus.

After the completion of this processing, the software notifies the bridge
(via a sideband signal) that the packet is now processed and is ready to
be sent out through the chosen transmit channel of the EMAC. As in the
receive path of the packet, the bridge gets the buffer descriptor of the
packet from the SDRAM via the PLB read bus, and then the packet tra-
verses over the PLB read bus and the OPB to an EMAC transmit channel.
After the completion of the packet transfer the EMAC notifies the bridge
via a sideband signal, which then reads certain status information and
releases the buffer descriptors.

This entire process happens concurrently for two packet flows entering
through the two EMACs of the architecture. All the components involved
also work concurrently and the two buses (the PLB and the OPB) use
first-come-first-serve as a bus arbitration policy. The main complexity in
the analysis of this system is due to concurrent operation of the different
components. Hence it is non-trivial to evaluate how the system behaves
with increasing line speeds, variations in packet sizes, and what is the
maximum line speed that it can support without packet dropping.

48 Chapter 3. Design Evaluation

Parameters. As already mentioned, the EMAC can read packets at differ-
ent input line speeds. The line speeds used for the evaluation range from
100 Mbps to 400 Mbps, the former representing a nominal load situation
and the later a loaded situation.

The OPB modelled has a width of 32 bits and a frequency of 66.5
MHz. The read and the write data paths of the PLB are of 128 bits and
operate at 133 MHz. The size of a PLB burst is limited to a maximum of
64 Bytes. Therefore, the PLB-OPB bridge gathers up to 64 Bytes (which
is only one OPB burst transfer) before scheduling the PLB transfer. There
are two different kinds of buffer descriptors, small and large ones. The
small buffer descriptors refer to memory locations/buffers with 64 Bytes
of size, while the large ones refer to buffers with a size of 1472 Bytes.
As a consequence, 64 Bytes sized packets require only one small buffer
descriptor and packets larger than 64 Bytes require an additional large
buffer descriptor. Both small and large buffer descriptors are of size 64
Bytes each. Therefore, the traffic generated by a packet on any of the
buses depends not only on its own size, but also on the buffer descriptors
associated with it. All packets and the buffer descriptors reside in the
SDRAM described above.

3.5.1.2 Evaluation Method and Comparisons

The reference architecture described above is evaluated using sim-
ulation and the analytical framework using two different workload
types—synthetic traces with same-sized packets, and real traces from
NLANR [LNA]. For the synthetic traces, packet sizes of 64, 128, 512, 1024,
1280 and 1500 Bytes are used. The real traces are used only to exploit the
impact of real world packet size distributions on the system performance.
They are time compressed and adjusted and only the packet sizes are
retained. Therefore, in both the cases packets arrive back-to-back (to exert
the maximum stress on the architecture) with an inter-frame gap equal to
20 Bytes.

The overall scheme for comparing the results obtained using the ana-
lytical framework with those obtained from simulation is shown in Fig-
ure 19. The different components of the architecture are modelled in ei-
ther SystemC in the simulation-based evaluation, or analytically using the
model presented in Section 3.3. To compute the required parameters of an
analytical component model (such as the transfer time of a single packet
over an unloaded bus), either simulation results using simple workloads
are used (as presented in step 1 of the figure) or data sheets of the compo-
nent are used. The component models are then composed together (using
the methods described in Section 3.3.6 in the case of the analytical frame-
work, and using standard SystemC composition techniques in the case of

3.5. Comparison between Simulation and Formal Method 49

System Composition

for

SystemC Simulator

System Composition

for

Real-Time Calculus

Worst-Case

Performance

Numbers
comparison

Simulation

Performance

Numbers

2

4

3

Hardware components

(processor, bus, bridge, memory)

Component

Models in

SystemC

Component

Models for

Real-Time

Calculus

component

parameters

simple

workloads

arrival curve

extraction

complex

workloads

(traces)

1

3

2

Fig. 19: The overall scheme for comparing the results from the analytical framework
with those obtained by simulation.

simulation) to obtain a system model of the architecture (step 2). These
system models can now be used for performance analysis. To drive the
system analysis, either real packet traces are used, or the corresponding
arrival curves (step 3). Finally, the performance numbers obtained either
with the analytical model or the SystemC simulation are compared (step
4 in the figure).

The analytical model considered here does not use real packet traces,
but uses arrival curves modelling the traces in terms of their maximum
packet size, burstiness, and long term arrival rate. These parameters were
extracted from the traces as shown in Figure 20 and fed into the model for
evaluation. For the upper arrival curve, the maximum number of Bytes
that can arrive (at the network processor) at any time instant is given by
the largest sized packet, the short-term burst rate is given by the maximum
number of largest sized packets that can be seen occurring back-to-back
in the trace, and the long-term arrival rate is given by the total length (in
Bytes) of a trace divided by the time interval over which all the packets
in this trace arrive.

Similarly, for the lower arrival curve, the maximum time interval over

50 Chapter 3. Design Evaluation

Trace:

cycles

packet

Arrival Curve:

cycles

Bytes

max. packet size

only largest packets

average rate

only smallest packets

longest gap

Fig. 20: Obtaining arrival curves from packet traces in the analytical framework.

which no traffic can arrive is equal to the inter-frame gap in the trace (equal
to 20 Bytes), the bound on the minimum number of Bytes that can arrive
over a time interval is given by the maximum number of minimum sized
packets occurring back-to-back in the trace, and the long-term arrival rate
is equal to that in the upper arrival curve.

Given any packet trace, arrival curves such as those shown in Fig-
ure 20 can be derived from the trace and they capture the traffic arrival
pattern given by the trace. Note that here we restrict each arrival to be
made up of a combination of three line segments in order to simplify the
computations involving these curves. However, in general they can be ar-
bitrarily complex to capture the exact details of a trace. But, this increased
generality comes at the cost of increasing the computational complexity.
As mentioned in Section 3.3.6 the analytical model composes the different
component models, resulting in a scheduling network. For the architecture
we study here (Figure 6), the corresponding scheduling network is given
in Figure 15.

3.5.1.3 Evaluation Results

Tables 4 and 5 give the utilisation values of the three buses (the OPB, and
the PLB read and write bus) when the model is fed with synthetic traces
consisting of fixed sized packets. Here, six different packet sizes have
been used, from 64 Bytes to 1500 Bytes. For each packet trace and bus
combination, the table compares the results obtained from the analytical

3.5. Comparison between Simulation and Formal Method 51

method with those resulting out of simulation for different line speeds. To
give an impression of how the utilisation of the different buses increase
with the line speed for the same packet size, in Figure 21 we plot the
utilisation values for the trace containing 512 Bytes sized packets. As can
be seen from Table 4 and 5, the results for the other traces are very similar,
and hence we do not plot them.

There are two things to be noted from these values. First, with increas-
ing line speeds (and therefore more packets per time unit to be processed),
the utilisation of the different buses also increase, and as expected, this
increase is proportional to the increase in the line speed. Second, the re-
sults from the analytical method and the simulation match very well for
the utilisation. In Figure 21, for each line speed there are three bars, each
corresponding to the OPB, the PLB read and the PLB write bus. From the
figure can be seen that the maximum line speed that this architecture can
sustain is in the range of 400 Mbps and the OPB acts as a bottleneck.

0

10

20

30

40

50

60

70

80

90

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

U
ti
lis

a
ti
o
n

[%
]

Simulation

Analytical Method

O
P

B

P
L
B

re
a
d

P
L

B
w

ri
te

Fig. 21: Utilisation values for different line speeds for the trace containing 512 Bytes
sized packets. In this bar graph, for each line speed, the first bar indicates the
utilisation of the OPB, the second bar shows the utilisation of the PLB read bus
and the third bar corresponds to the PLB write bus. For each bus, the white bar
gives the result computed by the analytical method, and the black bar gives the
result obtained from simulation.

In Figure 22 we show the utilisation values of the PLB read bus for

52 Chapter 3. Design Evaluation

Packet Size 64 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 18 18 14 13 6 5
150 Mbps 27 28 20 19 9 8
200 Mbps 36 37 27 25 12 10
250 Mbps 45 46 34 31 15 13
300 Mbps 54 55 41 37 17 15
350 Mbps 63 65 48 40 20 17
400 Mbps 72 76 55 47 23 20

Packet Size 128 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 19 19 15 14 5 5
150 Mbps 29 28 22 21 7 7
200 Mbps 38 38 30 28 10 10
250 Mbps 48 47 37 35 12 12
300 Mbps 57 56 45 42 15 15
350 Mbps 69 66 52 48 17 16
400 Mbps 79 75 59 53 20 18

Packet Size 512 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 20 20 7 7 3 3
150 Mbps 30 29 11 11 5 4
200 Mbps 40 39 15 15 7 6
250 Mbps 50 49 19 19 8 7
300 Mbps 60 59 22 22 10 8
350 Mbps 71 69 26 26 12 10
400 Mbps 82 79 30 30 13 11

Tab. 4: The utilisation values of the OPB, and the PLB read and write buses, when
the model is fed with three different synthetic traces consisting of fixed sized
packets (ranging from 64 to 512 Bytes). For each trace and for each bus, the first
column (marked as AnM - analytical method) gives the results obtained using
the analytical model, and the second column (marked as Sim) gives the results
obtained by simulation.

3.5. Comparison between Simulation and Formal Method 53

Packet Size 1024 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 20 20 6 6 3 2
150 Mbps 30 30 9 9 4 4
200 Mbps 40 40 12 12 6 5
250 Mbps 50 50 15 15 7 6
300 Mbps 60 59 18 18 9 7
350 Mbps 71 69 21 21 10 8
400 Mbps 83 79 25 24 12 9

Packet Size 1280 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 20 20 6 6 3 2
150 Mbps 30 30 9 9 4 4
200 Mbps 40 40 12 12 6 5
250 Mbps 50 50 15 15 7 6
300 Mbps 60 60 18 18 9 7
350 Mbps 71 69 20 21 10 8
400 Mbps 83 79 23 24 12 9

Packet Size 1500 Bytes
OPB PLB read PLB write

AnM Sim AnM Sim AnM Sim
100 Mbps 20 20 6 6 3 2
150 Mbps 30 30 9 9 4 4
200 Mbps 40 40 12 12 6 5
250 Mbps 50 50 14 15 7 6
300 Mbps 61 60 17 18 9 7
350 Mbps 72 70 20 21 10 8
400 Mbps 83 80 23 24 12 9

Tab. 5: The utilisation values of the OPB, and the PLB read and write buses, when
the model is fed with three different synthetic traces consisting of fixed sized
packets (ranging from 1024 to 1500 Bytes). For each trace and for each bus, the
first column (marked as AnM - analytical method) gives the results obtained
using the analytical model, and the second column (marked as Sim) gives the
results obtained by simulation.

54 Chapter 3. Design Evaluation

fixed line speeds. For a fixed line speed, as the packet size is increased, the
fraction of the utilisation that comes from the packet traversal increases,
since there is less total inter-frame gap in the whole trace (assuming that
the trace size in Bytes remains the same). This is because the number of
packets in the trace decrease.

However, the number of buffer descriptor and packet header traver-
sals also decreases and therefore the fraction of the bus utilisation that is
caused by this also decreases. These effects can be seen in Figure 22. As
the packet size is doubled from 64 to 128 Bytes, the first component men-
tioned above plays a dominating role and hence the utilisation slightly
increases. Thereafter, the effect of the second component dominates and
the utilisation falls, and then remains almost constant since there is no
significant change in the number of packets as the packet size is increased
from 1024 to 1280 Bytes and then from 1280 to 1500 Bytes. The same results
for the OPB is shown in Figure 23. However, in this case the utilisation
increases with increasing packet size because these are no packet header
or buffer descriptor transfers over this bus.

0

5

10

15

20

25

30

35

40

64 128 512 1024 1280 1500

Packet Size [Bytes]

U
ti
lis

a
ti
o
n

[%
] 250 Mbps

200 Mbps

150 Mbps

100 Mbps

Simulation

MethodAnalytical

Fig. 22: The variation of the PLB read bus utilisation with increasing packet size for four
different line speeds.

It is to be noted that the match between the analytical results and the
simulation is always close enough to deduce the above conclusions from
the analytical results itself (with significant savings in evaluation time).

3.5. Comparison between Simulation and Formal Method 55

0

10

20

30

40

50

60

64 128 512 1024 1280 1500

Packet Size [Bytes]

U
ti
lis

a
ti
o
n

[%
]

100 Mbps

Simulation

Analytical Method 250 Mbps

200 Mbps

150 Mbps

Fig. 23: The variation of the OPB utilisation with increasing packet size for four different
line speeds.

For the fixed size packet traces, we do not consider the end-to-end
packet latencies and the memory fill levels, since for all low load situations
they remain constant and do not depend on the input line speed.

Next we consider the results generated by real traces obtained from
the National Laboratory for Applied Network Research (NLANR) [LNA].
Use three different traces—FL (traces from a number of Florida univer-
sities), SDC (traces collected from the San Diego Supercomputer Center)
and TAU (traces from the Tel Aviv University). Each trace is made up
of traffic patterns for two different lines and these are fed into the two
EMACs in our architecture). The main motivation behind using these
traces is to see the effect of real-life packet size distributions on the archi-
tecture. The line speeds used for all the traces vary from 100 Mbps to 400
Mbps as before.

Figure 24 shows the variation in the utilisation of the three different
buses for the different line speeds for the FL input traces. We do not give
the results for the other traces, because they lead to similar results as the
FL traces. In other words, the architecture behaves almost identically for
the different traces. It may be noted that, as before, there is a close match
between the results from the simulation and the analytical framework.

Recall that the bus arbitration mechanism used in our reference archi-

56 Chapter 3. Design Evaluation

0

10

20

30

40

50

60

70

80

90

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

U
ti
lis

a
ti
o
n

[%
]

Simulation

Analytical Method

OPB

PLB read

PLB write

Fig. 24: The utilisation of the OPB and the PLB read and write buses under different line
speeds for the FL packet trace.

tecture is always first-come-first-serve (FCFS). Unfortunately, for FCFS
there does not yet exist tight bounds for delay and backlog in the analyt-
ical framework that we consider here (there exist tight bounds for static
priority, round-robin, time division multiplexing, etc.). To get around
this problem, we use fixed priority based arbitration mechanisms in the
analytical model and compare them with FCFS used in the simulation.
Towards this, one of the packet flows (recall that each trace is made up of
two flows) in a trace is assigned a higher priority over the other in all the
buses. For computing the end-to-end packet latency, the maximum delay
experienced by the lower priority flow now gives an upper bound on the
maximum delay experienced by any packet when FCFS is used. Similarly,
we use the maximum delay experienced by the higher priority flow as a
lower bound on the maximum delay experienced by any packet in the
case of FCFS. These results are shown in Figure 25 for the FL trace. Note
that again, for all the three traces, the results are similar, and we therefore
only give the figure for the FL trace. The delay values obtained through
simulation lie in between the delay values (obtained from the analytical
method) for the high and the low priority flows. These results indicate
that the architecture is sufficiently provisioned for one flow, even for high
line speeds, since the maximum delays experienced by packets from the

3.5. Comparison between Simulation and Formal Method 57

high priority remain constant with increasing line speeds for all the three
buses. For the low priority flow, as expected, the delay values increase
with increasing line speeds. When FCFS arbitration policy is used, the
delays suffered are more than those suffered by packets from the high
priority flow, but less than those suffered by the low priority flow.

0

5000

10000

15000

20000

25000

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

D
e
la

y
[P

L
B

C
y
c
le

s
]

Analytical Method

Upper Bound

Analytical Method

Lower Bound
Simulation

Fig. 25: The maximum end-to-end delays experienced by packets of the FL trace under
different line speeds. For the two flows that make up this trace, the analytical
results show the delay experienced by the higher and the lower priority flows
when using priority based arbitration at the buses. The simulation results are
based on FCFS implemented at all the buses.

In Figure 26, for each trace we first assign a high and a low priority to
the two flows and measure the maximum delay experienced under this
priority assignment using the analytical method. Then we reverse this
priority assignment and again estimate the maximum delay, and finally
average the two maximum delays for each flow. Figure 26 shows this
averaged maximum delay (we choose the flow for which this averaged
maximum delay has a higher value) for the analytical method and the
simulation results, that are based on FCFS at all the buses, as before.

Lastly, Figure 27 shows the on-chip memory requirements (measured
in terms of the backlog) obtained by the analytical method and by simu-
lation. In the analytical case, as before, we use priority based arbitration
at the different buses and the simulation results are based on FCFS.

58 Chapter 3. Design Evaluation

0

2000

4000

6000

8000

10000

12000

14000

16000

100Mbps 150Mbps 200Mbps 250Mbps 300Mbps 350Mbps 400Mbps

Linespeed

D
e
la

y
[P

L
B

C
y
c
le

s
]

FL

SDC

TAU

Analytical Method

Simulation

Fig. 26: The maximum end-to-end packet delays experienced by packets of all the traces
under different line speeds. The plots corresponding to the analytical method
shows the average of the maximum delays experienced by packets from the low
and the high priority flows, when using priority based arbitration at the different
buses. The simulation results are based on using FCFS at all the three buses.

It may be noted that although the analytical and the simulation results
for the end-to-end packet delays and the memory fill levels do not match
as closely as the results for the utilisation values, the “trends” indicated by
both the methods do match. We believe that such trends, to a large extent,
would suffice to make the architectural decisions that are involved in
any system-level design space exploration. One of the reasons why there
is a mismatch between the values obtained by the analytical method
and those obtained by simulation is that the former computes worst-case
delays and backlogs. In any particular simulation run, packet sequences,
representing a worst-case scenario may not occur. Additionally, the results
obtained using the analytical framework to a very large extent depend on
how tight are the different bounds for calculating the delay, backlog and
resource utilisation for the different scheduling policies.

For all the results reported here, the simulations run in time in the
order of a few minutes to several hours. In contrast to these, the analyt-
ical procedure completes execution in time less than a second for all the
traces and is the only feasible option for performance evaluation in any

3.5. Comparison between Simulation and Formal Method 59

0

2000

4000

6000

8000

10000

12000

100

Mbps

150

Mbps

200

Mbps

250

Mbps

300

Mbps

350

Mbps

400

Mbps

Linespeed

M
e
m

o
ry

[B
y
te

s
]

Analytical Method

Simulation

FL

SDC

TAU

Fig. 27: The buffer memory requirements/memory fill levels for the different traces under
different line speeds.

automated design space exploration process.

3.5.2 Example System 2: Multiprocessor Platform

In this section, we present the results for a second comparative study.
We compare the results obtained by Real-Time Calculus on the one hand
with the results obtained with simulation on the MPARM platform (cf.
Section 3.4.2) on the other hand, for the same application. This compar-
ison shows that the obtained results match well, if there exists a good
characterisation of the system for both the performance evaluation meth-
ods.

In Figure 29, we give the results obtained for the multistage matrix
multiplication application that was briefly introduced in Section 3.1.2. It
is organised as a pipeline, with 8 consecutive tasks of different worst-case
execution times to be executed for the application to complete. The exe-
cution platform used for the comparison consists of 4 ARM7 processors
connected with a AMBA bus. The data transfer between the tasks is done
using a shared memory attached to the bus. We modelled two scenarios
with a different mapping of the tasks to the resources (see Figure 8).

Since the execution costs of the tasks are not equal we have exploited
two different optimisation approaches. For the first, we concentrate some

60 Chapter 3. Design Evaluation

critical tasks on the same core in order to try to reduce the concurrent
bus accesses performed by them. While in the second one we balanced
the workload on the processors as much as possible. These two methods
can, ideally, both give good throughput at the output, so it’s important to
understand which one of the two to adopt in order to reach the desired
performance.

The approach taken to compare the results is depicted in Figure 28. We
first defined an input sequence for the simulation (1). From this sequence
with which the first stage of the matrix multiplication pipeline is triggered,
we computed the upper and lower arrival curves which are used for the
formal analysis method (2). We then performed the simulation of the
system and the analysis (3), and calculated the arrival curve from the
simulation output (4) in order to be able to compare the two approaches
(5).

Simulation on

MPARM Platform

Arrival

Curve

Calculation

Arrival

Curve

Calculation

Analysis using

Real-Time Calculus

Output

Arrival

Curves

Input

Arrival

Curves

comparison

Simulation

Output

Events

Simulation

Input

Events

1 2

3

4
5

3

Fig. 28: Procedure for the comparison of the analytical approach and the simulation
approach.

The diagrams in Figure 29(top) depict the output arrival curves for the
two scenarios. The curves show on the one hand the arrival curves de-
scribing the worst-case output traffic as predicted by Real-Time Calculus
and on the other hand they give the arrival curves describing the output
traffic generated by the simulation. As the modular performance analysis
method is based on worst-case analysis, the curves resulting from the an-
alytical method lie outside of the curves based on simulation, as expected.
This can be interpreted as follows: In case of simulation for scenario 1, the

3.5. Comparison between Simulation and Formal Method 61

Sc. Method Run-Time [s]
1 RTC 0.965
1 Simulation 43–321
2 RTC 0.984
2 Simulation 42–384

Tab. 6: Run-times of evaluation methods for the 2 different scenarios.

smallest time interval where there are 4 events is 6 ms, the largest interval
is 9.9 ms for the used trace. For Real-Time Calculus, the smallest interval
is 5 ms, the largest interval is 10 ms.

Figure 29(bottom) shows that the trends for the output traffic pattern
for the two scenarios that are shown by both Real-Time Calculus (left) and
the simulation (right) match well. This result allows us to claim the ability
of Real-Time Calculus to predict correctly the behaviour of a component.

The run-times of the two approaches for the example application are
shown in Table 6. Real-Time Calculus uses less than a second to complete
whereas the corresponding simulation framework takes between 40 sec-
onds an around 6 minutes to complete dependent on the waiting time
between consecutive activations of the matrix multiplication. This gain
in evaluation time comes at the cost of a pessimistic prediction of task
execution, and therefore resource consumption.

The match between the results obtained by the analytical method and
the simulation based approach is not always as good as for the matrix
multiplication application in the given example. In some cases, the sys-
tems can only be characterised less accurate for the formal method and
hence the results of the two approaches differ a lot. If caches and therefore
less predictable execution times of the tasks are involved, the analytical
method provides overly pessimistic results. In some cases, there even
exists no formal model for a system’s component at all that could be anal-
ysed using Real-Time Calculus. To overcome some of the inaccuracies,
extensions of Real-Time Calculus exist, e.g. a method to cope with caches
is described [WMT04].

3.5.3 Concluding Remarks

We presented (1) a detailed comparison study of an analytical perfor-
mance evaluation framework for network processor architectures with a
simulation based technique, and (2) a comparison between the analytical
method and simulation for a multiprocessor platform. The underlying
assumption in both studies has been that there is a high confidence in the
simulation results. But obtaining these results is time intensive because
of the high simulation times involved, and the usually long development

62 Chapter 3. Design Evaluation

0 500 1000 1500 2000 2500
0

2

4

6

8

10
Scenario 1

0 500 1000 1500 2000 2500
0

2

4

6

8

10
Scenario 2

0 500 1000 1500 2000 2500
0

2

4

6

8

10
Real-Time Calculus Scenarios 1 & 2

0 500 1000 1500 2000 2500
0

2

4

6

8

10
Simulation Scenarios 1 & 2

Simulation

Real-Time
Calculus

Simulation

Scenario 1

Scenario 2Scenario 2

Scenario 1

Real-Time
Calculus

Fig. 29: top: Comparison between arrival curves computed from simulation (dashed)
and arrival curves computed with Real-Time Calculus (solid) for the two scenar-
ios.
bottom: Comparison between the two scenarios for the analytical method (left),
and the simulation (right). The units on the x-axis are cycles, for this experiment
1 cycle =̂ 10µs.

times for simulation frameworks. Thereby simulation-based models are
inappropriate for early stages of automated design space exploration. The
main contribution of this section is a validation of the analytical model
against simulation results. We believe that such cross-checking is required
to establish the usefulness of analytical models, and also helps in identi-
fying the appropriate design phase where such models can be used and
where it is necessary to use detailed simulation to obtain meaningful
results.

We also believe that the two models considered here lie at two different
extremes of a spectrum of possibilities. For evaluating different aspects of
an architecture, different models might be more suitable. We envisage a
suitable combination of analytical and simulation based frameworks not
only across different abstraction levels of a design flow, but also within
the same abstraction level, for evaluating embedded system architectures.
For example, it might be more suitable to use simulation to evaluate the

3.6. Combination of Simulation with Formal Method 63

cache/memory subsystem of an architecture, while it might be sufficient to
use an analytical model to evaluate the on-chip communication architec-
ture. The essential ingredients for such a hybrid framework in the context
of network processors are already available. In the next section, we will
discuss the steps that have to be performed to meaningfully combining
the approaches.

3.6 Combination of Simulation with Formal
Method

In this section, we present a new method for performance analysis of
embedded systems. Normally, formal or analytical methods as the one
presented in Section 3.3 are used for early-phase design evaluation. But
if there exist no formal component models with the required precision,
simulation-based approaches are used for system-level performance anal-
ysis. The often high run-times of simulation runs lead to the new ap-
proach described in this section: Analytical methods are combined with
simulation-based approaches to speed up simulation. Simulation as well
as a formal analysis method are used to evaluate a part of the complete
system. We describe in this section how the simulation models can be cou-
pled with the formal analysis framework, specify the interfaces needed
for such a combination and show the applicability of the approach using
a case study.

Our new method reduces the run-time of an evaluation and reflects
the idea of components. In analogy to component-based design where
existing IP blocks are combined to form a System-on-Chip, our method
allows the designer to reuse existing analysis models for components – be
it a simulation model or a formal model – for the individual components
and compose them to form the complete system model. The existing com-
ponent models may result from previous designs or may be delivered by
IP vendors. Performance evaluation is then conducted using these trusted
models of the components. The contribution of this section includes the
definition of a new hybrid approach for performance evaluation. In par-
ticular, the definition of the needed interfaces is provided in the next
section. These interfaces were implemented, and the new method is used
in a case study presented in Section 3.6.3.

3.6.1 Interfaces between Simulation and Formal Method

In this section we will introduce the interfaces needed to combine system
simulators with formal analysis models for a hybrid analysis.

64 Chapter 3. Design Evaluation

T1 T2 T3 T4

simulation
formal

analysis
simulation

S/F-converter F/S-converter

Fig. 30: The task chain for hybrid approach with resource-independent components.

Figure 30 gives an example system model for the hybrid approach.
We can identify two problems, (1) the interface from simulation to formal
models and (2) the interface from formal analysis models to simulation.
In order to introduce these interfaces more formally, we define what we
understand by an event trace and an event class.

Def. 1: Event trace. An event trace is a sequence of events (ei, ti), where ei denotes the
event data and ti the time stamp at which the event data ei is available to the
application. The set of all events is denoted as E, i.e. (ei, ti) ∈ E.

Def. 2: Event class. An event class is formed by events that have to be processed in the
same way by an application. Events belonging to the same event class take the
same path through an application task graph. If (ej, tj) ∈ Ei, then event (ej, tj)
belongs to an event class Ei.

3.6.1.1 S/F-Converter

The conversion of event streams from the simulation subsystem into
an event model for the formal analysis method appears to be much
simpler than the reverse direction. Once the simulation of a compo-
nent has finished, we can analyse the output event traces of the form
(e1, t1), (e2, t2), ..., (ei, ti), (ei+1, ti+1), First, we have to classify the events in
the event trace and annotate them with the event class they belong to. In
the next step we can derive the upper and lower event arrival curve that
represent each event class Ek with:

R(t) = |{(ei, ti) ∈ Ek : ti ≤ t}|
From R(t), we can then compute αl, αu with the following equations:

αl(∆) = min
λ≥0

{R(∆ + λ) − R(λ)}

αu(∆) = max
λ≥0

{R(∆ + λ) − R(λ)}

3.6. Combination of Simulation with Formal Method 65

simulation trace

event

data

event

data
… event

data

simulation trace

event

data

event

data
… event

data

event

data

event

data
… event

data

classifier
time

stamps

event

data

trace analyzer

data collector
event data

event data…

S/A-converter

functional

simulator

non-functional

property analysis
classifier

time

stamps

event

data

trace analyzer

data collector
event data

event data…

trace analyser

data collector
event data

event data…
event data

event data…

S/A-converter

functional

simulator

non-functional

property analysis

S/A-converter

functional

simulator

non-functional

property analysis

S/A-converterS/F-converter

functional

simulator

non-functional

property analysis

Fig. 31: Interface between formal analysis method and simulator: the S/F-converter.

The event classification and the arrival curve calculation are performed
by the classifier and the trace analyser shown in Figure 31. The event data
items ei are sorted according to the event classes by the data collector. The
output from the trace analyser, the arrival curves describing the timing of
the event stream are then passed to the formal analysis method, whereas
the event data collection is passed to the functional simulator for further
processing.

3.6.1.2 F/S-Converter

An F/S-converter transforms event models that result from the formal
analysis method into event traces used for the simulation. This conversion
tool from the formal method to simulation is more involved than the
S/F-converter introduced in the previous section. In our setup, with Real-
Time Calculus as formal method and the MPARM simulation framework
written in SystemC [GLMS02], the problem of designing an F/S-converter
(as shown in Figure 32) can be seen as designing a SystemC module,
which generates events according to the arrival curve that was obtained
using Real-Time Calculus.

simulation trace

event

data

event

data
event

data

simulation trace

event

data

event

data
event

data

event

data

event

data
... event

data

time

stamps

event

data

data

synchroniser

data extractor
event data

event data!
event data

event data...

A/S-converterF/S-converter

functional

simulator

non-functional

property analysis

arrival curve

based

event stream

generator

Fig. 32: Interface between simulator and a formal analysis method: the F/S-converter.

The method to determine the time stamps for the event traces, a dis-
cussion of the requirements and an indicator to assess the quality of the
generated trace is given in Section 3.7. Additional information needed

66 Chapter 3. Design Evaluation

for the simulator besides the time stamp, such as the event type, which
may not be included in the analytical description of the event stream, has
to be passed to the data extractor. In the data synchroniser, the event time
stamps and the corresponding event data are synchronised and used to
trigger the simulator. In the case study presented in the next section, we
use a traffic generator written as a module in SystemC to feed the data
into the simulator, at times determined by an event trace generator based
on the arrival curves obtained by the formal analysis method. The traffic
generator module is described in more detail in [MAS+05].

3.6.2 Benefits of hybrid approach

The hybrid approach presented in this section can be used to analyse
applications that consist of task chains. It is possible to cut this chain
into segments of the chain that are executed on independent hardware
resources. These segments can then be either analysed using the formal
method, and if not applicable analysed using a simulator (cf. Figure 30).

Using the hybrid approach, we can lower the overall execution time
compared to simulation because of two reasons: (1) The run-time of a sin-
gle evaluation for the hybrid approach is significantly smaller than with
simulation, because we replace individual simulator components by for-
mal models. (2) The F/S-converter constructs short, representative traces
for simulation from the formal model. As a consequence, less simulation
runs are needed for a good coverage.

Assume that for the task chain given in Figure 30, we have to perform
n pure simulations to well cover all possible load scenarios. For the hybrid
approach, we still have to perform n simulation runs for the components
before the S/F-converter, the converter then aggregates the n simulation
traces to a single pair of arrival curves, representing the n traces. The
analysis has to be performed only once and the output of the formal
analysis, a simulation trace generated by the F/S-converter has also to be
simulated only once, as the trace is generated based on the aggregation
of all input traces.

The analysis method as it is presented in this section can handle feed-
forward data flow graphs, without feedback loops across the borders
between the different analysis methods. Further, data splits or joins are
restricted to occur in simulation components due to limitations of the
formal analysis method used. These usage restrictions shall be tackled in
future work.

3.6.3 Example System 2: Multiprocessor Platform

For the case study, we analysed a GSM audio encoder application. The
task graph of the application consists of a chain of 21 consecutive tasks.

3.6. Combination of Simulation with Formal Method 67

It receives sequences of frames as input that have to be encoded before
being transmitted. These input frames are guaranteed to respect certain
best/worst case bounds, while the encoded sequences have also to respect
bounds in order to guarantee a good communication. We first specified
the load traffic that should be supported by the GSM encoder application
by means of an arrival curve describing upper and lower bounds on the
arrival of packets to be processed by the encoder. After a static profiling
of the application we partitioned the task chain to be executed on two
processors to obtain a balanced system. The two processors are connected
with a AMBA-bus and communicate over a FIFO-queue located in a
shared memory attached to the bus.

We performed 3 experiments for the analysis of the system: (1) We
used only Real-Time Calculus, (2) we used the hybrid approach presented
in this section, and (3) we performed a full system simulation. For all
the 3 experiments we used the same input load, either event traces (for
the simulation) or the corresponding input arrival curve (for the hybrid
approach and the formal analysis). The input load specifies the arrival of
frames to be encoded.

6 tasks6 tasks 15 tasks15 tasks

CPU0 CPU1

memory

CPU0 CPU1

memory

RTC Simulation

F/S-converter

output
arrival
curves

T6T5T1 T21T8T7

Fig. 33: System model for experiment 2 which is evaluated using the new hybrid ap-
proach.

68 Chapter 3. Design Evaluation

For the hybrid approach, we partitioned the system as shown in Fig-
ure 33. As described in Section 3.6.1.2, we use an F/S-converter to interface
between Real-Time Calculus and the simulator. We replaced one ARM7
processor by its formal model and integrated a traffic generator into the
MPARM simulation framework. The traffic generator puts the interme-
diate data collected from a functional simulation of the GSM encoder
application into the FIFO-queue.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

2

4

6

8

10

12

hybrid analysis

Real- T ime Calculus

simulation

[ms]

[#
 e

 v e
 n

 ts
]

Fig. 34: Output arrival curves for the 3 experiments.

The curves presented in Figure 34 show the output arrival curves for
the 3 experiments. The curves give upper and lower bounds on the num-
ber of audio frames that are finished processing in any time interval. The
upper and lower output curve were calculated for experiment 1 using
Real-Time Calculus, and obtained from the output simulation traces in
case of the hybrid approach (experiment 2) and the simulation (experi-
ment 3) using the same procedure as described in Section 3.6.1.1.

The outermost curves give the upper and lower arrival curve calcu-
lated with Real-Time Calculus. Real-Time Calculus is a method for worst-
case analysis, i.e. the other curves have to lie within the bounds obtained
with this method. The curves for the hybrid approach lie between the
curves for Real-Time Calculus and the simulation curves. This behaviour
of the hybrid approach is also expected, as the first part of the analysis

3.6. Combination of Simulation with Formal Method 69

was performed using a worst-case analysis method, and the synthetic
trace used as stimulation for the second part is based on the worst-case
arrival curves.

We now look at the fill level of the intermediate buffer between the two
processors. In case of Real-Time Calculus we predict that the buffer fill
level is at most 5 frames waiting to be processed. For the pure simulation,
the maximum buffer fill level varies between 1 and 4. Dependent on the
simulation trace used, we derive different design values for the queue
size needed (see Figure 35). In contrast, for the hybrid analysis run, we
can see that the buffer fill level is at most 4 frames waiting in the queue
with only a single simulation.

0

1

2

3

4

5

0

1

2

3

4

5

0

1

2

3

4

5

Simulation Trace 1

Simulation Trace 2

Hybrid Approach

200 ms

200 ms

200 ms

Fig. 35: Buffer fill levels over time for 2 simulation runs and the hybrid approach.

Table 7 gives the run-times for the three different experiments. The
times are given for a single evaluation run. The hybrid approach allows
to speed up the simulation by a factor of 1.73 for our example. This is a

70 Chapter 3. Design Evaluation

Exp. Method Run-Time [s]
1 RTC 0.273
2 Hybrid 292
3 Simulation 508

Tab. 7: Run-times of evaluation methods for a single run of the GSM encoder.

significant improvement, because we still simulate more than half of the
system (cf. Figure 33). Using the new method described in this section, we
could (1) speed up the simulation for a single evaluation run and (2) lower
the number of simulation runs needed for a complete system evaluation.

3.7 Event Trace Generation
A core element of the hybrid approach presented in the last section is
the generation of event traces based on arrival curves as used in the
F/S-converter (see Section 3.6.1.2). In this section we describe a method
to generate a representative and expressive event trace starting from an
upper and a lower arrival curve [αl(∆), αu(∆)]. Figure 36 shows as an
example the first part of a trace that was generated using the approach
presented in the remainder of this section. The upper and lower arrival
curves that were used as specification curves for this generation are given
in Figure 41 (top,left). In Figure 36 we can identify bursts (marked with
(a)), where the generated trace is as bursty as specified by the upper
arrival curve. But we can also identify periods in which only a few events
are generated (marked with (b) in the figure). In this case, the generated
trace represents the lower specification arrival curve.

The generated event stream must respect the specification arrival
curves [αl(∆), αu(∆)]. But we also need to define the meaning of ’expres-
siveness’ which is done in the next section.

time t [ms]

a b

Fig. 36: Generated trace based on the arrival curves for specification 1 in Figure 41.

3.7. Event Trace Generation 71

3.7.1 Requirements and Quality Assessment

It is obvious, that the expressiveness of an event stream very much de-
pends on the further use of it. In simulation and measurements, we are
interested in corner case behaviour. Therefore, it appears to be appropri-
ate to require that the event stream follows the short term characteristics
(bursts), i.e. αl(∆) and αu(∆) for small values of ∆, as well as the long term
characteristics (average case) for large values of∆. In this sense, the gener-
ated trace should show “fractal” or self-similar behaviour [LTWW93], i.e.
in a short observation interval, the trace should be as bursty as allowed
by the upper and the lower specification curve in a short time interval —
whereas for a larger observation interval, the trace should represent the
whole upper and lower specification curves.

In addition, as the behaviour of different event streams interact on the
system under observation, we should require that we find the character-
istics of the arrival curves everywhere in the stream. For example, we
would expect that bursts or silent intervals occur frequently in the gen-
erated event trace. Therefore, we are looking for a new quality indicator
I that covers the property that the multi-scale representation of arrival
curves can be seen frequently in the generated event stream.

To obtain this indicator value, we first calculate the probability Pτ that
the measured arrival curves of an arbitrarily selected trace snippet of
length τ match the specified curves [αl(∆), αu(∆)] for all 0 ≤ ∆ ≤ τ

2 .
To compute this probability we have to traverse the full trace using

a sliding window of size τ, then calculate the upper and lower arrival
curves from the trace snippet seen in the sliding window and finally check
whether these curves [αl

c(∆), αu
c (∆)] equal the given curves [αl(∆), αu(∆)]

for all 0 ≤ ∆ ≤ τ
2 .

We calculate the probability Pτ for all values of τ up to some obser-
vation window size L which can be chosen arbitrarily. The indicator I is
then the minimum over all τ ≤ L of these probabilities Pτ as we want to
represent the arrival curves at all scales τ.

Formally, we can compute this indicator I with the following steps:

1. Select all trace snippets Ti of length τ in trace T.

2. Compute the upper and lower curve [αl
c, α

u
c] from each trace snippet

Ti.

3. Set Z(Ti) = 1 if αu
c (∆) = αu(∆) and αl

c(∆) = αl(∆) for all 0 ≤ ∆ ≤ τ
2 .

Otherwise set Z(Ti) = 0.

4. Compute the probability Pτ = 1
N

∑
Ti∈T Z(Ti) where N denotes the

number of considered trace snippets Ti in trace T.

5. Set I = min∀τ≤L Pτ.

72 Chapter 3. Design Evaluation

The larger the indicator value I, the better the trace exposes the desired
fractal behaviour. For the trace generation algorithm presented next we
intend to maximise the indicator value I in order to generate a trace that
represents the specification in a any short observation interval as well as
in any large observation interval.

3.7.2 General Event Trace Generation

The main idea underlying the proposed event trace generation algorithm
is to use a ON/OFF traffic source as shown in Figure 37. The traffic gen-
erator has two distinct states: ON and OFF. In existing ON/OFF traffic
generation approaches (see e.g. [ALM98],[BC98]) events are generated
in the ON state, and in the OFF state no events are generated at all. In
contrary to these classical approaches, we generate events that conform
with the upper specification arrival curve, if the generator is in the ON
state. In this case, if we would compute the upper arrival curve for the
generated trace, the upper specification curve would be obtained. In other
words the generator creates events as soon as it is allowed by the upper
specification curve. Similarly, the generator in the OFF state is as “lazy”
as allowed by the lower curve, i.e. it generates an event only if the lower
specification arrival curve would be violated otherwise. We also say that
the generator “follows” the upper curve while it is in the ON state and
“follows” the lower curve in the OFF state.

The basic event trace generation algorithm consists of three main steps:

1. Determine time stamp T at which to switch between ON- and OFF-
states.

2. Generate events according to the state while 0 ≤ t < T.

3. If t = T then switch the state, set t = 0, and go to step 1.

The time t denotes the time spent in a state. In Figure 37(bottom) an event
trace generated with this simple algorithm is given, the grey boxes denote
the state of the generator.

The choice of the times at which the traffic source switches between
states influences the generated trace and as a consequence also the indi-
cator value I for the generated trace. See Figure 38 for two different traces
that are based on the same specification arrival curves. The only difference
for these traces are the distributions of the switching times between ON
and OFF state of the generator. The second trace is more regular, e.g. we
can observe the event pattern between 5000 and 8000 ms, during which
no state switches occur at all.

We will next look at a simple example which will lead us to a deter-
ministic algorithm to determine the state switching time. Then, we will
randomise the algorithm to make the generated trace less predictable.

3.7. Event Trace Generation 73

ON OFF

ON ONOFFON ONOFF

Fig. 37: (top) ON/OFF-automaton used for trace generator. (bottom) Example for a gen-
erated trace with boxes indicating whether generator in ON- (light grey) or
OFF-state (dark grey).

Assume the upper and lower arrival curve specified in Figure 39(top).
For simplicity we only look at three different intervals of length A, B and
C with A = 2B = 4C. For the example, we use the ON/OFF-automaton
from Figure 37, but we restrict ourselves to switches between states after
A, B or C time units only. If we are in the ON state for A time units, we
denote this by A ↑, if we are in the OFF state for B time units, we denote
this by B ↓ accordingly.

Furthermore, we assume that after a state change we generate events
according to the specification curve, i.e. if we are in the ON state for C
time units, we can generate an event sequence that reproduces an upper
arrival curve equal to the specification curve up to C time units as shown
in Figure 39(top).

In the example, we check the match between the specification curve
and the computed arrival curve at discrete times and the step size is set to
C. In this setting, the probability to see the upper and lower specification
curve in interval 2C is the number of times we can see C ↑ followed by C ↓
(or vice versa) divided by the total number of checks performed. As we
want to achieve a large indicator value I, we have to ensure that for all the
different interval sizes (A, B, C) the probability to see the corresponding
upper and lower curve is maximised. In other words, we have to generate
at least one trace snippet for the upper and the lower specification curve
for each of the interval sizes in order to achieve non-zero probabilities
for all the intervals. Because we do not know a priori the length of the
generated trace, we want to generate all possible trace snippets as soon
as possible.

74 Chapter 3. Design Evaluation

0 1000 2000 3000 4000 5000 6000 7000 8000

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

0 1000 2000 3000 4000 5000 6000 7000 8000

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500

Fig. 38: Two generated traces (plots 1 and 3 from top) based on the same specification.
They were generated using a different switching time estimation technique.
Plots 2 and 4 from top are magnified snippets of the traces (the traces are shown
between 1000 and 1500 ms).

The specification curves shown in Figure 39(top) reveal that the upper
curve of length C is contained in the upper curve of length B. This fact
helps us to further improve the value of the indicator I: We start the trace
generation in the ON state, set the dwell time to the smallest possible
interval and generate a trace snippet according to the upper specification
curve. In the example, we therefore first generate a trace snippet C ↑.
We then switch state and remain in the OFF state for again C time units,
generating a trace snippet C ↓. Next, we increase the dwell time by the
step size, thus in the example we generate a trace snippet B ↑. We again
switch state to OFF, generate the corresponding trace snippet, switch to
ON state, increase the dwell time, switch back to OFF state, and so on.
Like this, we can not only see the upper and lower specification curve in
the the sequence C ↑ C ↓, but also in the sequence C ↓ B ↑, as the upper
curve of length C is contained in the upper curve of length B.

Having the above considerations in mind, we can propose a determin-
istic algorithm that generates an event trace that leads to a large indicator

3.7. Event Trace Generation 75

C�A� A�A�B� B�C�C� A� A�B�B�C� A� C�

P[see A and A in A] = 2/18 = 0.11

P[see B and B in B] = 2/18 = 0.11

P[see C and C in C] = 2/18 = 0.11

� �

� �

� �

������
������
������

b

� �=2 A

A� B�B� C�A� C�C� A� B�A� B� A� A�C�

P[see A and A in A] = 2/33 = 0.06

P[see B and B in B] = 2/33 = 0.06

P[see C and C in C] = 5/33 = 0.15

� �

� �

� �

������
������
������

a

C�

ABC

upper specification

arrival curve � u

lower specification

arrival curve � l

A = 2 B = 4 C� �

Fig. 39: Example for upper and lower specification arrival curves and two examples
for generated traces with probabilities corresponding to the intervals A, B and
C. (a) randomly generated trace and (b) deterministically generated trace. The
dotted lines give the limits after which the generation pattern is repeated in the
examples.

value I:

1. Set next switching time T = 0

2. Increase T by the chosen step size.

3. Generate events according to ON state while t < T.

4. If t = T then switch to OFF state, set t = 0, and generate events while
t < T.

5. If T exceeds window size L, go to 1.

6. Switch to ON state, set t = 0, and go to 2.

The above event generation optimises two conflicting goals: (1) all
the intervals should be generated as often as possible to increase the
individual probability Pτ and (2) all the intervals should be generated
as soon as possible, because we have no a priori knowledge about the
desired length of the trace.

In Figure 39(bottom,a) the example of a randomly generated trace is
given. Below the probabilities to detect the upper and lower specification

76 Chapter 3. Design Evaluation

curve for A, B or C are depicted. In part (b) of the figure, we show a trace
that was generated according to the deterministic algorithm. Again the
probabilities for the interval sizes are given. Note that the largest interval
(in the example A) has to be generated 3 times in order to equalise the
probabilities Pτ.

The algorithm shown above generates a deterministic trace which is
often not wanted for performance evaluation. To avoid this problem, the
deterministic algorithm is randomised. Instead of stepwise increasing the
dwell times in the generator states deterministically, we determine the
dwell times randomly, according to a uniform distribution of the dwell
times between the minimum interval size and the window size L. With this
procedure, the event trace becomes unpredictable and especially multiple
event traces are independent and uncorrelated.

3.7.3 Implementation

3.7.3.1 Trace Generation

In this section, we present an implementation of the algorithms described
in Section 3.7.2. As discussed above, event traces can be generated starting
from arrival curves using an ON/OFF state machine as traffic generator.
The times at which we switch from ON to OFF state and vice versa can
be determined at random or deterministically.

We can use arbitrary specification arrival curves for the event genera-
tor. Of course, the specification curves have to represent a valid character-
isation, i.e. it must be possible to find an event stream that complies with
both the upper and the lower specification curve. The only additional con-
straining factor for the curves is the memory demand. To keep the needed
memory bounded, we use a periodically extended finite representation
of the arrival curves in the following form:

α(∆) =
⌊
∆

W

⌋
α(W) + α(∆ −

⌊
∆

W

⌋
W)

In order to achieve a finite representation, we introduce a specification
size W, up to which an arrival curve is defined. For arguments larger than
W, arrival curves are periodically extended.

Algorithm 1 describes our general approach to generate event traces
starting from upper and lower arrival curves [αl(∆), αu(∆)]. The algorithm
contains calls to several functions which are further described in Table 8.

In the implementation, the algorithm to determine the next switching
time between ON and OFF state is the only component that can be freely
chosen by the user, whereas the generation pattern in the ON and the OFF
state is fixed by the upper and lower specification arrival curves. We have
implemented the deterministic switching time generator as proposed in

3.7. Event Trace Generation 77

Algorithm 1 Algorithm for trace generation in pseudo-code.
/* initialise variables */

t = 0;

generate = false;

state = 0;

swt = getNextSwitchingTime(t);

/* generate event at time t */

generateEvent(t);

while (!stopGeneration) {

while (t < swt) {

if (state == 0) {

if (canIGenerateNow(t))

generate = true;

}

else{

if (!canIStillWait(t))

generate = true;

}

if (generate) {

/* generate event at time t */

generateEvent(t);

updateHistoryWithEvent(t);

}

t = t + timeStep;

generate = false;

}

swt = getNextSwitchingTime(t);

state = (state + 1) mod 2;

}

78 Chapter 3. Design Evaluation

Name Description
getNextSwitchingTime(t) Determines the next point in time

based on the time stamp t at which
the state of the generation mode should
be changed.

generateEvent(t) Generates event at time t
canIGenerateNow(t) Returns a Boolean value denoting

whether it is possible to generate
event at time t without violating
the specification curves.

canIStillWait(t) Returns a Boolean value denoting
whether it is possible to wait for
timeStep time units after t with
the event generation without violating
the specification curves.

updateHistoryWithEvent(t) Update the history of already
generated events. Add the newest
time stamp t and remove the
oldest time stamp if the size of the
history is > WindowSize.

Tab. 8: Functions used in Algorithm 1.

Section 3.7.2 and two randomised versions. One is based on a uniform
distribution of the switching times between an upper and lower bound
that can be set as a parameter. The generator with a uniform distribution
represents a randomised version of the deterministic algorithm. The other
one is based on a Weibull-distribution. We chose the Weibull-distribution
here, because it is often used for traffic generation (e.g. in [ALM98] and
[BC98]). We use it in our experiments to have control runs that we can
compare with the other runs. The Weibull probability distribution func-
tion of a random variable X,

P{X ≤ x} = 1 − e−(x/β)α , x ≥ 0

has two parameters α > 0 and β > 0.
Note the difference between the event trace generation presented in

Section 3.7.2 and the implementation. Although we stated that in the
ON state, we will generate events as greedy as allowed by the upper ar-
rival curve, this is not always possible without violating the specification
[αl(∆), αu(∆)].

Assume that the generator was in the ON state for some time t0, the
generated trace snippet represents the upper specification curve. In other
words, the upper curve derived from the generated trace snippet matches

3.7. Event Trace Generation 79

the upper specification curve. Then, we switch for a very short time to
the OFF state, and do not generate events at all. After coming back to
the ON state, we are not necessarily allowed to again generate events
as specified in the upper curve up to t0. This is because we then would
generate the maximum number of events allowed by the specification
curves in t0 twice within an interval of length 2t0. This could potentially
violate the specification. See Figure 40 for an example. To solve this prob-
lem, we use in the algorithm the guard functions CanIStillWait() and
CanIGenerateNow(). They ensure that a generated event does neither
violate the upper nor the lower specification curve at any time.

t0

2t0

ON ONOFF

found 7 events in 2t ,

but only 5 events allowed
in specification

0

t0 2t0

2

4

6 event trace
generation

ON OFF

Fig. 40: Example in which greedy event generation leads to violation of the upper spec-
ification arrival curve.

3.7.4 Results

To compare different switching time estimation algorithms, we generated
traces of 100’000 events each for different switching strategies. The results
of the comparison are shown in Figure 41. On the y-axis the indicator
values I are given. To be able to compare the different algorithms for two
different specifications, we use the indicator values achieved for the deter-
ministic algorithm as a base line and give the relative indicator values for
the other algorithms. On the x-axis, we show the result bars for different
switching time algorithms.

We have performed the tests for two different pairs of specification
curves leading to two bars for all different switching time algorithms.
The parameters corresponding to the different switching time estimation
algorithms are specified in Table 9. For the Weibull distribution, α was
fixed and the parameter β was then calculated such that the expectation
value of the dwell time was as desired.

The deterministic switching time algorithm (left-most bars) achieves
the highest indicator value, as expected. It leads to the event trace that
represents well the desired worst-case behaviour. The randomised algo-
rithms all perform worse than the deterministic algorithm. Nevertheless,
the randomised algorithm using switching times uniformly distributed
between 0 and 2L, achieves also reasonably good results (within 65 %

80 Chapter 3. Design Evaluation

of the deterministic algorithm on average), while being non-predictable.
Weibull-distributed switching times lead to worse indicator values and
should not be used for our event trace generator as a consequence. The
indicator value I for a uniformly distributed switching time with expecta-
tion L

2 varies much between the two specifications (cf. Figure 41, column
10). The reason for this is that intervals of length L are hardly generated
using this switching strategy and that the specifications consist of two
different arrival curve pairs, where specification 1 is more regular and
therefore easier to fulfill than specification 2.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13

Parameter settings

N
o

rm
a

li
z

e
d

In
d

ic
a

to
r

V
a

lu
e

s
I

Specification 1

Specification 2

50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10

[#
e

v
e

n
ts

]

� [ms]

Specification 1

200 400 600 800 1000 1200 1400
0

1

2

3

4

5

6

7

8

9

10

[#
e

v
e

n
ts

]

� [ms]

Specification 2

Fig. 41: Normalised indicator values I for different switching strategies between ON and
OFF state specified in Table 9.

3.7. Event Trace Generation 81

Nr. Switching Time Determination
1 Deterministic algorithm as presented in Section 3.7.2

up to window size L
2 Weibull-distributed with expectation L

2 and α = 0.5
3 Weibull-distributed with expectation L and α = 0.5
4 Weibull-distributed with expectation 2L and α = 0.5
5 Weibull-distributed with expectation 3L and α = 0.5
6 Weibull-distributed with expectation L

2 and α = 0.3
7 Weibull-distributed with expectation L and α = 0.3
8 Weibull-distributed with expectation 2L and α = 0.3
9 Weibull-distributed with expectation 3L and α = 0.3

10 Uniformly distributed with expectation L
2

11 Uniformly distributed with expectation L
12 Uniformly distributed with expectation 2L
13 Uniformly distributed with expectation 3L

Tab. 9: Parameters for the different switching strategies for the event trace generator.

3.7.4.1 Application for Measurement System

The event generation has been applied in an industrial case study. In
particular, a tool chain for validating a complex packet processing device
with several quality of service classes was implemented. The framework
consists of an arrival curve based event trace generator as presented in this
section, a packet generator that generates IP (Internet protocol) packets at
exactly the times specified in the event trace, and finally a data collector
tool that collects the packets that have been processed by the system under
test. In addition, a high precision synchronisation device allowed us to
measure end-to-end delays of the system up to a precision of 1µs (see
[Blu05]).

The graphical components of the tool chain have been implemented
in Java, the packet generator and the data collector tool as Linux kernel
modules in order to achieve good timing accuracy.

The block diagram of the tool chain is shown in Figure 42, a screen-shot
of the data collector tool is given in Figure 43. In Figure 43, the top row
shows the measured arrival curve at the receiver (left) and the measured
per packet delay (right) for a real-time packet flow (RT), the bottom row
for a flow with no real-time requirements (NRT). Note that the maximum
delay measured for the RT flow is 95µs, whereas for the NRT flow the
maximum delay is ca. 60 ms. With this framework, we have a tool chain
at hand that can be used to validate system properties such as packet
throughput or processing delays, starting from a formal specification of
the system input with arrival curves.

82 Chapter 3. Design Evaluation

Traffic

Specification

Event Trace

Generator

Data

Collector

Networking-

System

under Test

Fig. 42: Tool chain of the measurement tool.

Fig. 43: Screen-shot of the measurement tool.

3.8 Summary

In this chapter, we revised the problem of design evaluation of a single de-
sign point in design space exploration. We discussed and classified exist-
ing approaches for system-level performance evaluation. We introduced
a formal performance evaluation framework as well as simulation-based
approaches written in SystemC. The analytical performance evaluation
method introduced in Section 3.3 can be adapted such that it can be
used for design space exploration. Further, we presented two compar-
ative studies in which we compare the formal analysis approach used
for design space exploration with existing simulation-based approaches.
From these studies we can conclude that the results obtained with the
formal analysis method are good enough and produced fast enough to

3.8. Summary 83

enable the use of the method for design space exploration.
Finally, we presented a new hybrid approach for system-level perfor-

mance evaluation of embedded systems that combines formal analysis
methods with a simulation framework. We defined the interfaces needed
for this combination and showed the applicability and the benefits of the
approach using a case study. One of the core elements of the hybrid ap-
proach, the event trace generation based on arrival curves was presented
and discussed in Section 3.7. We discussed the requirements for artifi-
cial traces as well as proposed a new quality indicator capturing these
requirements.

In future, we would like to apply the hybrid approach to analyse
larger systems. Furthermore, we believe that especially for the hybrid
approach presented in this chapter there are more and more application
scenarios, as for the design of embedded systems an increasing number
of reusable components exist and the systems tend to become more and
more complex.

84 Chapter 3. Design Evaluation

4
Search Strategies

Search strategies are an important part in a design space explo-
ration framework. Recent studies show that the quality of a design
space exploration run heavily depends on the search strategy used
(cf. [PSZ05],[KBTZ04]). In contrast to Section 2.4 where we discussed
many different exploration methods used for design space exploration
and classified them, we will concentrate on the use of multi-objective
evolutionary algorithms (MOEAs) in the remainder of this chapter. The
use of MOEAs proved to be very successful for design space exploration
of embedded systems, as various application reports by other researchers
show.

For examples, see chapters in a book edited by Drechsler and Drech-
sler [DD02] for system-level design methods and test generation with
evolutionary algorithms. Palesi and Givargis explored the design space
for a system-on-a-chip (SoC) in [PG02]. In [HE05], Hamann and Ernst
employ evolutionary algorithms to identify optimal time slot sizes and
turn lengths for TDMA-scheduled resources. These references are given
just as examples for applications of EAs and are not complete.

In the next section, we introduce the concept of multi-objective evo-
lutionary algorithms in detail. We give guidelines how to use MOEAs
in the context of design space exploration. Then, performance indicators
to assess the quality of the various search algorithms are presented in
Section 4.2, before we introduce as a main contribution of this chapter
a new class of multi-objective evolutionary algorithms that incorporate
directly the user preferences. These new algorithms named IBEA are de-

86 Chapter 4. Search Strategies

scribed in Section 4.3, where we discuss the working principle of the new
algorithms. Last, we compare the results achieved by IBEA with other
popular evolutionary algorithms. The new proposed algorithms show a
good performance on many test problems, including the design space
exploration problem proposed in Chapter 5.

4.1 Multi-Objective Evolutionary Algorithms
Design space exploration is often a multi-objective optimisation problem.
In the cache example from Section 2.1, there is a trade-off between the
performance (measured in CPI for an example application) and the area
on silicon needed for the implementation. It is not clear how to relate
performance and area, therefore already for this simple example, the
problem really deals with multiple objectives.

Evolutionary algorithms are a good choice for design space explo-
ration of embedded systems, because:

1. The design space is usually too large to allow us the use of exhaustive
search methods.

2. The evaluation of a design point can be seen as a black box, where
we do not have knowledge about the internal structure of the ob-
jective functions. This prohibits the use of specialised solvers as e.g.
CPLEX [CPL], where we need knowledge about the internals of the
search space.

3. The problem usually exposes a multi-objective optimisation prob-
lem for which evolutionary algorithms are well suited because they
keep a population which can be used to approximate the front of
optimal solutions in one run [Deb01].

Figure 44 shows the general principle of an evolutionary algorithm.
Evolutionary algorithms (EA) are inspired by natural evolution. In other
words, they are based on populations that evolve over several gener-
ations. In each generation, the EA selects from the population several
interesting solutions, these are then so-called parent solutions. From the
parents, new solutions are determined, using variation operators — mu-
tation and recombination. The new solutions are evaluated to determine
the fitness and added to the population. The last step in the loop is the
selection for survival, in which the population is shrunk to the initial size
by eliminating the worst (least-fit) solutions. In this section, we will dis-
cuss selection and variation in more detail. The evaluation of a solution
was already covered in Chapter 3.

4.1. Multi-Objective Evolutionary Algorithms 87

selection

for variation

(Sect. 4.1.2.1)

solution set

selection

for survival

(Sect. 4.1.2.2)

variation:

generation of

new solutions

(Sect. 4.1.3)

fitness assignment :

evaluation of

new solutions

(Chap. 3)

Fig. 44: General exploration cycle involving an evolutionary algorithm.

4.1.1 Pareto dominance

In order to introduce the components of evolutionary algorithms, we first
have to clarify how two found solutions can be compared and somehow
ranked. Let us consider a general multi-objective optimisation problem
that is defined by a decision space X, an objective space Z, and n objective
functions f1, f2, . . . , fn that assign to each decision vector
x ∈ X a corre-
sponding objective vector
z = (f1(
x), f2(
x), . . . , fn(
x)) ∈ Z. Without loss of
generality, it is assumed that all objective functions are to be minimised
and that Z ⊆ IRn.

Assume that by some exploration method, we find the four solutions
depicted in Figure 45 for our cache example from Section 2.1. To be able
to categorise the solutions, in multi-objective optimisation the concept of
Pareto-dominance is used. A found solution, represented by its decision
vector
x dominates an other solution if it is at least as good in all objective
values and better in at least one. If a solution
x 1 dominates a solution
x 2

we also write
x 1 �
x 2. Formally, Pareto-dominance can be expressed like
this:

x 1 �
x 2
, if ∀i, 1 ≤ i ≤ dim : fi(
x

1) ≤ fi(
x
2) and

88 Chapter 4. Search Strategies

∃i, 1 ≤ i ≤ dim : fi(
x
1) < fi(
x

2),

with dim the number of problem dimensions. Further, we write that a
decision vector
x 1 weakly dominates another one
x 2, written as
x 1 �
x 2,
if
x 1 dominates
x 2 or the corresponding objective vectors are equal.

area on silicon

C
y
c
le

s
p
e

r
In

s
tr

u
c
ti
o

n
(C

P
I)

Fig. 45: Four solutions found for the cache example with two objectives involved.

Using the Pareto-dominance definition from above, we can now com-
pare the four solutions found for the cache example shown in Figure 45.
It is a minimisation problem, so the optimal point is the origin. Solution

x 3 dominates
x 4 as it is better in both criteria.
x 3 also dominates
x 2, it is at
least as good in all criteria and better in one. Solution
x 1 is incomparable
to
x 2 and
x 3, but clearly dominates
x 4.

The outcome of a MOEA is defined as a set of incomparable decision
vectors, i.e., no decision vector dominates any other decision vector in the
set. Such a set will also be denoted as Pareto set approximation, and the
entirety of all Pareto set approximations is represented by the symbol Ω,
where Ω ⊆ 2Z. The set of all Pareto-optimal solutions is called the Pareto
set S with S ∈ Ω.

4.1. Multi-Objective Evolutionary Algorithms 89

4.1.2 Selection

Selection in evolutionary algorithms implements two distinct phases: se-
lection for variation and selection for survival. The former type of selection
chooses the most promising designs from the set of previously generated
designs that will be varied in order to create new designs.

For practical reasons, not all of the generated designs will be kept in
memory. While, e.g., simulated annealing and tabu search only store one
solution in the working memory (in this case, selection for variation sim-
ply returns the single, stored solution), evolutionary algorithms operate
on a population of solutions, which is usually of fixed size. As a conse-
quence, another selection phase is necessary in order to decide which of
the currently stored designs and the newly created ones will remain in
the working memory. This phase is often called selection for survival or
environmental selection, in analogy to the biological terminology used in
the context of evolutionary algorithms.

4.1.2.1 Selection for Variation

Selection for variation is usually implemented in a randomised fashion.
One possibility to choose N out of M designs is to hold tournaments
between two solutions that are picked at random from the working mem-
ory based on a uniform probability distribution. For each tournament,
the better design is copied to a temporary set which is also denoted as
mating pool — again a term mainly used within the field of evolutionary
computation. By repeating this procedure, several designs can be selected
for variation, where high-quality designs are more likely to have one or
multiple copies in the mating pool. This selection method is known as
binary tournament selection; many alternative schemes exist as well (see
[BFM97]).

Most of these selection algorithms assume that the usefulness or qual-
ity of a solution is represented by a scalar value, the so-called fitness value.
While fitness assignment is straight forward in case of a single objective
function, the situation is more complex in a multi-objective scenario. Here,
one can distinguish between three conceptually different approaches:

• Aggregation: Traditionally, several optimisation criteria are aggre-
gated into a single objective by, e.g., summing up the distinct objec-
tive function values, where weight coefficients are used to control
the influence of each criterion. The difficulty with this approach,
though, is the appropriate setting of the weights. This usually re-
quires more knowledge about the design space than is actually
available. Furthermore, optimising a particular weight combina-
tion yields one Pareto-optimal solution. To obtain several optimal

90 Chapter 4. Search Strategies

trade-off designs, multiple weight combinations need to be explored
either in parallel or subsequently. Nevertheless, not necessarily all
Pareto-optimal designs can be found as illustrated in Figure 46. The
weighted-sum approach is only able to detect all solutions if the
front of Pareto-optimal solutions is convex. Similar problems occur
with many other aggregation methods, see [Mie99].

• Objective Switching: The first papers using evolutionary algorithms
to approximate the Pareto set suggested to switch between the dif-
ferent objectives during the selection step. For instance, Schaffer
[Sch85] divided selection for variation into n selection steps where
n corresponds to the number of optimisation criteria; in the ith step,
designs in the working memory were chosen according to their ith
objective function value.

• Dominance-based Ranking: Nowadays, most popular schemes use fit-
ness assignments that directly make use of the dominance relation or
extensions of it. By pairwise comparing all the designs in the work-
ing memory, different types of information can be extracted. The
dominance rank gives the number of solutions by which a specific
solution is dominated, the dominance count represents the number
of designs that a particular design dominates, and the dominance
depth denotes the level of dominance when the set of designs is
divided into non-overlapping non-dominated fronts (see [Deb01]
for details).

f1

f2

w f +w f1 1 2 2 f1

f2

not detectable

Fig. 46: Illustration of the weighted-sum approach for two objectives. The left hand side
shows how a particular weight combination (w1,w2) uniquely identifies one
Pareto-optimal design. The right hand side demonstrates that not for all Pareto-
optimal designs such a weight combination exists.

4.1. Multi-Objective Evolutionary Algorithms 91

These fitness assignment schemes can also be extended to handle
design constraints. For dominance-based approaches, the dominance re-
lation can be modified such that feasible solutions by definition dominate
infeasible ones, while among infeasible designs the one with the lower
constraint violation is superior. For feasible solutions, the definition of
dominance remains unchanged (cf. [Deb01]). An alternative is the penalty
approach which can be used with all of the above schemes. Here, the over-
all constraint violation is calculated and summarised by a real value. This
value is then added to the original fitness value (assuming that fitness is
to be minimised); thereby, infeasible solutions are penalised.

Finally, another issue that is especially important in the presence of
multiple objectives is maintaining diversity among the designs stored.
If the goal is to identify a set of Pareto optima, special techniques are
necessary in order to prevent the search algorithm from converging to
a single trade-off solution. Most modern multi-objective optimisers inte-
grate some diversity preservation technique that estimates the density of
solutions in the space defined by the objective functions. For instance, the
density around a solution can be estimated by calculating the Euclidean
distance to the next closest solution. This density information can then
be incorporated into the fitness, e.g., by adding original fitness value and
density estimate.

4.1.2.2 Selection for Survival

When approximating the Pareto set, it is desirable not to loose promising
designs due to random effects. Therefore, selection for survival is usually
realised by a deterministic algorithm. Similar issues as with selection for
variation come into play here; however, almost all search methods make
sure that designs not dominated among those in the working memory are
preferred over dominated ones with respect to environmental selection.
If there are too many non-dominated solutions, then additional diver-
sity information is used to further discriminate between these designs.
Furthermore, as many randomised search algorithms only keep a single
solution in the working memory, often a secondary memory, a so-called
archive, is maintained that stores the current approximation of the Pareto
set. For instance, PAES [KC00], a randomised local search method for
multi-objective optimisation, checks for every generated design whether
it should be added to the archive, i.e., whether it is dominated by any
other archive member. If the design was inserted, dominated designs are
removed. If the archive size is exceeded after insertion, a design with the
highest density estimate is deleted.

A theoretical issue that has been investigated recently by different
researchers [LTDZ02, Kno02] addresses the loss in quality per iteration.

92 Chapter 4. Search Strategies

Optimally, the current set of designs represents the best Pareto set ap-
proximation among all solutions ever considered during the optimisation
run—given the actual memory constraints. This goal is difficult to achieve
in general, but Laumanns et al. [LTDZ02] proposed an archiving method
by which the loss can be bound and kept arbitrarily small by adjusting
the memory usage accordingly.

4.1.3 Variation

parent solution

p
a
ra

m
e
te

r

m
u
ta

te
d

child solution

parent solution #1 parent solution #2

child solution #1 child solution #2

Fig. 47: Variation operators used in the cache example: mutation (left), recombination
(right).

The purpose of the variation operators used with evolutionary algo-
rithms is to determine new design points given a set of selected previously
evaluated design points. There are several objectives for selecting appro-
priate variation operators:

• The variation operators operate on the design representation and
generate a local neighbourhood of the selected design points. The
construction of the variation operators is problem-dependent and a
major possibility to include domain-knowledge.

• The constructed neighbourhood should not contain infeasible de-
sign points, if possible.

• In case of design points that are infeasible because non-functional
properties are outside of given constraints, one may use a feedback
loop in order to correct.

• The variation operator may also involve problem-dependent local
search (e.g. by optimising certain parameters or hidden optimisation
criteria) in order to relieve the randomised search from optimisation
tasks that can better be handled with domain-knowledge.

In principle, different variation operators can be distinguished accord-
ing to the number of solutions they operate on. Most randomised search

4.1. Multi-Objective Evolutionary Algorithms 93

algorithms generate a single new design point by applying a randomised
operator to a known design point. For simulated annealing and ran-
domised local search algorithms this operator is called neighbourhood
function, whereas for evolutionary algorithms this operator is denoted as
mutation operator. The term mutation will be used in the remainder of
this section.

In the context of evolutionary algorithms there also exists a second
type of variation, in addition to mutation. Since evolutionary algorithms
maintain a population of solutions, it is possible to generate one or more
new solutions based on two or more existing solutions. The existing de-
signs selected for variation are often referred to as parents, whereas the
newly generated designs are called children. The operator that generates
≥ 1 children based on ≥ 2 parents is denoted as recombination.

4.1.3.1 Mutation

The assumption behind mutation is that it is likely to find better solutions
in the neighbourhood of good solutions. Therefore, mutation operators
are usually designed in such a way that the probability of generating
a specific solution decreases with increasing distance from the parent.
There exist several approaches to implement mutation. It is, e.g., possible
to always change exactly one parameter in the representation of a solution
and keep all other parameters unchanged. A different mutation operator
changes each of n parameters with probability 1/n, which leads to the fact
that one parameter is changed in expectation.

Changing a parameter means changing its value, i.e., flipping a bit in
a binary representation, or choosing new parameter values according to
some probability distribution for an integer- or real-valued representa-
tion. For representations based on permutations of vector elements the
mutation operator changes the permutation by exchanging two elements.
If the specification is based on lists of possible values, the mutation oper-
ator selects a new element according to some probability distribution.

In general, a mutation operator should on the one hand produce a new
solution that is “close” to the parent solution with a high probability, but
on the other hand be able to produce any solution in the design space,
although with very small probability. This is to prevent the algorithm
from being stuck in a local optimum.

The cache example from Section 2.1 uses the following mutation op-
erator: Each of the design parameters is mutated with probability 0.25
(as there are 4 different parameters). The change that is applied to each
of the parameters is normally distributed, i.e., the value of a parameter
is increased by a value that is normally distributed around 0 inside the
ranges given in Table 1; e.g. the block size parameter change is normally

94 Chapter 4. Search Strategies

distributed between -4 and +4. Note, that in the example changes of size
0 are also allowed, i.e. the parameter remains unchanged.

4.1.3.2 Recombination

Recombination takes two or more solutions as input, and then generates
new solutions that represent combinations of the parents. The idea behind
recombination is to take advantage of the good properties of each of
the parent to produce even better children. In analogy to the mutation
operator, a good recombination vector should produce solutions that lie
“between” the parents either with respect to the parameter space or to the
objective space.

For vectors in general, recombination of two parents can be accom-
plished by cutting both solutions at randomly chosen positions and re-
arranging the resulting pieces. For instance, one-point crossover creates
a child by copying the first half from the first parent and the second half
from the second parent. If the cut is made at every position, i.e., at each
position randomly either the value from the first or the second parent is
copied, the operator is called uniform recombination.

A further approach for real-valued parameters is to use the average of
the two parents’ parameter values, or some value between the parents’ pa-
rameter values. A detailed overview of various recombination operators
for different representation data structures can be found in [BFM97].

In general, a good recombination operator should fulfil the following
guideline: If we assume to have a distance metric d(a, b) with a and b
parent solutions, the recombination of a and b should lead to a solution c,
such that d(a, c) < d(a, b) and d(b, c) < d(a, b).

For the cache example from Section 2.1 uniform recombination was
used, i.e., for each of the parameters like cache block size it was randomly
decided from which parent solution the parameter for the first child solu-
tion should be used, where all unused parameters of the parent solutions
are then used for the second child solution. See Figure 47 on the right
hand side for a graphical representation of uniform recombination.

4.1.3.3 Infeasible Solutions

It may happen that after mutation or recombination a generated solution
is not feasible, i.e., the solution represented by the parameters doesn’t
describe a valid system. To solve this problem there are different possi-
bilities. First, one could ensure that the variation operators do not create
infeasible solutions by controlling the construction of new solutions, one
can call this approach “valid by construction”. Second, one could imple-
ment a repair method, that turns constructed solutions that are infeasible

4.2. Performance Indicators for Search Algorithms 95

into feasible ones by fixing the infeasible parameters. Finally, one can use
the concept of penalty functions in order to guide the search away from
areas with infeasible design points.

4.2 Performance Indicators for Search Algo-
rithms

In a multi-objective scenario, the goal of the optimisation process is to
find a good approximation of the Pareto-set S. The difficulty, though,
is that there is no general definition of what a good approximation of
the Pareto set is. Each particular definition represents specific preference
information that depends on the user.

We assume that the preferences of the decision maker can be given in
terms of a binary quality indicator I : Ω ×Ω → IR. A quality indicator in
general is a function that maps k Pareto set approximations to a real num-
ber; most common are unary quality indicators where k = 1 (cf. [ZTL+03]).
Binary quality indicators can be used to compare the quality of two Pareto
set approximations relative to each other.

In this section we revise several existing indicators to assess the per-
formance of optimisation algorithms. We do not cover all existing perfor-
mance indicators here, other indicators can be found e.g. in Hansen and
Jaszkiewicz’s study [HJ98] or in [ZTL+03]. The indicators presented here
are used later in this chapter and in the next chapter.

4.2.1 Additive ε+-indicator

The additive ε-quality measure Iε+(A,B) denotes the maximum value d,
which has to be subtracted from all objective values for all points in the
set of solutions A, such that the solutions in the shifted set A′ equal or
dominate any solution in set B in terms of the objective values. If the
value is negative, the solution set A entirely dominates the solution set B.
In other words, if the value d = Iε+ is negative, we can even add |d| to all
objective values for all points in set A and still the shifted set A′ dominates
the solution set B. Formally, this measure can be stated as follows:

Iε+(A,B) = max

y∈B

{
min

x ∈A

{
max

1≤i≤dim

{
fi(
x) − fi(
y)

}}}
, (4.1)

where dim denotes the problem dimension. Figure 48 shows a graphical
interpretation of the additive ε-quality measure. The additive ε-indicator
was first proposed in [ZTL+03].

96 Chapter 4. Search Strategies

Fig. 48: Illustration of the additive ε-quality measure Iε+ , here Iε+(A,B) = d.

4.2.2 Multiplicative ε-indicator

The multiplicative ε-quality measure Iε(A,B) returns the maximum value
f , by which all objective values for all points in the set of solutions A can
be divided, such that the solutions in the shifted set A′ equal or dominate
any solution in set B in terms of the objective values. If the value is < 1,
the solution set A entirely dominates the solution set B. Formally, this
measure can be stated as follows:

Iε(A,B) = max

y∈B

{
min

x ∈A

{
max

1≤i≤dim

{
fi(
x)
fi(
y)

}}}
, (4.2)

where dim denotes the problem dimension. The multiplicative ε-indicator
was proposed in [ZTL+03]. It allows us to claim that solution set A is at
least 1

Iε(A,B) times better than solution set B in all objectives, which is an
interesting property especially when comparing two sets consisting of
only one solution each.

4.2.3 Coverage Indicator

The coverage measure IC(A,B) returns the percentage of solutions in B
which are dominated by or equal to at least one solution in A. It was

4.2. Performance Indicators for Search Algorithms 97

introduced as a binary quality indicator in [ZT99]. More formally, we can
define the coverage by the following formula:

IC(A,B) =
|
y ∈ B;∃
x ∈ A :
x �
y|

|B| (4.3)

Figure 49 shows a graphical example for the coverage indicator.

Fig. 49: Illustration of the coverage quality measure.

4.2.4 Hypervolume Indicator

The hypervolume indicator was introduced in [ZT99]. In contrast to the
other quality measures presented in this section, it is an unary indicator.
I.e. it is based on a single set of solutions only. For this set, we compute
the hypervolume that is spanned by all the solutions
x in the set A.
The hypervolume can be seen as the union of hypercubes, each spanned
between an individual solution
x and a reference point
Z. We denote this
indicator with IH(A):

IH(A) =
⋃
∀
x∈A

{ ∏
1≤i≤dim

(Zi − fi(
x))
}

(4.4)

Figure 50 shows the hypervolume covered by 4 solutions in a 2 criteria
optimisation problem. The criteria both have to be minimised. The choice

98 Chapter 4. Search Strategies

of the reference point
Z influences the values for IH(A). This may lead to
problems if the reference point is chosen such that points lying on the
edge of the objective space hardly contribute to the hypervolume.

Fig. 50: Illustration of the hypervolume quality measure.

4.2.5 Binary Hypervolume Indicator

In contrast to the unary hypervolume indicator presented in the previous
section, this indicator can be used to compare two solution sets. We define
this indicator with IHD(A,B) as follows:

IHD(A,B) =
{

IH(B) − IH(A) if ∀
x 2 ∈ B∃
x 1 ∈ A :
x 1 �
x 2

IH(A + B) − IH(A) else
(4.5)

Here, IH(A) gives the hypervolume of the objective space dominated by
A (as defined in Section 4.2.4), and accordingly IHD(A,B) measures the
volume of the space that is dominated by B but not by A with respect to
a predefined reference point
Z.

4.3. Indicator-Based Evolutionary Algorithm 99

Fig. 51: Illustration of the binary hypervolume quality measure.

4.3 Indicator-Based Evolutionary Algorithm
This section discusses how preference information of the decision maker
can in general be integrated into multi-objective search. The main idea
is to first define the optimisation goal in terms of a binary performance
measure (indicators as the ones introduced in Section 4.2) and then to
directly use this measure in the selection process. To this end, we pro-
pose a general indicator-based evolutionary algorithm (IBEA) that can
be combined with arbitrary indicators. In contrast to existing algorithms,
IBEA can be adapted to the preferences of the user and moreover does
not require any additional diversity preservation mechanism such as fit-
ness sharing to be used. It is shown on several continuous and discrete
benchmark problems that IBEA can substantially improve on the results
generated by two popular algorithms, namely NSGA-II and SPEA2, with
respect to different performance measures.

4.3.1 Motivation

If we consider the criteria that guided the design of MOEAs in the last
decade, we make two observations:

100 Chapter 4. Search Strategies

1. The basis of most MOEAs is the assumption that there are two con-
flicting goals: (i) to minimise the distance to the Pareto-optimal set,
and (ii) to maximise the diversity within the approximation of the
Pareto-optimal set [Deb01]. However, recent studies [KC02, ZTL+03]
have shown that this assumption is problematic; to our best knowl-
edge, there exists no formal definition of two separate objectives,
one for convergence and one for diversity, that is compliant with
the Pareto dominance relation. Furthermore, there are also practical
problems related to this issue as discussed in [BT03].

2. In most popular MOEAs, the above assumption is implemented in
terms of a Pareto-based ranking of the individuals that is refined by
additional density information in objective space. The algorithms,
though, differ in various aspects, and therefore each of them realises
a slightly different optimisation goal, which is usually not explicitly
defined. That means current approaches have not been designed for
flexibility with respect to the preference information used; instead,
they directly implement one particular type of preference informa-
tion.

As to the first aspect, the alternative is to use Pareto-compliant formalisa-
tions of the decision maker’s preferences (cf. [HJ98, KC02, ZTL+03]). This,
in turn, leads to a question that is directly related to the second aspect:
How to design MOEAs with respect to arbitrary preference information?

The issue of integrating preference information into multi-objective
search has been addressed by different researchers, see [CVL02] for an
overview. For instance, Fonseca and Fleming [FF98] proposed an ex-
tended dominance relation that integrates predefined priorities and goals;
however, the two observations stated above also apply to the algorithm
introduced by them, similarly to many other algorithms used in this con-
text: a diversity preservation mechanism is implemented that implicitly
encodes unspecified preference information. In contrast, Knowles [Kno02]
presented a multi-objective hill climber that can be combined with arbi-
trary unary performance measures and does not require niching meth-
ods. This approach, though, is—depending on the performance measure
used—computationally expensive, and it is not clear how to extend it to
population-based multi-objective optimisers that implement both mating
and environmental selection.

In this section, we extend the idea of flexible integration of prefer-
ence information by Fonseca and Fleming [FF98] and Knowles [Kno02]
and propose a general indicator-based evolutionary algorithm, IBEA for
short. The main idea is to formalise preferences in terms of continuous
generalisations of the dominance relation, which leads to a simple algo-
rithmic concept. Thereby, IBEA not only allows adaptation to arbitrary

4.3. Indicator-Based Evolutionary Algorithm 101

preference information and optimisation scenarios, but also does not need
any diversity preservation techniques, in contrast to [FF98]. In compar-
ison to [Kno02], IBEA is more general, since the population size can be
arbitrary, and faster, because it only compares pairs of individuals and
not entire approximation sets. As will be shown, the proposed approach
can significantly improve the quality of the generated Pareto set approxi-
mation with respect to the considered optimisation goal—in comparison
to prominent Pareto-based MOEAs.

4.3.2 Preliminaries

We consider binary quality indicators here because they represent a nat-
ural extension of the Pareto dominance relation. They can directly be
used for fitness calculation similarly to the common Pareto-based fitness
assignment schemes. One requirement, though, is that the considered
indicator I is compliant with Pareto dominance as defined as follows.

Def. 3: A binary quality indicator I is denoted as dominance preserving if (i)

x 1 �
x 2 ⇒ I({
x 1}, {
x 2}) < I({
x 2}, {
x 1}) and (ii)
x 1 �
x 2 ⇒ I({
x 3}, {
x 1}) ≥
I({
x 3}, {
x 2}) for all
x 1

,
x 2
,
x 3 ∈ X.

We will see later how these properties ensure that the proposed fitness
assignment scheme is also Pareto dominance compliant. Note that the Iε+-
indicator (cf. Section 4.2.1) is dominance preserving; for instance, the in-
dicator values become negative as soon as
x 1 dominates
x 2 (cf. [ZTL+03]).

Now, given an arbitrary optimisation problem and a corresponding
binary quality indicator I, we can define the goal of the optimisation
process as minimising I(A, S) for A ∈ Ω where S is the Pareto set. If I is
dominance preserving, then I(A, S) is minimal for A = S; in the case of the
additive ε-indicator, Iε+(S, S) = 0.

4.3.3 Indicator-Based Selection

Taking the scenario described in Section 4.3.2, the question is how I can
be integrated in an MOEA to minimise I(A, S), where A is the generated
Pareto set approximation. This section deals with this issue.

4.3.3.1 Fitness Assignment

The population P represents a sample of the decision space, and fitness
assignment tries to rank the population members according to their use-
fulness regarding the optimisation goal. Among the different ways how
to exploit the information given by P and I, one possibility is to simply
sum up the indicator values for each population member with respect to

102 Chapter 4. Search Strategies

the rest of population, i.e.: F′(
x 1) =
∑

x 2∈P\{
x 1} I({
x 2}, {
x 1}) This fitness value

F′, which is to be maximised, is a measure for the “loss in quality” if
x 1 is
removed from the population. For Iε+ , e.g., F′(
x 1) divided by the popula-
tion size N equals the average ε needed to cover
x 1 by other population
members. However, we will use a slightly different scheme in the follow-
ing that amplifies the influence of dominating population members over
dominated ones:

F(
x 1) =
∑

x 2∈P\{
x 1}
−e−I({
x 2},{
x 1})/κ

We use one property of dominance preserving indicators here, namely
that I({
x 1}, {
x 2}) < I({
x 2}, {
x 1}) if
x 1 �
x 2. Thereby, the influence of small
indicator values contributes much more to the overall fitness than large
values. The parameter κ is a scaling factor depending on I and the under-
lying problem; κ needs to be greater than 0. The proposed fitness assign-
ment scheme is illustrated in Figure 52 for the Iε+-indicator. Furthermore,
the following theorem shows that this fitness scheme is compliant with
the Pareto dominance relation.

Thm. 2: Let I be a binary quality indicator. If I is dominance preserving, then it holds that

x 1 �
x 2 ⇒ F(
x 1) > F(
x 2).

Proof:The fitness values of
x 1 and
x 2 are defined as

F(
x 1) = −e−I({
x 2},{
x 1})/κ +
∑

x 3∈P\{
x 1,
x 2}
−e−I({
x 3},{
x 1})/κ (4.6)

F(
x 2) = −e−I({
x 1},{
x 2})/κ +
∑

x 3∈P\{
x 1,
x 2}
−e−I({
x 3},{
x 2})/κ (4.7)

From Definition 3 and property (i) it follows that the indicator value
I({
x 1}, {
x 2}) < I({
x 2}, {
x 1}). Since −e−x/κ > −e−y/κ, if x < y and κ > 0, the
left addend of (4.6) is strictly greater than the left addend of (4.7). Due
to property (ii) of Definition 3, we find that the right addend of (4.6) is
always greater or equal than the right addend of (4.7), following the same
reasoning. Hence, it follows that F(
x 1) > F(
x 2). �

4.3.3.2 Example Indicators

We show here, how two of the performance indicators presented in Sec-
tion 4.2 can be used for the fitness assignment presented in this section.

4.3. Indicator-Based Evolutionary Algorithm 103

Solution C is weakest Solution B is weakest

1 2 3

3

2

4

A C

B

F (A) = 1 + 6 = 7
F (B) = −1 + 5 = 4
F (C) = 1 + 2 = 3

F (A) = −e−1 − e−6 = −0.3703
F (B) = −e1 − e−5 = −2.7249
F (C) = −e−1 − e−2 = −0.5031

F ′(x) =
∑

y∈P\{x} I(y, x) F (x) =
∑

y∈P\{x}−e−I(y,x)

· · ·

Iε+(B, A) = 1

Iε+(A, C) = 1

Iε+(C, A) = 6

Iε+(B, C) = 2

Iε+(C, B) = 5

Iε+(A, B) = −1

Fig. 52: Consider three solutions A, B and C. Using the indicator Iε+ we compute the
fitness using a sum (left) and the amplified sum (right). The latter assignment
shows the desired behaviour.

A

B
I (A,B)>0��

I (B,A)>0��

A

B

I (A,B)= -I (B,A) > 0HD HD

A

B

I (A,B)>0HD

I (B,A)>0HD

A

B
I (A,B)>0��

I (B,A)<0��

Fig. 53: Illustration of the two binary quality indicators used in this section where A and
B contain one decision vector each (left: Iε+-indicator; right: IHD-indicator) .

In the example, we have seen how the additive ε-indicator can directly be
incorporated into the algorithm to assign fitness values to the population
members. The binary hypervolume indicator can be used in a similar way.

While the calculation of the IHD(A,B)-values is computationally ex-
pensive for approximations containing several decision vectors, it is of

104 Chapter 4. Search Strategies

orderO(n) if two decision vectors are compared, with n denoting the num-
ber of objectives. The running-time complexity of computing Iε+(A,B) is
also of order O(n), if the sets consist only of one solution each. Both indi-
cators will be used later in this section. A graphical interpretation for Iε+
and IHD can be found in Figure 53.

We present only two binary indicators here. However, many other
dominance preserving indicators can be defined that could be used in-
stead. Other examples for binary quality indicators that could be used
here are described in Hansen and Jaszkiewicz’s study [HJ98].

4.3.3.3 Basic Algorithm

Based on the above fitness assignment scheme, we propose a general
indicator-based evolutionary algorithm (IBEA) that performs binary tour-
naments for mating selection and implements environmental selection by
iteratively removing the worst individual from the population and up-
dating the fitness values of the remaining individuals. Its running-time
complexity isO(nα2) with regard to the population size α and the number
of objectives n. The fitness of each individual is based on the indicator
values (of complexity O(n)) computed for all other individuals in the
population, therefore the complexity of computing the fitness for a sin-
gle individual is O(nα). Details of the algorithm are given below; note
that it represents only the basic version of IBEA (denoted B-IBEA in the
following), an extended version will be specified later.

Alg. 1: (Basic IBEA)

Input: α (population size)
N (maximum number of generations)
κ (fitness scaling factor)

Output: A (Pareto set approximation)

Step 1: Initialisation
¯

: Generate an initial population P of size α; set the generation counter m
to 0.

Step 2: Fitness assignment
¯

: Calculate fitness values of individuals in P, i.e., for all
x 1 ∈ P set

F(
x 1) =
∑

x 2∈P\{
x 1} −e−I({
x 2},{
x 1})/κ.

Step 3: Environmental selection
¯

: Iterate the following three steps until the size of population
P is smaller or equal to α:

1. Choose an individual
x ∗ ∈ P with the smallest fitness value, i.e., F(
x ∗) ≤ F(
x)
for all
x ∈ P.

2. Remove
x ∗ from the population.

3. Update the fitness values of the remaining individuals, i.e.,
F(
x) = F(
x) + e−I({
x ∗},{
x })/κ for all
x ∈ P.

Step 4: Termination
¯

: If m ≥ N or another stopping criterion is satisfied then set A to the set of
decision vectors represented by the non-dominated individuals in P. Stop.

4.3. Indicator-Based Evolutionary Algorithm 105

Step 5: Mating selection
¯

: Perform binary tournament selection with replacement on P in order
to fill the temporary mating pool P′.

Step 6: Variation
¯

: Apply recombination and mutation operators to the mating pool P′ and add
the resulting offspring to P. Increment the generation counter (m = m + 1) and go to
Step 2.

4.3.3.4 Experimental Results

The proposed algorithm was tested on several well-known benchmark
problems: the 2-dimensional knapsack problem instance from [ZT99] with
100 items, the design space exploration problem for network processors
further described in Chapter 5 comprising problem instances with two
(EXPO2), three (EXPO3), and four (EXPO4) objectives (cf. [TCGK02a]),
and four continuous test functions, namely ZDT6 [ZDT00] and KUR
[Kur91] with two objectives as well as DTLZ2 and DTLZ6 [DTLZ02] with
three objectives each. For all problems, the population size α was set to
100 and the maximum number of generations N to 200. Overall, 30 runs
with different initial populations were carried out per algorithm and per
benchmark problem.

For the continuous problems, the individuals are coded as real vectors,
where the SBX-20 operator is used for recombination and a polynomial
distribution for mutation [DA95]. The recombination and mutation prob-
abilities were set to 1.0 and to 0.01, resp., according to [DTLZ05]. For the
knapsack problem, an individual is represented by a bit string, recombi-
nation is performed as one-point crossover with probability 0.8 according
to [ZT99], and point mutations are performed with bit-flip probability
0.04, as suggested in [LZT01]. For the design space exploration problems
EXPO, the representation of individuals and the operators are described
in [TCGK02a]. The recombination probability was set to 0.5 and the prob-
ability for mutation was set to 0.8. (These are the same parameter settings
as proposed in [TCGK02a].)

To assess the performance values, we have compared the solutions
found by the two new algorithms B-IBEAε+ and B-IBEAHD with NSGA-II
[DAPM00] and SPEA2 [ZLT02]. The performance comparison was carried
out using the quality indicators Iε+ and IHD, i.e., we have computed 30
indicator values I(A,R) for different seeds for all the tested algorithms.
In this formula, A stands for the output that the evolutionary algorithm
produced; the reference set R was determined by merging all solutions
found by all the different algorithms into one set and keeping the non-
dominated solutions. R was used instead of the Pareto set S, because S is
usually unknown.

For the results obtained using B-IBEAε+, B-IBEAHD, NSGA-II and
SPEA2, we can observe in the comparison that B-IBEAε+ and B-IBEAHD
perform significantly better than the other algorithms regarding both

106 Chapter 4. Search Strategies

performance indicators and for appropriately chosen parameterκ. For the
variation parameter settings described above, the choice for the parameter
κ does not influence the performance of the algorithm much. However,
other parameter settings indicate that the optimal choice of κ can vary and
is dependent on the problem and the indicator used. In Figure 54 (left),
the influence of different values κ for the performance of B-IBEAε+ on the
problem ZDT6 is given. The performance of B-IBEAHD not only depends
on the choice of κ but also on the choice of the reference point. In Figure 54
(right), we can see that for a particular choice of both κ and the reference
point, the performance of B-IBEAHD for problem ZDT6 is better than
SPEA2 and NSGA-II, but for other choices for κ and the reference point
the performance is substantially worse (For the experiment in Figure 54
we set both the mutation and recombination probability to 1).

The question that arises inspecting the results obtained so far is how
we can improve the algorithms such that (i) the same κ value can be used
for different problems and indicators, and (ii) B-IBEAHD becomes less
sensitive to the choice of the reference point for IHD.

S
P

E
A

2

N
S

G
A

-I
I

0.1 0.05 0.01 0.005

B-IBEAε+
κ=

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.01
(20,2)

0.05
(20,2)

0.05
(2,11)

0.01
(2,11)

S
P

E
A

2

N
S

G
A

-I
I

0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

Ref.=

κ=

B-IBEAHD

Fig. 54: (left) The indicator values Iε+ for SPEA2, NSGA-II and B-IBEAε+ for different
values of κ. For all the different algorithms one outlier was removed from the
result sample for improved readability. (right) The indicator values IHD for
SPEA2, NSGA-II and B-IBEAHD for different values of κ and the reference
point. In the 4th column, no values are given because they are about 10 times
greater than the values given.

4.3. Indicator-Based Evolutionary Algorithm 107

4.3.4 Improving Robustness

4.3.4.1 Adaptive IBEA

The values for the indicators I(A,B) can be widely spread for different
problems. This makes it difficult to determine an appropriate value for κ.
We can ease this task by adaptively scaling the indicator values such that
they lie in the interval [−1, 1] for all points in the population. Thereby, we
can use the same value κ for all the problems.

To tackle the problem of determining a good reference point for the
IHD indicator, we propose to use adaptive scaling not only for the indi-
cator values, but also for the objective values. After scaling, the objective
values lie in the interval [0, 1]. Like this, we can choose the worst values
for each objective found in the population as reference point to calculate
IHD, i.e. the reference point would be set to 1 for all objectives. If we
use this strategy, the only problem remaining is that the corner points
found in a population do not add to the hypervolume. To overcome this
problem, for the reference point we used a value of 2 for all objectives in
the experiments with IBEAHD.

Alg. 2: (Adaptive IBEA)

. . .

Step 2: Fitness assignment
¯

: First scale objective and indicator values, and then use scaled
values to assign fitness values:

1. Determine for each objective fi its lower bound bi = min
x ∈P fi(
x) and its upper

bound bi = max
x ∈P fi(
x).

2. Scale each objective to the interval [0, 1], i.e., f ′i (
x) = (fi(
x) − bi)/(bi − bi)).

3. Calculate indicator values I(
x 1
,
x 2) using the scaled objective values f ′i instead

of the original fi, and determine the maximum absolute indicator value
c = max
x 1,
x 2∈P |I(
x 1,
x 2)|.

4. For all
x 1 ∈ P set F(
x 1) =
∑

x 2∈P\{
x 1} −e−I({
x 2},{
x 1})/(c·κ).

Step 3: Environmental selection
¯

: . . .

1. . . .

2. . . .

3. Update the fitness values of the remaining individuals, i.e.,
F(
x) = F(
x) + e−I({
x ∗},{
x })/(c·κ) for all
x ∈ P.

. . .

The algorithms IBEAε+ and IBEAHD denote the adaptive versions of
the basic algorithms. For these versions, the choice of κ only marginally

108 Chapter 4. Search Strategies

depends on the problem and the indicator under consideration. The
changes in the initial algorithm are shown in Algorithm 2. For the ex-
periments discussed in Section 4.3.4.2, we have used a fixed κ = 0.05 for
all the problems and algorithms.

Preliminary tests have shown that this value for κ produced good
results on the problems considered. Furthermore, the value for κ was
chosen such that in the implementation no numerical problems occur,
because smaller values led to fitness values larger than the maximum
allowed double value in the PISA-specification (= 1099).

4.3.4.2 Simulation Results

In Figure 55, the comparison results for the problems DTLZ6 and EXPO2
are shown. For both problems, the proposed algorithms IBEAε+ and
IBEAHD perform significantly better than SPEA2 and NSGA-II with re-
spect to the performance indicators Iε+ and IHD. Note that these IBEA
versions all work with the same value for κ.

In addition to SPEA2, NSGA-II and the proposed IBEAε+ and IBEAHD,
we have implemented an adaptive version of SPEA2 to see the impact of
adaptive objective-value scaling as such. The performance of the adaptive
version of SPEA2 is similar to the performance of to the original algorithm
on the test problems, and the Wilcoxon rank test returns false for all the
problems investigated, i. e. the distributions of I(A,R) for SPEA2 and the
adaptive version of SPEA2 are not significantly different.

An overview of the results for Iε+ is given in Table 10. Overall, we can
see that for the continuous problems DTLZ2, DTLZ6 and ZDT6, the pro-
posed algorithms IBEAε+ and IBEAHD perform significantly better than
SPEA2 or NSGA-II; only for KUR, the latter provide better performance
than the two IBEA instances. For the discrete knapsack problem, the sig-
nificance tests return false, i.e. the indicator value distributions generated
by the different search algorithms are statistically not different from each
other. In contrast, the indicator-based algorithms show significantly bet-
ter performance for the design-space exploration problem EXPO in two,
three and four dimensions (EXPO2, EXPO3, EXPO4).

4.4 Summary
In this chapter we motivated the use of evolutionary algorithms for design
space exploration. Using EAs, the design space exploration problem can
be handled as multi-objective optimisation problem where we do not
have to know internals of the problem but can treat it as black box. The
selection and variation operators used with EAs were also discussed. In

4.4. Summary 109

N
S

G
A

-I
I

S
P

E
A

2

IB
E

A
ε+

IB
E

A
H

D

30

25

20

15

10

5

N
S

G
A

-I
I

S
P

E
A

2

IB
E

A
ε+

IB
E

A
H

D

0.3

0.25

0.2

0.15

0.1

0.05

0

DTLZ 6

Iε+

EXPO2

N
S

G
A

-I
I

S
P

E
A

2

IB
E

A
ε+

IB
E

A
H

D

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

N
S

G
A

-I
I

S
P

E
A

2

IB
E

A
ε+

IB
E

A
H

D

0.18

0.16

0.12

0.14

0.1

0.08

0.06

0.04

0.02

0

I
HD I

HD

Iε+

Fig. 55: Performance comparison for adaptive IBEAε, IBEAHD, SPEA2 and NSGA-II
solving problems DTLZ6 (left) and EXPO2 (right). On top, values for Iε+ , below
for IHD are given.

order to be able to compare the performance of different EAs for design
space exploration, we introduced five indicators to assess the quality of
an approximated Pareto-front found by a specific EA.

Further, we proposed a new evolutionary algorithm IBEA. Every
MOEA implementation makes assumptions about the decision maker’s
preferences which are usually hard coded in the algorithm. These prefer-
ences may vary for each user and application. Therefore, we have argued

110 Chapter 4. Search Strategies

that ideally MOEAs would be designed and evaluated with regard to
the specific preferences of the user, formalised in terms of a performance
measure. We have proposed a general indicator-based evolutionary algo-
rithm (IBEA) that, contrarily to existing population-based MOEAs, allows
to adapt the search according to arbitrary performance measures. For two
different performance measures, this approach has be shown to generate
significantly better results on six of eight benchmark problems in compar-
ison to SPEA2 and NSGA-II, while no statistically significant performance
difference could be observed on one of the test function.

All evolutionary algorithms used in this chapter (including the new
indicator-based algorithm IBEA), programs implementing the perfor-
mance indicators, and the statistical test programs can be obtained at
the PISA website at http://www.tik.ee.ethz.ch/pisa.

4.4. Summary 111

SPEA2 NSGA-II SPEA2adap IBEAε,adap
P value T P value T P value T P value T

ZDT6
NSGA-II 5.6073 · 10−4 ↑
SPEA2adap > 5% � 8.1975 · 10−6 ↓
IBEAε,adap 8.1014 · 10−9 ↑ 2.0023 · 10−5 ↑ 1.9568 · 10−9 ↑
IBEAHD,adap 0.0095 ↑ > 5% � 5.4620 · 10−5 ↑ 1.3853 · 10−5 ↓
DTLZ2

NSGA-II 3.0199 · 10−10 ↓
SPEA2adap > 5% � 3.0199 · 10−10 ↑
IBEAε,adap 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑
IBEAHD,adap 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 5.5329 · 10−7 ↓
DTLZ6
NSGA-II 8.1014 · 10−9 ↓
SPEA2adap > 5% � 6.1210 · 10−9 ↑
IBEAε,adap 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑
IBEAHD,adap 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.0199 · 10−10 ↑ 3.5923 · 10−4 ↓
KUR
NSGA-II > 5% �
SPEA2adap > 5% � > 5% �
IBEAε,adap 3.0199 · 10−10 ↓ 3.0199 · 10−10 ↓ 6.6955 · 10−10 ↓
IBEAHD,adap 3.0199 · 10−10 ↓ 3.0199 · 10−10 ↓ 4.9752 · 10−10 ↓ > 5% �

Knapsack
NSGA-II > 5% �
SPEA2adap > 5% � > 5% �
IBEAε,adap > 5% � > 5% � > 5% �
IBEAHD,adap > 5% � > 5% � > 5% � > 5% �

EXPO2
NSGA-II > 5% �
SPEA2adap > 5% � 0.0189 ↑
IBEAε,adap 1.0837 · 10−8 ↑ 2.6753 · 10−9 ↑ 6.4048 · 10−8 ↑
IBEAHD,adap 1.9638 · 10−7 ↑ 1.2260 · 10−8 ↑ 6.6261 · 10−7 ↑ > 5% �

EXPO3
NSGA-II > 5% �
SPEA2adap > 5% � > 5% �
IBEAε,adap 4.3165 · 10−8 ↑ 5.0801 · 10−8 ↑ 3.1159 · 10−7 ↑
IBEAHD,adap 2.4189 · 10−7 ↑ 1.5732 · 10−7 ↑ 1.1653 · 10−6 ↑ > 5% �

EXPO4
NSGA-II > 5% � -
SPEA2adap > 5% � 9.4209 · 10−4 ↓
IBEAε,adap 1.8546 · 10−10 ↑ 6.9754 · 10−10 ↑ 1.8390 · 10−10 ↑
IBEAHD,adap 1.9883 · 10−10 ↑ 1.0221 · 10−9 ↑ 1.9716 · 10−10 ↑ > 5% �

Tab. 10: Comparison of different MOEAs for the Iε+-indicator using the Wilcoxon rank
test. The “P value” columns give the adjusted P value of the corresponding pair-
wise test that accounts for multiple testing; it equals the lowest significance level
for which the null-hypothesis (the medians are drawn from the same distribu-
tion) would still be rejected. The “T” columns give the outcome of the test for a
significance level of 5%: either the algorithm corresponding to the specific row
is significantly better (↑) resp. worse (↓) than the algorithm associated with the
corresponding column or there is no significant difference between the results
(�).

112 Chapter 4. Search Strategies

5
Tools and Applications

In this chapter, we present applications of the work discussed in the pre-
vious chapters. As main new result, we introduce EXPO, a general tool
for design space exploration. It is easily customisable such that it can be
used to explore the solution space for virtually any user’s problem spec-
ification. We describe all parts that have to be implemented for such a
customisation. The advantages of using the framework is that the imple-
mentation effort for a user is minimised and that it can be coupled with
various popular search algorithms that implement the PISA interface.

In a next section, we present the software architecture of the EXPO tool
and introduce the PISA interface. Then, we present a case study, in which
we used EXPO to explore the design space for complex packet processor
architectures.

Finally, we present a comparative study in which we used the packet
processor design space exploration problem as a benchmark application.
With EXPO, we can assess the quality of different search algorithms. The
results of the study are presented and discussed in Section 5.3.

5.1 EXPO: A General Framework for Design
Space Exploration

The EXPO tool is a general framework for design space exploration. The
tool performs the steps common to all design space exploration problems
that are solved with evolutionary algorithms. It implements the variator

114 Chapter 5. Tools and Applications

part of the PISA interface (see Section 5.1.2). Further, the tool implements
the population handling and offers a graphical interface to the user. The
parts that are specific to the exploration problem are accessed by EXPO
through a set of well-defined interfaces. Problem-specific parts include,
e.g., the representation of a design point, or how a design point is evalu-
ated. The structure of the tool is discussed in the next section. Section 5.1.2
covers the protocol used between the EXPO tool and an evolutionary
search algorithm.

5.1.1 Software Architecture

The EXPO tool is completely written in Java and therefore platform-
independent. Because it implements the text-based PISA interface, it
needs access to a file system. There are no other restrictions on the execu-
tion platform.

Figure 56 gives the general structure of the EXPO tool framework.
In the centre the main module is given. This module implements the
following functionalities:

• Control unit: The tool consists of a control unit that enables a user
to initiate, supervise and stop a design space exploration run.

• Graphical user interface: The user can start and stop exploration
runs through a GUI. Further, the user can display details about the
active population during the exploration as well as details about a
single design point.

• Population management: The tool takes care about the population
of active design points during an exploration run. It removes design
points selected by the search algorithm as well as it adds new design
points to the active population.

• Solution generation and evaluation: The tool invokes problem-
specific software modules through interfaces: first for generation
of new design points and second for their evaluation. These new
design points are then added to the active population.

• Communication with optimiser: The main module handles all the
communication needed with a PISA-compliant optimiser.

The purpose of the main module is to implement the functionality that
is common to all design space exploration problems that are solved using
evolutionary algorithms. A user of the framework can rely on already
implemented common functions and therefore can concentrate on the
software modules that are specific to his problem.

5.1. EXPO: A General Framework for Design Space Exploration 115

PISA

(Sec. 5.1.2)

EXPO

(main module)

Problem

Specification

Design Representation and

Generation of new Solutions

Design Evaluation

Evolutionary

Search

Algorithm

(Chap. 4)

Fig. 56: Block diagram for the EXPO-tool with the main module (centre), the problem-
specific modules (right) and the search algorithm attached through the PISA
interface (left).

On the right hand side of Figure 56, three problem-specific modules are
shown. These modules are accessed from within the EXPO main module
through interfaces. Note that for each new design space problem, these
modules have to be implemented, whereas the main module remains the
same. The following functionality is implemented by the modules:

• Problem specification: This module holds the specification for the
design space exploration problem. The specification spans the solu-
tion space of all possible solutions and contains the constraints.

• Design representation: This module holds the parameters that rep-
resent a design point in the search space. Further, it implements the
variation operators to generate new design points.

• Design evaluation: This module is invoked by the EXPO tool to
evaluate a design point. It contains means to assign one or more
values to a solution representing the desired properties of the design.

The PISA interface shown on the left hand side in Figure 56 is intro-
duced in the next section. The description of the interfaces between EXPO
and the problem-specific modules and their definition in Java is given in
Appendix A.

5.1.2 PISA

PISA is a platform- and programming-language-independent interface
for search algorithms. It is the purpose of PISA [BLTZ03] to make state-

116 Chapter 5. Tools and Applications

VariatorVariator

SelectorSelector

alpha 3

mu 3

lambda 1

dim 2

cfg

4

0 5.6 6.3

1 4.7 8.2

2 7.1 3.4

3 3.4 9.0

END

ini

3

0

2

3

END

arc

2

3

0

END

sel

1

4 5.3 2.3

END

var

selector

parameters

variator

parameters

2

sta

Fig. 57: Communication between modules through text files as defined by the PISA
protocol. The files contain sample data.

of-the-art randomised search algorithms for multi-objective optimisation
problems readily available. Therefore, for a new design space exploration
task in embedded system design, one can concentrate on the problem-
dependent aspects, where the domain-knowledge comes in. The protocol
has to be implemented by any design space exploration tool, such as
EXPO, that would like to benefit from pre-compiled and ready-to-use
search algorithms available at http://www.tik.ee.ethz.ch/pisa. The
detailed protocol including file formats and data type definitions is given
in [BLTZ03]. In the protocol description, the application-specific part is
called ’variator’ and the search algorithm is denoted ’selector’, according
to Figure 57.

The protocol has been designed with several objectives in mind:

• Small amount of data that need to be communicated between the
two different processes (selector and variator).

• The communicated data should be independent of the problem do-
main in order to enable a generic implementation of the selector
process.

• Separation into problem-independent (selector) and problem-
dependent (variator) processes.

5.1. EXPO: A General Framework for Design Space Exploration 117

• The implementation of the protocol should be as much as possi-
ble independent of the programming languages, hardware plat-
forms and operating systems. It should enable a reliable (delay-
independent) execution of the design space exploration.

The protocol defines the sequence of actions performed by the selector
and variator processes. The communication between the two processes is
done by exchange of text files over a common file system. The handshake
protocol is based on states and ensures that during the optimisation pro-
cess only one module is active at any time. During the inactive period a
process polls the state file for changes. Whenever a module reads a state
that requires some action on its part, the operations are performed and
the next state is set.

The core of the optimisation process consists of state 2 and state 3:
In each iteration, the selector chooses a set of parent individuals (design
points) and passes them to the variator. The variator generates new child
solutions on the basis of the parents, computes the objective function
values of the new individuals, and passes them back to the selector.

In addition to the core states two more states are necessary for normal
operation. State 0 and state 1 trigger the initialisation of the variator
and the selector, respectively. In state 0 the variator reads the necessary
parameters. Then, the variator creates an initial population, determines
the objective values of the individuals and passes the initial population to
the selector. In state 1, the selector also reads the required parameters, then
selects a sample of parent individuals and passes them to the variator.

The four states 0–3 provide the basic functionality of the PISA-protocol.
To add some flexibility the PISA-protocol defines a few more states which
are mainly used to terminate or reset both the variator process and the
selector process. Table 11 gives an overview over all defined states. The
additional states 4–11 are not mandatory for a basic implementation of
the protocol.

The data transfer between the two modules introduces some over-
head compared to a traditional monolithic implementation. Thus, the
amount of data exchange for each individual should be minimised. Since
all representation-specific operators are located in the variator, the selec-
tor does not have to know the representation of the individuals. Therefore,
it is sufficient to convey only the following data to the selector for each
individual: an identifier and its objective vector. In return, the selector
only needs to communicate the identifiers of the parent individuals to
the variator. The proposed scheme allows to restrict the amount of data
exchange between the two modules to a minimum.

For PISA-compliant search algorithms to work correctly, a designer has
to ensure, that all objectives are to be minimised. In addition the variator

118 Chapter 5. Tools and Applications

State Action Next State
State 0 Variator reads parameters and creates State 1

initial solutions
State 1 Selector reads parameters and selects State 2

parent solutions
State 2 Variator generates and evaluates new solutions State 3
State 3 Selector selects solutions for variation State 2
State 4 Variator terminates. State 5
State 6 Selector terminates. State 7
State 8 Variator resets. (Getting ready to start in state 0) State 9
State 10 Selector resets. (Getting ready to start in state 0) State 11

Tab. 11: States for the PISA-protocol. The main states of the protocol are printed in bold
face.

and selector have to agree on a few common parameters: (i) the population
size α, (ii) the number of parent solutions µ, (iii) the number of child
solutions λ and (iv) the number of objectives dim. These parameters are
specified in the parameter file with suffix cfg, an example file is shown
in Figure 57.

The selector and the variator are normally implemented as two sepa-
rate processes. These two processes can be located on different machines
with possibly different operating systems. This complicates the imple-
mentation of a synchronisation method. Most common methods for in-
terprocess communication are therefore not applicable.

In PISA, the synchronisation problem is solved using a common state
variable which both modules can read and write. The two processes regu-
larly read this state variable and perform the corresponding actions. If no
action is required in a certain state, the respective process sleeps for a spec-
ified amount of time and then rereads the state variable. The state variable
is an integer number stored to a text file with suffix sta. The protocol uses
text files instead of, e.g., sockets, because file access is completely portable
between different platforms and familiar to all programmers.

All other data transfers between the two processes besides the state
are also performed using text files. The initial population is written by the
variator to the file with suffix ini, the population is written by the selector
to a file with suffix arc. In a text file with suffix sel the selector stores
the parent solutions that are selected for variation. The newly generated
solutions are passed from the variator to the selector through a file with
suffix var. All text files for data transfer have to begin with the number of
elements that follow and to end with the keyword END. Once the receiving
process has completely read a text file, it has to overwrite the file with 0,

5.2. Applications of Framework 119

to indicate that it successfully read the data.

5.2 Applications of Framework
The tool framework with the generic EXPO tool for design space explo-
ration together with the PISA interface for easy coupling of search algo-
rithms was used for two example design space explorations described
in this thesis: the cache exploration example introduced in Section 2.1
and the example presented in this chapter. To perform both the design
space exploration runs, we only had to implement the problem-specific
modules for EXPO introduced in Section 5.1.1 and decide on a optimisa-
tion algorithm to use. In the next section, we introduce the exploration
problem for packet processor architectures.

5.2.1 Packet Processors

Packet processors are high-performance, programmable devices with spe-
cial architectural features that are optimised for network packet process-
ing. In this area of application, also the term network processor is used.
They are mostly embedded within network routers and switches and
are designed to implement complex packet processing tasks at high line
speeds such as routing and forwarding, firewalls, network address trans-
lators, means for implementing quality-of-service (QoS) guarantees to
different packet flows, and also pricing mechanisms.

Other examples of packet processors would be media processors
which have network interfaces. Such processors have audio, video and
packet-processing capabilities and serve as a bridge between a network
and a source/sink audio/video device. They are used to distribute (real-
time) multimedia streams over a packet network like wired or wireless
Ethernet. This involves receiving packets from a network, followed by
processing in the protocol stack, forwarding to different audio/video de-
vices and applying functions like decryption and decompression of mul-
timedia streams. Similarly, at source end, this involves receiving multime-
dia streams from audio/video devices (e.g., video camera, microphone,
stereo systems), probably encrypting, compressing and packetising them,
and finally sending them over a network.

Following the above discussion, there are major constraints to satisfy
and conflicting goals to optimise in the design of packet processors:

• Delay Constraints: In case of packets belonging to a multimedia
stream, there is very often a constraint on the maximal time a packet
is allowed to stay within the packet processor. This upper delay

120 Chapter 5. Tools and Applications

must be satisfied under all possible load conditions imposed by
other packet streams that are processed simultaneously by the same
device.

• Throughput Maximisation: The goal is to maximise the maximum
possible throughput of the packet processing device in terms of the
number of packets per second.

• Cost Minimisation: One is interested in a design that uses a small
amount of resources, e.g., single processing units, memory and com-
munication networks.

• Conflicting Usage Scenarios: Usually, a packet processor is used
in several, different systems. For example, one processor will be
implemented within a router, another one is built into a consumer
device for multimedia processing. The requirements from these dif-
ferent applications in terms of throughput and delay are typically
in conflict to each other.

All of the above constraints and conflicting goals will be taken into
account in the design space exploration for packet processors presented
in this section.

5.2.1.1 Design Space Exploration

Complex embedded systems like packet processors are often comprised
of a heterogeneous combination of different hardware and software com-
ponents such as CPU cores, dedicated hardware blocks, different kinds
of memory modules and caches, various interconnections and I/O in-
terfaces, run-time environment and drivers, see e.g. Figure 58. They are
integrated on a single chip and they run specialised software to perform
the application.

Typically, the analysis questions faced by a designer during a system-
level design process are:

• Allocation: Determine the hardware components of the packet pro-
cessor like microprocessors, dedicated hardware blocks for compu-
tationally intensive application tasks, memory and busses.

• Binding: For each task of the software application choose an allo-
cated hardware unit which executes it.

• Scheduling Policy: For the set of tasks that are mapped onto a spe-
cific hardware resource choose a scheduling policy from the avail-
able run-time environment, e.g., a fixed priority.

5.2. Applications of Framework 121

Interconnection Network (Bus System)

Memory Memory Memory

Processing
Element

Processing
Element

Processing
Element

...

Output

Input

Fig. 58: Template of a packet processor architecture as used for the design space explo-
ration.

Hardware
Architecture
Template

Software
Application

Run-Time
Environment

Application
Scenarios

Constraints
Opt. Criteria

Allocation

HW Architecture

Performance Analysis HW/SW Architectures
Cost and Performance

Multiobjective

Evolutionary

Selection

Binding

Scheduling

HW/SW Architecture

VARIATION SELECTION

Selected Architectures

Fig. 59: Design space exploration methodology used for packet processors.

Most of the available design methodologies start with an abstract
specification of the application and the performance requirements (cf.
Chapter 1). These specifications are used to drive a system-level design
space exploration [PLvdW+01], which iterates between performance eval-
uation and exploration steps, see also Thiele et al. [TCGK02b, TCGK02a],
and Blickle et al. [BTT98]. Finally, appropriate allocations, bindings, and
scheduling strategies are identified. The methodology used for this ex-
ploration is shown in Figure 59. In the following, we describe how we
implemented the 3 problem-specific modules needed for the EXPO tool
(cf. Figure 56) to perform the design space exploration.

122 Chapter 5. Tools and Applications

5.2.1.2 Problem Specification

According to Figure 59, basic prerequisites of the design space exploration
are models for the architecture, the application, the run-time scheduling,
and the application scenarios. Based on these models, the method pre-
sented in Section 3.3 can be used for performance analysis.

Architecture Template and Allocation. Following Figure 58, the model
for a packet processor consists of a set of computation units or processing
elements which perform operations on the individual packets. For the
exploration problem presented here, we do not model the communication
between the processing elements, i.e., packets can be moved from one
memory element to the next one without constraints.

Def. 4: We define a set of resources R. To each resource r ∈ R we associate a relative
implementation cost cost(r) ≥ 0. The allocation of resources is described by the
function alloc(r) ∈ {0, 1}. To each resource r there are associated two functions
βu

r (∆) ≥ 0 and βl
r(∆) ≥ 0, denoted as upper and lower service curves, respectively.

Initially, we specify all available processing units as our resource set R
and associate the corresponding costs to them. For example we may have
the resources R = {ARM9, MEngine, Classifier, DSP, Cipher, LookUp,
CheckSum, PowerPC}. During the allocation step (see Figure 59), we
select those which will be in a specific architecture, i.e., if alloc(r) = 1, then
resource r ∈ R will be implemented in the packet processor architecture.

The upper and lower service curves specify the available computing
units of a resource r in a relative measure, e.g., processor cycles or in-
structions. In particular, βu

r (∆) and βl
r(∆) are the maximum and minimum

number of available processor cycles in any time interval of length ∆. In
other words, the service curves of a resource determine the best case and
worst case computing capabilities.

Software Application and Binding. The purpose of a packet processor
is to simultaneously process several streams of packets. For example, one
stream may contain packets that store audio samples and another one
contains packets from an FTP application. Whereas the different streams
may be processed differently, each packet of a particular stream is pro-
cessed identically, i.e., each packet is processed by the same sequence of
tasks.

Def. 5: We define a set of streams s ∈ S and a set of tasks t ∈ T. To each stream s there
is an ordered sequence of tasks V(s) = [t0, ..., tn] associated. Each packet of the
stream is first processed by task t0 ∈ T, then successively by all other tasks until
tn ∈ T.

5.2. Applications of Framework 123

A H
Verify

Link Rx Verify IP
Header

Process IP
Header

Dejitter Voice
Decoder

RTP RxUDP RxVoice
Encoder

Classify

RTP Tx UDP Tx Build IP
Header

Route
Look Up

IP header
Modify

ESP
Encaps

A H
Calc

Route
Look Up

Decrypt

Encrypt

ESP
Decaps

Calc Check
Sum

ScheduleARP
Look Up

Link
Tx

Voice Processing

Encryption/Decryption

Stream RTRecvStream RTSend

Stream NRTForward

Stream NRTEncrypt

Stream
NRTDecrypt

Fig. 60: Task graph of a packet processing application.

As an example we may have five streams S = {RTSend, NRTDecrypt,
NRTEncrypt, RTRecv, NRTForward}. According to Figure 60, the packets
of these streams when entering the packet processor undergo different se-
quences of tasks, i.e., the packets follow the paths shown. For example, for
stream s = NRTForward we have the sequence of tasks V(s) = [LinkRX,
VerifyIPHeader, ProcessIPHeader, Classify, RouteLookUp, ... , Schedule,
LinkTx].

Def. 6: The mapping relation M ⊆ T × R defines all possible bindings of tasks, i.e., if
(t, r) ∈ M, then task t could be executed on resource r. This execution of t for
one packet would use w(r, t) ≥ 0 computing units of r. The binding Z of tasks to
resources Z ⊆ M is a subset of the mapping such that every task t ∈ T is bound
to exactly one allocated resource r ∈ R, alloc(r) = 1. We also write r = bind(t) in
a functional notation.

In a similar way as alloc describes the selection of architectural com-
ponents, bind defines a selection of the possible mappings. Both alloc and
bind will be encoded using an appropriate representation described later.
The ‘load’ that a task t puts onto its resource r = bind(t) is denoted as
w(r, t).

Figure 61 represents an example of a mapping between tasks and
resources. For example, task ‘Classify’ could be bound to resource ‘ARM9’
or ‘DSP’. In a particular implementation of a packet processor we may
have bind(Classify) = DSP, i.e., the task ‘Classify’ is executed on the
resource ‘DSP’ and the corresponding execution requirement for each
packet is w(DSP,Classify) = 2.9. Of course, this is possible only if the
resource is allocated, i.e., alloc(DSP) = 1.

124 Chapter 5. Tools and Applications

Route
Look Up

Classify

Encrypt

ARM9
40

LookUp
5

DSP
20

Cipher
40

ARP
Look Up

......

resources Rtasks T

cost

mapping Mrequest w

3.4

2.9

0.74

0.3

0.6

0.2

265

15.7

Fig. 61: Example of a mapping of task to resources.

Run-time Environment and Scheduling. According to Figure 58, there
is a memory associated to each processing element. Within this memory,
all packets are stored that need to be processed by the respective resource.
The run-time environment now has different scheduling policies available
that determine which of the waiting packets will be processed next.

Def. 7: To each stream s there is associated an integer priority prio(s) > 0. There are no
streams with equal priority.

In the benchmark application, we suppose that only preemptive fixed-
priority scheduling is available on each resource. To this end, we need to
associate to each stream s a fixed priority prio(s) > 0, i.e., all packets of s
receive this priority. From all packets that wait to be executed in a memory,
the run-time environment chooses one for processing that has the highest
priority among all waiting packets. If several packets from one stream are
waiting, then it prefers those that are earlier in the task chain V(s).

Application Scenarios. A packet processor will be used in several, possi-
bly conflicting application scenarios. Such a scenario is described by the
properties of the input streams, the allowable end-to-end delay (deadline)
for each stream and the available total memory for all packets (sum of all
individual memories of the processing elements).

Def. 8: The properties of each stream s are described by upper and lower arrival curves
αu

s (∆) and αl
s(∆). To each stream s ∈ S there is associated the maximal total packet

memory m(s) ≥ 0 and an end-to-end deadline d(s) ≥ 0, denoting the maximal
time by which any packet of the stream has to be processed by all associated tasks
V(s) after its arrival.

5.2. Applications of Framework 125

The upper and lower arrival curves specify upper and lower bounds
on the number of packets that arrive at the packet processor. In particular,
αu

s (∆) and αl
s(∆) are the maximum and minimum number of packets in

any time interval of length ∆.

Def. 9: The packet processor is evaluated for a set of scenarios b ∈ B. The quantities of
Definition 8 are defined for each scenario independently.

In addition, whereas the allocation alloc is defining a particular hard-
ware architecture, the quantities that are specific for a software application
are also specific for each scenario b ∈ B and must be determined indepen-
dently, for example the binding bind of tasks to processing elements and
the stream priorities prio.

5.2.1.3 Design Evaluation

It is not obvious how to determine for any memory module, the maximum
number of stored packets in it waiting to be processed at any point in time.
Neither is it clear how to determine the maximum end-to-end delays ex-
perienced by the packets, since all packet flows share common resources.
As the packets may flow from one resource to the next one, there may
be intermediate bursts and packet jams, making the computations of the
packet delays and the memory requirements non-trivial.

As introduced in Chapter 3, there exists a computationally efficient
method to derive worst-case estimates on the end-to-end delays of packets
and the required memory for each computation and communication. For
this, we construct a scheduling network and apply Real-Time Calculus in
order to derive the desired bounds.

As we know for each scenario the delay and memory in comparison
to the allowed values d(b, s) and m(b, s), we can increase the input traffic
until the constraints are just about satisfied. In particular, we do not use
the arrival curves αu

(b,s) and αl
(b,s) directly in the scheduling network, but

linearly scaled amounts ψb · αu
(b,s) and ψb · αl

(b,s), where the scaling factor ψb

is different for each scenario. Now, binary search is applied to determine
the maximal throughput such that the constraints on delay and memory
are just about satisfied.

For the design evaluation, the following fact holds:

• Given the specification of a packet processing design problem by
the set of resources r ∈ R, the cost function for each resource cost(r),
the service curves βu

r and βl
r, a set of streams s ∈ S, a set of application

tasks t ∈ T, the ordered sequence of tasks for each stream V(s), and
the computing requirement w(r, t) for task t on resource r;

126 Chapter 5. Tools and Applications

• given a set of application scenarios b ∈ B with associated arrival
curves for each stream αu

(b,s) and αl
(b,s), and a maximum delay and

memory for each stream d(b, s) and m(b, s);

• given a specific HW/SW architecture defined by the allocation of
hardware resources alloc(r), for each scenario b a specific priority of
each stream prio(b, s) and a specific binding bind(b, t) of tasks t to
resources;

• then we can determine — using the concepts of scheduling network,
Real-Time Calculus and binary search — the maximal scaling factor
ψb such that under the input arrival curves ψb ·αu

(b,s) and ψb ·αl
(b,s) the

maximal delay of each packet and the maximal number of stored
packets is not larger than d(b, s) and m(b, s), respectively.

As a result, we can define the criteria for the optimisation of packet
processors.

Def. 10: The quality measures for packet processors are the associated cost cost =∑
r∈R alloc(r)cost(r) and the throughput ψb for each scenario b ∈ B. These quanti-

ties can be computed from the specification of a HW/SW architecture, i.e., alloc(r),
prio(b, s) and bind(b, t) for all streams s ∈ S and tasks t ∈ T.

5.2.1.4 Design Representation and Generation of new Solutions

Following Figure 59 and Definition 10, a specific HW/SW architecture is
defined by alloc(r), prio(b, s) and bind(b, t) for all resources r ∈ R, streams
s ∈ S and tasks t ∈ T. For the representation of architectures, we number
the available resources from 1 to |R|; the tasks are numbered from 1 to |T|,
and each stream is assigned a number between 1 and |S|. The allocation
of resources can then be represented as integer vector A ∈ {0, 1}|R|, where
A[i] = 1 denotes, that resource i is allocated. To represent the binding of
tasks on resources, we use a two-dimensional vector Z ∈ {1, . . . , |R|}|B|×|T|,
where for all scenarios b ∈ B it is stored which task is bound to which
resource. Z[i][j] = k means that in scenario i task j is bound to resource
k. Priorities of flows are represented as a two-dimensional vector P ∈
{1, . . . , |S|}|B|×|S|, where we store the streams according to their priorities,
e.g., P[i][j] = k means that in scenario i, stream k has priority j, with
1 being the highest priority. Obviously, not all possible encodings A, Z,
P represent feasible architectures. Therefore, a repair method has been
developed that converts infeasible solutions into feasible ones.

Recombination. The first step in recombining two individuals is creating
exact copies of the parent individuals. With probability 1 − Pcross, these
individuals are returned as offspring and no recombination takes place.

5.2. Applications of Framework 127

Otherwise, crossing over is performed on either the allocation, the task
binding or the priority assignment of flows.

With probability Pcross−alloc, a one-point crossover operation is applied
to the allocation vectors A1 and A2 of the parents: First we randomly
define the position j where to perform the crossover, then we create the
allocation vector Anew1 for the first offspring as follows:

Anew1[i] = A1[i], if 1 ≤ i < j
Anew1[i] = A2[i], if j ≤ i ≤ |R|

Similarly, Anew2 is created. After this exchange in the allocation of re-
sources, the repair method is called, to ensure, that for all tasks there is at
least one resource allocated on which the task can be performed. If there
exists a task in the specification for which there is no resource allocated on
which it can be run, a feasible resource is randomly selected and allocated.
If there exist mappings of tasks to resources which point to resources no
longer allocated, the resources are re-allocated.

If the crossover is not done within the allocation vector, it is performed
with probability Pcross−bind within the binding of tasks to resources. In
detail, a scenario b ∈ B is randomly determined, for which the crossover
of the binding vectors should happen. Then, a one point crossover for the
binding vectors Z1[b] and Z2[b] of the parents according to the following
procedure is performed, where j is a random value in the interval [1, |T|].

Znew1[b][i] = Z1[b][i], if 1 ≤ i < j
Znew1[b][i] = Z2[b][i], if j ≤ i ≤ |T|

The binding Znew2 can be determined accordingly. After this step, the
repair method is called. If a binding of a task maps the task to a resource
which is not allocated, the binding is changed, such that it points to a
resource which is already allocated.

Finally, if the crossover is neither in the allocation nor in the binding of
tasks to resources, the crossover happens in the priority vector. For a ran-
domly selected scenario b, the priority vectors P1[b] and P2[b] are crossed
in one point to produce new priority vectors Pnew1 and Pnew2 following a
similar procedure as described above.

Mutation. First, an exact copy of the individual to be mutated is created.
With probability 1−Pmut, no mutation takes place and the copy is returned.
Otherwise, the copy is modified with respect to either the allocation, the
task binding, or the priority assignment.

We mutate the allocation vector with probability Pmut−alloc. To this end,
we randomly select a resource i and set Anew[i] = 0 with probability

128 Chapter 5. Tools and Applications

Pmut−alloc−zero , otherwise we set Anew[i] = 1. After this change in the alloca-
tion vector, the repair method is called, which changes infeasible bindings
such that they all map tasks to allocated resources only.

In case the mutation does not affect the allocation vector, with prob-
ability Pmut−bind we mutate the binding vector Znew[b] for a randomly de-
termined scenario b ∈ B. That is we randomly select a task and map it to
a resource randomly selected from the specification. If the resource is not
yet allocated in this solution, we additionally allocate it.

If we do neither mutate the allocation nor the binding, we mutate the
priority vector for a randomly selected scenario b. We just exchange two
flows within the priority list Pnew[b].

Now, the design space exploration problem is formally defined and
we described the problem specification, the module for the representation
of a single design point and the design evaluation module for the EXPO
tool framework.

5.3 Different Search Algorithms
In this section, we discuss the use of the packet processor design space
exploration problem, implemented within the EXPO tool framework, as
a benchmark application. Among the various benchmark problems de-
signed to compare and evaluate the performance of multi-objective op-
timisers, there is a lack of real-world applications that are commonly
accepted and, even more important, are easy to use by different research
groups. The main reason is, in our opinion, the high effort required to re-
implement or adapt the corresponding programs. We address this prob-
lem with the EXPO tool framework, used to solve a real-world problem,
namely the design space exploration for packet processors.

5.3.1 Benchmark Applications

The field of evolutionary multi-objective optimisation (EMO) has been
growing rapidly since the first pioneering works in the mid-1980’s and
the early 1990’s. Meanwhile numerous methods and algorithmic com-
ponents are available, and accordingly there is a need for representative
benchmark problems to compare and evaluate the different techniques.

Most test problems that have been suggested in the literature are ar-
tificial and abstract from real-world scenarios. Some authors considered
multi-objective extensions of NP-hard problems such as the knapsack
problem [ZT99], the set covering problem [Jas03], and the quadratic as-
signment problem [KC03]. Other benchmark problem examples are the
Pseudo-Boolean functions introduced by Thierens [Thi03] and Laumanns

5.3. Different Search Algorithms 129

et al. [LTZ04] that were designed mainly for theoretical investigations.
Most popular, though, are real-valued functions [Deb01, CVL02]. For in-
stance, several test functions representing different types of problem dif-
ficulties were proposed by Zitzler et al. [ZDT00] and Deb et al. [DTLZ02].

Although there exists no commonly accepted set of benchmark prob-
lems as, e.g., the SPEC benchmarks [SPE] in computer engineering, most
of the aforementioned functions are used by different researchers within
the EMO community. The reason is that the corresponding problem for-
mulations are simple which in turn keeps the implementation effort low.
However, the simplicity and the high abstraction level come along with
a loss of information: various features and characteristics of real-world
applications cannot be captured by these artificial optimisation problems.
As a consequence, one has to test algorithms also on actual applications
in order to obtain more reliable results. Complex problems in various
areas have been tackled using multi-objective evolutionary algorithms,
and many studies even compare two or several algorithms on a spe-
cific application [Deb01, CVL02]. The restricted reusability, though, has
prohibited so far that one or several applications have established them-
selves as benchmark problems that are used by different research groups.
Re-implementation is usually too work-intensive and error-prone, while
re-compilation is often not possible because either the source code is not
available, e.g., due to intellectual property issues, or particular software
packages are needed that are not publicly available.

To overcome the problems discussed above, we present EXPO as a
benchmark application for evolutionary algorithms that

• provides a platform- and programming-language-independent in-
terface that allows the usage of pre-compiled and executable pro-
grams and therefore circumvents the problem mentioned above,

• is scalable in terms of complexity, i.e., problem instances of different
levels of difficulty are available, and

• is representative for several other applications in the area of com-
puter design [BTT98, DJ98, ZTB00a].

5.3.2 Test Cases

The implementation of EXPO, which has been tested under Solaris, Linux
and Microsoft Windows, provides a graphical user interface that allows
to control the program execution (see Figure 62): the optimisation run can
be halted, the current population can be plotted and individual processor
designs can be inspected graphically.

130 Chapter 5. Tools and Applications

Fig. 62: The user interface of the benchmark application: The main control window in
the upper left, a plot the current population in the upper right and a graphical
representation of a network processor configuration in the lower part.

In the following, we will present three problem instances for the packet
processor application and demonstrate how to compare different evolu-
tionary multi-objective optimisers on these instances.

5.3.2.1 Problem Instances

We consider three problem instances that are based on the packet pro-
cessing application depicted in Figure 60. The set of available resources
is the same for all the problem instances. The three problem instances
differ in the number of objectives. We have defined a problem with 2
objectives, one with 3 and a scenario including 4 objectives. For all the
different instances one objective is in common, the total cost of the allo-
cated resources. The remaining objectives in a problem instance are the
performance ψb of the solution packet processor under a given load sce-
nario b ∈ B. In Table 12 the different load characteristics for the remaining
objectives are shown. Overall, three different loads can be identified; in

5.3. Different Search Algorithms 131

Load RT RT NRT NRT NRT
scenario send receive encrypt decrypt forward
2 Objectives Load 1

√ √ √ √ √
3 Objectives Load 2

√ √
- -

√
Load 3 - -

√ √ √
4 Objectives Load 1

√ √ √ √ √
Load 2

√ √
- -

√
Load 3 - -

√ √ √

Tab. 12: Loads for the different scenarios for which the architecture should be optimised.

Load 1 all flows have to be processed; in Load 2 there are only the three
flows real-time voice receive and send, and non-real-time (NRT) packet
forwarding present; in Load 3, the packet processor has to forward pack-
ets of flow ‘NRT forward’ and encrypt/decrypt packets of flows ‘NRT
encryption’ and ‘NRT decryption’, respectively.

The size of the search space for the given instance can be computed as
follows. In the problem setting, there are 4 resource types on which all the
tasks can be performed. Therefore, we have more than 425 possibilities
to map the tasks on the resources. Furthermore, the solution contains
a priority assignment to the different flows. There are 5! possibilities to
assign priorities to the flows. So, if we take into account that there are other
specialised resources available, the size of the search space is S > 425 ×
5! > 1017 already for the problem instance with 2 objectives and even
larger for the instances with 3 or 4 objectives.

As an example, an approximated Pareto front for the 3-objective in-
stance is shown in Figure 63 — the front has been generated by the
optimiser SPEA2 [ZLT02]. The x-axis shows the objective value corre-
sponding to ψLoad2 under Load 2 (as defined in Table 12), the y-axis shows
the objective value corresponding to ψLoad3, whereas the z-axis shows the
normalised total cost of the allocated resources.

The two example architectures shown in Figure 63 differ only in the
allocation of the resource ‘Cipher’, which is a specialised hardware for
encryption and decryption of packets. The performance of the two ar-
chitectures for the load scenario with real-time flows to be processed is
more or less the same. However, the architecture with a cipher unit per-
forms around 30 times better for the encryption/decryption scenario, at
increased cost for the cipher unit. So, a designer of a packet processor
that should have the capability of encryption/decryption would go for
the solution with a cipher unit (solution on the left in Figure 63), whereas
one would decide for the cheaper solution on the right, if there is no need

132 Chapter 5. Tools and Applications

for encryption.

0.2

1.0

0.8

0.4

Performance

Load 2

Performance

Load 3

DSP

NRT:

RT:

35 %

39 %

Classifier

NRT:

RT:

1 %

11 %

LookUp

NRT:

RT:

1 %

6 %

DSP

NRT:

RT:

35 %

39 %

DSP

NRT:

RT:

35 %

39 %

Classifier

NRT:

RT:

1 %

11 %

Classifier

NRT:

RT:

1 %

11 %

LookUp

NRT:

RT:

1 %

6 %

LookUp

NRT:

RT:

1 %

6 %

DSP

NRT:

RT:

64 %

39 %

Classifier

NRT:

RT:

27 %

11 %

LookUp

NRT:

RT:

15 %

6 %

Cipher

NRT:

RT:

71 %

0 %

DSP

NRT:

RT:

64 %

39 %

DSP

NRT:

RT:

64 %

39 %

Classifier

NRT:

RT:

27 %

11 %

Classifier

NRT:

RT:

27 %

11 %

LookUp

NRT:

RT:

15 %

6 %

LookUp

NRT:

RT:

15 %

6 %

Cipher

NRT:

RT:

71 %

0 %

Cipher

NRT:

RT:

71 %

0 %

Cost

0
. 8

1

0
. 8

1

0.6

0.8

1.0

0.6

0.4

0.6

0.8

1.0

Fig. 63: Two solution packet processor architectures annotated with loads on resources
for the different loads specified in Table 12.

5.3.2.2 Experimental Results

To evaluate the difficulty of the proposed benchmark application, we
compared the performance of five evolutionary multi-objective opti-
misers, namely SPEA2 [ZLT02], NSGA-II [DPAM02], SEMO [LTZ04],
FEMO [LTZ04], and IBEA (see Chapter 4) on the three aforementioned
problem instances.

For each algorithm, 30 runs were performed using the parameter set-

5.3. Different Search Algorithms 133

of objectives population size # of generations
2 100 200
3 150 300
4 200 400

Tab. 13: Parameters for population size and duration of runs dependent on the number
of objectives.

Mutation Pmut = 0.8
→ Allocation Pmut−alloc = 0.3

Pmut−alloc−zero = 0.5
→ Binding Pmut−bind = 0.5
Crossover Pcross = 0.5
→ Allocation Pcross−alloc = 0.3
→ Binding Pcross−bind = 0.5

Tab. 14: Probabilities for mutation and crossover.

tings listed in Tables 13 and 14. These parameters were determined based
on extensive, preliminary experiments. Furthermore, all objective func-
tions were scaled such that the corresponding values lie within the interval
[0, 1]. Note that all objectives are to be minimised, i.e., the performance
values are reversed (smaller values correspond to better performance).
The different runs were carried out on a Sun Ultra 60. A single run for 3
objectives, a population size of 150 individuals in conjunction with SPEA2
takes about 20 minutes to complete.

Figure 64 gives the populations of solutions of the 2-dimensional de-
sign space exploration problem found by two search algorithms in 30
runs after 50 generations each. Here, the optimal point is in the lower
left corner, and it is quite “easy” to deduce from the figure that IBEA’s
performance seems to be superior to SPEA2’s, because the points found
by IBEA are closer to the optimal point than the ones found by SPEA2.
Nevertheless, in general it is impossible to find such a “clear” situation,
and more involved techniques to compare the performance of different
algorithms have to be used.

Therefore, in the following we have used three binary performance
measures for the comparison of the EMO techniques: (1) the additive ε-
quality measure Iε+(A,R) [ZTL+03] presented in Section 4.2.1. In this for-
mula, A stands for the output that the evolutionary algorithm produced.
The reference set R was determined by merging all solutions found by all
the different algorithms into one set and keeping the non-dominated solu-
tions. R was used instead of the Pareto set S, because S is usually unknown.

134 Chapter 5. Tools and Applications

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Populations after 50 Generations

IBEA
SPEA2

Fig. 64: Populations found by IBEA and SPEA2, for 30 different runs to solve the 2-
dimensional problem. The x-axis gives the normalised cost of the solution
whereas the y-axis gives the normalised inverse of the performance.

(2) The hypervolume indicator IHD(A,R) presented in Section 4.2.5. This
indicator measures the difference in hypervolume that is spanned by the
points in set A compared to the hypervolume that is spanned by the
reference set R. (3) The coverage measure [ZT99] IC(A,B) presented in
Section 4.2.3. In this formula A and B stand for the output sets of the two
evolutionary algorithms for which to compute the coverage indicator.

Overall, we can state that there exist differences in the performance of
different evolutionary algorithms on the packet processor design space
exploration benchmark problem. FEMO and IBEA outperform all other
optimisers for the two-dimensional problem with respect to the coverage
measure. In the case with two objectives, SEMO performs better than
SPEA2 and NSGA-II, while SPEA2 achieves a higher coverage compared
to NSGA-II. The box plots with all results for the coverage measure in
case of the problem with 2 objectives are given in Figure 65.

5.3. Different Search Algorithms 135

1 2
0.6

0.8

1
SPEA 2

IB
E

A

1 2
0.4

0.6

0.8

1
NSGA−II

1 2

0.7

0.8

0.9

1
SEMO

1 2

0.7

0.8

0.9

FEMO

1 2

0.4

0.6

0.8

1

S
P

E
A

 2

1 2

0.6

0.8

1

1 2

0.7

0.8

0.9

1

1 2

0.4

0.6

0.8

1

N
S

G
A

−
II

1 2
0.4

0.6

0.8

1

1 2

0.7

0.8

0.9

1

S
E

M
O

Fig. 65: Coverage plots for the five search algorithms used for the experiments. The plots
are given for the 2-dimensional design space exploration problem. The plots are
to be read in the following way: the left box plot gives the coverage of the solution
set found by the search algorithm indicated by the row over solution set found
by the search algorithm marked at the column. The second box plot gives the
coverage for the column-based search algorithm over the row-based algorithm.

For the problem with three objectives (cf. Figure 66), the results for
the coverage measure are different. In this case, IBEA performs worst of
all algorithms investigated. FEMO achieves the best coverage values of
all algorithms, SPEA2 now achieves better coverage than NSGA-II. These
results differ from the results presented in [KBTZ04]. This is due to the
difference in the comparison method. In [KBTZ04] the active populations
at certain points in time were compared, whereas we compare the archive
of all Pareto-optimal solutions found so far. For 4 dimensions, FEMO still
performs best with respect to the coverage measure. IBEA, SEMO, and
SPEA2 show a slightly better performance than NSGA-II for this problem
(cf. Figure 67).

If we compare the results for the coverage measure for the different
problems, we can notice that the optimisers perform differently for the

136 Chapter 5. Tools and Applications

1 2

0.5

0.6

0.7
0.8

0.9
SPEA 2

IB
E

A

1 2

0.5
0.6
0.7
0.8
0.9

NSGA−II

1 2
0.4

0.6

0.8

SEMO

1 2

0.5
0.6
0.7
0.8
0.9

FEMO

1 2
0.4

0.6

0.8

1

S
P

E
A

 2

1 2
0.4

0.6

0.8

1

1 2

0.4

0.6

0.8

1

1 2
0.4

0.6

0.8

1

N
S

G
A

−
II

1 2

0.4

0.6

0.8

1

1 2

0.4

0.6

0.8

S
E

M
O

Fig. 66: Coverage plots for the five search algorithms used for the experiments. The plots
are given for the 3-dimensional design space exploration problem. The plots are
to be read in the following way: the left box plot gives the coverage of the solution
set found by the search algorithm indicated by the row over solution set found
by the search algorithm marked at the column. The second box plot gives the
coverage for the column-based search algorithm over the row-based algorithm.

different problems (EXPO2, EXPO3, or EXPO4). Especially IBEA’s per-
formance measured with the coverage indicator depends much on the
problem (good performance for EXPO2 and EXPO4 w.r.t. the coverage
measure, worse performance for EXPO3). The reason for this behaviour
seems not to be the increase in the number of objectives as IBEA shows
a good performance for 4 dimensions. IBEA’s weaker performance for 3
dimensions could lie in the nature of the problem. Here, we assess the
fitness of a solution by computing the cost, and the performance for two
different load scenarios. In contrast to the 2-dimensional case with a sin-
gle load scenario for performance assessment, and the 4-dimensional case
with 3 partly overlapping usage scenarios, the 2 load scenarios used for
the 3-dimensional problem are almost disjoint, as can be seen in Table 12.

Figure 68 shows the box plots for the indicators Iε+ and IHD for the three

5.3. Different Search Algorithms 137

1 2

0.4

0.6

0.8

SPEA 2

IB
E

A

1 2
0.2

0.4

0.6

0.8

NSGA−II

1 2

0.4

0.6

0.8
SEMO

1 2

0.4

0.6

0.8

FEMO

1 2
0.2

0.4

0.6

0.8

S
P

E
A

 2

1 2
0.2

0.4

0.6

0.8

1 2

0.2

0.4

0.6

0.8

1 2
0.2

0.4

0.6

0.8

N
S

G
A

−
II

1 2
0.2

0.4

0.6

0.8

1

1 2
0.2

0.4

0.6

0.8

S
E

M
O

Fig. 67: Coverage plots for the five search algorithms used for the experiments. The plots
are given for the 4-dimensional design space exploration problem. The plots are
to be read in the following way: the left box plot gives the coverage of the solution
set found by the search algorithm indicated by the row over solution set found
by the search algorithm marked at the column. The second box plot gives the
coverage for the column-based search algorithm over the row-based algorithm.

problem instances. As for the coverage measure used before, the search
algorithms perform with different success with respect to the indicators
used. From the figure, we can intuitively conclude that IBEA outperforms
all other algorithms, this is at least true for the problem with 4 objectives.
For the other two problems, it can already be difficult to decide whether
one optimiser really shows better performance than another, or the differ-
ence in the result is just caused by random effects. To solve this problem,
we used statistical significance tests as proposed in [KTZ05a].

For the tests, the populations found by two different algorithms are
compared. To do so, we first calculate the indicator values that correspond
to the populations, this leads to two collections of indicator values. In the
case of the experiments in this section, there are 30 values for each of
the algorithms. For the tests we would now like to know, whether the

138 Chapter 5. Tools and Applications

IBEA SPEA2 NSGA−II SEMO FEMO
0

0.1

0.2

0.3

Epsilon Indicator I
ε +

E
X

P
O

 2

IBEA SPEA2 NSGA−II SEMO FEMO
0

0.05

0.1

0.15

0.2

Hypervolume Indicator I
HD

IBEA SPEA2 NSGA−II SEMO FEMO
0

0.05

0.1

0.15

0.2

E
X

P
O

 3

IBEA SPEA2 NSGA−II SEMO FEMO
0

0.05

0.1

IBEA SPEA2 NSGA−II SEMO FEMO

0.05

0.1

0.15

0.2

E
X

P
O

 4

IBEA SPEA2 NSGA−II SEMO FEMO
0

0.05

0.1

0.15

Fig. 68: Iε+ and IHD for the 5 search algorithms on all 3 problems after the maximum
number of generations per experiment.

two collections could be derived from the same data, or whether different
data sets are more likely to produce these two collections. The tests are
based on the so-called null hypothesis, or short H0. The null hypothesis
H0 claims, that two samples are drawn from the same distribution. In our
case this means that both the collections of indicator values are derived
from the same population.

A p−value lower than a certain significance level α denotes that the
null hypothesis can be rejected in favour of the alternative hypothesis HA,
at the significance level α. The alternative hypothesis HA is of the form:
’sample A comes from a better distribution than sample B’. Usually, for
this sort of tests, a significance level of α = 0.05 is used. In Tables 15
(Iε+) and 16 (IHD), we give the results of the Kruskal-Wallis test with a
significance level α = 0.05. For this test given in the table, the alternative
hypothesis is of the form: ’the indicator values for the algorithm given
in the row are drawn from a better distribution than the indicator values
for the algorithm given in the column’. Note that for the experimental

5.3. Different Search Algorithms 139

EXPO 2, Iε+
IBEA SPEA2 NSGA-II SEMO FEMO

IBEA - 1.810−17 5.610−19 1.210−09 > 0.05
SPEA2 > 0.05 - > 0.05 > 0.05 > 0.05
NSGA-II > 0.05 > 0.05 - > 0.05 > 0.05
SEMO > 0.05 0.00079 0.00010 - > 0.05
FEMO > 0.05 7.610−16 2.410−17 2.810−08 -

EXPO 3, Iε+
IBEA SPEA2 NSGA-II SEMO FEMO

IBEA - 0.0029 2.210−05 0.011 0.0071
SPEA2 > 0.05 - > 0.05 > 0.05 > 0.05
NSGA-II > 0.05 > 0.05 - > 0.05 > 0.05
SEMO > 0.05 > 0.05 0.030 - > 0.05
FEMO > 0.05 > 0.05 0.042 > 0.05 -

EXPO 4, Iε+
IBEA SPEA2 NSGA-II SEMO FEMO

IBEA - 1.21−−15 5.810−12 1.010−15 1.210−13

SPEA2 > 0.05 - > 0.05 > 0.05 > 0.05
NSGA-II > 0.05 > 0.05 - > 0.05 > 0.05
SEMO > 0.05 > 0.05 > 0.05 - > 0.05
FEMO > 0.05 > 0.05 > 0.05 > 0.05 -

Tab. 15: Kruskal-Wallis test applied to the additive ε−indicator Iε+(A,R) for the 2-, 3- and
4-dimensional exploration problem. The values indicate the p-values to accept
the null hypothesis based on the assumption that optimiser 1 (row) is better than
optimiser 2 (column).

results given in this section no adjustment of the significance level is
necessary, e.g., according to Bonferroni correction, as the Kruskal-Wallis
test is used [KTZ05a].

From the results of the statistical tests, we can see that there exists a
significant difference in the solutions found by the different evolutionary
algorithms. The performance of IBEA is very good compared to the other
algorithms with respect to the indicator values Iε+ and IHD with a signifi-
cance level of α = 5%. FEMO shows a comparably well performance for
the 2-dimensional problem, but for the problems with higher dimension,
FEMO is inferior to IBEA. NSGA-II performs significantly worse than the
other algorithms for 2 and 3 dimensions with respect to the hypervolume
indicator IHD, where there is no significant difference between NSGA-II,
SPEA2 and SEMO for 4 dimensions.

The development of a performance indicator for an algorithm over
time leads to another interesting observation. Figure 69 shows the addi-

140 Chapter 5. Tools and Applications

EXPO 2, IHD

IBEA SPEA2 NSGA-II SEMO FEMO
IBEA - 9.810−19 7.610−25 2.610−09 > 0.05
SPEA2 > 0.05 - 0.010 > 0.05 > 0.05
NSGA-II > 0.05 > 0.05 - > 0.05 > 0.05
SEMO > 0.05 8.410−05 2.910−09 - > 0.05
FEMO > 0.05 3.210−17 2.710−23 4.610−08 -

EXPO 3, IHD

IBEA SPEA2 NSGA-II SEMO FEMO
IBEA - 0.00028 1.810−07 0.0046 0.0063
SPEA2 > 0.05 - 0.036 > 0.05 > 0.05
NSGA-II > 0.05 > 0.05 - > 0.05 > 0.05
SEMO > 0.05 > 0.05 0.0039 - > 0.05
FEMO > 0.05 > 0.05 0.0028 > 0.05 -

EXPO 4, IHD

IBEA SPEA2 NSGA-II SEMO FEMO
IBEA - 1.910−16 1.210−13 1.410−16 2.810−12

SPEA2 > 0.05 - > 0.05 > 0.05 > 0.05
NSGA-II > 0.05 > 0.05 - > 0.05 > 0.05
SEMO > 0.05 > 0.05 > 0.05 - > 0.05
FEMO > 0.05 0.048 > 0.05 0.042 -

Tab. 16: Kruskal-Wallis test applied to the hypervolume indicator IHD(A,R) for the 2-,
3- and 4-dimensional exploration problem. The values indicate the p-values to
accept the null hypothesis based on the assumption that optimiser 1 (row) is
better than optimiser 2 (column).

5.3. Different Search Algorithms 141

50 100 150 200 250 300 350 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

SPEA2

Epsilon Indicator I
ε +

50 100 150 200 250 300 350 400

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FEMO

Fig. 69: Indicator value Iε+ vs. number of generations for FEMO and SPEA2 on the
problem with 4 objectives.

tive ε-indicator for FEMO and SPEA2 after 50, 100,. . . , 400 generations. It
can be noted that FEMO seems to find good solutions faster than SPEA2,
leading to a smaller indicator value Iε+ for 50 generations. After 400 gen-
erations SPEA2 catches up and there is no significant difference between
the performance of the two algorithms any more. The question of when,
or after how many generations, to compare algorithms therefore also in-
fluences the results of the experimental study. The number of generations
that we propose for our benchmark problems was found by performing
different preliminary experiments.

142 Chapter 5. Tools and Applications

5.4 Summary
In this chapter we presented EXPO, a general framework for design space
exploration. It consists of a main module that can be coupled with search
algorithms through the PISA interface. Moreover, well defined interfaces
exist that must be implemented by the user for each design space explo-
ration problem. We presented two different applications of the framework
and discussed the implementation of the problem-specific modules.

The packet processor design space exploration problem was used as
benchmark application for search algorithms. We presented a compar-
ative study with 5 different evolutionary algorithms. The differences in
the performance of the search algorithms are significant and therefore the
design space exploration problem is suitable as benchmark problem to
assess the quality of different search algorithms.

The EXPO tool, with the packet processor application implemented
and several evolutionary algorithms can be downloaded from the PISA
web page at http://www.tik.ee.ethz.ch/pisa.

6
Conclusions

In this chapter, we summarise our contributions and discuss potential
extensions of the work for future research.

6.1 Contributions
In this thesis we described our contributions to address the task of de-
sign space exploration for embedded systems. Namely, we presented the
results summarised in the following list.

• We described a new performance evaluation method. The method
makes use of a combination of existing performance analysis ap-
proaches. We proposed the needed interfaces between the different
methods, and showed the applicability of the approach using a case
study.

• We presented a new evolutionary search algorithm that directly
incorporates the user’s preference. The algorithm is adaptive to the
fitness values and therefore needs only little configuration, i.e. only
a few parameters have to be set. For several test problems, including
the design space exploration for packet processors problem, the new
algorithm IBEA shows a good performance.

• A software framework for design space exploration was developed.
For a new DSE problem, a user has only to implement the problem-
specific parts, i.e. the problem specification, the representation of a

144 Chapter 6. Conclusions

solution, and the method for design point evaluation, but not the
parts that are common to all DSE problems. These common parts
can be re-used from the EXPO tool. It is fully written in Java and is
therefore platform-independent. It implements the PISA-interface
for communication with popular randomised search algorithms.

6.2 Future Work
For future research, we could think of the following extensions of the
presented work:

• Extend the newly proposed performance evaluation method. On
the one hand, we should investigate how we can increase the pos-
sible range of applications, e.g. by allowing feedback loops. On the
other hand, we could define the proposed interfaces not only for the
existing performance evaluation methods used for this work, but
also other existing analysis techniques. Having a generic definition
of the interfaces, we could come up with component-based perfor-
mance evaluation models, where we could decide per component
which performance evaluation method/model to use.

• Apply the presented performance evaluation method to larger ex-
ample systems. Doing so, we could get information about the scal-
ability, and applicability of the approach also for systems including
more processing elements and more complex communication struc-
tures than the ones presented.

• Extend the proposed trace generation algorithm such that not only
traces can be generated that either comply with the upper or the
lower specification curve. But in addition to this behaviour also an
algorithm exposing variable “greediness” should be investigated,
e.g. an algorithm that produces a trace that is at ε-distance from the
upper and lower curves. Like this more complex simulation traces
could be generated.

• Investigate other performance indicators that could be adapted for
the use with IBEA. With the existing PISA framework these new
adapted IBEA versions could be easily tested against several test
problems and statistics about their performance could be gathered.

A
The EXPO Tool

Framework
In this chapter the EXPO tool framework for design space exploration and
its components are described in more detail. Figure 70 gives an overview
over all parts of the framework.

The framework is written in Java, which makes it platform indepen-
dent. The main components are the main module for control and pop-
ulation handling, the graphical user interface, and the interfaces to the
search algorithm (PISA-compliant) and the exploration-problem specific
parts (both grey-shaded). All the design space exploration problems in-
troduced in this thesis were solved using the EXPO tool framework. Like
this, all the software for the file handling and population handling could
be reused and didn’t have to be recoded for all the individual problems.

To perform a design space exploration using EXPO in conjunction
with PISA compliant search algorithms it is sufficient to implement the
representation of a solution, how new solutions are found and how the
fitness of solution is evaluated. To do so, a user just has to write Java classes
that implement the interfaces presented in the next sections. These classes
are then accessed by the main module of the EXPO framework to perform
the design space exploration with a PISA compliant search algorithm.

In the following subsections the interfaces that have to be implemented
by the user are described in more detail.

146 Appendix A. The EXPO Tool Framework

EXPO tool framework

P
IS

A

EXPO

(main module)

Problem

Specification

Design Representation and

Generation of new Solutions

Design Evaluation

GUI

Control
Population

Handling

Fig. 70: Overview over the components of the EXPO tool framework.

A.1 Interface Specification

This interface separates the EXPO tool framework from the problem spec-
ification. It consists of four methods which have to be implemented for
the tool to work correctly.
String simpleFileInput(File file)

The method will be called by the EXPO tool framework during the ini-
tialisation phase. It can be used to read all specification data that is given
for instance in a text file. The file handle is passed as an argument to
the method. The method has to return an error code as a string. The
implementation of this method is optional.
int getProblemDimension()

This method has to return the number of objectives the full problem deals
with. This method will be called by the controller and the graphical user
interface of EXPO to be able to plot the population.
double getMutationProbability()

This method has to return the probability with which an individual has
to be mutated. This probability has to be a double value between 0.0 and
1.0, whereas 1.0 means that all the genes will have to be mutated.
double getCrossoverProbability()

This method has to return the probability with which two individuals
have to be crossed. This probability has to be a double value between 0.0
and 1.0, whereas 1.0 means that all the genes will have to be crossed.

A.2. Interface Gene 147

A.2 Interface Gene
The following methods are defined in the interface Gene. A solution for
the design space exploration problem has to implement this interface. The
EXPO tool framework accesses a solution with its user-defined code only
via these interfaces.
String getFitnessString()

This method has to return the fitness values of the gene, by returning
a String with space-separated double values. If the values are not yet
known, they have first to be computed and then returned as String.
ArrayList getFitnessValues()

This method has to return an ArrayList which contains all fitness values
of the Gene. If this method is called and these values do not yet exist then
they have to be computed first and then returned.
Gene mutateGene()

This method is called if the evolutionary algorithm has decided that the
solution should be mutated. It has to create a new object of type Gene,
which is returned by this method, based on the actual solution.
Gene[] crossOverGene(Gene geneToCross)

This method is called if the evolutionary algorithm decided that the actual
Gene should be recombined with the Gene given as argument to this
method. After this crossover is performed, two new solutions exist and
they have to be returned in an array of two objects of type Gene.
String getFullDescription()

This method has to return a detailed description of the gene in plain text
form, if implemented. The implementation of this method is optional.
String getShortDescription()

This method has to return a short description of the gene in plain text
form, if implemented. The implementation of this method is optional.
Object clone()

This method has to be overwritten. It is called by the framework to pro-
duce deep copies of a gene.

A.3 Interface Analyzer
The EXPO framework accesses the design point evaluation module
through this interface.
ArrayList analyze(Gene gene)

This method of the Analyzer interface has to analyze a gene which is
given by parameter gene and has to return an ArrayList with all the
fitness values of the gene as doubles. The larger a fitness value is, the
weaker is the gene in that objective.

148 Appendix A. The EXPO Tool Framework

String getReport(Gene gene)

This method has to return a report in a textual form. In the string, all
facts of the gene, such as e.g. allocated resources etc. are written. The
implementation of this method is optional.
String drawReport(Gene gene)

This method has in some sense to graphically show all the parameters of
the gene specified in the parameter gene. If there is no graphical repre-
sentation this method should return a string containing an error message.
The implementation of this method is optional.

B
Approximations for
Real-Time Calculus

In this chapter, we give approximated formulas for the remaining arrival
and service curves as introduced in Chapter 3. The results given here
correspond to Equations (3.3) – (3.6) by approximating the input and
output curves using three line segments. For ease of reading, we replicate
the equations from Chapter 3.

αl′(∆) = min{ inf
0≤µ≤∆

{sup
λ>0

{αl(µ + λ) − βu(λ)} + βl(∆ − µ)}, βl(∆)}
αu′(∆) = min{sup

λ>0
{ inf
0≤µ<λ+∆

{αu(µ) + βu(λ + ∆ − µ)} − βl(λ)}, βu(∆)}
βl′(∆) = sup

0≤λ≤∆
{βl(λ) − αu(λ)}

βu′(∆) = max{inf
λ>∆
{βu(λ) − αl(λ)}, 0}

Figure 71 shows the arrival and service curves consisting of three linear
pieces. This form allows us to exactly model an arrival curve in the form
of a T-SPEC [SW97]. In the case of an arrival curve, here qu

1 may represent
the maximum workload because of a single packet, ru can be interpreted
as the burst rate and su the long term arrival rate. The approximation
enables an efficient implementation of the formulas.

150 Appendix B. Approximations for Real-Time Calculus

upper curve

� �()u � �()l

�

r

s

p

lower curve

�

r

s

q

pu

u

u

l
l

l

l

qu

2

qu

1

1

q
l

2

1

pl
2

Fig. 71: Three-piece linear approximation of upper and lower curves.

The upper and the lower curves in this case can be written as:

γu(∆) =
{

min{qu
1 + ru∆, qu

2 + su∆} if ∆ > 0
0 if ∆ = 0

γl(∆) = max{ql
2 + sl∆, ql

1 + rl∆, 0}
where,

qu
2 ≥ qu

1 ≥ 0, ru ≥ su ≥ 0, ru = su ⇔ qu
1 = qu

2
ql

2 ≤ ql
1 ≤ 0, 0 ≤ rl ≤ sl, rl = sl ⇔ ql

1 = ql
2

The values of pu and pl
1, p

l
2 (see Figure 71) can be calculated as:

pu =

{ qu
2−qu

1
ru−su if ru > su

0 if ru = su

pl
1 =

{
− qu

1
rl if rl > 0

0 if rl = 0
, pl

2 =


ql

2−ql
1

rl−sl if rl < sl

pl
1 if rl = sl

We denote the curves γu and γl in this case by U(q1, q2, r, s) and
L(q1, q2, r, s) respectively.

151

Prop. 3: (Simple Lower Arrival Curve) Given the lower arrival and upper and
lower service curves αl = L(q1α, q2α, rα, sα), βu = U(q1βu, q2βu, rβu, sβu), and
βl = L(q1βl, q2βl, rβl, sβl) respectively, the approximate outgoing lower arrival
curve αl′ = L(q1, q2, r, s) can be given as the following:

If sα ≤ sβu:

r =
{

rα, if rα ≤ rβl

rβl, if rα > rβl

s =
{

sα, if sα ≤ sβl

sβl, if sα > sβl

q1 =


rα
rβl

q1βl + q1α, if rα ≤ rβl
rβl

rα
q1α + q1βl, if rα > rβl

q2 =



q2βl + q1α + (rα − sβl)
q2α−q1α

rα−sα
, if rα < sβl ≤ sα

q2βl +
sβl

rα
q1α, if sβl ≤ rα

q2α +
sα
rβl

q1βl, if sγ ≤ rβl

q2α + q1βl + (rβl − sα)
q2βl−q1βl

rβl−sβl
, if rβl < sα ≤ sβl

If sα > sβu:

r = rβl

s = sβl

q1 = q1βl

q2 = q2βl

Derivation: Following [BT01], we can rewrite αl′(∆) =
min{inf0≤µ≤∆{supλ>0{αl(µ + λ) − βu(λ)} + βl(∆ − µ)}, βl(∆)} as
αl′ = min{(αl βu) ⊗ βl, βl}. First of all, we calculate the innermost
parentheses αl βu and set γ = αl βu.

We have to distinguish two cases for this calculation. In the first case,
the long term arrival rate sα for the lower arrival curve is less or equal
compared to the long term service rate of the upper service curve sβu. In
this first case, the formula αl βu results in αl, as we find the maximum
of αl(µ + λ) − βu(λ) for λ = 0, because βu is larger than αl for all ∆ ≥ 0.
In the second case, where sα > sβu, αl βu tends to infinity, i.e. γ(0) = 0,
γ(∆ > 0) →∞.

The next formula to evaluate is γ⊗βl. In the first case described above,
where γ = αl, we can reuse a result from [BT01]. It states that in the
case of piecewise linear convex curves αl and βl the resulting curve is the

152 Appendix B. Approximations for Real-Time Calculus

� �()
l

�

r�

s�

� �()
l

r�

s�

r�

s�

r�

� �()
l

‘

p�� p��+p�� p��+

Fig. 72: Approximation of αl′.

concatenation of the linear pieces, ordered according to their slope. As
rα ≤ sα and rβ ≤ sβ, the slope of inf0≤u≤∆

{
αl(u) + βl(∆ − u)

}
for ∆ → 0 is

r = min{rα, rβ}. In a similar way, we find s = min{sα, sβ} if we consider
∆→∞.

The offset q1 can be determined considering two cases. If rα ≤ rβ then
q1 = −rα(p1α + p1β) because the resulting curve crosses the x-axis at point
p1α + p1β. If rα > rβ then q1 = −rβ(p1α + p1β).

The offset q2 can be calculated considering four cases. If sβ < rα the
resulting curve is just the initial curve βl shifted by p1α to the right. There-
fore, q2 is determined by q2β − sβp1α. In the same way, if sα < rβ then
q2 = q2α − sαp2α. The remaining two cases are more involved. In general, if
we calculate a resulting lower arrival curve from curves with three linear
pieces, it will consist of four linear pieces. To again obtain a curve with
three linear pieces, we have to approximate the resulting curve. How we
do this here can be seen in Figure 72.

If rα < sβ < sα, then q2 + sβ(p2α + p2β) = rα(p2α − p1α) + rβ(p2β − p1β).
This case is shown in Figure 73. If rβ < sα < sβ, then q2 + sα(p2α + p2β) =
rα(p2α − p1α) + rβ(p2β − p1β).

In the second case, with γ(0) = 0 and γ(∆ > 0) →∞ the formula γ ⊗ βl

is simpler to solve, the resulting curve is just βl.

153

�

r�

s�

r�

� �()
l

‘

p�� p��+

p�� p��-p�� p��-

q�

q�

Fig. 73: Approximation of αl′ in the case rα < sβ < sα.

154 Appendix B. Approximations for Real-Time Calculus

Prop. 4: (Simple Upper Arrival Curve) Given arrival curves and service curves αu =
U(q1α, q2α, rα, sα), βl = L(q1βl, q2βl, rβl, sβl) and βu = U(q1βu, q2βu, rβu, sβu). Then
the processed arrival curve can be approximated by the curve

αu′ = U(q1, q2, r, s)

where

if sα ≥ sβu ∧ q1α ≥ q1βu



q1γ = q1βu

q2γ = q2βu

rγ = rβu

sγ = sβu

if sα ≥ sβu ∧ q1α < q1βu



q1γ = q1α

q2γ = q2βu

rγ = rα
sγ = sβu

if sα < sβu ∧ q1α < q1βu



q1γ = q1α

q2γ = q2α

rγ = rα
sγ = sα

if sα < sβu ∧ q1α ≥ q1βu



q1γ = q1βu

q2γ = q2α

rγ = rβu

sγ = sα

155

if pγ < p1βl ∧ sγ ≤ rβl



q1δ = q2γ + sγp1βl

q2δ = q2γ + sγp1βl

rδ = sγ
sδ = sγ

if p1βl ≤ pγ ∧ rγ ≤ rβl



q1δ = q1γ + rγp1βl

q2δ = q2γ + sγpγ
rδ = rγ
sδ = sγ

if p1βl ≤ pγ ≤ p2βl ∧ sγ ≤ rβl < rγ



q1δ = q2γ + sγpγ − (q1βl + rβlpγ)
q2δ = q2γ + sγpγ − (q1βl + rβlpγ)
rδ = sγ
sδ = sγ

if p2βl < pγ ∧ rβl < rγ ≤ sβl



q1δ = q1γ + rγp2βl − (q1βl + rβlp2βl)
q2δ = q1γ − q1βl + (rγ − rβl)p2βl+

(rγ − sγ)(pγ − p2βl)
rδ = rγ
sδ = sγ

if pγ ≤ p2βl ∧ rβl < sγ ≤ sβl



q1δ = q2γ + sγp2βl − (q1βl + rβlp2βl)
q2δ = q2γ + sγp2βl − (q1βl + rβlp2βl)
rδ = sγ
sδ = sγ

if p2βl < pγ ∧ sγ ≤ sβl < rγ



q1δ = q2γ + sγpγ − (q2βl + sβlpγ)
q2δ = q2γ + sγpγ − (q2βl + sβlpγ)
rδ = sγ
sδ = sγ

if sβl < sγ



q1δ = ∞
q2δ = ∞
rδ = ∞
sδ = ∞

and finally

156 Appendix B. Approximations for Real-Time Calculus

if sδ ≥ sβu ∧ q1δ ≥ q1βu



q1 = q1βu

q2 = q2βu

r = rβu

s = sβu

if sδ ≥ sβu ∧ q1δ < q1βu



q1 = q1δ

q2 = q2βu

r = rδ
s = sβu

if sδ < sβu ∧ q1δ < q1βu



q1 = q1δ

q2 = q2δ

r = rδ
s = sδ

if sδ < sβu ∧ q1δ ≥ q1βu



q1 = q1βu

q2 = q2δ

r = rβu

s = sδ

Derivation: The remaining upper arrival curve αu′ is calculated in three
steps from the formula αu′ = min{supλ≥0{inf0≤µ<λ+∆{αu(µ) + βu(λ + ∆ −
µ)} − βl(λ)}, βu(∆)}, which can be written as αu′ = min{(αu ⊗ βu) βl, βu}.
First, we calculate the innermost parentheses only and get an upper curve
γu = U(q1, q2, r, s), with γu = αu⊗βu. To compute γu, from [BT01], we know
that for two concave curves passing through the origin, αu ⊗ βu equals to
the minimum of the two curves. Therefore, to compute γu, we have to
distinguish the 4 cases depicted in Figure 74.

In a next step, we compute δu = γu βl. For this calculation, we have
to look at 18 different cases. All different combinations of γu and βl have
to be inspected. As a result, we can distinguish 7 different cases for δu. In
Table 18 all cases with corresponding δu is provided.

In Table 19 all the different cases (A, B, . . .) are further described. In the
figures in Table 18 the vertical arrow indicates the value for q1δ of δu which
is the largest vertical distance between γu and βl. All other points of the δu

curve are obtained by shifting the γu curve in such a way, that the lower
end of this arrow lies at the origin. Some of the cases can be combined to
regions which are described with capital letters. A representation of these
regions is given in Figure 75.

Once we found the values for q1δ, q2δ, rδ and sδ for the δu curve, to
compute αu′ we only need δu and the initial upper service curve βu. From

157

q q q�� �	 �	u > q��u6

s s

s

� 	

� 	

u

u

>

s 6 I

IV

II

III

Fig. 74: Different cases for γu = αu ∧ βu.

Case I

q1γ = q1βu

q2γ = q2βu

rγ = rβu

sγ = sβu

Case II

q1γ = q1α

q2γ = q2α

rγ = rα
sγ = sβu

Case III

q1γ = q1α

q2γ = q2α

rγ = rα
sγ = sα

Case IV

q1γ = q1βu

q2γ = q2α

rγ = rβu

sγ = sα

Tab. 17: Four different cases for αu ∧ βu.

158 Appendix B. Approximations for Real-Time Calculus

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ A

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ C

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ F

 �()

u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ A

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ C

 �()
u

�p

r

s
q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ D

 �()

u

�p

r

s
q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ A

 �()
u

�p

r

s
q2

q1

� �()
l

p
�� p

��

r�

s�

⇒ B

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ B

 �()

u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒∞

 �()
u

�p

r

s

q2

q1

� �()
l

p
�� p

��

r�

s�

⇒∞

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒∞

 �()

u

�p

r

s

q2

q1

� �()

l

p
��

p
��

r�
s�

⇒ E

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�
s�

⇒ E

 �()
u

�p

r

s

q2

q1

� �()
l

p
�� p

��

r�
s�

⇒ F

 �()

u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�
s�

⇒ E

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�
s�

⇒ E

 �()
u

�p

r

s

q2

q1

� �()
l

p
��

p
��

r�

s�

⇒ D

Tab. 18: All combinations of γu and βl to compute δu.

the two curves, we have to calculate the minimum, which is again done
by distinguishing 4 cases as shown in Figure 76. The resulting values for
q1, q2, r and s are given in Table 20.

159

r r

s r < r s

s r s < r

r < s s < r

r < s r s

s < s

 �

 �
 �

 � �

�
 �

�

 �

�

6

6 6

6 6

6

6 6

l

l l

l l

l l

l l

l

p < p p p p p < p
 �� ��
 �� ��
6 6

A
B

C
D

F

E

Infinity Case

D

Fig. 75: Regions for different cases to compute δu.

q > q�� ��u u 6q q�� ��

s >

s

�

�

u

u6

s

s

�

� I

IV

II

III

Fig. 76: Different cases for δu ∧ βu.

160 Appendix B. Approximations for Real-Time Calculus

Case A
� �()

u

�

r =� s�

q2�
q =1�

q1δ = q2γ + sγp1βl

q2δ = q2γ + sγp1βl

rδ = sγ
sδ = sγ

Case B
� �()

u

�p
�

r�

s�

q2�

q1�

q1δ = q1γ + rγp1βl

q2δ = q2γ + sγpγ
rδ = rγ
sδ = sγ

Case C
� �()

u

�

r =� s�

q2�
q =1�

q1δ = (q2γ + sγpγ) − (q1βl + rβlpγ)
q2δ = (q2γ + sγpγ) − (q1βl + rβlpγ)
rδ = sγ
sδ = sγ

Case D
� �()

u

�p
�

r�

s�

q2�

q1�

q1δ = (q1γ + rγp2βl) − (q1βl + rβlp2βl)
q2δ = q1γ − q1βl + (rγ − rβl)p2βl

+(rγ − sγ)(pγ − p2βl)
rδ = rγ
sδ = sγ

Case E
� �()

u

�

r =� s�

q2�
q =1�

q1δ = (q2γ + sγp2βl) − (q1βl + rβlp2βl)
q2δ = (q2γ + sγp2βl) − (q1βl + rβlp2βl)
rδ = sγ
sδ = sγ

Case F
� �()

u

�

r =� s�

q2�
q =1�

q1δ = (q2γ + sγpγ) − (q2βl + sβlpγ)
q2δ = (q2γ + sγpγ) − (q2βl + sβlpγ)
rδ = sγ
sδ = sγ

Case ∞
q1δ = ∞
q2δ = ∞
rδ = ∞
sδ = ∞

Tab. 19: Explicit values for q1δ, q2δ, rδ and sδ.

161

Case I

q1 = q1βu

q2 = q2βu

r = rβu

s = sβu

Case II

q1 = q1δ

q2 = q2βu

r = rδ
s = sβu

Case III

q1 = q1δ

q2 = q2δ

r = rδ
s = sδ

Case IV

q1 = q1βu

q2 = q2δ

r = rβu

s = sδ

Tab. 20: Four different cases for δu ∧ βu.

162 Appendix B. Approximations for Real-Time Calculus

Prop. 5: (Remaining Lower Service Curve) Given the upper arrival and lower service
curves αu = U(q1α, q2α, rα, sα) and βl = L(q1β, q2β, rβ, sβ) respectively, the approx-
imate remaining service curve βl′ = L(q1, q2, r, s) can be given as the following.

Case 1: For some ∆′ > 0, q2β + sβ∆′ = q2α + sα∆′, and for all ∆ < ∆′, αu(∆) >
βl(∆).

In this case,

r = 0, s = sβ − sα
q1 = 0, q2 = q2β − q2α

Case 2: For some ∆′ > 0, q1β + rβ∆′ = q2α + sα∆′, and for all ∆ < ∆′, αu(∆) >
βl(∆).

In this case,

r = rβ − sα, s = sβ − sα
q1 = q1β − q2α, q2 = q2β − q2α

Case 3: For some ∆′ > 0, q1β + rβ∆′ = q1α + rα∆′, and for all ∆ < ∆′, αu(∆) >
βl(∆).

In this case,

r = rβ − rα, s = sβ − sα
q1 = q1β − q1α, q2 = q2β − q2α

Case 4: For some ∆′ > 0, q2β + sβ∆′ = q1α + rα∆′, and for all ∆ < ∆′, αu(∆) >
βl(∆).

In this case,

r = sβ − rα, s = sβ − sα
q1 = q2β − q1α, q2 = q2β − q2α

If αu(∆) ≥ βl(∆) for all ∆ ≥ 0 then r = s = 0 and q1 = q2 = 0

Derivation: To prove that βl′ = L(q1, q2, r, s) is a valid lower remaining ser-
vice curve, we shall as before show that L(q1, q2, r, s)(∆) ≤ sup0≤u≤∆{βl(u) −
αu(u)} for all ∆ ≥ 0.

Firstly, it may be noted that βl(∆) and αu(∆) are convex and concave
respectively. Therefore, βl(∆)−αu(∆) and sup0≤u≤∆{βl(u)−αu(u)} are convex.
Here we have to consider four different cases.

Case 1 is when the last segment of βl(∆) intersects the last segment of
αu(∆), at say∆ = ∆′ (see Figure 77). Therefore, for all∆ < ∆′, βl(∆) < αu(∆).

163

rβ

q2α

q1α

pα p1β p2β

q1β

rα

sα

βl

βl′

αu

sβ

∆

Fig. 77: Remaining Lower Service Curve (Case 1).

∆p2βp1β

βl

rα

sα

rβ

sβ

pα

q1α

q2α

q1β

βl′
αu

Fig. 78: Remaining Lower Service Curve (Case 2).

Hence, sup0≤u≤∆{βl(u) − αu(u)} = 0 for all ∆ ≤ ∆′, and therefore r = 0 and
q1 = 0. When∆→∞, sup0≤u≤∆{βl(u)−αu(u)}= sup0≤u≤∆{q2β+sβu−q2α−sαu}.
Therefore, we have s = sβ − sα and q2 = q2β − q2α.

Case 2 is when the middle segment of βl(∆) intersects the last segment
of αu(∆). If this intersection is at ∆ = ∆′, then for all ∆ < ∆′, βl(∆) < αu(∆)
and sup0≤u≤∆{βl(u) − αu(u)} = 0 for all ∆ ≤ ∆′. This case is shown in
Figure 78. Clearly, r = rβ − sα, s = sβ − sα, q1 = q1β − q2α and q2 = q2β − q2α.

Case 3 is when the middle segment of βl(∆) intersects the middle seg-
ment of αu(∆) (see Figures 79 and 80). In this case, sup0≤u≤∆{βl(u) − αu(u)}
is made up of four linear segments. But we approximate it using
L(q1, q2, r, s)(∆), which is made up of three segments. Figures 79 and 80
show two possible subcases: when p2β ≥ pα and when p2β < pα respec-
tively. If βl(∆) and αu(∆) intersect at ∆′, then the four segments that make
up sup0≤u≤∆{βl(u) − αu(u)} span the intervals ∆ ∈ [0,∆′), [∆′, pα), [pα, p2β),
[p2β,∞) (as shown in Figure 79) and ∆ ∈ [0,∆′), [∆′, p2β), [p2β, pα), [pα,∞)

164 Appendix B. Approximations for Real-Time Calculus

∆p1β

βl

rβ

sβ

q1α

q1β

αu

rα

q2α

βl′

sα

p2βpα

Fig. 79: Remaining Lower Service Curve (Case 3, p2β ≥ pα).

∆

q1α

αuq2α
sα

pα

rα

sβ

p1β p2β

q1β

βl

βl′

rβ

Fig. 80: Remaining Lower Service Curve (Case 3, p2β < pα).

(as shown in Figure 80). To obtain L(q1, q2, r, s)(∆), we neglect the seg-
ment of sup0≤u≤∆{βl(u) − αu(u)} corresponding to the interval [pα, p2β) in
Figure 79 and the interval [p2β, pα) in Figure 80, and instead approxi-
mate this segment by the segments preceding and following it. It may be
noted that L(q1, q2, r, s)(∆) is a valid lower curve, since L(q1, q2, r, s)(∆) ≤
sup0≤u≤∆{βl(u) − αu(u)} for all ∆ ≥ 0. Therefore, r = rβ − rα, s = sβ − sα,
q1 = q1β − q1α, q2 = q2β − q2α.

Case 4 is when the last segment of βl(∆) intersects the middle segment
of αu(∆) (see Figure 81). It can be seen that r = sβ − rα, q1 = q2β − q1α, and
as before, s = sβ − sα and q2 = q2β − q2α.

Lastly, if βl(∆) ≤ αu(∆) for all ∆ ≥ 0, then sup0≤u≤∆{βl(u)−αu(u)} ≤ 0 for
all ∆ ≥ 0. Hence, r = s = 0 and q1 = q2 = 0.

165

∆

rα

sα

pαp1β p2β

q2α

q1α

q1β

sβ

βl′

βl

αu

rβ

Fig. 81: Remaining Lower Service Curve (Case 4).

166 Appendix B. Approximations for Real-Time Calculus

Prop. 6: (Simple Upper Service Curve) Given the lower arrival and upper service
curves αl = L(q1α, q2α, rα, sα) and βu = U(q1β, q2β, rβ, sβ) respectively, then the
remaining upper service curve βu′ = U(q1, q2, r, s) is determined as follows:

r =


0, if sβ < sα
rβ, ifsβ ≥ sα ∧ pβ < p1α

rβ − rα, if sβ ≥ sα ∧ pβ ≥ p1α

s =
{

0, if sβ < sα
sβ − sα, if sβ ≥ sα

q1 =


0, if sβ < sα
q1β, if sβ ≥ sα ∧ pβ < p1α

q1β − q1α, if sβ ≥ sα ∧ pβ ≥ p1α

q2 =

{
0, if sβ < sα
q2β − q2α, if sβ ≥ sα

Derivation: Because the remaining upper service curve βu′(∆) is defined
as the smallest difference between the initial upper service curve βu(u) and
the initial lower arrival curve of packets αl(u) for all u ≥ ∆, it is obvious
that βu′(∆) = 0 , if sα > sβ.

If sα ≤ sβ, there are three possible cases, how the incoming curves αl

and βu can look like. These different cases are shown in Figures 82–84.
In general, if we calculate the resulting upper service curve βu′ using
formula , we obtain a curve with four linear pieces. To obtain only three
linear pieces we will have to approximate this resulting curve with three
linear segments. The four piece linear approximation is shown in the
figures as small dotted lines, the approximation is given as bold solid
lines.

The approximation in the first case is shown in Figure 82. In this case
the burst rate of the resulting upper service curve βu′(∆) equals to the
burst rate of the initial upper service curve βu, because there is no load
offered by the lower arrival curve αl at all. Similarly the initial offset q1

of the upper service curve remains the same. The long term rate s in
this first case results to the difference between the long term rates of the
initial curves, therefore s = sβ − sα. To compute q2 we will have to solve
the equation q2 + p2α(sβ − sα) = q2β + sβp2α − q2α − sαp2α. This results to
q2 = q2β − q2α.

In the second (Figure 83) and third (Figure 84) case the final remaining
upper service curve is derived from the four piece curve in the same way.
That’s the reason why, in the formulas, we only distinguish between the
case pβ < p1α and the case where p1α ≤ pβ. In the latter case, the burst
rate is determined by calculating rβ − rα, this means, that the burst rate of
the final approximation curve is determined by the second line segment

167

� �()
l

�p�

r�

s�

q2�

q1�

� �()
u

p�� p��

r�

s�
� �()

u’

Fig. 82: Approximation of βu′ in the case pβ < p1α.

� �()
l

�p�

r�

s�

q2�

q
1�

� �()
u

p�� p��

r�

s�

� �()
u’

Fig. 83: Approximation of βu′ in the case p1α ≤ pβ ≤ p2α.

of the intermediate (four segment) approximation curve. To compute the
initial offset, we have to solve the equation q1β+ rβ = q1+ (rβ− rα)p1α. With
rαp1α + q1α = 0, we find q1 = q1β − q1α.

� �()
l

�p�

r�

s�

q2�

q1�

� �()
u’

p�� p��

r�

s�
� �()

u

Fig. 84: Approximation of βu′ in the case pβ > p2α.

168 Appendix B. Approximations for Real-Time Calculus

Prop. 7: (Backlog and Delay) Given the upper arrival and lower service curves
αu = U(q1α, q2α, rα, sα) and βl = L(q1β, q2β, rβ, sβ) respectively, then the maxi-
mum backlog B and the maximum delay D of a packet can be bounded as follows:

B ≤



q2α − sα
rβ

q1β if pα ≤ p1β ∧ sα < rβ
q2α − q1β + (sα − rβ)

q2α−q1α

rα−sα
if p1β < pα < p2β ∧ sα < rβ < rα

q2α − q2β + (sα − sβ)
q2α−q1α

rα−sα
if p2β ≤ pα ∧ sα ≤ sβ < rα

q1α − q1β + (rα − rβ)
q2β−q1β

rβ−sβ
if p2β ≤ pα ∧ rβ < rα ≤ sβ

q1α − rα
rβ

q1β if p1β < pα ∧ sα < rα ≤ rβ < sβ
q2α − q1β + (sα − rβ)

q2β−q1β

rβ−sβ
if pα < p2β ∧ rβ ≤ sα ≤ sβ

∞ if sβ < sα

D ≤



∞ if sβ < sα
q2α−q1α

rα−sα
rα+q1α−q2β

sβ
− q2α−q1α

rα−sα
if sα ≤ sβ ≤ rα

q1α−q2β

sβ
if rβ < rα < sβ ∧ q2β + p2βsβ ≤ q1α or rα ≤ rβ

−
q2β−q1β

rβ−sβ
rβ+q1β−q1α

rα
+

q2β−q1β

rβ−sβ
if rβ < rα < sβ ∧ q1α < q2β + p2βsβ ≤ q1α + pαrα

q2α−q1α
rα−sα

rα+q1α−q1β

rβ
− q2α−q1α

rα−sα
if sα ≤ rβ < rα < sβ ∧ q1α + pαrα < q2β + p2βsβ

−
q2β−q1β

rβ−sβ
rβ+q1β−q2α

sα
+

q2β−q1β

rβ−sβ
if rβ < sα < rα < sβ ∧ q1α + pαrα < q2β + p2βsβ

Derivation: The derivation of this proposition can be found by inspecting
the graphs forαu =U(q1α, q2α, rα, sα) and βl =L(q1β, q2β, rβ, sβ) and calculating
the maximal horizontal and vertical distances.

Bibliography

[ABD+04] U. Anliker, J. Beutel, M. Dyer, R. Enzler, P. Lukowicz,
L. Thiele, and G. Tröster. A systematic approach to the
design of distributed wearable systems. IEEE Transactions
on Computers, 53(8):1017–1033, Aug 2004.

[Aga92] A. Agarwal. Performance tradeoffs in multithreaded pro-
cessors. IEEE Transactions on Parallel and Distributed Systems,
3(5):525–539, September 1992.

[ALM98] G. Anastasi, L. Lenzini, and E. Mingozzi. Stability and per-
formance analysis of hiperlan. In Proceedings of the IEEE Con-
ference on Computer Communications (INFOCOM ’98), March
1998.

[Alp92] Alpha Architecture Reference Manual, Digital Press, 1992.

[AMB] ARM AMBA 2.0. http://www.arm.com/products/.
./solutions/AMBAOverview.html.

[APS04] Giovanni Agosta, Gianluca Palermo, and Cristina Silvano.
Multi-objective co-exploration of source code transforma-
tions and design space architectures for low-power embed-
ded systems. In Hisham Haddad, Andrea Omicini, Roger L.
Wainwright, and Lorie M. Liebrock, editors, Proceedings of
the 2004 ACM symposium on Applied computing, pages 891–
896, New York, NY, USA, 2004. ACM Press.

[ARS98] Santosh Abraham, B. Ramakrishna Rau, and Robert
Schreiber. Fast design space exploration through validity
and quality filtering of subsystem designs. Technical Re-
port HPL-2000-98, HP Labs Technical Reports, 1998.

[BA97] Doug Burger and Todd M. Austin. The simplescalar tool
set, version 2.0. SIGARCH Comput. Archit. News, 25(3):13–
25, 1997.

170 Bibliography

[BBB01] Davide Bruni, Alessandro Bogliolo, and Luca Benini. Statis-
tical design space exploration for application-specific unit
synthesis. In Proceedings of the 38th Design Automation Con-
ference, pages 641–646, New York, NY, USA, 2001. ACM
Press.

[BBTZ01] Neal K. Bambha, Shuvra Bhattacharyya, Juergen Teich, and
Eckart Zitzler. Hybrid search strategies for dynamic volt-
age scaling in embedded multiprocessors. In Jan Madsen,
Jörg Henkel, and Xiaobo Sharon Hu, editors, Proceedings of
the Ninth International Symposium on Hardware/Software Code-
sign, pages 243–248, New York, NY, USA, April 2001. ACM
Press.

[BC98] Paul Barford and Mark Crovella. Generating representa-
tive web workloads for network and server performance
evaluation. In Proceedings of the 1998 ACM SIGMETRICS
joint international conference on Measurement and modeling of
computer systems, pages 151–160. ACM Press, 1998.

[BFM97] T. Bäck, D. B. Fogel, and Z. Michalewicz, editors. Handbook
of Evolutionary Computation. IOP Publishing and Oxford
University Press, Bristol, UK, 1997.

[BLTZ03] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA
— a platform and programming language independent in-
terface for search algorithms. In C. M. Fonseca, P. J. Flem-
ing, E. Zitzler, K. Deb, and L. Thiele, editors, Evolutionary
Multi-Criterion Optimization (EMO 2003), Lecture Notes in
Computer Science, pages 494–508, Berlin, 2003. Springer.

[Blu05] Philipp Blum. Guaranteed Time Synchronization in Wireless
and Ad-Hoc Networks. PhD thesis, Swiss Federal Institute of
Technology (ETH), 2005.

[Boe88] Barry W. Boehm. A spiral model of software development
and enhancement. Computer, 21(5):61–72, 1988.

[BPN+04] Alex Bobrek, Joshua J. Pieper, Jeffrey E. Nelson, JoAnn M.
Paul, and Donald E. Thomas. Modeling shared resource
contention using a hybrid simulation/analytical approach.
In Proceedings of the Design, Automation and Test in Europe
Conference and Exhibition Volume II (DATE’04), pages 1144–
1149. IEEE Computer Society, 2004.

Bibliography 171

[BT01] J.Y. Le Boudec and P. Thiran. Network Calculus - A Theory
of Deterministic Queuing Systems for the Internet. LNCS 2050,
Springer Verlag, 2001.

[BT03] Peter A. N. Bosman and Dirk Thierens. The balance between
proximity and diversity in multiobjective evolutionary al-
gorithms. IEEE Transactions on Evolutionary Computation,
7(2):174–188, 2003.

[BTT98] Tobias Blickle, Jürgen Teich, and Lothar Thiele. System-level
synthesis using evolutionary algorithms. Journal on Design
Automation for Embedded Systems, 3(8):23–58, January 1998.

[BZZ04] A. Bona, V. Zaccaria, and R. Zafalon. System level power
modeling and simulation of high-end industrial network-
on-chip. In Design and Test in Europe Conference (DATE),
pages 318–323, 2004.

[CB02] P. Crowley and J-L. Baer. A modeling framework for net-
work processor systems. In Proc. 1st Workshop on Network
Processors, held in conjunction with the 8th International Sym-
posium on High-Performance Computer Architecture, February
2002. An enhanced version of this paper appeared in the
book “Network Processor Design: Issues and Practices, Vol-
ume 1”, Morgan Kaufmann Publishers, October 2002.

[CdGS98] Francky Catthoor, Eddy de Greef, and Sven Suytack. Cus-
tom Memory Management Methodology: Exploration of Memory
Organisation for Embedded Multimedia System Design. Kluwer
Academic Publishers, Norwell, MA, USA, 1998.

[CG03] Lukai Cai and Daniel Gajski. Transaction level modeling:
an overview. In CODES+ISSS ’03: Proceedings of the 1st
IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, pages 19–24, New York, NY,
USA, 2003. ACM Press.

[CJ98] P. Czyzak and A. Jaszkiewicz. Pareto-simulated annealing
– a metaheuristic technique for multi-objective combinato-
rial optimization. Journal of Multi-Criteria Decision Analysis,
7(1):34–47, January 1998.

[CKT03a] S. Chakraborty, S. Künzli, and L. Thiele. A general frame-
work for analysing system properties in platform-based em-
bedded system designs. In Proc. 6th Design, Automation and

172 Bibliography

Test in Europe (DATE), pages 190–195, Munich, Germany,
March 2003.

[CKT+03b] S. Chakraborty, S. Künzli, L. Thiele, A. Herkersdorf, and
P. Sagmeister. Performance evaluation of network proces-
sor architectures: Combining simulation with analytical es-
timation. Computer Networks, 41(5):641–665, April 2003.

[CPL] CPLEX optimizer. http://www.cplex.com/.

[CSH00] C. Chantrapornchai, E.H.-M. Sha, and X. S. Hu. Efficient ac-
ceptable design exploration based on module utility selec-
tion. IEEE Transactions on Computer Aided Design of Integrated
Circuits and Systems, 19(1):19–29, 2000.

[CVL02] C. A. Coello Coello, D. A. Van Veldhuizen, and Gary B.
Lamont. Evolutionary Algorithms for Solving Multi-Objective
Problems. Kluwer Academic Publishers, New York, 2002.

[DA95] Kalyanmoy Deb and Ram Bhushan Agrawal. Simulated
binary crossover for continuous search space. Complex Sys-
tems, 9:115–148, 1995.

[DAPM00] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast
elitist non-dominated sorting genetic algorithm for multi-
objective optimization: NSGA-II. In M. Schoenauer et al.,
editors, Parallel Problem Solving from Nature (PPSN VI), Lec-
ture Notes in Computer Science Vol. 1917, pages 849–858.
Springer, 2000.

[DD02] Rolf Drechsler and Nicole Drechsler. Evolutionary Algorithms
for Embedded System Design. Kluwer Academic Publishers,
Norwell, MA, USA, 2002.

[Deb01] K. Deb. Multi-objective optimization using evolutionary algo-
rithms. John Wiley, Chichester, UK, 2001.

[DJ98] R. P. Dick and N. K. Jha. MOGAC: A Multiobjective Ge-
netic Algorithm for Hardware-Software Co-synthesis of Hi-
erarchical Heterogeneous Distributed Embedded Systems.
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 17(10):920–935, 1998.

[DPAM02] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and
elitist multi-objective genetic algorithm : NSGA-II. IEEE
Trans. on Evolutionary Computation, 6(2):182–197, April 2002.

Bibliography 173

[DTLZ02] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable
multi-objective optimization test problems. In Congress on
Evolutionary Computation (CEC), pages 825–830. IEEE Press,
2002.

[DTLZ05] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler. Scalable test
problems for evolutionary multi-objective optimization. In
A. Abraham, L. C. Jain, and R. Goldberg, editors, Evolu-
tionary Multiobjective Optimization: Theoretical Advances and
Applications. Springer, 2005.

[Ern98] Rolf Ernst. Codesign of embedded systems: Status and
trends. IEEE Design & Test, 15(2):45–54, 1998.

[Ern03] Rolf Ernst. Putting it all together. Queue, 1(2):50, 2003.

[ETZ00] Michael Eisenring, Lothar Thiele, and Eckart Zitzler. Han-
dling conflicting criteria in embedded system design. IEEE
Design and Test of Computers, 17(2):51–59, April 2000.

[FF98] C. M. Fonseca and Peter J. Fleming. Multiobjective opti-
mization and multiple constraint handling with evolution-
ary algorithms—part ii: Application example. IEEE Trans-
actions on Systems, Man, and Cybernetics, 28(1):38–47, 1998.

[FW02] M.A. Franklin and T. Wolf. A network processor per-
formance and design model with benchmark parame-
terization. In Proc. 1st Workshop on Network Processors,
held in conjunction with the 8th International Symposium on
High-Performance Computer Architecture, Cambridge, Mas-
sachusetts, February 2002. An enhanced version of this pa-
per appears in the book “Network Processor Design: Issues
and Practices, Volume 1”, Morgan Kaufmann Publishers,
October 2002.

[GG03] Arijit Ghosh and Tony Givargis. Analytical design space
exploration of caches for embedded systems. In Norbert
Wehn and Diederik Verkest, editors, Design, Automation and
Test in Europe Conference and Exhibition (DATE 03), pages
650–655, Los Alamitos, CA, USA, March 2003. IEEE Press.

[GLMS02] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design
with SystemC. Kluwer Academic Publishers, Boston, MA,
USA, May 2002.

174 Bibliography

[GVH02] Tony Givargis, Frank Vahid, and Joerg Henkel. System-level
exploration for Pareto-optimal configurations in parameter-
ized system-on-a-chip. IEEE Trans. Very Large Scale Integr.
Syst., 10(4):416–422, 2002.

[GVNG98] Daniel D. Gajski, Frank Vahid, Sanjiv Narayan, and Jie
Gong. System-level exploration with SpecSyn. In Proceed-
ings of the 35th Design Automation Conference, pages 812–817,
New York, NY, USA, 1998. ACM press.

[GZD+00] Daniel D. Gajski, Jianwen Zhu, Rainer Dömer, Andreas Ger-
stlauer, and Shuqing Zhao. SPEC C:Specification Language
and Design Methodology. Kluwer Academic Publishers, 2000.

[HE05] Arne Hamann and Rolf Ernst. TDMA time slot and turn
optimization with evolutionary search techniques. In Proc.
of Design, Automation and Test in Europe (DATE ’05), March
2005.

[HHBS99] G.J. Hekstra, G.D. La Hei, P. Bingley, and F.W. Sijstermans.
TriMedia CPU64 Design Space Exploration. In Andreas
Kuehlmann and Craig Chase, editors, 1999 IEEE Interna-
tional Conference on Computer Design, pages 593–598, Los
Alamitos, CA, USA, October 1999. IEEE Press.

[HHJ+05] Rafik Henia, Arne Hamann, Marek Jersak, Razvan Racu, Kai
Richter, and Rolf Ernst. System level performance analysis
– the SymTA/S approach. IEE Proceedings - Computers and
Digital Techniques, 152(02), March 2005.

[HJ98] Michael P. Hansen and Andrzej Jaszkiewicz. Evaluating the
quality of approximations of the non-dominated set. Tech-
nical report, Institute of Mathematical Modeling, Technical
University of Denmark, 1998. IMM Technical Report IMM-
REP-1998-7.

[IBMa] Blue Logic technology, IBM.
http://www.chips.ibm.com/bluelogic/.

[IBMb] Coreconnect bus architecture, IBM.
http://www.chips.ibm.com/products/coreconnect/.

[Jas03] A. Jaszkiewicz. Do multiple-objective metaheuristics de-
liver on their promises? a computational experiment on
the set-covering problem. IEEE Transactions on Evolution-
ary Computation, 7(2):133–143, 2003.

Bibliography 175

[KBTZ04] Simon Künzli, Stefan Bleuler, Lothar Thiele, and Eckart
Zitzler. A computer engineering benchmark application
for multiobjective optimizers. In Carlos Coello Coello and
Gary B. Lamont, editors, Application of Multi-Objective Evo-
lutionary Algorithms, pages 269–294. World Scientific, 2004.

[KC00] J. D. Knowles and D. W. Corne. Approximating the non-
dominated front using the Pareto Archived Evolution Strat-
egy. Evolutionary Computation, 8(2):149–172, 2000.

[KC02] J. Knowles and D. Corne. On metrics for comparing non-
dominated sets. In Congress on Evolutionary Computation
(CEC 2002), pages 711–716, Piscataway, NJ, 2002. IEEE Press.

[KC03] J. D. Knowles and D. W. Corne. Instance generators and
test suites for the multiobjective quadratic assignment prob-
lem. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, and
L. Thiele, editors, Evolutionary Multi-Criterion Optimization
(EMO 2003), Lecture Notes in Computer Science, pages 295–
310, Berlin, 2003. Springer.

[KM98] A. Kalavade and P. Moghé. A tool for performance estima-
tion of networked embedded end-systems. In 35th DAC,
1998.

[KMC+00] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M.F. Kaashoek.
The Click modular router. ACM Transactions on Computer
Systems, 18(3):263–297, 2000.

[KMN+00] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: Orthog-
onalization of concerns and platform-based design. IEEE
Transactions on Computer-Aided Design, 19(12), December
2000.

[Kno02] J. D. Knowles. Local-Search and Hybrid Evolutionary Algo-
rithms for Pareto Optimization. PhD thesis, University of
Reading, 2002.

[KPBT06] S. Künzli, F. Poletti, L. Benini, and L. Thiele. Combining
simulation and formal methods for system-level perfor-
mance analysis. In Proc. Design, Automation and Test in Europe
(DATE), March 2006.

[KT06] Simon Künzli and Lothar Thiele. Generating event traces
based on arrival curves. In Proc. of 13th GI/ITG Conference

176 Bibliography

on Measurement, Modeling, and Evaluation of Computer and
Communication Systems (MMB), March 2006.

[KTZ05a] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the per-
formance assessment of stochastic multiobjective optimiz-
ers. 214, Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH) Zurich,
July 2005.

[KTZ05b] S. Künzli, L. Thiele, and E. Zitzler. Modular design space
exploration framework for embedded systems. IEE Pro-
ceedings - Computers and Digital Techniques, 152(02):183–192,
March 2005.

[KTZ06] Simon Künzli, Lothar Thiele, and Eckart Zitzler. Multi-
criteria decision making in embedded system design. In
Bashir Al-Hashimi, editor, System On Chip: Next Generation
Electronics, pages 3–28. IEE Press, January 2006.

[Kur91] F. Kursawe. A variant of evolution strategies for vector
optimization. In H.-P. Schwefel and R. Männer, editors,
Parallel Problem Solving from Nature (PPSN), pages 193–197.
Springer, 1991.

[LAB+04] Mirko Loghi, Federico Angiolini, Davide Bertozzi, Luca
Benini, and Roberto Zafalon. Analyzing on-chip communi-
cation in a MPSoC environment. In Proceedings of the Design,
Automation and Test in Europe Conference and Exhibition Vol-
ume II (DATE’04), pages 752–757. IEEE Computer Society,
2004.

[LNA] National Laboratory for Applied Network Re-
search (NLANR), Traces collected in June 2000,
http://pma.nlanr.net/pma/.

[LPB04] M. Loghi, M. Poncino, and L. Benini. Cycle-accurate
power analysis for multiprocessor systems-on-a-chip. In
GLSVLSI04: Great Lake Symposium on VLSI, pages 401–406,
2004.

[LRD04] K. Lahiri, A. Raghunathan, and S. Dey. Design space explo-
ration for optimizing on-chip communication architectures.
IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems, 23(6):952–961, June 2004.

Bibliography 177

[LTDZ02] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler. Combining
convergence and diversity in evolutionary multiobjective
optimization. Evolutionary Computation, 10(3):263–282, 2002.

[LTWW93] Will E. Leland, Murad S. Taqqu, Walter Willinger, and
Daniel V. Wilson. On the self-similar nature of Ethernet traf-
fic. In Deepinder P. Sidhu, editor, ACM SIGCOMM, pages
183–193, San Francisco, California, 1993.

[LTZ04] M. Laumanns, L. Thiele, and E. Zitzler. Running time anal-
ysis of multiobjective evolutionary algorithms on pseudo-
boolean functions. IEEE Transactions on Evolutionary Com-
putation, 8(2):170–182, April 2004.

[LZT01] Marco Laumanns, Eckart Zitzler, and Lothar Thiele. On the
effects of archiving, elitism, and density based selection in
evolutionary multi-objective optimization. In Proceedings
of the First International Conference on Evolutionary Multi-
Criterion Optimization, pages 181–196. Springer-Verlag, 2001.

[Mar03] Peter Marwedel. Embedded System Design. Kluwer Aca-
demic Publishers, 2003.

[MAS+05] Shankar Mahadevan, Federico Angiolini, Michael Stor-
gaard, Rasmus Grondahl Olsen, Jens Sparso, and Jan Mad-
sen. A network traffic generator model for fast network-
on-chip simulation. In DATE ’05: Proceedings of the Design,
Automation and Test in Europe (DATE’05) Volume 2, pages
780–785. IEEE Computer Society, 2005.

[Max05] Alexander Maxiaguine. Modeling Multimedia Workloads for
embedded system design. PhD thesis, Swiss Federal Institute
of Technology (ETH), 2005.

[Mie99] K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer,
Boston, 1999.

[MKT04] A. Maxiaguine, S. Künzli, and L. Thiele. Workload charac-
terization model for tasks with variable execution demand.
In Proc. 7th Design, Automation and Test in Europe (DATE),
pages 1040–1045, Paris, France, February 2004.

[MSB+02] Bart Mesman, Ben Spaanenburg, Ed Brinksma, Ed Depret-
tere, Eric Verhulst, Floris Timmer, Hans van Gageldonk,
Ludwig D.J. Eggermont, René van Leuken, Thijs Krol, and

178 Bibliography

Wim Hendriksen. Embedded systems roadmap 2002. Tech-
nical report, STW Technologiesichting, Utrecht, Nether-
lands, March 2002.

[NSK02] Sandeep Neam, Janos Sztipanovits, and Gabor Karsai.
Design-space construction and exploration in platform-
based design. Technical Report ISIS-02-301, Vanderbilt Uni-
versity, Institute for Software Integrated Systems, 2002.

[PAB+05] D. Pham, S. Asano, M. Bolliger, M. N. Day, H. P. Hof-
stee, C. Johns, J. Kahle, A. Kameyama, J. Keaty, Y. Ma-
subuchi, M. Riley, D. Shippy, D. Stasiak, M. Suzuoki,
M. Wang, J. Warnock, S. Weitzel, D. Wendel, T. Yamazaki,
and K. Yazawa. The design and implementation of a first-
generation CELL processor. In Proceedings of ISSCC 2005,
February 2005.

[PEP05] Paul Pop, Petru Eles, and Zebo Peng. Analysis and op-
timization of heterogeneous multiprocessor soc. IEE Pro-
ceedings - Computers and Digital Techniques, 152(02), March
2005.

[PG02] Maurizio Palesi and Tony Givargis. Multi-objective design
space exploration using genetic algorithms. In Jörg Henkel,
Xiaobo Sharon Hu, Rajesh Gupta, and Sri Parameswaran,
editors, Proceedings of the 10th international symposium on
Hardware/software codesign, pages 67–72, New York, NY,
USA, 2002. ACM Press.

[PLvdW+01] A.D. Pimentel, P. Lieverse, P. van der Wolf, L.O. Hertzberger,
and E.F. Deprettere. Exploring embedded-systems architec-
tures with artemis. IEEE Computer, 34(11):57–63, November
2001.

[Pow] IBM PowerNP NPe405 Embedded Processors.
http://www-3.ibm.com/chips/techlib/techlib.nsf/

products/PowerNP NPe405 Embedded Processors.

[PSZ03] G. Palermo, C. Silvano, and V. Zaccaria. A flexible frame-
work for fast multi-objective design space exploration of
embedded systems. In Jorge Juan-Chico and Enrico Macii,
editors, PATMOS 2003- International Workshop on Power and
Timing Modeling, volume 2799 of Lecture Notes in Computer
Science, pages 249–258, Berlin, Germany, 2003. Springer.

Bibliography 179

[PSZ05] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria.
Multi-objective design space exploration of embedded sys-
tems. Journal of Embedded Computing, 1(3), 2005.

[RCR04] S. Rajagopal, J. Cavallaro, and S. Rixner. Design space ex-
ploration for real-time embedded stream processors. IEEE
Micro, 24(4):54–66, July/August 2004.

[RE02] K. Richter and R. Ernst. Event model interfaces for het-
erogeneous system analysis. In Proc. 5th Design, Automation
and Test in Europe (DATE), page 506. IEEE Computer Society,
March 2002.

[RJE03] Kai Richter, Marek Jersak, and Rolf Ernst. A formal ap-
proach to MpSoC performance verification. Computer,
36(4):60–67, 2003.

[RZJE02] Kai Richter, Dirk Ziegenbein, Marek Jersak, and Rolf Ernst.
Model composition for scheduling analysis in platform
design. In Proceedings 39th Design Automation Conference
(DAC), June 2002.

[SC99] Wen-Tsong Shiue and Chaitali Chakrabarti. Memory ex-
ploration for low power, embedded systems. In Proceedings
of the 36th ACM/IEEE Design Automation Conference, pages
140–145, New York, NY, USA, 1999. ACM Press.

[Sch85] J. D. Schaffer. Multiple objective optimization with vec-
tor evaluated genetic algorithms. In John J. Grefenstette,
editor, Proceedings of an International Conference on Genetic
Algorithms and Their Applications, pages 93–100, 1985.

[SCK04] R. Szymanek, F. Catthoor, and K. Kuchcinski. Time-energy
design space exploration for multi-layer memory architec-
tures. In Georges Gielen and Joan Figueras, editors, Proc. of
7th ACM/IEEE Design, Automation and Test in Europe Confer-
ence, page 10318, New York, NY, USA, 2004. ACM Press.

[Sea] Seamless Hardware/Software Co-Verification, Mentor
Graphics. http://www.mentor.com/seamless/.

[SJ01] Premkishore Shivakumar and Norman P. Jouppi. Cacti
3.0:an integrated cache timing, power and area model. Tech-
nical Report WRL Research Report 2001/2, Compaq, West-
ern Research Laboratory, August 2001.

180 Bibliography

[SPE] Standard performance evaluation corporation.
http://www.spec.org/.

[SW97] S. Shenker and J. Wroclawski. General characterization pa-
rameters for integrated service network elements. RFC 2215,
IETF, September 1997.

[SYS] SystemC homepage. http://www.systemc.org.

[TCGK02a] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design
space exploration of network processor architectures. In
Patrick Crowley, Mark A. Franklin, Haldun Hadimioglu,
and Peter Z. Onufryk, editors, Network Processor Design:
Issues and Practices, volume 1, chapter 4, pages 55–90.
Morgan Kaufmann Publishers, San Francisco, CA, USA,
October 2002. A preliminary version of this paper ap-
peared in the Proc. 1st Workshop on Network Processors,
held in conjunction with the 8th International Symposium
on High-Performance Computer Architecture, Cambridge,
Massachusetts, 2002.

[TCGK02b] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. A frame-
work for evaluating design tradeoffs in packet processing
architectures. In Proc. 39th Design Automation Conference
(DAC), pages 880–885, New York, NY, USA, June 2002. ACM
Press.

[Thi03] D. Thierens. Convergence time analysis for the multi-
objective counting ones problem. In C. M. Fonseca, P. J.
Fleming, E. Zitzler, K. Deb, and L. Thiele, editors, Evolution-
ary Multi-Criterion Optimization (EMO 2003), Lecture Notes
in Computer Science, pages 355–364, Berlin, 2003. Springer.

[TW05] Lothar Thiele and Ernesto Wandeler. Performance analysis
of distributed embedded systems. In Richard Zuwarski,
editor, Embedded Systems Handbook, chapter 15, pages 15–1–
15–18. CRC Press, Boca Raton, FL, USA, 2005.

[VCC] The Cadence Virtual Component Co-design (VCC).
http://www.cadence.com/products/vcc.html.

[VG01] Frank Vahid and Tony Givargis. Embedded System Design: A
Unified Hardware/Software Introduction. John Wiley & Sons,
Inc., New York, NY, USA, 2001.

Bibliography 181

[WF00] T. Wolf and M. Franklin. CommBench - A telecommuni-
cations benchmark for network processors. In Proc. IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), pages 154–162, Austin, Texas, 2000.

[WMT04] Ernesto Wandeler, Alexander Maxiaguine, and Lothar
Thiele. Quantitative characterization of event streams in
analysis of hard real-time applications. In Proceedings of
the 10th IEEE Real-Time and Embedded Technology and Ap-
plications Symposium (RTAS’04), page 450. IEEE Computer
Society, 2004.

[WMY+01] C. Wong, P. Marchal, P. Yang, A. Prayati, F. Catthoor,
R. Lauwereins, D. Verkest, and H.D. Man. Task concur-
rency management methodology to schedule the mpeg4
im1 player on a highly parallel processor platform. In
CODES ’01: Proceedings of the ninth international symposium
on Hardware/software codesign, pages 170–177, New York, NY,
USA, 2001. ACM Press.

[Wol01] Wayne Wolf. Computers as components: principles of embedded
computing system design. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2001.

[Wor01] F. Worm. A performance evaluation of memory organiza-
tions in the context of core based network processor de-
signs. Master’s thesis, Institut Eurécom, Sophia-Antipolis,
France, This work was done at IBM Research Laboratory
Zürich, 2001.

[ZDT00] E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjec-
tive evolutionary algorithms: Empirical results. Evolution-
ary Computation, 8(2):173–195, 2000.

[ZK04] E. Zitzler and S. Künzli. Indicator-based selection in mul-
tiobjective search. In Proc. 8th International Conference on
Parallel Problem Solving from Nature (PPSN VIII), volume
3242 of Lecture Notes in Computer Science, Berlin, Germany,
September 2004. Springer.

[ZLT02] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for Multiob-
jective Optimization. In K.C. Giannakoglou et al., editors,
Evolutionary Methods for Design, Optimisation and Control with
Application to Industrial Problems (EUROGEN 2001), pages

182 Bibliography

95–100. International Center for Numerical Methods in En-
gineering (CIMNE), 2002.

[ZSXS03] Qingfeng Zhuge, Zili Shao, Bin Xiao, and Edwin H.-M. Sha.
Design space minimization with timing and code size op-
timization for embedded DSP. In Rajesh Gupta, Yukihiro
Nakamura, Alex Orailoglu, and Pai H. Chou, editors, Pro-
ceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 144–
149, New York, NY, USA, 2003. ACM Press.

[ZT99] Eckart Zitzler and Lothar Thiele. Multiobjective Evolu-
tionary Algorithms: A Comparative Case Study and the
Strength Pareto Approach. IEEE Transactions on Evolution-
ary Computation, 3(4):257–271, November 1999.

[ZTB00a] E. Zitzler, J. Teich, and S. S. Bhattacharyya. Multidimen-
sional exploration of software implementations for DSP
algorithms. Journal of VLSI Signal Processing, 24(1):83–98,
February 2000.

[ZTB00b] Eckart Zitzler, Juergen Teich, and Shuvra Bhattacharyya.
Evolutionary algorithms for the synthesis of embedded soft-
ware. IEEE Transactions on VLSI Systems, 8(4):452–456, April
2000.

[ZTL+03] E. Zitzler, L. Thiele, M. Laumanns, C. M. Foneseca, and
V. Grunert da Fonseca. Performance assessment of multi-
objective optimizers: An analysis and review. IEEE Transac-
tions on Evolutionary Computation, 7(2):117–132, 2003.

